xref: /linux/drivers/infiniband/hw/mlx5/mr.c (revision 569d7db70e5dcf13fbf072f10e9096577ac1e565)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46 
47 enum {
48 	MAX_PENDING_REG_MR = 8,
49 };
50 
51 #define MLX5_UMR_ALIGN 2048
52 
53 static void
54 create_mkey_callback(int status, struct mlx5_async_work *context);
55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 				     u64 iova, int access_flags,
57 				     unsigned int page_size, bool populate);
58 
59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 					  struct ib_pd *pd)
61 {
62 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
63 
64 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 	MLX5_SET(mkc, mkc, lr, 1);
69 
70 	if (acc & IB_ACCESS_RELAXED_ORDERING) {
71 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
72 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
73 
74 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
75 		    (MLX5_CAP_GEN(dev->mdev,
76 				  relaxed_ordering_read_pci_enabled) &&
77 		     pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
78 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
79 	}
80 
81 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
82 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
83 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
84 }
85 
86 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
87 {
88 	u8 key = atomic_inc_return(&dev->mkey_var);
89 	void *mkc;
90 
91 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 	MLX5_SET(mkc, mkc, mkey_7_0, key);
93 	*mkey = key;
94 }
95 
96 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
98 {
99 	int ret;
100 
101 	assign_mkey_variant(dev, &mkey->key, in);
102 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
103 	if (!ret)
104 		init_waitqueue_head(&mkey->wait);
105 
106 	return ret;
107 }
108 
109 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
110 {
111 	struct mlx5_ib_dev *dev = async_create->ent->dev;
112 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
113 	size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
114 
115 	MLX5_SET(create_mkey_in, async_create->in, opcode,
116 		 MLX5_CMD_OP_CREATE_MKEY);
117 	assign_mkey_variant(dev, &async_create->mkey, async_create->in);
118 	return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
119 				async_create->out, outlen, create_mkey_callback,
120 				&async_create->cb_work);
121 }
122 
123 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
124 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
125 
126 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
127 {
128 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
129 
130 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
131 }
132 
133 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
134 {
135 	if (status == -ENXIO) /* core driver is not available */
136 		return;
137 
138 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
139 	if (status != -EREMOTEIO) /* driver specific failure */
140 		return;
141 
142 	/* Failed in FW, print cmd out failure details */
143 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
144 }
145 
146 static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
147 {
148 	unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
149 	struct mlx5_mkeys_page *page;
150 
151 	lockdep_assert_held(&ent->mkeys_queue.lock);
152 	if (ent->mkeys_queue.ci >=
153 	    ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
154 		page = kzalloc(sizeof(*page), GFP_ATOMIC);
155 		if (!page)
156 			return -ENOMEM;
157 		ent->mkeys_queue.num_pages++;
158 		list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
159 	} else {
160 		page = list_last_entry(&ent->mkeys_queue.pages_list,
161 				       struct mlx5_mkeys_page, list);
162 	}
163 
164 	page->mkeys[tmp] = mkey;
165 	ent->mkeys_queue.ci++;
166 	return 0;
167 }
168 
169 static int pop_mkey_locked(struct mlx5_cache_ent *ent)
170 {
171 	unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
172 	struct mlx5_mkeys_page *last_page;
173 	u32 mkey;
174 
175 	lockdep_assert_held(&ent->mkeys_queue.lock);
176 	last_page = list_last_entry(&ent->mkeys_queue.pages_list,
177 				    struct mlx5_mkeys_page, list);
178 	mkey = last_page->mkeys[tmp];
179 	last_page->mkeys[tmp] = 0;
180 	ent->mkeys_queue.ci--;
181 	if (ent->mkeys_queue.num_pages > 1 && !tmp) {
182 		list_del(&last_page->list);
183 		ent->mkeys_queue.num_pages--;
184 		kfree(last_page);
185 	}
186 	return mkey;
187 }
188 
189 static void create_mkey_callback(int status, struct mlx5_async_work *context)
190 {
191 	struct mlx5r_async_create_mkey *mkey_out =
192 		container_of(context, struct mlx5r_async_create_mkey, cb_work);
193 	struct mlx5_cache_ent *ent = mkey_out->ent;
194 	struct mlx5_ib_dev *dev = ent->dev;
195 	unsigned long flags;
196 
197 	if (status) {
198 		create_mkey_warn(dev, status, mkey_out->out);
199 		kfree(mkey_out);
200 		spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
201 		ent->pending--;
202 		WRITE_ONCE(dev->fill_delay, 1);
203 		spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
204 		mod_timer(&dev->delay_timer, jiffies + HZ);
205 		return;
206 	}
207 
208 	mkey_out->mkey |= mlx5_idx_to_mkey(
209 		MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
210 	WRITE_ONCE(dev->cache.last_add, jiffies);
211 
212 	spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
213 	push_mkey_locked(ent, mkey_out->mkey);
214 	/* If we are doing fill_to_high_water then keep going. */
215 	queue_adjust_cache_locked(ent);
216 	ent->pending--;
217 	spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
218 	kfree(mkey_out);
219 }
220 
221 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
222 {
223 	int ret = 0;
224 
225 	switch (access_mode) {
226 	case MLX5_MKC_ACCESS_MODE_MTT:
227 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
228 						   sizeof(struct mlx5_mtt));
229 		break;
230 	case MLX5_MKC_ACCESS_MODE_KSM:
231 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
232 						   sizeof(struct mlx5_klm));
233 		break;
234 	default:
235 		WARN_ON(1);
236 	}
237 	return ret;
238 }
239 
240 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
241 {
242 	set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
243 				      ent->dev->umrc.pd);
244 	MLX5_SET(mkc, mkc, free, 1);
245 	MLX5_SET(mkc, mkc, umr_en, 1);
246 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
247 	MLX5_SET(mkc, mkc, access_mode_4_2,
248 		(ent->rb_key.access_mode >> 2) & 0x7);
249 
250 	MLX5_SET(mkc, mkc, translations_octword_size,
251 		 get_mkc_octo_size(ent->rb_key.access_mode,
252 				   ent->rb_key.ndescs));
253 	MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
254 }
255 
256 /* Asynchronously schedule new MRs to be populated in the cache. */
257 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
258 {
259 	struct mlx5r_async_create_mkey *async_create;
260 	void *mkc;
261 	int err = 0;
262 	int i;
263 
264 	for (i = 0; i < num; i++) {
265 		async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
266 				       GFP_KERNEL);
267 		if (!async_create)
268 			return -ENOMEM;
269 		mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
270 				   memory_key_mkey_entry);
271 		set_cache_mkc(ent, mkc);
272 		async_create->ent = ent;
273 
274 		spin_lock_irq(&ent->mkeys_queue.lock);
275 		if (ent->pending >= MAX_PENDING_REG_MR) {
276 			err = -EAGAIN;
277 			goto free_async_create;
278 		}
279 		ent->pending++;
280 		spin_unlock_irq(&ent->mkeys_queue.lock);
281 
282 		err = mlx5_ib_create_mkey_cb(async_create);
283 		if (err) {
284 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
285 			goto err_create_mkey;
286 		}
287 	}
288 
289 	return 0;
290 
291 err_create_mkey:
292 	spin_lock_irq(&ent->mkeys_queue.lock);
293 	ent->pending--;
294 free_async_create:
295 	spin_unlock_irq(&ent->mkeys_queue.lock);
296 	kfree(async_create);
297 	return err;
298 }
299 
300 /* Synchronously create a MR in the cache */
301 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
302 {
303 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
304 	void *mkc;
305 	u32 *in;
306 	int err;
307 
308 	in = kzalloc(inlen, GFP_KERNEL);
309 	if (!in)
310 		return -ENOMEM;
311 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
312 	set_cache_mkc(ent, mkc);
313 
314 	err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
315 	if (err)
316 		goto free_in;
317 
318 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
319 free_in:
320 	kfree(in);
321 	return err;
322 }
323 
324 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
325 {
326 	u32 mkey;
327 
328 	lockdep_assert_held(&ent->mkeys_queue.lock);
329 	if (!ent->mkeys_queue.ci)
330 		return;
331 	mkey = pop_mkey_locked(ent);
332 	spin_unlock_irq(&ent->mkeys_queue.lock);
333 	mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
334 	spin_lock_irq(&ent->mkeys_queue.lock);
335 }
336 
337 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
338 				bool limit_fill)
339 	__acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
340 {
341 	int err;
342 
343 	lockdep_assert_held(&ent->mkeys_queue.lock);
344 
345 	while (true) {
346 		if (limit_fill)
347 			target = ent->limit * 2;
348 		if (target == ent->pending + ent->mkeys_queue.ci)
349 			return 0;
350 		if (target > ent->pending + ent->mkeys_queue.ci) {
351 			u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
352 
353 			spin_unlock_irq(&ent->mkeys_queue.lock);
354 			err = add_keys(ent, todo);
355 			if (err == -EAGAIN)
356 				usleep_range(3000, 5000);
357 			spin_lock_irq(&ent->mkeys_queue.lock);
358 			if (err) {
359 				if (err != -EAGAIN)
360 					return err;
361 			} else
362 				return 0;
363 		} else {
364 			remove_cache_mr_locked(ent);
365 		}
366 	}
367 }
368 
369 static ssize_t size_write(struct file *filp, const char __user *buf,
370 			  size_t count, loff_t *pos)
371 {
372 	struct mlx5_cache_ent *ent = filp->private_data;
373 	u32 target;
374 	int err;
375 
376 	err = kstrtou32_from_user(buf, count, 0, &target);
377 	if (err)
378 		return err;
379 
380 	/*
381 	 * Target is the new value of total_mrs the user requests, however we
382 	 * cannot free MRs that are in use. Compute the target value for stored
383 	 * mkeys.
384 	 */
385 	spin_lock_irq(&ent->mkeys_queue.lock);
386 	if (target < ent->in_use) {
387 		err = -EINVAL;
388 		goto err_unlock;
389 	}
390 	target = target - ent->in_use;
391 	if (target < ent->limit || target > ent->limit*2) {
392 		err = -EINVAL;
393 		goto err_unlock;
394 	}
395 	err = resize_available_mrs(ent, target, false);
396 	if (err)
397 		goto err_unlock;
398 	spin_unlock_irq(&ent->mkeys_queue.lock);
399 
400 	return count;
401 
402 err_unlock:
403 	spin_unlock_irq(&ent->mkeys_queue.lock);
404 	return err;
405 }
406 
407 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
408 			 loff_t *pos)
409 {
410 	struct mlx5_cache_ent *ent = filp->private_data;
411 	char lbuf[20];
412 	int err;
413 
414 	err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
415 		       ent->mkeys_queue.ci + ent->in_use);
416 	if (err < 0)
417 		return err;
418 
419 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
420 }
421 
422 static const struct file_operations size_fops = {
423 	.owner	= THIS_MODULE,
424 	.open	= simple_open,
425 	.write	= size_write,
426 	.read	= size_read,
427 };
428 
429 static ssize_t limit_write(struct file *filp, const char __user *buf,
430 			   size_t count, loff_t *pos)
431 {
432 	struct mlx5_cache_ent *ent = filp->private_data;
433 	u32 var;
434 	int err;
435 
436 	err = kstrtou32_from_user(buf, count, 0, &var);
437 	if (err)
438 		return err;
439 
440 	/*
441 	 * Upon set we immediately fill the cache to high water mark implied by
442 	 * the limit.
443 	 */
444 	spin_lock_irq(&ent->mkeys_queue.lock);
445 	ent->limit = var;
446 	err = resize_available_mrs(ent, 0, true);
447 	spin_unlock_irq(&ent->mkeys_queue.lock);
448 	if (err)
449 		return err;
450 	return count;
451 }
452 
453 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
454 			  loff_t *pos)
455 {
456 	struct mlx5_cache_ent *ent = filp->private_data;
457 	char lbuf[20];
458 	int err;
459 
460 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
461 	if (err < 0)
462 		return err;
463 
464 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
465 }
466 
467 static const struct file_operations limit_fops = {
468 	.owner	= THIS_MODULE,
469 	.open	= simple_open,
470 	.write	= limit_write,
471 	.read	= limit_read,
472 };
473 
474 static bool someone_adding(struct mlx5_mkey_cache *cache)
475 {
476 	struct mlx5_cache_ent *ent;
477 	struct rb_node *node;
478 	bool ret;
479 
480 	mutex_lock(&cache->rb_lock);
481 	for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
482 		ent = rb_entry(node, struct mlx5_cache_ent, node);
483 		spin_lock_irq(&ent->mkeys_queue.lock);
484 		ret = ent->mkeys_queue.ci < ent->limit;
485 		spin_unlock_irq(&ent->mkeys_queue.lock);
486 		if (ret) {
487 			mutex_unlock(&cache->rb_lock);
488 			return true;
489 		}
490 	}
491 	mutex_unlock(&cache->rb_lock);
492 	return false;
493 }
494 
495 /*
496  * Check if the bucket is outside the high/low water mark and schedule an async
497  * update. The cache refill has hysteresis, once the low water mark is hit it is
498  * refilled up to the high mark.
499  */
500 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
501 {
502 	lockdep_assert_held(&ent->mkeys_queue.lock);
503 
504 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
505 		return;
506 	if (ent->mkeys_queue.ci < ent->limit) {
507 		ent->fill_to_high_water = true;
508 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
509 	} else if (ent->fill_to_high_water &&
510 		   ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
511 		/*
512 		 * Once we start populating due to hitting a low water mark
513 		 * continue until we pass the high water mark.
514 		 */
515 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
516 	} else if (ent->mkeys_queue.ci == 2 * ent->limit) {
517 		ent->fill_to_high_water = false;
518 	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
519 		/* Queue deletion of excess entries */
520 		ent->fill_to_high_water = false;
521 		if (ent->pending)
522 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
523 					   msecs_to_jiffies(1000));
524 		else
525 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
526 	}
527 }
528 
529 static void __cache_work_func(struct mlx5_cache_ent *ent)
530 {
531 	struct mlx5_ib_dev *dev = ent->dev;
532 	struct mlx5_mkey_cache *cache = &dev->cache;
533 	int err;
534 
535 	spin_lock_irq(&ent->mkeys_queue.lock);
536 	if (ent->disabled)
537 		goto out;
538 
539 	if (ent->fill_to_high_water &&
540 	    ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
541 	    !READ_ONCE(dev->fill_delay)) {
542 		spin_unlock_irq(&ent->mkeys_queue.lock);
543 		err = add_keys(ent, 1);
544 		spin_lock_irq(&ent->mkeys_queue.lock);
545 		if (ent->disabled)
546 			goto out;
547 		if (err) {
548 			/*
549 			 * EAGAIN only happens if there are pending MRs, so we
550 			 * will be rescheduled when storing them. The only
551 			 * failure path here is ENOMEM.
552 			 */
553 			if (err != -EAGAIN) {
554 				mlx5_ib_warn(
555 					dev,
556 					"add keys command failed, err %d\n",
557 					err);
558 				queue_delayed_work(cache->wq, &ent->dwork,
559 						   msecs_to_jiffies(1000));
560 			}
561 		}
562 	} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
563 		bool need_delay;
564 
565 		/*
566 		 * The remove_cache_mr() logic is performed as garbage
567 		 * collection task. Such task is intended to be run when no
568 		 * other active processes are running.
569 		 *
570 		 * The need_resched() will return TRUE if there are user tasks
571 		 * to be activated in near future.
572 		 *
573 		 * In such case, we don't execute remove_cache_mr() and postpone
574 		 * the garbage collection work to try to run in next cycle, in
575 		 * order to free CPU resources to other tasks.
576 		 */
577 		spin_unlock_irq(&ent->mkeys_queue.lock);
578 		need_delay = need_resched() || someone_adding(cache) ||
579 			     !time_after(jiffies,
580 					 READ_ONCE(cache->last_add) + 300 * HZ);
581 		spin_lock_irq(&ent->mkeys_queue.lock);
582 		if (ent->disabled)
583 			goto out;
584 		if (need_delay) {
585 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
586 			goto out;
587 		}
588 		remove_cache_mr_locked(ent);
589 		queue_adjust_cache_locked(ent);
590 	}
591 out:
592 	spin_unlock_irq(&ent->mkeys_queue.lock);
593 }
594 
595 static void delayed_cache_work_func(struct work_struct *work)
596 {
597 	struct mlx5_cache_ent *ent;
598 
599 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
600 	__cache_work_func(ent);
601 }
602 
603 static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
604 			     struct mlx5r_cache_rb_key key2)
605 {
606 	int res;
607 
608 	res = key1.ats - key2.ats;
609 	if (res)
610 		return res;
611 
612 	res = key1.access_mode - key2.access_mode;
613 	if (res)
614 		return res;
615 
616 	res = key1.access_flags - key2.access_flags;
617 	if (res)
618 		return res;
619 
620 	/*
621 	 * keep ndescs the last in the compare table since the find function
622 	 * searches for an exact match on all properties and only closest
623 	 * match in size.
624 	 */
625 	return key1.ndescs - key2.ndescs;
626 }
627 
628 static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
629 				 struct mlx5_cache_ent *ent)
630 {
631 	struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
632 	struct mlx5_cache_ent *cur;
633 	int cmp;
634 
635 	/* Figure out where to put new node */
636 	while (*new) {
637 		cur = rb_entry(*new, struct mlx5_cache_ent, node);
638 		parent = *new;
639 		cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
640 		if (cmp > 0)
641 			new = &((*new)->rb_left);
642 		if (cmp < 0)
643 			new = &((*new)->rb_right);
644 		if (cmp == 0) {
645 			mutex_unlock(&cache->rb_lock);
646 			return -EEXIST;
647 		}
648 	}
649 
650 	/* Add new node and rebalance tree. */
651 	rb_link_node(&ent->node, parent, new);
652 	rb_insert_color(&ent->node, &cache->rb_root);
653 
654 	return 0;
655 }
656 
657 static struct mlx5_cache_ent *
658 mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
659 			   struct mlx5r_cache_rb_key rb_key)
660 {
661 	struct rb_node *node = dev->cache.rb_root.rb_node;
662 	struct mlx5_cache_ent *cur, *smallest = NULL;
663 	int cmp;
664 
665 	/*
666 	 * Find the smallest ent with order >= requested_order.
667 	 */
668 	while (node) {
669 		cur = rb_entry(node, struct mlx5_cache_ent, node);
670 		cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
671 		if (cmp > 0) {
672 			smallest = cur;
673 			node = node->rb_left;
674 		}
675 		if (cmp < 0)
676 			node = node->rb_right;
677 		if (cmp == 0)
678 			return cur;
679 	}
680 
681 	return (smallest &&
682 		smallest->rb_key.access_mode == rb_key.access_mode &&
683 		smallest->rb_key.access_flags == rb_key.access_flags &&
684 		smallest->rb_key.ats == rb_key.ats) ?
685 		       smallest :
686 		       NULL;
687 }
688 
689 static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
690 					struct mlx5_cache_ent *ent,
691 					int access_flags)
692 {
693 	struct mlx5_ib_mr *mr;
694 	int err;
695 
696 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
697 	if (!mr)
698 		return ERR_PTR(-ENOMEM);
699 
700 	spin_lock_irq(&ent->mkeys_queue.lock);
701 	ent->in_use++;
702 
703 	if (!ent->mkeys_queue.ci) {
704 		queue_adjust_cache_locked(ent);
705 		ent->miss++;
706 		spin_unlock_irq(&ent->mkeys_queue.lock);
707 		err = create_cache_mkey(ent, &mr->mmkey.key);
708 		if (err) {
709 			spin_lock_irq(&ent->mkeys_queue.lock);
710 			ent->in_use--;
711 			spin_unlock_irq(&ent->mkeys_queue.lock);
712 			kfree(mr);
713 			return ERR_PTR(err);
714 		}
715 	} else {
716 		mr->mmkey.key = pop_mkey_locked(ent);
717 		queue_adjust_cache_locked(ent);
718 		spin_unlock_irq(&ent->mkeys_queue.lock);
719 	}
720 	mr->mmkey.cache_ent = ent;
721 	mr->mmkey.type = MLX5_MKEY_MR;
722 	init_waitqueue_head(&mr->mmkey.wait);
723 	return mr;
724 }
725 
726 static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
727 					 int access_flags)
728 {
729 	int ret = 0;
730 
731 	if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
732 	    MLX5_CAP_GEN(dev->mdev, atomic) &&
733 	    MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
734 		ret |= IB_ACCESS_REMOTE_ATOMIC;
735 
736 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
737 	    MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
738 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
739 		ret |= IB_ACCESS_RELAXED_ORDERING;
740 
741 	if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
742 	    (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
743 	     MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
744 	    !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
745 		ret |= IB_ACCESS_RELAXED_ORDERING;
746 
747 	return ret;
748 }
749 
750 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
751 				       int access_flags, int access_mode,
752 				       int ndescs)
753 {
754 	struct mlx5r_cache_rb_key rb_key = {
755 		.ndescs = ndescs,
756 		.access_mode = access_mode,
757 		.access_flags = get_unchangeable_access_flags(dev, access_flags)
758 	};
759 	struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
760 
761 	if (!ent)
762 		return ERR_PTR(-EOPNOTSUPP);
763 
764 	return _mlx5_mr_cache_alloc(dev, ent, access_flags);
765 }
766 
767 static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
768 {
769 	u32 mkey;
770 
771 	cancel_delayed_work(&ent->dwork);
772 	spin_lock_irq(&ent->mkeys_queue.lock);
773 	while (ent->mkeys_queue.ci) {
774 		mkey = pop_mkey_locked(ent);
775 		spin_unlock_irq(&ent->mkeys_queue.lock);
776 		mlx5_core_destroy_mkey(dev->mdev, mkey);
777 		spin_lock_irq(&ent->mkeys_queue.lock);
778 	}
779 	spin_unlock_irq(&ent->mkeys_queue.lock);
780 }
781 
782 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
783 {
784 	if (!mlx5_debugfs_root || dev->is_rep)
785 		return;
786 
787 	debugfs_remove_recursive(dev->cache.fs_root);
788 	dev->cache.fs_root = NULL;
789 }
790 
791 static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
792 					    struct mlx5_cache_ent *ent)
793 {
794 	int order = order_base_2(ent->rb_key.ndescs);
795 	struct dentry *dir;
796 
797 	if (!mlx5_debugfs_root || dev->is_rep)
798 		return;
799 
800 	if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
801 		order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
802 
803 	sprintf(ent->name, "%d", order);
804 	dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
805 	debugfs_create_file("size", 0600, dir, ent, &size_fops);
806 	debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
807 	debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
808 	debugfs_create_u32("miss", 0600, dir, &ent->miss);
809 }
810 
811 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
812 {
813 	struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
814 	struct mlx5_mkey_cache *cache = &dev->cache;
815 
816 	if (!mlx5_debugfs_root || dev->is_rep)
817 		return;
818 
819 	cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
820 }
821 
822 static void delay_time_func(struct timer_list *t)
823 {
824 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
825 
826 	WRITE_ONCE(dev->fill_delay, 0);
827 }
828 
829 static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
830 {
831 	struct mlx5_mkeys_page *page;
832 
833 	page = kzalloc(sizeof(*page), GFP_KERNEL);
834 	if (!page)
835 		return -ENOMEM;
836 	INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
837 	spin_lock_init(&ent->mkeys_queue.lock);
838 	list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
839 	ent->mkeys_queue.num_pages++;
840 	return 0;
841 }
842 
843 static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
844 {
845 	struct mlx5_mkeys_page *page;
846 
847 	WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
848 	page = list_last_entry(&ent->mkeys_queue.pages_list,
849 			       struct mlx5_mkeys_page, list);
850 	list_del(&page->list);
851 	kfree(page);
852 }
853 
854 struct mlx5_cache_ent *
855 mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
856 			      struct mlx5r_cache_rb_key rb_key,
857 			      bool persistent_entry)
858 {
859 	struct mlx5_cache_ent *ent;
860 	int order;
861 	int ret;
862 
863 	ent = kzalloc(sizeof(*ent), GFP_KERNEL);
864 	if (!ent)
865 		return ERR_PTR(-ENOMEM);
866 
867 	ret = mlx5r_mkeys_init(ent);
868 	if (ret)
869 		goto mkeys_err;
870 	ent->rb_key = rb_key;
871 	ent->dev = dev;
872 	ent->is_tmp = !persistent_entry;
873 
874 	INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
875 
876 	ret = mlx5_cache_ent_insert(&dev->cache, ent);
877 	if (ret)
878 		goto ent_insert_err;
879 
880 	if (persistent_entry) {
881 		if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
882 			order = MLX5_IMR_KSM_CACHE_ENTRY;
883 		else
884 			order = order_base_2(rb_key.ndescs) - 2;
885 
886 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
887 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
888 		    mlx5r_umr_can_load_pas(dev, 0))
889 			ent->limit = dev->mdev->profile.mr_cache[order].limit;
890 		else
891 			ent->limit = 0;
892 
893 		mlx5_mkey_cache_debugfs_add_ent(dev, ent);
894 	} else {
895 		mod_delayed_work(ent->dev->cache.wq,
896 				 &ent->dev->cache.remove_ent_dwork,
897 				 msecs_to_jiffies(30 * 1000));
898 	}
899 
900 	return ent;
901 ent_insert_err:
902 	mlx5r_mkeys_uninit(ent);
903 mkeys_err:
904 	kfree(ent);
905 	return ERR_PTR(ret);
906 }
907 
908 static void remove_ent_work_func(struct work_struct *work)
909 {
910 	struct mlx5_mkey_cache *cache;
911 	struct mlx5_cache_ent *ent;
912 	struct rb_node *cur;
913 
914 	cache = container_of(work, struct mlx5_mkey_cache,
915 			     remove_ent_dwork.work);
916 	mutex_lock(&cache->rb_lock);
917 	cur = rb_last(&cache->rb_root);
918 	while (cur) {
919 		ent = rb_entry(cur, struct mlx5_cache_ent, node);
920 		cur = rb_prev(cur);
921 		mutex_unlock(&cache->rb_lock);
922 
923 		spin_lock_irq(&ent->mkeys_queue.lock);
924 		if (!ent->is_tmp) {
925 			spin_unlock_irq(&ent->mkeys_queue.lock);
926 			mutex_lock(&cache->rb_lock);
927 			continue;
928 		}
929 		spin_unlock_irq(&ent->mkeys_queue.lock);
930 
931 		clean_keys(ent->dev, ent);
932 		mutex_lock(&cache->rb_lock);
933 	}
934 	mutex_unlock(&cache->rb_lock);
935 }
936 
937 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
938 {
939 	struct mlx5_mkey_cache *cache = &dev->cache;
940 	struct rb_root *root = &dev->cache.rb_root;
941 	struct mlx5r_cache_rb_key rb_key = {
942 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
943 	};
944 	struct mlx5_cache_ent *ent;
945 	struct rb_node *node;
946 	int ret;
947 	int i;
948 
949 	mutex_init(&dev->slow_path_mutex);
950 	mutex_init(&dev->cache.rb_lock);
951 	dev->cache.rb_root = RB_ROOT;
952 	INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func);
953 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
954 	if (!cache->wq) {
955 		mlx5_ib_warn(dev, "failed to create work queue\n");
956 		return -ENOMEM;
957 	}
958 
959 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
960 	timer_setup(&dev->delay_timer, delay_time_func, 0);
961 	mlx5_mkey_cache_debugfs_init(dev);
962 	mutex_lock(&cache->rb_lock);
963 	for (i = 0; i <= mkey_cache_max_order(dev); i++) {
964 		rb_key.ndescs = 1 << (i + 2);
965 		ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
966 		if (IS_ERR(ent)) {
967 			ret = PTR_ERR(ent);
968 			goto err;
969 		}
970 	}
971 
972 	ret = mlx5_odp_init_mkey_cache(dev);
973 	if (ret)
974 		goto err;
975 
976 	mutex_unlock(&cache->rb_lock);
977 	for (node = rb_first(root); node; node = rb_next(node)) {
978 		ent = rb_entry(node, struct mlx5_cache_ent, node);
979 		spin_lock_irq(&ent->mkeys_queue.lock);
980 		queue_adjust_cache_locked(ent);
981 		spin_unlock_irq(&ent->mkeys_queue.lock);
982 	}
983 
984 	return 0;
985 
986 err:
987 	mutex_unlock(&cache->rb_lock);
988 	mlx5_mkey_cache_debugfs_cleanup(dev);
989 	mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
990 	return ret;
991 }
992 
993 void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
994 {
995 	struct rb_root *root = &dev->cache.rb_root;
996 	struct mlx5_cache_ent *ent;
997 	struct rb_node *node;
998 
999 	if (!dev->cache.wq)
1000 		return;
1001 
1002 	mutex_lock(&dev->cache.rb_lock);
1003 	cancel_delayed_work(&dev->cache.remove_ent_dwork);
1004 	for (node = rb_first(root); node; node = rb_next(node)) {
1005 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1006 		spin_lock_irq(&ent->mkeys_queue.lock);
1007 		ent->disabled = true;
1008 		spin_unlock_irq(&ent->mkeys_queue.lock);
1009 		cancel_delayed_work(&ent->dwork);
1010 	}
1011 	mutex_unlock(&dev->cache.rb_lock);
1012 
1013 	/*
1014 	 * After all entries are disabled and will not reschedule on WQ,
1015 	 * flush it and all async commands.
1016 	 */
1017 	flush_workqueue(dev->cache.wq);
1018 
1019 	mlx5_mkey_cache_debugfs_cleanup(dev);
1020 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
1021 
1022 	/* At this point all entries are disabled and have no concurrent work. */
1023 	mutex_lock(&dev->cache.rb_lock);
1024 	node = rb_first(root);
1025 	while (node) {
1026 		ent = rb_entry(node, struct mlx5_cache_ent, node);
1027 		node = rb_next(node);
1028 		clean_keys(dev, ent);
1029 		rb_erase(&ent->node, root);
1030 		mlx5r_mkeys_uninit(ent);
1031 		kfree(ent);
1032 	}
1033 	mutex_unlock(&dev->cache.rb_lock);
1034 
1035 	destroy_workqueue(dev->cache.wq);
1036 	del_timer_sync(&dev->delay_timer);
1037 }
1038 
1039 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
1040 {
1041 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1042 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1043 	struct mlx5_ib_mr *mr;
1044 	void *mkc;
1045 	u32 *in;
1046 	int err;
1047 
1048 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1049 	if (!mr)
1050 		return ERR_PTR(-ENOMEM);
1051 
1052 	in = kzalloc(inlen, GFP_KERNEL);
1053 	if (!in) {
1054 		err = -ENOMEM;
1055 		goto err_free;
1056 	}
1057 
1058 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1059 
1060 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
1061 	MLX5_SET(mkc, mkc, length64, 1);
1062 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
1063 				      pd);
1064 
1065 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1066 	if (err)
1067 		goto err_in;
1068 
1069 	kfree(in);
1070 	mr->mmkey.type = MLX5_MKEY_MR;
1071 	mr->ibmr.lkey = mr->mmkey.key;
1072 	mr->ibmr.rkey = mr->mmkey.key;
1073 	mr->umem = NULL;
1074 
1075 	return &mr->ibmr;
1076 
1077 err_in:
1078 	kfree(in);
1079 
1080 err_free:
1081 	kfree(mr);
1082 
1083 	return ERR_PTR(err);
1084 }
1085 
1086 static int get_octo_len(u64 addr, u64 len, int page_shift)
1087 {
1088 	u64 page_size = 1ULL << page_shift;
1089 	u64 offset;
1090 	int npages;
1091 
1092 	offset = addr & (page_size - 1);
1093 	npages = ALIGN(len + offset, page_size) >> page_shift;
1094 	return (npages + 1) / 2;
1095 }
1096 
1097 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
1098 {
1099 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
1100 		return MKEY_CACHE_LAST_STD_ENTRY;
1101 	return MLX5_MAX_UMR_SHIFT;
1102 }
1103 
1104 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1105 			  u64 length, int access_flags, u64 iova)
1106 {
1107 	mr->ibmr.lkey = mr->mmkey.key;
1108 	mr->ibmr.rkey = mr->mmkey.key;
1109 	mr->ibmr.length = length;
1110 	mr->ibmr.device = &dev->ib_dev;
1111 	mr->ibmr.iova = iova;
1112 	mr->access_flags = access_flags;
1113 }
1114 
1115 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
1116 						  u64 iova)
1117 {
1118 	/*
1119 	 * The alignment of iova has already been checked upon entering
1120 	 * UVERBS_METHOD_REG_DMABUF_MR
1121 	 */
1122 	umem->iova = iova;
1123 	return PAGE_SIZE;
1124 }
1125 
1126 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
1127 					     struct ib_umem *umem, u64 iova,
1128 					     int access_flags)
1129 {
1130 	struct mlx5r_cache_rb_key rb_key = {
1131 		.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
1132 	};
1133 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1134 	struct mlx5_cache_ent *ent;
1135 	struct mlx5_ib_mr *mr;
1136 	unsigned int page_size;
1137 
1138 	if (umem->is_dmabuf)
1139 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
1140 	else
1141 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
1142 						     0, iova);
1143 	if (WARN_ON(!page_size))
1144 		return ERR_PTR(-EINVAL);
1145 
1146 	rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
1147 	rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
1148 	rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
1149 	ent = mkey_cache_ent_from_rb_key(dev, rb_key);
1150 	/*
1151 	 * If the MR can't come from the cache then synchronously create an uncached
1152 	 * one.
1153 	 */
1154 	if (!ent) {
1155 		mutex_lock(&dev->slow_path_mutex);
1156 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
1157 		mutex_unlock(&dev->slow_path_mutex);
1158 		if (IS_ERR(mr))
1159 			return mr;
1160 		mr->mmkey.rb_key = rb_key;
1161 		mr->mmkey.cacheable = true;
1162 		return mr;
1163 	}
1164 
1165 	mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
1166 	if (IS_ERR(mr))
1167 		return mr;
1168 
1169 	mr->ibmr.pd = pd;
1170 	mr->umem = umem;
1171 	mr->page_shift = order_base_2(page_size);
1172 	mr->mmkey.cacheable = true;
1173 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1174 
1175 	return mr;
1176 }
1177 
1178 /*
1179  * If ibmr is NULL it will be allocated by reg_create.
1180  * Else, the given ibmr will be used.
1181  */
1182 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
1183 				     u64 iova, int access_flags,
1184 				     unsigned int page_size, bool populate)
1185 {
1186 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1187 	struct mlx5_ib_mr *mr;
1188 	__be64 *pas;
1189 	void *mkc;
1190 	int inlen;
1191 	u32 *in;
1192 	int err;
1193 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1194 
1195 	if (!page_size)
1196 		return ERR_PTR(-EINVAL);
1197 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1198 	if (!mr)
1199 		return ERR_PTR(-ENOMEM);
1200 
1201 	mr->ibmr.pd = pd;
1202 	mr->access_flags = access_flags;
1203 	mr->page_shift = order_base_2(page_size);
1204 
1205 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1206 	if (populate)
1207 		inlen += sizeof(*pas) *
1208 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
1209 	in = kvzalloc(inlen, GFP_KERNEL);
1210 	if (!in) {
1211 		err = -ENOMEM;
1212 		goto err_1;
1213 	}
1214 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1215 	if (populate) {
1216 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
1217 			err = -EINVAL;
1218 			goto err_2;
1219 		}
1220 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1221 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1222 	}
1223 
1224 	/* The pg_access bit allows setting the access flags
1225 	 * in the page list submitted with the command.
1226 	 */
1227 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1228 
1229 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1230 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1231 				      populate ? pd : dev->umrc.pd);
1232 	MLX5_SET(mkc, mkc, free, !populate);
1233 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1234 	MLX5_SET(mkc, mkc, umr_en, 1);
1235 
1236 	MLX5_SET64(mkc, mkc, len, umem->length);
1237 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1238 	MLX5_SET(mkc, mkc, translations_octword_size,
1239 		 get_octo_len(iova, umem->length, mr->page_shift));
1240 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1241 	if (mlx5_umem_needs_ats(dev, umem, access_flags))
1242 		MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1243 	if (populate) {
1244 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1245 			 get_octo_len(iova, umem->length, mr->page_shift));
1246 	}
1247 
1248 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1249 	if (err) {
1250 		mlx5_ib_warn(dev, "create mkey failed\n");
1251 		goto err_2;
1252 	}
1253 	mr->mmkey.type = MLX5_MKEY_MR;
1254 	mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
1255 	mr->umem = umem;
1256 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
1257 	kvfree(in);
1258 
1259 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1260 
1261 	return mr;
1262 
1263 err_2:
1264 	kvfree(in);
1265 err_1:
1266 	kfree(mr);
1267 	return ERR_PTR(err);
1268 }
1269 
1270 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1271 				       u64 length, int acc, int mode)
1272 {
1273 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1274 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1275 	struct mlx5_ib_mr *mr;
1276 	void *mkc;
1277 	u32 *in;
1278 	int err;
1279 
1280 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1281 	if (!mr)
1282 		return ERR_PTR(-ENOMEM);
1283 
1284 	in = kzalloc(inlen, GFP_KERNEL);
1285 	if (!in) {
1286 		err = -ENOMEM;
1287 		goto err_free;
1288 	}
1289 
1290 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1291 
1292 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1293 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1294 	MLX5_SET64(mkc, mkc, len, length);
1295 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1296 
1297 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1298 	if (err)
1299 		goto err_in;
1300 
1301 	kfree(in);
1302 
1303 	set_mr_fields(dev, mr, length, acc, start_addr);
1304 
1305 	return &mr->ibmr;
1306 
1307 err_in:
1308 	kfree(in);
1309 
1310 err_free:
1311 	kfree(mr);
1312 
1313 	return ERR_PTR(err);
1314 }
1315 
1316 int mlx5_ib_advise_mr(struct ib_pd *pd,
1317 		      enum ib_uverbs_advise_mr_advice advice,
1318 		      u32 flags,
1319 		      struct ib_sge *sg_list,
1320 		      u32 num_sge,
1321 		      struct uverbs_attr_bundle *attrs)
1322 {
1323 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1324 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1325 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1326 		return -EOPNOTSUPP;
1327 
1328 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1329 					 sg_list, num_sge);
1330 }
1331 
1332 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1333 				struct ib_dm_mr_attr *attr,
1334 				struct uverbs_attr_bundle *attrs)
1335 {
1336 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1337 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1338 	u64 start_addr = mdm->dev_addr + attr->offset;
1339 	int mode;
1340 
1341 	switch (mdm->type) {
1342 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1343 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1344 			return ERR_PTR(-EINVAL);
1345 
1346 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1347 		start_addr -= pci_resource_start(dev->pdev, 0);
1348 		break;
1349 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1350 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1351 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1352 	case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
1353 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1354 			return ERR_PTR(-EINVAL);
1355 
1356 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1357 		break;
1358 	default:
1359 		return ERR_PTR(-EINVAL);
1360 	}
1361 
1362 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1363 				 attr->access_flags, mode);
1364 }
1365 
1366 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1367 				    u64 iova, int access_flags)
1368 {
1369 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1370 	struct mlx5_ib_mr *mr = NULL;
1371 	bool xlt_with_umr;
1372 	int err;
1373 
1374 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1375 	if (xlt_with_umr) {
1376 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1377 	} else {
1378 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1379 			umem, mkc, log_page_size, 0, iova);
1380 
1381 		mutex_lock(&dev->slow_path_mutex);
1382 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1383 		mutex_unlock(&dev->slow_path_mutex);
1384 	}
1385 	if (IS_ERR(mr)) {
1386 		ib_umem_release(umem);
1387 		return ERR_CAST(mr);
1388 	}
1389 
1390 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1391 
1392 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1393 
1394 	if (xlt_with_umr) {
1395 		/*
1396 		 * If the MR was created with reg_create then it will be
1397 		 * configured properly but left disabled. It is safe to go ahead
1398 		 * and configure it again via UMR while enabling it.
1399 		 */
1400 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1401 		if (err) {
1402 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1403 			return ERR_PTR(err);
1404 		}
1405 	}
1406 	return &mr->ibmr;
1407 }
1408 
1409 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1410 					u64 iova, int access_flags,
1411 					struct ib_udata *udata)
1412 {
1413 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1414 	struct ib_umem_odp *odp;
1415 	struct mlx5_ib_mr *mr;
1416 	int err;
1417 
1418 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1419 		return ERR_PTR(-EOPNOTSUPP);
1420 
1421 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1422 	if (err)
1423 		return ERR_PTR(err);
1424 	if (!start && length == U64_MAX) {
1425 		if (iova != 0)
1426 			return ERR_PTR(-EINVAL);
1427 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1428 			return ERR_PTR(-EINVAL);
1429 
1430 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1431 		if (IS_ERR(mr))
1432 			return ERR_CAST(mr);
1433 		return &mr->ibmr;
1434 	}
1435 
1436 	/* ODP requires xlt update via umr to work. */
1437 	if (!mlx5r_umr_can_load_pas(dev, length))
1438 		return ERR_PTR(-EINVAL);
1439 
1440 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1441 			      &mlx5_mn_ops);
1442 	if (IS_ERR(odp))
1443 		return ERR_CAST(odp);
1444 
1445 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1446 	if (IS_ERR(mr)) {
1447 		ib_umem_release(&odp->umem);
1448 		return ERR_CAST(mr);
1449 	}
1450 	xa_init(&mr->implicit_children);
1451 
1452 	odp->private = mr;
1453 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1454 	if (err)
1455 		goto err_dereg_mr;
1456 
1457 	err = mlx5_ib_init_odp_mr(mr);
1458 	if (err)
1459 		goto err_dereg_mr;
1460 	return &mr->ibmr;
1461 
1462 err_dereg_mr:
1463 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1464 	return ERR_PTR(err);
1465 }
1466 
1467 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1468 				  u64 iova, int access_flags,
1469 				  struct ib_udata *udata)
1470 {
1471 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1472 	struct ib_umem *umem;
1473 
1474 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1475 		return ERR_PTR(-EOPNOTSUPP);
1476 
1477 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1478 		    start, iova, length, access_flags);
1479 
1480 	if (access_flags & IB_ACCESS_ON_DEMAND)
1481 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1482 					  udata);
1483 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1484 	if (IS_ERR(umem))
1485 		return ERR_CAST(umem);
1486 	return create_real_mr(pd, umem, iova, access_flags);
1487 }
1488 
1489 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1490 {
1491 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1492 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1493 
1494 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1495 
1496 	if (!umem_dmabuf->sgt)
1497 		return;
1498 
1499 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1500 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1501 }
1502 
1503 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1504 	.allow_peer2peer = 1,
1505 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1506 };
1507 
1508 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1509 					 u64 length, u64 virt_addr,
1510 					 int fd, int access_flags,
1511 					 struct ib_udata *udata)
1512 {
1513 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1514 	struct mlx5_ib_mr *mr = NULL;
1515 	struct ib_umem_dmabuf *umem_dmabuf;
1516 	int err;
1517 
1518 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1519 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1520 		return ERR_PTR(-EOPNOTSUPP);
1521 
1522 	mlx5_ib_dbg(dev,
1523 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1524 		    offset, virt_addr, length, fd, access_flags);
1525 
1526 	/* dmabuf requires xlt update via umr to work. */
1527 	if (!mlx5r_umr_can_load_pas(dev, length))
1528 		return ERR_PTR(-EINVAL);
1529 
1530 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1531 					 access_flags,
1532 					 &mlx5_ib_dmabuf_attach_ops);
1533 	if (IS_ERR(umem_dmabuf)) {
1534 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1535 			    PTR_ERR(umem_dmabuf));
1536 		return ERR_CAST(umem_dmabuf);
1537 	}
1538 
1539 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1540 				access_flags);
1541 	if (IS_ERR(mr)) {
1542 		ib_umem_release(&umem_dmabuf->umem);
1543 		return ERR_CAST(mr);
1544 	}
1545 
1546 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1547 
1548 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1549 	umem_dmabuf->private = mr;
1550 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1551 	if (err)
1552 		goto err_dereg_mr;
1553 
1554 	err = mlx5_ib_init_dmabuf_mr(mr);
1555 	if (err)
1556 		goto err_dereg_mr;
1557 	return &mr->ibmr;
1558 
1559 err_dereg_mr:
1560 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1561 	return ERR_PTR(err);
1562 }
1563 
1564 /*
1565  * True if the change in access flags can be done via UMR, only some access
1566  * flags can be updated.
1567  */
1568 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1569 				     unsigned int current_access_flags,
1570 				     unsigned int target_access_flags)
1571 {
1572 	unsigned int diffs = current_access_flags ^ target_access_flags;
1573 
1574 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1575 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING |
1576 		      IB_ACCESS_REMOTE_ATOMIC))
1577 		return false;
1578 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1579 				      target_access_flags);
1580 }
1581 
1582 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1583 				  struct ib_umem *new_umem,
1584 				  int new_access_flags, u64 iova,
1585 				  unsigned long *page_size)
1586 {
1587 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1588 
1589 	/* We only track the allocated sizes of MRs from the cache */
1590 	if (!mr->mmkey.cache_ent)
1591 		return false;
1592 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1593 		return false;
1594 
1595 	*page_size =
1596 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1597 	if (WARN_ON(!*page_size))
1598 		return false;
1599 	return (mr->mmkey.cache_ent->rb_key.ndescs) >=
1600 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1601 }
1602 
1603 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1604 			 int access_flags, int flags, struct ib_umem *new_umem,
1605 			 u64 iova, unsigned long page_size)
1606 {
1607 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1608 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1609 	struct ib_umem *old_umem = mr->umem;
1610 	int err;
1611 
1612 	/*
1613 	 * To keep everything simple the MR is revoked before we start to mess
1614 	 * with it. This ensure the change is atomic relative to any use of the
1615 	 * MR.
1616 	 */
1617 	err = mlx5r_umr_revoke_mr(mr);
1618 	if (err)
1619 		return err;
1620 
1621 	if (flags & IB_MR_REREG_PD) {
1622 		mr->ibmr.pd = pd;
1623 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1624 	}
1625 	if (flags & IB_MR_REREG_ACCESS) {
1626 		mr->access_flags = access_flags;
1627 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1628 	}
1629 
1630 	mr->ibmr.iova = iova;
1631 	mr->ibmr.length = new_umem->length;
1632 	mr->page_shift = order_base_2(page_size);
1633 	mr->umem = new_umem;
1634 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1635 	if (err) {
1636 		/*
1637 		 * The MR is revoked at this point so there is no issue to free
1638 		 * new_umem.
1639 		 */
1640 		mr->umem = old_umem;
1641 		return err;
1642 	}
1643 
1644 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1645 	ib_umem_release(old_umem);
1646 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1647 	return 0;
1648 }
1649 
1650 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1651 				    u64 length, u64 iova, int new_access_flags,
1652 				    struct ib_pd *new_pd,
1653 				    struct ib_udata *udata)
1654 {
1655 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1656 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1657 	int err;
1658 
1659 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1660 		return ERR_PTR(-EOPNOTSUPP);
1661 
1662 	mlx5_ib_dbg(
1663 		dev,
1664 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1665 		start, iova, length, new_access_flags);
1666 
1667 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1668 		return ERR_PTR(-EOPNOTSUPP);
1669 
1670 	if (!(flags & IB_MR_REREG_ACCESS))
1671 		new_access_flags = mr->access_flags;
1672 	if (!(flags & IB_MR_REREG_PD))
1673 		new_pd = ib_mr->pd;
1674 
1675 	if (!(flags & IB_MR_REREG_TRANS)) {
1676 		struct ib_umem *umem;
1677 
1678 		/* Fast path for PD/access change */
1679 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1680 					     new_access_flags)) {
1681 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1682 							new_access_flags);
1683 			if (err)
1684 				return ERR_PTR(err);
1685 			return NULL;
1686 		}
1687 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1688 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1689 			goto recreate;
1690 
1691 		/*
1692 		 * Only one active MR can refer to a umem at one time, revoke
1693 		 * the old MR before assigning the umem to the new one.
1694 		 */
1695 		err = mlx5r_umr_revoke_mr(mr);
1696 		if (err)
1697 			return ERR_PTR(err);
1698 		umem = mr->umem;
1699 		mr->umem = NULL;
1700 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1701 
1702 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1703 				      new_access_flags);
1704 	}
1705 
1706 	/*
1707 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1708 	 * but the logic around releasing the umem is different
1709 	 */
1710 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1711 		goto recreate;
1712 
1713 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1714 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1715 		struct ib_umem *new_umem;
1716 		unsigned long page_size;
1717 
1718 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1719 				       new_access_flags);
1720 		if (IS_ERR(new_umem))
1721 			return ERR_CAST(new_umem);
1722 
1723 		/* Fast path for PAS change */
1724 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1725 					  &page_size)) {
1726 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1727 					    new_umem, iova, page_size);
1728 			if (err) {
1729 				ib_umem_release(new_umem);
1730 				return ERR_PTR(err);
1731 			}
1732 			return NULL;
1733 		}
1734 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1735 	}
1736 
1737 	/*
1738 	 * Everything else has no state we can preserve, just create a new MR
1739 	 * from scratch
1740 	 */
1741 recreate:
1742 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1743 				   new_access_flags, udata);
1744 }
1745 
1746 static int
1747 mlx5_alloc_priv_descs(struct ib_device *device,
1748 		      struct mlx5_ib_mr *mr,
1749 		      int ndescs,
1750 		      int desc_size)
1751 {
1752 	struct mlx5_ib_dev *dev = to_mdev(device);
1753 	struct device *ddev = &dev->mdev->pdev->dev;
1754 	int size = ndescs * desc_size;
1755 	int add_size;
1756 	int ret;
1757 
1758 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1759 	if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
1760 		int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
1761 
1762 		add_size = min_t(int, end - size, add_size);
1763 	}
1764 
1765 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1766 	if (!mr->descs_alloc)
1767 		return -ENOMEM;
1768 
1769 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1770 
1771 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1772 	if (dma_mapping_error(ddev, mr->desc_map)) {
1773 		ret = -ENOMEM;
1774 		goto err;
1775 	}
1776 
1777 	return 0;
1778 err:
1779 	kfree(mr->descs_alloc);
1780 
1781 	return ret;
1782 }
1783 
1784 static void
1785 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1786 {
1787 	if (!mr->umem && mr->descs) {
1788 		struct ib_device *device = mr->ibmr.device;
1789 		int size = mr->max_descs * mr->desc_size;
1790 		struct mlx5_ib_dev *dev = to_mdev(device);
1791 
1792 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1793 				 DMA_TO_DEVICE);
1794 		kfree(mr->descs_alloc);
1795 		mr->descs = NULL;
1796 	}
1797 }
1798 
1799 static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
1800 				    struct mlx5_ib_mr *mr)
1801 {
1802 	struct mlx5_mkey_cache *cache = &dev->cache;
1803 	struct mlx5_cache_ent *ent;
1804 	int ret;
1805 
1806 	if (mr->mmkey.cache_ent) {
1807 		spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1808 		mr->mmkey.cache_ent->in_use--;
1809 		goto end;
1810 	}
1811 
1812 	mutex_lock(&cache->rb_lock);
1813 	ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
1814 	if (ent) {
1815 		if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
1816 			if (ent->disabled) {
1817 				mutex_unlock(&cache->rb_lock);
1818 				return -EOPNOTSUPP;
1819 			}
1820 			mr->mmkey.cache_ent = ent;
1821 			spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1822 			mutex_unlock(&cache->rb_lock);
1823 			goto end;
1824 		}
1825 	}
1826 
1827 	ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
1828 	mutex_unlock(&cache->rb_lock);
1829 	if (IS_ERR(ent))
1830 		return PTR_ERR(ent);
1831 
1832 	mr->mmkey.cache_ent = ent;
1833 	spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1834 
1835 end:
1836 	ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
1837 	spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
1838 	return ret;
1839 }
1840 
1841 static int mlx5_revoke_mr(struct mlx5_ib_mr *mr)
1842 {
1843 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1844 	struct mlx5_cache_ent *ent = mr->mmkey.cache_ent;
1845 
1846 	if (mr->mmkey.cacheable && !mlx5r_umr_revoke_mr(mr) && !cache_ent_find_and_store(dev, mr))
1847 		return 0;
1848 
1849 	if (ent) {
1850 		spin_lock_irq(&ent->mkeys_queue.lock);
1851 		ent->in_use--;
1852 		mr->mmkey.cache_ent = NULL;
1853 		spin_unlock_irq(&ent->mkeys_queue.lock);
1854 	}
1855 	return destroy_mkey(dev, mr);
1856 }
1857 
1858 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1859 {
1860 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1861 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1862 	int rc;
1863 
1864 	/*
1865 	 * Any async use of the mr must hold the refcount, once the refcount
1866 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1867 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1868 	 */
1869 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1870 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1871 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1872 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1873 
1874 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1875 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1876 			   mr->sig, NULL, GFP_KERNEL);
1877 
1878 		if (mr->mtt_mr) {
1879 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1880 			if (rc)
1881 				return rc;
1882 			mr->mtt_mr = NULL;
1883 		}
1884 		if (mr->klm_mr) {
1885 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1886 			if (rc)
1887 				return rc;
1888 			mr->klm_mr = NULL;
1889 		}
1890 
1891 		if (mlx5_core_destroy_psv(dev->mdev,
1892 					  mr->sig->psv_memory.psv_idx))
1893 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1894 				     mr->sig->psv_memory.psv_idx);
1895 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1896 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1897 				     mr->sig->psv_wire.psv_idx);
1898 		kfree(mr->sig);
1899 		mr->sig = NULL;
1900 	}
1901 
1902 	/* Stop DMA */
1903 	rc = mlx5_revoke_mr(mr);
1904 	if (rc)
1905 		return rc;
1906 
1907 	if (mr->umem) {
1908 		bool is_odp = is_odp_mr(mr);
1909 
1910 		if (!is_odp)
1911 			atomic_sub(ib_umem_num_pages(mr->umem),
1912 				   &dev->mdev->priv.reg_pages);
1913 		ib_umem_release(mr->umem);
1914 		if (is_odp)
1915 			mlx5_ib_free_odp_mr(mr);
1916 	}
1917 
1918 	if (!mr->mmkey.cache_ent)
1919 		mlx5_free_priv_descs(mr);
1920 
1921 	kfree(mr);
1922 	return 0;
1923 }
1924 
1925 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1926 				   int access_mode, int page_shift)
1927 {
1928 	void *mkc;
1929 
1930 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1931 
1932 	/* This is only used from the kernel, so setting the PD is OK. */
1933 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1934 	MLX5_SET(mkc, mkc, free, 1);
1935 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1936 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1937 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1938 	MLX5_SET(mkc, mkc, umr_en, 1);
1939 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1940 }
1941 
1942 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1943 				  int ndescs, int desc_size, int page_shift,
1944 				  int access_mode, u32 *in, int inlen)
1945 {
1946 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1947 	int err;
1948 
1949 	mr->access_mode = access_mode;
1950 	mr->desc_size = desc_size;
1951 	mr->max_descs = ndescs;
1952 
1953 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1954 	if (err)
1955 		return err;
1956 
1957 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1958 
1959 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1960 	if (err)
1961 		goto err_free_descs;
1962 
1963 	mr->mmkey.type = MLX5_MKEY_MR;
1964 	mr->ibmr.lkey = mr->mmkey.key;
1965 	mr->ibmr.rkey = mr->mmkey.key;
1966 
1967 	return 0;
1968 
1969 err_free_descs:
1970 	mlx5_free_priv_descs(mr);
1971 	return err;
1972 }
1973 
1974 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1975 				u32 max_num_sg, u32 max_num_meta_sg,
1976 				int desc_size, int access_mode)
1977 {
1978 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1979 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1980 	int page_shift = 0;
1981 	struct mlx5_ib_mr *mr;
1982 	u32 *in;
1983 	int err;
1984 
1985 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1986 	if (!mr)
1987 		return ERR_PTR(-ENOMEM);
1988 
1989 	mr->ibmr.pd = pd;
1990 	mr->ibmr.device = pd->device;
1991 
1992 	in = kzalloc(inlen, GFP_KERNEL);
1993 	if (!in) {
1994 		err = -ENOMEM;
1995 		goto err_free;
1996 	}
1997 
1998 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1999 		page_shift = PAGE_SHIFT;
2000 
2001 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
2002 				     access_mode, in, inlen);
2003 	if (err)
2004 		goto err_free_in;
2005 
2006 	mr->umem = NULL;
2007 	kfree(in);
2008 
2009 	return mr;
2010 
2011 err_free_in:
2012 	kfree(in);
2013 err_free:
2014 	kfree(mr);
2015 	return ERR_PTR(err);
2016 }
2017 
2018 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2019 				    int ndescs, u32 *in, int inlen)
2020 {
2021 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
2022 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
2023 				      inlen);
2024 }
2025 
2026 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2027 				    int ndescs, u32 *in, int inlen)
2028 {
2029 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
2030 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2031 }
2032 
2033 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
2034 				      int max_num_sg, int max_num_meta_sg,
2035 				      u32 *in, int inlen)
2036 {
2037 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2038 	u32 psv_index[2];
2039 	void *mkc;
2040 	int err;
2041 
2042 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
2043 	if (!mr->sig)
2044 		return -ENOMEM;
2045 
2046 	/* create mem & wire PSVs */
2047 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
2048 	if (err)
2049 		goto err_free_sig;
2050 
2051 	mr->sig->psv_memory.psv_idx = psv_index[0];
2052 	mr->sig->psv_wire.psv_idx = psv_index[1];
2053 
2054 	mr->sig->sig_status_checked = true;
2055 	mr->sig->sig_err_exists = false;
2056 	/* Next UMR, Arm SIGERR */
2057 	++mr->sig->sigerr_count;
2058 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2059 					 sizeof(struct mlx5_klm),
2060 					 MLX5_MKC_ACCESS_MODE_KLMS);
2061 	if (IS_ERR(mr->klm_mr)) {
2062 		err = PTR_ERR(mr->klm_mr);
2063 		goto err_destroy_psv;
2064 	}
2065 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
2066 					 sizeof(struct mlx5_mtt),
2067 					 MLX5_MKC_ACCESS_MODE_MTT);
2068 	if (IS_ERR(mr->mtt_mr)) {
2069 		err = PTR_ERR(mr->mtt_mr);
2070 		goto err_free_klm_mr;
2071 	}
2072 
2073 	/* Set bsf descriptors for mkey */
2074 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2075 	MLX5_SET(mkc, mkc, bsf_en, 1);
2076 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
2077 
2078 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
2079 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
2080 	if (err)
2081 		goto err_free_mtt_mr;
2082 
2083 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
2084 			      mr->sig, GFP_KERNEL));
2085 	if (err)
2086 		goto err_free_descs;
2087 	return 0;
2088 
2089 err_free_descs:
2090 	destroy_mkey(dev, mr);
2091 	mlx5_free_priv_descs(mr);
2092 err_free_mtt_mr:
2093 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
2094 	mr->mtt_mr = NULL;
2095 err_free_klm_mr:
2096 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
2097 	mr->klm_mr = NULL;
2098 err_destroy_psv:
2099 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
2100 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
2101 			     mr->sig->psv_memory.psv_idx);
2102 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
2103 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
2104 			     mr->sig->psv_wire.psv_idx);
2105 err_free_sig:
2106 	kfree(mr->sig);
2107 
2108 	return err;
2109 }
2110 
2111 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
2112 					enum ib_mr_type mr_type, u32 max_num_sg,
2113 					u32 max_num_meta_sg)
2114 {
2115 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
2116 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2117 	int ndescs = ALIGN(max_num_sg, 4);
2118 	struct mlx5_ib_mr *mr;
2119 	u32 *in;
2120 	int err;
2121 
2122 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
2123 	if (!mr)
2124 		return ERR_PTR(-ENOMEM);
2125 
2126 	in = kzalloc(inlen, GFP_KERNEL);
2127 	if (!in) {
2128 		err = -ENOMEM;
2129 		goto err_free;
2130 	}
2131 
2132 	mr->ibmr.device = pd->device;
2133 	mr->umem = NULL;
2134 
2135 	switch (mr_type) {
2136 	case IB_MR_TYPE_MEM_REG:
2137 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
2138 		break;
2139 	case IB_MR_TYPE_SG_GAPS:
2140 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
2141 		break;
2142 	case IB_MR_TYPE_INTEGRITY:
2143 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
2144 						 max_num_meta_sg, in, inlen);
2145 		break;
2146 	default:
2147 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
2148 		err = -EINVAL;
2149 	}
2150 
2151 	if (err)
2152 		goto err_free_in;
2153 
2154 	kfree(in);
2155 
2156 	return &mr->ibmr;
2157 
2158 err_free_in:
2159 	kfree(in);
2160 err_free:
2161 	kfree(mr);
2162 	return ERR_PTR(err);
2163 }
2164 
2165 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2166 			       u32 max_num_sg)
2167 {
2168 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
2169 }
2170 
2171 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
2172 					 u32 max_num_sg, u32 max_num_meta_sg)
2173 {
2174 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
2175 				  max_num_meta_sg);
2176 }
2177 
2178 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
2179 {
2180 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
2181 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
2182 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
2183 	unsigned int ndescs;
2184 	u32 *in = NULL;
2185 	void *mkc;
2186 	int err;
2187 	struct mlx5_ib_alloc_mw req = {};
2188 	struct {
2189 		__u32	comp_mask;
2190 		__u32	response_length;
2191 	} resp = {};
2192 
2193 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
2194 	if (err)
2195 		return err;
2196 
2197 	if (req.comp_mask || req.reserved1 || req.reserved2)
2198 		return -EOPNOTSUPP;
2199 
2200 	if (udata->inlen > sizeof(req) &&
2201 	    !ib_is_udata_cleared(udata, sizeof(req),
2202 				 udata->inlen - sizeof(req)))
2203 		return -EOPNOTSUPP;
2204 
2205 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
2206 
2207 	in = kzalloc(inlen, GFP_KERNEL);
2208 	if (!in)
2209 		return -ENOMEM;
2210 
2211 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
2212 
2213 	MLX5_SET(mkc, mkc, free, 1);
2214 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
2215 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
2216 	MLX5_SET(mkc, mkc, umr_en, 1);
2217 	MLX5_SET(mkc, mkc, lr, 1);
2218 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
2219 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
2220 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
2221 
2222 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
2223 	if (err)
2224 		goto free;
2225 
2226 	mw->mmkey.type = MLX5_MKEY_MW;
2227 	ibmw->rkey = mw->mmkey.key;
2228 	mw->mmkey.ndescs = ndescs;
2229 
2230 	resp.response_length =
2231 		min(offsetofend(typeof(resp), response_length), udata->outlen);
2232 	if (resp.response_length) {
2233 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
2234 		if (err)
2235 			goto free_mkey;
2236 	}
2237 
2238 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
2239 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
2240 		if (err)
2241 			goto free_mkey;
2242 	}
2243 
2244 	kfree(in);
2245 	return 0;
2246 
2247 free_mkey:
2248 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
2249 free:
2250 	kfree(in);
2251 	return err;
2252 }
2253 
2254 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
2255 {
2256 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
2257 	struct mlx5_ib_mw *mmw = to_mmw(mw);
2258 
2259 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
2260 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
2261 		/*
2262 		 * pagefault_single_data_segment() may be accessing mmw
2263 		 * if the user bound an ODP MR to this MW.
2264 		 */
2265 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
2266 
2267 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
2268 }
2269 
2270 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2271 			    struct ib_mr_status *mr_status)
2272 {
2273 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2274 	int ret = 0;
2275 
2276 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2277 		pr_err("Invalid status check mask\n");
2278 		ret = -EINVAL;
2279 		goto done;
2280 	}
2281 
2282 	mr_status->fail_status = 0;
2283 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2284 		if (!mmr->sig) {
2285 			ret = -EINVAL;
2286 			pr_err("signature status check requested on a non-signature enabled MR\n");
2287 			goto done;
2288 		}
2289 
2290 		mmr->sig->sig_status_checked = true;
2291 		if (!mmr->sig->sig_err_exists)
2292 			goto done;
2293 
2294 		if (ibmr->lkey == mmr->sig->err_item.key)
2295 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2296 			       sizeof(mr_status->sig_err));
2297 		else {
2298 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2299 			mr_status->sig_err.sig_err_offset = 0;
2300 			mr_status->sig_err.key = mmr->sig->err_item.key;
2301 		}
2302 
2303 		mmr->sig->sig_err_exists = false;
2304 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2305 	}
2306 
2307 done:
2308 	return ret;
2309 }
2310 
2311 static int
2312 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2313 			int data_sg_nents, unsigned int *data_sg_offset,
2314 			struct scatterlist *meta_sg, int meta_sg_nents,
2315 			unsigned int *meta_sg_offset)
2316 {
2317 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2318 	unsigned int sg_offset = 0;
2319 	int n = 0;
2320 
2321 	mr->meta_length = 0;
2322 	if (data_sg_nents == 1) {
2323 		n++;
2324 		mr->mmkey.ndescs = 1;
2325 		if (data_sg_offset)
2326 			sg_offset = *data_sg_offset;
2327 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2328 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2329 		if (meta_sg_nents == 1) {
2330 			n++;
2331 			mr->meta_ndescs = 1;
2332 			if (meta_sg_offset)
2333 				sg_offset = *meta_sg_offset;
2334 			else
2335 				sg_offset = 0;
2336 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2337 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2338 		}
2339 		ibmr->length = mr->data_length + mr->meta_length;
2340 	}
2341 
2342 	return n;
2343 }
2344 
2345 static int
2346 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2347 		   struct scatterlist *sgl,
2348 		   unsigned short sg_nents,
2349 		   unsigned int *sg_offset_p,
2350 		   struct scatterlist *meta_sgl,
2351 		   unsigned short meta_sg_nents,
2352 		   unsigned int *meta_sg_offset_p)
2353 {
2354 	struct scatterlist *sg = sgl;
2355 	struct mlx5_klm *klms = mr->descs;
2356 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2357 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2358 	int i, j = 0;
2359 
2360 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2361 	mr->ibmr.length = 0;
2362 
2363 	for_each_sg(sgl, sg, sg_nents, i) {
2364 		if (unlikely(i >= mr->max_descs))
2365 			break;
2366 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2367 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2368 		klms[i].key = cpu_to_be32(lkey);
2369 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2370 
2371 		sg_offset = 0;
2372 	}
2373 
2374 	if (sg_offset_p)
2375 		*sg_offset_p = sg_offset;
2376 
2377 	mr->mmkey.ndescs = i;
2378 	mr->data_length = mr->ibmr.length;
2379 
2380 	if (meta_sg_nents) {
2381 		sg = meta_sgl;
2382 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2383 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2384 			if (unlikely(i + j >= mr->max_descs))
2385 				break;
2386 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2387 						     sg_offset);
2388 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2389 							 sg_offset);
2390 			klms[i + j].key = cpu_to_be32(lkey);
2391 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2392 
2393 			sg_offset = 0;
2394 		}
2395 		if (meta_sg_offset_p)
2396 			*meta_sg_offset_p = sg_offset;
2397 
2398 		mr->meta_ndescs = j;
2399 		mr->meta_length = mr->ibmr.length - mr->data_length;
2400 	}
2401 
2402 	return i + j;
2403 }
2404 
2405 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2406 {
2407 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2408 	__be64 *descs;
2409 
2410 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2411 		return -ENOMEM;
2412 
2413 	descs = mr->descs;
2414 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2415 
2416 	return 0;
2417 }
2418 
2419 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2420 {
2421 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2422 	__be64 *descs;
2423 
2424 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2425 		return -ENOMEM;
2426 
2427 	descs = mr->descs;
2428 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2429 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2430 
2431 	return 0;
2432 }
2433 
2434 static int
2435 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2436 			 int data_sg_nents, unsigned int *data_sg_offset,
2437 			 struct scatterlist *meta_sg, int meta_sg_nents,
2438 			 unsigned int *meta_sg_offset)
2439 {
2440 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2441 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2442 	int n;
2443 
2444 	pi_mr->mmkey.ndescs = 0;
2445 	pi_mr->meta_ndescs = 0;
2446 	pi_mr->meta_length = 0;
2447 
2448 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2449 				   pi_mr->desc_size * pi_mr->max_descs,
2450 				   DMA_TO_DEVICE);
2451 
2452 	pi_mr->ibmr.page_size = ibmr->page_size;
2453 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2454 			   mlx5_set_page);
2455 	if (n != data_sg_nents)
2456 		return n;
2457 
2458 	pi_mr->data_iova = pi_mr->ibmr.iova;
2459 	pi_mr->data_length = pi_mr->ibmr.length;
2460 	pi_mr->ibmr.length = pi_mr->data_length;
2461 	ibmr->length = pi_mr->data_length;
2462 
2463 	if (meta_sg_nents) {
2464 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2465 		u64 iova = pi_mr->data_iova;
2466 
2467 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2468 				    meta_sg_offset, mlx5_set_page_pi);
2469 
2470 		pi_mr->meta_length = pi_mr->ibmr.length;
2471 		/*
2472 		 * PI address for the HW is the offset of the metadata address
2473 		 * relative to the first data page address.
2474 		 * It equals to first data page address + size of data pages +
2475 		 * metadata offset at the first metadata page
2476 		 */
2477 		pi_mr->pi_iova = (iova & page_mask) +
2478 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2479 				 (pi_mr->ibmr.iova & ~page_mask);
2480 		/*
2481 		 * In order to use one MTT MR for data and metadata, we register
2482 		 * also the gaps between the end of the data and the start of
2483 		 * the metadata (the sig MR will verify that the HW will access
2484 		 * to right addresses). This mapping is safe because we use
2485 		 * internal mkey for the registration.
2486 		 */
2487 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2488 		pi_mr->ibmr.iova = iova;
2489 		ibmr->length += pi_mr->meta_length;
2490 	}
2491 
2492 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2493 				      pi_mr->desc_size * pi_mr->max_descs,
2494 				      DMA_TO_DEVICE);
2495 
2496 	return n;
2497 }
2498 
2499 static int
2500 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2501 			 int data_sg_nents, unsigned int *data_sg_offset,
2502 			 struct scatterlist *meta_sg, int meta_sg_nents,
2503 			 unsigned int *meta_sg_offset)
2504 {
2505 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2506 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2507 	int n;
2508 
2509 	pi_mr->mmkey.ndescs = 0;
2510 	pi_mr->meta_ndescs = 0;
2511 	pi_mr->meta_length = 0;
2512 
2513 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2514 				   pi_mr->desc_size * pi_mr->max_descs,
2515 				   DMA_TO_DEVICE);
2516 
2517 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2518 			       meta_sg, meta_sg_nents, meta_sg_offset);
2519 
2520 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2521 				      pi_mr->desc_size * pi_mr->max_descs,
2522 				      DMA_TO_DEVICE);
2523 
2524 	/* This is zero-based memory region */
2525 	pi_mr->data_iova = 0;
2526 	pi_mr->ibmr.iova = 0;
2527 	pi_mr->pi_iova = pi_mr->data_length;
2528 	ibmr->length = pi_mr->ibmr.length;
2529 
2530 	return n;
2531 }
2532 
2533 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2534 			 int data_sg_nents, unsigned int *data_sg_offset,
2535 			 struct scatterlist *meta_sg, int meta_sg_nents,
2536 			 unsigned int *meta_sg_offset)
2537 {
2538 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2539 	struct mlx5_ib_mr *pi_mr = NULL;
2540 	int n;
2541 
2542 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2543 
2544 	mr->mmkey.ndescs = 0;
2545 	mr->data_length = 0;
2546 	mr->data_iova = 0;
2547 	mr->meta_ndescs = 0;
2548 	mr->pi_iova = 0;
2549 	/*
2550 	 * As a performance optimization, if possible, there is no need to
2551 	 * perform UMR operation to register the data/metadata buffers.
2552 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2553 	 * Fallback to UMR only in case of a failure.
2554 	 */
2555 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2556 				    data_sg_offset, meta_sg, meta_sg_nents,
2557 				    meta_sg_offset);
2558 	if (n == data_sg_nents + meta_sg_nents)
2559 		goto out;
2560 	/*
2561 	 * As a performance optimization, if possible, there is no need to map
2562 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2563 	 * descriptors and fallback to KLM only in case of a failure.
2564 	 * It's more efficient for the HW to work with MTT descriptors
2565 	 * (especially in high load).
2566 	 * Use KLM (indirect access) only if it's mandatory.
2567 	 */
2568 	pi_mr = mr->mtt_mr;
2569 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2570 				     data_sg_offset, meta_sg, meta_sg_nents,
2571 				     meta_sg_offset);
2572 	if (n == data_sg_nents + meta_sg_nents)
2573 		goto out;
2574 
2575 	pi_mr = mr->klm_mr;
2576 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2577 				     data_sg_offset, meta_sg, meta_sg_nents,
2578 				     meta_sg_offset);
2579 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2580 		return -ENOMEM;
2581 
2582 out:
2583 	/* This is zero-based memory region */
2584 	ibmr->iova = 0;
2585 	mr->pi_mr = pi_mr;
2586 	if (pi_mr)
2587 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2588 	else
2589 		ibmr->sig_attrs->meta_length = mr->meta_length;
2590 
2591 	return 0;
2592 }
2593 
2594 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2595 		      unsigned int *sg_offset)
2596 {
2597 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2598 	int n;
2599 
2600 	mr->mmkey.ndescs = 0;
2601 
2602 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2603 				   mr->desc_size * mr->max_descs,
2604 				   DMA_TO_DEVICE);
2605 
2606 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2607 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2608 				       NULL);
2609 	else
2610 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2611 				mlx5_set_page);
2612 
2613 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2614 				      mr->desc_size * mr->max_descs,
2615 				      DMA_TO_DEVICE);
2616 
2617 	return n;
2618 }
2619