xref: /linux/drivers/infiniband/hw/mlx5/mr.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2020, Intel Corporation. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem.h>
43 #include <rdma/ib_umem_odp.h>
44 #include <rdma/ib_verbs.h>
45 #include "dm.h"
46 #include "mlx5_ib.h"
47 #include "umr.h"
48 
49 enum {
50 	MAX_PENDING_REG_MR = 8,
51 };
52 
53 #define MLX5_UMR_ALIGN 2048
54 
55 static void
56 create_mkey_callback(int status, struct mlx5_async_work *context);
57 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
58 				     u64 iova, int access_flags,
59 				     unsigned int page_size, bool populate);
60 
61 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
62 					  struct ib_pd *pd)
63 {
64 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
65 
66 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
67 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
68 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
69 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
70 	MLX5_SET(mkc, mkc, lr, 1);
71 
72 	if ((acc & IB_ACCESS_RELAXED_ORDERING) &&
73 	    pcie_relaxed_ordering_enabled(dev->mdev->pdev)) {
74 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
75 			MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
76 		if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
77 			MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
78 	}
79 
80 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
81 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
82 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
83 }
84 
85 static void assign_mkey_variant(struct mlx5_ib_dev *dev,
86 				struct mlx5_ib_mkey *mkey, u32 *in)
87 {
88 	u8 key = atomic_inc_return(&dev->mkey_var);
89 	void *mkc;
90 
91 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
92 	MLX5_SET(mkc, mkc, mkey_7_0, key);
93 	mkey->key = key;
94 }
95 
96 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
97 			       struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
98 {
99 	int ret;
100 
101 	assign_mkey_variant(dev, mkey, in);
102 	ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
103 	if (!ret)
104 		init_waitqueue_head(&mkey->wait);
105 
106 	return ret;
107 }
108 
109 static int
110 mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev,
111 		       struct mlx5_ib_mkey *mkey,
112 		       struct mlx5_async_ctx *async_ctx,
113 		       u32 *in, int inlen, u32 *out, int outlen,
114 		       struct mlx5_async_work *context)
115 {
116 	MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY);
117 	assign_mkey_variant(dev, mkey, in);
118 	return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen,
119 				create_mkey_callback, context);
120 }
121 
122 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
123 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
124 
125 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
126 {
127 	WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
128 
129 	return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
130 }
131 
132 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
133 {
134 	if (status == -ENXIO) /* core driver is not available */
135 		return;
136 
137 	mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
138 	if (status != -EREMOTEIO) /* driver specific failure */
139 		return;
140 
141 	/* Failed in FW, print cmd out failure details */
142 	mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
143 }
144 
145 static void create_mkey_callback(int status, struct mlx5_async_work *context)
146 {
147 	struct mlx5_ib_mr *mr =
148 		container_of(context, struct mlx5_ib_mr, cb_work);
149 	struct mlx5_cache_ent *ent = mr->cache_ent;
150 	struct mlx5_ib_dev *dev = ent->dev;
151 	unsigned long flags;
152 
153 	if (status) {
154 		create_mkey_warn(dev, status, mr->out);
155 		kfree(mr);
156 		spin_lock_irqsave(&ent->lock, flags);
157 		ent->pending--;
158 		WRITE_ONCE(dev->fill_delay, 1);
159 		spin_unlock_irqrestore(&ent->lock, flags);
160 		mod_timer(&dev->delay_timer, jiffies + HZ);
161 		return;
162 	}
163 
164 	mr->mmkey.type = MLX5_MKEY_MR;
165 	mr->mmkey.key |= mlx5_idx_to_mkey(
166 		MLX5_GET(create_mkey_out, mr->out, mkey_index));
167 	init_waitqueue_head(&mr->mmkey.wait);
168 
169 	WRITE_ONCE(dev->cache.last_add, jiffies);
170 
171 	spin_lock_irqsave(&ent->lock, flags);
172 	list_add_tail(&mr->list, &ent->head);
173 	ent->available_mrs++;
174 	ent->total_mrs++;
175 	/* If we are doing fill_to_high_water then keep going. */
176 	queue_adjust_cache_locked(ent);
177 	ent->pending--;
178 	spin_unlock_irqrestore(&ent->lock, flags);
179 }
180 
181 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
182 {
183 	int ret = 0;
184 
185 	switch (access_mode) {
186 	case MLX5_MKC_ACCESS_MODE_MTT:
187 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
188 						   sizeof(struct mlx5_mtt));
189 		break;
190 	case MLX5_MKC_ACCESS_MODE_KSM:
191 		ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
192 						   sizeof(struct mlx5_klm));
193 		break;
194 	default:
195 		WARN_ON(1);
196 	}
197 	return ret;
198 }
199 
200 static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc)
201 {
202 	struct mlx5_ib_mr *mr;
203 
204 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
205 	if (!mr)
206 		return NULL;
207 	mr->cache_ent = ent;
208 
209 	set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
210 	MLX5_SET(mkc, mkc, free, 1);
211 	MLX5_SET(mkc, mkc, umr_en, 1);
212 	MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
213 	MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
214 
215 	MLX5_SET(mkc, mkc, translations_octword_size,
216 		 get_mkc_octo_size(ent->access_mode, ent->ndescs));
217 	MLX5_SET(mkc, mkc, log_page_size, ent->page);
218 	return mr;
219 }
220 
221 /* Asynchronously schedule new MRs to be populated in the cache. */
222 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
223 {
224 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
225 	struct mlx5_ib_mr *mr;
226 	void *mkc;
227 	u32 *in;
228 	int err = 0;
229 	int i;
230 
231 	in = kzalloc(inlen, GFP_KERNEL);
232 	if (!in)
233 		return -ENOMEM;
234 
235 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
236 	for (i = 0; i < num; i++) {
237 		mr = alloc_cache_mr(ent, mkc);
238 		if (!mr) {
239 			err = -ENOMEM;
240 			break;
241 		}
242 		spin_lock_irq(&ent->lock);
243 		if (ent->pending >= MAX_PENDING_REG_MR) {
244 			err = -EAGAIN;
245 			spin_unlock_irq(&ent->lock);
246 			kfree(mr);
247 			break;
248 		}
249 		ent->pending++;
250 		spin_unlock_irq(&ent->lock);
251 		err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey,
252 					     &ent->dev->async_ctx, in, inlen,
253 					     mr->out, sizeof(mr->out),
254 					     &mr->cb_work);
255 		if (err) {
256 			spin_lock_irq(&ent->lock);
257 			ent->pending--;
258 			spin_unlock_irq(&ent->lock);
259 			mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
260 			kfree(mr);
261 			break;
262 		}
263 	}
264 
265 	kfree(in);
266 	return err;
267 }
268 
269 /* Synchronously create a MR in the cache */
270 static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent)
271 {
272 	size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
273 	struct mlx5_ib_mr *mr;
274 	void *mkc;
275 	u32 *in;
276 	int err;
277 
278 	in = kzalloc(inlen, GFP_KERNEL);
279 	if (!in)
280 		return ERR_PTR(-ENOMEM);
281 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
282 
283 	mr = alloc_cache_mr(ent, mkc);
284 	if (!mr) {
285 		err = -ENOMEM;
286 		goto free_in;
287 	}
288 
289 	err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey.key, in, inlen);
290 	if (err)
291 		goto free_mr;
292 
293 	init_waitqueue_head(&mr->mmkey.wait);
294 	mr->mmkey.type = MLX5_MKEY_MR;
295 	WRITE_ONCE(ent->dev->cache.last_add, jiffies);
296 	spin_lock_irq(&ent->lock);
297 	ent->total_mrs++;
298 	spin_unlock_irq(&ent->lock);
299 	kfree(in);
300 	return mr;
301 free_mr:
302 	kfree(mr);
303 free_in:
304 	kfree(in);
305 	return ERR_PTR(err);
306 }
307 
308 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
309 {
310 	struct mlx5_ib_mr *mr;
311 
312 	lockdep_assert_held(&ent->lock);
313 	if (list_empty(&ent->head))
314 		return;
315 	mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
316 	list_del(&mr->list);
317 	ent->available_mrs--;
318 	ent->total_mrs--;
319 	spin_unlock_irq(&ent->lock);
320 	mlx5_core_destroy_mkey(ent->dev->mdev, mr->mmkey.key);
321 	kfree(mr);
322 	spin_lock_irq(&ent->lock);
323 }
324 
325 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
326 				bool limit_fill)
327 {
328 	int err;
329 
330 	lockdep_assert_held(&ent->lock);
331 
332 	while (true) {
333 		if (limit_fill)
334 			target = ent->limit * 2;
335 		if (target == ent->available_mrs + ent->pending)
336 			return 0;
337 		if (target > ent->available_mrs + ent->pending) {
338 			u32 todo = target - (ent->available_mrs + ent->pending);
339 
340 			spin_unlock_irq(&ent->lock);
341 			err = add_keys(ent, todo);
342 			if (err == -EAGAIN)
343 				usleep_range(3000, 5000);
344 			spin_lock_irq(&ent->lock);
345 			if (err) {
346 				if (err != -EAGAIN)
347 					return err;
348 			} else
349 				return 0;
350 		} else {
351 			remove_cache_mr_locked(ent);
352 		}
353 	}
354 }
355 
356 static ssize_t size_write(struct file *filp, const char __user *buf,
357 			  size_t count, loff_t *pos)
358 {
359 	struct mlx5_cache_ent *ent = filp->private_data;
360 	u32 target;
361 	int err;
362 
363 	err = kstrtou32_from_user(buf, count, 0, &target);
364 	if (err)
365 		return err;
366 
367 	/*
368 	 * Target is the new value of total_mrs the user requests, however we
369 	 * cannot free MRs that are in use. Compute the target value for
370 	 * available_mrs.
371 	 */
372 	spin_lock_irq(&ent->lock);
373 	if (target < ent->total_mrs - ent->available_mrs) {
374 		err = -EINVAL;
375 		goto err_unlock;
376 	}
377 	target = target - (ent->total_mrs - ent->available_mrs);
378 	if (target < ent->limit || target > ent->limit*2) {
379 		err = -EINVAL;
380 		goto err_unlock;
381 	}
382 	err = resize_available_mrs(ent, target, false);
383 	if (err)
384 		goto err_unlock;
385 	spin_unlock_irq(&ent->lock);
386 
387 	return count;
388 
389 err_unlock:
390 	spin_unlock_irq(&ent->lock);
391 	return err;
392 }
393 
394 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
395 			 loff_t *pos)
396 {
397 	struct mlx5_cache_ent *ent = filp->private_data;
398 	char lbuf[20];
399 	int err;
400 
401 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs);
402 	if (err < 0)
403 		return err;
404 
405 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
406 }
407 
408 static const struct file_operations size_fops = {
409 	.owner	= THIS_MODULE,
410 	.open	= simple_open,
411 	.write	= size_write,
412 	.read	= size_read,
413 };
414 
415 static ssize_t limit_write(struct file *filp, const char __user *buf,
416 			   size_t count, loff_t *pos)
417 {
418 	struct mlx5_cache_ent *ent = filp->private_data;
419 	u32 var;
420 	int err;
421 
422 	err = kstrtou32_from_user(buf, count, 0, &var);
423 	if (err)
424 		return err;
425 
426 	/*
427 	 * Upon set we immediately fill the cache to high water mark implied by
428 	 * the limit.
429 	 */
430 	spin_lock_irq(&ent->lock);
431 	ent->limit = var;
432 	err = resize_available_mrs(ent, 0, true);
433 	spin_unlock_irq(&ent->lock);
434 	if (err)
435 		return err;
436 	return count;
437 }
438 
439 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
440 			  loff_t *pos)
441 {
442 	struct mlx5_cache_ent *ent = filp->private_data;
443 	char lbuf[20];
444 	int err;
445 
446 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
447 	if (err < 0)
448 		return err;
449 
450 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
451 }
452 
453 static const struct file_operations limit_fops = {
454 	.owner	= THIS_MODULE,
455 	.open	= simple_open,
456 	.write	= limit_write,
457 	.read	= limit_read,
458 };
459 
460 static bool someone_adding(struct mlx5_mr_cache *cache)
461 {
462 	unsigned int i;
463 
464 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
465 		struct mlx5_cache_ent *ent = &cache->ent[i];
466 		bool ret;
467 
468 		spin_lock_irq(&ent->lock);
469 		ret = ent->available_mrs < ent->limit;
470 		spin_unlock_irq(&ent->lock);
471 		if (ret)
472 			return true;
473 	}
474 	return false;
475 }
476 
477 /*
478  * Check if the bucket is outside the high/low water mark and schedule an async
479  * update. The cache refill has hysteresis, once the low water mark is hit it is
480  * refilled up to the high mark.
481  */
482 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
483 {
484 	lockdep_assert_held(&ent->lock);
485 
486 	if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
487 		return;
488 	if (ent->available_mrs < ent->limit) {
489 		ent->fill_to_high_water = true;
490 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
491 	} else if (ent->fill_to_high_water &&
492 		   ent->available_mrs + ent->pending < 2 * ent->limit) {
493 		/*
494 		 * Once we start populating due to hitting a low water mark
495 		 * continue until we pass the high water mark.
496 		 */
497 		mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
498 	} else if (ent->available_mrs == 2 * ent->limit) {
499 		ent->fill_to_high_water = false;
500 	} else if (ent->available_mrs > 2 * ent->limit) {
501 		/* Queue deletion of excess entries */
502 		ent->fill_to_high_water = false;
503 		if (ent->pending)
504 			queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
505 					   msecs_to_jiffies(1000));
506 		else
507 			mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
508 	}
509 }
510 
511 static void __cache_work_func(struct mlx5_cache_ent *ent)
512 {
513 	struct mlx5_ib_dev *dev = ent->dev;
514 	struct mlx5_mr_cache *cache = &dev->cache;
515 	int err;
516 
517 	spin_lock_irq(&ent->lock);
518 	if (ent->disabled)
519 		goto out;
520 
521 	if (ent->fill_to_high_water &&
522 	    ent->available_mrs + ent->pending < 2 * ent->limit &&
523 	    !READ_ONCE(dev->fill_delay)) {
524 		spin_unlock_irq(&ent->lock);
525 		err = add_keys(ent, 1);
526 		spin_lock_irq(&ent->lock);
527 		if (ent->disabled)
528 			goto out;
529 		if (err) {
530 			/*
531 			 * EAGAIN only happens if pending is positive, so we
532 			 * will be rescheduled from reg_mr_callback(). The only
533 			 * failure path here is ENOMEM.
534 			 */
535 			if (err != -EAGAIN) {
536 				mlx5_ib_warn(
537 					dev,
538 					"command failed order %d, err %d\n",
539 					ent->order, err);
540 				queue_delayed_work(cache->wq, &ent->dwork,
541 						   msecs_to_jiffies(1000));
542 			}
543 		}
544 	} else if (ent->available_mrs > 2 * ent->limit) {
545 		bool need_delay;
546 
547 		/*
548 		 * The remove_cache_mr() logic is performed as garbage
549 		 * collection task. Such task is intended to be run when no
550 		 * other active processes are running.
551 		 *
552 		 * The need_resched() will return TRUE if there are user tasks
553 		 * to be activated in near future.
554 		 *
555 		 * In such case, we don't execute remove_cache_mr() and postpone
556 		 * the garbage collection work to try to run in next cycle, in
557 		 * order to free CPU resources to other tasks.
558 		 */
559 		spin_unlock_irq(&ent->lock);
560 		need_delay = need_resched() || someone_adding(cache) ||
561 			     !time_after(jiffies,
562 					 READ_ONCE(cache->last_add) + 300 * HZ);
563 		spin_lock_irq(&ent->lock);
564 		if (ent->disabled)
565 			goto out;
566 		if (need_delay) {
567 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
568 			goto out;
569 		}
570 		remove_cache_mr_locked(ent);
571 		queue_adjust_cache_locked(ent);
572 	}
573 out:
574 	spin_unlock_irq(&ent->lock);
575 }
576 
577 static void delayed_cache_work_func(struct work_struct *work)
578 {
579 	struct mlx5_cache_ent *ent;
580 
581 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
582 	__cache_work_func(ent);
583 }
584 
585 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
586 				       struct mlx5_cache_ent *ent,
587 				       int access_flags)
588 {
589 	struct mlx5_ib_mr *mr;
590 
591 	/* Matches access in alloc_cache_mr() */
592 	if (!mlx5r_umr_can_reconfig(dev, 0, access_flags))
593 		return ERR_PTR(-EOPNOTSUPP);
594 
595 	spin_lock_irq(&ent->lock);
596 	if (list_empty(&ent->head)) {
597 		queue_adjust_cache_locked(ent);
598 		ent->miss++;
599 		spin_unlock_irq(&ent->lock);
600 		mr = create_cache_mr(ent);
601 		if (IS_ERR(mr))
602 			return mr;
603 	} else {
604 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
605 		list_del(&mr->list);
606 		ent->available_mrs--;
607 		queue_adjust_cache_locked(ent);
608 		spin_unlock_irq(&ent->lock);
609 
610 		mlx5_clear_mr(mr);
611 	}
612 	return mr;
613 }
614 
615 static void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
616 {
617 	struct mlx5_cache_ent *ent = mr->cache_ent;
618 
619 	WRITE_ONCE(dev->cache.last_add, jiffies);
620 	spin_lock_irq(&ent->lock);
621 	list_add_tail(&mr->list, &ent->head);
622 	ent->available_mrs++;
623 	queue_adjust_cache_locked(ent);
624 	spin_unlock_irq(&ent->lock);
625 }
626 
627 static void clean_keys(struct mlx5_ib_dev *dev, int c)
628 {
629 	struct mlx5_mr_cache *cache = &dev->cache;
630 	struct mlx5_cache_ent *ent = &cache->ent[c];
631 	struct mlx5_ib_mr *tmp_mr;
632 	struct mlx5_ib_mr *mr;
633 	LIST_HEAD(del_list);
634 
635 	cancel_delayed_work(&ent->dwork);
636 	while (1) {
637 		spin_lock_irq(&ent->lock);
638 		if (list_empty(&ent->head)) {
639 			spin_unlock_irq(&ent->lock);
640 			break;
641 		}
642 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
643 		list_move(&mr->list, &del_list);
644 		ent->available_mrs--;
645 		ent->total_mrs--;
646 		spin_unlock_irq(&ent->lock);
647 		mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
648 	}
649 
650 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
651 		list_del(&mr->list);
652 		kfree(mr);
653 	}
654 }
655 
656 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
657 {
658 	if (!mlx5_debugfs_root || dev->is_rep)
659 		return;
660 
661 	debugfs_remove_recursive(dev->cache.root);
662 	dev->cache.root = NULL;
663 }
664 
665 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
666 {
667 	struct mlx5_mr_cache *cache = &dev->cache;
668 	struct mlx5_cache_ent *ent;
669 	struct dentry *dir;
670 	int i;
671 
672 	if (!mlx5_debugfs_root || dev->is_rep)
673 		return;
674 
675 	cache->root = debugfs_create_dir("mr_cache", mlx5_debugfs_get_dev_root(dev->mdev));
676 
677 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
678 		ent = &cache->ent[i];
679 		sprintf(ent->name, "%d", ent->order);
680 		dir = debugfs_create_dir(ent->name, cache->root);
681 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
682 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
683 		debugfs_create_u32("cur", 0400, dir, &ent->available_mrs);
684 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
685 	}
686 }
687 
688 static void delay_time_func(struct timer_list *t)
689 {
690 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
691 
692 	WRITE_ONCE(dev->fill_delay, 0);
693 }
694 
695 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
696 {
697 	struct mlx5_mr_cache *cache = &dev->cache;
698 	struct mlx5_cache_ent *ent;
699 	int i;
700 
701 	mutex_init(&dev->slow_path_mutex);
702 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
703 	if (!cache->wq) {
704 		mlx5_ib_warn(dev, "failed to create work queue\n");
705 		return -ENOMEM;
706 	}
707 
708 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
709 	timer_setup(&dev->delay_timer, delay_time_func, 0);
710 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
711 		ent = &cache->ent[i];
712 		INIT_LIST_HEAD(&ent->head);
713 		spin_lock_init(&ent->lock);
714 		ent->order = i + 2;
715 		ent->dev = dev;
716 		ent->limit = 0;
717 
718 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
719 
720 		if (i > MR_CACHE_LAST_STD_ENTRY) {
721 			mlx5_odp_init_mr_cache_entry(ent);
722 			continue;
723 		}
724 
725 		if (ent->order > mr_cache_max_order(dev))
726 			continue;
727 
728 		ent->page = PAGE_SHIFT;
729 		ent->ndescs = 1 << ent->order;
730 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
731 		if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
732 		    !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
733 		    mlx5r_umr_can_load_pas(dev, 0))
734 			ent->limit = dev->mdev->profile.mr_cache[i].limit;
735 		else
736 			ent->limit = 0;
737 		spin_lock_irq(&ent->lock);
738 		queue_adjust_cache_locked(ent);
739 		spin_unlock_irq(&ent->lock);
740 	}
741 
742 	mlx5_mr_cache_debugfs_init(dev);
743 
744 	return 0;
745 }
746 
747 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
748 {
749 	unsigned int i;
750 
751 	if (!dev->cache.wq)
752 		return 0;
753 
754 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
755 		struct mlx5_cache_ent *ent = &dev->cache.ent[i];
756 
757 		spin_lock_irq(&ent->lock);
758 		ent->disabled = true;
759 		spin_unlock_irq(&ent->lock);
760 		cancel_delayed_work_sync(&ent->dwork);
761 	}
762 
763 	mlx5_mr_cache_debugfs_cleanup(dev);
764 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
765 
766 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
767 		clean_keys(dev, i);
768 
769 	destroy_workqueue(dev->cache.wq);
770 	del_timer_sync(&dev->delay_timer);
771 
772 	return 0;
773 }
774 
775 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
776 {
777 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
778 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
779 	struct mlx5_ib_mr *mr;
780 	void *mkc;
781 	u32 *in;
782 	int err;
783 
784 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
785 	if (!mr)
786 		return ERR_PTR(-ENOMEM);
787 
788 	in = kzalloc(inlen, GFP_KERNEL);
789 	if (!in) {
790 		err = -ENOMEM;
791 		goto err_free;
792 	}
793 
794 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
795 
796 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
797 	MLX5_SET(mkc, mkc, length64, 1);
798 	set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
799 				      pd);
800 
801 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
802 	if (err)
803 		goto err_in;
804 
805 	kfree(in);
806 	mr->mmkey.type = MLX5_MKEY_MR;
807 	mr->ibmr.lkey = mr->mmkey.key;
808 	mr->ibmr.rkey = mr->mmkey.key;
809 	mr->umem = NULL;
810 
811 	return &mr->ibmr;
812 
813 err_in:
814 	kfree(in);
815 
816 err_free:
817 	kfree(mr);
818 
819 	return ERR_PTR(err);
820 }
821 
822 static int get_octo_len(u64 addr, u64 len, int page_shift)
823 {
824 	u64 page_size = 1ULL << page_shift;
825 	u64 offset;
826 	int npages;
827 
828 	offset = addr & (page_size - 1);
829 	npages = ALIGN(len + offset, page_size) >> page_shift;
830 	return (npages + 1) / 2;
831 }
832 
833 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
834 {
835 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
836 		return MR_CACHE_LAST_STD_ENTRY + 2;
837 	return MLX5_MAX_UMR_SHIFT;
838 }
839 
840 static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev,
841 						      unsigned int order)
842 {
843 	struct mlx5_mr_cache *cache = &dev->cache;
844 
845 	if (order < cache->ent[0].order)
846 		return &cache->ent[0];
847 	order = order - cache->ent[0].order;
848 	if (order > MR_CACHE_LAST_STD_ENTRY)
849 		return NULL;
850 	return &cache->ent[order];
851 }
852 
853 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
854 			  u64 length, int access_flags, u64 iova)
855 {
856 	mr->ibmr.lkey = mr->mmkey.key;
857 	mr->ibmr.rkey = mr->mmkey.key;
858 	mr->ibmr.length = length;
859 	mr->ibmr.device = &dev->ib_dev;
860 	mr->ibmr.iova = iova;
861 	mr->access_flags = access_flags;
862 }
863 
864 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
865 						  u64 iova)
866 {
867 	/*
868 	 * The alignment of iova has already been checked upon entering
869 	 * UVERBS_METHOD_REG_DMABUF_MR
870 	 */
871 	umem->iova = iova;
872 	return PAGE_SIZE;
873 }
874 
875 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
876 					     struct ib_umem *umem, u64 iova,
877 					     int access_flags)
878 {
879 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
880 	struct mlx5_cache_ent *ent;
881 	struct mlx5_ib_mr *mr;
882 	unsigned int page_size;
883 
884 	if (umem->is_dmabuf)
885 		page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
886 	else
887 		page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
888 						     0, iova);
889 	if (WARN_ON(!page_size))
890 		return ERR_PTR(-EINVAL);
891 	ent = mr_cache_ent_from_order(
892 		dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
893 	/*
894 	 * Matches access in alloc_cache_mr(). If the MR can't come from the
895 	 * cache then synchronously create an uncached one.
896 	 */
897 	if (!ent || ent->limit == 0 ||
898 	    !mlx5r_umr_can_reconfig(dev, 0, access_flags)) {
899 		mutex_lock(&dev->slow_path_mutex);
900 		mr = reg_create(pd, umem, iova, access_flags, page_size, false);
901 		mutex_unlock(&dev->slow_path_mutex);
902 		return mr;
903 	}
904 
905 	mr = mlx5_mr_cache_alloc(dev, ent, access_flags);
906 	if (IS_ERR(mr))
907 		return mr;
908 
909 	mr->ibmr.pd = pd;
910 	mr->umem = umem;
911 	mr->page_shift = order_base_2(page_size);
912 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
913 
914 	return mr;
915 }
916 
917 /*
918  * If ibmr is NULL it will be allocated by reg_create.
919  * Else, the given ibmr will be used.
920  */
921 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
922 				     u64 iova, int access_flags,
923 				     unsigned int page_size, bool populate)
924 {
925 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
926 	struct mlx5_ib_mr *mr;
927 	__be64 *pas;
928 	void *mkc;
929 	int inlen;
930 	u32 *in;
931 	int err;
932 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
933 
934 	if (!page_size)
935 		return ERR_PTR(-EINVAL);
936 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
937 	if (!mr)
938 		return ERR_PTR(-ENOMEM);
939 
940 	mr->ibmr.pd = pd;
941 	mr->access_flags = access_flags;
942 	mr->page_shift = order_base_2(page_size);
943 
944 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
945 	if (populate)
946 		inlen += sizeof(*pas) *
947 			 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
948 	in = kvzalloc(inlen, GFP_KERNEL);
949 	if (!in) {
950 		err = -ENOMEM;
951 		goto err_1;
952 	}
953 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
954 	if (populate) {
955 		if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
956 			err = -EINVAL;
957 			goto err_2;
958 		}
959 		mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
960 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
961 	}
962 
963 	/* The pg_access bit allows setting the access flags
964 	 * in the page list submitted with the command. */
965 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
966 
967 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
968 	set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
969 				      populate ? pd : dev->umrc.pd);
970 	MLX5_SET(mkc, mkc, free, !populate);
971 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
972 	MLX5_SET(mkc, mkc, umr_en, 1);
973 
974 	MLX5_SET64(mkc, mkc, len, umem->length);
975 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
976 	MLX5_SET(mkc, mkc, translations_octword_size,
977 		 get_octo_len(iova, umem->length, mr->page_shift));
978 	MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
979 	if (populate) {
980 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
981 			 get_octo_len(iova, umem->length, mr->page_shift));
982 	}
983 
984 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
985 	if (err) {
986 		mlx5_ib_warn(dev, "create mkey failed\n");
987 		goto err_2;
988 	}
989 	mr->mmkey.type = MLX5_MKEY_MR;
990 	mr->umem = umem;
991 	set_mr_fields(dev, mr, umem->length, access_flags, iova);
992 	kvfree(in);
993 
994 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
995 
996 	return mr;
997 
998 err_2:
999 	kvfree(in);
1000 err_1:
1001 	kfree(mr);
1002 	return ERR_PTR(err);
1003 }
1004 
1005 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1006 				       u64 length, int acc, int mode)
1007 {
1008 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1009 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1010 	struct mlx5_ib_mr *mr;
1011 	void *mkc;
1012 	u32 *in;
1013 	int err;
1014 
1015 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1016 	if (!mr)
1017 		return ERR_PTR(-ENOMEM);
1018 
1019 	in = kzalloc(inlen, GFP_KERNEL);
1020 	if (!in) {
1021 		err = -ENOMEM;
1022 		goto err_free;
1023 	}
1024 
1025 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1026 
1027 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1028 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1029 	MLX5_SET64(mkc, mkc, len, length);
1030 	set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1031 
1032 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1033 	if (err)
1034 		goto err_in;
1035 
1036 	kfree(in);
1037 
1038 	set_mr_fields(dev, mr, length, acc, start_addr);
1039 
1040 	return &mr->ibmr;
1041 
1042 err_in:
1043 	kfree(in);
1044 
1045 err_free:
1046 	kfree(mr);
1047 
1048 	return ERR_PTR(err);
1049 }
1050 
1051 int mlx5_ib_advise_mr(struct ib_pd *pd,
1052 		      enum ib_uverbs_advise_mr_advice advice,
1053 		      u32 flags,
1054 		      struct ib_sge *sg_list,
1055 		      u32 num_sge,
1056 		      struct uverbs_attr_bundle *attrs)
1057 {
1058 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1059 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1060 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1061 		return -EOPNOTSUPP;
1062 
1063 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1064 					 sg_list, num_sge);
1065 }
1066 
1067 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1068 				struct ib_dm_mr_attr *attr,
1069 				struct uverbs_attr_bundle *attrs)
1070 {
1071 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1072 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1073 	u64 start_addr = mdm->dev_addr + attr->offset;
1074 	int mode;
1075 
1076 	switch (mdm->type) {
1077 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1078 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1079 			return ERR_PTR(-EINVAL);
1080 
1081 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1082 		start_addr -= pci_resource_start(dev->pdev, 0);
1083 		break;
1084 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1085 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1086 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1087 			return ERR_PTR(-EINVAL);
1088 
1089 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1090 		break;
1091 	default:
1092 		return ERR_PTR(-EINVAL);
1093 	}
1094 
1095 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1096 				 attr->access_flags, mode);
1097 }
1098 
1099 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1100 				    u64 iova, int access_flags)
1101 {
1102 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1103 	struct mlx5_ib_mr *mr = NULL;
1104 	bool xlt_with_umr;
1105 	int err;
1106 
1107 	xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1108 	if (xlt_with_umr) {
1109 		mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1110 	} else {
1111 		unsigned int page_size = mlx5_umem_find_best_pgsz(
1112 			umem, mkc, log_page_size, 0, iova);
1113 
1114 		mutex_lock(&dev->slow_path_mutex);
1115 		mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1116 		mutex_unlock(&dev->slow_path_mutex);
1117 	}
1118 	if (IS_ERR(mr)) {
1119 		ib_umem_release(umem);
1120 		return ERR_CAST(mr);
1121 	}
1122 
1123 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1124 
1125 	atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1126 
1127 	if (xlt_with_umr) {
1128 		/*
1129 		 * If the MR was created with reg_create then it will be
1130 		 * configured properly but left disabled. It is safe to go ahead
1131 		 * and configure it again via UMR while enabling it.
1132 		 */
1133 		err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1134 		if (err) {
1135 			mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1136 			return ERR_PTR(err);
1137 		}
1138 	}
1139 	return &mr->ibmr;
1140 }
1141 
1142 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1143 					u64 iova, int access_flags,
1144 					struct ib_udata *udata)
1145 {
1146 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1147 	struct ib_umem_odp *odp;
1148 	struct mlx5_ib_mr *mr;
1149 	int err;
1150 
1151 	if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1152 		return ERR_PTR(-EOPNOTSUPP);
1153 
1154 	err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1155 	if (err)
1156 		return ERR_PTR(err);
1157 	if (!start && length == U64_MAX) {
1158 		if (iova != 0)
1159 			return ERR_PTR(-EINVAL);
1160 		if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1161 			return ERR_PTR(-EINVAL);
1162 
1163 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1164 		if (IS_ERR(mr))
1165 			return ERR_CAST(mr);
1166 		return &mr->ibmr;
1167 	}
1168 
1169 	/* ODP requires xlt update via umr to work. */
1170 	if (!mlx5r_umr_can_load_pas(dev, length))
1171 		return ERR_PTR(-EINVAL);
1172 
1173 	odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1174 			      &mlx5_mn_ops);
1175 	if (IS_ERR(odp))
1176 		return ERR_CAST(odp);
1177 
1178 	mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1179 	if (IS_ERR(mr)) {
1180 		ib_umem_release(&odp->umem);
1181 		return ERR_CAST(mr);
1182 	}
1183 	xa_init(&mr->implicit_children);
1184 
1185 	odp->private = mr;
1186 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1187 	if (err)
1188 		goto err_dereg_mr;
1189 
1190 	err = mlx5_ib_init_odp_mr(mr);
1191 	if (err)
1192 		goto err_dereg_mr;
1193 	return &mr->ibmr;
1194 
1195 err_dereg_mr:
1196 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1197 	return ERR_PTR(err);
1198 }
1199 
1200 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1201 				  u64 iova, int access_flags,
1202 				  struct ib_udata *udata)
1203 {
1204 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1205 	struct ib_umem *umem;
1206 
1207 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1208 		return ERR_PTR(-EOPNOTSUPP);
1209 
1210 	mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1211 		    start, iova, length, access_flags);
1212 
1213 	if (access_flags & IB_ACCESS_ON_DEMAND)
1214 		return create_user_odp_mr(pd, start, length, iova, access_flags,
1215 					  udata);
1216 	umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1217 	if (IS_ERR(umem))
1218 		return ERR_CAST(umem);
1219 	return create_real_mr(pd, umem, iova, access_flags);
1220 }
1221 
1222 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1223 {
1224 	struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1225 	struct mlx5_ib_mr *mr = umem_dmabuf->private;
1226 
1227 	dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1228 
1229 	if (!umem_dmabuf->sgt)
1230 		return;
1231 
1232 	mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1233 	ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1234 }
1235 
1236 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1237 	.allow_peer2peer = 1,
1238 	.move_notify = mlx5_ib_dmabuf_invalidate_cb,
1239 };
1240 
1241 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1242 					 u64 length, u64 virt_addr,
1243 					 int fd, int access_flags,
1244 					 struct ib_udata *udata)
1245 {
1246 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1247 	struct mlx5_ib_mr *mr = NULL;
1248 	struct ib_umem_dmabuf *umem_dmabuf;
1249 	int err;
1250 
1251 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1252 	    !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1253 		return ERR_PTR(-EOPNOTSUPP);
1254 
1255 	mlx5_ib_dbg(dev,
1256 		    "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1257 		    offset, virt_addr, length, fd, access_flags);
1258 
1259 	/* dmabuf requires xlt update via umr to work. */
1260 	if (!mlx5r_umr_can_load_pas(dev, length))
1261 		return ERR_PTR(-EINVAL);
1262 
1263 	umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1264 					 access_flags,
1265 					 &mlx5_ib_dmabuf_attach_ops);
1266 	if (IS_ERR(umem_dmabuf)) {
1267 		mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1268 			    PTR_ERR(umem_dmabuf));
1269 		return ERR_CAST(umem_dmabuf);
1270 	}
1271 
1272 	mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1273 				access_flags);
1274 	if (IS_ERR(mr)) {
1275 		ib_umem_release(&umem_dmabuf->umem);
1276 		return ERR_CAST(mr);
1277 	}
1278 
1279 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1280 
1281 	atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1282 	umem_dmabuf->private = mr;
1283 	err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1284 	if (err)
1285 		goto err_dereg_mr;
1286 
1287 	err = mlx5_ib_init_dmabuf_mr(mr);
1288 	if (err)
1289 		goto err_dereg_mr;
1290 	return &mr->ibmr;
1291 
1292 err_dereg_mr:
1293 	mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1294 	return ERR_PTR(err);
1295 }
1296 
1297 /*
1298  * True if the change in access flags can be done via UMR, only some access
1299  * flags can be updated.
1300  */
1301 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1302 				     unsigned int current_access_flags,
1303 				     unsigned int target_access_flags)
1304 {
1305 	unsigned int diffs = current_access_flags ^ target_access_flags;
1306 
1307 	if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1308 		      IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1309 		return false;
1310 	return mlx5r_umr_can_reconfig(dev, current_access_flags,
1311 				      target_access_flags);
1312 }
1313 
1314 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1315 				  struct ib_umem *new_umem,
1316 				  int new_access_flags, u64 iova,
1317 				  unsigned long *page_size)
1318 {
1319 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1320 
1321 	/* We only track the allocated sizes of MRs from the cache */
1322 	if (!mr->cache_ent)
1323 		return false;
1324 	if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1325 		return false;
1326 
1327 	*page_size =
1328 		mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1329 	if (WARN_ON(!*page_size))
1330 		return false;
1331 	return (1ULL << mr->cache_ent->order) >=
1332 	       ib_umem_num_dma_blocks(new_umem, *page_size);
1333 }
1334 
1335 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1336 			 int access_flags, int flags, struct ib_umem *new_umem,
1337 			 u64 iova, unsigned long page_size)
1338 {
1339 	struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1340 	int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1341 	struct ib_umem *old_umem = mr->umem;
1342 	int err;
1343 
1344 	/*
1345 	 * To keep everything simple the MR is revoked before we start to mess
1346 	 * with it. This ensure the change is atomic relative to any use of the
1347 	 * MR.
1348 	 */
1349 	err = mlx5r_umr_revoke_mr(mr);
1350 	if (err)
1351 		return err;
1352 
1353 	if (flags & IB_MR_REREG_PD) {
1354 		mr->ibmr.pd = pd;
1355 		upd_flags |= MLX5_IB_UPD_XLT_PD;
1356 	}
1357 	if (flags & IB_MR_REREG_ACCESS) {
1358 		mr->access_flags = access_flags;
1359 		upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1360 	}
1361 
1362 	mr->ibmr.length = new_umem->length;
1363 	mr->ibmr.iova = iova;
1364 	mr->ibmr.length = new_umem->length;
1365 	mr->page_shift = order_base_2(page_size);
1366 	mr->umem = new_umem;
1367 	err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1368 	if (err) {
1369 		/*
1370 		 * The MR is revoked at this point so there is no issue to free
1371 		 * new_umem.
1372 		 */
1373 		mr->umem = old_umem;
1374 		return err;
1375 	}
1376 
1377 	atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1378 	ib_umem_release(old_umem);
1379 	atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1380 	return 0;
1381 }
1382 
1383 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1384 				    u64 length, u64 iova, int new_access_flags,
1385 				    struct ib_pd *new_pd,
1386 				    struct ib_udata *udata)
1387 {
1388 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1389 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1390 	int err;
1391 
1392 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1393 		return ERR_PTR(-EOPNOTSUPP);
1394 
1395 	mlx5_ib_dbg(
1396 		dev,
1397 		"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1398 		start, iova, length, new_access_flags);
1399 
1400 	if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1401 		return ERR_PTR(-EOPNOTSUPP);
1402 
1403 	if (!(flags & IB_MR_REREG_ACCESS))
1404 		new_access_flags = mr->access_flags;
1405 	if (!(flags & IB_MR_REREG_PD))
1406 		new_pd = ib_mr->pd;
1407 
1408 	if (!(flags & IB_MR_REREG_TRANS)) {
1409 		struct ib_umem *umem;
1410 
1411 		/* Fast path for PD/access change */
1412 		if (can_use_umr_rereg_access(dev, mr->access_flags,
1413 					     new_access_flags)) {
1414 			err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1415 							new_access_flags);
1416 			if (err)
1417 				return ERR_PTR(err);
1418 			return NULL;
1419 		}
1420 		/* DM or ODP MR's don't have a normal umem so we can't re-use it */
1421 		if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1422 			goto recreate;
1423 
1424 		/*
1425 		 * Only one active MR can refer to a umem at one time, revoke
1426 		 * the old MR before assigning the umem to the new one.
1427 		 */
1428 		err = mlx5r_umr_revoke_mr(mr);
1429 		if (err)
1430 			return ERR_PTR(err);
1431 		umem = mr->umem;
1432 		mr->umem = NULL;
1433 		atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1434 
1435 		return create_real_mr(new_pd, umem, mr->ibmr.iova,
1436 				      new_access_flags);
1437 	}
1438 
1439 	/*
1440 	 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1441 	 * but the logic around releasing the umem is different
1442 	 */
1443 	if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1444 		goto recreate;
1445 
1446 	if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1447 	    can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1448 		struct ib_umem *new_umem;
1449 		unsigned long page_size;
1450 
1451 		new_umem = ib_umem_get(&dev->ib_dev, start, length,
1452 				       new_access_flags);
1453 		if (IS_ERR(new_umem))
1454 			return ERR_CAST(new_umem);
1455 
1456 		/* Fast path for PAS change */
1457 		if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1458 					  &page_size)) {
1459 			err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1460 					    new_umem, iova, page_size);
1461 			if (err) {
1462 				ib_umem_release(new_umem);
1463 				return ERR_PTR(err);
1464 			}
1465 			return NULL;
1466 		}
1467 		return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1468 	}
1469 
1470 	/*
1471 	 * Everything else has no state we can preserve, just create a new MR
1472 	 * from scratch
1473 	 */
1474 recreate:
1475 	return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1476 				   new_access_flags, udata);
1477 }
1478 
1479 static int
1480 mlx5_alloc_priv_descs(struct ib_device *device,
1481 		      struct mlx5_ib_mr *mr,
1482 		      int ndescs,
1483 		      int desc_size)
1484 {
1485 	struct mlx5_ib_dev *dev = to_mdev(device);
1486 	struct device *ddev = &dev->mdev->pdev->dev;
1487 	int size = ndescs * desc_size;
1488 	int add_size;
1489 	int ret;
1490 
1491 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1492 
1493 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1494 	if (!mr->descs_alloc)
1495 		return -ENOMEM;
1496 
1497 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1498 
1499 	mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1500 	if (dma_mapping_error(ddev, mr->desc_map)) {
1501 		ret = -ENOMEM;
1502 		goto err;
1503 	}
1504 
1505 	return 0;
1506 err:
1507 	kfree(mr->descs_alloc);
1508 
1509 	return ret;
1510 }
1511 
1512 static void
1513 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1514 {
1515 	if (!mr->umem && mr->descs) {
1516 		struct ib_device *device = mr->ibmr.device;
1517 		int size = mr->max_descs * mr->desc_size;
1518 		struct mlx5_ib_dev *dev = to_mdev(device);
1519 
1520 		dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1521 				 DMA_TO_DEVICE);
1522 		kfree(mr->descs_alloc);
1523 		mr->descs = NULL;
1524 	}
1525 }
1526 
1527 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1528 {
1529 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
1530 	struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1531 	int rc;
1532 
1533 	/*
1534 	 * Any async use of the mr must hold the refcount, once the refcount
1535 	 * goes to zero no other thread, such as ODP page faults, prefetch, any
1536 	 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1537 	 */
1538 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1539 	    refcount_read(&mr->mmkey.usecount) != 0 &&
1540 	    xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1541 		mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1542 
1543 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1544 		xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1545 			   mr->sig, NULL, GFP_KERNEL);
1546 
1547 		if (mr->mtt_mr) {
1548 			rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1549 			if (rc)
1550 				return rc;
1551 			mr->mtt_mr = NULL;
1552 		}
1553 		if (mr->klm_mr) {
1554 			rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1555 			if (rc)
1556 				return rc;
1557 			mr->klm_mr = NULL;
1558 		}
1559 
1560 		if (mlx5_core_destroy_psv(dev->mdev,
1561 					  mr->sig->psv_memory.psv_idx))
1562 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1563 				     mr->sig->psv_memory.psv_idx);
1564 		if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1565 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1566 				     mr->sig->psv_wire.psv_idx);
1567 		kfree(mr->sig);
1568 		mr->sig = NULL;
1569 	}
1570 
1571 	/* Stop DMA */
1572 	if (mr->cache_ent) {
1573 		if (mlx5r_umr_revoke_mr(mr)) {
1574 			spin_lock_irq(&mr->cache_ent->lock);
1575 			mr->cache_ent->total_mrs--;
1576 			spin_unlock_irq(&mr->cache_ent->lock);
1577 			mr->cache_ent = NULL;
1578 		}
1579 	}
1580 	if (!mr->cache_ent) {
1581 		rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1582 		if (rc)
1583 			return rc;
1584 	}
1585 
1586 	if (mr->umem) {
1587 		bool is_odp = is_odp_mr(mr);
1588 
1589 		if (!is_odp)
1590 			atomic_sub(ib_umem_num_pages(mr->umem),
1591 				   &dev->mdev->priv.reg_pages);
1592 		ib_umem_release(mr->umem);
1593 		if (is_odp)
1594 			mlx5_ib_free_odp_mr(mr);
1595 	}
1596 
1597 	if (mr->cache_ent) {
1598 		mlx5_mr_cache_free(dev, mr);
1599 	} else {
1600 		mlx5_free_priv_descs(mr);
1601 		kfree(mr);
1602 	}
1603 	return 0;
1604 }
1605 
1606 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1607 				   int access_mode, int page_shift)
1608 {
1609 	void *mkc;
1610 
1611 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1612 
1613 	/* This is only used from the kernel, so setting the PD is OK. */
1614 	set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1615 	MLX5_SET(mkc, mkc, free, 1);
1616 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1617 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1618 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1619 	MLX5_SET(mkc, mkc, umr_en, 1);
1620 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1621 }
1622 
1623 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1624 				  int ndescs, int desc_size, int page_shift,
1625 				  int access_mode, u32 *in, int inlen)
1626 {
1627 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1628 	int err;
1629 
1630 	mr->access_mode = access_mode;
1631 	mr->desc_size = desc_size;
1632 	mr->max_descs = ndescs;
1633 
1634 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1635 	if (err)
1636 		return err;
1637 
1638 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1639 
1640 	err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1641 	if (err)
1642 		goto err_free_descs;
1643 
1644 	mr->mmkey.type = MLX5_MKEY_MR;
1645 	mr->ibmr.lkey = mr->mmkey.key;
1646 	mr->ibmr.rkey = mr->mmkey.key;
1647 
1648 	return 0;
1649 
1650 err_free_descs:
1651 	mlx5_free_priv_descs(mr);
1652 	return err;
1653 }
1654 
1655 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1656 				u32 max_num_sg, u32 max_num_meta_sg,
1657 				int desc_size, int access_mode)
1658 {
1659 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1660 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1661 	int page_shift = 0;
1662 	struct mlx5_ib_mr *mr;
1663 	u32 *in;
1664 	int err;
1665 
1666 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1667 	if (!mr)
1668 		return ERR_PTR(-ENOMEM);
1669 
1670 	mr->ibmr.pd = pd;
1671 	mr->ibmr.device = pd->device;
1672 
1673 	in = kzalloc(inlen, GFP_KERNEL);
1674 	if (!in) {
1675 		err = -ENOMEM;
1676 		goto err_free;
1677 	}
1678 
1679 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1680 		page_shift = PAGE_SHIFT;
1681 
1682 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1683 				     access_mode, in, inlen);
1684 	if (err)
1685 		goto err_free_in;
1686 
1687 	mr->umem = NULL;
1688 	kfree(in);
1689 
1690 	return mr;
1691 
1692 err_free_in:
1693 	kfree(in);
1694 err_free:
1695 	kfree(mr);
1696 	return ERR_PTR(err);
1697 }
1698 
1699 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1700 				    int ndescs, u32 *in, int inlen)
1701 {
1702 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1703 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1704 				      inlen);
1705 }
1706 
1707 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1708 				    int ndescs, u32 *in, int inlen)
1709 {
1710 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1711 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1712 }
1713 
1714 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1715 				      int max_num_sg, int max_num_meta_sg,
1716 				      u32 *in, int inlen)
1717 {
1718 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1719 	u32 psv_index[2];
1720 	void *mkc;
1721 	int err;
1722 
1723 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1724 	if (!mr->sig)
1725 		return -ENOMEM;
1726 
1727 	/* create mem & wire PSVs */
1728 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1729 	if (err)
1730 		goto err_free_sig;
1731 
1732 	mr->sig->psv_memory.psv_idx = psv_index[0];
1733 	mr->sig->psv_wire.psv_idx = psv_index[1];
1734 
1735 	mr->sig->sig_status_checked = true;
1736 	mr->sig->sig_err_exists = false;
1737 	/* Next UMR, Arm SIGERR */
1738 	++mr->sig->sigerr_count;
1739 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1740 					 sizeof(struct mlx5_klm),
1741 					 MLX5_MKC_ACCESS_MODE_KLMS);
1742 	if (IS_ERR(mr->klm_mr)) {
1743 		err = PTR_ERR(mr->klm_mr);
1744 		goto err_destroy_psv;
1745 	}
1746 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1747 					 sizeof(struct mlx5_mtt),
1748 					 MLX5_MKC_ACCESS_MODE_MTT);
1749 	if (IS_ERR(mr->mtt_mr)) {
1750 		err = PTR_ERR(mr->mtt_mr);
1751 		goto err_free_klm_mr;
1752 	}
1753 
1754 	/* Set bsf descriptors for mkey */
1755 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1756 	MLX5_SET(mkc, mkc, bsf_en, 1);
1757 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1758 
1759 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1760 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1761 	if (err)
1762 		goto err_free_mtt_mr;
1763 
1764 	err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1765 			      mr->sig, GFP_KERNEL));
1766 	if (err)
1767 		goto err_free_descs;
1768 	return 0;
1769 
1770 err_free_descs:
1771 	destroy_mkey(dev, mr);
1772 	mlx5_free_priv_descs(mr);
1773 err_free_mtt_mr:
1774 	mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1775 	mr->mtt_mr = NULL;
1776 err_free_klm_mr:
1777 	mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1778 	mr->klm_mr = NULL;
1779 err_destroy_psv:
1780 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1781 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1782 			     mr->sig->psv_memory.psv_idx);
1783 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1784 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1785 			     mr->sig->psv_wire.psv_idx);
1786 err_free_sig:
1787 	kfree(mr->sig);
1788 
1789 	return err;
1790 }
1791 
1792 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1793 					enum ib_mr_type mr_type, u32 max_num_sg,
1794 					u32 max_num_meta_sg)
1795 {
1796 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1797 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1798 	int ndescs = ALIGN(max_num_sg, 4);
1799 	struct mlx5_ib_mr *mr;
1800 	u32 *in;
1801 	int err;
1802 
1803 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1804 	if (!mr)
1805 		return ERR_PTR(-ENOMEM);
1806 
1807 	in = kzalloc(inlen, GFP_KERNEL);
1808 	if (!in) {
1809 		err = -ENOMEM;
1810 		goto err_free;
1811 	}
1812 
1813 	mr->ibmr.device = pd->device;
1814 	mr->umem = NULL;
1815 
1816 	switch (mr_type) {
1817 	case IB_MR_TYPE_MEM_REG:
1818 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1819 		break;
1820 	case IB_MR_TYPE_SG_GAPS:
1821 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1822 		break;
1823 	case IB_MR_TYPE_INTEGRITY:
1824 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1825 						 max_num_meta_sg, in, inlen);
1826 		break;
1827 	default:
1828 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1829 		err = -EINVAL;
1830 	}
1831 
1832 	if (err)
1833 		goto err_free_in;
1834 
1835 	kfree(in);
1836 
1837 	return &mr->ibmr;
1838 
1839 err_free_in:
1840 	kfree(in);
1841 err_free:
1842 	kfree(mr);
1843 	return ERR_PTR(err);
1844 }
1845 
1846 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1847 			       u32 max_num_sg)
1848 {
1849 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1850 }
1851 
1852 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1853 					 u32 max_num_sg, u32 max_num_meta_sg)
1854 {
1855 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1856 				  max_num_meta_sg);
1857 }
1858 
1859 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
1860 {
1861 	struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
1862 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1863 	struct mlx5_ib_mw *mw = to_mmw(ibmw);
1864 	unsigned int ndescs;
1865 	u32 *in = NULL;
1866 	void *mkc;
1867 	int err;
1868 	struct mlx5_ib_alloc_mw req = {};
1869 	struct {
1870 		__u32	comp_mask;
1871 		__u32	response_length;
1872 	} resp = {};
1873 
1874 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1875 	if (err)
1876 		return err;
1877 
1878 	if (req.comp_mask || req.reserved1 || req.reserved2)
1879 		return -EOPNOTSUPP;
1880 
1881 	if (udata->inlen > sizeof(req) &&
1882 	    !ib_is_udata_cleared(udata, sizeof(req),
1883 				 udata->inlen - sizeof(req)))
1884 		return -EOPNOTSUPP;
1885 
1886 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1887 
1888 	in = kzalloc(inlen, GFP_KERNEL);
1889 	if (!in) {
1890 		err = -ENOMEM;
1891 		goto free;
1892 	}
1893 
1894 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1895 
1896 	MLX5_SET(mkc, mkc, free, 1);
1897 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1898 	MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
1899 	MLX5_SET(mkc, mkc, umr_en, 1);
1900 	MLX5_SET(mkc, mkc, lr, 1);
1901 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1902 	MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
1903 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1904 
1905 	err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
1906 	if (err)
1907 		goto free;
1908 
1909 	mw->mmkey.type = MLX5_MKEY_MW;
1910 	ibmw->rkey = mw->mmkey.key;
1911 	mw->mmkey.ndescs = ndescs;
1912 
1913 	resp.response_length =
1914 		min(offsetofend(typeof(resp), response_length), udata->outlen);
1915 	if (resp.response_length) {
1916 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
1917 		if (err)
1918 			goto free_mkey;
1919 	}
1920 
1921 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1922 		err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
1923 		if (err)
1924 			goto free_mkey;
1925 	}
1926 
1927 	kfree(in);
1928 	return 0;
1929 
1930 free_mkey:
1931 	mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
1932 free:
1933 	kfree(in);
1934 	return err;
1935 }
1936 
1937 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1938 {
1939 	struct mlx5_ib_dev *dev = to_mdev(mw->device);
1940 	struct mlx5_ib_mw *mmw = to_mmw(mw);
1941 
1942 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1943 	    xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
1944 		/*
1945 		 * pagefault_single_data_segment() may be accessing mmw
1946 		 * if the user bound an ODP MR to this MW.
1947 		 */
1948 		mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
1949 
1950 	return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
1951 }
1952 
1953 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1954 			    struct ib_mr_status *mr_status)
1955 {
1956 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1957 	int ret = 0;
1958 
1959 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
1960 		pr_err("Invalid status check mask\n");
1961 		ret = -EINVAL;
1962 		goto done;
1963 	}
1964 
1965 	mr_status->fail_status = 0;
1966 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
1967 		if (!mmr->sig) {
1968 			ret = -EINVAL;
1969 			pr_err("signature status check requested on a non-signature enabled MR\n");
1970 			goto done;
1971 		}
1972 
1973 		mmr->sig->sig_status_checked = true;
1974 		if (!mmr->sig->sig_err_exists)
1975 			goto done;
1976 
1977 		if (ibmr->lkey == mmr->sig->err_item.key)
1978 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
1979 			       sizeof(mr_status->sig_err));
1980 		else {
1981 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
1982 			mr_status->sig_err.sig_err_offset = 0;
1983 			mr_status->sig_err.key = mmr->sig->err_item.key;
1984 		}
1985 
1986 		mmr->sig->sig_err_exists = false;
1987 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
1988 	}
1989 
1990 done:
1991 	return ret;
1992 }
1993 
1994 static int
1995 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
1996 			int data_sg_nents, unsigned int *data_sg_offset,
1997 			struct scatterlist *meta_sg, int meta_sg_nents,
1998 			unsigned int *meta_sg_offset)
1999 {
2000 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2001 	unsigned int sg_offset = 0;
2002 	int n = 0;
2003 
2004 	mr->meta_length = 0;
2005 	if (data_sg_nents == 1) {
2006 		n++;
2007 		mr->mmkey.ndescs = 1;
2008 		if (data_sg_offset)
2009 			sg_offset = *data_sg_offset;
2010 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2011 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2012 		if (meta_sg_nents == 1) {
2013 			n++;
2014 			mr->meta_ndescs = 1;
2015 			if (meta_sg_offset)
2016 				sg_offset = *meta_sg_offset;
2017 			else
2018 				sg_offset = 0;
2019 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2020 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2021 		}
2022 		ibmr->length = mr->data_length + mr->meta_length;
2023 	}
2024 
2025 	return n;
2026 }
2027 
2028 static int
2029 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2030 		   struct scatterlist *sgl,
2031 		   unsigned short sg_nents,
2032 		   unsigned int *sg_offset_p,
2033 		   struct scatterlist *meta_sgl,
2034 		   unsigned short meta_sg_nents,
2035 		   unsigned int *meta_sg_offset_p)
2036 {
2037 	struct scatterlist *sg = sgl;
2038 	struct mlx5_klm *klms = mr->descs;
2039 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2040 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2041 	int i, j = 0;
2042 
2043 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2044 	mr->ibmr.length = 0;
2045 
2046 	for_each_sg(sgl, sg, sg_nents, i) {
2047 		if (unlikely(i >= mr->max_descs))
2048 			break;
2049 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2050 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2051 		klms[i].key = cpu_to_be32(lkey);
2052 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2053 
2054 		sg_offset = 0;
2055 	}
2056 
2057 	if (sg_offset_p)
2058 		*sg_offset_p = sg_offset;
2059 
2060 	mr->mmkey.ndescs = i;
2061 	mr->data_length = mr->ibmr.length;
2062 
2063 	if (meta_sg_nents) {
2064 		sg = meta_sgl;
2065 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2066 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2067 			if (unlikely(i + j >= mr->max_descs))
2068 				break;
2069 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2070 						     sg_offset);
2071 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2072 							 sg_offset);
2073 			klms[i + j].key = cpu_to_be32(lkey);
2074 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2075 
2076 			sg_offset = 0;
2077 		}
2078 		if (meta_sg_offset_p)
2079 			*meta_sg_offset_p = sg_offset;
2080 
2081 		mr->meta_ndescs = j;
2082 		mr->meta_length = mr->ibmr.length - mr->data_length;
2083 	}
2084 
2085 	return i + j;
2086 }
2087 
2088 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2089 {
2090 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2091 	__be64 *descs;
2092 
2093 	if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2094 		return -ENOMEM;
2095 
2096 	descs = mr->descs;
2097 	descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2098 
2099 	return 0;
2100 }
2101 
2102 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2103 {
2104 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2105 	__be64 *descs;
2106 
2107 	if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2108 		return -ENOMEM;
2109 
2110 	descs = mr->descs;
2111 	descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2112 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2113 
2114 	return 0;
2115 }
2116 
2117 static int
2118 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2119 			 int data_sg_nents, unsigned int *data_sg_offset,
2120 			 struct scatterlist *meta_sg, int meta_sg_nents,
2121 			 unsigned int *meta_sg_offset)
2122 {
2123 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2124 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2125 	int n;
2126 
2127 	pi_mr->mmkey.ndescs = 0;
2128 	pi_mr->meta_ndescs = 0;
2129 	pi_mr->meta_length = 0;
2130 
2131 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2132 				   pi_mr->desc_size * pi_mr->max_descs,
2133 				   DMA_TO_DEVICE);
2134 
2135 	pi_mr->ibmr.page_size = ibmr->page_size;
2136 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2137 			   mlx5_set_page);
2138 	if (n != data_sg_nents)
2139 		return n;
2140 
2141 	pi_mr->data_iova = pi_mr->ibmr.iova;
2142 	pi_mr->data_length = pi_mr->ibmr.length;
2143 	pi_mr->ibmr.length = pi_mr->data_length;
2144 	ibmr->length = pi_mr->data_length;
2145 
2146 	if (meta_sg_nents) {
2147 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2148 		u64 iova = pi_mr->data_iova;
2149 
2150 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2151 				    meta_sg_offset, mlx5_set_page_pi);
2152 
2153 		pi_mr->meta_length = pi_mr->ibmr.length;
2154 		/*
2155 		 * PI address for the HW is the offset of the metadata address
2156 		 * relative to the first data page address.
2157 		 * It equals to first data page address + size of data pages +
2158 		 * metadata offset at the first metadata page
2159 		 */
2160 		pi_mr->pi_iova = (iova & page_mask) +
2161 				 pi_mr->mmkey.ndescs * ibmr->page_size +
2162 				 (pi_mr->ibmr.iova & ~page_mask);
2163 		/*
2164 		 * In order to use one MTT MR for data and metadata, we register
2165 		 * also the gaps between the end of the data and the start of
2166 		 * the metadata (the sig MR will verify that the HW will access
2167 		 * to right addresses). This mapping is safe because we use
2168 		 * internal mkey for the registration.
2169 		 */
2170 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2171 		pi_mr->ibmr.iova = iova;
2172 		ibmr->length += pi_mr->meta_length;
2173 	}
2174 
2175 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2176 				      pi_mr->desc_size * pi_mr->max_descs,
2177 				      DMA_TO_DEVICE);
2178 
2179 	return n;
2180 }
2181 
2182 static int
2183 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2184 			 int data_sg_nents, unsigned int *data_sg_offset,
2185 			 struct scatterlist *meta_sg, int meta_sg_nents,
2186 			 unsigned int *meta_sg_offset)
2187 {
2188 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2189 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2190 	int n;
2191 
2192 	pi_mr->mmkey.ndescs = 0;
2193 	pi_mr->meta_ndescs = 0;
2194 	pi_mr->meta_length = 0;
2195 
2196 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2197 				   pi_mr->desc_size * pi_mr->max_descs,
2198 				   DMA_TO_DEVICE);
2199 
2200 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2201 			       meta_sg, meta_sg_nents, meta_sg_offset);
2202 
2203 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2204 				      pi_mr->desc_size * pi_mr->max_descs,
2205 				      DMA_TO_DEVICE);
2206 
2207 	/* This is zero-based memory region */
2208 	pi_mr->data_iova = 0;
2209 	pi_mr->ibmr.iova = 0;
2210 	pi_mr->pi_iova = pi_mr->data_length;
2211 	ibmr->length = pi_mr->ibmr.length;
2212 
2213 	return n;
2214 }
2215 
2216 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2217 			 int data_sg_nents, unsigned int *data_sg_offset,
2218 			 struct scatterlist *meta_sg, int meta_sg_nents,
2219 			 unsigned int *meta_sg_offset)
2220 {
2221 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2222 	struct mlx5_ib_mr *pi_mr = NULL;
2223 	int n;
2224 
2225 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2226 
2227 	mr->mmkey.ndescs = 0;
2228 	mr->data_length = 0;
2229 	mr->data_iova = 0;
2230 	mr->meta_ndescs = 0;
2231 	mr->pi_iova = 0;
2232 	/*
2233 	 * As a performance optimization, if possible, there is no need to
2234 	 * perform UMR operation to register the data/metadata buffers.
2235 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2236 	 * Fallback to UMR only in case of a failure.
2237 	 */
2238 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2239 				    data_sg_offset, meta_sg, meta_sg_nents,
2240 				    meta_sg_offset);
2241 	if (n == data_sg_nents + meta_sg_nents)
2242 		goto out;
2243 	/*
2244 	 * As a performance optimization, if possible, there is no need to map
2245 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2246 	 * descriptors and fallback to KLM only in case of a failure.
2247 	 * It's more efficient for the HW to work with MTT descriptors
2248 	 * (especially in high load).
2249 	 * Use KLM (indirect access) only if it's mandatory.
2250 	 */
2251 	pi_mr = mr->mtt_mr;
2252 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2253 				     data_sg_offset, meta_sg, meta_sg_nents,
2254 				     meta_sg_offset);
2255 	if (n == data_sg_nents + meta_sg_nents)
2256 		goto out;
2257 
2258 	pi_mr = mr->klm_mr;
2259 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2260 				     data_sg_offset, meta_sg, meta_sg_nents,
2261 				     meta_sg_offset);
2262 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2263 		return -ENOMEM;
2264 
2265 out:
2266 	/* This is zero-based memory region */
2267 	ibmr->iova = 0;
2268 	mr->pi_mr = pi_mr;
2269 	if (pi_mr)
2270 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2271 	else
2272 		ibmr->sig_attrs->meta_length = mr->meta_length;
2273 
2274 	return 0;
2275 }
2276 
2277 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2278 		      unsigned int *sg_offset)
2279 {
2280 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2281 	int n;
2282 
2283 	mr->mmkey.ndescs = 0;
2284 
2285 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2286 				   mr->desc_size * mr->max_descs,
2287 				   DMA_TO_DEVICE);
2288 
2289 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2290 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2291 				       NULL);
2292 	else
2293 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2294 				mlx5_set_page);
2295 
2296 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2297 				      mr->desc_size * mr->max_descs,
2298 				      DMA_TO_DEVICE);
2299 
2300 	return n;
2301 }
2302