xref: /linux/drivers/infiniband/hw/mlx5/mr.c (revision 1517d90cfafe0f95fd7863d04e1596f7beb7dfa8)
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 
34 #include <linux/kref.h>
35 #include <linux/random.h>
36 #include <linux/debugfs.h>
37 #include <linux/export.h>
38 #include <linux/delay.h>
39 #include <rdma/ib_umem.h>
40 #include <rdma/ib_umem_odp.h>
41 #include <rdma/ib_verbs.h>
42 #include "mlx5_ib.h"
43 
44 enum {
45 	MAX_PENDING_REG_MR = 8,
46 };
47 
48 #define MLX5_UMR_ALIGN 2048
49 
50 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
51 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
52 static int mr_cache_max_order(struct mlx5_ib_dev *dev);
53 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr);
54 
55 static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev)
56 {
57 	return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled);
58 }
59 
60 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
61 {
62 	int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
63 
64 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
65 		/* Wait until all page fault handlers using the mr complete. */
66 		synchronize_srcu(&dev->mr_srcu);
67 
68 	return err;
69 }
70 
71 static int order2idx(struct mlx5_ib_dev *dev, int order)
72 {
73 	struct mlx5_mr_cache *cache = &dev->cache;
74 
75 	if (order < cache->ent[0].order)
76 		return 0;
77 	else
78 		return order - cache->ent[0].order;
79 }
80 
81 static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length)
82 {
83 	return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >=
84 		length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1));
85 }
86 
87 static void update_odp_mr(struct mlx5_ib_mr *mr)
88 {
89 	if (is_odp_mr(mr)) {
90 		/*
91 		 * This barrier prevents the compiler from moving the
92 		 * setting of umem->odp_data->private to point to our
93 		 * MR, before reg_umr finished, to ensure that the MR
94 		 * initialization have finished before starting to
95 		 * handle invalidations.
96 		 */
97 		smp_wmb();
98 		to_ib_umem_odp(mr->umem)->private = mr;
99 		/*
100 		 * Make sure we will see the new
101 		 * umem->odp_data->private value in the invalidation
102 		 * routines, before we can get page faults on the
103 		 * MR. Page faults can happen once we put the MR in
104 		 * the tree, below this line. Without the barrier,
105 		 * there can be a fault handling and an invalidation
106 		 * before umem->odp_data->private == mr is visible to
107 		 * the invalidation handler.
108 		 */
109 		smp_wmb();
110 	}
111 }
112 
113 static void reg_mr_callback(int status, struct mlx5_async_work *context)
114 {
115 	struct mlx5_ib_mr *mr =
116 		container_of(context, struct mlx5_ib_mr, cb_work);
117 	struct mlx5_ib_dev *dev = mr->dev;
118 	struct mlx5_mr_cache *cache = &dev->cache;
119 	int c = order2idx(dev, mr->order);
120 	struct mlx5_cache_ent *ent = &cache->ent[c];
121 	u8 key;
122 	unsigned long flags;
123 	struct xarray *mkeys = &dev->mdev->priv.mkey_table;
124 	int err;
125 
126 	spin_lock_irqsave(&ent->lock, flags);
127 	ent->pending--;
128 	spin_unlock_irqrestore(&ent->lock, flags);
129 	if (status) {
130 		mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
131 		kfree(mr);
132 		dev->fill_delay = 1;
133 		mod_timer(&dev->delay_timer, jiffies + HZ);
134 		return;
135 	}
136 
137 	mr->mmkey.type = MLX5_MKEY_MR;
138 	spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags);
139 	key = dev->mdev->priv.mkey_key++;
140 	spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags);
141 	mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key;
142 
143 	cache->last_add = jiffies;
144 
145 	spin_lock_irqsave(&ent->lock, flags);
146 	list_add_tail(&mr->list, &ent->head);
147 	ent->cur++;
148 	ent->size++;
149 	spin_unlock_irqrestore(&ent->lock, flags);
150 
151 	xa_lock_irqsave(mkeys, flags);
152 	err = xa_err(__xa_store(mkeys, mlx5_base_mkey(mr->mmkey.key),
153 				&mr->mmkey, GFP_ATOMIC));
154 	xa_unlock_irqrestore(mkeys, flags);
155 	if (err)
156 		pr_err("Error inserting to mkey tree. 0x%x\n", -err);
157 
158 	if (!completion_done(&ent->compl))
159 		complete(&ent->compl);
160 }
161 
162 static int add_keys(struct mlx5_ib_dev *dev, int c, int num)
163 {
164 	struct mlx5_mr_cache *cache = &dev->cache;
165 	struct mlx5_cache_ent *ent = &cache->ent[c];
166 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
167 	struct mlx5_ib_mr *mr;
168 	void *mkc;
169 	u32 *in;
170 	int err = 0;
171 	int i;
172 
173 	in = kzalloc(inlen, GFP_KERNEL);
174 	if (!in)
175 		return -ENOMEM;
176 
177 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
178 	for (i = 0; i < num; i++) {
179 		if (ent->pending >= MAX_PENDING_REG_MR) {
180 			err = -EAGAIN;
181 			break;
182 		}
183 
184 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
185 		if (!mr) {
186 			err = -ENOMEM;
187 			break;
188 		}
189 		mr->order = ent->order;
190 		mr->allocated_from_cache = 1;
191 		mr->dev = dev;
192 
193 		MLX5_SET(mkc, mkc, free, 1);
194 		MLX5_SET(mkc, mkc, umr_en, 1);
195 		MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
196 		MLX5_SET(mkc, mkc, access_mode_4_2,
197 			 (ent->access_mode >> 2) & 0x7);
198 
199 		MLX5_SET(mkc, mkc, qpn, 0xffffff);
200 		MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt);
201 		MLX5_SET(mkc, mkc, log_page_size, ent->page);
202 
203 		spin_lock_irq(&ent->lock);
204 		ent->pending++;
205 		spin_unlock_irq(&ent->lock);
206 		err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey,
207 					       &dev->async_ctx, in, inlen,
208 					       mr->out, sizeof(mr->out),
209 					       reg_mr_callback, &mr->cb_work);
210 		if (err) {
211 			spin_lock_irq(&ent->lock);
212 			ent->pending--;
213 			spin_unlock_irq(&ent->lock);
214 			mlx5_ib_warn(dev, "create mkey failed %d\n", err);
215 			kfree(mr);
216 			break;
217 		}
218 	}
219 
220 	kfree(in);
221 	return err;
222 }
223 
224 static void remove_keys(struct mlx5_ib_dev *dev, int c, int num)
225 {
226 	struct mlx5_mr_cache *cache = &dev->cache;
227 	struct mlx5_cache_ent *ent = &cache->ent[c];
228 	struct mlx5_ib_mr *tmp_mr;
229 	struct mlx5_ib_mr *mr;
230 	LIST_HEAD(del_list);
231 	int i;
232 
233 	for (i = 0; i < num; i++) {
234 		spin_lock_irq(&ent->lock);
235 		if (list_empty(&ent->head)) {
236 			spin_unlock_irq(&ent->lock);
237 			break;
238 		}
239 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
240 		list_move(&mr->list, &del_list);
241 		ent->cur--;
242 		ent->size--;
243 		spin_unlock_irq(&ent->lock);
244 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
245 	}
246 
247 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
248 		synchronize_srcu(&dev->mr_srcu);
249 
250 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
251 		list_del(&mr->list);
252 		kfree(mr);
253 	}
254 }
255 
256 static ssize_t size_write(struct file *filp, const char __user *buf,
257 			  size_t count, loff_t *pos)
258 {
259 	struct mlx5_cache_ent *ent = filp->private_data;
260 	struct mlx5_ib_dev *dev = ent->dev;
261 	char lbuf[20] = {0};
262 	u32 var;
263 	int err;
264 	int c;
265 
266 	count = min(count, sizeof(lbuf) - 1);
267 	if (copy_from_user(lbuf, buf, count))
268 		return -EFAULT;
269 
270 	c = order2idx(dev, ent->order);
271 
272 	if (sscanf(lbuf, "%u", &var) != 1)
273 		return -EINVAL;
274 
275 	if (var < ent->limit)
276 		return -EINVAL;
277 
278 	if (var > ent->size) {
279 		do {
280 			err = add_keys(dev, c, var - ent->size);
281 			if (err && err != -EAGAIN)
282 				return err;
283 
284 			usleep_range(3000, 5000);
285 		} while (err);
286 	} else if (var < ent->size) {
287 		remove_keys(dev, c, ent->size - var);
288 	}
289 
290 	return count;
291 }
292 
293 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
294 			 loff_t *pos)
295 {
296 	struct mlx5_cache_ent *ent = filp->private_data;
297 	char lbuf[20];
298 	int err;
299 
300 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size);
301 	if (err < 0)
302 		return err;
303 
304 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
305 }
306 
307 static const struct file_operations size_fops = {
308 	.owner	= THIS_MODULE,
309 	.open	= simple_open,
310 	.write	= size_write,
311 	.read	= size_read,
312 };
313 
314 static ssize_t limit_write(struct file *filp, const char __user *buf,
315 			   size_t count, loff_t *pos)
316 {
317 	struct mlx5_cache_ent *ent = filp->private_data;
318 	struct mlx5_ib_dev *dev = ent->dev;
319 	char lbuf[20] = {0};
320 	u32 var;
321 	int err;
322 	int c;
323 
324 	count = min(count, sizeof(lbuf) - 1);
325 	if (copy_from_user(lbuf, buf, count))
326 		return -EFAULT;
327 
328 	c = order2idx(dev, ent->order);
329 
330 	if (sscanf(lbuf, "%u", &var) != 1)
331 		return -EINVAL;
332 
333 	if (var > ent->size)
334 		return -EINVAL;
335 
336 	ent->limit = var;
337 
338 	if (ent->cur < ent->limit) {
339 		err = add_keys(dev, c, 2 * ent->limit - ent->cur);
340 		if (err)
341 			return err;
342 	}
343 
344 	return count;
345 }
346 
347 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
348 			  loff_t *pos)
349 {
350 	struct mlx5_cache_ent *ent = filp->private_data;
351 	char lbuf[20];
352 	int err;
353 
354 	err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
355 	if (err < 0)
356 		return err;
357 
358 	return simple_read_from_buffer(buf, count, pos, lbuf, err);
359 }
360 
361 static const struct file_operations limit_fops = {
362 	.owner	= THIS_MODULE,
363 	.open	= simple_open,
364 	.write	= limit_write,
365 	.read	= limit_read,
366 };
367 
368 static int someone_adding(struct mlx5_mr_cache *cache)
369 {
370 	int i;
371 
372 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
373 		if (cache->ent[i].cur < cache->ent[i].limit)
374 			return 1;
375 	}
376 
377 	return 0;
378 }
379 
380 static void __cache_work_func(struct mlx5_cache_ent *ent)
381 {
382 	struct mlx5_ib_dev *dev = ent->dev;
383 	struct mlx5_mr_cache *cache = &dev->cache;
384 	int i = order2idx(dev, ent->order);
385 	int err;
386 
387 	if (cache->stopped)
388 		return;
389 
390 	ent = &dev->cache.ent[i];
391 	if (ent->cur < 2 * ent->limit && !dev->fill_delay) {
392 		err = add_keys(dev, i, 1);
393 		if (ent->cur < 2 * ent->limit) {
394 			if (err == -EAGAIN) {
395 				mlx5_ib_dbg(dev, "returned eagain, order %d\n",
396 					    i + 2);
397 				queue_delayed_work(cache->wq, &ent->dwork,
398 						   msecs_to_jiffies(3));
399 			} else if (err) {
400 				mlx5_ib_warn(dev, "command failed order %d, err %d\n",
401 					     i + 2, err);
402 				queue_delayed_work(cache->wq, &ent->dwork,
403 						   msecs_to_jiffies(1000));
404 			} else {
405 				queue_work(cache->wq, &ent->work);
406 			}
407 		}
408 	} else if (ent->cur > 2 * ent->limit) {
409 		/*
410 		 * The remove_keys() logic is performed as garbage collection
411 		 * task. Such task is intended to be run when no other active
412 		 * processes are running.
413 		 *
414 		 * The need_resched() will return TRUE if there are user tasks
415 		 * to be activated in near future.
416 		 *
417 		 * In such case, we don't execute remove_keys() and postpone
418 		 * the garbage collection work to try to run in next cycle,
419 		 * in order to free CPU resources to other tasks.
420 		 */
421 		if (!need_resched() && !someone_adding(cache) &&
422 		    time_after(jiffies, cache->last_add + 300 * HZ)) {
423 			remove_keys(dev, i, 1);
424 			if (ent->cur > ent->limit)
425 				queue_work(cache->wq, &ent->work);
426 		} else {
427 			queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
428 		}
429 	}
430 }
431 
432 static void delayed_cache_work_func(struct work_struct *work)
433 {
434 	struct mlx5_cache_ent *ent;
435 
436 	ent = container_of(work, struct mlx5_cache_ent, dwork.work);
437 	__cache_work_func(ent);
438 }
439 
440 static void cache_work_func(struct work_struct *work)
441 {
442 	struct mlx5_cache_ent *ent;
443 
444 	ent = container_of(work, struct mlx5_cache_ent, work);
445 	__cache_work_func(ent);
446 }
447 
448 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry)
449 {
450 	struct mlx5_mr_cache *cache = &dev->cache;
451 	struct mlx5_cache_ent *ent;
452 	struct mlx5_ib_mr *mr;
453 	int err;
454 
455 	if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) {
456 		mlx5_ib_err(dev, "cache entry %d is out of range\n", entry);
457 		return NULL;
458 	}
459 
460 	ent = &cache->ent[entry];
461 	while (1) {
462 		spin_lock_irq(&ent->lock);
463 		if (list_empty(&ent->head)) {
464 			spin_unlock_irq(&ent->lock);
465 
466 			err = add_keys(dev, entry, 1);
467 			if (err && err != -EAGAIN)
468 				return ERR_PTR(err);
469 
470 			wait_for_completion(&ent->compl);
471 		} else {
472 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
473 					      list);
474 			list_del(&mr->list);
475 			ent->cur--;
476 			spin_unlock_irq(&ent->lock);
477 			if (ent->cur < ent->limit)
478 				queue_work(cache->wq, &ent->work);
479 			return mr;
480 		}
481 	}
482 }
483 
484 static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order)
485 {
486 	struct mlx5_mr_cache *cache = &dev->cache;
487 	struct mlx5_ib_mr *mr = NULL;
488 	struct mlx5_cache_ent *ent;
489 	int last_umr_cache_entry;
490 	int c;
491 	int i;
492 
493 	c = order2idx(dev, order);
494 	last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev));
495 	if (c < 0 || c > last_umr_cache_entry) {
496 		mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c);
497 		return NULL;
498 	}
499 
500 	for (i = c; i <= last_umr_cache_entry; i++) {
501 		ent = &cache->ent[i];
502 
503 		mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i);
504 
505 		spin_lock_irq(&ent->lock);
506 		if (!list_empty(&ent->head)) {
507 			mr = list_first_entry(&ent->head, struct mlx5_ib_mr,
508 					      list);
509 			list_del(&mr->list);
510 			ent->cur--;
511 			spin_unlock_irq(&ent->lock);
512 			if (ent->cur < ent->limit)
513 				queue_work(cache->wq, &ent->work);
514 			break;
515 		}
516 		spin_unlock_irq(&ent->lock);
517 
518 		queue_work(cache->wq, &ent->work);
519 	}
520 
521 	if (!mr)
522 		cache->ent[c].miss++;
523 
524 	return mr;
525 }
526 
527 void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
528 {
529 	struct mlx5_mr_cache *cache = &dev->cache;
530 	struct mlx5_cache_ent *ent;
531 	int shrink = 0;
532 	int c;
533 
534 	if (!mr->allocated_from_cache)
535 		return;
536 
537 	c = order2idx(dev, mr->order);
538 	WARN_ON(c < 0 || c >= MAX_MR_CACHE_ENTRIES);
539 
540 	if (unreg_umr(dev, mr)) {
541 		mr->allocated_from_cache = false;
542 		destroy_mkey(dev, mr);
543 		ent = &cache->ent[c];
544 		if (ent->cur < ent->limit)
545 			queue_work(cache->wq, &ent->work);
546 		return;
547 	}
548 
549 	ent = &cache->ent[c];
550 	spin_lock_irq(&ent->lock);
551 	list_add_tail(&mr->list, &ent->head);
552 	ent->cur++;
553 	if (ent->cur > 2 * ent->limit)
554 		shrink = 1;
555 	spin_unlock_irq(&ent->lock);
556 
557 	if (shrink)
558 		queue_work(cache->wq, &ent->work);
559 }
560 
561 static void clean_keys(struct mlx5_ib_dev *dev, int c)
562 {
563 	struct mlx5_mr_cache *cache = &dev->cache;
564 	struct mlx5_cache_ent *ent = &cache->ent[c];
565 	struct mlx5_ib_mr *tmp_mr;
566 	struct mlx5_ib_mr *mr;
567 	LIST_HEAD(del_list);
568 
569 	cancel_delayed_work(&ent->dwork);
570 	while (1) {
571 		spin_lock_irq(&ent->lock);
572 		if (list_empty(&ent->head)) {
573 			spin_unlock_irq(&ent->lock);
574 			break;
575 		}
576 		mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list);
577 		list_move(&mr->list, &del_list);
578 		ent->cur--;
579 		ent->size--;
580 		spin_unlock_irq(&ent->lock);
581 		mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey);
582 	}
583 
584 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
585 	synchronize_srcu(&dev->mr_srcu);
586 #endif
587 
588 	list_for_each_entry_safe(mr, tmp_mr, &del_list, list) {
589 		list_del(&mr->list);
590 		kfree(mr);
591 	}
592 }
593 
594 static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
595 {
596 	if (!mlx5_debugfs_root || dev->is_rep)
597 		return;
598 
599 	debugfs_remove_recursive(dev->cache.root);
600 	dev->cache.root = NULL;
601 }
602 
603 static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev)
604 {
605 	struct mlx5_mr_cache *cache = &dev->cache;
606 	struct mlx5_cache_ent *ent;
607 	struct dentry *dir;
608 	int i;
609 
610 	if (!mlx5_debugfs_root || dev->is_rep)
611 		return;
612 
613 	cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root);
614 
615 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
616 		ent = &cache->ent[i];
617 		sprintf(ent->name, "%d", ent->order);
618 		dir = debugfs_create_dir(ent->name, cache->root);
619 		debugfs_create_file("size", 0600, dir, ent, &size_fops);
620 		debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
621 		debugfs_create_u32("cur", 0400, dir, &ent->cur);
622 		debugfs_create_u32("miss", 0600, dir, &ent->miss);
623 	}
624 }
625 
626 static void delay_time_func(struct timer_list *t)
627 {
628 	struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
629 
630 	dev->fill_delay = 0;
631 }
632 
633 int mlx5_mr_cache_init(struct mlx5_ib_dev *dev)
634 {
635 	struct mlx5_mr_cache *cache = &dev->cache;
636 	struct mlx5_cache_ent *ent;
637 	int i;
638 
639 	mutex_init(&dev->slow_path_mutex);
640 	cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
641 	if (!cache->wq) {
642 		mlx5_ib_warn(dev, "failed to create work queue\n");
643 		return -ENOMEM;
644 	}
645 
646 	mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
647 	timer_setup(&dev->delay_timer, delay_time_func, 0);
648 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) {
649 		ent = &cache->ent[i];
650 		INIT_LIST_HEAD(&ent->head);
651 		spin_lock_init(&ent->lock);
652 		ent->order = i + 2;
653 		ent->dev = dev;
654 		ent->limit = 0;
655 
656 		init_completion(&ent->compl);
657 		INIT_WORK(&ent->work, cache_work_func);
658 		INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
659 
660 		if (i > MR_CACHE_LAST_STD_ENTRY) {
661 			mlx5_odp_init_mr_cache_entry(ent);
662 			continue;
663 		}
664 
665 		if (ent->order > mr_cache_max_order(dev))
666 			continue;
667 
668 		ent->page = PAGE_SHIFT;
669 		ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) /
670 			   MLX5_IB_UMR_OCTOWORD;
671 		ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
672 		if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) &&
673 		    !dev->is_rep &&
674 		    mlx5_core_is_pf(dev->mdev))
675 			ent->limit = dev->mdev->profile->mr_cache[i].limit;
676 		else
677 			ent->limit = 0;
678 		queue_work(cache->wq, &ent->work);
679 	}
680 
681 	mlx5_mr_cache_debugfs_init(dev);
682 
683 	return 0;
684 }
685 
686 int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev)
687 {
688 	int i;
689 
690 	if (!dev->cache.wq)
691 		return 0;
692 
693 	dev->cache.stopped = 1;
694 	flush_workqueue(dev->cache.wq);
695 
696 	mlx5_mr_cache_debugfs_cleanup(dev);
697 	mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
698 
699 	for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++)
700 		clean_keys(dev, i);
701 
702 	destroy_workqueue(dev->cache.wq);
703 	del_timer_sync(&dev->delay_timer);
704 
705 	return 0;
706 }
707 
708 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
709 {
710 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
711 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
712 	struct mlx5_core_dev *mdev = dev->mdev;
713 	struct mlx5_ib_mr *mr;
714 	void *mkc;
715 	u32 *in;
716 	int err;
717 
718 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
719 	if (!mr)
720 		return ERR_PTR(-ENOMEM);
721 
722 	in = kzalloc(inlen, GFP_KERNEL);
723 	if (!in) {
724 		err = -ENOMEM;
725 		goto err_free;
726 	}
727 
728 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
729 
730 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
731 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
732 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
733 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
734 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
735 	MLX5_SET(mkc, mkc, lr, 1);
736 
737 	MLX5_SET(mkc, mkc, length64, 1);
738 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
739 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
740 	MLX5_SET64(mkc, mkc, start_addr, 0);
741 
742 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
743 	if (err)
744 		goto err_in;
745 
746 	kfree(in);
747 	mr->mmkey.type = MLX5_MKEY_MR;
748 	mr->ibmr.lkey = mr->mmkey.key;
749 	mr->ibmr.rkey = mr->mmkey.key;
750 	mr->umem = NULL;
751 
752 	return &mr->ibmr;
753 
754 err_in:
755 	kfree(in);
756 
757 err_free:
758 	kfree(mr);
759 
760 	return ERR_PTR(err);
761 }
762 
763 static int get_octo_len(u64 addr, u64 len, int page_shift)
764 {
765 	u64 page_size = 1ULL << page_shift;
766 	u64 offset;
767 	int npages;
768 
769 	offset = addr & (page_size - 1);
770 	npages = ALIGN(len + offset, page_size) >> page_shift;
771 	return (npages + 1) / 2;
772 }
773 
774 static int mr_cache_max_order(struct mlx5_ib_dev *dev)
775 {
776 	if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
777 		return MR_CACHE_LAST_STD_ENTRY + 2;
778 	return MLX5_MAX_UMR_SHIFT;
779 }
780 
781 static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata,
782 		       u64 start, u64 length, int access_flags,
783 		       struct ib_umem **umem, int *npages, int *page_shift,
784 		       int *ncont, int *order)
785 {
786 	struct ib_umem *u;
787 
788 	*umem = NULL;
789 
790 	if (access_flags & IB_ACCESS_ON_DEMAND) {
791 		struct ib_umem_odp *odp;
792 
793 		odp = ib_umem_odp_get(udata, start, length, access_flags);
794 		if (IS_ERR(odp)) {
795 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n",
796 				    PTR_ERR(odp));
797 			return PTR_ERR(odp);
798 		}
799 
800 		u = &odp->umem;
801 
802 		*page_shift = odp->page_shift;
803 		*ncont = ib_umem_odp_num_pages(odp);
804 		*npages = *ncont << (*page_shift - PAGE_SHIFT);
805 		if (order)
806 			*order = ilog2(roundup_pow_of_two(*ncont));
807 	} else {
808 		u = ib_umem_get(udata, start, length, access_flags, 0);
809 		if (IS_ERR(u)) {
810 			mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u));
811 			return PTR_ERR(u);
812 		}
813 
814 		mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages,
815 				   page_shift, ncont, order);
816 	}
817 
818 	if (!*npages) {
819 		mlx5_ib_warn(dev, "avoid zero region\n");
820 		ib_umem_release(u);
821 		return -EINVAL;
822 	}
823 
824 	*umem = u;
825 
826 	mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n",
827 		    *npages, *ncont, *order, *page_shift);
828 
829 	return 0;
830 }
831 
832 static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc)
833 {
834 	struct mlx5_ib_umr_context *context =
835 		container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe);
836 
837 	context->status = wc->status;
838 	complete(&context->done);
839 }
840 
841 static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context)
842 {
843 	context->cqe.done = mlx5_ib_umr_done;
844 	context->status = -1;
845 	init_completion(&context->done);
846 }
847 
848 static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev,
849 				  struct mlx5_umr_wr *umrwr)
850 {
851 	struct umr_common *umrc = &dev->umrc;
852 	const struct ib_send_wr *bad;
853 	int err;
854 	struct mlx5_ib_umr_context umr_context;
855 
856 	mlx5_ib_init_umr_context(&umr_context);
857 	umrwr->wr.wr_cqe = &umr_context.cqe;
858 
859 	down(&umrc->sem);
860 	err = ib_post_send(umrc->qp, &umrwr->wr, &bad);
861 	if (err) {
862 		mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err);
863 	} else {
864 		wait_for_completion(&umr_context.done);
865 		if (umr_context.status != IB_WC_SUCCESS) {
866 			mlx5_ib_warn(dev, "reg umr failed (%u)\n",
867 				     umr_context.status);
868 			err = -EFAULT;
869 		}
870 	}
871 	up(&umrc->sem);
872 	return err;
873 }
874 
875 static struct mlx5_ib_mr *alloc_mr_from_cache(
876 				  struct ib_pd *pd, struct ib_umem *umem,
877 				  u64 virt_addr, u64 len, int npages,
878 				  int page_shift, int order, int access_flags)
879 {
880 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
881 	struct mlx5_ib_mr *mr;
882 	int err = 0;
883 	int i;
884 
885 	for (i = 0; i < 1; i++) {
886 		mr = alloc_cached_mr(dev, order);
887 		if (mr)
888 			break;
889 
890 		err = add_keys(dev, order2idx(dev, order), 1);
891 		if (err && err != -EAGAIN) {
892 			mlx5_ib_warn(dev, "add_keys failed, err %d\n", err);
893 			break;
894 		}
895 	}
896 
897 	if (!mr)
898 		return ERR_PTR(-EAGAIN);
899 
900 	mr->ibmr.pd = pd;
901 	mr->umem = umem;
902 	mr->access_flags = access_flags;
903 	mr->desc_size = sizeof(struct mlx5_mtt);
904 	mr->mmkey.iova = virt_addr;
905 	mr->mmkey.size = len;
906 	mr->mmkey.pd = to_mpd(pd)->pdn;
907 
908 	return mr;
909 }
910 
911 static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages,
912 			       void *xlt, int page_shift, size_t size,
913 			       int flags)
914 {
915 	struct mlx5_ib_dev *dev = mr->dev;
916 	struct ib_umem *umem = mr->umem;
917 
918 	if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
919 		if (!umr_can_use_indirect_mkey(dev))
920 			return -EPERM;
921 		mlx5_odp_populate_klm(xlt, idx, npages, mr, flags);
922 		return npages;
923 	}
924 
925 	npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx);
926 
927 	if (!(flags & MLX5_IB_UPD_XLT_ZAP)) {
928 		__mlx5_ib_populate_pas(dev, umem, page_shift,
929 				       idx, npages, xlt,
930 				       MLX5_IB_MTT_PRESENT);
931 		/* Clear padding after the pages
932 		 * brought from the umem.
933 		 */
934 		memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0,
935 		       size - npages * sizeof(struct mlx5_mtt));
936 	}
937 
938 	return npages;
939 }
940 
941 #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \
942 			    MLX5_UMR_MTT_ALIGNMENT)
943 #define MLX5_SPARE_UMR_CHUNK 0x10000
944 
945 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages,
946 		       int page_shift, int flags)
947 {
948 	struct mlx5_ib_dev *dev = mr->dev;
949 	struct device *ddev = dev->ib_dev.dev.parent;
950 	int size;
951 	void *xlt;
952 	dma_addr_t dma;
953 	struct mlx5_umr_wr wr;
954 	struct ib_sge sg;
955 	int err = 0;
956 	int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT)
957 			       ? sizeof(struct mlx5_klm)
958 			       : sizeof(struct mlx5_mtt);
959 	const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size;
960 	const int page_mask = page_align - 1;
961 	size_t pages_mapped = 0;
962 	size_t pages_to_map = 0;
963 	size_t pages_iter = 0;
964 	gfp_t gfp;
965 	bool use_emergency_page = false;
966 
967 	if ((flags & MLX5_IB_UPD_XLT_INDIRECT) &&
968 	    !umr_can_use_indirect_mkey(dev))
969 		return -EPERM;
970 
971 	/* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes,
972 	 * so we need to align the offset and length accordingly
973 	 */
974 	if (idx & page_mask) {
975 		npages += idx & page_mask;
976 		idx &= ~page_mask;
977 	}
978 
979 	gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL;
980 	gfp |= __GFP_ZERO | __GFP_NOWARN;
981 
982 	pages_to_map = ALIGN(npages, page_align);
983 	size = desc_size * pages_to_map;
984 	size = min_t(int, size, MLX5_MAX_UMR_CHUNK);
985 
986 	xlt = (void *)__get_free_pages(gfp, get_order(size));
987 	if (!xlt && size > MLX5_SPARE_UMR_CHUNK) {
988 		mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n",
989 			    size, get_order(size), MLX5_SPARE_UMR_CHUNK);
990 
991 		size = MLX5_SPARE_UMR_CHUNK;
992 		xlt = (void *)__get_free_pages(gfp, get_order(size));
993 	}
994 
995 	if (!xlt) {
996 		mlx5_ib_warn(dev, "Using XLT emergency buffer\n");
997 		xlt = (void *)mlx5_ib_get_xlt_emergency_page();
998 		size = PAGE_SIZE;
999 		memset(xlt, 0, size);
1000 		use_emergency_page = true;
1001 	}
1002 	pages_iter = size / desc_size;
1003 	dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE);
1004 	if (dma_mapping_error(ddev, dma)) {
1005 		mlx5_ib_err(dev, "unable to map DMA during XLT update.\n");
1006 		err = -ENOMEM;
1007 		goto free_xlt;
1008 	}
1009 
1010 	sg.addr = dma;
1011 	sg.lkey = dev->umrc.pd->local_dma_lkey;
1012 
1013 	memset(&wr, 0, sizeof(wr));
1014 	wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT;
1015 	if (!(flags & MLX5_IB_UPD_XLT_ENABLE))
1016 		wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1017 	wr.wr.sg_list = &sg;
1018 	wr.wr.num_sge = 1;
1019 	wr.wr.opcode = MLX5_IB_WR_UMR;
1020 
1021 	wr.pd = mr->ibmr.pd;
1022 	wr.mkey = mr->mmkey.key;
1023 	wr.length = mr->mmkey.size;
1024 	wr.virt_addr = mr->mmkey.iova;
1025 	wr.access_flags = mr->access_flags;
1026 	wr.page_shift = page_shift;
1027 
1028 	for (pages_mapped = 0;
1029 	     pages_mapped < pages_to_map && !err;
1030 	     pages_mapped += pages_iter, idx += pages_iter) {
1031 		npages = min_t(int, pages_iter, pages_to_map - pages_mapped);
1032 		dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE);
1033 		npages = populate_xlt(mr, idx, npages, xlt,
1034 				      page_shift, size, flags);
1035 
1036 		dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE);
1037 
1038 		sg.length = ALIGN(npages * desc_size,
1039 				  MLX5_UMR_MTT_ALIGNMENT);
1040 
1041 		if (pages_mapped + pages_iter >= pages_to_map) {
1042 			if (flags & MLX5_IB_UPD_XLT_ENABLE)
1043 				wr.wr.send_flags |=
1044 					MLX5_IB_SEND_UMR_ENABLE_MR |
1045 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS |
1046 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1047 			if (flags & MLX5_IB_UPD_XLT_PD ||
1048 			    flags & MLX5_IB_UPD_XLT_ACCESS)
1049 				wr.wr.send_flags |=
1050 					MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1051 			if (flags & MLX5_IB_UPD_XLT_ADDR)
1052 				wr.wr.send_flags |=
1053 					MLX5_IB_SEND_UMR_UPDATE_TRANSLATION;
1054 		}
1055 
1056 		wr.offset = idx * desc_size;
1057 		wr.xlt_size = sg.length;
1058 
1059 		err = mlx5_ib_post_send_wait(dev, &wr);
1060 	}
1061 	dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE);
1062 
1063 free_xlt:
1064 	if (use_emergency_page)
1065 		mlx5_ib_put_xlt_emergency_page();
1066 	else
1067 		free_pages((unsigned long)xlt, get_order(size));
1068 
1069 	return err;
1070 }
1071 
1072 /*
1073  * If ibmr is NULL it will be allocated by reg_create.
1074  * Else, the given ibmr will be used.
1075  */
1076 static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd,
1077 				     u64 virt_addr, u64 length,
1078 				     struct ib_umem *umem, int npages,
1079 				     int page_shift, int access_flags,
1080 				     bool populate)
1081 {
1082 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1083 	struct mlx5_ib_mr *mr;
1084 	__be64 *pas;
1085 	void *mkc;
1086 	int inlen;
1087 	u32 *in;
1088 	int err;
1089 	bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
1090 
1091 	mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL);
1092 	if (!mr)
1093 		return ERR_PTR(-ENOMEM);
1094 
1095 	mr->ibmr.pd = pd;
1096 	mr->access_flags = access_flags;
1097 
1098 	inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1099 	if (populate)
1100 		inlen += sizeof(*pas) * roundup(npages, 2);
1101 	in = kvzalloc(inlen, GFP_KERNEL);
1102 	if (!in) {
1103 		err = -ENOMEM;
1104 		goto err_1;
1105 	}
1106 	pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
1107 	if (populate && !(access_flags & IB_ACCESS_ON_DEMAND))
1108 		mlx5_ib_populate_pas(dev, umem, page_shift, pas,
1109 				     pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1110 
1111 	/* The pg_access bit allows setting the access flags
1112 	 * in the page list submitted with the command. */
1113 	MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1114 
1115 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1116 	MLX5_SET(mkc, mkc, free, !populate);
1117 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1118 	MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC));
1119 	MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE));
1120 	MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ));
1121 	MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE));
1122 	MLX5_SET(mkc, mkc, lr, 1);
1123 	MLX5_SET(mkc, mkc, umr_en, 1);
1124 
1125 	MLX5_SET64(mkc, mkc, start_addr, virt_addr);
1126 	MLX5_SET64(mkc, mkc, len, length);
1127 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1128 	MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1129 	MLX5_SET(mkc, mkc, translations_octword_size,
1130 		 get_octo_len(virt_addr, length, page_shift));
1131 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1132 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1133 	if (populate) {
1134 		MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1135 			 get_octo_len(virt_addr, length, page_shift));
1136 	}
1137 
1138 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1139 	if (err) {
1140 		mlx5_ib_warn(dev, "create mkey failed\n");
1141 		goto err_2;
1142 	}
1143 	mr->mmkey.type = MLX5_MKEY_MR;
1144 	mr->desc_size = sizeof(struct mlx5_mtt);
1145 	mr->dev = dev;
1146 	kvfree(in);
1147 
1148 	mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1149 
1150 	return mr;
1151 
1152 err_2:
1153 	kvfree(in);
1154 
1155 err_1:
1156 	if (!ibmr)
1157 		kfree(mr);
1158 
1159 	return ERR_PTR(err);
1160 }
1161 
1162 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
1163 			  int npages, u64 length, int access_flags)
1164 {
1165 	mr->npages = npages;
1166 	atomic_add(npages, &dev->mdev->priv.reg_pages);
1167 	mr->ibmr.lkey = mr->mmkey.key;
1168 	mr->ibmr.rkey = mr->mmkey.key;
1169 	mr->ibmr.length = length;
1170 	mr->access_flags = access_flags;
1171 }
1172 
1173 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1174 				       u64 length, int acc, int mode)
1175 {
1176 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1177 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1178 	struct mlx5_core_dev *mdev = dev->mdev;
1179 	struct mlx5_ib_mr *mr;
1180 	void *mkc;
1181 	u32 *in;
1182 	int err;
1183 
1184 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1185 	if (!mr)
1186 		return ERR_PTR(-ENOMEM);
1187 
1188 	in = kzalloc(inlen, GFP_KERNEL);
1189 	if (!in) {
1190 		err = -ENOMEM;
1191 		goto err_free;
1192 	}
1193 
1194 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1195 
1196 	MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1197 	MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1198 	MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
1199 	MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
1200 	MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
1201 	MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
1202 	MLX5_SET(mkc, mkc, lr, 1);
1203 
1204 	MLX5_SET64(mkc, mkc, len, length);
1205 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1206 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1207 	MLX5_SET64(mkc, mkc, start_addr, start_addr);
1208 
1209 	err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen);
1210 	if (err)
1211 		goto err_in;
1212 
1213 	kfree(in);
1214 
1215 	mr->umem = NULL;
1216 	set_mr_fields(dev, mr, 0, length, acc);
1217 
1218 	return &mr->ibmr;
1219 
1220 err_in:
1221 	kfree(in);
1222 
1223 err_free:
1224 	kfree(mr);
1225 
1226 	return ERR_PTR(err);
1227 }
1228 
1229 int mlx5_ib_advise_mr(struct ib_pd *pd,
1230 		      enum ib_uverbs_advise_mr_advice advice,
1231 		      u32 flags,
1232 		      struct ib_sge *sg_list,
1233 		      u32 num_sge,
1234 		      struct uverbs_attr_bundle *attrs)
1235 {
1236 	if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1237 	    advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE)
1238 		return -EOPNOTSUPP;
1239 
1240 	return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1241 					 sg_list, num_sge);
1242 }
1243 
1244 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1245 				struct ib_dm_mr_attr *attr,
1246 				struct uverbs_attr_bundle *attrs)
1247 {
1248 	struct mlx5_ib_dm *mdm = to_mdm(dm);
1249 	struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1250 	u64 start_addr = mdm->dev_addr + attr->offset;
1251 	int mode;
1252 
1253 	switch (mdm->type) {
1254 	case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1255 		if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1256 			return ERR_PTR(-EINVAL);
1257 
1258 		mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1259 		start_addr -= pci_resource_start(dev->pdev, 0);
1260 		break;
1261 	case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1262 	case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1263 		if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1264 			return ERR_PTR(-EINVAL);
1265 
1266 		mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1267 		break;
1268 	default:
1269 		return ERR_PTR(-EINVAL);
1270 	}
1271 
1272 	return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1273 				 attr->access_flags, mode);
1274 }
1275 
1276 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1277 				  u64 virt_addr, int access_flags,
1278 				  struct ib_udata *udata)
1279 {
1280 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1281 	struct mlx5_ib_mr *mr = NULL;
1282 	bool use_umr;
1283 	struct ib_umem *umem;
1284 	int page_shift;
1285 	int npages;
1286 	int ncont;
1287 	int order;
1288 	int err;
1289 
1290 	if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1291 		return ERR_PTR(-EOPNOTSUPP);
1292 
1293 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1294 		    start, virt_addr, length, access_flags);
1295 
1296 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start &&
1297 	    length == U64_MAX) {
1298 		if (!(access_flags & IB_ACCESS_ON_DEMAND) ||
1299 		    !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1300 			return ERR_PTR(-EINVAL);
1301 
1302 		mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags);
1303 		if (IS_ERR(mr))
1304 			return ERR_CAST(mr);
1305 		return &mr->ibmr;
1306 	}
1307 
1308 	err = mr_umem_get(dev, udata, start, length, access_flags, &umem,
1309 			  &npages, &page_shift, &ncont, &order);
1310 
1311 	if (err < 0)
1312 		return ERR_PTR(err);
1313 
1314 	use_umr = mlx5_ib_can_use_umr(dev, true);
1315 
1316 	if (order <= mr_cache_max_order(dev) && use_umr) {
1317 		mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont,
1318 					 page_shift, order, access_flags);
1319 		if (PTR_ERR(mr) == -EAGAIN) {
1320 			mlx5_ib_dbg(dev, "cache empty for order %d\n", order);
1321 			mr = NULL;
1322 		}
1323 	} else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) {
1324 		if (access_flags & IB_ACCESS_ON_DEMAND) {
1325 			err = -EINVAL;
1326 			pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n");
1327 			goto error;
1328 		}
1329 		use_umr = false;
1330 	}
1331 
1332 	if (!mr) {
1333 		mutex_lock(&dev->slow_path_mutex);
1334 		mr = reg_create(NULL, pd, virt_addr, length, umem, ncont,
1335 				page_shift, access_flags, !use_umr);
1336 		mutex_unlock(&dev->slow_path_mutex);
1337 	}
1338 
1339 	if (IS_ERR(mr)) {
1340 		err = PTR_ERR(mr);
1341 		goto error;
1342 	}
1343 
1344 	mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1345 
1346 	mr->umem = umem;
1347 	set_mr_fields(dev, mr, npages, length, access_flags);
1348 
1349 	update_odp_mr(mr);
1350 
1351 	if (use_umr) {
1352 		int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE;
1353 
1354 		if (access_flags & IB_ACCESS_ON_DEMAND)
1355 			update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP;
1356 
1357 		err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift,
1358 					 update_xlt_flags);
1359 
1360 		if (err) {
1361 			dereg_mr(dev, mr);
1362 			return ERR_PTR(err);
1363 		}
1364 	}
1365 
1366 	if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1367 		mr->live = 1;
1368 		atomic_set(&mr->num_pending_prefetch, 0);
1369 	}
1370 
1371 	return &mr->ibmr;
1372 error:
1373 	ib_umem_release(umem);
1374 	return ERR_PTR(err);
1375 }
1376 
1377 static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1378 {
1379 	struct mlx5_core_dev *mdev = dev->mdev;
1380 	struct mlx5_umr_wr umrwr = {};
1381 
1382 	if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR)
1383 		return 0;
1384 
1385 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR |
1386 			      MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1387 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1388 	umrwr.pd = dev->umrc.pd;
1389 	umrwr.mkey = mr->mmkey.key;
1390 	umrwr.ignore_free_state = 1;
1391 
1392 	return mlx5_ib_post_send_wait(dev, &umrwr);
1393 }
1394 
1395 static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1396 		     int access_flags, int flags)
1397 {
1398 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1399 	struct mlx5_umr_wr umrwr = {};
1400 	int err;
1401 
1402 	umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE;
1403 
1404 	umrwr.wr.opcode = MLX5_IB_WR_UMR;
1405 	umrwr.mkey = mr->mmkey.key;
1406 
1407 	if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) {
1408 		umrwr.pd = pd;
1409 		umrwr.access_flags = access_flags;
1410 		umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS;
1411 	}
1412 
1413 	err = mlx5_ib_post_send_wait(dev, &umrwr);
1414 
1415 	return err;
1416 }
1417 
1418 int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1419 			  u64 length, u64 virt_addr, int new_access_flags,
1420 			  struct ib_pd *new_pd, struct ib_udata *udata)
1421 {
1422 	struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1423 	struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1424 	struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd;
1425 	int access_flags = flags & IB_MR_REREG_ACCESS ?
1426 			    new_access_flags :
1427 			    mr->access_flags;
1428 	int page_shift = 0;
1429 	int upd_flags = 0;
1430 	int npages = 0;
1431 	int ncont = 0;
1432 	int order = 0;
1433 	u64 addr, len;
1434 	int err;
1435 
1436 	mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n",
1437 		    start, virt_addr, length, access_flags);
1438 
1439 	atomic_sub(mr->npages, &dev->mdev->priv.reg_pages);
1440 
1441 	if (!mr->umem)
1442 		return -EINVAL;
1443 
1444 	if (flags & IB_MR_REREG_TRANS) {
1445 		addr = virt_addr;
1446 		len = length;
1447 	} else {
1448 		addr = mr->umem->address;
1449 		len = mr->umem->length;
1450 	}
1451 
1452 	if (flags != IB_MR_REREG_PD) {
1453 		/*
1454 		 * Replace umem. This needs to be done whether or not UMR is
1455 		 * used.
1456 		 */
1457 		flags |= IB_MR_REREG_TRANS;
1458 		ib_umem_release(mr->umem);
1459 		mr->umem = NULL;
1460 		err = mr_umem_get(dev, udata, addr, len, access_flags,
1461 				  &mr->umem, &npages, &page_shift, &ncont,
1462 				  &order);
1463 		if (err)
1464 			goto err;
1465 	}
1466 
1467 	if (!mlx5_ib_can_use_umr(dev, true) ||
1468 	    (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) {
1469 		/*
1470 		 * UMR can't be used - MKey needs to be replaced.
1471 		 */
1472 		if (mr->allocated_from_cache)
1473 			err = unreg_umr(dev, mr);
1474 		else
1475 			err = destroy_mkey(dev, mr);
1476 		if (err)
1477 			goto err;
1478 
1479 		mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont,
1480 				page_shift, access_flags, true);
1481 
1482 		if (IS_ERR(mr)) {
1483 			err = PTR_ERR(mr);
1484 			mr = to_mmr(ib_mr);
1485 			goto err;
1486 		}
1487 
1488 		mr->allocated_from_cache = 0;
1489 		if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1490 			mr->live = 1;
1491 	} else {
1492 		/*
1493 		 * Send a UMR WQE
1494 		 */
1495 		mr->ibmr.pd = pd;
1496 		mr->access_flags = access_flags;
1497 		mr->mmkey.iova = addr;
1498 		mr->mmkey.size = len;
1499 		mr->mmkey.pd = to_mpd(pd)->pdn;
1500 
1501 		if (flags & IB_MR_REREG_TRANS) {
1502 			upd_flags = MLX5_IB_UPD_XLT_ADDR;
1503 			if (flags & IB_MR_REREG_PD)
1504 				upd_flags |= MLX5_IB_UPD_XLT_PD;
1505 			if (flags & IB_MR_REREG_ACCESS)
1506 				upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1507 			err = mlx5_ib_update_xlt(mr, 0, npages, page_shift,
1508 						 upd_flags);
1509 		} else {
1510 			err = rereg_umr(pd, mr, access_flags, flags);
1511 		}
1512 
1513 		if (err)
1514 			goto err;
1515 	}
1516 
1517 	set_mr_fields(dev, mr, npages, len, access_flags);
1518 
1519 	update_odp_mr(mr);
1520 	return 0;
1521 
1522 err:
1523 	ib_umem_release(mr->umem);
1524 	mr->umem = NULL;
1525 
1526 	clean_mr(dev, mr);
1527 	return err;
1528 }
1529 
1530 static int
1531 mlx5_alloc_priv_descs(struct ib_device *device,
1532 		      struct mlx5_ib_mr *mr,
1533 		      int ndescs,
1534 		      int desc_size)
1535 {
1536 	int size = ndescs * desc_size;
1537 	int add_size;
1538 	int ret;
1539 
1540 	add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1541 
1542 	mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1543 	if (!mr->descs_alloc)
1544 		return -ENOMEM;
1545 
1546 	mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1547 
1548 	mr->desc_map = dma_map_single(device->dev.parent, mr->descs,
1549 				      size, DMA_TO_DEVICE);
1550 	if (dma_mapping_error(device->dev.parent, mr->desc_map)) {
1551 		ret = -ENOMEM;
1552 		goto err;
1553 	}
1554 
1555 	return 0;
1556 err:
1557 	kfree(mr->descs_alloc);
1558 
1559 	return ret;
1560 }
1561 
1562 static void
1563 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1564 {
1565 	if (mr->descs) {
1566 		struct ib_device *device = mr->ibmr.device;
1567 		int size = mr->max_descs * mr->desc_size;
1568 
1569 		dma_unmap_single(device->dev.parent, mr->desc_map,
1570 				 size, DMA_TO_DEVICE);
1571 		kfree(mr->descs_alloc);
1572 		mr->descs = NULL;
1573 	}
1574 }
1575 
1576 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1577 {
1578 	int allocated_from_cache = mr->allocated_from_cache;
1579 
1580 	if (mr->sig) {
1581 		if (mlx5_core_destroy_psv(dev->mdev,
1582 					  mr->sig->psv_memory.psv_idx))
1583 			mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1584 				     mr->sig->psv_memory.psv_idx);
1585 		if (mlx5_core_destroy_psv(dev->mdev,
1586 					  mr->sig->psv_wire.psv_idx))
1587 			mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1588 				     mr->sig->psv_wire.psv_idx);
1589 		kfree(mr->sig);
1590 		mr->sig = NULL;
1591 	}
1592 
1593 	if (!allocated_from_cache) {
1594 		destroy_mkey(dev, mr);
1595 		mlx5_free_priv_descs(mr);
1596 	}
1597 }
1598 
1599 static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
1600 {
1601 	int npages = mr->npages;
1602 	struct ib_umem *umem = mr->umem;
1603 
1604 	if (is_odp_mr(mr)) {
1605 		struct ib_umem_odp *umem_odp = to_ib_umem_odp(umem);
1606 
1607 		/* Prevent new page faults and
1608 		 * prefetch requests from succeeding
1609 		 */
1610 		mr->live = 0;
1611 
1612 		/* dequeue pending prefetch requests for the mr */
1613 		if (atomic_read(&mr->num_pending_prefetch))
1614 			flush_workqueue(system_unbound_wq);
1615 		WARN_ON(atomic_read(&mr->num_pending_prefetch));
1616 
1617 		/* Wait for all running page-fault handlers to finish. */
1618 		synchronize_srcu(&dev->mr_srcu);
1619 		/* Destroy all page mappings */
1620 		if (!umem_odp->is_implicit_odp)
1621 			mlx5_ib_invalidate_range(umem_odp,
1622 						 ib_umem_start(umem_odp),
1623 						 ib_umem_end(umem_odp));
1624 		else
1625 			mlx5_ib_free_implicit_mr(mr);
1626 		/*
1627 		 * We kill the umem before the MR for ODP,
1628 		 * so that there will not be any invalidations in
1629 		 * flight, looking at the *mr struct.
1630 		 */
1631 		ib_umem_odp_release(umem_odp);
1632 		atomic_sub(npages, &dev->mdev->priv.reg_pages);
1633 
1634 		/* Avoid double-freeing the umem. */
1635 		umem = NULL;
1636 	}
1637 
1638 	clean_mr(dev, mr);
1639 
1640 	/*
1641 	 * We should unregister the DMA address from the HCA before
1642 	 * remove the DMA mapping.
1643 	 */
1644 	mlx5_mr_cache_free(dev, mr);
1645 	ib_umem_release(umem);
1646 	if (umem)
1647 		atomic_sub(npages, &dev->mdev->priv.reg_pages);
1648 
1649 	if (!mr->allocated_from_cache)
1650 		kfree(mr);
1651 }
1652 
1653 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1654 {
1655 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
1656 
1657 	if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1658 		dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr);
1659 		dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr);
1660 	}
1661 
1662 	dereg_mr(to_mdev(ibmr->device), mmr);
1663 
1664 	return 0;
1665 }
1666 
1667 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1668 				   int access_mode, int page_shift)
1669 {
1670 	void *mkc;
1671 
1672 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1673 
1674 	MLX5_SET(mkc, mkc, free, 1);
1675 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1676 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1677 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1678 	MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1679 	MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1680 	MLX5_SET(mkc, mkc, umr_en, 1);
1681 	MLX5_SET(mkc, mkc, log_page_size, page_shift);
1682 }
1683 
1684 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1685 				  int ndescs, int desc_size, int page_shift,
1686 				  int access_mode, u32 *in, int inlen)
1687 {
1688 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1689 	int err;
1690 
1691 	mr->access_mode = access_mode;
1692 	mr->desc_size = desc_size;
1693 	mr->max_descs = ndescs;
1694 
1695 	err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1696 	if (err)
1697 		return err;
1698 
1699 	mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1700 
1701 	err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen);
1702 	if (err)
1703 		goto err_free_descs;
1704 
1705 	mr->mmkey.type = MLX5_MKEY_MR;
1706 	mr->ibmr.lkey = mr->mmkey.key;
1707 	mr->ibmr.rkey = mr->mmkey.key;
1708 
1709 	return 0;
1710 
1711 err_free_descs:
1712 	mlx5_free_priv_descs(mr);
1713 	return err;
1714 }
1715 
1716 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1717 				u32 max_num_sg, u32 max_num_meta_sg,
1718 				int desc_size, int access_mode)
1719 {
1720 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1721 	int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1722 	int page_shift = 0;
1723 	struct mlx5_ib_mr *mr;
1724 	u32 *in;
1725 	int err;
1726 
1727 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1728 	if (!mr)
1729 		return ERR_PTR(-ENOMEM);
1730 
1731 	mr->ibmr.pd = pd;
1732 	mr->ibmr.device = pd->device;
1733 
1734 	in = kzalloc(inlen, GFP_KERNEL);
1735 	if (!in) {
1736 		err = -ENOMEM;
1737 		goto err_free;
1738 	}
1739 
1740 	if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1741 		page_shift = PAGE_SHIFT;
1742 
1743 	err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1744 				     access_mode, in, inlen);
1745 	if (err)
1746 		goto err_free_in;
1747 
1748 	mr->umem = NULL;
1749 	kfree(in);
1750 
1751 	return mr;
1752 
1753 err_free_in:
1754 	kfree(in);
1755 err_free:
1756 	kfree(mr);
1757 	return ERR_PTR(err);
1758 }
1759 
1760 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1761 				    int ndescs, u32 *in, int inlen)
1762 {
1763 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1764 				      PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1765 				      inlen);
1766 }
1767 
1768 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1769 				    int ndescs, u32 *in, int inlen)
1770 {
1771 	return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1772 				      0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1773 }
1774 
1775 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1776 				      int max_num_sg, int max_num_meta_sg,
1777 				      u32 *in, int inlen)
1778 {
1779 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1780 	u32 psv_index[2];
1781 	void *mkc;
1782 	int err;
1783 
1784 	mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1785 	if (!mr->sig)
1786 		return -ENOMEM;
1787 
1788 	/* create mem & wire PSVs */
1789 	err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1790 	if (err)
1791 		goto err_free_sig;
1792 
1793 	mr->sig->psv_memory.psv_idx = psv_index[0];
1794 	mr->sig->psv_wire.psv_idx = psv_index[1];
1795 
1796 	mr->sig->sig_status_checked = true;
1797 	mr->sig->sig_err_exists = false;
1798 	/* Next UMR, Arm SIGERR */
1799 	++mr->sig->sigerr_count;
1800 	mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1801 					 sizeof(struct mlx5_klm),
1802 					 MLX5_MKC_ACCESS_MODE_KLMS);
1803 	if (IS_ERR(mr->klm_mr)) {
1804 		err = PTR_ERR(mr->klm_mr);
1805 		goto err_destroy_psv;
1806 	}
1807 	mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1808 					 sizeof(struct mlx5_mtt),
1809 					 MLX5_MKC_ACCESS_MODE_MTT);
1810 	if (IS_ERR(mr->mtt_mr)) {
1811 		err = PTR_ERR(mr->mtt_mr);
1812 		goto err_free_klm_mr;
1813 	}
1814 
1815 	/* Set bsf descriptors for mkey */
1816 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1817 	MLX5_SET(mkc, mkc, bsf_en, 1);
1818 	MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1819 
1820 	err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1821 				     MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1822 	if (err)
1823 		goto err_free_mtt_mr;
1824 
1825 	return 0;
1826 
1827 err_free_mtt_mr:
1828 	dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr);
1829 	mr->mtt_mr = NULL;
1830 err_free_klm_mr:
1831 	dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr);
1832 	mr->klm_mr = NULL;
1833 err_destroy_psv:
1834 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1835 		mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1836 			     mr->sig->psv_memory.psv_idx);
1837 	if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1838 		mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1839 			     mr->sig->psv_wire.psv_idx);
1840 err_free_sig:
1841 	kfree(mr->sig);
1842 
1843 	return err;
1844 }
1845 
1846 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1847 					enum ib_mr_type mr_type, u32 max_num_sg,
1848 					u32 max_num_meta_sg)
1849 {
1850 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1851 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1852 	int ndescs = ALIGN(max_num_sg, 4);
1853 	struct mlx5_ib_mr *mr;
1854 	u32 *in;
1855 	int err;
1856 
1857 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1858 	if (!mr)
1859 		return ERR_PTR(-ENOMEM);
1860 
1861 	in = kzalloc(inlen, GFP_KERNEL);
1862 	if (!in) {
1863 		err = -ENOMEM;
1864 		goto err_free;
1865 	}
1866 
1867 	mr->ibmr.device = pd->device;
1868 	mr->umem = NULL;
1869 
1870 	switch (mr_type) {
1871 	case IB_MR_TYPE_MEM_REG:
1872 		err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1873 		break;
1874 	case IB_MR_TYPE_SG_GAPS:
1875 		err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1876 		break;
1877 	case IB_MR_TYPE_INTEGRITY:
1878 		err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1879 						 max_num_meta_sg, in, inlen);
1880 		break;
1881 	default:
1882 		mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1883 		err = -EINVAL;
1884 	}
1885 
1886 	if (err)
1887 		goto err_free_in;
1888 
1889 	kfree(in);
1890 
1891 	return &mr->ibmr;
1892 
1893 err_free_in:
1894 	kfree(in);
1895 err_free:
1896 	kfree(mr);
1897 	return ERR_PTR(err);
1898 }
1899 
1900 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1901 			       u32 max_num_sg, struct ib_udata *udata)
1902 {
1903 	return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1904 }
1905 
1906 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1907 					 u32 max_num_sg, u32 max_num_meta_sg)
1908 {
1909 	return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1910 				  max_num_meta_sg);
1911 }
1912 
1913 struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
1914 			       struct ib_udata *udata)
1915 {
1916 	struct mlx5_ib_dev *dev = to_mdev(pd->device);
1917 	int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1918 	struct mlx5_ib_mw *mw = NULL;
1919 	u32 *in = NULL;
1920 	void *mkc;
1921 	int ndescs;
1922 	int err;
1923 	struct mlx5_ib_alloc_mw req = {};
1924 	struct {
1925 		__u32	comp_mask;
1926 		__u32	response_length;
1927 	} resp = {};
1928 
1929 	err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1930 	if (err)
1931 		return ERR_PTR(err);
1932 
1933 	if (req.comp_mask || req.reserved1 || req.reserved2)
1934 		return ERR_PTR(-EOPNOTSUPP);
1935 
1936 	if (udata->inlen > sizeof(req) &&
1937 	    !ib_is_udata_cleared(udata, sizeof(req),
1938 				 udata->inlen - sizeof(req)))
1939 		return ERR_PTR(-EOPNOTSUPP);
1940 
1941 	ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1942 
1943 	mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1944 	in = kzalloc(inlen, GFP_KERNEL);
1945 	if (!mw || !in) {
1946 		err = -ENOMEM;
1947 		goto free;
1948 	}
1949 
1950 	mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1951 
1952 	MLX5_SET(mkc, mkc, free, 1);
1953 	MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1954 	MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
1955 	MLX5_SET(mkc, mkc, umr_en, 1);
1956 	MLX5_SET(mkc, mkc, lr, 1);
1957 	MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1958 	MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2)));
1959 	MLX5_SET(mkc, mkc, qpn, 0xffffff);
1960 
1961 	err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen);
1962 	if (err)
1963 		goto free;
1964 
1965 	mw->mmkey.type = MLX5_MKEY_MW;
1966 	mw->ibmw.rkey = mw->mmkey.key;
1967 	mw->ndescs = ndescs;
1968 
1969 	resp.response_length = min(offsetof(typeof(resp), response_length) +
1970 				   sizeof(resp.response_length), udata->outlen);
1971 	if (resp.response_length) {
1972 		err = ib_copy_to_udata(udata, &resp, resp.response_length);
1973 		if (err) {
1974 			mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey);
1975 			goto free;
1976 		}
1977 	}
1978 
1979 	kfree(in);
1980 	return &mw->ibmw;
1981 
1982 free:
1983 	kfree(mw);
1984 	kfree(in);
1985 	return ERR_PTR(err);
1986 }
1987 
1988 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1989 {
1990 	struct mlx5_ib_mw *mmw = to_mmw(mw);
1991 	int err;
1992 
1993 	err =  mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev,
1994 				      &mmw->mmkey);
1995 	if (!err)
1996 		kfree(mmw);
1997 	return err;
1998 }
1999 
2000 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
2001 			    struct ib_mr_status *mr_status)
2002 {
2003 	struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2004 	int ret = 0;
2005 
2006 	if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2007 		pr_err("Invalid status check mask\n");
2008 		ret = -EINVAL;
2009 		goto done;
2010 	}
2011 
2012 	mr_status->fail_status = 0;
2013 	if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2014 		if (!mmr->sig) {
2015 			ret = -EINVAL;
2016 			pr_err("signature status check requested on a non-signature enabled MR\n");
2017 			goto done;
2018 		}
2019 
2020 		mmr->sig->sig_status_checked = true;
2021 		if (!mmr->sig->sig_err_exists)
2022 			goto done;
2023 
2024 		if (ibmr->lkey == mmr->sig->err_item.key)
2025 			memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2026 			       sizeof(mr_status->sig_err));
2027 		else {
2028 			mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2029 			mr_status->sig_err.sig_err_offset = 0;
2030 			mr_status->sig_err.key = mmr->sig->err_item.key;
2031 		}
2032 
2033 		mmr->sig->sig_err_exists = false;
2034 		mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2035 	}
2036 
2037 done:
2038 	return ret;
2039 }
2040 
2041 static int
2042 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2043 			int data_sg_nents, unsigned int *data_sg_offset,
2044 			struct scatterlist *meta_sg, int meta_sg_nents,
2045 			unsigned int *meta_sg_offset)
2046 {
2047 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2048 	unsigned int sg_offset = 0;
2049 	int n = 0;
2050 
2051 	mr->meta_length = 0;
2052 	if (data_sg_nents == 1) {
2053 		n++;
2054 		mr->ndescs = 1;
2055 		if (data_sg_offset)
2056 			sg_offset = *data_sg_offset;
2057 		mr->data_length = sg_dma_len(data_sg) - sg_offset;
2058 		mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2059 		if (meta_sg_nents == 1) {
2060 			n++;
2061 			mr->meta_ndescs = 1;
2062 			if (meta_sg_offset)
2063 				sg_offset = *meta_sg_offset;
2064 			else
2065 				sg_offset = 0;
2066 			mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2067 			mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2068 		}
2069 		ibmr->length = mr->data_length + mr->meta_length;
2070 	}
2071 
2072 	return n;
2073 }
2074 
2075 static int
2076 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2077 		   struct scatterlist *sgl,
2078 		   unsigned short sg_nents,
2079 		   unsigned int *sg_offset_p,
2080 		   struct scatterlist *meta_sgl,
2081 		   unsigned short meta_sg_nents,
2082 		   unsigned int *meta_sg_offset_p)
2083 {
2084 	struct scatterlist *sg = sgl;
2085 	struct mlx5_klm *klms = mr->descs;
2086 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2087 	u32 lkey = mr->ibmr.pd->local_dma_lkey;
2088 	int i, j = 0;
2089 
2090 	mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2091 	mr->ibmr.length = 0;
2092 
2093 	for_each_sg(sgl, sg, sg_nents, i) {
2094 		if (unlikely(i >= mr->max_descs))
2095 			break;
2096 		klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2097 		klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2098 		klms[i].key = cpu_to_be32(lkey);
2099 		mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2100 
2101 		sg_offset = 0;
2102 	}
2103 
2104 	if (sg_offset_p)
2105 		*sg_offset_p = sg_offset;
2106 
2107 	mr->ndescs = i;
2108 	mr->data_length = mr->ibmr.length;
2109 
2110 	if (meta_sg_nents) {
2111 		sg = meta_sgl;
2112 		sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2113 		for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2114 			if (unlikely(i + j >= mr->max_descs))
2115 				break;
2116 			klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2117 						     sg_offset);
2118 			klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2119 							 sg_offset);
2120 			klms[i + j].key = cpu_to_be32(lkey);
2121 			mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2122 
2123 			sg_offset = 0;
2124 		}
2125 		if (meta_sg_offset_p)
2126 			*meta_sg_offset_p = sg_offset;
2127 
2128 		mr->meta_ndescs = j;
2129 		mr->meta_length = mr->ibmr.length - mr->data_length;
2130 	}
2131 
2132 	return i + j;
2133 }
2134 
2135 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2136 {
2137 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2138 	__be64 *descs;
2139 
2140 	if (unlikely(mr->ndescs == mr->max_descs))
2141 		return -ENOMEM;
2142 
2143 	descs = mr->descs;
2144 	descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2145 
2146 	return 0;
2147 }
2148 
2149 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2150 {
2151 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2152 	__be64 *descs;
2153 
2154 	if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs))
2155 		return -ENOMEM;
2156 
2157 	descs = mr->descs;
2158 	descs[mr->ndescs + mr->meta_ndescs++] =
2159 		cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2160 
2161 	return 0;
2162 }
2163 
2164 static int
2165 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2166 			 int data_sg_nents, unsigned int *data_sg_offset,
2167 			 struct scatterlist *meta_sg, int meta_sg_nents,
2168 			 unsigned int *meta_sg_offset)
2169 {
2170 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2171 	struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2172 	int n;
2173 
2174 	pi_mr->ndescs = 0;
2175 	pi_mr->meta_ndescs = 0;
2176 	pi_mr->meta_length = 0;
2177 
2178 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2179 				   pi_mr->desc_size * pi_mr->max_descs,
2180 				   DMA_TO_DEVICE);
2181 
2182 	pi_mr->ibmr.page_size = ibmr->page_size;
2183 	n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2184 			   mlx5_set_page);
2185 	if (n != data_sg_nents)
2186 		return n;
2187 
2188 	pi_mr->data_iova = pi_mr->ibmr.iova;
2189 	pi_mr->data_length = pi_mr->ibmr.length;
2190 	pi_mr->ibmr.length = pi_mr->data_length;
2191 	ibmr->length = pi_mr->data_length;
2192 
2193 	if (meta_sg_nents) {
2194 		u64 page_mask = ~((u64)ibmr->page_size - 1);
2195 		u64 iova = pi_mr->data_iova;
2196 
2197 		n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2198 				    meta_sg_offset, mlx5_set_page_pi);
2199 
2200 		pi_mr->meta_length = pi_mr->ibmr.length;
2201 		/*
2202 		 * PI address for the HW is the offset of the metadata address
2203 		 * relative to the first data page address.
2204 		 * It equals to first data page address + size of data pages +
2205 		 * metadata offset at the first metadata page
2206 		 */
2207 		pi_mr->pi_iova = (iova & page_mask) +
2208 				 pi_mr->ndescs * ibmr->page_size +
2209 				 (pi_mr->ibmr.iova & ~page_mask);
2210 		/*
2211 		 * In order to use one MTT MR for data and metadata, we register
2212 		 * also the gaps between the end of the data and the start of
2213 		 * the metadata (the sig MR will verify that the HW will access
2214 		 * to right addresses). This mapping is safe because we use
2215 		 * internal mkey for the registration.
2216 		 */
2217 		pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2218 		pi_mr->ibmr.iova = iova;
2219 		ibmr->length += pi_mr->meta_length;
2220 	}
2221 
2222 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2223 				      pi_mr->desc_size * pi_mr->max_descs,
2224 				      DMA_TO_DEVICE);
2225 
2226 	return n;
2227 }
2228 
2229 static int
2230 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2231 			 int data_sg_nents, unsigned int *data_sg_offset,
2232 			 struct scatterlist *meta_sg, int meta_sg_nents,
2233 			 unsigned int *meta_sg_offset)
2234 {
2235 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2236 	struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2237 	int n;
2238 
2239 	pi_mr->ndescs = 0;
2240 	pi_mr->meta_ndescs = 0;
2241 	pi_mr->meta_length = 0;
2242 
2243 	ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2244 				   pi_mr->desc_size * pi_mr->max_descs,
2245 				   DMA_TO_DEVICE);
2246 
2247 	n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2248 			       meta_sg, meta_sg_nents, meta_sg_offset);
2249 
2250 	ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2251 				      pi_mr->desc_size * pi_mr->max_descs,
2252 				      DMA_TO_DEVICE);
2253 
2254 	/* This is zero-based memory region */
2255 	pi_mr->data_iova = 0;
2256 	pi_mr->ibmr.iova = 0;
2257 	pi_mr->pi_iova = pi_mr->data_length;
2258 	ibmr->length = pi_mr->ibmr.length;
2259 
2260 	return n;
2261 }
2262 
2263 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2264 			 int data_sg_nents, unsigned int *data_sg_offset,
2265 			 struct scatterlist *meta_sg, int meta_sg_nents,
2266 			 unsigned int *meta_sg_offset)
2267 {
2268 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2269 	struct mlx5_ib_mr *pi_mr = NULL;
2270 	int n;
2271 
2272 	WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2273 
2274 	mr->ndescs = 0;
2275 	mr->data_length = 0;
2276 	mr->data_iova = 0;
2277 	mr->meta_ndescs = 0;
2278 	mr->pi_iova = 0;
2279 	/*
2280 	 * As a performance optimization, if possible, there is no need to
2281 	 * perform UMR operation to register the data/metadata buffers.
2282 	 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2283 	 * Fallback to UMR only in case of a failure.
2284 	 */
2285 	n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2286 				    data_sg_offset, meta_sg, meta_sg_nents,
2287 				    meta_sg_offset);
2288 	if (n == data_sg_nents + meta_sg_nents)
2289 		goto out;
2290 	/*
2291 	 * As a performance optimization, if possible, there is no need to map
2292 	 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2293 	 * descriptors and fallback to KLM only in case of a failure.
2294 	 * It's more efficient for the HW to work with MTT descriptors
2295 	 * (especially in high load).
2296 	 * Use KLM (indirect access) only if it's mandatory.
2297 	 */
2298 	pi_mr = mr->mtt_mr;
2299 	n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2300 				     data_sg_offset, meta_sg, meta_sg_nents,
2301 				     meta_sg_offset);
2302 	if (n == data_sg_nents + meta_sg_nents)
2303 		goto out;
2304 
2305 	pi_mr = mr->klm_mr;
2306 	n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2307 				     data_sg_offset, meta_sg, meta_sg_nents,
2308 				     meta_sg_offset);
2309 	if (unlikely(n != data_sg_nents + meta_sg_nents))
2310 		return -ENOMEM;
2311 
2312 out:
2313 	/* This is zero-based memory region */
2314 	ibmr->iova = 0;
2315 	mr->pi_mr = pi_mr;
2316 	if (pi_mr)
2317 		ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2318 	else
2319 		ibmr->sig_attrs->meta_length = mr->meta_length;
2320 
2321 	return 0;
2322 }
2323 
2324 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2325 		      unsigned int *sg_offset)
2326 {
2327 	struct mlx5_ib_mr *mr = to_mmr(ibmr);
2328 	int n;
2329 
2330 	mr->ndescs = 0;
2331 
2332 	ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2333 				   mr->desc_size * mr->max_descs,
2334 				   DMA_TO_DEVICE);
2335 
2336 	if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2337 		n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2338 				       NULL);
2339 	else
2340 		n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2341 				mlx5_set_page);
2342 
2343 	ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2344 				      mr->desc_size * mr->max_descs,
2345 				      DMA_TO_DEVICE);
2346 
2347 	return n;
2348 }
2349