1 /* 2 * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/slab.h> 35 #include <rdma/ib_user_verbs.h> 36 37 #include "mlx4_ib.h" 38 39 static u32 convert_access(int acc) 40 { 41 return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) | 42 (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) | 43 (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) | 44 (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) | 45 (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) | 46 MLX4_PERM_LOCAL_READ; 47 } 48 49 static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type) 50 { 51 switch (type) { 52 case IB_MW_TYPE_1: return MLX4_MW_TYPE_1; 53 case IB_MW_TYPE_2: return MLX4_MW_TYPE_2; 54 default: return -1; 55 } 56 } 57 58 struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc) 59 { 60 struct mlx4_ib_mr *mr; 61 int err; 62 63 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 64 if (!mr) 65 return ERR_PTR(-ENOMEM); 66 67 err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0, 68 ~0ull, convert_access(acc), 0, 0, &mr->mmr); 69 if (err) 70 goto err_free; 71 72 err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr); 73 if (err) 74 goto err_mr; 75 76 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 77 mr->umem = NULL; 78 79 return &mr->ibmr; 80 81 err_mr: 82 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); 83 84 err_free: 85 kfree(mr); 86 87 return ERR_PTR(err); 88 } 89 90 int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, 91 struct ib_umem *umem) 92 { 93 u64 *pages; 94 int i, k, entry; 95 int n; 96 int len; 97 int err = 0; 98 struct scatterlist *sg; 99 100 pages = (u64 *) __get_free_page(GFP_KERNEL); 101 if (!pages) 102 return -ENOMEM; 103 104 i = n = 0; 105 106 for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) { 107 len = sg_dma_len(sg) >> mtt->page_shift; 108 for (k = 0; k < len; ++k) { 109 pages[i++] = sg_dma_address(sg) + 110 umem->page_size * k; 111 /* 112 * Be friendly to mlx4_write_mtt() and 113 * pass it chunks of appropriate size. 114 */ 115 if (i == PAGE_SIZE / sizeof (u64)) { 116 err = mlx4_write_mtt(dev->dev, mtt, n, 117 i, pages); 118 if (err) 119 goto out; 120 n += i; 121 i = 0; 122 } 123 } 124 } 125 126 if (i) 127 err = mlx4_write_mtt(dev->dev, mtt, n, i, pages); 128 129 out: 130 free_page((unsigned long) pages); 131 return err; 132 } 133 134 struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 135 u64 virt_addr, int access_flags, 136 struct ib_udata *udata) 137 { 138 struct mlx4_ib_dev *dev = to_mdev(pd->device); 139 struct mlx4_ib_mr *mr; 140 int shift; 141 int err; 142 int n; 143 144 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 145 if (!mr) 146 return ERR_PTR(-ENOMEM); 147 148 /* Force registering the memory as writable. */ 149 /* Used for memory re-registeration. HCA protects the access */ 150 mr->umem = ib_umem_get(pd->uobject->context, start, length, 151 access_flags | IB_ACCESS_LOCAL_WRITE, 0); 152 if (IS_ERR(mr->umem)) { 153 err = PTR_ERR(mr->umem); 154 goto err_free; 155 } 156 157 n = ib_umem_page_count(mr->umem); 158 shift = ilog2(mr->umem->page_size); 159 160 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length, 161 convert_access(access_flags), n, shift, &mr->mmr); 162 if (err) 163 goto err_umem; 164 165 err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem); 166 if (err) 167 goto err_mr; 168 169 err = mlx4_mr_enable(dev->dev, &mr->mmr); 170 if (err) 171 goto err_mr; 172 173 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 174 175 return &mr->ibmr; 176 177 err_mr: 178 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); 179 180 err_umem: 181 ib_umem_release(mr->umem); 182 183 err_free: 184 kfree(mr); 185 186 return ERR_PTR(err); 187 } 188 189 int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, 190 u64 start, u64 length, u64 virt_addr, 191 int mr_access_flags, struct ib_pd *pd, 192 struct ib_udata *udata) 193 { 194 struct mlx4_ib_dev *dev = to_mdev(mr->device); 195 struct mlx4_ib_mr *mmr = to_mmr(mr); 196 struct mlx4_mpt_entry *mpt_entry; 197 struct mlx4_mpt_entry **pmpt_entry = &mpt_entry; 198 int err; 199 200 /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs, 201 * we assume that the calls can't run concurrently. Otherwise, a 202 * race exists. 203 */ 204 err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry); 205 206 if (err) 207 return err; 208 209 if (flags & IB_MR_REREG_PD) { 210 err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry, 211 to_mpd(pd)->pdn); 212 213 if (err) 214 goto release_mpt_entry; 215 } 216 217 if (flags & IB_MR_REREG_ACCESS) { 218 err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry, 219 convert_access(mr_access_flags)); 220 221 if (err) 222 goto release_mpt_entry; 223 } 224 225 if (flags & IB_MR_REREG_TRANS) { 226 int shift; 227 int n; 228 229 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); 230 ib_umem_release(mmr->umem); 231 mmr->umem = ib_umem_get(mr->uobject->context, start, length, 232 mr_access_flags | 233 IB_ACCESS_LOCAL_WRITE, 234 0); 235 if (IS_ERR(mmr->umem)) { 236 err = PTR_ERR(mmr->umem); 237 /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */ 238 mmr->umem = NULL; 239 goto release_mpt_entry; 240 } 241 n = ib_umem_page_count(mmr->umem); 242 shift = ilog2(mmr->umem->page_size); 243 244 err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr, 245 virt_addr, length, n, shift, 246 *pmpt_entry); 247 if (err) { 248 ib_umem_release(mmr->umem); 249 goto release_mpt_entry; 250 } 251 mmr->mmr.iova = virt_addr; 252 mmr->mmr.size = length; 253 254 err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem); 255 if (err) { 256 mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); 257 ib_umem_release(mmr->umem); 258 goto release_mpt_entry; 259 } 260 } 261 262 /* If we couldn't transfer the MR to the HCA, just remember to 263 * return a failure. But dereg_mr will free the resources. 264 */ 265 err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry); 266 if (!err && flags & IB_MR_REREG_ACCESS) 267 mmr->mmr.access = mr_access_flags; 268 269 release_mpt_entry: 270 mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry); 271 272 return err; 273 } 274 275 static int 276 mlx4_alloc_priv_pages(struct ib_device *device, 277 struct mlx4_ib_mr *mr, 278 int max_pages) 279 { 280 int ret; 281 282 /* Ensure that size is aligned to DMA cacheline 283 * requirements. 284 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES 285 * so page_map_size will never cross PAGE_SIZE. 286 */ 287 mr->page_map_size = roundup(max_pages * sizeof(u64), 288 MLX4_MR_PAGES_ALIGN); 289 290 /* Prevent cross page boundary allocation. */ 291 mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL); 292 if (!mr->pages) 293 return -ENOMEM; 294 295 mr->page_map = dma_map_single(device->dev.parent, mr->pages, 296 mr->page_map_size, DMA_TO_DEVICE); 297 298 if (dma_mapping_error(device->dev.parent, mr->page_map)) { 299 ret = -ENOMEM; 300 goto err; 301 } 302 303 return 0; 304 305 err: 306 free_page((unsigned long)mr->pages); 307 return ret; 308 } 309 310 static void 311 mlx4_free_priv_pages(struct mlx4_ib_mr *mr) 312 { 313 if (mr->pages) { 314 struct ib_device *device = mr->ibmr.device; 315 316 dma_unmap_single(device->dev.parent, mr->page_map, 317 mr->page_map_size, DMA_TO_DEVICE); 318 free_page((unsigned long)mr->pages); 319 mr->pages = NULL; 320 } 321 } 322 323 int mlx4_ib_dereg_mr(struct ib_mr *ibmr) 324 { 325 struct mlx4_ib_mr *mr = to_mmr(ibmr); 326 int ret; 327 328 mlx4_free_priv_pages(mr); 329 330 ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr); 331 if (ret) 332 return ret; 333 if (mr->umem) 334 ib_umem_release(mr->umem); 335 kfree(mr); 336 337 return 0; 338 } 339 340 struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, 341 struct ib_udata *udata) 342 { 343 struct mlx4_ib_dev *dev = to_mdev(pd->device); 344 struct mlx4_ib_mw *mw; 345 int err; 346 347 mw = kmalloc(sizeof(*mw), GFP_KERNEL); 348 if (!mw) 349 return ERR_PTR(-ENOMEM); 350 351 err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn, 352 to_mlx4_type(type), &mw->mmw); 353 if (err) 354 goto err_free; 355 356 err = mlx4_mw_enable(dev->dev, &mw->mmw); 357 if (err) 358 goto err_mw; 359 360 mw->ibmw.rkey = mw->mmw.key; 361 362 return &mw->ibmw; 363 364 err_mw: 365 mlx4_mw_free(dev->dev, &mw->mmw); 366 367 err_free: 368 kfree(mw); 369 370 return ERR_PTR(err); 371 } 372 373 int mlx4_ib_dealloc_mw(struct ib_mw *ibmw) 374 { 375 struct mlx4_ib_mw *mw = to_mmw(ibmw); 376 377 mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw); 378 kfree(mw); 379 380 return 0; 381 } 382 383 struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, 384 enum ib_mr_type mr_type, 385 u32 max_num_sg) 386 { 387 struct mlx4_ib_dev *dev = to_mdev(pd->device); 388 struct mlx4_ib_mr *mr; 389 int err; 390 391 if (mr_type != IB_MR_TYPE_MEM_REG || 392 max_num_sg > MLX4_MAX_FAST_REG_PAGES) 393 return ERR_PTR(-EINVAL); 394 395 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 396 if (!mr) 397 return ERR_PTR(-ENOMEM); 398 399 err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0, 400 max_num_sg, 0, &mr->mmr); 401 if (err) 402 goto err_free; 403 404 err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg); 405 if (err) 406 goto err_free_mr; 407 408 mr->max_pages = max_num_sg; 409 410 err = mlx4_mr_enable(dev->dev, &mr->mmr); 411 if (err) 412 goto err_free_pl; 413 414 mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; 415 mr->umem = NULL; 416 417 return &mr->ibmr; 418 419 err_free_pl: 420 mlx4_free_priv_pages(mr); 421 err_free_mr: 422 (void) mlx4_mr_free(dev->dev, &mr->mmr); 423 err_free: 424 kfree(mr); 425 return ERR_PTR(err); 426 } 427 428 struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc, 429 struct ib_fmr_attr *fmr_attr) 430 { 431 struct mlx4_ib_dev *dev = to_mdev(pd->device); 432 struct mlx4_ib_fmr *fmr; 433 int err = -ENOMEM; 434 435 fmr = kmalloc(sizeof *fmr, GFP_KERNEL); 436 if (!fmr) 437 return ERR_PTR(-ENOMEM); 438 439 err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc), 440 fmr_attr->max_pages, fmr_attr->max_maps, 441 fmr_attr->page_shift, &fmr->mfmr); 442 if (err) 443 goto err_free; 444 445 err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr); 446 if (err) 447 goto err_mr; 448 449 fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key; 450 451 return &fmr->ibfmr; 452 453 err_mr: 454 (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr); 455 456 err_free: 457 kfree(fmr); 458 459 return ERR_PTR(err); 460 } 461 462 int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, 463 int npages, u64 iova) 464 { 465 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); 466 struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device); 467 468 return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova, 469 &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); 470 } 471 472 int mlx4_ib_unmap_fmr(struct list_head *fmr_list) 473 { 474 struct ib_fmr *ibfmr; 475 int err; 476 struct mlx4_dev *mdev = NULL; 477 478 list_for_each_entry(ibfmr, fmr_list, list) { 479 if (mdev && to_mdev(ibfmr->device)->dev != mdev) 480 return -EINVAL; 481 mdev = to_mdev(ibfmr->device)->dev; 482 } 483 484 if (!mdev) 485 return 0; 486 487 list_for_each_entry(ibfmr, fmr_list, list) { 488 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); 489 490 mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); 491 } 492 493 /* 494 * Make sure all MPT status updates are visible before issuing 495 * SYNC_TPT firmware command. 496 */ 497 wmb(); 498 499 err = mlx4_SYNC_TPT(mdev); 500 if (err) 501 pr_warn("SYNC_TPT error %d when " 502 "unmapping FMRs\n", err); 503 504 return 0; 505 } 506 507 int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr) 508 { 509 struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); 510 struct mlx4_ib_dev *dev = to_mdev(ibfmr->device); 511 int err; 512 513 err = mlx4_fmr_free(dev->dev, &ifmr->mfmr); 514 515 if (!err) 516 kfree(ifmr); 517 518 return err; 519 } 520 521 static int mlx4_set_page(struct ib_mr *ibmr, u64 addr) 522 { 523 struct mlx4_ib_mr *mr = to_mmr(ibmr); 524 525 if (unlikely(mr->npages == mr->max_pages)) 526 return -ENOMEM; 527 528 mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT); 529 530 return 0; 531 } 532 533 int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 534 unsigned int *sg_offset) 535 { 536 struct mlx4_ib_mr *mr = to_mmr(ibmr); 537 int rc; 538 539 mr->npages = 0; 540 541 ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map, 542 mr->page_map_size, DMA_TO_DEVICE); 543 544 rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page); 545 546 ib_dma_sync_single_for_device(ibmr->device, mr->page_map, 547 mr->page_map_size, DMA_TO_DEVICE); 548 549 return rc; 550 } 551