xref: /linux/drivers/infiniband/hw/irdma/utils.c (revision 94737ef56b610d94a24fadfb8386fc17dbd79ddd)
1 // SPDX-License-Identifier: GPL-2.0 or Linux-OpenIB
2 /* Copyright (c) 2015 - 2021 Intel Corporation */
3 #include "main.h"
4 
5 /**
6  * irdma_arp_table -manage arp table
7  * @rf: RDMA PCI function
8  * @ip_addr: ip address for device
9  * @ipv4: IPv4 flag
10  * @mac_addr: mac address ptr
11  * @action: modify, delete or add
12  */
13 int irdma_arp_table(struct irdma_pci_f *rf, u32 *ip_addr, bool ipv4,
14 		    const u8 *mac_addr, u32 action)
15 {
16 	unsigned long flags;
17 	int arp_index;
18 	u32 ip[4] = {};
19 
20 	if (ipv4)
21 		ip[0] = *ip_addr;
22 	else
23 		memcpy(ip, ip_addr, sizeof(ip));
24 
25 	spin_lock_irqsave(&rf->arp_lock, flags);
26 	for (arp_index = 0; (u32)arp_index < rf->arp_table_size; arp_index++) {
27 		if (!memcmp(rf->arp_table[arp_index].ip_addr, ip, sizeof(ip)))
28 			break;
29 	}
30 
31 	switch (action) {
32 	case IRDMA_ARP_ADD:
33 		if (arp_index != rf->arp_table_size) {
34 			arp_index = -1;
35 			break;
36 		}
37 
38 		arp_index = 0;
39 		if (irdma_alloc_rsrc(rf, rf->allocated_arps, rf->arp_table_size,
40 				     (u32 *)&arp_index, &rf->next_arp_index)) {
41 			arp_index = -1;
42 			break;
43 		}
44 
45 		memcpy(rf->arp_table[arp_index].ip_addr, ip,
46 		       sizeof(rf->arp_table[arp_index].ip_addr));
47 		ether_addr_copy(rf->arp_table[arp_index].mac_addr, mac_addr);
48 		break;
49 	case IRDMA_ARP_RESOLVE:
50 		if (arp_index == rf->arp_table_size)
51 			arp_index = -1;
52 		break;
53 	case IRDMA_ARP_DELETE:
54 		if (arp_index == rf->arp_table_size) {
55 			arp_index = -1;
56 			break;
57 		}
58 
59 		memset(rf->arp_table[arp_index].ip_addr, 0,
60 		       sizeof(rf->arp_table[arp_index].ip_addr));
61 		eth_zero_addr(rf->arp_table[arp_index].mac_addr);
62 		irdma_free_rsrc(rf, rf->allocated_arps, arp_index);
63 		break;
64 	default:
65 		arp_index = -1;
66 		break;
67 	}
68 
69 	spin_unlock_irqrestore(&rf->arp_lock, flags);
70 	return arp_index;
71 }
72 
73 /**
74  * irdma_add_arp - add a new arp entry if needed
75  * @rf: RDMA function
76  * @ip: IP address
77  * @ipv4: IPv4 flag
78  * @mac: MAC address
79  */
80 int irdma_add_arp(struct irdma_pci_f *rf, u32 *ip, bool ipv4, const u8 *mac)
81 {
82 	int arpidx;
83 
84 	arpidx = irdma_arp_table(rf, &ip[0], ipv4, NULL, IRDMA_ARP_RESOLVE);
85 	if (arpidx >= 0) {
86 		if (ether_addr_equal(rf->arp_table[arpidx].mac_addr, mac))
87 			return arpidx;
88 
89 		irdma_manage_arp_cache(rf, rf->arp_table[arpidx].mac_addr, ip,
90 				       ipv4, IRDMA_ARP_DELETE);
91 	}
92 
93 	irdma_manage_arp_cache(rf, mac, ip, ipv4, IRDMA_ARP_ADD);
94 
95 	return irdma_arp_table(rf, ip, ipv4, NULL, IRDMA_ARP_RESOLVE);
96 }
97 
98 /**
99  * wr32 - write 32 bits to hw register
100  * @hw: hardware information including registers
101  * @reg: register offset
102  * @val: value to write to register
103  */
104 inline void wr32(struct irdma_hw *hw, u32 reg, u32 val)
105 {
106 	writel(val, hw->hw_addr + reg);
107 }
108 
109 /**
110  * rd32 - read a 32 bit hw register
111  * @hw: hardware information including registers
112  * @reg: register offset
113  *
114  * Return value of register content
115  */
116 inline u32 rd32(struct irdma_hw *hw, u32 reg)
117 {
118 	return readl(hw->hw_addr + reg);
119 }
120 
121 /**
122  * rd64 - read a 64 bit hw register
123  * @hw: hardware information including registers
124  * @reg: register offset
125  *
126  * Return value of register content
127  */
128 inline u64 rd64(struct irdma_hw *hw, u32 reg)
129 {
130 	return readq(hw->hw_addr + reg);
131 }
132 
133 static void irdma_gid_change_event(struct ib_device *ibdev)
134 {
135 	struct ib_event ib_event;
136 
137 	ib_event.event = IB_EVENT_GID_CHANGE;
138 	ib_event.device = ibdev;
139 	ib_event.element.port_num = 1;
140 	ib_dispatch_event(&ib_event);
141 }
142 
143 /**
144  * irdma_inetaddr_event - system notifier for ipv4 addr events
145  * @notifier: not used
146  * @event: event for notifier
147  * @ptr: if address
148  */
149 int irdma_inetaddr_event(struct notifier_block *notifier, unsigned long event,
150 			 void *ptr)
151 {
152 	struct in_ifaddr *ifa = ptr;
153 	struct net_device *real_dev, *netdev = ifa->ifa_dev->dev;
154 	struct irdma_device *iwdev;
155 	struct ib_device *ibdev;
156 	u32 local_ipaddr;
157 
158 	real_dev = rdma_vlan_dev_real_dev(netdev);
159 	if (!real_dev)
160 		real_dev = netdev;
161 
162 	ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA);
163 	if (!ibdev)
164 		return NOTIFY_DONE;
165 
166 	iwdev = to_iwdev(ibdev);
167 	local_ipaddr = ntohl(ifa->ifa_address);
168 	ibdev_dbg(&iwdev->ibdev,
169 		  "DEV: netdev %p event %lu local_ip=%pI4 MAC=%pM\n", real_dev,
170 		  event, &local_ipaddr, real_dev->dev_addr);
171 	switch (event) {
172 	case NETDEV_DOWN:
173 		irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr,
174 				       &local_ipaddr, true, IRDMA_ARP_DELETE);
175 		irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, false);
176 		irdma_gid_change_event(&iwdev->ibdev);
177 		break;
178 	case NETDEV_UP:
179 	case NETDEV_CHANGEADDR:
180 		irdma_add_arp(iwdev->rf, &local_ipaddr, true, real_dev->dev_addr);
181 		irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, true);
182 		irdma_gid_change_event(&iwdev->ibdev);
183 		break;
184 	default:
185 		break;
186 	}
187 
188 	ib_device_put(ibdev);
189 
190 	return NOTIFY_DONE;
191 }
192 
193 /**
194  * irdma_inet6addr_event - system notifier for ipv6 addr events
195  * @notifier: not used
196  * @event: event for notifier
197  * @ptr: if address
198  */
199 int irdma_inet6addr_event(struct notifier_block *notifier, unsigned long event,
200 			  void *ptr)
201 {
202 	struct inet6_ifaddr *ifa = ptr;
203 	struct net_device *real_dev, *netdev = ifa->idev->dev;
204 	struct irdma_device *iwdev;
205 	struct ib_device *ibdev;
206 	u32 local_ipaddr6[4];
207 
208 	real_dev = rdma_vlan_dev_real_dev(netdev);
209 	if (!real_dev)
210 		real_dev = netdev;
211 
212 	ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA);
213 	if (!ibdev)
214 		return NOTIFY_DONE;
215 
216 	iwdev = to_iwdev(ibdev);
217 	irdma_copy_ip_ntohl(local_ipaddr6, ifa->addr.in6_u.u6_addr32);
218 	ibdev_dbg(&iwdev->ibdev,
219 		  "DEV: netdev %p event %lu local_ip=%pI6 MAC=%pM\n", real_dev,
220 		  event, local_ipaddr6, real_dev->dev_addr);
221 	switch (event) {
222 	case NETDEV_DOWN:
223 		irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr,
224 				       local_ipaddr6, false, IRDMA_ARP_DELETE);
225 		irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, false);
226 		irdma_gid_change_event(&iwdev->ibdev);
227 		break;
228 	case NETDEV_UP:
229 	case NETDEV_CHANGEADDR:
230 		irdma_add_arp(iwdev->rf, local_ipaddr6, false,
231 			      real_dev->dev_addr);
232 		irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, true);
233 		irdma_gid_change_event(&iwdev->ibdev);
234 		break;
235 	default:
236 		break;
237 	}
238 
239 	ib_device_put(ibdev);
240 
241 	return NOTIFY_DONE;
242 }
243 
244 /**
245  * irdma_net_event - system notifier for net events
246  * @notifier: not used
247  * @event: event for notifier
248  * @ptr: neighbor
249  */
250 int irdma_net_event(struct notifier_block *notifier, unsigned long event,
251 		    void *ptr)
252 {
253 	struct neighbour *neigh = ptr;
254 	struct net_device *real_dev, *netdev = (struct net_device *)neigh->dev;
255 	struct irdma_device *iwdev;
256 	struct ib_device *ibdev;
257 	__be32 *p;
258 	u32 local_ipaddr[4] = {};
259 	bool ipv4 = true;
260 
261 	switch (event) {
262 	case NETEVENT_NEIGH_UPDATE:
263 		real_dev = rdma_vlan_dev_real_dev(netdev);
264 		if (!real_dev)
265 			real_dev = netdev;
266 		ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA);
267 		if (!ibdev)
268 			return NOTIFY_DONE;
269 
270 		iwdev = to_iwdev(ibdev);
271 		p = (__be32 *)neigh->primary_key;
272 		if (neigh->tbl->family == AF_INET6) {
273 			ipv4 = false;
274 			irdma_copy_ip_ntohl(local_ipaddr, p);
275 		} else {
276 			local_ipaddr[0] = ntohl(*p);
277 		}
278 
279 		ibdev_dbg(&iwdev->ibdev,
280 			  "DEV: netdev %p state %d local_ip=%pI4 MAC=%pM\n",
281 			  iwdev->netdev, neigh->nud_state, local_ipaddr,
282 			  neigh->ha);
283 
284 		if (neigh->nud_state & NUD_VALID)
285 			irdma_add_arp(iwdev->rf, local_ipaddr, ipv4, neigh->ha);
286 
287 		else
288 			irdma_manage_arp_cache(iwdev->rf, neigh->ha,
289 					       local_ipaddr, ipv4,
290 					       IRDMA_ARP_DELETE);
291 		ib_device_put(ibdev);
292 		break;
293 	default:
294 		break;
295 	}
296 
297 	return NOTIFY_DONE;
298 }
299 
300 /**
301  * irdma_netdevice_event - system notifier for netdev events
302  * @notifier: not used
303  * @event: event for notifier
304  * @ptr: netdev
305  */
306 int irdma_netdevice_event(struct notifier_block *notifier, unsigned long event,
307 			  void *ptr)
308 {
309 	struct irdma_device *iwdev;
310 	struct ib_device *ibdev;
311 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
312 
313 	ibdev = ib_device_get_by_netdev(netdev, RDMA_DRIVER_IRDMA);
314 	if (!ibdev)
315 		return NOTIFY_DONE;
316 
317 	iwdev = to_iwdev(ibdev);
318 	iwdev->iw_status = 1;
319 	switch (event) {
320 	case NETDEV_DOWN:
321 		iwdev->iw_status = 0;
322 		fallthrough;
323 	case NETDEV_UP:
324 		irdma_port_ibevent(iwdev);
325 		break;
326 	default:
327 		break;
328 	}
329 	ib_device_put(ibdev);
330 
331 	return NOTIFY_DONE;
332 }
333 
334 /**
335  * irdma_add_ipv6_addr - add ipv6 address to the hw arp table
336  * @iwdev: irdma device
337  */
338 static void irdma_add_ipv6_addr(struct irdma_device *iwdev)
339 {
340 	struct net_device *ip_dev;
341 	struct inet6_dev *idev;
342 	struct inet6_ifaddr *ifp, *tmp;
343 	u32 local_ipaddr6[4];
344 
345 	rcu_read_lock();
346 	for_each_netdev_rcu (&init_net, ip_dev) {
347 		if (((rdma_vlan_dev_vlan_id(ip_dev) < 0xFFFF &&
348 		      rdma_vlan_dev_real_dev(ip_dev) == iwdev->netdev) ||
349 		      ip_dev == iwdev->netdev) &&
350 		      (READ_ONCE(ip_dev->flags) & IFF_UP)) {
351 			idev = __in6_dev_get(ip_dev);
352 			if (!idev) {
353 				ibdev_err(&iwdev->ibdev, "ipv6 inet device not found\n");
354 				break;
355 			}
356 			list_for_each_entry_safe (ifp, tmp, &idev->addr_list,
357 						  if_list) {
358 				ibdev_dbg(&iwdev->ibdev,
359 					  "INIT: IP=%pI6, vlan_id=%d, MAC=%pM\n",
360 					  &ifp->addr,
361 					  rdma_vlan_dev_vlan_id(ip_dev),
362 					  ip_dev->dev_addr);
363 
364 				irdma_copy_ip_ntohl(local_ipaddr6,
365 						    ifp->addr.in6_u.u6_addr32);
366 				irdma_manage_arp_cache(iwdev->rf,
367 						       ip_dev->dev_addr,
368 						       local_ipaddr6, false,
369 						       IRDMA_ARP_ADD);
370 			}
371 		}
372 	}
373 	rcu_read_unlock();
374 }
375 
376 /**
377  * irdma_add_ipv4_addr - add ipv4 address to the hw arp table
378  * @iwdev: irdma device
379  */
380 static void irdma_add_ipv4_addr(struct irdma_device *iwdev)
381 {
382 	struct net_device *dev;
383 	struct in_device *idev;
384 	u32 ip_addr;
385 
386 	rcu_read_lock();
387 	for_each_netdev_rcu (&init_net, dev) {
388 		if (((rdma_vlan_dev_vlan_id(dev) < 0xFFFF &&
389 		      rdma_vlan_dev_real_dev(dev) == iwdev->netdev) ||
390 		      dev == iwdev->netdev) && (READ_ONCE(dev->flags) & IFF_UP)) {
391 			const struct in_ifaddr *ifa;
392 
393 			idev = __in_dev_get_rcu(dev);
394 			if (!idev)
395 				continue;
396 
397 			in_dev_for_each_ifa_rcu(ifa, idev) {
398 				ibdev_dbg(&iwdev->ibdev, "CM: IP=%pI4, vlan_id=%d, MAC=%pM\n",
399 					  &ifa->ifa_address, rdma_vlan_dev_vlan_id(dev),
400 					  dev->dev_addr);
401 
402 				ip_addr = ntohl(ifa->ifa_address);
403 				irdma_manage_arp_cache(iwdev->rf, dev->dev_addr,
404 						       &ip_addr, true,
405 						       IRDMA_ARP_ADD);
406 			}
407 		}
408 	}
409 	rcu_read_unlock();
410 }
411 
412 /**
413  * irdma_add_ip - add ip addresses
414  * @iwdev: irdma device
415  *
416  * Add ipv4/ipv6 addresses to the arp cache
417  */
418 void irdma_add_ip(struct irdma_device *iwdev)
419 {
420 	irdma_add_ipv4_addr(iwdev);
421 	irdma_add_ipv6_addr(iwdev);
422 }
423 
424 /**
425  * irdma_alloc_and_get_cqp_request - get cqp struct
426  * @cqp: device cqp ptr
427  * @wait: cqp to be used in wait mode
428  */
429 struct irdma_cqp_request *irdma_alloc_and_get_cqp_request(struct irdma_cqp *cqp,
430 							  bool wait)
431 {
432 	struct irdma_cqp_request *cqp_request = NULL;
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(&cqp->req_lock, flags);
436 	if (!list_empty(&cqp->cqp_avail_reqs)) {
437 		cqp_request = list_first_entry(&cqp->cqp_avail_reqs,
438 					       struct irdma_cqp_request, list);
439 		list_del_init(&cqp_request->list);
440 	}
441 	spin_unlock_irqrestore(&cqp->req_lock, flags);
442 	if (!cqp_request) {
443 		cqp_request = kzalloc(sizeof(*cqp_request), GFP_ATOMIC);
444 		if (cqp_request) {
445 			cqp_request->dynamic = true;
446 			if (wait)
447 				init_waitqueue_head(&cqp_request->waitq);
448 		}
449 	}
450 	if (!cqp_request) {
451 		ibdev_dbg(to_ibdev(cqp->sc_cqp.dev), "ERR: CQP Request Fail: No Memory");
452 		return NULL;
453 	}
454 
455 	cqp_request->waiting = wait;
456 	refcount_set(&cqp_request->refcnt, 1);
457 	memset(&cqp_request->compl_info, 0, sizeof(cqp_request->compl_info));
458 
459 	return cqp_request;
460 }
461 
462 /**
463  * irdma_get_cqp_request - increase refcount for cqp_request
464  * @cqp_request: pointer to cqp_request instance
465  */
466 static inline void irdma_get_cqp_request(struct irdma_cqp_request *cqp_request)
467 {
468 	refcount_inc(&cqp_request->refcnt);
469 }
470 
471 /**
472  * irdma_free_cqp_request - free cqp request
473  * @cqp: cqp ptr
474  * @cqp_request: to be put back in cqp list
475  */
476 void irdma_free_cqp_request(struct irdma_cqp *cqp,
477 			    struct irdma_cqp_request *cqp_request)
478 {
479 	unsigned long flags;
480 
481 	if (cqp_request->dynamic) {
482 		kfree(cqp_request);
483 	} else {
484 		cqp_request->request_done = false;
485 		cqp_request->callback_fcn = NULL;
486 		cqp_request->waiting = false;
487 
488 		spin_lock_irqsave(&cqp->req_lock, flags);
489 		list_add_tail(&cqp_request->list, &cqp->cqp_avail_reqs);
490 		spin_unlock_irqrestore(&cqp->req_lock, flags);
491 	}
492 	wake_up(&cqp->remove_wq);
493 }
494 
495 /**
496  * irdma_put_cqp_request - dec ref count and free if 0
497  * @cqp: cqp ptr
498  * @cqp_request: to be put back in cqp list
499  */
500 void irdma_put_cqp_request(struct irdma_cqp *cqp,
501 			   struct irdma_cqp_request *cqp_request)
502 {
503 	if (refcount_dec_and_test(&cqp_request->refcnt))
504 		irdma_free_cqp_request(cqp, cqp_request);
505 }
506 
507 /**
508  * irdma_free_pending_cqp_request -free pending cqp request objs
509  * @cqp: cqp ptr
510  * @cqp_request: to be put back in cqp list
511  */
512 static void
513 irdma_free_pending_cqp_request(struct irdma_cqp *cqp,
514 			       struct irdma_cqp_request *cqp_request)
515 {
516 	if (cqp_request->waiting) {
517 		cqp_request->compl_info.error = true;
518 		cqp_request->request_done = true;
519 		wake_up(&cqp_request->waitq);
520 	}
521 	wait_event_timeout(cqp->remove_wq,
522 			   refcount_read(&cqp_request->refcnt) == 1, 1000);
523 	irdma_put_cqp_request(cqp, cqp_request);
524 }
525 
526 /**
527  * irdma_cleanup_pending_cqp_op - clean-up cqp with no
528  * completions
529  * @rf: RDMA PCI function
530  */
531 void irdma_cleanup_pending_cqp_op(struct irdma_pci_f *rf)
532 {
533 	struct irdma_sc_dev *dev = &rf->sc_dev;
534 	struct irdma_cqp *cqp = &rf->cqp;
535 	struct irdma_cqp_request *cqp_request = NULL;
536 	struct cqp_cmds_info *pcmdinfo = NULL;
537 	u32 i, pending_work, wqe_idx;
538 
539 	pending_work = IRDMA_RING_USED_QUANTA(cqp->sc_cqp.sq_ring);
540 	wqe_idx = IRDMA_RING_CURRENT_TAIL(cqp->sc_cqp.sq_ring);
541 	for (i = 0; i < pending_work; i++) {
542 		cqp_request = (struct irdma_cqp_request *)(unsigned long)
543 				      cqp->scratch_array[wqe_idx];
544 		if (cqp_request)
545 			irdma_free_pending_cqp_request(cqp, cqp_request);
546 		wqe_idx = (wqe_idx + 1) % IRDMA_RING_SIZE(cqp->sc_cqp.sq_ring);
547 	}
548 
549 	while (!list_empty(&dev->cqp_cmd_head)) {
550 		pcmdinfo = irdma_remove_cqp_head(dev);
551 		cqp_request =
552 			container_of(pcmdinfo, struct irdma_cqp_request, info);
553 		if (cqp_request)
554 			irdma_free_pending_cqp_request(cqp, cqp_request);
555 	}
556 }
557 
558 /**
559  * irdma_wait_event - wait for completion
560  * @rf: RDMA PCI function
561  * @cqp_request: cqp request to wait
562  */
563 static int irdma_wait_event(struct irdma_pci_f *rf,
564 			    struct irdma_cqp_request *cqp_request)
565 {
566 	struct irdma_cqp_timeout cqp_timeout = {};
567 	bool cqp_error = false;
568 	int err_code = 0;
569 
570 	cqp_timeout.compl_cqp_cmds = rf->sc_dev.cqp_cmd_stats[IRDMA_OP_CMPL_CMDS];
571 	do {
572 		irdma_cqp_ce_handler(rf, &rf->ccq.sc_cq);
573 		if (wait_event_timeout(cqp_request->waitq,
574 				       cqp_request->request_done,
575 				       msecs_to_jiffies(CQP_COMPL_WAIT_TIME_MS)))
576 			break;
577 
578 		irdma_check_cqp_progress(&cqp_timeout, &rf->sc_dev);
579 
580 		if (cqp_timeout.count < CQP_TIMEOUT_THRESHOLD)
581 			continue;
582 
583 		if (!rf->reset) {
584 			rf->reset = true;
585 			rf->gen_ops.request_reset(rf);
586 		}
587 		return -ETIMEDOUT;
588 	} while (1);
589 
590 	cqp_error = cqp_request->compl_info.error;
591 	if (cqp_error) {
592 		err_code = -EIO;
593 		if (cqp_request->compl_info.maj_err_code == 0xFFFF &&
594 		    cqp_request->compl_info.min_err_code == 0x8029) {
595 			if (!rf->reset) {
596 				rf->reset = true;
597 				rf->gen_ops.request_reset(rf);
598 			}
599 		}
600 	}
601 
602 	return err_code;
603 }
604 
605 static const char *const irdma_cqp_cmd_names[IRDMA_MAX_CQP_OPS] = {
606 	[IRDMA_OP_CEQ_DESTROY] = "Destroy CEQ Cmd",
607 	[IRDMA_OP_AEQ_DESTROY] = "Destroy AEQ Cmd",
608 	[IRDMA_OP_DELETE_ARP_CACHE_ENTRY] = "Delete ARP Cache Cmd",
609 	[IRDMA_OP_MANAGE_APBVT_ENTRY] = "Manage APBV Table Entry Cmd",
610 	[IRDMA_OP_CEQ_CREATE] = "CEQ Create Cmd",
611 	[IRDMA_OP_AEQ_CREATE] = "AEQ Destroy Cmd",
612 	[IRDMA_OP_MANAGE_QHASH_TABLE_ENTRY] = "Manage Quad Hash Table Entry Cmd",
613 	[IRDMA_OP_QP_MODIFY] = "Modify QP Cmd",
614 	[IRDMA_OP_QP_UPLOAD_CONTEXT] = "Upload Context Cmd",
615 	[IRDMA_OP_CQ_CREATE] = "Create CQ Cmd",
616 	[IRDMA_OP_CQ_DESTROY] = "Destroy CQ Cmd",
617 	[IRDMA_OP_QP_CREATE] = "Create QP Cmd",
618 	[IRDMA_OP_QP_DESTROY] = "Destroy QP Cmd",
619 	[IRDMA_OP_ALLOC_STAG] = "Allocate STag Cmd",
620 	[IRDMA_OP_MR_REG_NON_SHARED] = "Register Non-Shared MR Cmd",
621 	[IRDMA_OP_DEALLOC_STAG] = "Deallocate STag Cmd",
622 	[IRDMA_OP_MW_ALLOC] = "Allocate Memory Window Cmd",
623 	[IRDMA_OP_QP_FLUSH_WQES] = "Flush QP Cmd",
624 	[IRDMA_OP_ADD_ARP_CACHE_ENTRY] = "Add ARP Cache Cmd",
625 	[IRDMA_OP_MANAGE_PUSH_PAGE] = "Manage Push Page Cmd",
626 	[IRDMA_OP_UPDATE_PE_SDS] = "Update PE SDs Cmd",
627 	[IRDMA_OP_MANAGE_HMC_PM_FUNC_TABLE] = "Manage HMC PM Function Table Cmd",
628 	[IRDMA_OP_SUSPEND] = "Suspend QP Cmd",
629 	[IRDMA_OP_RESUME] = "Resume QP Cmd",
630 	[IRDMA_OP_MANAGE_VF_PBLE_BP] = "Manage VF PBLE Backing Pages Cmd",
631 	[IRDMA_OP_QUERY_FPM_VAL] = "Query FPM Values Cmd",
632 	[IRDMA_OP_COMMIT_FPM_VAL] = "Commit FPM Values Cmd",
633 	[IRDMA_OP_AH_CREATE] = "Create Address Handle Cmd",
634 	[IRDMA_OP_AH_MODIFY] = "Modify Address Handle Cmd",
635 	[IRDMA_OP_AH_DESTROY] = "Destroy Address Handle Cmd",
636 	[IRDMA_OP_MC_CREATE] = "Create Multicast Group Cmd",
637 	[IRDMA_OP_MC_DESTROY] = "Destroy Multicast Group Cmd",
638 	[IRDMA_OP_MC_MODIFY] = "Modify Multicast Group Cmd",
639 	[IRDMA_OP_STATS_ALLOCATE] = "Add Statistics Instance Cmd",
640 	[IRDMA_OP_STATS_FREE] = "Free Statistics Instance Cmd",
641 	[IRDMA_OP_STATS_GATHER] = "Gather Statistics Cmd",
642 	[IRDMA_OP_WS_ADD_NODE] = "Add Work Scheduler Node Cmd",
643 	[IRDMA_OP_WS_MODIFY_NODE] = "Modify Work Scheduler Node Cmd",
644 	[IRDMA_OP_WS_DELETE_NODE] = "Delete Work Scheduler Node Cmd",
645 	[IRDMA_OP_SET_UP_MAP] = "Set UP-UP Mapping Cmd",
646 	[IRDMA_OP_GEN_AE] = "Generate AE Cmd",
647 	[IRDMA_OP_QUERY_RDMA_FEATURES] = "RDMA Get Features Cmd",
648 	[IRDMA_OP_ALLOC_LOCAL_MAC_ENTRY] = "Allocate Local MAC Entry Cmd",
649 	[IRDMA_OP_ADD_LOCAL_MAC_ENTRY] = "Add Local MAC Entry Cmd",
650 	[IRDMA_OP_DELETE_LOCAL_MAC_ENTRY] = "Delete Local MAC Entry Cmd",
651 	[IRDMA_OP_CQ_MODIFY] = "CQ Modify Cmd",
652 };
653 
654 static const struct irdma_cqp_err_info irdma_noncrit_err_list[] = {
655 	{0xffff, 0x8006, "Flush No Wqe Pending"},
656 	{0xffff, 0x8007, "Modify QP Bad Close"},
657 	{0xffff, 0x8009, "LLP Closed"},
658 	{0xffff, 0x800a, "Reset Not Sent"}
659 };
660 
661 /**
662  * irdma_cqp_crit_err - check if CQP error is critical
663  * @dev: pointer to dev structure
664  * @cqp_cmd: code for last CQP operation
665  * @maj_err_code: major error code
666  * @min_err_code: minot error code
667  */
668 bool irdma_cqp_crit_err(struct irdma_sc_dev *dev, u8 cqp_cmd,
669 			u16 maj_err_code, u16 min_err_code)
670 {
671 	int i;
672 
673 	for (i = 0; i < ARRAY_SIZE(irdma_noncrit_err_list); ++i) {
674 		if (maj_err_code == irdma_noncrit_err_list[i].maj &&
675 		    min_err_code == irdma_noncrit_err_list[i].min) {
676 			ibdev_dbg(to_ibdev(dev),
677 				  "CQP: [%s Error][%s] maj=0x%x min=0x%x\n",
678 				  irdma_noncrit_err_list[i].desc,
679 				  irdma_cqp_cmd_names[cqp_cmd], maj_err_code,
680 				  min_err_code);
681 			return false;
682 		}
683 	}
684 	return true;
685 }
686 
687 /**
688  * irdma_handle_cqp_op - process cqp command
689  * @rf: RDMA PCI function
690  * @cqp_request: cqp request to process
691  */
692 int irdma_handle_cqp_op(struct irdma_pci_f *rf,
693 			struct irdma_cqp_request *cqp_request)
694 {
695 	struct irdma_sc_dev *dev = &rf->sc_dev;
696 	struct cqp_cmds_info *info = &cqp_request->info;
697 	int status;
698 	bool put_cqp_request = true;
699 
700 	if (rf->reset)
701 		return -EBUSY;
702 
703 	irdma_get_cqp_request(cqp_request);
704 	status = irdma_process_cqp_cmd(dev, info);
705 	if (status)
706 		goto err;
707 
708 	if (cqp_request->waiting) {
709 		put_cqp_request = false;
710 		status = irdma_wait_event(rf, cqp_request);
711 		if (status)
712 			goto err;
713 	}
714 
715 	return 0;
716 
717 err:
718 	if (irdma_cqp_crit_err(dev, info->cqp_cmd,
719 			       cqp_request->compl_info.maj_err_code,
720 			       cqp_request->compl_info.min_err_code))
721 		ibdev_err(&rf->iwdev->ibdev,
722 			  "[%s Error][op_code=%d] status=%d waiting=%d completion_err=%d maj=0x%x min=0x%x\n",
723 			  irdma_cqp_cmd_names[info->cqp_cmd], info->cqp_cmd, status, cqp_request->waiting,
724 			  cqp_request->compl_info.error, cqp_request->compl_info.maj_err_code,
725 			  cqp_request->compl_info.min_err_code);
726 
727 	if (put_cqp_request)
728 		irdma_put_cqp_request(&rf->cqp, cqp_request);
729 
730 	return status;
731 }
732 
733 void irdma_qp_add_ref(struct ib_qp *ibqp)
734 {
735 	struct irdma_qp *iwqp = (struct irdma_qp *)ibqp;
736 
737 	refcount_inc(&iwqp->refcnt);
738 }
739 
740 void irdma_qp_rem_ref(struct ib_qp *ibqp)
741 {
742 	struct irdma_qp *iwqp = to_iwqp(ibqp);
743 	struct irdma_device *iwdev = iwqp->iwdev;
744 	u32 qp_num;
745 	unsigned long flags;
746 
747 	spin_lock_irqsave(&iwdev->rf->qptable_lock, flags);
748 	if (!refcount_dec_and_test(&iwqp->refcnt)) {
749 		spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags);
750 		return;
751 	}
752 
753 	qp_num = iwqp->ibqp.qp_num;
754 	iwdev->rf->qp_table[qp_num] = NULL;
755 	spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags);
756 	complete(&iwqp->free_qp);
757 }
758 
759 struct ib_device *to_ibdev(struct irdma_sc_dev *dev)
760 {
761 	return &(container_of(dev, struct irdma_pci_f, sc_dev))->iwdev->ibdev;
762 }
763 
764 /**
765  * irdma_get_qp - get qp address
766  * @device: iwarp device
767  * @qpn: qp number
768  */
769 struct ib_qp *irdma_get_qp(struct ib_device *device, int qpn)
770 {
771 	struct irdma_device *iwdev = to_iwdev(device);
772 
773 	if (qpn < IW_FIRST_QPN || qpn >= iwdev->rf->max_qp)
774 		return NULL;
775 
776 	return &iwdev->rf->qp_table[qpn]->ibqp;
777 }
778 
779 /**
780  * irdma_remove_cqp_head - return head entry and remove
781  * @dev: device
782  */
783 void *irdma_remove_cqp_head(struct irdma_sc_dev *dev)
784 {
785 	struct list_head *entry;
786 	struct list_head *list = &dev->cqp_cmd_head;
787 
788 	if (list_empty(list))
789 		return NULL;
790 
791 	entry = list->next;
792 	list_del(entry);
793 
794 	return entry;
795 }
796 
797 /**
798  * irdma_cqp_sds_cmd - create cqp command for sd
799  * @dev: hardware control device structure
800  * @sdinfo: information for sd cqp
801  *
802  */
803 int irdma_cqp_sds_cmd(struct irdma_sc_dev *dev,
804 		      struct irdma_update_sds_info *sdinfo)
805 {
806 	struct irdma_cqp_request *cqp_request;
807 	struct cqp_cmds_info *cqp_info;
808 	struct irdma_pci_f *rf = dev_to_rf(dev);
809 	int status;
810 
811 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
812 	if (!cqp_request)
813 		return -ENOMEM;
814 
815 	cqp_info = &cqp_request->info;
816 	memcpy(&cqp_info->in.u.update_pe_sds.info, sdinfo,
817 	       sizeof(cqp_info->in.u.update_pe_sds.info));
818 	cqp_info->cqp_cmd = IRDMA_OP_UPDATE_PE_SDS;
819 	cqp_info->post_sq = 1;
820 	cqp_info->in.u.update_pe_sds.dev = dev;
821 	cqp_info->in.u.update_pe_sds.scratch = (uintptr_t)cqp_request;
822 
823 	status = irdma_handle_cqp_op(rf, cqp_request);
824 	irdma_put_cqp_request(&rf->cqp, cqp_request);
825 
826 	return status;
827 }
828 
829 /**
830  * irdma_cqp_qp_suspend_resume - cqp command for suspend/resume
831  * @qp: hardware control qp
832  * @op: suspend or resume
833  */
834 int irdma_cqp_qp_suspend_resume(struct irdma_sc_qp *qp, u8 op)
835 {
836 	struct irdma_sc_dev *dev = qp->dev;
837 	struct irdma_cqp_request *cqp_request;
838 	struct irdma_sc_cqp *cqp = dev->cqp;
839 	struct cqp_cmds_info *cqp_info;
840 	struct irdma_pci_f *rf = dev_to_rf(dev);
841 	int status;
842 
843 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false);
844 	if (!cqp_request)
845 		return -ENOMEM;
846 
847 	cqp_info = &cqp_request->info;
848 	cqp_info->cqp_cmd = op;
849 	cqp_info->in.u.suspend_resume.cqp = cqp;
850 	cqp_info->in.u.suspend_resume.qp = qp;
851 	cqp_info->in.u.suspend_resume.scratch = (uintptr_t)cqp_request;
852 
853 	status = irdma_handle_cqp_op(rf, cqp_request);
854 	irdma_put_cqp_request(&rf->cqp, cqp_request);
855 
856 	return status;
857 }
858 
859 /**
860  * irdma_term_modify_qp - modify qp for term message
861  * @qp: hardware control qp
862  * @next_state: qp's next state
863  * @term: terminate code
864  * @term_len: length
865  */
866 void irdma_term_modify_qp(struct irdma_sc_qp *qp, u8 next_state, u8 term,
867 			  u8 term_len)
868 {
869 	struct irdma_qp *iwqp;
870 
871 	iwqp = qp->qp_uk.back_qp;
872 	irdma_next_iw_state(iwqp, next_state, 0, term, term_len);
873 };
874 
875 /**
876  * irdma_terminate_done - after terminate is completed
877  * @qp: hardware control qp
878  * @timeout_occurred: indicates if terminate timer expired
879  */
880 void irdma_terminate_done(struct irdma_sc_qp *qp, int timeout_occurred)
881 {
882 	struct irdma_qp *iwqp;
883 	u8 hte = 0;
884 	bool first_time;
885 	unsigned long flags;
886 
887 	iwqp = qp->qp_uk.back_qp;
888 	spin_lock_irqsave(&iwqp->lock, flags);
889 	if (iwqp->hte_added) {
890 		iwqp->hte_added = 0;
891 		hte = 1;
892 	}
893 	first_time = !(qp->term_flags & IRDMA_TERM_DONE);
894 	qp->term_flags |= IRDMA_TERM_DONE;
895 	spin_unlock_irqrestore(&iwqp->lock, flags);
896 	if (first_time) {
897 		if (!timeout_occurred)
898 			irdma_terminate_del_timer(qp);
899 
900 		irdma_next_iw_state(iwqp, IRDMA_QP_STATE_ERROR, hte, 0, 0);
901 		irdma_cm_disconn(iwqp);
902 	}
903 }
904 
905 static void irdma_terminate_timeout(struct timer_list *t)
906 {
907 	struct irdma_qp *iwqp = from_timer(iwqp, t, terminate_timer);
908 	struct irdma_sc_qp *qp = &iwqp->sc_qp;
909 
910 	irdma_terminate_done(qp, 1);
911 	irdma_qp_rem_ref(&iwqp->ibqp);
912 }
913 
914 /**
915  * irdma_terminate_start_timer - start terminate timeout
916  * @qp: hardware control qp
917  */
918 void irdma_terminate_start_timer(struct irdma_sc_qp *qp)
919 {
920 	struct irdma_qp *iwqp;
921 
922 	iwqp = qp->qp_uk.back_qp;
923 	irdma_qp_add_ref(&iwqp->ibqp);
924 	timer_setup(&iwqp->terminate_timer, irdma_terminate_timeout, 0);
925 	iwqp->terminate_timer.expires = jiffies + HZ;
926 
927 	add_timer(&iwqp->terminate_timer);
928 }
929 
930 /**
931  * irdma_terminate_del_timer - delete terminate timeout
932  * @qp: hardware control qp
933  */
934 void irdma_terminate_del_timer(struct irdma_sc_qp *qp)
935 {
936 	struct irdma_qp *iwqp;
937 	int ret;
938 
939 	iwqp = qp->qp_uk.back_qp;
940 	ret = del_timer(&iwqp->terminate_timer);
941 	if (ret)
942 		irdma_qp_rem_ref(&iwqp->ibqp);
943 }
944 
945 /**
946  * irdma_cqp_query_fpm_val_cmd - send cqp command for fpm
947  * @dev: function device struct
948  * @val_mem: buffer for fpm
949  * @hmc_fn_id: function id for fpm
950  */
951 int irdma_cqp_query_fpm_val_cmd(struct irdma_sc_dev *dev,
952 				struct irdma_dma_mem *val_mem, u8 hmc_fn_id)
953 {
954 	struct irdma_cqp_request *cqp_request;
955 	struct cqp_cmds_info *cqp_info;
956 	struct irdma_pci_f *rf = dev_to_rf(dev);
957 	int status;
958 
959 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
960 	if (!cqp_request)
961 		return -ENOMEM;
962 
963 	cqp_info = &cqp_request->info;
964 	cqp_request->param = NULL;
965 	cqp_info->in.u.query_fpm_val.cqp = dev->cqp;
966 	cqp_info->in.u.query_fpm_val.fpm_val_pa = val_mem->pa;
967 	cqp_info->in.u.query_fpm_val.fpm_val_va = val_mem->va;
968 	cqp_info->in.u.query_fpm_val.hmc_fn_id = hmc_fn_id;
969 	cqp_info->cqp_cmd = IRDMA_OP_QUERY_FPM_VAL;
970 	cqp_info->post_sq = 1;
971 	cqp_info->in.u.query_fpm_val.scratch = (uintptr_t)cqp_request;
972 
973 	status = irdma_handle_cqp_op(rf, cqp_request);
974 	irdma_put_cqp_request(&rf->cqp, cqp_request);
975 
976 	return status;
977 }
978 
979 /**
980  * irdma_cqp_commit_fpm_val_cmd - commit fpm values in hw
981  * @dev: hardware control device structure
982  * @val_mem: buffer with fpm values
983  * @hmc_fn_id: function id for fpm
984  */
985 int irdma_cqp_commit_fpm_val_cmd(struct irdma_sc_dev *dev,
986 				 struct irdma_dma_mem *val_mem, u8 hmc_fn_id)
987 {
988 	struct irdma_cqp_request *cqp_request;
989 	struct cqp_cmds_info *cqp_info;
990 	struct irdma_pci_f *rf = dev_to_rf(dev);
991 	int status;
992 
993 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
994 	if (!cqp_request)
995 		return -ENOMEM;
996 
997 	cqp_info = &cqp_request->info;
998 	cqp_request->param = NULL;
999 	cqp_info->in.u.commit_fpm_val.cqp = dev->cqp;
1000 	cqp_info->in.u.commit_fpm_val.fpm_val_pa = val_mem->pa;
1001 	cqp_info->in.u.commit_fpm_val.fpm_val_va = val_mem->va;
1002 	cqp_info->in.u.commit_fpm_val.hmc_fn_id = hmc_fn_id;
1003 	cqp_info->cqp_cmd = IRDMA_OP_COMMIT_FPM_VAL;
1004 	cqp_info->post_sq = 1;
1005 	cqp_info->in.u.commit_fpm_val.scratch = (uintptr_t)cqp_request;
1006 
1007 	status = irdma_handle_cqp_op(rf, cqp_request);
1008 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1009 
1010 	return status;
1011 }
1012 
1013 /**
1014  * irdma_cqp_cq_create_cmd - create a cq for the cqp
1015  * @dev: device pointer
1016  * @cq: pointer to created cq
1017  */
1018 int irdma_cqp_cq_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq)
1019 {
1020 	struct irdma_pci_f *rf = dev_to_rf(dev);
1021 	struct irdma_cqp *iwcqp = &rf->cqp;
1022 	struct irdma_cqp_request *cqp_request;
1023 	struct cqp_cmds_info *cqp_info;
1024 	int status;
1025 
1026 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true);
1027 	if (!cqp_request)
1028 		return -ENOMEM;
1029 
1030 	cqp_info = &cqp_request->info;
1031 	cqp_info->cqp_cmd = IRDMA_OP_CQ_CREATE;
1032 	cqp_info->post_sq = 1;
1033 	cqp_info->in.u.cq_create.cq = cq;
1034 	cqp_info->in.u.cq_create.scratch = (uintptr_t)cqp_request;
1035 
1036 	status = irdma_handle_cqp_op(rf, cqp_request);
1037 	irdma_put_cqp_request(iwcqp, cqp_request);
1038 
1039 	return status;
1040 }
1041 
1042 /**
1043  * irdma_cqp_qp_create_cmd - create a qp for the cqp
1044  * @dev: device pointer
1045  * @qp: pointer to created qp
1046  */
1047 int irdma_cqp_qp_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp)
1048 {
1049 	struct irdma_pci_f *rf = dev_to_rf(dev);
1050 	struct irdma_cqp *iwcqp = &rf->cqp;
1051 	struct irdma_cqp_request *cqp_request;
1052 	struct cqp_cmds_info *cqp_info;
1053 	struct irdma_create_qp_info *qp_info;
1054 	int status;
1055 
1056 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true);
1057 	if (!cqp_request)
1058 		return -ENOMEM;
1059 
1060 	cqp_info = &cqp_request->info;
1061 	qp_info = &cqp_request->info.in.u.qp_create.info;
1062 	memset(qp_info, 0, sizeof(*qp_info));
1063 	qp_info->cq_num_valid = true;
1064 	qp_info->next_iwarp_state = IRDMA_QP_STATE_RTS;
1065 	cqp_info->cqp_cmd = IRDMA_OP_QP_CREATE;
1066 	cqp_info->post_sq = 1;
1067 	cqp_info->in.u.qp_create.qp = qp;
1068 	cqp_info->in.u.qp_create.scratch = (uintptr_t)cqp_request;
1069 
1070 	status = irdma_handle_cqp_op(rf, cqp_request);
1071 	irdma_put_cqp_request(iwcqp, cqp_request);
1072 
1073 	return status;
1074 }
1075 
1076 /**
1077  * irdma_dealloc_push_page - free a push page for qp
1078  * @rf: RDMA PCI function
1079  * @qp: hardware control qp
1080  */
1081 static void irdma_dealloc_push_page(struct irdma_pci_f *rf,
1082 				    struct irdma_sc_qp *qp)
1083 {
1084 	struct irdma_cqp_request *cqp_request;
1085 	struct cqp_cmds_info *cqp_info;
1086 	int status;
1087 
1088 	if (qp->push_idx == IRDMA_INVALID_PUSH_PAGE_INDEX)
1089 		return;
1090 
1091 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false);
1092 	if (!cqp_request)
1093 		return;
1094 
1095 	cqp_info = &cqp_request->info;
1096 	cqp_info->cqp_cmd = IRDMA_OP_MANAGE_PUSH_PAGE;
1097 	cqp_info->post_sq = 1;
1098 	cqp_info->in.u.manage_push_page.info.push_idx = qp->push_idx;
1099 	cqp_info->in.u.manage_push_page.info.qs_handle = qp->qs_handle;
1100 	cqp_info->in.u.manage_push_page.info.free_page = 1;
1101 	cqp_info->in.u.manage_push_page.info.push_page_type = 0;
1102 	cqp_info->in.u.manage_push_page.cqp = &rf->cqp.sc_cqp;
1103 	cqp_info->in.u.manage_push_page.scratch = (uintptr_t)cqp_request;
1104 	status = irdma_handle_cqp_op(rf, cqp_request);
1105 	if (!status)
1106 		qp->push_idx = IRDMA_INVALID_PUSH_PAGE_INDEX;
1107 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1108 }
1109 
1110 /**
1111  * irdma_free_qp_rsrc - free up memory resources for qp
1112  * @iwqp: qp ptr (user or kernel)
1113  */
1114 void irdma_free_qp_rsrc(struct irdma_qp *iwqp)
1115 {
1116 	struct irdma_device *iwdev = iwqp->iwdev;
1117 	struct irdma_pci_f *rf = iwdev->rf;
1118 	u32 qp_num = iwqp->ibqp.qp_num;
1119 
1120 	irdma_ieq_cleanup_qp(iwdev->vsi.ieq, &iwqp->sc_qp);
1121 	irdma_dealloc_push_page(rf, &iwqp->sc_qp);
1122 	if (iwqp->sc_qp.vsi) {
1123 		irdma_qp_rem_qos(&iwqp->sc_qp);
1124 		iwqp->sc_qp.dev->ws_remove(iwqp->sc_qp.vsi,
1125 					   iwqp->sc_qp.user_pri);
1126 	}
1127 
1128 	if (qp_num > 2)
1129 		irdma_free_rsrc(rf, rf->allocated_qps, qp_num);
1130 	dma_free_coherent(rf->sc_dev.hw->device, iwqp->q2_ctx_mem.size,
1131 			  iwqp->q2_ctx_mem.va, iwqp->q2_ctx_mem.pa);
1132 	iwqp->q2_ctx_mem.va = NULL;
1133 	dma_free_coherent(rf->sc_dev.hw->device, iwqp->kqp.dma_mem.size,
1134 			  iwqp->kqp.dma_mem.va, iwqp->kqp.dma_mem.pa);
1135 	iwqp->kqp.dma_mem.va = NULL;
1136 	kfree(iwqp->kqp.sq_wrid_mem);
1137 	kfree(iwqp->kqp.rq_wrid_mem);
1138 }
1139 
1140 /**
1141  * irdma_cq_wq_destroy - send cq destroy cqp
1142  * @rf: RDMA PCI function
1143  * @cq: hardware control cq
1144  */
1145 void irdma_cq_wq_destroy(struct irdma_pci_f *rf, struct irdma_sc_cq *cq)
1146 {
1147 	struct irdma_cqp_request *cqp_request;
1148 	struct cqp_cmds_info *cqp_info;
1149 
1150 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1151 	if (!cqp_request)
1152 		return;
1153 
1154 	cqp_info = &cqp_request->info;
1155 	cqp_info->cqp_cmd = IRDMA_OP_CQ_DESTROY;
1156 	cqp_info->post_sq = 1;
1157 	cqp_info->in.u.cq_destroy.cq = cq;
1158 	cqp_info->in.u.cq_destroy.scratch = (uintptr_t)cqp_request;
1159 
1160 	irdma_handle_cqp_op(rf, cqp_request);
1161 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1162 }
1163 
1164 /**
1165  * irdma_hw_modify_qp_callback - handle state for modifyQPs that don't wait
1166  * @cqp_request: modify QP completion
1167  */
1168 static void irdma_hw_modify_qp_callback(struct irdma_cqp_request *cqp_request)
1169 {
1170 	struct cqp_cmds_info *cqp_info;
1171 	struct irdma_qp *iwqp;
1172 
1173 	cqp_info = &cqp_request->info;
1174 	iwqp = cqp_info->in.u.qp_modify.qp->qp_uk.back_qp;
1175 	atomic_dec(&iwqp->hw_mod_qp_pend);
1176 	wake_up(&iwqp->mod_qp_waitq);
1177 }
1178 
1179 /**
1180  * irdma_hw_modify_qp - setup cqp for modify qp
1181  * @iwdev: RDMA device
1182  * @iwqp: qp ptr (user or kernel)
1183  * @info: info for modify qp
1184  * @wait: flag to wait or not for modify qp completion
1185  */
1186 int irdma_hw_modify_qp(struct irdma_device *iwdev, struct irdma_qp *iwqp,
1187 		       struct irdma_modify_qp_info *info, bool wait)
1188 {
1189 	int status;
1190 	struct irdma_pci_f *rf = iwdev->rf;
1191 	struct irdma_cqp_request *cqp_request;
1192 	struct cqp_cmds_info *cqp_info;
1193 	struct irdma_modify_qp_info *m_info;
1194 
1195 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait);
1196 	if (!cqp_request)
1197 		return -ENOMEM;
1198 
1199 	if (!wait) {
1200 		cqp_request->callback_fcn = irdma_hw_modify_qp_callback;
1201 		atomic_inc(&iwqp->hw_mod_qp_pend);
1202 	}
1203 	cqp_info = &cqp_request->info;
1204 	m_info = &cqp_info->in.u.qp_modify.info;
1205 	memcpy(m_info, info, sizeof(*m_info));
1206 	cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY;
1207 	cqp_info->post_sq = 1;
1208 	cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp;
1209 	cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request;
1210 	status = irdma_handle_cqp_op(rf, cqp_request);
1211 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1212 	if (status) {
1213 		if (rdma_protocol_roce(&iwdev->ibdev, 1))
1214 			return status;
1215 
1216 		switch (m_info->next_iwarp_state) {
1217 			struct irdma_gen_ae_info ae_info;
1218 
1219 		case IRDMA_QP_STATE_RTS:
1220 		case IRDMA_QP_STATE_IDLE:
1221 		case IRDMA_QP_STATE_TERMINATE:
1222 		case IRDMA_QP_STATE_CLOSING:
1223 			if (info->curr_iwarp_state == IRDMA_QP_STATE_IDLE)
1224 				irdma_send_reset(iwqp->cm_node);
1225 			else
1226 				iwqp->sc_qp.term_flags = IRDMA_TERM_DONE;
1227 			if (!wait) {
1228 				ae_info.ae_code = IRDMA_AE_BAD_CLOSE;
1229 				ae_info.ae_src = 0;
1230 				irdma_gen_ae(rf, &iwqp->sc_qp, &ae_info, false);
1231 			} else {
1232 				cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp,
1233 									      wait);
1234 				if (!cqp_request)
1235 					return -ENOMEM;
1236 
1237 				cqp_info = &cqp_request->info;
1238 				m_info = &cqp_info->in.u.qp_modify.info;
1239 				memcpy(m_info, info, sizeof(*m_info));
1240 				cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY;
1241 				cqp_info->post_sq = 1;
1242 				cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp;
1243 				cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request;
1244 				m_info->next_iwarp_state = IRDMA_QP_STATE_ERROR;
1245 				m_info->reset_tcp_conn = true;
1246 				irdma_handle_cqp_op(rf, cqp_request);
1247 				irdma_put_cqp_request(&rf->cqp, cqp_request);
1248 			}
1249 			break;
1250 		case IRDMA_QP_STATE_ERROR:
1251 		default:
1252 			break;
1253 		}
1254 	}
1255 
1256 	return status;
1257 }
1258 
1259 /**
1260  * irdma_cqp_cq_destroy_cmd - destroy the cqp cq
1261  * @dev: device pointer
1262  * @cq: pointer to cq
1263  */
1264 void irdma_cqp_cq_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq)
1265 {
1266 	struct irdma_pci_f *rf = dev_to_rf(dev);
1267 
1268 	irdma_cq_wq_destroy(rf, cq);
1269 }
1270 
1271 /**
1272  * irdma_cqp_qp_destroy_cmd - destroy the cqp
1273  * @dev: device pointer
1274  * @qp: pointer to qp
1275  */
1276 int irdma_cqp_qp_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp)
1277 {
1278 	struct irdma_pci_f *rf = dev_to_rf(dev);
1279 	struct irdma_cqp *iwcqp = &rf->cqp;
1280 	struct irdma_cqp_request *cqp_request;
1281 	struct cqp_cmds_info *cqp_info;
1282 	int status;
1283 
1284 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true);
1285 	if (!cqp_request)
1286 		return -ENOMEM;
1287 
1288 	cqp_info = &cqp_request->info;
1289 	memset(cqp_info, 0, sizeof(*cqp_info));
1290 	cqp_info->cqp_cmd = IRDMA_OP_QP_DESTROY;
1291 	cqp_info->post_sq = 1;
1292 	cqp_info->in.u.qp_destroy.qp = qp;
1293 	cqp_info->in.u.qp_destroy.scratch = (uintptr_t)cqp_request;
1294 	cqp_info->in.u.qp_destroy.remove_hash_idx = true;
1295 
1296 	status = irdma_handle_cqp_op(rf, cqp_request);
1297 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1298 
1299 	return status;
1300 }
1301 
1302 /**
1303  * irdma_ieq_mpa_crc_ae - generate AE for crc error
1304  * @dev: hardware control device structure
1305  * @qp: hardware control qp
1306  */
1307 void irdma_ieq_mpa_crc_ae(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp)
1308 {
1309 	struct irdma_gen_ae_info info = {};
1310 	struct irdma_pci_f *rf = dev_to_rf(dev);
1311 
1312 	ibdev_dbg(&rf->iwdev->ibdev, "AEQ: Generate MPA CRC AE\n");
1313 	info.ae_code = IRDMA_AE_LLP_RECEIVED_MPA_CRC_ERROR;
1314 	info.ae_src = IRDMA_AE_SOURCE_RQ;
1315 	irdma_gen_ae(rf, qp, &info, false);
1316 }
1317 
1318 /**
1319  * irdma_init_hash_desc - initialize hash for crc calculation
1320  * @desc: cryption type
1321  */
1322 int irdma_init_hash_desc(struct shash_desc **desc)
1323 {
1324 	struct crypto_shash *tfm;
1325 	struct shash_desc *tdesc;
1326 
1327 	tfm = crypto_alloc_shash("crc32c", 0, 0);
1328 	if (IS_ERR(tfm))
1329 		return -EINVAL;
1330 
1331 	tdesc = kzalloc(sizeof(*tdesc) + crypto_shash_descsize(tfm),
1332 			GFP_KERNEL);
1333 	if (!tdesc) {
1334 		crypto_free_shash(tfm);
1335 		return -EINVAL;
1336 	}
1337 
1338 	tdesc->tfm = tfm;
1339 	*desc = tdesc;
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  * irdma_free_hash_desc - free hash desc
1346  * @desc: to be freed
1347  */
1348 void irdma_free_hash_desc(struct shash_desc *desc)
1349 {
1350 	if (desc) {
1351 		crypto_free_shash(desc->tfm);
1352 		kfree(desc);
1353 	}
1354 }
1355 
1356 /**
1357  * irdma_ieq_check_mpacrc - check if mpa crc is OK
1358  * @desc: desc for hash
1359  * @addr: address of buffer for crc
1360  * @len: length of buffer
1361  * @val: value to be compared
1362  */
1363 int irdma_ieq_check_mpacrc(struct shash_desc *desc, void *addr, u32 len,
1364 			   u32 val)
1365 {
1366 	u32 crc = 0;
1367 	int ret;
1368 	int ret_code = 0;
1369 
1370 	crypto_shash_init(desc);
1371 	ret = crypto_shash_update(desc, addr, len);
1372 	if (!ret)
1373 		crypto_shash_final(desc, (u8 *)&crc);
1374 	if (crc != val)
1375 		ret_code = -EINVAL;
1376 
1377 	return ret_code;
1378 }
1379 
1380 /**
1381  * irdma_ieq_get_qp - get qp based on quad in puda buffer
1382  * @dev: hardware control device structure
1383  * @buf: receive puda buffer on exception q
1384  */
1385 struct irdma_sc_qp *irdma_ieq_get_qp(struct irdma_sc_dev *dev,
1386 				     struct irdma_puda_buf *buf)
1387 {
1388 	struct irdma_qp *iwqp;
1389 	struct irdma_cm_node *cm_node;
1390 	struct irdma_device *iwdev = buf->vsi->back_vsi;
1391 	u32 loc_addr[4] = {};
1392 	u32 rem_addr[4] = {};
1393 	u16 loc_port, rem_port;
1394 	struct ipv6hdr *ip6h;
1395 	struct iphdr *iph = (struct iphdr *)buf->iph;
1396 	struct tcphdr *tcph = (struct tcphdr *)buf->tcph;
1397 
1398 	if (iph->version == 4) {
1399 		loc_addr[0] = ntohl(iph->daddr);
1400 		rem_addr[0] = ntohl(iph->saddr);
1401 	} else {
1402 		ip6h = (struct ipv6hdr *)buf->iph;
1403 		irdma_copy_ip_ntohl(loc_addr, ip6h->daddr.in6_u.u6_addr32);
1404 		irdma_copy_ip_ntohl(rem_addr, ip6h->saddr.in6_u.u6_addr32);
1405 	}
1406 	loc_port = ntohs(tcph->dest);
1407 	rem_port = ntohs(tcph->source);
1408 	cm_node = irdma_find_node(&iwdev->cm_core, rem_port, rem_addr, loc_port,
1409 				  loc_addr, buf->vlan_valid ? buf->vlan_id : 0xFFFF);
1410 	if (!cm_node)
1411 		return NULL;
1412 
1413 	iwqp = cm_node->iwqp;
1414 	irdma_rem_ref_cm_node(cm_node);
1415 
1416 	return &iwqp->sc_qp;
1417 }
1418 
1419 /**
1420  * irdma_send_ieq_ack - ACKs for duplicate or OOO partials FPDUs
1421  * @qp: qp ptr
1422  */
1423 void irdma_send_ieq_ack(struct irdma_sc_qp *qp)
1424 {
1425 	struct irdma_cm_node *cm_node = ((struct irdma_qp *)qp->qp_uk.back_qp)->cm_node;
1426 	struct irdma_puda_buf *buf = qp->pfpdu.lastrcv_buf;
1427 	struct tcphdr *tcph = (struct tcphdr *)buf->tcph;
1428 
1429 	cm_node->tcp_cntxt.rcv_nxt = qp->pfpdu.nextseqnum;
1430 	cm_node->tcp_cntxt.loc_seq_num = ntohl(tcph->ack_seq);
1431 
1432 	irdma_send_ack(cm_node);
1433 }
1434 
1435 /**
1436  * irdma_puda_ieq_get_ah_info - get AH info from IEQ buffer
1437  * @qp: qp pointer
1438  * @ah_info: AH info pointer
1439  */
1440 void irdma_puda_ieq_get_ah_info(struct irdma_sc_qp *qp,
1441 				struct irdma_ah_info *ah_info)
1442 {
1443 	struct irdma_puda_buf *buf = qp->pfpdu.ah_buf;
1444 	struct iphdr *iph;
1445 	struct ipv6hdr *ip6h;
1446 
1447 	memset(ah_info, 0, sizeof(*ah_info));
1448 	ah_info->do_lpbk = true;
1449 	ah_info->vlan_tag = buf->vlan_id;
1450 	ah_info->insert_vlan_tag = buf->vlan_valid;
1451 	ah_info->ipv4_valid = buf->ipv4;
1452 	ah_info->vsi = qp->vsi;
1453 
1454 	if (buf->smac_valid)
1455 		ether_addr_copy(ah_info->mac_addr, buf->smac);
1456 
1457 	if (buf->ipv4) {
1458 		ah_info->ipv4_valid = true;
1459 		iph = (struct iphdr *)buf->iph;
1460 		ah_info->hop_ttl = iph->ttl;
1461 		ah_info->tc_tos = iph->tos;
1462 		ah_info->dest_ip_addr[0] = ntohl(iph->daddr);
1463 		ah_info->src_ip_addr[0] = ntohl(iph->saddr);
1464 	} else {
1465 		ip6h = (struct ipv6hdr *)buf->iph;
1466 		ah_info->hop_ttl = ip6h->hop_limit;
1467 		ah_info->tc_tos = ip6h->priority;
1468 		irdma_copy_ip_ntohl(ah_info->dest_ip_addr,
1469 				    ip6h->daddr.in6_u.u6_addr32);
1470 		irdma_copy_ip_ntohl(ah_info->src_ip_addr,
1471 				    ip6h->saddr.in6_u.u6_addr32);
1472 	}
1473 
1474 	ah_info->dst_arpindex = irdma_arp_table(dev_to_rf(qp->dev),
1475 						ah_info->dest_ip_addr,
1476 						ah_info->ipv4_valid,
1477 						NULL, IRDMA_ARP_RESOLVE);
1478 }
1479 
1480 /**
1481  * irdma_gen1_ieq_update_tcpip_info - update tcpip in the buffer
1482  * @buf: puda to update
1483  * @len: length of buffer
1484  * @seqnum: seq number for tcp
1485  */
1486 static void irdma_gen1_ieq_update_tcpip_info(struct irdma_puda_buf *buf,
1487 					     u16 len, u32 seqnum)
1488 {
1489 	struct tcphdr *tcph;
1490 	struct iphdr *iph;
1491 	u16 iphlen;
1492 	u16 pktsize;
1493 	u8 *addr = buf->mem.va;
1494 
1495 	iphlen = (buf->ipv4) ? 20 : 40;
1496 	iph = (struct iphdr *)(addr + buf->maclen);
1497 	tcph = (struct tcphdr *)(addr + buf->maclen + iphlen);
1498 	pktsize = len + buf->tcphlen + iphlen;
1499 	iph->tot_len = htons(pktsize);
1500 	tcph->seq = htonl(seqnum);
1501 }
1502 
1503 /**
1504  * irdma_ieq_update_tcpip_info - update tcpip in the buffer
1505  * @buf: puda to update
1506  * @len: length of buffer
1507  * @seqnum: seq number for tcp
1508  */
1509 void irdma_ieq_update_tcpip_info(struct irdma_puda_buf *buf, u16 len,
1510 				 u32 seqnum)
1511 {
1512 	struct tcphdr *tcph;
1513 	u8 *addr;
1514 
1515 	if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1)
1516 		return irdma_gen1_ieq_update_tcpip_info(buf, len, seqnum);
1517 
1518 	addr = buf->mem.va;
1519 	tcph = (struct tcphdr *)addr;
1520 	tcph->seq = htonl(seqnum);
1521 }
1522 
1523 /**
1524  * irdma_gen1_puda_get_tcpip_info - get tcpip info from puda
1525  * buffer
1526  * @info: to get information
1527  * @buf: puda buffer
1528  */
1529 static int irdma_gen1_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info,
1530 					  struct irdma_puda_buf *buf)
1531 {
1532 	struct iphdr *iph;
1533 	struct ipv6hdr *ip6h;
1534 	struct tcphdr *tcph;
1535 	u16 iphlen;
1536 	u16 pkt_len;
1537 	u8 *mem = buf->mem.va;
1538 	struct ethhdr *ethh = buf->mem.va;
1539 
1540 	if (ethh->h_proto == htons(0x8100)) {
1541 		info->vlan_valid = true;
1542 		buf->vlan_id = ntohs(((struct vlan_ethhdr *)ethh)->h_vlan_TCI) &
1543 			       VLAN_VID_MASK;
1544 	}
1545 
1546 	buf->maclen = (info->vlan_valid) ? 18 : 14;
1547 	iphlen = (info->l3proto) ? 40 : 20;
1548 	buf->ipv4 = (info->l3proto) ? false : true;
1549 	buf->iph = mem + buf->maclen;
1550 	iph = (struct iphdr *)buf->iph;
1551 	buf->tcph = buf->iph + iphlen;
1552 	tcph = (struct tcphdr *)buf->tcph;
1553 
1554 	if (buf->ipv4) {
1555 		pkt_len = ntohs(iph->tot_len);
1556 	} else {
1557 		ip6h = (struct ipv6hdr *)buf->iph;
1558 		pkt_len = ntohs(ip6h->payload_len) + iphlen;
1559 	}
1560 
1561 	buf->totallen = pkt_len + buf->maclen;
1562 
1563 	if (info->payload_len < buf->totallen) {
1564 		ibdev_dbg(to_ibdev(buf->vsi->dev),
1565 			  "ERR: payload_len = 0x%x totallen expected0x%x\n",
1566 			  info->payload_len, buf->totallen);
1567 		return -EINVAL;
1568 	}
1569 
1570 	buf->tcphlen = tcph->doff << 2;
1571 	buf->datalen = pkt_len - iphlen - buf->tcphlen;
1572 	buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL;
1573 	buf->hdrlen = buf->maclen + iphlen + buf->tcphlen;
1574 	buf->seqnum = ntohl(tcph->seq);
1575 
1576 	return 0;
1577 }
1578 
1579 /**
1580  * irdma_puda_get_tcpip_info - get tcpip info from puda buffer
1581  * @info: to get information
1582  * @buf: puda buffer
1583  */
1584 int irdma_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info,
1585 			      struct irdma_puda_buf *buf)
1586 {
1587 	struct tcphdr *tcph;
1588 	u32 pkt_len;
1589 	u8 *mem;
1590 
1591 	if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1)
1592 		return irdma_gen1_puda_get_tcpip_info(info, buf);
1593 
1594 	mem = buf->mem.va;
1595 	buf->vlan_valid = info->vlan_valid;
1596 	if (info->vlan_valid)
1597 		buf->vlan_id = info->vlan;
1598 
1599 	buf->ipv4 = info->ipv4;
1600 	if (buf->ipv4)
1601 		buf->iph = mem + IRDMA_IPV4_PAD;
1602 	else
1603 		buf->iph = mem;
1604 
1605 	buf->tcph = mem + IRDMA_TCP_OFFSET;
1606 	tcph = (struct tcphdr *)buf->tcph;
1607 	pkt_len = info->payload_len;
1608 	buf->totallen = pkt_len;
1609 	buf->tcphlen = tcph->doff << 2;
1610 	buf->datalen = pkt_len - IRDMA_TCP_OFFSET - buf->tcphlen;
1611 	buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL;
1612 	buf->hdrlen = IRDMA_TCP_OFFSET + buf->tcphlen;
1613 	buf->seqnum = ntohl(tcph->seq);
1614 
1615 	if (info->smac_valid) {
1616 		ether_addr_copy(buf->smac, info->smac);
1617 		buf->smac_valid = true;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 /**
1624  * irdma_hw_stats_timeout - Stats timer-handler which updates all HW stats
1625  * @t: timer_list pointer
1626  */
1627 static void irdma_hw_stats_timeout(struct timer_list *t)
1628 {
1629 	struct irdma_vsi_pestat *pf_devstat =
1630 		from_timer(pf_devstat, t, stats_timer);
1631 	struct irdma_sc_vsi *sc_vsi = pf_devstat->vsi;
1632 
1633 	if (sc_vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1)
1634 		irdma_cqp_gather_stats_gen1(sc_vsi->dev, sc_vsi->pestat);
1635 	else
1636 		irdma_cqp_gather_stats_cmd(sc_vsi->dev, sc_vsi->pestat, false);
1637 
1638 	mod_timer(&pf_devstat->stats_timer,
1639 		  jiffies + msecs_to_jiffies(STATS_TIMER_DELAY));
1640 }
1641 
1642 /**
1643  * irdma_hw_stats_start_timer - Start periodic stats timer
1644  * @vsi: vsi structure pointer
1645  */
1646 void irdma_hw_stats_start_timer(struct irdma_sc_vsi *vsi)
1647 {
1648 	struct irdma_vsi_pestat *devstat = vsi->pestat;
1649 
1650 	timer_setup(&devstat->stats_timer, irdma_hw_stats_timeout, 0);
1651 	mod_timer(&devstat->stats_timer,
1652 		  jiffies + msecs_to_jiffies(STATS_TIMER_DELAY));
1653 }
1654 
1655 /**
1656  * irdma_hw_stats_stop_timer - Delete periodic stats timer
1657  * @vsi: pointer to vsi structure
1658  */
1659 void irdma_hw_stats_stop_timer(struct irdma_sc_vsi *vsi)
1660 {
1661 	struct irdma_vsi_pestat *devstat = vsi->pestat;
1662 
1663 	del_timer_sync(&devstat->stats_timer);
1664 }
1665 
1666 /**
1667  * irdma_process_stats - Checking for wrap and update stats
1668  * @pestat: stats structure pointer
1669  */
1670 static inline void irdma_process_stats(struct irdma_vsi_pestat *pestat)
1671 {
1672 	sc_vsi_update_stats(pestat->vsi);
1673 }
1674 
1675 /**
1676  * irdma_cqp_gather_stats_gen1 - Gather stats
1677  * @dev: pointer to device structure
1678  * @pestat: statistics structure
1679  */
1680 void irdma_cqp_gather_stats_gen1(struct irdma_sc_dev *dev,
1681 				 struct irdma_vsi_pestat *pestat)
1682 {
1683 	struct irdma_gather_stats *gather_stats =
1684 		pestat->gather_info.gather_stats_va;
1685 	u32 stats_inst_offset_32;
1686 	u32 stats_inst_offset_64;
1687 
1688 	stats_inst_offset_32 = (pestat->gather_info.use_stats_inst) ?
1689 				       pestat->gather_info.stats_inst_index :
1690 				       pestat->hw->hmc.hmc_fn_id;
1691 	stats_inst_offset_32 *= 4;
1692 	stats_inst_offset_64 = stats_inst_offset_32 * 2;
1693 
1694 	gather_stats->rxvlanerr =
1695 		rd32(dev->hw,
1696 		     dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_RXVLANERR]
1697 		     + stats_inst_offset_32);
1698 	gather_stats->ip4rxdiscard =
1699 		rd32(dev->hw,
1700 		     dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP4RXDISCARD]
1701 		     + stats_inst_offset_32);
1702 	gather_stats->ip4rxtrunc =
1703 		rd32(dev->hw,
1704 		     dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP4RXTRUNC]
1705 		     + stats_inst_offset_32);
1706 	gather_stats->ip4txnoroute =
1707 		rd32(dev->hw,
1708 		     dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP4TXNOROUTE]
1709 		     + stats_inst_offset_32);
1710 	gather_stats->ip6rxdiscard =
1711 		rd32(dev->hw,
1712 		     dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP6RXDISCARD]
1713 		     + stats_inst_offset_32);
1714 	gather_stats->ip6rxtrunc =
1715 		rd32(dev->hw,
1716 		     dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP6RXTRUNC]
1717 		     + stats_inst_offset_32);
1718 	gather_stats->ip6txnoroute =
1719 		rd32(dev->hw,
1720 		     dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP6TXNOROUTE]
1721 		     + stats_inst_offset_32);
1722 	gather_stats->tcprtxseg =
1723 		rd32(dev->hw,
1724 		     dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_TCPRTXSEG]
1725 		     + stats_inst_offset_32);
1726 	gather_stats->tcprxopterr =
1727 		rd32(dev->hw,
1728 		     dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_TCPRXOPTERR]
1729 		     + stats_inst_offset_32);
1730 
1731 	gather_stats->ip4rxocts =
1732 		rd64(dev->hw,
1733 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4RXOCTS]
1734 		     + stats_inst_offset_64);
1735 	gather_stats->ip4rxpkts =
1736 		rd64(dev->hw,
1737 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4RXPKTS]
1738 		     + stats_inst_offset_64);
1739 	gather_stats->ip4txfrag =
1740 		rd64(dev->hw,
1741 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4RXFRAGS]
1742 		     + stats_inst_offset_64);
1743 	gather_stats->ip4rxmcpkts =
1744 		rd64(dev->hw,
1745 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4RXMCPKTS]
1746 		     + stats_inst_offset_64);
1747 	gather_stats->ip4txocts =
1748 		rd64(dev->hw,
1749 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4TXOCTS]
1750 		     + stats_inst_offset_64);
1751 	gather_stats->ip4txpkts =
1752 		rd64(dev->hw,
1753 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4TXPKTS]
1754 		     + stats_inst_offset_64);
1755 	gather_stats->ip4txfrag =
1756 		rd64(dev->hw,
1757 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4TXFRAGS]
1758 		     + stats_inst_offset_64);
1759 	gather_stats->ip4txmcpkts =
1760 		rd64(dev->hw,
1761 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4TXMCPKTS]
1762 		     + stats_inst_offset_64);
1763 	gather_stats->ip6rxocts =
1764 		rd64(dev->hw,
1765 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6RXOCTS]
1766 		     + stats_inst_offset_64);
1767 	gather_stats->ip6rxpkts =
1768 		rd64(dev->hw,
1769 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6RXPKTS]
1770 		     + stats_inst_offset_64);
1771 	gather_stats->ip6txfrags =
1772 		rd64(dev->hw,
1773 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6RXFRAGS]
1774 		     + stats_inst_offset_64);
1775 	gather_stats->ip6rxmcpkts =
1776 		rd64(dev->hw,
1777 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6RXMCPKTS]
1778 		     + stats_inst_offset_64);
1779 	gather_stats->ip6txocts =
1780 		rd64(dev->hw,
1781 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6TXOCTS]
1782 		     + stats_inst_offset_64);
1783 	gather_stats->ip6txpkts =
1784 		rd64(dev->hw,
1785 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6TXPKTS]
1786 		     + stats_inst_offset_64);
1787 	gather_stats->ip6txfrags =
1788 		rd64(dev->hw,
1789 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6TXFRAGS]
1790 		     + stats_inst_offset_64);
1791 	gather_stats->ip6txmcpkts =
1792 		rd64(dev->hw,
1793 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6TXMCPKTS]
1794 		     + stats_inst_offset_64);
1795 	gather_stats->tcprxsegs =
1796 		rd64(dev->hw,
1797 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_TCPRXSEGS]
1798 		     + stats_inst_offset_64);
1799 	gather_stats->tcptxsegs =
1800 		rd64(dev->hw,
1801 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_TCPTXSEG]
1802 		     + stats_inst_offset_64);
1803 	gather_stats->rdmarxrds =
1804 		rd64(dev->hw,
1805 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMARXRDS]
1806 		     + stats_inst_offset_64);
1807 	gather_stats->rdmarxsnds =
1808 		rd64(dev->hw,
1809 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMARXSNDS]
1810 		     + stats_inst_offset_64);
1811 	gather_stats->rdmarxwrs =
1812 		rd64(dev->hw,
1813 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMARXWRS]
1814 		     + stats_inst_offset_64);
1815 	gather_stats->rdmatxrds =
1816 		rd64(dev->hw,
1817 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMATXRDS]
1818 		     + stats_inst_offset_64);
1819 	gather_stats->rdmatxsnds =
1820 		rd64(dev->hw,
1821 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMATXSNDS]
1822 		     + stats_inst_offset_64);
1823 	gather_stats->rdmatxwrs =
1824 		rd64(dev->hw,
1825 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMATXWRS]
1826 		     + stats_inst_offset_64);
1827 	gather_stats->rdmavbn =
1828 		rd64(dev->hw,
1829 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMAVBND]
1830 		     + stats_inst_offset_64);
1831 	gather_stats->rdmavinv =
1832 		rd64(dev->hw,
1833 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMAVINV]
1834 		     + stats_inst_offset_64);
1835 	gather_stats->udprxpkts =
1836 		rd64(dev->hw,
1837 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_UDPRXPKTS]
1838 		     + stats_inst_offset_64);
1839 	gather_stats->udptxpkts =
1840 		rd64(dev->hw,
1841 		     dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_UDPTXPKTS]
1842 		     + stats_inst_offset_64);
1843 
1844 	irdma_process_stats(pestat);
1845 }
1846 
1847 /**
1848  * irdma_process_cqp_stats - Checking for wrap and update stats
1849  * @cqp_request: cqp_request structure pointer
1850  */
1851 static void irdma_process_cqp_stats(struct irdma_cqp_request *cqp_request)
1852 {
1853 	struct irdma_vsi_pestat *pestat = cqp_request->param;
1854 
1855 	irdma_process_stats(pestat);
1856 }
1857 
1858 /**
1859  * irdma_cqp_gather_stats_cmd - Gather stats
1860  * @dev: pointer to device structure
1861  * @pestat: pointer to stats info
1862  * @wait: flag to wait or not wait for stats
1863  */
1864 int irdma_cqp_gather_stats_cmd(struct irdma_sc_dev *dev,
1865 			       struct irdma_vsi_pestat *pestat, bool wait)
1866 
1867 {
1868 	struct irdma_pci_f *rf = dev_to_rf(dev);
1869 	struct irdma_cqp *iwcqp = &rf->cqp;
1870 	struct irdma_cqp_request *cqp_request;
1871 	struct cqp_cmds_info *cqp_info;
1872 	int status;
1873 
1874 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait);
1875 	if (!cqp_request)
1876 		return -ENOMEM;
1877 
1878 	cqp_info = &cqp_request->info;
1879 	memset(cqp_info, 0, sizeof(*cqp_info));
1880 	cqp_info->cqp_cmd = IRDMA_OP_STATS_GATHER;
1881 	cqp_info->post_sq = 1;
1882 	cqp_info->in.u.stats_gather.info = pestat->gather_info;
1883 	cqp_info->in.u.stats_gather.scratch = (uintptr_t)cqp_request;
1884 	cqp_info->in.u.stats_gather.cqp = &rf->cqp.sc_cqp;
1885 	cqp_request->param = pestat;
1886 	if (!wait)
1887 		cqp_request->callback_fcn = irdma_process_cqp_stats;
1888 	status = irdma_handle_cqp_op(rf, cqp_request);
1889 	if (wait)
1890 		irdma_process_stats(pestat);
1891 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1892 
1893 	return status;
1894 }
1895 
1896 /**
1897  * irdma_cqp_stats_inst_cmd - Allocate/free stats instance
1898  * @vsi: pointer to vsi structure
1899  * @cmd: command to allocate or free
1900  * @stats_info: pointer to allocate stats info
1901  */
1902 int irdma_cqp_stats_inst_cmd(struct irdma_sc_vsi *vsi, u8 cmd,
1903 			     struct irdma_stats_inst_info *stats_info)
1904 {
1905 	struct irdma_pci_f *rf = dev_to_rf(vsi->dev);
1906 	struct irdma_cqp *iwcqp = &rf->cqp;
1907 	struct irdma_cqp_request *cqp_request;
1908 	struct cqp_cmds_info *cqp_info;
1909 	int status;
1910 	bool wait = false;
1911 
1912 	if (cmd == IRDMA_OP_STATS_ALLOCATE)
1913 		wait = true;
1914 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait);
1915 	if (!cqp_request)
1916 		return -ENOMEM;
1917 
1918 	cqp_info = &cqp_request->info;
1919 	memset(cqp_info, 0, sizeof(*cqp_info));
1920 	cqp_info->cqp_cmd = cmd;
1921 	cqp_info->post_sq = 1;
1922 	cqp_info->in.u.stats_manage.info = *stats_info;
1923 	cqp_info->in.u.stats_manage.scratch = (uintptr_t)cqp_request;
1924 	cqp_info->in.u.stats_manage.cqp = &rf->cqp.sc_cqp;
1925 	status = irdma_handle_cqp_op(rf, cqp_request);
1926 	if (wait)
1927 		stats_info->stats_idx = cqp_request->compl_info.op_ret_val;
1928 	irdma_put_cqp_request(iwcqp, cqp_request);
1929 
1930 	return status;
1931 }
1932 
1933 /**
1934  * irdma_cqp_ceq_cmd - Create/Destroy CEQ's after CEQ 0
1935  * @dev: pointer to device info
1936  * @sc_ceq: pointer to ceq structure
1937  * @op: Create or Destroy
1938  */
1939 int irdma_cqp_ceq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_ceq *sc_ceq,
1940 		      u8 op)
1941 {
1942 	struct irdma_cqp_request *cqp_request;
1943 	struct cqp_cmds_info *cqp_info;
1944 	struct irdma_pci_f *rf = dev_to_rf(dev);
1945 	int status;
1946 
1947 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1948 	if (!cqp_request)
1949 		return -ENOMEM;
1950 
1951 	cqp_info = &cqp_request->info;
1952 	cqp_info->post_sq = 1;
1953 	cqp_info->cqp_cmd = op;
1954 	cqp_info->in.u.ceq_create.ceq = sc_ceq;
1955 	cqp_info->in.u.ceq_create.scratch = (uintptr_t)cqp_request;
1956 
1957 	status = irdma_handle_cqp_op(rf, cqp_request);
1958 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1959 
1960 	return status;
1961 }
1962 
1963 /**
1964  * irdma_cqp_aeq_cmd - Create/Destroy AEQ
1965  * @dev: pointer to device info
1966  * @sc_aeq: pointer to aeq structure
1967  * @op: Create or Destroy
1968  */
1969 int irdma_cqp_aeq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_aeq *sc_aeq,
1970 		      u8 op)
1971 {
1972 	struct irdma_cqp_request *cqp_request;
1973 	struct cqp_cmds_info *cqp_info;
1974 	struct irdma_pci_f *rf = dev_to_rf(dev);
1975 	int status;
1976 
1977 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1978 	if (!cqp_request)
1979 		return -ENOMEM;
1980 
1981 	cqp_info = &cqp_request->info;
1982 	cqp_info->post_sq = 1;
1983 	cqp_info->cqp_cmd = op;
1984 	cqp_info->in.u.aeq_create.aeq = sc_aeq;
1985 	cqp_info->in.u.aeq_create.scratch = (uintptr_t)cqp_request;
1986 
1987 	status = irdma_handle_cqp_op(rf, cqp_request);
1988 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1989 
1990 	return status;
1991 }
1992 
1993 /**
1994  * irdma_cqp_ws_node_cmd - Add/modify/delete ws node
1995  * @dev: pointer to device structure
1996  * @cmd: Add, modify or delete
1997  * @node_info: pointer to ws node info
1998  */
1999 int irdma_cqp_ws_node_cmd(struct irdma_sc_dev *dev, u8 cmd,
2000 			  struct irdma_ws_node_info *node_info)
2001 {
2002 	struct irdma_pci_f *rf = dev_to_rf(dev);
2003 	struct irdma_cqp *iwcqp = &rf->cqp;
2004 	struct irdma_sc_cqp *cqp = &iwcqp->sc_cqp;
2005 	struct irdma_cqp_request *cqp_request;
2006 	struct cqp_cmds_info *cqp_info;
2007 	int status;
2008 	bool poll;
2009 
2010 	if (!rf->sc_dev.ceq_valid)
2011 		poll = true;
2012 	else
2013 		poll = false;
2014 
2015 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, !poll);
2016 	if (!cqp_request)
2017 		return -ENOMEM;
2018 
2019 	cqp_info = &cqp_request->info;
2020 	memset(cqp_info, 0, sizeof(*cqp_info));
2021 	cqp_info->cqp_cmd = cmd;
2022 	cqp_info->post_sq = 1;
2023 	cqp_info->in.u.ws_node.info = *node_info;
2024 	cqp_info->in.u.ws_node.cqp = cqp;
2025 	cqp_info->in.u.ws_node.scratch = (uintptr_t)cqp_request;
2026 	status = irdma_handle_cqp_op(rf, cqp_request);
2027 	if (status)
2028 		goto exit;
2029 
2030 	if (poll) {
2031 		struct irdma_ccq_cqe_info compl_info;
2032 
2033 		status = irdma_sc_poll_for_cqp_op_done(cqp, IRDMA_CQP_OP_WORK_SCHED_NODE,
2034 						       &compl_info);
2035 		node_info->qs_handle = compl_info.op_ret_val;
2036 		ibdev_dbg(&rf->iwdev->ibdev, "DCB: opcode=%d, compl_info.retval=%d\n",
2037 			  compl_info.op_code, compl_info.op_ret_val);
2038 	} else {
2039 		node_info->qs_handle = cqp_request->compl_info.op_ret_val;
2040 	}
2041 
2042 exit:
2043 	irdma_put_cqp_request(&rf->cqp, cqp_request);
2044 
2045 	return status;
2046 }
2047 
2048 /**
2049  * irdma_ah_cqp_op - perform an AH cqp operation
2050  * @rf: RDMA PCI function
2051  * @sc_ah: address handle
2052  * @cmd: AH operation
2053  * @wait: wait if true
2054  * @callback_fcn: Callback function on CQP op completion
2055  * @cb_param: parameter for callback function
2056  *
2057  * returns errno
2058  */
2059 int irdma_ah_cqp_op(struct irdma_pci_f *rf, struct irdma_sc_ah *sc_ah, u8 cmd,
2060 		    bool wait,
2061 		    void (*callback_fcn)(struct irdma_cqp_request *),
2062 		    void *cb_param)
2063 {
2064 	struct irdma_cqp_request *cqp_request;
2065 	struct cqp_cmds_info *cqp_info;
2066 	int status;
2067 
2068 	if (cmd != IRDMA_OP_AH_CREATE && cmd != IRDMA_OP_AH_DESTROY)
2069 		return -EINVAL;
2070 
2071 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait);
2072 	if (!cqp_request)
2073 		return -ENOMEM;
2074 
2075 	cqp_info = &cqp_request->info;
2076 	cqp_info->cqp_cmd = cmd;
2077 	cqp_info->post_sq = 1;
2078 	if (cmd == IRDMA_OP_AH_CREATE) {
2079 		cqp_info->in.u.ah_create.info = sc_ah->ah_info;
2080 		cqp_info->in.u.ah_create.scratch = (uintptr_t)cqp_request;
2081 		cqp_info->in.u.ah_create.cqp = &rf->cqp.sc_cqp;
2082 	} else if (cmd == IRDMA_OP_AH_DESTROY) {
2083 		cqp_info->in.u.ah_destroy.info = sc_ah->ah_info;
2084 		cqp_info->in.u.ah_destroy.scratch = (uintptr_t)cqp_request;
2085 		cqp_info->in.u.ah_destroy.cqp = &rf->cqp.sc_cqp;
2086 	}
2087 
2088 	if (!wait) {
2089 		cqp_request->callback_fcn = callback_fcn;
2090 		cqp_request->param = cb_param;
2091 	}
2092 	status = irdma_handle_cqp_op(rf, cqp_request);
2093 	irdma_put_cqp_request(&rf->cqp, cqp_request);
2094 
2095 	if (status)
2096 		return -ENOMEM;
2097 
2098 	if (wait)
2099 		sc_ah->ah_info.ah_valid = (cmd == IRDMA_OP_AH_CREATE);
2100 
2101 	return 0;
2102 }
2103 
2104 /**
2105  * irdma_ieq_ah_cb - callback after creation of AH for IEQ
2106  * @cqp_request: pointer to cqp_request of create AH
2107  */
2108 static void irdma_ieq_ah_cb(struct irdma_cqp_request *cqp_request)
2109 {
2110 	struct irdma_sc_qp *qp = cqp_request->param;
2111 	struct irdma_sc_ah *sc_ah = qp->pfpdu.ah;
2112 	unsigned long flags;
2113 
2114 	spin_lock_irqsave(&qp->pfpdu.lock, flags);
2115 	if (!cqp_request->compl_info.op_ret_val) {
2116 		sc_ah->ah_info.ah_valid = true;
2117 		irdma_ieq_process_fpdus(qp, qp->vsi->ieq);
2118 	} else {
2119 		sc_ah->ah_info.ah_valid = false;
2120 		irdma_ieq_cleanup_qp(qp->vsi->ieq, qp);
2121 	}
2122 	spin_unlock_irqrestore(&qp->pfpdu.lock, flags);
2123 }
2124 
2125 /**
2126  * irdma_ilq_ah_cb - callback after creation of AH for ILQ
2127  * @cqp_request: pointer to cqp_request of create AH
2128  */
2129 static void irdma_ilq_ah_cb(struct irdma_cqp_request *cqp_request)
2130 {
2131 	struct irdma_cm_node *cm_node = cqp_request->param;
2132 	struct irdma_sc_ah *sc_ah = cm_node->ah;
2133 
2134 	sc_ah->ah_info.ah_valid = !cqp_request->compl_info.op_ret_val;
2135 	irdma_add_conn_est_qh(cm_node);
2136 }
2137 
2138 /**
2139  * irdma_puda_create_ah - create AH for ILQ/IEQ qp's
2140  * @dev: device pointer
2141  * @ah_info: Address handle info
2142  * @wait: When true will wait for operation to complete
2143  * @type: ILQ/IEQ
2144  * @cb_param: Callback param when not waiting
2145  * @ah_ret: Returned pointer to address handle if created
2146  *
2147  */
2148 int irdma_puda_create_ah(struct irdma_sc_dev *dev,
2149 			 struct irdma_ah_info *ah_info, bool wait,
2150 			 enum puda_rsrc_type type, void *cb_param,
2151 			 struct irdma_sc_ah **ah_ret)
2152 {
2153 	struct irdma_sc_ah *ah;
2154 	struct irdma_pci_f *rf = dev_to_rf(dev);
2155 	int err;
2156 
2157 	ah = kzalloc(sizeof(*ah), GFP_ATOMIC);
2158 	*ah_ret = ah;
2159 	if (!ah)
2160 		return -ENOMEM;
2161 
2162 	err = irdma_alloc_rsrc(rf, rf->allocated_ahs, rf->max_ah,
2163 			       &ah_info->ah_idx, &rf->next_ah);
2164 	if (err)
2165 		goto err_free;
2166 
2167 	ah->dev = dev;
2168 	ah->ah_info = *ah_info;
2169 
2170 	if (type == IRDMA_PUDA_RSRC_TYPE_ILQ)
2171 		err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait,
2172 				      irdma_ilq_ah_cb, cb_param);
2173 	else
2174 		err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait,
2175 				      irdma_ieq_ah_cb, cb_param);
2176 
2177 	if (err)
2178 		goto error;
2179 	return 0;
2180 
2181 error:
2182 	irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx);
2183 err_free:
2184 	kfree(ah);
2185 	*ah_ret = NULL;
2186 	return -ENOMEM;
2187 }
2188 
2189 /**
2190  * irdma_puda_free_ah - free a puda address handle
2191  * @dev: device pointer
2192  * @ah: The address handle to free
2193  */
2194 void irdma_puda_free_ah(struct irdma_sc_dev *dev, struct irdma_sc_ah *ah)
2195 {
2196 	struct irdma_pci_f *rf = dev_to_rf(dev);
2197 
2198 	if (!ah)
2199 		return;
2200 
2201 	if (ah->ah_info.ah_valid) {
2202 		irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_DESTROY, false, NULL, NULL);
2203 		irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx);
2204 	}
2205 
2206 	kfree(ah);
2207 }
2208 
2209 /**
2210  * irdma_gsi_ud_qp_ah_cb - callback after creation of AH for GSI/ID QP
2211  * @cqp_request: pointer to cqp_request of create AH
2212  */
2213 void irdma_gsi_ud_qp_ah_cb(struct irdma_cqp_request *cqp_request)
2214 {
2215 	struct irdma_sc_ah *sc_ah = cqp_request->param;
2216 
2217 	if (!cqp_request->compl_info.op_ret_val)
2218 		sc_ah->ah_info.ah_valid = true;
2219 	else
2220 		sc_ah->ah_info.ah_valid = false;
2221 }
2222 
2223 /**
2224  * irdma_prm_add_pble_mem - add moemory to pble resources
2225  * @pprm: pble resource manager
2226  * @pchunk: chunk of memory to add
2227  */
2228 int irdma_prm_add_pble_mem(struct irdma_pble_prm *pprm,
2229 			   struct irdma_chunk *pchunk)
2230 {
2231 	u64 sizeofbitmap;
2232 
2233 	if (pchunk->size & 0xfff)
2234 		return -EINVAL;
2235 
2236 	sizeofbitmap = (u64)pchunk->size >> pprm->pble_shift;
2237 
2238 	pchunk->bitmapbuf = bitmap_zalloc(sizeofbitmap, GFP_KERNEL);
2239 	if (!pchunk->bitmapbuf)
2240 		return -ENOMEM;
2241 
2242 	pchunk->sizeofbitmap = sizeofbitmap;
2243 	/* each pble is 8 bytes hence shift by 3 */
2244 	pprm->total_pble_alloc += pchunk->size >> 3;
2245 	pprm->free_pble_cnt += pchunk->size >> 3;
2246 
2247 	return 0;
2248 }
2249 
2250 /**
2251  * irdma_prm_get_pbles - get pble's from prm
2252  * @pprm: pble resource manager
2253  * @chunkinfo: nformation about chunk where pble's were acquired
2254  * @mem_size: size of pble memory needed
2255  * @vaddr: returns virtual address of pble memory
2256  * @fpm_addr: returns fpm address of pble memory
2257  */
2258 int irdma_prm_get_pbles(struct irdma_pble_prm *pprm,
2259 			struct irdma_pble_chunkinfo *chunkinfo, u64 mem_size,
2260 			u64 **vaddr, u64 *fpm_addr)
2261 {
2262 	u64 bits_needed;
2263 	u64 bit_idx = PBLE_INVALID_IDX;
2264 	struct irdma_chunk *pchunk = NULL;
2265 	struct list_head *chunk_entry = pprm->clist.next;
2266 	u32 offset;
2267 	unsigned long flags;
2268 	*vaddr = NULL;
2269 	*fpm_addr = 0;
2270 
2271 	bits_needed = DIV_ROUND_UP_ULL(mem_size, BIT_ULL(pprm->pble_shift));
2272 
2273 	spin_lock_irqsave(&pprm->prm_lock, flags);
2274 	while (chunk_entry != &pprm->clist) {
2275 		pchunk = (struct irdma_chunk *)chunk_entry;
2276 		bit_idx = bitmap_find_next_zero_area(pchunk->bitmapbuf,
2277 						     pchunk->sizeofbitmap, 0,
2278 						     bits_needed, 0);
2279 		if (bit_idx < pchunk->sizeofbitmap)
2280 			break;
2281 
2282 		/* list.next used macro */
2283 		chunk_entry = pchunk->list.next;
2284 	}
2285 
2286 	if (!pchunk || bit_idx >= pchunk->sizeofbitmap) {
2287 		spin_unlock_irqrestore(&pprm->prm_lock, flags);
2288 		return -ENOMEM;
2289 	}
2290 
2291 	bitmap_set(pchunk->bitmapbuf, bit_idx, bits_needed);
2292 	offset = bit_idx << pprm->pble_shift;
2293 	*vaddr = pchunk->vaddr + offset;
2294 	*fpm_addr = pchunk->fpm_addr + offset;
2295 
2296 	chunkinfo->pchunk = pchunk;
2297 	chunkinfo->bit_idx = bit_idx;
2298 	chunkinfo->bits_used = bits_needed;
2299 	/* 3 is sizeof pble divide */
2300 	pprm->free_pble_cnt -= chunkinfo->bits_used << (pprm->pble_shift - 3);
2301 	spin_unlock_irqrestore(&pprm->prm_lock, flags);
2302 
2303 	return 0;
2304 }
2305 
2306 /**
2307  * irdma_prm_return_pbles - return pbles back to prm
2308  * @pprm: pble resource manager
2309  * @chunkinfo: chunk where pble's were acquired and to be freed
2310  */
2311 void irdma_prm_return_pbles(struct irdma_pble_prm *pprm,
2312 			    struct irdma_pble_chunkinfo *chunkinfo)
2313 {
2314 	unsigned long flags;
2315 
2316 	spin_lock_irqsave(&pprm->prm_lock, flags);
2317 	pprm->free_pble_cnt += chunkinfo->bits_used << (pprm->pble_shift - 3);
2318 	bitmap_clear(chunkinfo->pchunk->bitmapbuf, chunkinfo->bit_idx,
2319 		     chunkinfo->bits_used);
2320 	spin_unlock_irqrestore(&pprm->prm_lock, flags);
2321 }
2322 
2323 int irdma_map_vm_page_list(struct irdma_hw *hw, void *va, dma_addr_t *pg_dma,
2324 			   u32 pg_cnt)
2325 {
2326 	struct page *vm_page;
2327 	int i;
2328 	u8 *addr;
2329 
2330 	addr = (u8 *)(uintptr_t)va;
2331 	for (i = 0; i < pg_cnt; i++) {
2332 		vm_page = vmalloc_to_page(addr);
2333 		if (!vm_page)
2334 			goto err;
2335 
2336 		pg_dma[i] = dma_map_page(hw->device, vm_page, 0, PAGE_SIZE,
2337 					 DMA_BIDIRECTIONAL);
2338 		if (dma_mapping_error(hw->device, pg_dma[i]))
2339 			goto err;
2340 
2341 		addr += PAGE_SIZE;
2342 	}
2343 
2344 	return 0;
2345 
2346 err:
2347 	irdma_unmap_vm_page_list(hw, pg_dma, i);
2348 	return -ENOMEM;
2349 }
2350 
2351 void irdma_unmap_vm_page_list(struct irdma_hw *hw, dma_addr_t *pg_dma, u32 pg_cnt)
2352 {
2353 	int i;
2354 
2355 	for (i = 0; i < pg_cnt; i++)
2356 		dma_unmap_page(hw->device, pg_dma[i], PAGE_SIZE, DMA_BIDIRECTIONAL);
2357 }
2358 
2359 /**
2360  * irdma_pble_free_paged_mem - free virtual paged memory
2361  * @chunk: chunk to free with paged memory
2362  */
2363 void irdma_pble_free_paged_mem(struct irdma_chunk *chunk)
2364 {
2365 	if (!chunk->pg_cnt)
2366 		goto done;
2367 
2368 	irdma_unmap_vm_page_list(chunk->dev->hw, chunk->dmainfo.dmaaddrs,
2369 				 chunk->pg_cnt);
2370 
2371 done:
2372 	kfree(chunk->dmainfo.dmaaddrs);
2373 	chunk->dmainfo.dmaaddrs = NULL;
2374 	vfree(chunk->vaddr);
2375 	chunk->vaddr = NULL;
2376 	chunk->type = 0;
2377 }
2378 
2379 /**
2380  * irdma_pble_get_paged_mem -allocate paged memory for pbles
2381  * @chunk: chunk to add for paged memory
2382  * @pg_cnt: number of pages needed
2383  */
2384 int irdma_pble_get_paged_mem(struct irdma_chunk *chunk, u32 pg_cnt)
2385 {
2386 	u32 size;
2387 	void *va;
2388 
2389 	chunk->dmainfo.dmaaddrs = kzalloc(pg_cnt << 3, GFP_KERNEL);
2390 	if (!chunk->dmainfo.dmaaddrs)
2391 		return -ENOMEM;
2392 
2393 	size = PAGE_SIZE * pg_cnt;
2394 	va = vmalloc(size);
2395 	if (!va)
2396 		goto err;
2397 
2398 	if (irdma_map_vm_page_list(chunk->dev->hw, va, chunk->dmainfo.dmaaddrs,
2399 				   pg_cnt)) {
2400 		vfree(va);
2401 		goto err;
2402 	}
2403 	chunk->vaddr = va;
2404 	chunk->size = size;
2405 	chunk->pg_cnt = pg_cnt;
2406 	chunk->type = PBLE_SD_PAGED;
2407 
2408 	return 0;
2409 err:
2410 	kfree(chunk->dmainfo.dmaaddrs);
2411 	chunk->dmainfo.dmaaddrs = NULL;
2412 
2413 	return -ENOMEM;
2414 }
2415 
2416 /**
2417  * irdma_alloc_ws_node_id - Allocate a tx scheduler node ID
2418  * @dev: device pointer
2419  */
2420 u16 irdma_alloc_ws_node_id(struct irdma_sc_dev *dev)
2421 {
2422 	struct irdma_pci_f *rf = dev_to_rf(dev);
2423 	u32 next = 1;
2424 	u32 node_id;
2425 
2426 	if (irdma_alloc_rsrc(rf, rf->allocated_ws_nodes, rf->max_ws_node_id,
2427 			     &node_id, &next))
2428 		return IRDMA_WS_NODE_INVALID;
2429 
2430 	return (u16)node_id;
2431 }
2432 
2433 /**
2434  * irdma_free_ws_node_id - Free a tx scheduler node ID
2435  * @dev: device pointer
2436  * @node_id: Work scheduler node ID
2437  */
2438 void irdma_free_ws_node_id(struct irdma_sc_dev *dev, u16 node_id)
2439 {
2440 	struct irdma_pci_f *rf = dev_to_rf(dev);
2441 
2442 	irdma_free_rsrc(rf, rf->allocated_ws_nodes, (u32)node_id);
2443 }
2444 
2445 /**
2446  * irdma_modify_qp_to_err - Modify a QP to error
2447  * @sc_qp: qp structure
2448  */
2449 void irdma_modify_qp_to_err(struct irdma_sc_qp *sc_qp)
2450 {
2451 	struct irdma_qp *qp = sc_qp->qp_uk.back_qp;
2452 	struct ib_qp_attr attr;
2453 
2454 	if (qp->iwdev->rf->reset)
2455 		return;
2456 	attr.qp_state = IB_QPS_ERR;
2457 
2458 	if (rdma_protocol_roce(qp->ibqp.device, 1))
2459 		irdma_modify_qp_roce(&qp->ibqp, &attr, IB_QP_STATE, NULL);
2460 	else
2461 		irdma_modify_qp(&qp->ibqp, &attr, IB_QP_STATE, NULL);
2462 }
2463 
2464 void irdma_ib_qp_event(struct irdma_qp *iwqp, enum irdma_qp_event_type event)
2465 {
2466 	struct ib_event ibevent;
2467 
2468 	if (!iwqp->ibqp.event_handler)
2469 		return;
2470 
2471 	switch (event) {
2472 	case IRDMA_QP_EVENT_CATASTROPHIC:
2473 		ibevent.event = IB_EVENT_QP_FATAL;
2474 		break;
2475 	case IRDMA_QP_EVENT_ACCESS_ERR:
2476 		ibevent.event = IB_EVENT_QP_ACCESS_ERR;
2477 		break;
2478 	}
2479 	ibevent.device = iwqp->ibqp.device;
2480 	ibevent.element.qp = &iwqp->ibqp;
2481 	iwqp->ibqp.event_handler(&ibevent, iwqp->ibqp.qp_context);
2482 }
2483 
2484 bool irdma_cq_empty(struct irdma_cq *iwcq)
2485 {
2486 	struct irdma_cq_uk *ukcq;
2487 	u64 qword3;
2488 	__le64 *cqe;
2489 	u8 polarity;
2490 
2491 	ukcq  = &iwcq->sc_cq.cq_uk;
2492 	cqe = IRDMA_GET_CURRENT_CQ_ELEM(ukcq);
2493 	get_64bit_val(cqe, 24, &qword3);
2494 	polarity = (u8)FIELD_GET(IRDMA_CQ_VALID, qword3);
2495 
2496 	return polarity != ukcq->polarity;
2497 }
2498