1 // SPDX-License-Identifier: GPL-2.0 or Linux-OpenIB 2 /* Copyright (c) 2015 - 2021 Intel Corporation */ 3 #include "main.h" 4 5 /** 6 * irdma_arp_table -manage arp table 7 * @rf: RDMA PCI function 8 * @ip_addr: ip address for device 9 * @ipv4: IPv4 flag 10 * @mac_addr: mac address ptr 11 * @action: modify, delete or add 12 */ 13 int irdma_arp_table(struct irdma_pci_f *rf, u32 *ip_addr, bool ipv4, 14 const u8 *mac_addr, u32 action) 15 { 16 unsigned long flags; 17 int arp_index; 18 u32 ip[4] = {}; 19 20 if (ipv4) 21 ip[0] = *ip_addr; 22 else 23 memcpy(ip, ip_addr, sizeof(ip)); 24 25 spin_lock_irqsave(&rf->arp_lock, flags); 26 for (arp_index = 0; (u32)arp_index < rf->arp_table_size; arp_index++) { 27 if (!memcmp(rf->arp_table[arp_index].ip_addr, ip, sizeof(ip))) 28 break; 29 } 30 31 switch (action) { 32 case IRDMA_ARP_ADD: 33 if (arp_index != rf->arp_table_size) { 34 arp_index = -1; 35 break; 36 } 37 38 arp_index = 0; 39 if (irdma_alloc_rsrc(rf, rf->allocated_arps, rf->arp_table_size, 40 (u32 *)&arp_index, &rf->next_arp_index)) { 41 arp_index = -1; 42 break; 43 } 44 45 memcpy(rf->arp_table[arp_index].ip_addr, ip, 46 sizeof(rf->arp_table[arp_index].ip_addr)); 47 ether_addr_copy(rf->arp_table[arp_index].mac_addr, mac_addr); 48 break; 49 case IRDMA_ARP_RESOLVE: 50 if (arp_index == rf->arp_table_size) 51 arp_index = -1; 52 break; 53 case IRDMA_ARP_DELETE: 54 if (arp_index == rf->arp_table_size) { 55 arp_index = -1; 56 break; 57 } 58 59 memset(rf->arp_table[arp_index].ip_addr, 0, 60 sizeof(rf->arp_table[arp_index].ip_addr)); 61 eth_zero_addr(rf->arp_table[arp_index].mac_addr); 62 irdma_free_rsrc(rf, rf->allocated_arps, arp_index); 63 break; 64 default: 65 arp_index = -1; 66 break; 67 } 68 69 spin_unlock_irqrestore(&rf->arp_lock, flags); 70 return arp_index; 71 } 72 73 /** 74 * irdma_add_arp - add a new arp entry if needed 75 * @rf: RDMA function 76 * @ip: IP address 77 * @ipv4: IPv4 flag 78 * @mac: MAC address 79 */ 80 int irdma_add_arp(struct irdma_pci_f *rf, u32 *ip, bool ipv4, const u8 *mac) 81 { 82 int arpidx; 83 84 arpidx = irdma_arp_table(rf, &ip[0], ipv4, NULL, IRDMA_ARP_RESOLVE); 85 if (arpidx >= 0) { 86 if (ether_addr_equal(rf->arp_table[arpidx].mac_addr, mac)) 87 return arpidx; 88 89 irdma_manage_arp_cache(rf, rf->arp_table[arpidx].mac_addr, ip, 90 ipv4, IRDMA_ARP_DELETE); 91 } 92 93 irdma_manage_arp_cache(rf, mac, ip, ipv4, IRDMA_ARP_ADD); 94 95 return irdma_arp_table(rf, ip, ipv4, NULL, IRDMA_ARP_RESOLVE); 96 } 97 98 /** 99 * wr32 - write 32 bits to hw register 100 * @hw: hardware information including registers 101 * @reg: register offset 102 * @val: value to write to register 103 */ 104 inline void wr32(struct irdma_hw *hw, u32 reg, u32 val) 105 { 106 writel(val, hw->hw_addr + reg); 107 } 108 109 /** 110 * rd32 - read a 32 bit hw register 111 * @hw: hardware information including registers 112 * @reg: register offset 113 * 114 * Return value of register content 115 */ 116 inline u32 rd32(struct irdma_hw *hw, u32 reg) 117 { 118 return readl(hw->hw_addr + reg); 119 } 120 121 /** 122 * rd64 - read a 64 bit hw register 123 * @hw: hardware information including registers 124 * @reg: register offset 125 * 126 * Return value of register content 127 */ 128 inline u64 rd64(struct irdma_hw *hw, u32 reg) 129 { 130 return readq(hw->hw_addr + reg); 131 } 132 133 static void irdma_gid_change_event(struct ib_device *ibdev) 134 { 135 struct ib_event ib_event; 136 137 ib_event.event = IB_EVENT_GID_CHANGE; 138 ib_event.device = ibdev; 139 ib_event.element.port_num = 1; 140 ib_dispatch_event(&ib_event); 141 } 142 143 /** 144 * irdma_inetaddr_event - system notifier for ipv4 addr events 145 * @notifier: not used 146 * @event: event for notifier 147 * @ptr: if address 148 */ 149 int irdma_inetaddr_event(struct notifier_block *notifier, unsigned long event, 150 void *ptr) 151 { 152 struct in_ifaddr *ifa = ptr; 153 struct net_device *real_dev, *netdev = ifa->ifa_dev->dev; 154 struct irdma_device *iwdev; 155 struct ib_device *ibdev; 156 u32 local_ipaddr; 157 158 real_dev = rdma_vlan_dev_real_dev(netdev); 159 if (!real_dev) 160 real_dev = netdev; 161 162 ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA); 163 if (!ibdev) 164 return NOTIFY_DONE; 165 166 iwdev = to_iwdev(ibdev); 167 local_ipaddr = ntohl(ifa->ifa_address); 168 ibdev_dbg(&iwdev->ibdev, 169 "DEV: netdev %p event %lu local_ip=%pI4 MAC=%pM\n", real_dev, 170 event, &local_ipaddr, real_dev->dev_addr); 171 switch (event) { 172 case NETDEV_DOWN: 173 irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr, 174 &local_ipaddr, true, IRDMA_ARP_DELETE); 175 irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, false); 176 irdma_gid_change_event(&iwdev->ibdev); 177 break; 178 case NETDEV_UP: 179 case NETDEV_CHANGEADDR: 180 irdma_add_arp(iwdev->rf, &local_ipaddr, true, real_dev->dev_addr); 181 irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, true); 182 irdma_gid_change_event(&iwdev->ibdev); 183 break; 184 default: 185 break; 186 } 187 188 ib_device_put(ibdev); 189 190 return NOTIFY_DONE; 191 } 192 193 /** 194 * irdma_inet6addr_event - system notifier for ipv6 addr events 195 * @notifier: not used 196 * @event: event for notifier 197 * @ptr: if address 198 */ 199 int irdma_inet6addr_event(struct notifier_block *notifier, unsigned long event, 200 void *ptr) 201 { 202 struct inet6_ifaddr *ifa = ptr; 203 struct net_device *real_dev, *netdev = ifa->idev->dev; 204 struct irdma_device *iwdev; 205 struct ib_device *ibdev; 206 u32 local_ipaddr6[4]; 207 208 real_dev = rdma_vlan_dev_real_dev(netdev); 209 if (!real_dev) 210 real_dev = netdev; 211 212 ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA); 213 if (!ibdev) 214 return NOTIFY_DONE; 215 216 iwdev = to_iwdev(ibdev); 217 irdma_copy_ip_ntohl(local_ipaddr6, ifa->addr.in6_u.u6_addr32); 218 ibdev_dbg(&iwdev->ibdev, 219 "DEV: netdev %p event %lu local_ip=%pI6 MAC=%pM\n", real_dev, 220 event, local_ipaddr6, real_dev->dev_addr); 221 switch (event) { 222 case NETDEV_DOWN: 223 irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr, 224 local_ipaddr6, false, IRDMA_ARP_DELETE); 225 irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, false); 226 irdma_gid_change_event(&iwdev->ibdev); 227 break; 228 case NETDEV_UP: 229 case NETDEV_CHANGEADDR: 230 irdma_add_arp(iwdev->rf, local_ipaddr6, false, 231 real_dev->dev_addr); 232 irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, true); 233 irdma_gid_change_event(&iwdev->ibdev); 234 break; 235 default: 236 break; 237 } 238 239 ib_device_put(ibdev); 240 241 return NOTIFY_DONE; 242 } 243 244 /** 245 * irdma_net_event - system notifier for net events 246 * @notifier: not used 247 * @event: event for notifier 248 * @ptr: neighbor 249 */ 250 int irdma_net_event(struct notifier_block *notifier, unsigned long event, 251 void *ptr) 252 { 253 struct neighbour *neigh = ptr; 254 struct net_device *real_dev, *netdev = (struct net_device *)neigh->dev; 255 struct irdma_device *iwdev; 256 struct ib_device *ibdev; 257 __be32 *p; 258 u32 local_ipaddr[4] = {}; 259 bool ipv4 = true; 260 261 switch (event) { 262 case NETEVENT_NEIGH_UPDATE: 263 real_dev = rdma_vlan_dev_real_dev(netdev); 264 if (!real_dev) 265 real_dev = netdev; 266 ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA); 267 if (!ibdev) 268 return NOTIFY_DONE; 269 270 iwdev = to_iwdev(ibdev); 271 p = (__be32 *)neigh->primary_key; 272 if (neigh->tbl->family == AF_INET6) { 273 ipv4 = false; 274 irdma_copy_ip_ntohl(local_ipaddr, p); 275 } else { 276 local_ipaddr[0] = ntohl(*p); 277 } 278 279 ibdev_dbg(&iwdev->ibdev, 280 "DEV: netdev %p state %d local_ip=%pI4 MAC=%pM\n", 281 iwdev->netdev, neigh->nud_state, local_ipaddr, 282 neigh->ha); 283 284 if (neigh->nud_state & NUD_VALID) 285 irdma_add_arp(iwdev->rf, local_ipaddr, ipv4, neigh->ha); 286 287 else 288 irdma_manage_arp_cache(iwdev->rf, neigh->ha, 289 local_ipaddr, ipv4, 290 IRDMA_ARP_DELETE); 291 ib_device_put(ibdev); 292 break; 293 default: 294 break; 295 } 296 297 return NOTIFY_DONE; 298 } 299 300 /** 301 * irdma_netdevice_event - system notifier for netdev events 302 * @notifier: not used 303 * @event: event for notifier 304 * @ptr: netdev 305 */ 306 int irdma_netdevice_event(struct notifier_block *notifier, unsigned long event, 307 void *ptr) 308 { 309 struct irdma_device *iwdev; 310 struct ib_device *ibdev; 311 struct net_device *netdev = netdev_notifier_info_to_dev(ptr); 312 313 ibdev = ib_device_get_by_netdev(netdev, RDMA_DRIVER_IRDMA); 314 if (!ibdev) 315 return NOTIFY_DONE; 316 317 iwdev = to_iwdev(ibdev); 318 iwdev->iw_status = 1; 319 switch (event) { 320 case NETDEV_DOWN: 321 iwdev->iw_status = 0; 322 fallthrough; 323 case NETDEV_UP: 324 irdma_port_ibevent(iwdev); 325 break; 326 default: 327 break; 328 } 329 ib_device_put(ibdev); 330 331 return NOTIFY_DONE; 332 } 333 334 /** 335 * irdma_add_ipv6_addr - add ipv6 address to the hw arp table 336 * @iwdev: irdma device 337 */ 338 static void irdma_add_ipv6_addr(struct irdma_device *iwdev) 339 { 340 struct net_device *ip_dev; 341 struct inet6_dev *idev; 342 struct inet6_ifaddr *ifp, *tmp; 343 u32 local_ipaddr6[4]; 344 345 rcu_read_lock(); 346 for_each_netdev_rcu (&init_net, ip_dev) { 347 if (((rdma_vlan_dev_vlan_id(ip_dev) < 0xFFFF && 348 rdma_vlan_dev_real_dev(ip_dev) == iwdev->netdev) || 349 ip_dev == iwdev->netdev) && 350 (READ_ONCE(ip_dev->flags) & IFF_UP)) { 351 idev = __in6_dev_get(ip_dev); 352 if (!idev) { 353 ibdev_err(&iwdev->ibdev, "ipv6 inet device not found\n"); 354 break; 355 } 356 list_for_each_entry_safe (ifp, tmp, &idev->addr_list, 357 if_list) { 358 ibdev_dbg(&iwdev->ibdev, 359 "INIT: IP=%pI6, vlan_id=%d, MAC=%pM\n", 360 &ifp->addr, 361 rdma_vlan_dev_vlan_id(ip_dev), 362 ip_dev->dev_addr); 363 364 irdma_copy_ip_ntohl(local_ipaddr6, 365 ifp->addr.in6_u.u6_addr32); 366 irdma_manage_arp_cache(iwdev->rf, 367 ip_dev->dev_addr, 368 local_ipaddr6, false, 369 IRDMA_ARP_ADD); 370 } 371 } 372 } 373 rcu_read_unlock(); 374 } 375 376 /** 377 * irdma_add_ipv4_addr - add ipv4 address to the hw arp table 378 * @iwdev: irdma device 379 */ 380 static void irdma_add_ipv4_addr(struct irdma_device *iwdev) 381 { 382 struct net_device *dev; 383 struct in_device *idev; 384 u32 ip_addr; 385 386 rcu_read_lock(); 387 for_each_netdev_rcu (&init_net, dev) { 388 if (((rdma_vlan_dev_vlan_id(dev) < 0xFFFF && 389 rdma_vlan_dev_real_dev(dev) == iwdev->netdev) || 390 dev == iwdev->netdev) && (READ_ONCE(dev->flags) & IFF_UP)) { 391 const struct in_ifaddr *ifa; 392 393 idev = __in_dev_get_rcu(dev); 394 if (!idev) 395 continue; 396 397 in_dev_for_each_ifa_rcu(ifa, idev) { 398 ibdev_dbg(&iwdev->ibdev, "CM: IP=%pI4, vlan_id=%d, MAC=%pM\n", 399 &ifa->ifa_address, rdma_vlan_dev_vlan_id(dev), 400 dev->dev_addr); 401 402 ip_addr = ntohl(ifa->ifa_address); 403 irdma_manage_arp_cache(iwdev->rf, dev->dev_addr, 404 &ip_addr, true, 405 IRDMA_ARP_ADD); 406 } 407 } 408 } 409 rcu_read_unlock(); 410 } 411 412 /** 413 * irdma_add_ip - add ip addresses 414 * @iwdev: irdma device 415 * 416 * Add ipv4/ipv6 addresses to the arp cache 417 */ 418 void irdma_add_ip(struct irdma_device *iwdev) 419 { 420 irdma_add_ipv4_addr(iwdev); 421 irdma_add_ipv6_addr(iwdev); 422 } 423 424 /** 425 * irdma_alloc_and_get_cqp_request - get cqp struct 426 * @cqp: device cqp ptr 427 * @wait: cqp to be used in wait mode 428 */ 429 struct irdma_cqp_request *irdma_alloc_and_get_cqp_request(struct irdma_cqp *cqp, 430 bool wait) 431 { 432 struct irdma_cqp_request *cqp_request = NULL; 433 unsigned long flags; 434 435 spin_lock_irqsave(&cqp->req_lock, flags); 436 if (!list_empty(&cqp->cqp_avail_reqs)) { 437 cqp_request = list_first_entry(&cqp->cqp_avail_reqs, 438 struct irdma_cqp_request, list); 439 list_del_init(&cqp_request->list); 440 } 441 spin_unlock_irqrestore(&cqp->req_lock, flags); 442 if (!cqp_request) { 443 cqp_request = kzalloc(sizeof(*cqp_request), GFP_ATOMIC); 444 if (cqp_request) { 445 cqp_request->dynamic = true; 446 if (wait) 447 init_waitqueue_head(&cqp_request->waitq); 448 } 449 } 450 if (!cqp_request) { 451 ibdev_dbg(to_ibdev(cqp->sc_cqp.dev), "ERR: CQP Request Fail: No Memory"); 452 return NULL; 453 } 454 455 cqp_request->waiting = wait; 456 refcount_set(&cqp_request->refcnt, 1); 457 memset(&cqp_request->compl_info, 0, sizeof(cqp_request->compl_info)); 458 459 return cqp_request; 460 } 461 462 /** 463 * irdma_get_cqp_request - increase refcount for cqp_request 464 * @cqp_request: pointer to cqp_request instance 465 */ 466 static inline void irdma_get_cqp_request(struct irdma_cqp_request *cqp_request) 467 { 468 refcount_inc(&cqp_request->refcnt); 469 } 470 471 /** 472 * irdma_free_cqp_request - free cqp request 473 * @cqp: cqp ptr 474 * @cqp_request: to be put back in cqp list 475 */ 476 void irdma_free_cqp_request(struct irdma_cqp *cqp, 477 struct irdma_cqp_request *cqp_request) 478 { 479 unsigned long flags; 480 481 if (cqp_request->dynamic) { 482 kfree(cqp_request); 483 } else { 484 cqp_request->request_done = false; 485 cqp_request->callback_fcn = NULL; 486 cqp_request->waiting = false; 487 488 spin_lock_irqsave(&cqp->req_lock, flags); 489 list_add_tail(&cqp_request->list, &cqp->cqp_avail_reqs); 490 spin_unlock_irqrestore(&cqp->req_lock, flags); 491 } 492 wake_up(&cqp->remove_wq); 493 } 494 495 /** 496 * irdma_put_cqp_request - dec ref count and free if 0 497 * @cqp: cqp ptr 498 * @cqp_request: to be put back in cqp list 499 */ 500 void irdma_put_cqp_request(struct irdma_cqp *cqp, 501 struct irdma_cqp_request *cqp_request) 502 { 503 if (refcount_dec_and_test(&cqp_request->refcnt)) 504 irdma_free_cqp_request(cqp, cqp_request); 505 } 506 507 /** 508 * irdma_free_pending_cqp_request -free pending cqp request objs 509 * @cqp: cqp ptr 510 * @cqp_request: to be put back in cqp list 511 */ 512 static void 513 irdma_free_pending_cqp_request(struct irdma_cqp *cqp, 514 struct irdma_cqp_request *cqp_request) 515 { 516 if (cqp_request->waiting) { 517 cqp_request->compl_info.error = true; 518 cqp_request->request_done = true; 519 wake_up(&cqp_request->waitq); 520 } 521 wait_event_timeout(cqp->remove_wq, 522 refcount_read(&cqp_request->refcnt) == 1, 1000); 523 irdma_put_cqp_request(cqp, cqp_request); 524 } 525 526 /** 527 * irdma_cleanup_pending_cqp_op - clean-up cqp with no 528 * completions 529 * @rf: RDMA PCI function 530 */ 531 void irdma_cleanup_pending_cqp_op(struct irdma_pci_f *rf) 532 { 533 struct irdma_sc_dev *dev = &rf->sc_dev; 534 struct irdma_cqp *cqp = &rf->cqp; 535 struct irdma_cqp_request *cqp_request = NULL; 536 struct cqp_cmds_info *pcmdinfo = NULL; 537 u32 i, pending_work, wqe_idx; 538 539 pending_work = IRDMA_RING_USED_QUANTA(cqp->sc_cqp.sq_ring); 540 wqe_idx = IRDMA_RING_CURRENT_TAIL(cqp->sc_cqp.sq_ring); 541 for (i = 0; i < pending_work; i++) { 542 cqp_request = (struct irdma_cqp_request *)(unsigned long) 543 cqp->scratch_array[wqe_idx]; 544 if (cqp_request) 545 irdma_free_pending_cqp_request(cqp, cqp_request); 546 wqe_idx = (wqe_idx + 1) % IRDMA_RING_SIZE(cqp->sc_cqp.sq_ring); 547 } 548 549 while (!list_empty(&dev->cqp_cmd_head)) { 550 pcmdinfo = irdma_remove_cqp_head(dev); 551 cqp_request = 552 container_of(pcmdinfo, struct irdma_cqp_request, info); 553 if (cqp_request) 554 irdma_free_pending_cqp_request(cqp, cqp_request); 555 } 556 } 557 558 /** 559 * irdma_wait_event - wait for completion 560 * @rf: RDMA PCI function 561 * @cqp_request: cqp request to wait 562 */ 563 static int irdma_wait_event(struct irdma_pci_f *rf, 564 struct irdma_cqp_request *cqp_request) 565 { 566 struct irdma_cqp_timeout cqp_timeout = {}; 567 bool cqp_error = false; 568 int err_code = 0; 569 570 cqp_timeout.compl_cqp_cmds = rf->sc_dev.cqp_cmd_stats[IRDMA_OP_CMPL_CMDS]; 571 do { 572 irdma_cqp_ce_handler(rf, &rf->ccq.sc_cq); 573 if (wait_event_timeout(cqp_request->waitq, 574 cqp_request->request_done, 575 msecs_to_jiffies(CQP_COMPL_WAIT_TIME_MS))) 576 break; 577 578 irdma_check_cqp_progress(&cqp_timeout, &rf->sc_dev); 579 580 if (cqp_timeout.count < CQP_TIMEOUT_THRESHOLD) 581 continue; 582 583 if (!rf->reset) { 584 rf->reset = true; 585 rf->gen_ops.request_reset(rf); 586 } 587 return -ETIMEDOUT; 588 } while (1); 589 590 cqp_error = cqp_request->compl_info.error; 591 if (cqp_error) { 592 err_code = -EIO; 593 if (cqp_request->compl_info.maj_err_code == 0xFFFF && 594 cqp_request->compl_info.min_err_code == 0x8029) { 595 if (!rf->reset) { 596 rf->reset = true; 597 rf->gen_ops.request_reset(rf); 598 } 599 } 600 } 601 602 return err_code; 603 } 604 605 static const char *const irdma_cqp_cmd_names[IRDMA_MAX_CQP_OPS] = { 606 [IRDMA_OP_CEQ_DESTROY] = "Destroy CEQ Cmd", 607 [IRDMA_OP_AEQ_DESTROY] = "Destroy AEQ Cmd", 608 [IRDMA_OP_DELETE_ARP_CACHE_ENTRY] = "Delete ARP Cache Cmd", 609 [IRDMA_OP_MANAGE_APBVT_ENTRY] = "Manage APBV Table Entry Cmd", 610 [IRDMA_OP_CEQ_CREATE] = "CEQ Create Cmd", 611 [IRDMA_OP_AEQ_CREATE] = "AEQ Destroy Cmd", 612 [IRDMA_OP_MANAGE_QHASH_TABLE_ENTRY] = "Manage Quad Hash Table Entry Cmd", 613 [IRDMA_OP_QP_MODIFY] = "Modify QP Cmd", 614 [IRDMA_OP_QP_UPLOAD_CONTEXT] = "Upload Context Cmd", 615 [IRDMA_OP_CQ_CREATE] = "Create CQ Cmd", 616 [IRDMA_OP_CQ_DESTROY] = "Destroy CQ Cmd", 617 [IRDMA_OP_QP_CREATE] = "Create QP Cmd", 618 [IRDMA_OP_QP_DESTROY] = "Destroy QP Cmd", 619 [IRDMA_OP_ALLOC_STAG] = "Allocate STag Cmd", 620 [IRDMA_OP_MR_REG_NON_SHARED] = "Register Non-Shared MR Cmd", 621 [IRDMA_OP_DEALLOC_STAG] = "Deallocate STag Cmd", 622 [IRDMA_OP_MW_ALLOC] = "Allocate Memory Window Cmd", 623 [IRDMA_OP_QP_FLUSH_WQES] = "Flush QP Cmd", 624 [IRDMA_OP_ADD_ARP_CACHE_ENTRY] = "Add ARP Cache Cmd", 625 [IRDMA_OP_MANAGE_PUSH_PAGE] = "Manage Push Page Cmd", 626 [IRDMA_OP_UPDATE_PE_SDS] = "Update PE SDs Cmd", 627 [IRDMA_OP_MANAGE_HMC_PM_FUNC_TABLE] = "Manage HMC PM Function Table Cmd", 628 [IRDMA_OP_SUSPEND] = "Suspend QP Cmd", 629 [IRDMA_OP_RESUME] = "Resume QP Cmd", 630 [IRDMA_OP_MANAGE_VF_PBLE_BP] = "Manage VF PBLE Backing Pages Cmd", 631 [IRDMA_OP_QUERY_FPM_VAL] = "Query FPM Values Cmd", 632 [IRDMA_OP_COMMIT_FPM_VAL] = "Commit FPM Values Cmd", 633 [IRDMA_OP_AH_CREATE] = "Create Address Handle Cmd", 634 [IRDMA_OP_AH_MODIFY] = "Modify Address Handle Cmd", 635 [IRDMA_OP_AH_DESTROY] = "Destroy Address Handle Cmd", 636 [IRDMA_OP_MC_CREATE] = "Create Multicast Group Cmd", 637 [IRDMA_OP_MC_DESTROY] = "Destroy Multicast Group Cmd", 638 [IRDMA_OP_MC_MODIFY] = "Modify Multicast Group Cmd", 639 [IRDMA_OP_STATS_ALLOCATE] = "Add Statistics Instance Cmd", 640 [IRDMA_OP_STATS_FREE] = "Free Statistics Instance Cmd", 641 [IRDMA_OP_STATS_GATHER] = "Gather Statistics Cmd", 642 [IRDMA_OP_WS_ADD_NODE] = "Add Work Scheduler Node Cmd", 643 [IRDMA_OP_WS_MODIFY_NODE] = "Modify Work Scheduler Node Cmd", 644 [IRDMA_OP_WS_DELETE_NODE] = "Delete Work Scheduler Node Cmd", 645 [IRDMA_OP_SET_UP_MAP] = "Set UP-UP Mapping Cmd", 646 [IRDMA_OP_GEN_AE] = "Generate AE Cmd", 647 [IRDMA_OP_QUERY_RDMA_FEATURES] = "RDMA Get Features Cmd", 648 [IRDMA_OP_ALLOC_LOCAL_MAC_ENTRY] = "Allocate Local MAC Entry Cmd", 649 [IRDMA_OP_ADD_LOCAL_MAC_ENTRY] = "Add Local MAC Entry Cmd", 650 [IRDMA_OP_DELETE_LOCAL_MAC_ENTRY] = "Delete Local MAC Entry Cmd", 651 [IRDMA_OP_CQ_MODIFY] = "CQ Modify Cmd", 652 }; 653 654 static const struct irdma_cqp_err_info irdma_noncrit_err_list[] = { 655 {0xffff, 0x8006, "Flush No Wqe Pending"}, 656 {0xffff, 0x8007, "Modify QP Bad Close"}, 657 {0xffff, 0x8009, "LLP Closed"}, 658 {0xffff, 0x800a, "Reset Not Sent"} 659 }; 660 661 /** 662 * irdma_cqp_crit_err - check if CQP error is critical 663 * @dev: pointer to dev structure 664 * @cqp_cmd: code for last CQP operation 665 * @maj_err_code: major error code 666 * @min_err_code: minot error code 667 */ 668 bool irdma_cqp_crit_err(struct irdma_sc_dev *dev, u8 cqp_cmd, 669 u16 maj_err_code, u16 min_err_code) 670 { 671 int i; 672 673 for (i = 0; i < ARRAY_SIZE(irdma_noncrit_err_list); ++i) { 674 if (maj_err_code == irdma_noncrit_err_list[i].maj && 675 min_err_code == irdma_noncrit_err_list[i].min) { 676 ibdev_dbg(to_ibdev(dev), 677 "CQP: [%s Error][%s] maj=0x%x min=0x%x\n", 678 irdma_noncrit_err_list[i].desc, 679 irdma_cqp_cmd_names[cqp_cmd], maj_err_code, 680 min_err_code); 681 return false; 682 } 683 } 684 return true; 685 } 686 687 /** 688 * irdma_handle_cqp_op - process cqp command 689 * @rf: RDMA PCI function 690 * @cqp_request: cqp request to process 691 */ 692 int irdma_handle_cqp_op(struct irdma_pci_f *rf, 693 struct irdma_cqp_request *cqp_request) 694 { 695 struct irdma_sc_dev *dev = &rf->sc_dev; 696 struct cqp_cmds_info *info = &cqp_request->info; 697 int status; 698 bool put_cqp_request = true; 699 700 if (rf->reset) 701 return -EBUSY; 702 703 irdma_get_cqp_request(cqp_request); 704 status = irdma_process_cqp_cmd(dev, info); 705 if (status) 706 goto err; 707 708 if (cqp_request->waiting) { 709 put_cqp_request = false; 710 status = irdma_wait_event(rf, cqp_request); 711 if (status) 712 goto err; 713 } 714 715 return 0; 716 717 err: 718 if (irdma_cqp_crit_err(dev, info->cqp_cmd, 719 cqp_request->compl_info.maj_err_code, 720 cqp_request->compl_info.min_err_code)) 721 ibdev_err(&rf->iwdev->ibdev, 722 "[%s Error][op_code=%d] status=%d waiting=%d completion_err=%d maj=0x%x min=0x%x\n", 723 irdma_cqp_cmd_names[info->cqp_cmd], info->cqp_cmd, status, cqp_request->waiting, 724 cqp_request->compl_info.error, cqp_request->compl_info.maj_err_code, 725 cqp_request->compl_info.min_err_code); 726 727 if (put_cqp_request) 728 irdma_put_cqp_request(&rf->cqp, cqp_request); 729 730 return status; 731 } 732 733 void irdma_qp_add_ref(struct ib_qp *ibqp) 734 { 735 struct irdma_qp *iwqp = (struct irdma_qp *)ibqp; 736 737 refcount_inc(&iwqp->refcnt); 738 } 739 740 void irdma_qp_rem_ref(struct ib_qp *ibqp) 741 { 742 struct irdma_qp *iwqp = to_iwqp(ibqp); 743 struct irdma_device *iwdev = iwqp->iwdev; 744 u32 qp_num; 745 unsigned long flags; 746 747 spin_lock_irqsave(&iwdev->rf->qptable_lock, flags); 748 if (!refcount_dec_and_test(&iwqp->refcnt)) { 749 spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags); 750 return; 751 } 752 753 qp_num = iwqp->ibqp.qp_num; 754 iwdev->rf->qp_table[qp_num] = NULL; 755 spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags); 756 complete(&iwqp->free_qp); 757 } 758 759 struct ib_device *to_ibdev(struct irdma_sc_dev *dev) 760 { 761 return &(container_of(dev, struct irdma_pci_f, sc_dev))->iwdev->ibdev; 762 } 763 764 /** 765 * irdma_get_qp - get qp address 766 * @device: iwarp device 767 * @qpn: qp number 768 */ 769 struct ib_qp *irdma_get_qp(struct ib_device *device, int qpn) 770 { 771 struct irdma_device *iwdev = to_iwdev(device); 772 773 if (qpn < IW_FIRST_QPN || qpn >= iwdev->rf->max_qp) 774 return NULL; 775 776 return &iwdev->rf->qp_table[qpn]->ibqp; 777 } 778 779 /** 780 * irdma_remove_cqp_head - return head entry and remove 781 * @dev: device 782 */ 783 void *irdma_remove_cqp_head(struct irdma_sc_dev *dev) 784 { 785 struct list_head *entry; 786 struct list_head *list = &dev->cqp_cmd_head; 787 788 if (list_empty(list)) 789 return NULL; 790 791 entry = list->next; 792 list_del(entry); 793 794 return entry; 795 } 796 797 /** 798 * irdma_cqp_sds_cmd - create cqp command for sd 799 * @dev: hardware control device structure 800 * @sdinfo: information for sd cqp 801 * 802 */ 803 int irdma_cqp_sds_cmd(struct irdma_sc_dev *dev, 804 struct irdma_update_sds_info *sdinfo) 805 { 806 struct irdma_cqp_request *cqp_request; 807 struct cqp_cmds_info *cqp_info; 808 struct irdma_pci_f *rf = dev_to_rf(dev); 809 int status; 810 811 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 812 if (!cqp_request) 813 return -ENOMEM; 814 815 cqp_info = &cqp_request->info; 816 memcpy(&cqp_info->in.u.update_pe_sds.info, sdinfo, 817 sizeof(cqp_info->in.u.update_pe_sds.info)); 818 cqp_info->cqp_cmd = IRDMA_OP_UPDATE_PE_SDS; 819 cqp_info->post_sq = 1; 820 cqp_info->in.u.update_pe_sds.dev = dev; 821 cqp_info->in.u.update_pe_sds.scratch = (uintptr_t)cqp_request; 822 823 status = irdma_handle_cqp_op(rf, cqp_request); 824 irdma_put_cqp_request(&rf->cqp, cqp_request); 825 826 return status; 827 } 828 829 /** 830 * irdma_cqp_qp_suspend_resume - cqp command for suspend/resume 831 * @qp: hardware control qp 832 * @op: suspend or resume 833 */ 834 int irdma_cqp_qp_suspend_resume(struct irdma_sc_qp *qp, u8 op) 835 { 836 struct irdma_sc_dev *dev = qp->dev; 837 struct irdma_cqp_request *cqp_request; 838 struct irdma_sc_cqp *cqp = dev->cqp; 839 struct cqp_cmds_info *cqp_info; 840 struct irdma_pci_f *rf = dev_to_rf(dev); 841 int status; 842 843 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false); 844 if (!cqp_request) 845 return -ENOMEM; 846 847 cqp_info = &cqp_request->info; 848 cqp_info->cqp_cmd = op; 849 cqp_info->in.u.suspend_resume.cqp = cqp; 850 cqp_info->in.u.suspend_resume.qp = qp; 851 cqp_info->in.u.suspend_resume.scratch = (uintptr_t)cqp_request; 852 853 status = irdma_handle_cqp_op(rf, cqp_request); 854 irdma_put_cqp_request(&rf->cqp, cqp_request); 855 856 return status; 857 } 858 859 /** 860 * irdma_term_modify_qp - modify qp for term message 861 * @qp: hardware control qp 862 * @next_state: qp's next state 863 * @term: terminate code 864 * @term_len: length 865 */ 866 void irdma_term_modify_qp(struct irdma_sc_qp *qp, u8 next_state, u8 term, 867 u8 term_len) 868 { 869 struct irdma_qp *iwqp; 870 871 iwqp = qp->qp_uk.back_qp; 872 irdma_next_iw_state(iwqp, next_state, 0, term, term_len); 873 }; 874 875 /** 876 * irdma_terminate_done - after terminate is completed 877 * @qp: hardware control qp 878 * @timeout_occurred: indicates if terminate timer expired 879 */ 880 void irdma_terminate_done(struct irdma_sc_qp *qp, int timeout_occurred) 881 { 882 struct irdma_qp *iwqp; 883 u8 hte = 0; 884 bool first_time; 885 unsigned long flags; 886 887 iwqp = qp->qp_uk.back_qp; 888 spin_lock_irqsave(&iwqp->lock, flags); 889 if (iwqp->hte_added) { 890 iwqp->hte_added = 0; 891 hte = 1; 892 } 893 first_time = !(qp->term_flags & IRDMA_TERM_DONE); 894 qp->term_flags |= IRDMA_TERM_DONE; 895 spin_unlock_irqrestore(&iwqp->lock, flags); 896 if (first_time) { 897 if (!timeout_occurred) 898 irdma_terminate_del_timer(qp); 899 900 irdma_next_iw_state(iwqp, IRDMA_QP_STATE_ERROR, hte, 0, 0); 901 irdma_cm_disconn(iwqp); 902 } 903 } 904 905 static void irdma_terminate_timeout(struct timer_list *t) 906 { 907 struct irdma_qp *iwqp = from_timer(iwqp, t, terminate_timer); 908 struct irdma_sc_qp *qp = &iwqp->sc_qp; 909 910 irdma_terminate_done(qp, 1); 911 irdma_qp_rem_ref(&iwqp->ibqp); 912 } 913 914 /** 915 * irdma_terminate_start_timer - start terminate timeout 916 * @qp: hardware control qp 917 */ 918 void irdma_terminate_start_timer(struct irdma_sc_qp *qp) 919 { 920 struct irdma_qp *iwqp; 921 922 iwqp = qp->qp_uk.back_qp; 923 irdma_qp_add_ref(&iwqp->ibqp); 924 timer_setup(&iwqp->terminate_timer, irdma_terminate_timeout, 0); 925 iwqp->terminate_timer.expires = jiffies + HZ; 926 927 add_timer(&iwqp->terminate_timer); 928 } 929 930 /** 931 * irdma_terminate_del_timer - delete terminate timeout 932 * @qp: hardware control qp 933 */ 934 void irdma_terminate_del_timer(struct irdma_sc_qp *qp) 935 { 936 struct irdma_qp *iwqp; 937 int ret; 938 939 iwqp = qp->qp_uk.back_qp; 940 ret = del_timer(&iwqp->terminate_timer); 941 if (ret) 942 irdma_qp_rem_ref(&iwqp->ibqp); 943 } 944 945 /** 946 * irdma_cqp_query_fpm_val_cmd - send cqp command for fpm 947 * @dev: function device struct 948 * @val_mem: buffer for fpm 949 * @hmc_fn_id: function id for fpm 950 */ 951 int irdma_cqp_query_fpm_val_cmd(struct irdma_sc_dev *dev, 952 struct irdma_dma_mem *val_mem, u8 hmc_fn_id) 953 { 954 struct irdma_cqp_request *cqp_request; 955 struct cqp_cmds_info *cqp_info; 956 struct irdma_pci_f *rf = dev_to_rf(dev); 957 int status; 958 959 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 960 if (!cqp_request) 961 return -ENOMEM; 962 963 cqp_info = &cqp_request->info; 964 cqp_request->param = NULL; 965 cqp_info->in.u.query_fpm_val.cqp = dev->cqp; 966 cqp_info->in.u.query_fpm_val.fpm_val_pa = val_mem->pa; 967 cqp_info->in.u.query_fpm_val.fpm_val_va = val_mem->va; 968 cqp_info->in.u.query_fpm_val.hmc_fn_id = hmc_fn_id; 969 cqp_info->cqp_cmd = IRDMA_OP_QUERY_FPM_VAL; 970 cqp_info->post_sq = 1; 971 cqp_info->in.u.query_fpm_val.scratch = (uintptr_t)cqp_request; 972 973 status = irdma_handle_cqp_op(rf, cqp_request); 974 irdma_put_cqp_request(&rf->cqp, cqp_request); 975 976 return status; 977 } 978 979 /** 980 * irdma_cqp_commit_fpm_val_cmd - commit fpm values in hw 981 * @dev: hardware control device structure 982 * @val_mem: buffer with fpm values 983 * @hmc_fn_id: function id for fpm 984 */ 985 int irdma_cqp_commit_fpm_val_cmd(struct irdma_sc_dev *dev, 986 struct irdma_dma_mem *val_mem, u8 hmc_fn_id) 987 { 988 struct irdma_cqp_request *cqp_request; 989 struct cqp_cmds_info *cqp_info; 990 struct irdma_pci_f *rf = dev_to_rf(dev); 991 int status; 992 993 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 994 if (!cqp_request) 995 return -ENOMEM; 996 997 cqp_info = &cqp_request->info; 998 cqp_request->param = NULL; 999 cqp_info->in.u.commit_fpm_val.cqp = dev->cqp; 1000 cqp_info->in.u.commit_fpm_val.fpm_val_pa = val_mem->pa; 1001 cqp_info->in.u.commit_fpm_val.fpm_val_va = val_mem->va; 1002 cqp_info->in.u.commit_fpm_val.hmc_fn_id = hmc_fn_id; 1003 cqp_info->cqp_cmd = IRDMA_OP_COMMIT_FPM_VAL; 1004 cqp_info->post_sq = 1; 1005 cqp_info->in.u.commit_fpm_val.scratch = (uintptr_t)cqp_request; 1006 1007 status = irdma_handle_cqp_op(rf, cqp_request); 1008 irdma_put_cqp_request(&rf->cqp, cqp_request); 1009 1010 return status; 1011 } 1012 1013 /** 1014 * irdma_cqp_cq_create_cmd - create a cq for the cqp 1015 * @dev: device pointer 1016 * @cq: pointer to created cq 1017 */ 1018 int irdma_cqp_cq_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq) 1019 { 1020 struct irdma_pci_f *rf = dev_to_rf(dev); 1021 struct irdma_cqp *iwcqp = &rf->cqp; 1022 struct irdma_cqp_request *cqp_request; 1023 struct cqp_cmds_info *cqp_info; 1024 int status; 1025 1026 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true); 1027 if (!cqp_request) 1028 return -ENOMEM; 1029 1030 cqp_info = &cqp_request->info; 1031 cqp_info->cqp_cmd = IRDMA_OP_CQ_CREATE; 1032 cqp_info->post_sq = 1; 1033 cqp_info->in.u.cq_create.cq = cq; 1034 cqp_info->in.u.cq_create.scratch = (uintptr_t)cqp_request; 1035 1036 status = irdma_handle_cqp_op(rf, cqp_request); 1037 irdma_put_cqp_request(iwcqp, cqp_request); 1038 1039 return status; 1040 } 1041 1042 /** 1043 * irdma_cqp_qp_create_cmd - create a qp for the cqp 1044 * @dev: device pointer 1045 * @qp: pointer to created qp 1046 */ 1047 int irdma_cqp_qp_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp) 1048 { 1049 struct irdma_pci_f *rf = dev_to_rf(dev); 1050 struct irdma_cqp *iwcqp = &rf->cqp; 1051 struct irdma_cqp_request *cqp_request; 1052 struct cqp_cmds_info *cqp_info; 1053 struct irdma_create_qp_info *qp_info; 1054 int status; 1055 1056 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true); 1057 if (!cqp_request) 1058 return -ENOMEM; 1059 1060 cqp_info = &cqp_request->info; 1061 qp_info = &cqp_request->info.in.u.qp_create.info; 1062 memset(qp_info, 0, sizeof(*qp_info)); 1063 qp_info->cq_num_valid = true; 1064 qp_info->next_iwarp_state = IRDMA_QP_STATE_RTS; 1065 cqp_info->cqp_cmd = IRDMA_OP_QP_CREATE; 1066 cqp_info->post_sq = 1; 1067 cqp_info->in.u.qp_create.qp = qp; 1068 cqp_info->in.u.qp_create.scratch = (uintptr_t)cqp_request; 1069 1070 status = irdma_handle_cqp_op(rf, cqp_request); 1071 irdma_put_cqp_request(iwcqp, cqp_request); 1072 1073 return status; 1074 } 1075 1076 /** 1077 * irdma_dealloc_push_page - free a push page for qp 1078 * @rf: RDMA PCI function 1079 * @qp: hardware control qp 1080 */ 1081 static void irdma_dealloc_push_page(struct irdma_pci_f *rf, 1082 struct irdma_sc_qp *qp) 1083 { 1084 struct irdma_cqp_request *cqp_request; 1085 struct cqp_cmds_info *cqp_info; 1086 int status; 1087 1088 if (qp->push_idx == IRDMA_INVALID_PUSH_PAGE_INDEX) 1089 return; 1090 1091 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false); 1092 if (!cqp_request) 1093 return; 1094 1095 cqp_info = &cqp_request->info; 1096 cqp_info->cqp_cmd = IRDMA_OP_MANAGE_PUSH_PAGE; 1097 cqp_info->post_sq = 1; 1098 cqp_info->in.u.manage_push_page.info.push_idx = qp->push_idx; 1099 cqp_info->in.u.manage_push_page.info.qs_handle = qp->qs_handle; 1100 cqp_info->in.u.manage_push_page.info.free_page = 1; 1101 cqp_info->in.u.manage_push_page.info.push_page_type = 0; 1102 cqp_info->in.u.manage_push_page.cqp = &rf->cqp.sc_cqp; 1103 cqp_info->in.u.manage_push_page.scratch = (uintptr_t)cqp_request; 1104 status = irdma_handle_cqp_op(rf, cqp_request); 1105 if (!status) 1106 qp->push_idx = IRDMA_INVALID_PUSH_PAGE_INDEX; 1107 irdma_put_cqp_request(&rf->cqp, cqp_request); 1108 } 1109 1110 /** 1111 * irdma_free_qp_rsrc - free up memory resources for qp 1112 * @iwqp: qp ptr (user or kernel) 1113 */ 1114 void irdma_free_qp_rsrc(struct irdma_qp *iwqp) 1115 { 1116 struct irdma_device *iwdev = iwqp->iwdev; 1117 struct irdma_pci_f *rf = iwdev->rf; 1118 u32 qp_num = iwqp->ibqp.qp_num; 1119 1120 irdma_ieq_cleanup_qp(iwdev->vsi.ieq, &iwqp->sc_qp); 1121 irdma_dealloc_push_page(rf, &iwqp->sc_qp); 1122 if (iwqp->sc_qp.vsi) { 1123 irdma_qp_rem_qos(&iwqp->sc_qp); 1124 iwqp->sc_qp.dev->ws_remove(iwqp->sc_qp.vsi, 1125 iwqp->sc_qp.user_pri); 1126 } 1127 1128 if (qp_num > 2) 1129 irdma_free_rsrc(rf, rf->allocated_qps, qp_num); 1130 dma_free_coherent(rf->sc_dev.hw->device, iwqp->q2_ctx_mem.size, 1131 iwqp->q2_ctx_mem.va, iwqp->q2_ctx_mem.pa); 1132 iwqp->q2_ctx_mem.va = NULL; 1133 dma_free_coherent(rf->sc_dev.hw->device, iwqp->kqp.dma_mem.size, 1134 iwqp->kqp.dma_mem.va, iwqp->kqp.dma_mem.pa); 1135 iwqp->kqp.dma_mem.va = NULL; 1136 kfree(iwqp->kqp.sq_wrid_mem); 1137 kfree(iwqp->kqp.rq_wrid_mem); 1138 } 1139 1140 /** 1141 * irdma_cq_wq_destroy - send cq destroy cqp 1142 * @rf: RDMA PCI function 1143 * @cq: hardware control cq 1144 */ 1145 void irdma_cq_wq_destroy(struct irdma_pci_f *rf, struct irdma_sc_cq *cq) 1146 { 1147 struct irdma_cqp_request *cqp_request; 1148 struct cqp_cmds_info *cqp_info; 1149 1150 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 1151 if (!cqp_request) 1152 return; 1153 1154 cqp_info = &cqp_request->info; 1155 cqp_info->cqp_cmd = IRDMA_OP_CQ_DESTROY; 1156 cqp_info->post_sq = 1; 1157 cqp_info->in.u.cq_destroy.cq = cq; 1158 cqp_info->in.u.cq_destroy.scratch = (uintptr_t)cqp_request; 1159 1160 irdma_handle_cqp_op(rf, cqp_request); 1161 irdma_put_cqp_request(&rf->cqp, cqp_request); 1162 } 1163 1164 /** 1165 * irdma_hw_modify_qp_callback - handle state for modifyQPs that don't wait 1166 * @cqp_request: modify QP completion 1167 */ 1168 static void irdma_hw_modify_qp_callback(struct irdma_cqp_request *cqp_request) 1169 { 1170 struct cqp_cmds_info *cqp_info; 1171 struct irdma_qp *iwqp; 1172 1173 cqp_info = &cqp_request->info; 1174 iwqp = cqp_info->in.u.qp_modify.qp->qp_uk.back_qp; 1175 atomic_dec(&iwqp->hw_mod_qp_pend); 1176 wake_up(&iwqp->mod_qp_waitq); 1177 } 1178 1179 /** 1180 * irdma_hw_modify_qp - setup cqp for modify qp 1181 * @iwdev: RDMA device 1182 * @iwqp: qp ptr (user or kernel) 1183 * @info: info for modify qp 1184 * @wait: flag to wait or not for modify qp completion 1185 */ 1186 int irdma_hw_modify_qp(struct irdma_device *iwdev, struct irdma_qp *iwqp, 1187 struct irdma_modify_qp_info *info, bool wait) 1188 { 1189 int status; 1190 struct irdma_pci_f *rf = iwdev->rf; 1191 struct irdma_cqp_request *cqp_request; 1192 struct cqp_cmds_info *cqp_info; 1193 struct irdma_modify_qp_info *m_info; 1194 1195 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait); 1196 if (!cqp_request) 1197 return -ENOMEM; 1198 1199 if (!wait) { 1200 cqp_request->callback_fcn = irdma_hw_modify_qp_callback; 1201 atomic_inc(&iwqp->hw_mod_qp_pend); 1202 } 1203 cqp_info = &cqp_request->info; 1204 m_info = &cqp_info->in.u.qp_modify.info; 1205 memcpy(m_info, info, sizeof(*m_info)); 1206 cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY; 1207 cqp_info->post_sq = 1; 1208 cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp; 1209 cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request; 1210 status = irdma_handle_cqp_op(rf, cqp_request); 1211 irdma_put_cqp_request(&rf->cqp, cqp_request); 1212 if (status) { 1213 if (rdma_protocol_roce(&iwdev->ibdev, 1)) 1214 return status; 1215 1216 switch (m_info->next_iwarp_state) { 1217 struct irdma_gen_ae_info ae_info; 1218 1219 case IRDMA_QP_STATE_RTS: 1220 case IRDMA_QP_STATE_IDLE: 1221 case IRDMA_QP_STATE_TERMINATE: 1222 case IRDMA_QP_STATE_CLOSING: 1223 if (info->curr_iwarp_state == IRDMA_QP_STATE_IDLE) 1224 irdma_send_reset(iwqp->cm_node); 1225 else 1226 iwqp->sc_qp.term_flags = IRDMA_TERM_DONE; 1227 if (!wait) { 1228 ae_info.ae_code = IRDMA_AE_BAD_CLOSE; 1229 ae_info.ae_src = 0; 1230 irdma_gen_ae(rf, &iwqp->sc_qp, &ae_info, false); 1231 } else { 1232 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, 1233 wait); 1234 if (!cqp_request) 1235 return -ENOMEM; 1236 1237 cqp_info = &cqp_request->info; 1238 m_info = &cqp_info->in.u.qp_modify.info; 1239 memcpy(m_info, info, sizeof(*m_info)); 1240 cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY; 1241 cqp_info->post_sq = 1; 1242 cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp; 1243 cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request; 1244 m_info->next_iwarp_state = IRDMA_QP_STATE_ERROR; 1245 m_info->reset_tcp_conn = true; 1246 irdma_handle_cqp_op(rf, cqp_request); 1247 irdma_put_cqp_request(&rf->cqp, cqp_request); 1248 } 1249 break; 1250 case IRDMA_QP_STATE_ERROR: 1251 default: 1252 break; 1253 } 1254 } 1255 1256 return status; 1257 } 1258 1259 /** 1260 * irdma_cqp_cq_destroy_cmd - destroy the cqp cq 1261 * @dev: device pointer 1262 * @cq: pointer to cq 1263 */ 1264 void irdma_cqp_cq_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq) 1265 { 1266 struct irdma_pci_f *rf = dev_to_rf(dev); 1267 1268 irdma_cq_wq_destroy(rf, cq); 1269 } 1270 1271 /** 1272 * irdma_cqp_qp_destroy_cmd - destroy the cqp 1273 * @dev: device pointer 1274 * @qp: pointer to qp 1275 */ 1276 int irdma_cqp_qp_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp) 1277 { 1278 struct irdma_pci_f *rf = dev_to_rf(dev); 1279 struct irdma_cqp *iwcqp = &rf->cqp; 1280 struct irdma_cqp_request *cqp_request; 1281 struct cqp_cmds_info *cqp_info; 1282 int status; 1283 1284 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true); 1285 if (!cqp_request) 1286 return -ENOMEM; 1287 1288 cqp_info = &cqp_request->info; 1289 memset(cqp_info, 0, sizeof(*cqp_info)); 1290 cqp_info->cqp_cmd = IRDMA_OP_QP_DESTROY; 1291 cqp_info->post_sq = 1; 1292 cqp_info->in.u.qp_destroy.qp = qp; 1293 cqp_info->in.u.qp_destroy.scratch = (uintptr_t)cqp_request; 1294 cqp_info->in.u.qp_destroy.remove_hash_idx = true; 1295 1296 status = irdma_handle_cqp_op(rf, cqp_request); 1297 irdma_put_cqp_request(&rf->cqp, cqp_request); 1298 1299 return status; 1300 } 1301 1302 /** 1303 * irdma_ieq_mpa_crc_ae - generate AE for crc error 1304 * @dev: hardware control device structure 1305 * @qp: hardware control qp 1306 */ 1307 void irdma_ieq_mpa_crc_ae(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp) 1308 { 1309 struct irdma_gen_ae_info info = {}; 1310 struct irdma_pci_f *rf = dev_to_rf(dev); 1311 1312 ibdev_dbg(&rf->iwdev->ibdev, "AEQ: Generate MPA CRC AE\n"); 1313 info.ae_code = IRDMA_AE_LLP_RECEIVED_MPA_CRC_ERROR; 1314 info.ae_src = IRDMA_AE_SOURCE_RQ; 1315 irdma_gen_ae(rf, qp, &info, false); 1316 } 1317 1318 /** 1319 * irdma_init_hash_desc - initialize hash for crc calculation 1320 * @desc: cryption type 1321 */ 1322 int irdma_init_hash_desc(struct shash_desc **desc) 1323 { 1324 struct crypto_shash *tfm; 1325 struct shash_desc *tdesc; 1326 1327 tfm = crypto_alloc_shash("crc32c", 0, 0); 1328 if (IS_ERR(tfm)) 1329 return -EINVAL; 1330 1331 tdesc = kzalloc(sizeof(*tdesc) + crypto_shash_descsize(tfm), 1332 GFP_KERNEL); 1333 if (!tdesc) { 1334 crypto_free_shash(tfm); 1335 return -EINVAL; 1336 } 1337 1338 tdesc->tfm = tfm; 1339 *desc = tdesc; 1340 1341 return 0; 1342 } 1343 1344 /** 1345 * irdma_free_hash_desc - free hash desc 1346 * @desc: to be freed 1347 */ 1348 void irdma_free_hash_desc(struct shash_desc *desc) 1349 { 1350 if (desc) { 1351 crypto_free_shash(desc->tfm); 1352 kfree(desc); 1353 } 1354 } 1355 1356 /** 1357 * irdma_ieq_check_mpacrc - check if mpa crc is OK 1358 * @desc: desc for hash 1359 * @addr: address of buffer for crc 1360 * @len: length of buffer 1361 * @val: value to be compared 1362 */ 1363 int irdma_ieq_check_mpacrc(struct shash_desc *desc, void *addr, u32 len, 1364 u32 val) 1365 { 1366 u32 crc = 0; 1367 int ret; 1368 int ret_code = 0; 1369 1370 crypto_shash_init(desc); 1371 ret = crypto_shash_update(desc, addr, len); 1372 if (!ret) 1373 crypto_shash_final(desc, (u8 *)&crc); 1374 if (crc != val) 1375 ret_code = -EINVAL; 1376 1377 return ret_code; 1378 } 1379 1380 /** 1381 * irdma_ieq_get_qp - get qp based on quad in puda buffer 1382 * @dev: hardware control device structure 1383 * @buf: receive puda buffer on exception q 1384 */ 1385 struct irdma_sc_qp *irdma_ieq_get_qp(struct irdma_sc_dev *dev, 1386 struct irdma_puda_buf *buf) 1387 { 1388 struct irdma_qp *iwqp; 1389 struct irdma_cm_node *cm_node; 1390 struct irdma_device *iwdev = buf->vsi->back_vsi; 1391 u32 loc_addr[4] = {}; 1392 u32 rem_addr[4] = {}; 1393 u16 loc_port, rem_port; 1394 struct ipv6hdr *ip6h; 1395 struct iphdr *iph = (struct iphdr *)buf->iph; 1396 struct tcphdr *tcph = (struct tcphdr *)buf->tcph; 1397 1398 if (iph->version == 4) { 1399 loc_addr[0] = ntohl(iph->daddr); 1400 rem_addr[0] = ntohl(iph->saddr); 1401 } else { 1402 ip6h = (struct ipv6hdr *)buf->iph; 1403 irdma_copy_ip_ntohl(loc_addr, ip6h->daddr.in6_u.u6_addr32); 1404 irdma_copy_ip_ntohl(rem_addr, ip6h->saddr.in6_u.u6_addr32); 1405 } 1406 loc_port = ntohs(tcph->dest); 1407 rem_port = ntohs(tcph->source); 1408 cm_node = irdma_find_node(&iwdev->cm_core, rem_port, rem_addr, loc_port, 1409 loc_addr, buf->vlan_valid ? buf->vlan_id : 0xFFFF); 1410 if (!cm_node) 1411 return NULL; 1412 1413 iwqp = cm_node->iwqp; 1414 irdma_rem_ref_cm_node(cm_node); 1415 1416 return &iwqp->sc_qp; 1417 } 1418 1419 /** 1420 * irdma_send_ieq_ack - ACKs for duplicate or OOO partials FPDUs 1421 * @qp: qp ptr 1422 */ 1423 void irdma_send_ieq_ack(struct irdma_sc_qp *qp) 1424 { 1425 struct irdma_cm_node *cm_node = ((struct irdma_qp *)qp->qp_uk.back_qp)->cm_node; 1426 struct irdma_puda_buf *buf = qp->pfpdu.lastrcv_buf; 1427 struct tcphdr *tcph = (struct tcphdr *)buf->tcph; 1428 1429 cm_node->tcp_cntxt.rcv_nxt = qp->pfpdu.nextseqnum; 1430 cm_node->tcp_cntxt.loc_seq_num = ntohl(tcph->ack_seq); 1431 1432 irdma_send_ack(cm_node); 1433 } 1434 1435 /** 1436 * irdma_puda_ieq_get_ah_info - get AH info from IEQ buffer 1437 * @qp: qp pointer 1438 * @ah_info: AH info pointer 1439 */ 1440 void irdma_puda_ieq_get_ah_info(struct irdma_sc_qp *qp, 1441 struct irdma_ah_info *ah_info) 1442 { 1443 struct irdma_puda_buf *buf = qp->pfpdu.ah_buf; 1444 struct iphdr *iph; 1445 struct ipv6hdr *ip6h; 1446 1447 memset(ah_info, 0, sizeof(*ah_info)); 1448 ah_info->do_lpbk = true; 1449 ah_info->vlan_tag = buf->vlan_id; 1450 ah_info->insert_vlan_tag = buf->vlan_valid; 1451 ah_info->ipv4_valid = buf->ipv4; 1452 ah_info->vsi = qp->vsi; 1453 1454 if (buf->smac_valid) 1455 ether_addr_copy(ah_info->mac_addr, buf->smac); 1456 1457 if (buf->ipv4) { 1458 ah_info->ipv4_valid = true; 1459 iph = (struct iphdr *)buf->iph; 1460 ah_info->hop_ttl = iph->ttl; 1461 ah_info->tc_tos = iph->tos; 1462 ah_info->dest_ip_addr[0] = ntohl(iph->daddr); 1463 ah_info->src_ip_addr[0] = ntohl(iph->saddr); 1464 } else { 1465 ip6h = (struct ipv6hdr *)buf->iph; 1466 ah_info->hop_ttl = ip6h->hop_limit; 1467 ah_info->tc_tos = ip6h->priority; 1468 irdma_copy_ip_ntohl(ah_info->dest_ip_addr, 1469 ip6h->daddr.in6_u.u6_addr32); 1470 irdma_copy_ip_ntohl(ah_info->src_ip_addr, 1471 ip6h->saddr.in6_u.u6_addr32); 1472 } 1473 1474 ah_info->dst_arpindex = irdma_arp_table(dev_to_rf(qp->dev), 1475 ah_info->dest_ip_addr, 1476 ah_info->ipv4_valid, 1477 NULL, IRDMA_ARP_RESOLVE); 1478 } 1479 1480 /** 1481 * irdma_gen1_ieq_update_tcpip_info - update tcpip in the buffer 1482 * @buf: puda to update 1483 * @len: length of buffer 1484 * @seqnum: seq number for tcp 1485 */ 1486 static void irdma_gen1_ieq_update_tcpip_info(struct irdma_puda_buf *buf, 1487 u16 len, u32 seqnum) 1488 { 1489 struct tcphdr *tcph; 1490 struct iphdr *iph; 1491 u16 iphlen; 1492 u16 pktsize; 1493 u8 *addr = buf->mem.va; 1494 1495 iphlen = (buf->ipv4) ? 20 : 40; 1496 iph = (struct iphdr *)(addr + buf->maclen); 1497 tcph = (struct tcphdr *)(addr + buf->maclen + iphlen); 1498 pktsize = len + buf->tcphlen + iphlen; 1499 iph->tot_len = htons(pktsize); 1500 tcph->seq = htonl(seqnum); 1501 } 1502 1503 /** 1504 * irdma_ieq_update_tcpip_info - update tcpip in the buffer 1505 * @buf: puda to update 1506 * @len: length of buffer 1507 * @seqnum: seq number for tcp 1508 */ 1509 void irdma_ieq_update_tcpip_info(struct irdma_puda_buf *buf, u16 len, 1510 u32 seqnum) 1511 { 1512 struct tcphdr *tcph; 1513 u8 *addr; 1514 1515 if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1) 1516 return irdma_gen1_ieq_update_tcpip_info(buf, len, seqnum); 1517 1518 addr = buf->mem.va; 1519 tcph = (struct tcphdr *)addr; 1520 tcph->seq = htonl(seqnum); 1521 } 1522 1523 /** 1524 * irdma_gen1_puda_get_tcpip_info - get tcpip info from puda 1525 * buffer 1526 * @info: to get information 1527 * @buf: puda buffer 1528 */ 1529 static int irdma_gen1_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info, 1530 struct irdma_puda_buf *buf) 1531 { 1532 struct iphdr *iph; 1533 struct ipv6hdr *ip6h; 1534 struct tcphdr *tcph; 1535 u16 iphlen; 1536 u16 pkt_len; 1537 u8 *mem = buf->mem.va; 1538 struct ethhdr *ethh = buf->mem.va; 1539 1540 if (ethh->h_proto == htons(0x8100)) { 1541 info->vlan_valid = true; 1542 buf->vlan_id = ntohs(((struct vlan_ethhdr *)ethh)->h_vlan_TCI) & 1543 VLAN_VID_MASK; 1544 } 1545 1546 buf->maclen = (info->vlan_valid) ? 18 : 14; 1547 iphlen = (info->l3proto) ? 40 : 20; 1548 buf->ipv4 = (info->l3proto) ? false : true; 1549 buf->iph = mem + buf->maclen; 1550 iph = (struct iphdr *)buf->iph; 1551 buf->tcph = buf->iph + iphlen; 1552 tcph = (struct tcphdr *)buf->tcph; 1553 1554 if (buf->ipv4) { 1555 pkt_len = ntohs(iph->tot_len); 1556 } else { 1557 ip6h = (struct ipv6hdr *)buf->iph; 1558 pkt_len = ntohs(ip6h->payload_len) + iphlen; 1559 } 1560 1561 buf->totallen = pkt_len + buf->maclen; 1562 1563 if (info->payload_len < buf->totallen) { 1564 ibdev_dbg(to_ibdev(buf->vsi->dev), 1565 "ERR: payload_len = 0x%x totallen expected0x%x\n", 1566 info->payload_len, buf->totallen); 1567 return -EINVAL; 1568 } 1569 1570 buf->tcphlen = tcph->doff << 2; 1571 buf->datalen = pkt_len - iphlen - buf->tcphlen; 1572 buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL; 1573 buf->hdrlen = buf->maclen + iphlen + buf->tcphlen; 1574 buf->seqnum = ntohl(tcph->seq); 1575 1576 return 0; 1577 } 1578 1579 /** 1580 * irdma_puda_get_tcpip_info - get tcpip info from puda buffer 1581 * @info: to get information 1582 * @buf: puda buffer 1583 */ 1584 int irdma_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info, 1585 struct irdma_puda_buf *buf) 1586 { 1587 struct tcphdr *tcph; 1588 u32 pkt_len; 1589 u8 *mem; 1590 1591 if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1) 1592 return irdma_gen1_puda_get_tcpip_info(info, buf); 1593 1594 mem = buf->mem.va; 1595 buf->vlan_valid = info->vlan_valid; 1596 if (info->vlan_valid) 1597 buf->vlan_id = info->vlan; 1598 1599 buf->ipv4 = info->ipv4; 1600 if (buf->ipv4) 1601 buf->iph = mem + IRDMA_IPV4_PAD; 1602 else 1603 buf->iph = mem; 1604 1605 buf->tcph = mem + IRDMA_TCP_OFFSET; 1606 tcph = (struct tcphdr *)buf->tcph; 1607 pkt_len = info->payload_len; 1608 buf->totallen = pkt_len; 1609 buf->tcphlen = tcph->doff << 2; 1610 buf->datalen = pkt_len - IRDMA_TCP_OFFSET - buf->tcphlen; 1611 buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL; 1612 buf->hdrlen = IRDMA_TCP_OFFSET + buf->tcphlen; 1613 buf->seqnum = ntohl(tcph->seq); 1614 1615 if (info->smac_valid) { 1616 ether_addr_copy(buf->smac, info->smac); 1617 buf->smac_valid = true; 1618 } 1619 1620 return 0; 1621 } 1622 1623 /** 1624 * irdma_hw_stats_timeout - Stats timer-handler which updates all HW stats 1625 * @t: timer_list pointer 1626 */ 1627 static void irdma_hw_stats_timeout(struct timer_list *t) 1628 { 1629 struct irdma_vsi_pestat *pf_devstat = 1630 from_timer(pf_devstat, t, stats_timer); 1631 struct irdma_sc_vsi *sc_vsi = pf_devstat->vsi; 1632 1633 if (sc_vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1) 1634 irdma_cqp_gather_stats_gen1(sc_vsi->dev, sc_vsi->pestat); 1635 else 1636 irdma_cqp_gather_stats_cmd(sc_vsi->dev, sc_vsi->pestat, false); 1637 1638 mod_timer(&pf_devstat->stats_timer, 1639 jiffies + msecs_to_jiffies(STATS_TIMER_DELAY)); 1640 } 1641 1642 /** 1643 * irdma_hw_stats_start_timer - Start periodic stats timer 1644 * @vsi: vsi structure pointer 1645 */ 1646 void irdma_hw_stats_start_timer(struct irdma_sc_vsi *vsi) 1647 { 1648 struct irdma_vsi_pestat *devstat = vsi->pestat; 1649 1650 timer_setup(&devstat->stats_timer, irdma_hw_stats_timeout, 0); 1651 mod_timer(&devstat->stats_timer, 1652 jiffies + msecs_to_jiffies(STATS_TIMER_DELAY)); 1653 } 1654 1655 /** 1656 * irdma_hw_stats_stop_timer - Delete periodic stats timer 1657 * @vsi: pointer to vsi structure 1658 */ 1659 void irdma_hw_stats_stop_timer(struct irdma_sc_vsi *vsi) 1660 { 1661 struct irdma_vsi_pestat *devstat = vsi->pestat; 1662 1663 del_timer_sync(&devstat->stats_timer); 1664 } 1665 1666 /** 1667 * irdma_process_stats - Checking for wrap and update stats 1668 * @pestat: stats structure pointer 1669 */ 1670 static inline void irdma_process_stats(struct irdma_vsi_pestat *pestat) 1671 { 1672 sc_vsi_update_stats(pestat->vsi); 1673 } 1674 1675 /** 1676 * irdma_cqp_gather_stats_gen1 - Gather stats 1677 * @dev: pointer to device structure 1678 * @pestat: statistics structure 1679 */ 1680 void irdma_cqp_gather_stats_gen1(struct irdma_sc_dev *dev, 1681 struct irdma_vsi_pestat *pestat) 1682 { 1683 struct irdma_gather_stats *gather_stats = 1684 pestat->gather_info.gather_stats_va; 1685 u32 stats_inst_offset_32; 1686 u32 stats_inst_offset_64; 1687 1688 stats_inst_offset_32 = (pestat->gather_info.use_stats_inst) ? 1689 pestat->gather_info.stats_inst_index : 1690 pestat->hw->hmc.hmc_fn_id; 1691 stats_inst_offset_32 *= 4; 1692 stats_inst_offset_64 = stats_inst_offset_32 * 2; 1693 1694 gather_stats->rxvlanerr = 1695 rd32(dev->hw, 1696 dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_RXVLANERR] 1697 + stats_inst_offset_32); 1698 gather_stats->ip4rxdiscard = 1699 rd32(dev->hw, 1700 dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP4RXDISCARD] 1701 + stats_inst_offset_32); 1702 gather_stats->ip4rxtrunc = 1703 rd32(dev->hw, 1704 dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP4RXTRUNC] 1705 + stats_inst_offset_32); 1706 gather_stats->ip4txnoroute = 1707 rd32(dev->hw, 1708 dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP4TXNOROUTE] 1709 + stats_inst_offset_32); 1710 gather_stats->ip6rxdiscard = 1711 rd32(dev->hw, 1712 dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP6RXDISCARD] 1713 + stats_inst_offset_32); 1714 gather_stats->ip6rxtrunc = 1715 rd32(dev->hw, 1716 dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP6RXTRUNC] 1717 + stats_inst_offset_32); 1718 gather_stats->ip6txnoroute = 1719 rd32(dev->hw, 1720 dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_IP6TXNOROUTE] 1721 + stats_inst_offset_32); 1722 gather_stats->tcprtxseg = 1723 rd32(dev->hw, 1724 dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_TCPRTXSEG] 1725 + stats_inst_offset_32); 1726 gather_stats->tcprxopterr = 1727 rd32(dev->hw, 1728 dev->hw_stats_regs_32[IRDMA_HW_STAT_INDEX_TCPRXOPTERR] 1729 + stats_inst_offset_32); 1730 1731 gather_stats->ip4rxocts = 1732 rd64(dev->hw, 1733 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4RXOCTS] 1734 + stats_inst_offset_64); 1735 gather_stats->ip4rxpkts = 1736 rd64(dev->hw, 1737 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4RXPKTS] 1738 + stats_inst_offset_64); 1739 gather_stats->ip4txfrag = 1740 rd64(dev->hw, 1741 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4RXFRAGS] 1742 + stats_inst_offset_64); 1743 gather_stats->ip4rxmcpkts = 1744 rd64(dev->hw, 1745 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4RXMCPKTS] 1746 + stats_inst_offset_64); 1747 gather_stats->ip4txocts = 1748 rd64(dev->hw, 1749 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4TXOCTS] 1750 + stats_inst_offset_64); 1751 gather_stats->ip4txpkts = 1752 rd64(dev->hw, 1753 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4TXPKTS] 1754 + stats_inst_offset_64); 1755 gather_stats->ip4txfrag = 1756 rd64(dev->hw, 1757 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4TXFRAGS] 1758 + stats_inst_offset_64); 1759 gather_stats->ip4txmcpkts = 1760 rd64(dev->hw, 1761 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP4TXMCPKTS] 1762 + stats_inst_offset_64); 1763 gather_stats->ip6rxocts = 1764 rd64(dev->hw, 1765 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6RXOCTS] 1766 + stats_inst_offset_64); 1767 gather_stats->ip6rxpkts = 1768 rd64(dev->hw, 1769 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6RXPKTS] 1770 + stats_inst_offset_64); 1771 gather_stats->ip6txfrags = 1772 rd64(dev->hw, 1773 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6RXFRAGS] 1774 + stats_inst_offset_64); 1775 gather_stats->ip6rxmcpkts = 1776 rd64(dev->hw, 1777 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6RXMCPKTS] 1778 + stats_inst_offset_64); 1779 gather_stats->ip6txocts = 1780 rd64(dev->hw, 1781 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6TXOCTS] 1782 + stats_inst_offset_64); 1783 gather_stats->ip6txpkts = 1784 rd64(dev->hw, 1785 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6TXPKTS] 1786 + stats_inst_offset_64); 1787 gather_stats->ip6txfrags = 1788 rd64(dev->hw, 1789 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6TXFRAGS] 1790 + stats_inst_offset_64); 1791 gather_stats->ip6txmcpkts = 1792 rd64(dev->hw, 1793 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_IP6TXMCPKTS] 1794 + stats_inst_offset_64); 1795 gather_stats->tcprxsegs = 1796 rd64(dev->hw, 1797 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_TCPRXSEGS] 1798 + stats_inst_offset_64); 1799 gather_stats->tcptxsegs = 1800 rd64(dev->hw, 1801 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_TCPTXSEG] 1802 + stats_inst_offset_64); 1803 gather_stats->rdmarxrds = 1804 rd64(dev->hw, 1805 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMARXRDS] 1806 + stats_inst_offset_64); 1807 gather_stats->rdmarxsnds = 1808 rd64(dev->hw, 1809 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMARXSNDS] 1810 + stats_inst_offset_64); 1811 gather_stats->rdmarxwrs = 1812 rd64(dev->hw, 1813 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMARXWRS] 1814 + stats_inst_offset_64); 1815 gather_stats->rdmatxrds = 1816 rd64(dev->hw, 1817 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMATXRDS] 1818 + stats_inst_offset_64); 1819 gather_stats->rdmatxsnds = 1820 rd64(dev->hw, 1821 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMATXSNDS] 1822 + stats_inst_offset_64); 1823 gather_stats->rdmatxwrs = 1824 rd64(dev->hw, 1825 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMATXWRS] 1826 + stats_inst_offset_64); 1827 gather_stats->rdmavbn = 1828 rd64(dev->hw, 1829 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMAVBND] 1830 + stats_inst_offset_64); 1831 gather_stats->rdmavinv = 1832 rd64(dev->hw, 1833 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_RDMAVINV] 1834 + stats_inst_offset_64); 1835 gather_stats->udprxpkts = 1836 rd64(dev->hw, 1837 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_UDPRXPKTS] 1838 + stats_inst_offset_64); 1839 gather_stats->udptxpkts = 1840 rd64(dev->hw, 1841 dev->hw_stats_regs_64[IRDMA_HW_STAT_INDEX_UDPTXPKTS] 1842 + stats_inst_offset_64); 1843 1844 irdma_process_stats(pestat); 1845 } 1846 1847 /** 1848 * irdma_process_cqp_stats - Checking for wrap and update stats 1849 * @cqp_request: cqp_request structure pointer 1850 */ 1851 static void irdma_process_cqp_stats(struct irdma_cqp_request *cqp_request) 1852 { 1853 struct irdma_vsi_pestat *pestat = cqp_request->param; 1854 1855 irdma_process_stats(pestat); 1856 } 1857 1858 /** 1859 * irdma_cqp_gather_stats_cmd - Gather stats 1860 * @dev: pointer to device structure 1861 * @pestat: pointer to stats info 1862 * @wait: flag to wait or not wait for stats 1863 */ 1864 int irdma_cqp_gather_stats_cmd(struct irdma_sc_dev *dev, 1865 struct irdma_vsi_pestat *pestat, bool wait) 1866 1867 { 1868 struct irdma_pci_f *rf = dev_to_rf(dev); 1869 struct irdma_cqp *iwcqp = &rf->cqp; 1870 struct irdma_cqp_request *cqp_request; 1871 struct cqp_cmds_info *cqp_info; 1872 int status; 1873 1874 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait); 1875 if (!cqp_request) 1876 return -ENOMEM; 1877 1878 cqp_info = &cqp_request->info; 1879 memset(cqp_info, 0, sizeof(*cqp_info)); 1880 cqp_info->cqp_cmd = IRDMA_OP_STATS_GATHER; 1881 cqp_info->post_sq = 1; 1882 cqp_info->in.u.stats_gather.info = pestat->gather_info; 1883 cqp_info->in.u.stats_gather.scratch = (uintptr_t)cqp_request; 1884 cqp_info->in.u.stats_gather.cqp = &rf->cqp.sc_cqp; 1885 cqp_request->param = pestat; 1886 if (!wait) 1887 cqp_request->callback_fcn = irdma_process_cqp_stats; 1888 status = irdma_handle_cqp_op(rf, cqp_request); 1889 if (wait) 1890 irdma_process_stats(pestat); 1891 irdma_put_cqp_request(&rf->cqp, cqp_request); 1892 1893 return status; 1894 } 1895 1896 /** 1897 * irdma_cqp_stats_inst_cmd - Allocate/free stats instance 1898 * @vsi: pointer to vsi structure 1899 * @cmd: command to allocate or free 1900 * @stats_info: pointer to allocate stats info 1901 */ 1902 int irdma_cqp_stats_inst_cmd(struct irdma_sc_vsi *vsi, u8 cmd, 1903 struct irdma_stats_inst_info *stats_info) 1904 { 1905 struct irdma_pci_f *rf = dev_to_rf(vsi->dev); 1906 struct irdma_cqp *iwcqp = &rf->cqp; 1907 struct irdma_cqp_request *cqp_request; 1908 struct cqp_cmds_info *cqp_info; 1909 int status; 1910 bool wait = false; 1911 1912 if (cmd == IRDMA_OP_STATS_ALLOCATE) 1913 wait = true; 1914 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait); 1915 if (!cqp_request) 1916 return -ENOMEM; 1917 1918 cqp_info = &cqp_request->info; 1919 memset(cqp_info, 0, sizeof(*cqp_info)); 1920 cqp_info->cqp_cmd = cmd; 1921 cqp_info->post_sq = 1; 1922 cqp_info->in.u.stats_manage.info = *stats_info; 1923 cqp_info->in.u.stats_manage.scratch = (uintptr_t)cqp_request; 1924 cqp_info->in.u.stats_manage.cqp = &rf->cqp.sc_cqp; 1925 status = irdma_handle_cqp_op(rf, cqp_request); 1926 if (wait) 1927 stats_info->stats_idx = cqp_request->compl_info.op_ret_val; 1928 irdma_put_cqp_request(iwcqp, cqp_request); 1929 1930 return status; 1931 } 1932 1933 /** 1934 * irdma_cqp_ceq_cmd - Create/Destroy CEQ's after CEQ 0 1935 * @dev: pointer to device info 1936 * @sc_ceq: pointer to ceq structure 1937 * @op: Create or Destroy 1938 */ 1939 int irdma_cqp_ceq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_ceq *sc_ceq, 1940 u8 op) 1941 { 1942 struct irdma_cqp_request *cqp_request; 1943 struct cqp_cmds_info *cqp_info; 1944 struct irdma_pci_f *rf = dev_to_rf(dev); 1945 int status; 1946 1947 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 1948 if (!cqp_request) 1949 return -ENOMEM; 1950 1951 cqp_info = &cqp_request->info; 1952 cqp_info->post_sq = 1; 1953 cqp_info->cqp_cmd = op; 1954 cqp_info->in.u.ceq_create.ceq = sc_ceq; 1955 cqp_info->in.u.ceq_create.scratch = (uintptr_t)cqp_request; 1956 1957 status = irdma_handle_cqp_op(rf, cqp_request); 1958 irdma_put_cqp_request(&rf->cqp, cqp_request); 1959 1960 return status; 1961 } 1962 1963 /** 1964 * irdma_cqp_aeq_cmd - Create/Destroy AEQ 1965 * @dev: pointer to device info 1966 * @sc_aeq: pointer to aeq structure 1967 * @op: Create or Destroy 1968 */ 1969 int irdma_cqp_aeq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_aeq *sc_aeq, 1970 u8 op) 1971 { 1972 struct irdma_cqp_request *cqp_request; 1973 struct cqp_cmds_info *cqp_info; 1974 struct irdma_pci_f *rf = dev_to_rf(dev); 1975 int status; 1976 1977 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true); 1978 if (!cqp_request) 1979 return -ENOMEM; 1980 1981 cqp_info = &cqp_request->info; 1982 cqp_info->post_sq = 1; 1983 cqp_info->cqp_cmd = op; 1984 cqp_info->in.u.aeq_create.aeq = sc_aeq; 1985 cqp_info->in.u.aeq_create.scratch = (uintptr_t)cqp_request; 1986 1987 status = irdma_handle_cqp_op(rf, cqp_request); 1988 irdma_put_cqp_request(&rf->cqp, cqp_request); 1989 1990 return status; 1991 } 1992 1993 /** 1994 * irdma_cqp_ws_node_cmd - Add/modify/delete ws node 1995 * @dev: pointer to device structure 1996 * @cmd: Add, modify or delete 1997 * @node_info: pointer to ws node info 1998 */ 1999 int irdma_cqp_ws_node_cmd(struct irdma_sc_dev *dev, u8 cmd, 2000 struct irdma_ws_node_info *node_info) 2001 { 2002 struct irdma_pci_f *rf = dev_to_rf(dev); 2003 struct irdma_cqp *iwcqp = &rf->cqp; 2004 struct irdma_sc_cqp *cqp = &iwcqp->sc_cqp; 2005 struct irdma_cqp_request *cqp_request; 2006 struct cqp_cmds_info *cqp_info; 2007 int status; 2008 bool poll; 2009 2010 if (!rf->sc_dev.ceq_valid) 2011 poll = true; 2012 else 2013 poll = false; 2014 2015 cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, !poll); 2016 if (!cqp_request) 2017 return -ENOMEM; 2018 2019 cqp_info = &cqp_request->info; 2020 memset(cqp_info, 0, sizeof(*cqp_info)); 2021 cqp_info->cqp_cmd = cmd; 2022 cqp_info->post_sq = 1; 2023 cqp_info->in.u.ws_node.info = *node_info; 2024 cqp_info->in.u.ws_node.cqp = cqp; 2025 cqp_info->in.u.ws_node.scratch = (uintptr_t)cqp_request; 2026 status = irdma_handle_cqp_op(rf, cqp_request); 2027 if (status) 2028 goto exit; 2029 2030 if (poll) { 2031 struct irdma_ccq_cqe_info compl_info; 2032 2033 status = irdma_sc_poll_for_cqp_op_done(cqp, IRDMA_CQP_OP_WORK_SCHED_NODE, 2034 &compl_info); 2035 node_info->qs_handle = compl_info.op_ret_val; 2036 ibdev_dbg(&rf->iwdev->ibdev, "DCB: opcode=%d, compl_info.retval=%d\n", 2037 compl_info.op_code, compl_info.op_ret_val); 2038 } else { 2039 node_info->qs_handle = cqp_request->compl_info.op_ret_val; 2040 } 2041 2042 exit: 2043 irdma_put_cqp_request(&rf->cqp, cqp_request); 2044 2045 return status; 2046 } 2047 2048 /** 2049 * irdma_ah_cqp_op - perform an AH cqp operation 2050 * @rf: RDMA PCI function 2051 * @sc_ah: address handle 2052 * @cmd: AH operation 2053 * @wait: wait if true 2054 * @callback_fcn: Callback function on CQP op completion 2055 * @cb_param: parameter for callback function 2056 * 2057 * returns errno 2058 */ 2059 int irdma_ah_cqp_op(struct irdma_pci_f *rf, struct irdma_sc_ah *sc_ah, u8 cmd, 2060 bool wait, 2061 void (*callback_fcn)(struct irdma_cqp_request *), 2062 void *cb_param) 2063 { 2064 struct irdma_cqp_request *cqp_request; 2065 struct cqp_cmds_info *cqp_info; 2066 int status; 2067 2068 if (cmd != IRDMA_OP_AH_CREATE && cmd != IRDMA_OP_AH_DESTROY) 2069 return -EINVAL; 2070 2071 cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait); 2072 if (!cqp_request) 2073 return -ENOMEM; 2074 2075 cqp_info = &cqp_request->info; 2076 cqp_info->cqp_cmd = cmd; 2077 cqp_info->post_sq = 1; 2078 if (cmd == IRDMA_OP_AH_CREATE) { 2079 cqp_info->in.u.ah_create.info = sc_ah->ah_info; 2080 cqp_info->in.u.ah_create.scratch = (uintptr_t)cqp_request; 2081 cqp_info->in.u.ah_create.cqp = &rf->cqp.sc_cqp; 2082 } else if (cmd == IRDMA_OP_AH_DESTROY) { 2083 cqp_info->in.u.ah_destroy.info = sc_ah->ah_info; 2084 cqp_info->in.u.ah_destroy.scratch = (uintptr_t)cqp_request; 2085 cqp_info->in.u.ah_destroy.cqp = &rf->cqp.sc_cqp; 2086 } 2087 2088 if (!wait) { 2089 cqp_request->callback_fcn = callback_fcn; 2090 cqp_request->param = cb_param; 2091 } 2092 status = irdma_handle_cqp_op(rf, cqp_request); 2093 irdma_put_cqp_request(&rf->cqp, cqp_request); 2094 2095 if (status) 2096 return -ENOMEM; 2097 2098 if (wait) 2099 sc_ah->ah_info.ah_valid = (cmd == IRDMA_OP_AH_CREATE); 2100 2101 return 0; 2102 } 2103 2104 /** 2105 * irdma_ieq_ah_cb - callback after creation of AH for IEQ 2106 * @cqp_request: pointer to cqp_request of create AH 2107 */ 2108 static void irdma_ieq_ah_cb(struct irdma_cqp_request *cqp_request) 2109 { 2110 struct irdma_sc_qp *qp = cqp_request->param; 2111 struct irdma_sc_ah *sc_ah = qp->pfpdu.ah; 2112 unsigned long flags; 2113 2114 spin_lock_irqsave(&qp->pfpdu.lock, flags); 2115 if (!cqp_request->compl_info.op_ret_val) { 2116 sc_ah->ah_info.ah_valid = true; 2117 irdma_ieq_process_fpdus(qp, qp->vsi->ieq); 2118 } else { 2119 sc_ah->ah_info.ah_valid = false; 2120 irdma_ieq_cleanup_qp(qp->vsi->ieq, qp); 2121 } 2122 spin_unlock_irqrestore(&qp->pfpdu.lock, flags); 2123 } 2124 2125 /** 2126 * irdma_ilq_ah_cb - callback after creation of AH for ILQ 2127 * @cqp_request: pointer to cqp_request of create AH 2128 */ 2129 static void irdma_ilq_ah_cb(struct irdma_cqp_request *cqp_request) 2130 { 2131 struct irdma_cm_node *cm_node = cqp_request->param; 2132 struct irdma_sc_ah *sc_ah = cm_node->ah; 2133 2134 sc_ah->ah_info.ah_valid = !cqp_request->compl_info.op_ret_val; 2135 irdma_add_conn_est_qh(cm_node); 2136 } 2137 2138 /** 2139 * irdma_puda_create_ah - create AH for ILQ/IEQ qp's 2140 * @dev: device pointer 2141 * @ah_info: Address handle info 2142 * @wait: When true will wait for operation to complete 2143 * @type: ILQ/IEQ 2144 * @cb_param: Callback param when not waiting 2145 * @ah_ret: Returned pointer to address handle if created 2146 * 2147 */ 2148 int irdma_puda_create_ah(struct irdma_sc_dev *dev, 2149 struct irdma_ah_info *ah_info, bool wait, 2150 enum puda_rsrc_type type, void *cb_param, 2151 struct irdma_sc_ah **ah_ret) 2152 { 2153 struct irdma_sc_ah *ah; 2154 struct irdma_pci_f *rf = dev_to_rf(dev); 2155 int err; 2156 2157 ah = kzalloc(sizeof(*ah), GFP_ATOMIC); 2158 *ah_ret = ah; 2159 if (!ah) 2160 return -ENOMEM; 2161 2162 err = irdma_alloc_rsrc(rf, rf->allocated_ahs, rf->max_ah, 2163 &ah_info->ah_idx, &rf->next_ah); 2164 if (err) 2165 goto err_free; 2166 2167 ah->dev = dev; 2168 ah->ah_info = *ah_info; 2169 2170 if (type == IRDMA_PUDA_RSRC_TYPE_ILQ) 2171 err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait, 2172 irdma_ilq_ah_cb, cb_param); 2173 else 2174 err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait, 2175 irdma_ieq_ah_cb, cb_param); 2176 2177 if (err) 2178 goto error; 2179 return 0; 2180 2181 error: 2182 irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx); 2183 err_free: 2184 kfree(ah); 2185 *ah_ret = NULL; 2186 return -ENOMEM; 2187 } 2188 2189 /** 2190 * irdma_puda_free_ah - free a puda address handle 2191 * @dev: device pointer 2192 * @ah: The address handle to free 2193 */ 2194 void irdma_puda_free_ah(struct irdma_sc_dev *dev, struct irdma_sc_ah *ah) 2195 { 2196 struct irdma_pci_f *rf = dev_to_rf(dev); 2197 2198 if (!ah) 2199 return; 2200 2201 if (ah->ah_info.ah_valid) { 2202 irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_DESTROY, false, NULL, NULL); 2203 irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx); 2204 } 2205 2206 kfree(ah); 2207 } 2208 2209 /** 2210 * irdma_gsi_ud_qp_ah_cb - callback after creation of AH for GSI/ID QP 2211 * @cqp_request: pointer to cqp_request of create AH 2212 */ 2213 void irdma_gsi_ud_qp_ah_cb(struct irdma_cqp_request *cqp_request) 2214 { 2215 struct irdma_sc_ah *sc_ah = cqp_request->param; 2216 2217 if (!cqp_request->compl_info.op_ret_val) 2218 sc_ah->ah_info.ah_valid = true; 2219 else 2220 sc_ah->ah_info.ah_valid = false; 2221 } 2222 2223 /** 2224 * irdma_prm_add_pble_mem - add moemory to pble resources 2225 * @pprm: pble resource manager 2226 * @pchunk: chunk of memory to add 2227 */ 2228 int irdma_prm_add_pble_mem(struct irdma_pble_prm *pprm, 2229 struct irdma_chunk *pchunk) 2230 { 2231 u64 sizeofbitmap; 2232 2233 if (pchunk->size & 0xfff) 2234 return -EINVAL; 2235 2236 sizeofbitmap = (u64)pchunk->size >> pprm->pble_shift; 2237 2238 pchunk->bitmapbuf = bitmap_zalloc(sizeofbitmap, GFP_KERNEL); 2239 if (!pchunk->bitmapbuf) 2240 return -ENOMEM; 2241 2242 pchunk->sizeofbitmap = sizeofbitmap; 2243 /* each pble is 8 bytes hence shift by 3 */ 2244 pprm->total_pble_alloc += pchunk->size >> 3; 2245 pprm->free_pble_cnt += pchunk->size >> 3; 2246 2247 return 0; 2248 } 2249 2250 /** 2251 * irdma_prm_get_pbles - get pble's from prm 2252 * @pprm: pble resource manager 2253 * @chunkinfo: nformation about chunk where pble's were acquired 2254 * @mem_size: size of pble memory needed 2255 * @vaddr: returns virtual address of pble memory 2256 * @fpm_addr: returns fpm address of pble memory 2257 */ 2258 int irdma_prm_get_pbles(struct irdma_pble_prm *pprm, 2259 struct irdma_pble_chunkinfo *chunkinfo, u64 mem_size, 2260 u64 **vaddr, u64 *fpm_addr) 2261 { 2262 u64 bits_needed; 2263 u64 bit_idx = PBLE_INVALID_IDX; 2264 struct irdma_chunk *pchunk = NULL; 2265 struct list_head *chunk_entry = pprm->clist.next; 2266 u32 offset; 2267 unsigned long flags; 2268 *vaddr = NULL; 2269 *fpm_addr = 0; 2270 2271 bits_needed = DIV_ROUND_UP_ULL(mem_size, BIT_ULL(pprm->pble_shift)); 2272 2273 spin_lock_irqsave(&pprm->prm_lock, flags); 2274 while (chunk_entry != &pprm->clist) { 2275 pchunk = (struct irdma_chunk *)chunk_entry; 2276 bit_idx = bitmap_find_next_zero_area(pchunk->bitmapbuf, 2277 pchunk->sizeofbitmap, 0, 2278 bits_needed, 0); 2279 if (bit_idx < pchunk->sizeofbitmap) 2280 break; 2281 2282 /* list.next used macro */ 2283 chunk_entry = pchunk->list.next; 2284 } 2285 2286 if (!pchunk || bit_idx >= pchunk->sizeofbitmap) { 2287 spin_unlock_irqrestore(&pprm->prm_lock, flags); 2288 return -ENOMEM; 2289 } 2290 2291 bitmap_set(pchunk->bitmapbuf, bit_idx, bits_needed); 2292 offset = bit_idx << pprm->pble_shift; 2293 *vaddr = pchunk->vaddr + offset; 2294 *fpm_addr = pchunk->fpm_addr + offset; 2295 2296 chunkinfo->pchunk = pchunk; 2297 chunkinfo->bit_idx = bit_idx; 2298 chunkinfo->bits_used = bits_needed; 2299 /* 3 is sizeof pble divide */ 2300 pprm->free_pble_cnt -= chunkinfo->bits_used << (pprm->pble_shift - 3); 2301 spin_unlock_irqrestore(&pprm->prm_lock, flags); 2302 2303 return 0; 2304 } 2305 2306 /** 2307 * irdma_prm_return_pbles - return pbles back to prm 2308 * @pprm: pble resource manager 2309 * @chunkinfo: chunk where pble's were acquired and to be freed 2310 */ 2311 void irdma_prm_return_pbles(struct irdma_pble_prm *pprm, 2312 struct irdma_pble_chunkinfo *chunkinfo) 2313 { 2314 unsigned long flags; 2315 2316 spin_lock_irqsave(&pprm->prm_lock, flags); 2317 pprm->free_pble_cnt += chunkinfo->bits_used << (pprm->pble_shift - 3); 2318 bitmap_clear(chunkinfo->pchunk->bitmapbuf, chunkinfo->bit_idx, 2319 chunkinfo->bits_used); 2320 spin_unlock_irqrestore(&pprm->prm_lock, flags); 2321 } 2322 2323 int irdma_map_vm_page_list(struct irdma_hw *hw, void *va, dma_addr_t *pg_dma, 2324 u32 pg_cnt) 2325 { 2326 struct page *vm_page; 2327 int i; 2328 u8 *addr; 2329 2330 addr = (u8 *)(uintptr_t)va; 2331 for (i = 0; i < pg_cnt; i++) { 2332 vm_page = vmalloc_to_page(addr); 2333 if (!vm_page) 2334 goto err; 2335 2336 pg_dma[i] = dma_map_page(hw->device, vm_page, 0, PAGE_SIZE, 2337 DMA_BIDIRECTIONAL); 2338 if (dma_mapping_error(hw->device, pg_dma[i])) 2339 goto err; 2340 2341 addr += PAGE_SIZE; 2342 } 2343 2344 return 0; 2345 2346 err: 2347 irdma_unmap_vm_page_list(hw, pg_dma, i); 2348 return -ENOMEM; 2349 } 2350 2351 void irdma_unmap_vm_page_list(struct irdma_hw *hw, dma_addr_t *pg_dma, u32 pg_cnt) 2352 { 2353 int i; 2354 2355 for (i = 0; i < pg_cnt; i++) 2356 dma_unmap_page(hw->device, pg_dma[i], PAGE_SIZE, DMA_BIDIRECTIONAL); 2357 } 2358 2359 /** 2360 * irdma_pble_free_paged_mem - free virtual paged memory 2361 * @chunk: chunk to free with paged memory 2362 */ 2363 void irdma_pble_free_paged_mem(struct irdma_chunk *chunk) 2364 { 2365 if (!chunk->pg_cnt) 2366 goto done; 2367 2368 irdma_unmap_vm_page_list(chunk->dev->hw, chunk->dmainfo.dmaaddrs, 2369 chunk->pg_cnt); 2370 2371 done: 2372 kfree(chunk->dmainfo.dmaaddrs); 2373 chunk->dmainfo.dmaaddrs = NULL; 2374 vfree(chunk->vaddr); 2375 chunk->vaddr = NULL; 2376 chunk->type = 0; 2377 } 2378 2379 /** 2380 * irdma_pble_get_paged_mem -allocate paged memory for pbles 2381 * @chunk: chunk to add for paged memory 2382 * @pg_cnt: number of pages needed 2383 */ 2384 int irdma_pble_get_paged_mem(struct irdma_chunk *chunk, u32 pg_cnt) 2385 { 2386 u32 size; 2387 void *va; 2388 2389 chunk->dmainfo.dmaaddrs = kzalloc(pg_cnt << 3, GFP_KERNEL); 2390 if (!chunk->dmainfo.dmaaddrs) 2391 return -ENOMEM; 2392 2393 size = PAGE_SIZE * pg_cnt; 2394 va = vmalloc(size); 2395 if (!va) 2396 goto err; 2397 2398 if (irdma_map_vm_page_list(chunk->dev->hw, va, chunk->dmainfo.dmaaddrs, 2399 pg_cnt)) { 2400 vfree(va); 2401 goto err; 2402 } 2403 chunk->vaddr = va; 2404 chunk->size = size; 2405 chunk->pg_cnt = pg_cnt; 2406 chunk->type = PBLE_SD_PAGED; 2407 2408 return 0; 2409 err: 2410 kfree(chunk->dmainfo.dmaaddrs); 2411 chunk->dmainfo.dmaaddrs = NULL; 2412 2413 return -ENOMEM; 2414 } 2415 2416 /** 2417 * irdma_alloc_ws_node_id - Allocate a tx scheduler node ID 2418 * @dev: device pointer 2419 */ 2420 u16 irdma_alloc_ws_node_id(struct irdma_sc_dev *dev) 2421 { 2422 struct irdma_pci_f *rf = dev_to_rf(dev); 2423 u32 next = 1; 2424 u32 node_id; 2425 2426 if (irdma_alloc_rsrc(rf, rf->allocated_ws_nodes, rf->max_ws_node_id, 2427 &node_id, &next)) 2428 return IRDMA_WS_NODE_INVALID; 2429 2430 return (u16)node_id; 2431 } 2432 2433 /** 2434 * irdma_free_ws_node_id - Free a tx scheduler node ID 2435 * @dev: device pointer 2436 * @node_id: Work scheduler node ID 2437 */ 2438 void irdma_free_ws_node_id(struct irdma_sc_dev *dev, u16 node_id) 2439 { 2440 struct irdma_pci_f *rf = dev_to_rf(dev); 2441 2442 irdma_free_rsrc(rf, rf->allocated_ws_nodes, (u32)node_id); 2443 } 2444 2445 /** 2446 * irdma_modify_qp_to_err - Modify a QP to error 2447 * @sc_qp: qp structure 2448 */ 2449 void irdma_modify_qp_to_err(struct irdma_sc_qp *sc_qp) 2450 { 2451 struct irdma_qp *qp = sc_qp->qp_uk.back_qp; 2452 struct ib_qp_attr attr; 2453 2454 if (qp->iwdev->rf->reset) 2455 return; 2456 attr.qp_state = IB_QPS_ERR; 2457 2458 if (rdma_protocol_roce(qp->ibqp.device, 1)) 2459 irdma_modify_qp_roce(&qp->ibqp, &attr, IB_QP_STATE, NULL); 2460 else 2461 irdma_modify_qp(&qp->ibqp, &attr, IB_QP_STATE, NULL); 2462 } 2463 2464 void irdma_ib_qp_event(struct irdma_qp *iwqp, enum irdma_qp_event_type event) 2465 { 2466 struct ib_event ibevent; 2467 2468 if (!iwqp->ibqp.event_handler) 2469 return; 2470 2471 switch (event) { 2472 case IRDMA_QP_EVENT_CATASTROPHIC: 2473 ibevent.event = IB_EVENT_QP_FATAL; 2474 break; 2475 case IRDMA_QP_EVENT_ACCESS_ERR: 2476 ibevent.event = IB_EVENT_QP_ACCESS_ERR; 2477 break; 2478 } 2479 ibevent.device = iwqp->ibqp.device; 2480 ibevent.element.qp = &iwqp->ibqp; 2481 iwqp->ibqp.event_handler(&ibevent, iwqp->ibqp.qp_context); 2482 } 2483 2484 bool irdma_cq_empty(struct irdma_cq *iwcq) 2485 { 2486 struct irdma_cq_uk *ukcq; 2487 u64 qword3; 2488 __le64 *cqe; 2489 u8 polarity; 2490 2491 ukcq = &iwcq->sc_cq.cq_uk; 2492 cqe = IRDMA_GET_CURRENT_CQ_ELEM(ukcq); 2493 get_64bit_val(cqe, 24, &qword3); 2494 polarity = (u8)FIELD_GET(IRDMA_CQ_VALID, qword3); 2495 2496 return polarity != ukcq->polarity; 2497 } 2498