xref: /linux/drivers/infiniband/hw/irdma/utils.c (revision 73aea586d6c58f55799f6130e19321ff7b574c3d)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /* Copyright (c) 2015 - 2021 Intel Corporation */
3 #include "main.h"
4 
5 /**
6  * irdma_arp_table -manage arp table
7  * @rf: RDMA PCI function
8  * @ip_addr: ip address for device
9  * @ipv4: IPv4 flag
10  * @mac_addr: mac address ptr
11  * @action: modify, delete or add
12  */
13 int irdma_arp_table(struct irdma_pci_f *rf, u32 *ip_addr, bool ipv4,
14 		    const u8 *mac_addr, u32 action)
15 {
16 	unsigned long flags;
17 	int arp_index;
18 	u32 ip[4] = {};
19 
20 	if (ipv4)
21 		ip[0] = *ip_addr;
22 	else
23 		memcpy(ip, ip_addr, sizeof(ip));
24 
25 	spin_lock_irqsave(&rf->arp_lock, flags);
26 	for (arp_index = 0; (u32)arp_index < rf->arp_table_size; arp_index++) {
27 		if (!memcmp(rf->arp_table[arp_index].ip_addr, ip, sizeof(ip)))
28 			break;
29 	}
30 
31 	switch (action) {
32 	case IRDMA_ARP_ADD:
33 		if (arp_index != rf->arp_table_size) {
34 			arp_index = -1;
35 			break;
36 		}
37 
38 		arp_index = 0;
39 		if (irdma_alloc_rsrc(rf, rf->allocated_arps, rf->arp_table_size,
40 				     (u32 *)&arp_index, &rf->next_arp_index)) {
41 			arp_index = -1;
42 			break;
43 		}
44 
45 		memcpy(rf->arp_table[arp_index].ip_addr, ip,
46 		       sizeof(rf->arp_table[arp_index].ip_addr));
47 		ether_addr_copy(rf->arp_table[arp_index].mac_addr, mac_addr);
48 		break;
49 	case IRDMA_ARP_RESOLVE:
50 		if (arp_index == rf->arp_table_size)
51 			arp_index = -1;
52 		break;
53 	case IRDMA_ARP_DELETE:
54 		if (arp_index == rf->arp_table_size) {
55 			arp_index = -1;
56 			break;
57 		}
58 
59 		memset(rf->arp_table[arp_index].ip_addr, 0,
60 		       sizeof(rf->arp_table[arp_index].ip_addr));
61 		eth_zero_addr(rf->arp_table[arp_index].mac_addr);
62 		irdma_free_rsrc(rf, rf->allocated_arps, arp_index);
63 		break;
64 	default:
65 		arp_index = -1;
66 		break;
67 	}
68 
69 	spin_unlock_irqrestore(&rf->arp_lock, flags);
70 	return arp_index;
71 }
72 
73 /**
74  * irdma_add_arp - add a new arp entry if needed
75  * @rf: RDMA function
76  * @ip: IP address
77  * @ipv4: IPv4 flag
78  * @mac: MAC address
79  */
80 int irdma_add_arp(struct irdma_pci_f *rf, u32 *ip, bool ipv4, const u8 *mac)
81 {
82 	int arpidx;
83 
84 	arpidx = irdma_arp_table(rf, &ip[0], ipv4, NULL, IRDMA_ARP_RESOLVE);
85 	if (arpidx >= 0) {
86 		if (ether_addr_equal(rf->arp_table[arpidx].mac_addr, mac))
87 			return arpidx;
88 
89 		irdma_manage_arp_cache(rf, rf->arp_table[arpidx].mac_addr, ip,
90 				       ipv4, IRDMA_ARP_DELETE);
91 	}
92 
93 	irdma_manage_arp_cache(rf, mac, ip, ipv4, IRDMA_ARP_ADD);
94 
95 	return irdma_arp_table(rf, ip, ipv4, NULL, IRDMA_ARP_RESOLVE);
96 }
97 
98 /**
99  * wr32 - write 32 bits to hw register
100  * @hw: hardware information including registers
101  * @reg: register offset
102  * @val: value to write to register
103  */
104 inline void wr32(struct irdma_hw *hw, u32 reg, u32 val)
105 {
106 	writel(val, hw->hw_addr + reg);
107 }
108 
109 /**
110  * rd32 - read a 32 bit hw register
111  * @hw: hardware information including registers
112  * @reg: register offset
113  *
114  * Return value of register content
115  */
116 inline u32 rd32(struct irdma_hw *hw, u32 reg)
117 {
118 	return readl(hw->hw_addr + reg);
119 }
120 
121 /**
122  * rd64 - read a 64 bit hw register
123  * @hw: hardware information including registers
124  * @reg: register offset
125  *
126  * Return value of register content
127  */
128 inline u64 rd64(struct irdma_hw *hw, u32 reg)
129 {
130 	return readq(hw->hw_addr + reg);
131 }
132 
133 static void irdma_gid_change_event(struct ib_device *ibdev)
134 {
135 	struct ib_event ib_event;
136 
137 	ib_event.event = IB_EVENT_GID_CHANGE;
138 	ib_event.device = ibdev;
139 	ib_event.element.port_num = 1;
140 	ib_dispatch_event(&ib_event);
141 }
142 
143 /**
144  * irdma_inetaddr_event - system notifier for ipv4 addr events
145  * @notifier: not used
146  * @event: event for notifier
147  * @ptr: if address
148  */
149 int irdma_inetaddr_event(struct notifier_block *notifier, unsigned long event,
150 			 void *ptr)
151 {
152 	struct in_ifaddr *ifa = ptr;
153 	struct net_device *real_dev, *netdev = ifa->ifa_dev->dev;
154 	struct irdma_device *iwdev;
155 	struct ib_device *ibdev;
156 	u32 local_ipaddr;
157 
158 	real_dev = rdma_vlan_dev_real_dev(netdev);
159 	if (!real_dev)
160 		real_dev = netdev;
161 
162 	ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA);
163 	if (!ibdev)
164 		return NOTIFY_DONE;
165 
166 	iwdev = to_iwdev(ibdev);
167 	local_ipaddr = ntohl(ifa->ifa_address);
168 	ibdev_dbg(&iwdev->ibdev,
169 		  "DEV: netdev %p event %lu local_ip=%pI4 MAC=%pM\n", real_dev,
170 		  event, &local_ipaddr, real_dev->dev_addr);
171 	switch (event) {
172 	case NETDEV_DOWN:
173 		irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr,
174 				       &local_ipaddr, true, IRDMA_ARP_DELETE);
175 		irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, false);
176 		irdma_gid_change_event(&iwdev->ibdev);
177 		break;
178 	case NETDEV_UP:
179 	case NETDEV_CHANGEADDR:
180 		irdma_add_arp(iwdev->rf, &local_ipaddr, true, real_dev->dev_addr);
181 		irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, true);
182 		irdma_gid_change_event(&iwdev->ibdev);
183 		break;
184 	default:
185 		break;
186 	}
187 
188 	ib_device_put(ibdev);
189 
190 	return NOTIFY_DONE;
191 }
192 
193 /**
194  * irdma_inet6addr_event - system notifier for ipv6 addr events
195  * @notifier: not used
196  * @event: event for notifier
197  * @ptr: if address
198  */
199 int irdma_inet6addr_event(struct notifier_block *notifier, unsigned long event,
200 			  void *ptr)
201 {
202 	struct inet6_ifaddr *ifa = ptr;
203 	struct net_device *real_dev, *netdev = ifa->idev->dev;
204 	struct irdma_device *iwdev;
205 	struct ib_device *ibdev;
206 	u32 local_ipaddr6[4];
207 
208 	real_dev = rdma_vlan_dev_real_dev(netdev);
209 	if (!real_dev)
210 		real_dev = netdev;
211 
212 	ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA);
213 	if (!ibdev)
214 		return NOTIFY_DONE;
215 
216 	iwdev = to_iwdev(ibdev);
217 	irdma_copy_ip_ntohl(local_ipaddr6, ifa->addr.in6_u.u6_addr32);
218 	ibdev_dbg(&iwdev->ibdev,
219 		  "DEV: netdev %p event %lu local_ip=%pI6 MAC=%pM\n", real_dev,
220 		  event, local_ipaddr6, real_dev->dev_addr);
221 	switch (event) {
222 	case NETDEV_DOWN:
223 		irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr,
224 				       local_ipaddr6, false, IRDMA_ARP_DELETE);
225 		irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, false);
226 		irdma_gid_change_event(&iwdev->ibdev);
227 		break;
228 	case NETDEV_UP:
229 	case NETDEV_CHANGEADDR:
230 		irdma_add_arp(iwdev->rf, local_ipaddr6, false,
231 			      real_dev->dev_addr);
232 		irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, true);
233 		irdma_gid_change_event(&iwdev->ibdev);
234 		break;
235 	default:
236 		break;
237 	}
238 
239 	ib_device_put(ibdev);
240 
241 	return NOTIFY_DONE;
242 }
243 
244 /**
245  * irdma_net_event - system notifier for net events
246  * @notifier: not used
247  * @event: event for notifier
248  * @ptr: neighbor
249  */
250 int irdma_net_event(struct notifier_block *notifier, unsigned long event,
251 		    void *ptr)
252 {
253 	struct neighbour *neigh = ptr;
254 	struct net_device *real_dev, *netdev = (struct net_device *)neigh->dev;
255 	struct irdma_device *iwdev;
256 	struct ib_device *ibdev;
257 	__be32 *p;
258 	u32 local_ipaddr[4] = {};
259 	bool ipv4 = true;
260 
261 	switch (event) {
262 	case NETEVENT_NEIGH_UPDATE:
263 		real_dev = rdma_vlan_dev_real_dev(netdev);
264 		if (!real_dev)
265 			real_dev = netdev;
266 		ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA);
267 		if (!ibdev)
268 			return NOTIFY_DONE;
269 
270 		iwdev = to_iwdev(ibdev);
271 		p = (__be32 *)neigh->primary_key;
272 		if (neigh->tbl->family == AF_INET6) {
273 			ipv4 = false;
274 			irdma_copy_ip_ntohl(local_ipaddr, p);
275 		} else {
276 			local_ipaddr[0] = ntohl(*p);
277 		}
278 
279 		ibdev_dbg(&iwdev->ibdev,
280 			  "DEV: netdev %p state %d local_ip=%pI4 MAC=%pM\n",
281 			  iwdev->netdev, neigh->nud_state, local_ipaddr,
282 			  neigh->ha);
283 
284 		if (neigh->nud_state & NUD_VALID)
285 			irdma_add_arp(iwdev->rf, local_ipaddr, ipv4, neigh->ha);
286 
287 		else
288 			irdma_manage_arp_cache(iwdev->rf, neigh->ha,
289 					       local_ipaddr, ipv4,
290 					       IRDMA_ARP_DELETE);
291 		ib_device_put(ibdev);
292 		break;
293 	default:
294 		break;
295 	}
296 
297 	return NOTIFY_DONE;
298 }
299 
300 /**
301  * irdma_netdevice_event - system notifier for netdev events
302  * @notifier: not used
303  * @event: event for notifier
304  * @ptr: netdev
305  */
306 int irdma_netdevice_event(struct notifier_block *notifier, unsigned long event,
307 			  void *ptr)
308 {
309 	struct irdma_device *iwdev;
310 	struct ib_device *ibdev;
311 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
312 
313 	ibdev = ib_device_get_by_netdev(netdev, RDMA_DRIVER_IRDMA);
314 	if (!ibdev)
315 		return NOTIFY_DONE;
316 
317 	iwdev = to_iwdev(ibdev);
318 	iwdev->iw_status = 1;
319 	switch (event) {
320 	case NETDEV_DOWN:
321 		iwdev->iw_status = 0;
322 		fallthrough;
323 	case NETDEV_UP:
324 		irdma_port_ibevent(iwdev);
325 		break;
326 	default:
327 		break;
328 	}
329 	ib_device_put(ibdev);
330 
331 	return NOTIFY_DONE;
332 }
333 
334 /**
335  * irdma_add_ipv6_addr - add ipv6 address to the hw arp table
336  * @iwdev: irdma device
337  */
338 static void irdma_add_ipv6_addr(struct irdma_device *iwdev)
339 {
340 	struct net_device *ip_dev;
341 	struct inet6_dev *idev;
342 	struct inet6_ifaddr *ifp, *tmp;
343 	u32 local_ipaddr6[4];
344 
345 	rcu_read_lock();
346 	for_each_netdev_rcu (&init_net, ip_dev) {
347 		if (((rdma_vlan_dev_vlan_id(ip_dev) < 0xFFFF &&
348 		      rdma_vlan_dev_real_dev(ip_dev) == iwdev->netdev) ||
349 		      ip_dev == iwdev->netdev) &&
350 		      (READ_ONCE(ip_dev->flags) & IFF_UP)) {
351 			idev = __in6_dev_get(ip_dev);
352 			if (!idev) {
353 				ibdev_err(&iwdev->ibdev, "ipv6 inet device not found\n");
354 				break;
355 			}
356 			list_for_each_entry_safe (ifp, tmp, &idev->addr_list,
357 						  if_list) {
358 				ibdev_dbg(&iwdev->ibdev,
359 					  "INIT: IP=%pI6, vlan_id=%d, MAC=%pM\n",
360 					  &ifp->addr,
361 					  rdma_vlan_dev_vlan_id(ip_dev),
362 					  ip_dev->dev_addr);
363 
364 				irdma_copy_ip_ntohl(local_ipaddr6,
365 						    ifp->addr.in6_u.u6_addr32);
366 				irdma_manage_arp_cache(iwdev->rf,
367 						       ip_dev->dev_addr,
368 						       local_ipaddr6, false,
369 						       IRDMA_ARP_ADD);
370 			}
371 		}
372 	}
373 	rcu_read_unlock();
374 }
375 
376 /**
377  * irdma_add_ipv4_addr - add ipv4 address to the hw arp table
378  * @iwdev: irdma device
379  */
380 static void irdma_add_ipv4_addr(struct irdma_device *iwdev)
381 {
382 	struct net_device *dev;
383 	struct in_device *idev;
384 	u32 ip_addr;
385 
386 	rcu_read_lock();
387 	for_each_netdev_rcu (&init_net, dev) {
388 		if (((rdma_vlan_dev_vlan_id(dev) < 0xFFFF &&
389 		      rdma_vlan_dev_real_dev(dev) == iwdev->netdev) ||
390 		      dev == iwdev->netdev) && (READ_ONCE(dev->flags) & IFF_UP)) {
391 			const struct in_ifaddr *ifa;
392 
393 			idev = __in_dev_get_rcu(dev);
394 			if (!idev)
395 				continue;
396 
397 			in_dev_for_each_ifa_rcu(ifa, idev) {
398 				ibdev_dbg(&iwdev->ibdev, "CM: IP=%pI4, vlan_id=%d, MAC=%pM\n",
399 					  &ifa->ifa_address, rdma_vlan_dev_vlan_id(dev),
400 					  dev->dev_addr);
401 
402 				ip_addr = ntohl(ifa->ifa_address);
403 				irdma_manage_arp_cache(iwdev->rf, dev->dev_addr,
404 						       &ip_addr, true,
405 						       IRDMA_ARP_ADD);
406 			}
407 		}
408 	}
409 	rcu_read_unlock();
410 }
411 
412 /**
413  * irdma_add_ip - add ip addresses
414  * @iwdev: irdma device
415  *
416  * Add ipv4/ipv6 addresses to the arp cache
417  */
418 void irdma_add_ip(struct irdma_device *iwdev)
419 {
420 	irdma_add_ipv4_addr(iwdev);
421 	irdma_add_ipv6_addr(iwdev);
422 }
423 
424 /**
425  * irdma_alloc_and_get_cqp_request - get cqp struct
426  * @cqp: device cqp ptr
427  * @wait: cqp to be used in wait mode
428  */
429 struct irdma_cqp_request *irdma_alloc_and_get_cqp_request(struct irdma_cqp *cqp,
430 							  bool wait)
431 {
432 	struct irdma_cqp_request *cqp_request = NULL;
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(&cqp->req_lock, flags);
436 	if (!list_empty(&cqp->cqp_avail_reqs)) {
437 		cqp_request = list_first_entry(&cqp->cqp_avail_reqs,
438 					       struct irdma_cqp_request, list);
439 		list_del_init(&cqp_request->list);
440 	}
441 	spin_unlock_irqrestore(&cqp->req_lock, flags);
442 	if (!cqp_request) {
443 		cqp_request = kzalloc(sizeof(*cqp_request), GFP_ATOMIC);
444 		if (cqp_request) {
445 			cqp_request->dynamic = true;
446 			if (wait)
447 				init_waitqueue_head(&cqp_request->waitq);
448 		}
449 	}
450 	if (!cqp_request) {
451 		ibdev_dbg(to_ibdev(cqp->sc_cqp.dev), "ERR: CQP Request Fail: No Memory");
452 		return NULL;
453 	}
454 
455 	cqp_request->waiting = wait;
456 	refcount_set(&cqp_request->refcnt, 1);
457 	memset(&cqp_request->compl_info, 0, sizeof(cqp_request->compl_info));
458 
459 	return cqp_request;
460 }
461 
462 /**
463  * irdma_get_cqp_request - increase refcount for cqp_request
464  * @cqp_request: pointer to cqp_request instance
465  */
466 static inline void irdma_get_cqp_request(struct irdma_cqp_request *cqp_request)
467 {
468 	refcount_inc(&cqp_request->refcnt);
469 }
470 
471 /**
472  * irdma_free_cqp_request - free cqp request
473  * @cqp: cqp ptr
474  * @cqp_request: to be put back in cqp list
475  */
476 void irdma_free_cqp_request(struct irdma_cqp *cqp,
477 			    struct irdma_cqp_request *cqp_request)
478 {
479 	unsigned long flags;
480 
481 	if (cqp_request->dynamic) {
482 		kfree(cqp_request);
483 	} else {
484 		WRITE_ONCE(cqp_request->request_done, false);
485 		cqp_request->callback_fcn = NULL;
486 		cqp_request->waiting = false;
487 
488 		spin_lock_irqsave(&cqp->req_lock, flags);
489 		list_add_tail(&cqp_request->list, &cqp->cqp_avail_reqs);
490 		spin_unlock_irqrestore(&cqp->req_lock, flags);
491 	}
492 	wake_up(&cqp->remove_wq);
493 }
494 
495 /**
496  * irdma_put_cqp_request - dec ref count and free if 0
497  * @cqp: cqp ptr
498  * @cqp_request: to be put back in cqp list
499  */
500 void irdma_put_cqp_request(struct irdma_cqp *cqp,
501 			   struct irdma_cqp_request *cqp_request)
502 {
503 	if (refcount_dec_and_test(&cqp_request->refcnt))
504 		irdma_free_cqp_request(cqp, cqp_request);
505 }
506 
507 /**
508  * irdma_free_pending_cqp_request -free pending cqp request objs
509  * @cqp: cqp ptr
510  * @cqp_request: to be put back in cqp list
511  */
512 static void
513 irdma_free_pending_cqp_request(struct irdma_cqp *cqp,
514 			       struct irdma_cqp_request *cqp_request)
515 {
516 	if (cqp_request->waiting) {
517 		cqp_request->compl_info.error = true;
518 		WRITE_ONCE(cqp_request->request_done, true);
519 		wake_up(&cqp_request->waitq);
520 	}
521 	wait_event_timeout(cqp->remove_wq,
522 			   refcount_read(&cqp_request->refcnt) == 1, 1000);
523 	irdma_put_cqp_request(cqp, cqp_request);
524 }
525 
526 /**
527  * irdma_cleanup_pending_cqp_op - clean-up cqp with no
528  * completions
529  * @rf: RDMA PCI function
530  */
531 void irdma_cleanup_pending_cqp_op(struct irdma_pci_f *rf)
532 {
533 	struct irdma_sc_dev *dev = &rf->sc_dev;
534 	struct irdma_cqp *cqp = &rf->cqp;
535 	struct irdma_cqp_request *cqp_request = NULL;
536 	struct cqp_cmds_info *pcmdinfo = NULL;
537 	u32 i, pending_work, wqe_idx;
538 
539 	pending_work = IRDMA_RING_USED_QUANTA(cqp->sc_cqp.sq_ring);
540 	wqe_idx = IRDMA_RING_CURRENT_TAIL(cqp->sc_cqp.sq_ring);
541 	for (i = 0; i < pending_work; i++) {
542 		cqp_request = (struct irdma_cqp_request *)(unsigned long)
543 				      cqp->scratch_array[wqe_idx];
544 		if (cqp_request)
545 			irdma_free_pending_cqp_request(cqp, cqp_request);
546 		wqe_idx = (wqe_idx + 1) % IRDMA_RING_SIZE(cqp->sc_cqp.sq_ring);
547 	}
548 
549 	while (!list_empty(&dev->cqp_cmd_head)) {
550 		pcmdinfo = irdma_remove_cqp_head(dev);
551 		cqp_request =
552 			container_of(pcmdinfo, struct irdma_cqp_request, info);
553 		if (cqp_request)
554 			irdma_free_pending_cqp_request(cqp, cqp_request);
555 	}
556 }
557 
558 /**
559  * irdma_wait_event - wait for completion
560  * @rf: RDMA PCI function
561  * @cqp_request: cqp request to wait
562  */
563 static int irdma_wait_event(struct irdma_pci_f *rf,
564 			    struct irdma_cqp_request *cqp_request)
565 {
566 	struct irdma_cqp_timeout cqp_timeout = {};
567 	bool cqp_error = false;
568 	int err_code = 0;
569 
570 	cqp_timeout.compl_cqp_cmds = atomic64_read(&rf->sc_dev.cqp->completed_ops);
571 	do {
572 		irdma_cqp_ce_handler(rf, &rf->ccq.sc_cq);
573 		if (wait_event_timeout(cqp_request->waitq,
574 				       READ_ONCE(cqp_request->request_done),
575 				       msecs_to_jiffies(CQP_COMPL_WAIT_TIME_MS)))
576 			break;
577 
578 		irdma_check_cqp_progress(&cqp_timeout, &rf->sc_dev);
579 
580 		if (cqp_timeout.count < CQP_TIMEOUT_THRESHOLD)
581 			continue;
582 
583 		if (!rf->reset) {
584 			rf->reset = true;
585 			rf->gen_ops.request_reset(rf);
586 		}
587 		return -ETIMEDOUT;
588 	} while (1);
589 
590 	cqp_error = cqp_request->compl_info.error;
591 	if (cqp_error) {
592 		err_code = -EIO;
593 		if (cqp_request->compl_info.maj_err_code == 0xFFFF) {
594 			if (cqp_request->compl_info.min_err_code == 0x8002)
595 				err_code = -EBUSY;
596 			else if (cqp_request->compl_info.min_err_code == 0x8029) {
597 				if (!rf->reset) {
598 					rf->reset = true;
599 					rf->gen_ops.request_reset(rf);
600 				}
601 			}
602 		}
603 	}
604 
605 	return err_code;
606 }
607 
608 static const char *const irdma_cqp_cmd_names[IRDMA_MAX_CQP_OPS] = {
609 	[IRDMA_OP_CEQ_DESTROY] = "Destroy CEQ Cmd",
610 	[IRDMA_OP_AEQ_DESTROY] = "Destroy AEQ Cmd",
611 	[IRDMA_OP_DELETE_ARP_CACHE_ENTRY] = "Delete ARP Cache Cmd",
612 	[IRDMA_OP_MANAGE_APBVT_ENTRY] = "Manage APBV Table Entry Cmd",
613 	[IRDMA_OP_CEQ_CREATE] = "CEQ Create Cmd",
614 	[IRDMA_OP_AEQ_CREATE] = "AEQ Destroy Cmd",
615 	[IRDMA_OP_MANAGE_QHASH_TABLE_ENTRY] = "Manage Quad Hash Table Entry Cmd",
616 	[IRDMA_OP_QP_MODIFY] = "Modify QP Cmd",
617 	[IRDMA_OP_QP_UPLOAD_CONTEXT] = "Upload Context Cmd",
618 	[IRDMA_OP_CQ_CREATE] = "Create CQ Cmd",
619 	[IRDMA_OP_CQ_DESTROY] = "Destroy CQ Cmd",
620 	[IRDMA_OP_QP_CREATE] = "Create QP Cmd",
621 	[IRDMA_OP_QP_DESTROY] = "Destroy QP Cmd",
622 	[IRDMA_OP_ALLOC_STAG] = "Allocate STag Cmd",
623 	[IRDMA_OP_MR_REG_NON_SHARED] = "Register Non-Shared MR Cmd",
624 	[IRDMA_OP_DEALLOC_STAG] = "Deallocate STag Cmd",
625 	[IRDMA_OP_MW_ALLOC] = "Allocate Memory Window Cmd",
626 	[IRDMA_OP_QP_FLUSH_WQES] = "Flush QP Cmd",
627 	[IRDMA_OP_ADD_ARP_CACHE_ENTRY] = "Add ARP Cache Cmd",
628 	[IRDMA_OP_MANAGE_PUSH_PAGE] = "Manage Push Page Cmd",
629 	[IRDMA_OP_UPDATE_PE_SDS] = "Update PE SDs Cmd",
630 	[IRDMA_OP_MANAGE_HMC_PM_FUNC_TABLE] = "Manage HMC PM Function Table Cmd",
631 	[IRDMA_OP_SUSPEND] = "Suspend QP Cmd",
632 	[IRDMA_OP_RESUME] = "Resume QP Cmd",
633 	[IRDMA_OP_MANAGE_VF_PBLE_BP] = "Manage VF PBLE Backing Pages Cmd",
634 	[IRDMA_OP_QUERY_FPM_VAL] = "Query FPM Values Cmd",
635 	[IRDMA_OP_COMMIT_FPM_VAL] = "Commit FPM Values Cmd",
636 	[IRDMA_OP_AH_CREATE] = "Create Address Handle Cmd",
637 	[IRDMA_OP_AH_MODIFY] = "Modify Address Handle Cmd",
638 	[IRDMA_OP_AH_DESTROY] = "Destroy Address Handle Cmd",
639 	[IRDMA_OP_MC_CREATE] = "Create Multicast Group Cmd",
640 	[IRDMA_OP_MC_DESTROY] = "Destroy Multicast Group Cmd",
641 	[IRDMA_OP_MC_MODIFY] = "Modify Multicast Group Cmd",
642 	[IRDMA_OP_STATS_ALLOCATE] = "Add Statistics Instance Cmd",
643 	[IRDMA_OP_STATS_FREE] = "Free Statistics Instance Cmd",
644 	[IRDMA_OP_STATS_GATHER] = "Gather Statistics Cmd",
645 	[IRDMA_OP_WS_ADD_NODE] = "Add Work Scheduler Node Cmd",
646 	[IRDMA_OP_WS_MODIFY_NODE] = "Modify Work Scheduler Node Cmd",
647 	[IRDMA_OP_WS_DELETE_NODE] = "Delete Work Scheduler Node Cmd",
648 	[IRDMA_OP_SET_UP_MAP] = "Set UP-UP Mapping Cmd",
649 	[IRDMA_OP_GEN_AE] = "Generate AE Cmd",
650 	[IRDMA_OP_QUERY_RDMA_FEATURES] = "RDMA Get Features Cmd",
651 	[IRDMA_OP_ALLOC_LOCAL_MAC_ENTRY] = "Allocate Local MAC Entry Cmd",
652 	[IRDMA_OP_ADD_LOCAL_MAC_ENTRY] = "Add Local MAC Entry Cmd",
653 	[IRDMA_OP_DELETE_LOCAL_MAC_ENTRY] = "Delete Local MAC Entry Cmd",
654 	[IRDMA_OP_CQ_MODIFY] = "CQ Modify Cmd",
655 };
656 
657 static const struct irdma_cqp_err_info irdma_noncrit_err_list[] = {
658 	{0xffff, 0x8002, "Invalid State"},
659 	{0xffff, 0x8006, "Flush No Wqe Pending"},
660 	{0xffff, 0x8007, "Modify QP Bad Close"},
661 	{0xffff, 0x8009, "LLP Closed"},
662 	{0xffff, 0x800a, "Reset Not Sent"}
663 };
664 
665 /**
666  * irdma_cqp_crit_err - check if CQP error is critical
667  * @dev: pointer to dev structure
668  * @cqp_cmd: code for last CQP operation
669  * @maj_err_code: major error code
670  * @min_err_code: minot error code
671  */
672 bool irdma_cqp_crit_err(struct irdma_sc_dev *dev, u8 cqp_cmd,
673 			u16 maj_err_code, u16 min_err_code)
674 {
675 	int i;
676 
677 	for (i = 0; i < ARRAY_SIZE(irdma_noncrit_err_list); ++i) {
678 		if (maj_err_code == irdma_noncrit_err_list[i].maj &&
679 		    min_err_code == irdma_noncrit_err_list[i].min) {
680 			ibdev_dbg(to_ibdev(dev),
681 				  "CQP: [%s Error][%s] maj=0x%x min=0x%x\n",
682 				  irdma_noncrit_err_list[i].desc,
683 				  irdma_cqp_cmd_names[cqp_cmd], maj_err_code,
684 				  min_err_code);
685 			return false;
686 		}
687 	}
688 	return true;
689 }
690 
691 /**
692  * irdma_handle_cqp_op - process cqp command
693  * @rf: RDMA PCI function
694  * @cqp_request: cqp request to process
695  */
696 int irdma_handle_cqp_op(struct irdma_pci_f *rf,
697 			struct irdma_cqp_request *cqp_request)
698 {
699 	struct irdma_sc_dev *dev = &rf->sc_dev;
700 	struct cqp_cmds_info *info = &cqp_request->info;
701 	int status;
702 	bool put_cqp_request = true;
703 
704 	if (rf->reset)
705 		return -EBUSY;
706 
707 	irdma_get_cqp_request(cqp_request);
708 	status = irdma_process_cqp_cmd(dev, info);
709 	if (status)
710 		goto err;
711 
712 	if (cqp_request->waiting) {
713 		put_cqp_request = false;
714 		status = irdma_wait_event(rf, cqp_request);
715 		if (status)
716 			goto err;
717 	}
718 
719 	return 0;
720 
721 err:
722 	if (irdma_cqp_crit_err(dev, info->cqp_cmd,
723 			       cqp_request->compl_info.maj_err_code,
724 			       cqp_request->compl_info.min_err_code))
725 		ibdev_err(&rf->iwdev->ibdev,
726 			  "[%s Error][op_code=%d] status=%d waiting=%d completion_err=%d maj=0x%x min=0x%x\n",
727 			  irdma_cqp_cmd_names[info->cqp_cmd], info->cqp_cmd, status, cqp_request->waiting,
728 			  cqp_request->compl_info.error, cqp_request->compl_info.maj_err_code,
729 			  cqp_request->compl_info.min_err_code);
730 
731 	if (put_cqp_request)
732 		irdma_put_cqp_request(&rf->cqp, cqp_request);
733 
734 	return status;
735 }
736 
737 void irdma_qp_add_ref(struct ib_qp *ibqp)
738 {
739 	struct irdma_qp *iwqp = (struct irdma_qp *)ibqp;
740 
741 	refcount_inc(&iwqp->refcnt);
742 }
743 
744 void irdma_qp_rem_ref(struct ib_qp *ibqp)
745 {
746 	struct irdma_qp *iwqp = to_iwqp(ibqp);
747 	struct irdma_device *iwdev = iwqp->iwdev;
748 	u32 qp_num;
749 	unsigned long flags;
750 
751 	spin_lock_irqsave(&iwdev->rf->qptable_lock, flags);
752 	if (!refcount_dec_and_test(&iwqp->refcnt)) {
753 		spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags);
754 		return;
755 	}
756 
757 	qp_num = iwqp->ibqp.qp_num;
758 	iwdev->rf->qp_table[qp_num] = NULL;
759 	spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags);
760 	complete(&iwqp->free_qp);
761 }
762 
763 void irdma_cq_add_ref(struct ib_cq *ibcq)
764 {
765 	struct irdma_cq *iwcq = to_iwcq(ibcq);
766 
767 	refcount_inc(&iwcq->refcnt);
768 }
769 
770 void irdma_cq_rem_ref(struct ib_cq *ibcq)
771 {
772 	struct ib_device *ibdev = ibcq->device;
773 	struct irdma_device *iwdev = to_iwdev(ibdev);
774 	struct irdma_cq *iwcq = to_iwcq(ibcq);
775 	unsigned long flags;
776 
777 	spin_lock_irqsave(&iwdev->rf->cqtable_lock, flags);
778 	if (!refcount_dec_and_test(&iwcq->refcnt)) {
779 		spin_unlock_irqrestore(&iwdev->rf->cqtable_lock, flags);
780 		return;
781 	}
782 
783 	iwdev->rf->cq_table[iwcq->cq_num] = NULL;
784 	spin_unlock_irqrestore(&iwdev->rf->cqtable_lock, flags);
785 	complete(&iwcq->free_cq);
786 }
787 
788 struct ib_device *to_ibdev(struct irdma_sc_dev *dev)
789 {
790 	return &(container_of(dev, struct irdma_pci_f, sc_dev))->iwdev->ibdev;
791 }
792 
793 /**
794  * irdma_get_qp - get qp address
795  * @device: iwarp device
796  * @qpn: qp number
797  */
798 struct ib_qp *irdma_get_qp(struct ib_device *device, int qpn)
799 {
800 	struct irdma_device *iwdev = to_iwdev(device);
801 
802 	if (qpn < IW_FIRST_QPN || qpn >= iwdev->rf->max_qp)
803 		return NULL;
804 
805 	return &iwdev->rf->qp_table[qpn]->ibqp;
806 }
807 
808 /**
809  * irdma_remove_cqp_head - return head entry and remove
810  * @dev: device
811  */
812 void *irdma_remove_cqp_head(struct irdma_sc_dev *dev)
813 {
814 	struct list_head *entry;
815 	struct list_head *list = &dev->cqp_cmd_head;
816 
817 	if (list_empty(list))
818 		return NULL;
819 
820 	entry = list->next;
821 	list_del(entry);
822 
823 	return entry;
824 }
825 
826 /**
827  * irdma_cqp_sds_cmd - create cqp command for sd
828  * @dev: hardware control device structure
829  * @sdinfo: information for sd cqp
830  *
831  */
832 int irdma_cqp_sds_cmd(struct irdma_sc_dev *dev,
833 		      struct irdma_update_sds_info *sdinfo)
834 {
835 	struct irdma_cqp_request *cqp_request;
836 	struct cqp_cmds_info *cqp_info;
837 	struct irdma_pci_f *rf = dev_to_rf(dev);
838 	int status;
839 
840 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
841 	if (!cqp_request)
842 		return -ENOMEM;
843 
844 	cqp_info = &cqp_request->info;
845 	memcpy(&cqp_info->in.u.update_pe_sds.info, sdinfo,
846 	       sizeof(cqp_info->in.u.update_pe_sds.info));
847 	cqp_info->cqp_cmd = IRDMA_OP_UPDATE_PE_SDS;
848 	cqp_info->post_sq = 1;
849 	cqp_info->in.u.update_pe_sds.dev = dev;
850 	cqp_info->in.u.update_pe_sds.scratch = (uintptr_t)cqp_request;
851 
852 	status = irdma_handle_cqp_op(rf, cqp_request);
853 	irdma_put_cqp_request(&rf->cqp, cqp_request);
854 
855 	return status;
856 }
857 
858 /**
859  * irdma_cqp_qp_suspend_resume - cqp command for suspend/resume
860  * @qp: hardware control qp
861  * @op: suspend or resume
862  */
863 int irdma_cqp_qp_suspend_resume(struct irdma_sc_qp *qp, u8 op)
864 {
865 	struct irdma_sc_dev *dev = qp->dev;
866 	struct irdma_cqp_request *cqp_request;
867 	struct irdma_sc_cqp *cqp = dev->cqp;
868 	struct cqp_cmds_info *cqp_info;
869 	struct irdma_pci_f *rf = dev_to_rf(dev);
870 	int status;
871 
872 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false);
873 	if (!cqp_request)
874 		return -ENOMEM;
875 
876 	cqp_info = &cqp_request->info;
877 	cqp_info->cqp_cmd = op;
878 	cqp_info->in.u.suspend_resume.cqp = cqp;
879 	cqp_info->in.u.suspend_resume.qp = qp;
880 	cqp_info->in.u.suspend_resume.scratch = (uintptr_t)cqp_request;
881 
882 	status = irdma_handle_cqp_op(rf, cqp_request);
883 	irdma_put_cqp_request(&rf->cqp, cqp_request);
884 
885 	return status;
886 }
887 
888 /**
889  * irdma_term_modify_qp - modify qp for term message
890  * @qp: hardware control qp
891  * @next_state: qp's next state
892  * @term: terminate code
893  * @term_len: length
894  */
895 void irdma_term_modify_qp(struct irdma_sc_qp *qp, u8 next_state, u8 term,
896 			  u8 term_len)
897 {
898 	struct irdma_qp *iwqp;
899 
900 	iwqp = qp->qp_uk.back_qp;
901 	irdma_next_iw_state(iwqp, next_state, 0, term, term_len);
902 };
903 
904 /**
905  * irdma_terminate_done - after terminate is completed
906  * @qp: hardware control qp
907  * @timeout_occurred: indicates if terminate timer expired
908  */
909 void irdma_terminate_done(struct irdma_sc_qp *qp, int timeout_occurred)
910 {
911 	struct irdma_qp *iwqp;
912 	u8 hte = 0;
913 	bool first_time;
914 	unsigned long flags;
915 
916 	iwqp = qp->qp_uk.back_qp;
917 	spin_lock_irqsave(&iwqp->lock, flags);
918 	if (iwqp->hte_added) {
919 		iwqp->hte_added = 0;
920 		hte = 1;
921 	}
922 	first_time = !(qp->term_flags & IRDMA_TERM_DONE);
923 	qp->term_flags |= IRDMA_TERM_DONE;
924 	spin_unlock_irqrestore(&iwqp->lock, flags);
925 	if (first_time) {
926 		if (!timeout_occurred)
927 			irdma_terminate_del_timer(qp);
928 
929 		irdma_next_iw_state(iwqp, IRDMA_QP_STATE_ERROR, hte, 0, 0);
930 		irdma_cm_disconn(iwqp);
931 	}
932 }
933 
934 static void irdma_terminate_timeout(struct timer_list *t)
935 {
936 	struct irdma_qp *iwqp = from_timer(iwqp, t, terminate_timer);
937 	struct irdma_sc_qp *qp = &iwqp->sc_qp;
938 
939 	irdma_terminate_done(qp, 1);
940 	irdma_qp_rem_ref(&iwqp->ibqp);
941 }
942 
943 /**
944  * irdma_terminate_start_timer - start terminate timeout
945  * @qp: hardware control qp
946  */
947 void irdma_terminate_start_timer(struct irdma_sc_qp *qp)
948 {
949 	struct irdma_qp *iwqp;
950 
951 	iwqp = qp->qp_uk.back_qp;
952 	irdma_qp_add_ref(&iwqp->ibqp);
953 	timer_setup(&iwqp->terminate_timer, irdma_terminate_timeout, 0);
954 	iwqp->terminate_timer.expires = jiffies + HZ;
955 
956 	add_timer(&iwqp->terminate_timer);
957 }
958 
959 /**
960  * irdma_terminate_del_timer - delete terminate timeout
961  * @qp: hardware control qp
962  */
963 void irdma_terminate_del_timer(struct irdma_sc_qp *qp)
964 {
965 	struct irdma_qp *iwqp;
966 	int ret;
967 
968 	iwqp = qp->qp_uk.back_qp;
969 	ret = del_timer(&iwqp->terminate_timer);
970 	if (ret)
971 		irdma_qp_rem_ref(&iwqp->ibqp);
972 }
973 
974 /**
975  * irdma_cqp_query_fpm_val_cmd - send cqp command for fpm
976  * @dev: function device struct
977  * @val_mem: buffer for fpm
978  * @hmc_fn_id: function id for fpm
979  */
980 int irdma_cqp_query_fpm_val_cmd(struct irdma_sc_dev *dev,
981 				struct irdma_dma_mem *val_mem, u8 hmc_fn_id)
982 {
983 	struct irdma_cqp_request *cqp_request;
984 	struct cqp_cmds_info *cqp_info;
985 	struct irdma_pci_f *rf = dev_to_rf(dev);
986 	int status;
987 
988 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
989 	if (!cqp_request)
990 		return -ENOMEM;
991 
992 	cqp_info = &cqp_request->info;
993 	cqp_request->param = NULL;
994 	cqp_info->in.u.query_fpm_val.cqp = dev->cqp;
995 	cqp_info->in.u.query_fpm_val.fpm_val_pa = val_mem->pa;
996 	cqp_info->in.u.query_fpm_val.fpm_val_va = val_mem->va;
997 	cqp_info->in.u.query_fpm_val.hmc_fn_id = hmc_fn_id;
998 	cqp_info->cqp_cmd = IRDMA_OP_QUERY_FPM_VAL;
999 	cqp_info->post_sq = 1;
1000 	cqp_info->in.u.query_fpm_val.scratch = (uintptr_t)cqp_request;
1001 
1002 	status = irdma_handle_cqp_op(rf, cqp_request);
1003 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1004 
1005 	return status;
1006 }
1007 
1008 /**
1009  * irdma_cqp_commit_fpm_val_cmd - commit fpm values in hw
1010  * @dev: hardware control device structure
1011  * @val_mem: buffer with fpm values
1012  * @hmc_fn_id: function id for fpm
1013  */
1014 int irdma_cqp_commit_fpm_val_cmd(struct irdma_sc_dev *dev,
1015 				 struct irdma_dma_mem *val_mem, u8 hmc_fn_id)
1016 {
1017 	struct irdma_cqp_request *cqp_request;
1018 	struct cqp_cmds_info *cqp_info;
1019 	struct irdma_pci_f *rf = dev_to_rf(dev);
1020 	int status;
1021 
1022 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1023 	if (!cqp_request)
1024 		return -ENOMEM;
1025 
1026 	cqp_info = &cqp_request->info;
1027 	cqp_request->param = NULL;
1028 	cqp_info->in.u.commit_fpm_val.cqp = dev->cqp;
1029 	cqp_info->in.u.commit_fpm_val.fpm_val_pa = val_mem->pa;
1030 	cqp_info->in.u.commit_fpm_val.fpm_val_va = val_mem->va;
1031 	cqp_info->in.u.commit_fpm_val.hmc_fn_id = hmc_fn_id;
1032 	cqp_info->cqp_cmd = IRDMA_OP_COMMIT_FPM_VAL;
1033 	cqp_info->post_sq = 1;
1034 	cqp_info->in.u.commit_fpm_val.scratch = (uintptr_t)cqp_request;
1035 
1036 	status = irdma_handle_cqp_op(rf, cqp_request);
1037 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1038 
1039 	return status;
1040 }
1041 
1042 /**
1043  * irdma_cqp_cq_create_cmd - create a cq for the cqp
1044  * @dev: device pointer
1045  * @cq: pointer to created cq
1046  */
1047 int irdma_cqp_cq_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq)
1048 {
1049 	struct irdma_pci_f *rf = dev_to_rf(dev);
1050 	struct irdma_cqp *iwcqp = &rf->cqp;
1051 	struct irdma_cqp_request *cqp_request;
1052 	struct cqp_cmds_info *cqp_info;
1053 	int status;
1054 
1055 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true);
1056 	if (!cqp_request)
1057 		return -ENOMEM;
1058 
1059 	cqp_info = &cqp_request->info;
1060 	cqp_info->cqp_cmd = IRDMA_OP_CQ_CREATE;
1061 	cqp_info->post_sq = 1;
1062 	cqp_info->in.u.cq_create.cq = cq;
1063 	cqp_info->in.u.cq_create.scratch = (uintptr_t)cqp_request;
1064 
1065 	status = irdma_handle_cqp_op(rf, cqp_request);
1066 	irdma_put_cqp_request(iwcqp, cqp_request);
1067 
1068 	return status;
1069 }
1070 
1071 /**
1072  * irdma_cqp_qp_create_cmd - create a qp for the cqp
1073  * @dev: device pointer
1074  * @qp: pointer to created qp
1075  */
1076 int irdma_cqp_qp_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp)
1077 {
1078 	struct irdma_pci_f *rf = dev_to_rf(dev);
1079 	struct irdma_cqp *iwcqp = &rf->cqp;
1080 	struct irdma_cqp_request *cqp_request;
1081 	struct cqp_cmds_info *cqp_info;
1082 	struct irdma_create_qp_info *qp_info;
1083 	int status;
1084 
1085 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true);
1086 	if (!cqp_request)
1087 		return -ENOMEM;
1088 
1089 	cqp_info = &cqp_request->info;
1090 	qp_info = &cqp_request->info.in.u.qp_create.info;
1091 	memset(qp_info, 0, sizeof(*qp_info));
1092 	qp_info->cq_num_valid = true;
1093 	qp_info->next_iwarp_state = IRDMA_QP_STATE_RTS;
1094 	cqp_info->cqp_cmd = IRDMA_OP_QP_CREATE;
1095 	cqp_info->post_sq = 1;
1096 	cqp_info->in.u.qp_create.qp = qp;
1097 	cqp_info->in.u.qp_create.scratch = (uintptr_t)cqp_request;
1098 
1099 	status = irdma_handle_cqp_op(rf, cqp_request);
1100 	irdma_put_cqp_request(iwcqp, cqp_request);
1101 
1102 	return status;
1103 }
1104 
1105 /**
1106  * irdma_dealloc_push_page - free a push page for qp
1107  * @rf: RDMA PCI function
1108  * @qp: hardware control qp
1109  */
1110 static void irdma_dealloc_push_page(struct irdma_pci_f *rf,
1111 				    struct irdma_sc_qp *qp)
1112 {
1113 	struct irdma_cqp_request *cqp_request;
1114 	struct cqp_cmds_info *cqp_info;
1115 	int status;
1116 
1117 	if (qp->push_idx == IRDMA_INVALID_PUSH_PAGE_INDEX)
1118 		return;
1119 
1120 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false);
1121 	if (!cqp_request)
1122 		return;
1123 
1124 	cqp_info = &cqp_request->info;
1125 	cqp_info->cqp_cmd = IRDMA_OP_MANAGE_PUSH_PAGE;
1126 	cqp_info->post_sq = 1;
1127 	cqp_info->in.u.manage_push_page.info.push_idx = qp->push_idx;
1128 	cqp_info->in.u.manage_push_page.info.qs_handle = qp->qs_handle;
1129 	cqp_info->in.u.manage_push_page.info.free_page = 1;
1130 	cqp_info->in.u.manage_push_page.info.push_page_type = 0;
1131 	cqp_info->in.u.manage_push_page.cqp = &rf->cqp.sc_cqp;
1132 	cqp_info->in.u.manage_push_page.scratch = (uintptr_t)cqp_request;
1133 	status = irdma_handle_cqp_op(rf, cqp_request);
1134 	if (!status)
1135 		qp->push_idx = IRDMA_INVALID_PUSH_PAGE_INDEX;
1136 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1137 }
1138 
1139 /**
1140  * irdma_free_qp_rsrc - free up memory resources for qp
1141  * @iwqp: qp ptr (user or kernel)
1142  */
1143 void irdma_free_qp_rsrc(struct irdma_qp *iwqp)
1144 {
1145 	struct irdma_device *iwdev = iwqp->iwdev;
1146 	struct irdma_pci_f *rf = iwdev->rf;
1147 	u32 qp_num = iwqp->ibqp.qp_num;
1148 
1149 	irdma_ieq_cleanup_qp(iwdev->vsi.ieq, &iwqp->sc_qp);
1150 	irdma_dealloc_push_page(rf, &iwqp->sc_qp);
1151 	if (iwqp->sc_qp.vsi) {
1152 		irdma_qp_rem_qos(&iwqp->sc_qp);
1153 		iwqp->sc_qp.dev->ws_remove(iwqp->sc_qp.vsi,
1154 					   iwqp->sc_qp.user_pri);
1155 	}
1156 
1157 	if (qp_num > 2)
1158 		irdma_free_rsrc(rf, rf->allocated_qps, qp_num);
1159 	dma_free_coherent(rf->sc_dev.hw->device, iwqp->q2_ctx_mem.size,
1160 			  iwqp->q2_ctx_mem.va, iwqp->q2_ctx_mem.pa);
1161 	iwqp->q2_ctx_mem.va = NULL;
1162 	dma_free_coherent(rf->sc_dev.hw->device, iwqp->kqp.dma_mem.size,
1163 			  iwqp->kqp.dma_mem.va, iwqp->kqp.dma_mem.pa);
1164 	iwqp->kqp.dma_mem.va = NULL;
1165 	kfree(iwqp->kqp.sq_wrid_mem);
1166 	kfree(iwqp->kqp.rq_wrid_mem);
1167 }
1168 
1169 /**
1170  * irdma_cq_wq_destroy - send cq destroy cqp
1171  * @rf: RDMA PCI function
1172  * @cq: hardware control cq
1173  */
1174 void irdma_cq_wq_destroy(struct irdma_pci_f *rf, struct irdma_sc_cq *cq)
1175 {
1176 	struct irdma_cqp_request *cqp_request;
1177 	struct cqp_cmds_info *cqp_info;
1178 
1179 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1180 	if (!cqp_request)
1181 		return;
1182 
1183 	cqp_info = &cqp_request->info;
1184 	cqp_info->cqp_cmd = IRDMA_OP_CQ_DESTROY;
1185 	cqp_info->post_sq = 1;
1186 	cqp_info->in.u.cq_destroy.cq = cq;
1187 	cqp_info->in.u.cq_destroy.scratch = (uintptr_t)cqp_request;
1188 
1189 	irdma_handle_cqp_op(rf, cqp_request);
1190 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1191 }
1192 
1193 /**
1194  * irdma_hw_modify_qp_callback - handle state for modifyQPs that don't wait
1195  * @cqp_request: modify QP completion
1196  */
1197 static void irdma_hw_modify_qp_callback(struct irdma_cqp_request *cqp_request)
1198 {
1199 	struct cqp_cmds_info *cqp_info;
1200 	struct irdma_qp *iwqp;
1201 
1202 	cqp_info = &cqp_request->info;
1203 	iwqp = cqp_info->in.u.qp_modify.qp->qp_uk.back_qp;
1204 	atomic_dec(&iwqp->hw_mod_qp_pend);
1205 	wake_up(&iwqp->mod_qp_waitq);
1206 }
1207 
1208 /**
1209  * irdma_hw_modify_qp - setup cqp for modify qp
1210  * @iwdev: RDMA device
1211  * @iwqp: qp ptr (user or kernel)
1212  * @info: info for modify qp
1213  * @wait: flag to wait or not for modify qp completion
1214  */
1215 int irdma_hw_modify_qp(struct irdma_device *iwdev, struct irdma_qp *iwqp,
1216 		       struct irdma_modify_qp_info *info, bool wait)
1217 {
1218 	int status;
1219 	struct irdma_pci_f *rf = iwdev->rf;
1220 	struct irdma_cqp_request *cqp_request;
1221 	struct cqp_cmds_info *cqp_info;
1222 	struct irdma_modify_qp_info *m_info;
1223 
1224 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait);
1225 	if (!cqp_request)
1226 		return -ENOMEM;
1227 
1228 	if (!wait) {
1229 		cqp_request->callback_fcn = irdma_hw_modify_qp_callback;
1230 		atomic_inc(&iwqp->hw_mod_qp_pend);
1231 	}
1232 	cqp_info = &cqp_request->info;
1233 	m_info = &cqp_info->in.u.qp_modify.info;
1234 	memcpy(m_info, info, sizeof(*m_info));
1235 	cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY;
1236 	cqp_info->post_sq = 1;
1237 	cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp;
1238 	cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request;
1239 	status = irdma_handle_cqp_op(rf, cqp_request);
1240 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1241 	if (status) {
1242 		if (rdma_protocol_roce(&iwdev->ibdev, 1))
1243 			return status;
1244 
1245 		switch (m_info->next_iwarp_state) {
1246 			struct irdma_gen_ae_info ae_info;
1247 
1248 		case IRDMA_QP_STATE_RTS:
1249 		case IRDMA_QP_STATE_IDLE:
1250 		case IRDMA_QP_STATE_TERMINATE:
1251 		case IRDMA_QP_STATE_CLOSING:
1252 			if (info->curr_iwarp_state == IRDMA_QP_STATE_IDLE)
1253 				irdma_send_reset(iwqp->cm_node);
1254 			else
1255 				iwqp->sc_qp.term_flags = IRDMA_TERM_DONE;
1256 			if (!wait) {
1257 				ae_info.ae_code = IRDMA_AE_BAD_CLOSE;
1258 				ae_info.ae_src = 0;
1259 				irdma_gen_ae(rf, &iwqp->sc_qp, &ae_info, false);
1260 			} else {
1261 				cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp,
1262 									      wait);
1263 				if (!cqp_request)
1264 					return -ENOMEM;
1265 
1266 				cqp_info = &cqp_request->info;
1267 				m_info = &cqp_info->in.u.qp_modify.info;
1268 				memcpy(m_info, info, sizeof(*m_info));
1269 				cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY;
1270 				cqp_info->post_sq = 1;
1271 				cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp;
1272 				cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request;
1273 				m_info->next_iwarp_state = IRDMA_QP_STATE_ERROR;
1274 				m_info->reset_tcp_conn = true;
1275 				irdma_handle_cqp_op(rf, cqp_request);
1276 				irdma_put_cqp_request(&rf->cqp, cqp_request);
1277 			}
1278 			break;
1279 		case IRDMA_QP_STATE_ERROR:
1280 		default:
1281 			break;
1282 		}
1283 	}
1284 
1285 	return status;
1286 }
1287 
1288 /**
1289  * irdma_cqp_cq_destroy_cmd - destroy the cqp cq
1290  * @dev: device pointer
1291  * @cq: pointer to cq
1292  */
1293 void irdma_cqp_cq_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq)
1294 {
1295 	struct irdma_pci_f *rf = dev_to_rf(dev);
1296 
1297 	irdma_cq_wq_destroy(rf, cq);
1298 }
1299 
1300 /**
1301  * irdma_cqp_qp_destroy_cmd - destroy the cqp
1302  * @dev: device pointer
1303  * @qp: pointer to qp
1304  */
1305 int irdma_cqp_qp_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp)
1306 {
1307 	struct irdma_pci_f *rf = dev_to_rf(dev);
1308 	struct irdma_cqp *iwcqp = &rf->cqp;
1309 	struct irdma_cqp_request *cqp_request;
1310 	struct cqp_cmds_info *cqp_info;
1311 	int status;
1312 
1313 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true);
1314 	if (!cqp_request)
1315 		return -ENOMEM;
1316 
1317 	cqp_info = &cqp_request->info;
1318 	memset(cqp_info, 0, sizeof(*cqp_info));
1319 	cqp_info->cqp_cmd = IRDMA_OP_QP_DESTROY;
1320 	cqp_info->post_sq = 1;
1321 	cqp_info->in.u.qp_destroy.qp = qp;
1322 	cqp_info->in.u.qp_destroy.scratch = (uintptr_t)cqp_request;
1323 	cqp_info->in.u.qp_destroy.remove_hash_idx = true;
1324 
1325 	status = irdma_handle_cqp_op(rf, cqp_request);
1326 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1327 
1328 	return status;
1329 }
1330 
1331 /**
1332  * irdma_ieq_mpa_crc_ae - generate AE for crc error
1333  * @dev: hardware control device structure
1334  * @qp: hardware control qp
1335  */
1336 void irdma_ieq_mpa_crc_ae(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp)
1337 {
1338 	struct irdma_gen_ae_info info = {};
1339 	struct irdma_pci_f *rf = dev_to_rf(dev);
1340 
1341 	ibdev_dbg(&rf->iwdev->ibdev, "AEQ: Generate MPA CRC AE\n");
1342 	info.ae_code = IRDMA_AE_LLP_RECEIVED_MPA_CRC_ERROR;
1343 	info.ae_src = IRDMA_AE_SOURCE_RQ;
1344 	irdma_gen_ae(rf, qp, &info, false);
1345 }
1346 
1347 /**
1348  * irdma_init_hash_desc - initialize hash for crc calculation
1349  * @desc: cryption type
1350  */
1351 int irdma_init_hash_desc(struct shash_desc **desc)
1352 {
1353 	struct crypto_shash *tfm;
1354 	struct shash_desc *tdesc;
1355 
1356 	tfm = crypto_alloc_shash("crc32c", 0, 0);
1357 	if (IS_ERR(tfm))
1358 		return -EINVAL;
1359 
1360 	tdesc = kzalloc(sizeof(*tdesc) + crypto_shash_descsize(tfm),
1361 			GFP_KERNEL);
1362 	if (!tdesc) {
1363 		crypto_free_shash(tfm);
1364 		return -EINVAL;
1365 	}
1366 
1367 	tdesc->tfm = tfm;
1368 	*desc = tdesc;
1369 
1370 	return 0;
1371 }
1372 
1373 /**
1374  * irdma_free_hash_desc - free hash desc
1375  * @desc: to be freed
1376  */
1377 void irdma_free_hash_desc(struct shash_desc *desc)
1378 {
1379 	if (desc) {
1380 		crypto_free_shash(desc->tfm);
1381 		kfree(desc);
1382 	}
1383 }
1384 
1385 /**
1386  * irdma_ieq_check_mpacrc - check if mpa crc is OK
1387  * @desc: desc for hash
1388  * @addr: address of buffer for crc
1389  * @len: length of buffer
1390  * @val: value to be compared
1391  */
1392 int irdma_ieq_check_mpacrc(struct shash_desc *desc, void *addr, u32 len,
1393 			   u32 val)
1394 {
1395 	u32 crc = 0;
1396 	int ret;
1397 	int ret_code = 0;
1398 
1399 	crypto_shash_init(desc);
1400 	ret = crypto_shash_update(desc, addr, len);
1401 	if (!ret)
1402 		crypto_shash_final(desc, (u8 *)&crc);
1403 	if (crc != val)
1404 		ret_code = -EINVAL;
1405 
1406 	return ret_code;
1407 }
1408 
1409 /**
1410  * irdma_ieq_get_qp - get qp based on quad in puda buffer
1411  * @dev: hardware control device structure
1412  * @buf: receive puda buffer on exception q
1413  */
1414 struct irdma_sc_qp *irdma_ieq_get_qp(struct irdma_sc_dev *dev,
1415 				     struct irdma_puda_buf *buf)
1416 {
1417 	struct irdma_qp *iwqp;
1418 	struct irdma_cm_node *cm_node;
1419 	struct irdma_device *iwdev = buf->vsi->back_vsi;
1420 	u32 loc_addr[4] = {};
1421 	u32 rem_addr[4] = {};
1422 	u16 loc_port, rem_port;
1423 	struct ipv6hdr *ip6h;
1424 	struct iphdr *iph = (struct iphdr *)buf->iph;
1425 	struct tcphdr *tcph = (struct tcphdr *)buf->tcph;
1426 
1427 	if (iph->version == 4) {
1428 		loc_addr[0] = ntohl(iph->daddr);
1429 		rem_addr[0] = ntohl(iph->saddr);
1430 	} else {
1431 		ip6h = (struct ipv6hdr *)buf->iph;
1432 		irdma_copy_ip_ntohl(loc_addr, ip6h->daddr.in6_u.u6_addr32);
1433 		irdma_copy_ip_ntohl(rem_addr, ip6h->saddr.in6_u.u6_addr32);
1434 	}
1435 	loc_port = ntohs(tcph->dest);
1436 	rem_port = ntohs(tcph->source);
1437 	cm_node = irdma_find_node(&iwdev->cm_core, rem_port, rem_addr, loc_port,
1438 				  loc_addr, buf->vlan_valid ? buf->vlan_id : 0xFFFF);
1439 	if (!cm_node)
1440 		return NULL;
1441 
1442 	iwqp = cm_node->iwqp;
1443 	irdma_rem_ref_cm_node(cm_node);
1444 
1445 	return &iwqp->sc_qp;
1446 }
1447 
1448 /**
1449  * irdma_send_ieq_ack - ACKs for duplicate or OOO partials FPDUs
1450  * @qp: qp ptr
1451  */
1452 void irdma_send_ieq_ack(struct irdma_sc_qp *qp)
1453 {
1454 	struct irdma_cm_node *cm_node = ((struct irdma_qp *)qp->qp_uk.back_qp)->cm_node;
1455 	struct irdma_puda_buf *buf = qp->pfpdu.lastrcv_buf;
1456 	struct tcphdr *tcph = (struct tcphdr *)buf->tcph;
1457 
1458 	cm_node->tcp_cntxt.rcv_nxt = qp->pfpdu.nextseqnum;
1459 	cm_node->tcp_cntxt.loc_seq_num = ntohl(tcph->ack_seq);
1460 
1461 	irdma_send_ack(cm_node);
1462 }
1463 
1464 /**
1465  * irdma_puda_ieq_get_ah_info - get AH info from IEQ buffer
1466  * @qp: qp pointer
1467  * @ah_info: AH info pointer
1468  */
1469 void irdma_puda_ieq_get_ah_info(struct irdma_sc_qp *qp,
1470 				struct irdma_ah_info *ah_info)
1471 {
1472 	struct irdma_puda_buf *buf = qp->pfpdu.ah_buf;
1473 	struct iphdr *iph;
1474 	struct ipv6hdr *ip6h;
1475 
1476 	memset(ah_info, 0, sizeof(*ah_info));
1477 	ah_info->do_lpbk = true;
1478 	ah_info->vlan_tag = buf->vlan_id;
1479 	ah_info->insert_vlan_tag = buf->vlan_valid;
1480 	ah_info->ipv4_valid = buf->ipv4;
1481 	ah_info->vsi = qp->vsi;
1482 
1483 	if (buf->smac_valid)
1484 		ether_addr_copy(ah_info->mac_addr, buf->smac);
1485 
1486 	if (buf->ipv4) {
1487 		ah_info->ipv4_valid = true;
1488 		iph = (struct iphdr *)buf->iph;
1489 		ah_info->hop_ttl = iph->ttl;
1490 		ah_info->tc_tos = iph->tos;
1491 		ah_info->dest_ip_addr[0] = ntohl(iph->daddr);
1492 		ah_info->src_ip_addr[0] = ntohl(iph->saddr);
1493 	} else {
1494 		ip6h = (struct ipv6hdr *)buf->iph;
1495 		ah_info->hop_ttl = ip6h->hop_limit;
1496 		ah_info->tc_tos = ip6h->priority;
1497 		irdma_copy_ip_ntohl(ah_info->dest_ip_addr,
1498 				    ip6h->daddr.in6_u.u6_addr32);
1499 		irdma_copy_ip_ntohl(ah_info->src_ip_addr,
1500 				    ip6h->saddr.in6_u.u6_addr32);
1501 	}
1502 
1503 	ah_info->dst_arpindex = irdma_arp_table(dev_to_rf(qp->dev),
1504 						ah_info->dest_ip_addr,
1505 						ah_info->ipv4_valid,
1506 						NULL, IRDMA_ARP_RESOLVE);
1507 }
1508 
1509 /**
1510  * irdma_gen1_ieq_update_tcpip_info - update tcpip in the buffer
1511  * @buf: puda to update
1512  * @len: length of buffer
1513  * @seqnum: seq number for tcp
1514  */
1515 static void irdma_gen1_ieq_update_tcpip_info(struct irdma_puda_buf *buf,
1516 					     u16 len, u32 seqnum)
1517 {
1518 	struct tcphdr *tcph;
1519 	struct iphdr *iph;
1520 	u16 iphlen;
1521 	u16 pktsize;
1522 	u8 *addr = buf->mem.va;
1523 
1524 	iphlen = (buf->ipv4) ? 20 : 40;
1525 	iph = (struct iphdr *)(addr + buf->maclen);
1526 	tcph = (struct tcphdr *)(addr + buf->maclen + iphlen);
1527 	pktsize = len + buf->tcphlen + iphlen;
1528 	iph->tot_len = htons(pktsize);
1529 	tcph->seq = htonl(seqnum);
1530 }
1531 
1532 /**
1533  * irdma_ieq_update_tcpip_info - update tcpip in the buffer
1534  * @buf: puda to update
1535  * @len: length of buffer
1536  * @seqnum: seq number for tcp
1537  */
1538 void irdma_ieq_update_tcpip_info(struct irdma_puda_buf *buf, u16 len,
1539 				 u32 seqnum)
1540 {
1541 	struct tcphdr *tcph;
1542 	u8 *addr;
1543 
1544 	if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1)
1545 		return irdma_gen1_ieq_update_tcpip_info(buf, len, seqnum);
1546 
1547 	addr = buf->mem.va;
1548 	tcph = (struct tcphdr *)addr;
1549 	tcph->seq = htonl(seqnum);
1550 }
1551 
1552 /**
1553  * irdma_gen1_puda_get_tcpip_info - get tcpip info from puda
1554  * buffer
1555  * @info: to get information
1556  * @buf: puda buffer
1557  */
1558 static int irdma_gen1_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info,
1559 					  struct irdma_puda_buf *buf)
1560 {
1561 	struct iphdr *iph;
1562 	struct ipv6hdr *ip6h;
1563 	struct tcphdr *tcph;
1564 	u16 iphlen;
1565 	u16 pkt_len;
1566 	u8 *mem = buf->mem.va;
1567 	struct ethhdr *ethh = buf->mem.va;
1568 
1569 	if (ethh->h_proto == htons(0x8100)) {
1570 		info->vlan_valid = true;
1571 		buf->vlan_id = ntohs(((struct vlan_ethhdr *)ethh)->h_vlan_TCI) &
1572 			       VLAN_VID_MASK;
1573 	}
1574 
1575 	buf->maclen = (info->vlan_valid) ? 18 : 14;
1576 	iphlen = (info->l3proto) ? 40 : 20;
1577 	buf->ipv4 = (info->l3proto) ? false : true;
1578 	buf->iph = mem + buf->maclen;
1579 	iph = (struct iphdr *)buf->iph;
1580 	buf->tcph = buf->iph + iphlen;
1581 	tcph = (struct tcphdr *)buf->tcph;
1582 
1583 	if (buf->ipv4) {
1584 		pkt_len = ntohs(iph->tot_len);
1585 	} else {
1586 		ip6h = (struct ipv6hdr *)buf->iph;
1587 		pkt_len = ntohs(ip6h->payload_len) + iphlen;
1588 	}
1589 
1590 	buf->totallen = pkt_len + buf->maclen;
1591 
1592 	if (info->payload_len < buf->totallen) {
1593 		ibdev_dbg(to_ibdev(buf->vsi->dev),
1594 			  "ERR: payload_len = 0x%x totallen expected0x%x\n",
1595 			  info->payload_len, buf->totallen);
1596 		return -EINVAL;
1597 	}
1598 
1599 	buf->tcphlen = tcph->doff << 2;
1600 	buf->datalen = pkt_len - iphlen - buf->tcphlen;
1601 	buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL;
1602 	buf->hdrlen = buf->maclen + iphlen + buf->tcphlen;
1603 	buf->seqnum = ntohl(tcph->seq);
1604 
1605 	return 0;
1606 }
1607 
1608 /**
1609  * irdma_puda_get_tcpip_info - get tcpip info from puda buffer
1610  * @info: to get information
1611  * @buf: puda buffer
1612  */
1613 int irdma_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info,
1614 			      struct irdma_puda_buf *buf)
1615 {
1616 	struct tcphdr *tcph;
1617 	u32 pkt_len;
1618 	u8 *mem;
1619 
1620 	if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1)
1621 		return irdma_gen1_puda_get_tcpip_info(info, buf);
1622 
1623 	mem = buf->mem.va;
1624 	buf->vlan_valid = info->vlan_valid;
1625 	if (info->vlan_valid)
1626 		buf->vlan_id = info->vlan;
1627 
1628 	buf->ipv4 = info->ipv4;
1629 	if (buf->ipv4)
1630 		buf->iph = mem + IRDMA_IPV4_PAD;
1631 	else
1632 		buf->iph = mem;
1633 
1634 	buf->tcph = mem + IRDMA_TCP_OFFSET;
1635 	tcph = (struct tcphdr *)buf->tcph;
1636 	pkt_len = info->payload_len;
1637 	buf->totallen = pkt_len;
1638 	buf->tcphlen = tcph->doff << 2;
1639 	buf->datalen = pkt_len - IRDMA_TCP_OFFSET - buf->tcphlen;
1640 	buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL;
1641 	buf->hdrlen = IRDMA_TCP_OFFSET + buf->tcphlen;
1642 	buf->seqnum = ntohl(tcph->seq);
1643 
1644 	if (info->smac_valid) {
1645 		ether_addr_copy(buf->smac, info->smac);
1646 		buf->smac_valid = true;
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 /**
1653  * irdma_hw_stats_timeout - Stats timer-handler which updates all HW stats
1654  * @t: timer_list pointer
1655  */
1656 static void irdma_hw_stats_timeout(struct timer_list *t)
1657 {
1658 	struct irdma_vsi_pestat *pf_devstat =
1659 		from_timer(pf_devstat, t, stats_timer);
1660 	struct irdma_sc_vsi *sc_vsi = pf_devstat->vsi;
1661 
1662 	if (sc_vsi->dev->hw_attrs.uk_attrs.hw_rev >= IRDMA_GEN_2)
1663 		irdma_cqp_gather_stats_cmd(sc_vsi->dev, sc_vsi->pestat, false);
1664 	else
1665 		irdma_cqp_gather_stats_gen1(sc_vsi->dev, sc_vsi->pestat);
1666 
1667 	mod_timer(&pf_devstat->stats_timer,
1668 		  jiffies + msecs_to_jiffies(STATS_TIMER_DELAY));
1669 }
1670 
1671 /**
1672  * irdma_hw_stats_start_timer - Start periodic stats timer
1673  * @vsi: vsi structure pointer
1674  */
1675 void irdma_hw_stats_start_timer(struct irdma_sc_vsi *vsi)
1676 {
1677 	struct irdma_vsi_pestat *devstat = vsi->pestat;
1678 
1679 	timer_setup(&devstat->stats_timer, irdma_hw_stats_timeout, 0);
1680 	mod_timer(&devstat->stats_timer,
1681 		  jiffies + msecs_to_jiffies(STATS_TIMER_DELAY));
1682 }
1683 
1684 /**
1685  * irdma_hw_stats_stop_timer - Delete periodic stats timer
1686  * @vsi: pointer to vsi structure
1687  */
1688 void irdma_hw_stats_stop_timer(struct irdma_sc_vsi *vsi)
1689 {
1690 	struct irdma_vsi_pestat *devstat = vsi->pestat;
1691 
1692 	del_timer_sync(&devstat->stats_timer);
1693 }
1694 
1695 /**
1696  * irdma_process_stats - Checking for wrap and update stats
1697  * @pestat: stats structure pointer
1698  */
1699 static inline void irdma_process_stats(struct irdma_vsi_pestat *pestat)
1700 {
1701 	sc_vsi_update_stats(pestat->vsi);
1702 }
1703 
1704 /**
1705  * irdma_cqp_gather_stats_gen1 - Gather stats
1706  * @dev: pointer to device structure
1707  * @pestat: statistics structure
1708  */
1709 void irdma_cqp_gather_stats_gen1(struct irdma_sc_dev *dev,
1710 				 struct irdma_vsi_pestat *pestat)
1711 {
1712 	struct irdma_gather_stats *gather_stats =
1713 		pestat->gather_info.gather_stats_va;
1714 	const struct irdma_hw_stat_map *map = dev->hw_stats_map;
1715 	u16 max_stats_idx = dev->hw_attrs.max_stat_idx;
1716 	u32 stats_inst_offset_32;
1717 	u32 stats_inst_offset_64;
1718 	u64 new_val;
1719 	u16 i;
1720 
1721 	stats_inst_offset_32 = (pestat->gather_info.use_stats_inst) ?
1722 				pestat->gather_info.stats_inst_index :
1723 				pestat->hw->hmc.hmc_fn_id;
1724 	stats_inst_offset_32 *= 4;
1725 	stats_inst_offset_64 = stats_inst_offset_32 * 2;
1726 
1727 	for (i = 0; i < max_stats_idx; i++) {
1728 		if (map[i].bitmask <= IRDMA_MAX_STATS_32)
1729 			new_val = rd32(dev->hw,
1730 				       dev->hw_stats_regs[i] + stats_inst_offset_32);
1731 		else
1732 			new_val = rd64(dev->hw,
1733 				       dev->hw_stats_regs[i] + stats_inst_offset_64);
1734 		gather_stats->val[map[i].byteoff / sizeof(u64)] = new_val;
1735 	}
1736 
1737 	irdma_process_stats(pestat);
1738 }
1739 
1740 /**
1741  * irdma_process_cqp_stats - Checking for wrap and update stats
1742  * @cqp_request: cqp_request structure pointer
1743  */
1744 static void irdma_process_cqp_stats(struct irdma_cqp_request *cqp_request)
1745 {
1746 	struct irdma_vsi_pestat *pestat = cqp_request->param;
1747 
1748 	irdma_process_stats(pestat);
1749 }
1750 
1751 /**
1752  * irdma_cqp_gather_stats_cmd - Gather stats
1753  * @dev: pointer to device structure
1754  * @pestat: pointer to stats info
1755  * @wait: flag to wait or not wait for stats
1756  */
1757 int irdma_cqp_gather_stats_cmd(struct irdma_sc_dev *dev,
1758 			       struct irdma_vsi_pestat *pestat, bool wait)
1759 
1760 {
1761 	struct irdma_pci_f *rf = dev_to_rf(dev);
1762 	struct irdma_cqp *iwcqp = &rf->cqp;
1763 	struct irdma_cqp_request *cqp_request;
1764 	struct cqp_cmds_info *cqp_info;
1765 	int status;
1766 
1767 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait);
1768 	if (!cqp_request)
1769 		return -ENOMEM;
1770 
1771 	cqp_info = &cqp_request->info;
1772 	memset(cqp_info, 0, sizeof(*cqp_info));
1773 	cqp_info->cqp_cmd = IRDMA_OP_STATS_GATHER;
1774 	cqp_info->post_sq = 1;
1775 	cqp_info->in.u.stats_gather.info = pestat->gather_info;
1776 	cqp_info->in.u.stats_gather.scratch = (uintptr_t)cqp_request;
1777 	cqp_info->in.u.stats_gather.cqp = &rf->cqp.sc_cqp;
1778 	cqp_request->param = pestat;
1779 	if (!wait)
1780 		cqp_request->callback_fcn = irdma_process_cqp_stats;
1781 	status = irdma_handle_cqp_op(rf, cqp_request);
1782 	if (wait)
1783 		irdma_process_stats(pestat);
1784 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1785 
1786 	return status;
1787 }
1788 
1789 /**
1790  * irdma_cqp_stats_inst_cmd - Allocate/free stats instance
1791  * @vsi: pointer to vsi structure
1792  * @cmd: command to allocate or free
1793  * @stats_info: pointer to allocate stats info
1794  */
1795 int irdma_cqp_stats_inst_cmd(struct irdma_sc_vsi *vsi, u8 cmd,
1796 			     struct irdma_stats_inst_info *stats_info)
1797 {
1798 	struct irdma_pci_f *rf = dev_to_rf(vsi->dev);
1799 	struct irdma_cqp *iwcqp = &rf->cqp;
1800 	struct irdma_cqp_request *cqp_request;
1801 	struct cqp_cmds_info *cqp_info;
1802 	int status;
1803 	bool wait = false;
1804 
1805 	if (cmd == IRDMA_OP_STATS_ALLOCATE)
1806 		wait = true;
1807 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait);
1808 	if (!cqp_request)
1809 		return -ENOMEM;
1810 
1811 	cqp_info = &cqp_request->info;
1812 	memset(cqp_info, 0, sizeof(*cqp_info));
1813 	cqp_info->cqp_cmd = cmd;
1814 	cqp_info->post_sq = 1;
1815 	cqp_info->in.u.stats_manage.info = *stats_info;
1816 	cqp_info->in.u.stats_manage.scratch = (uintptr_t)cqp_request;
1817 	cqp_info->in.u.stats_manage.cqp = &rf->cqp.sc_cqp;
1818 	status = irdma_handle_cqp_op(rf, cqp_request);
1819 	if (wait)
1820 		stats_info->stats_idx = cqp_request->compl_info.op_ret_val;
1821 	irdma_put_cqp_request(iwcqp, cqp_request);
1822 
1823 	return status;
1824 }
1825 
1826 /**
1827  * irdma_cqp_ceq_cmd - Create/Destroy CEQ's after CEQ 0
1828  * @dev: pointer to device info
1829  * @sc_ceq: pointer to ceq structure
1830  * @op: Create or Destroy
1831  */
1832 int irdma_cqp_ceq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_ceq *sc_ceq,
1833 		      u8 op)
1834 {
1835 	struct irdma_cqp_request *cqp_request;
1836 	struct cqp_cmds_info *cqp_info;
1837 	struct irdma_pci_f *rf = dev_to_rf(dev);
1838 	int status;
1839 
1840 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1841 	if (!cqp_request)
1842 		return -ENOMEM;
1843 
1844 	cqp_info = &cqp_request->info;
1845 	cqp_info->post_sq = 1;
1846 	cqp_info->cqp_cmd = op;
1847 	cqp_info->in.u.ceq_create.ceq = sc_ceq;
1848 	cqp_info->in.u.ceq_create.scratch = (uintptr_t)cqp_request;
1849 
1850 	status = irdma_handle_cqp_op(rf, cqp_request);
1851 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1852 
1853 	return status;
1854 }
1855 
1856 /**
1857  * irdma_cqp_aeq_cmd - Create/Destroy AEQ
1858  * @dev: pointer to device info
1859  * @sc_aeq: pointer to aeq structure
1860  * @op: Create or Destroy
1861  */
1862 int irdma_cqp_aeq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_aeq *sc_aeq,
1863 		      u8 op)
1864 {
1865 	struct irdma_cqp_request *cqp_request;
1866 	struct cqp_cmds_info *cqp_info;
1867 	struct irdma_pci_f *rf = dev_to_rf(dev);
1868 	int status;
1869 
1870 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1871 	if (!cqp_request)
1872 		return -ENOMEM;
1873 
1874 	cqp_info = &cqp_request->info;
1875 	cqp_info->post_sq = 1;
1876 	cqp_info->cqp_cmd = op;
1877 	cqp_info->in.u.aeq_create.aeq = sc_aeq;
1878 	cqp_info->in.u.aeq_create.scratch = (uintptr_t)cqp_request;
1879 
1880 	status = irdma_handle_cqp_op(rf, cqp_request);
1881 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1882 
1883 	return status;
1884 }
1885 
1886 /**
1887  * irdma_cqp_ws_node_cmd - Add/modify/delete ws node
1888  * @dev: pointer to device structure
1889  * @cmd: Add, modify or delete
1890  * @node_info: pointer to ws node info
1891  */
1892 int irdma_cqp_ws_node_cmd(struct irdma_sc_dev *dev, u8 cmd,
1893 			  struct irdma_ws_node_info *node_info)
1894 {
1895 	struct irdma_pci_f *rf = dev_to_rf(dev);
1896 	struct irdma_cqp *iwcqp = &rf->cqp;
1897 	struct irdma_sc_cqp *cqp = &iwcqp->sc_cqp;
1898 	struct irdma_cqp_request *cqp_request;
1899 	struct cqp_cmds_info *cqp_info;
1900 	int status;
1901 	bool poll;
1902 
1903 	if (!rf->sc_dev.ceq_valid)
1904 		poll = true;
1905 	else
1906 		poll = false;
1907 
1908 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, !poll);
1909 	if (!cqp_request)
1910 		return -ENOMEM;
1911 
1912 	cqp_info = &cqp_request->info;
1913 	memset(cqp_info, 0, sizeof(*cqp_info));
1914 	cqp_info->cqp_cmd = cmd;
1915 	cqp_info->post_sq = 1;
1916 	cqp_info->in.u.ws_node.info = *node_info;
1917 	cqp_info->in.u.ws_node.cqp = cqp;
1918 	cqp_info->in.u.ws_node.scratch = (uintptr_t)cqp_request;
1919 	status = irdma_handle_cqp_op(rf, cqp_request);
1920 	if (status)
1921 		goto exit;
1922 
1923 	if (poll) {
1924 		struct irdma_ccq_cqe_info compl_info;
1925 
1926 		status = irdma_sc_poll_for_cqp_op_done(cqp, IRDMA_CQP_OP_WORK_SCHED_NODE,
1927 						       &compl_info);
1928 		node_info->qs_handle = compl_info.op_ret_val;
1929 		ibdev_dbg(&rf->iwdev->ibdev, "DCB: opcode=%d, compl_info.retval=%d\n",
1930 			  compl_info.op_code, compl_info.op_ret_val);
1931 	} else {
1932 		node_info->qs_handle = cqp_request->compl_info.op_ret_val;
1933 	}
1934 
1935 exit:
1936 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1937 
1938 	return status;
1939 }
1940 
1941 /**
1942  * irdma_ah_cqp_op - perform an AH cqp operation
1943  * @rf: RDMA PCI function
1944  * @sc_ah: address handle
1945  * @cmd: AH operation
1946  * @wait: wait if true
1947  * @callback_fcn: Callback function on CQP op completion
1948  * @cb_param: parameter for callback function
1949  *
1950  * returns errno
1951  */
1952 int irdma_ah_cqp_op(struct irdma_pci_f *rf, struct irdma_sc_ah *sc_ah, u8 cmd,
1953 		    bool wait,
1954 		    void (*callback_fcn)(struct irdma_cqp_request *),
1955 		    void *cb_param)
1956 {
1957 	struct irdma_cqp_request *cqp_request;
1958 	struct cqp_cmds_info *cqp_info;
1959 	int status;
1960 
1961 	if (cmd != IRDMA_OP_AH_CREATE && cmd != IRDMA_OP_AH_DESTROY)
1962 		return -EINVAL;
1963 
1964 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait);
1965 	if (!cqp_request)
1966 		return -ENOMEM;
1967 
1968 	cqp_info = &cqp_request->info;
1969 	cqp_info->cqp_cmd = cmd;
1970 	cqp_info->post_sq = 1;
1971 	if (cmd == IRDMA_OP_AH_CREATE) {
1972 		cqp_info->in.u.ah_create.info = sc_ah->ah_info;
1973 		cqp_info->in.u.ah_create.scratch = (uintptr_t)cqp_request;
1974 		cqp_info->in.u.ah_create.cqp = &rf->cqp.sc_cqp;
1975 	} else if (cmd == IRDMA_OP_AH_DESTROY) {
1976 		cqp_info->in.u.ah_destroy.info = sc_ah->ah_info;
1977 		cqp_info->in.u.ah_destroy.scratch = (uintptr_t)cqp_request;
1978 		cqp_info->in.u.ah_destroy.cqp = &rf->cqp.sc_cqp;
1979 	}
1980 
1981 	if (!wait) {
1982 		cqp_request->callback_fcn = callback_fcn;
1983 		cqp_request->param = cb_param;
1984 	}
1985 	status = irdma_handle_cqp_op(rf, cqp_request);
1986 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1987 
1988 	if (status)
1989 		return -ENOMEM;
1990 
1991 	if (wait)
1992 		sc_ah->ah_info.ah_valid = (cmd == IRDMA_OP_AH_CREATE);
1993 
1994 	return 0;
1995 }
1996 
1997 /**
1998  * irdma_ieq_ah_cb - callback after creation of AH for IEQ
1999  * @cqp_request: pointer to cqp_request of create AH
2000  */
2001 static void irdma_ieq_ah_cb(struct irdma_cqp_request *cqp_request)
2002 {
2003 	struct irdma_sc_qp *qp = cqp_request->param;
2004 	struct irdma_sc_ah *sc_ah = qp->pfpdu.ah;
2005 	unsigned long flags;
2006 
2007 	spin_lock_irqsave(&qp->pfpdu.lock, flags);
2008 	if (!cqp_request->compl_info.op_ret_val) {
2009 		sc_ah->ah_info.ah_valid = true;
2010 		irdma_ieq_process_fpdus(qp, qp->vsi->ieq);
2011 	} else {
2012 		sc_ah->ah_info.ah_valid = false;
2013 		irdma_ieq_cleanup_qp(qp->vsi->ieq, qp);
2014 	}
2015 	spin_unlock_irqrestore(&qp->pfpdu.lock, flags);
2016 }
2017 
2018 /**
2019  * irdma_ilq_ah_cb - callback after creation of AH for ILQ
2020  * @cqp_request: pointer to cqp_request of create AH
2021  */
2022 static void irdma_ilq_ah_cb(struct irdma_cqp_request *cqp_request)
2023 {
2024 	struct irdma_cm_node *cm_node = cqp_request->param;
2025 	struct irdma_sc_ah *sc_ah = cm_node->ah;
2026 
2027 	sc_ah->ah_info.ah_valid = !cqp_request->compl_info.op_ret_val;
2028 	irdma_add_conn_est_qh(cm_node);
2029 }
2030 
2031 /**
2032  * irdma_puda_create_ah - create AH for ILQ/IEQ qp's
2033  * @dev: device pointer
2034  * @ah_info: Address handle info
2035  * @wait: When true will wait for operation to complete
2036  * @type: ILQ/IEQ
2037  * @cb_param: Callback param when not waiting
2038  * @ah_ret: Returned pointer to address handle if created
2039  *
2040  */
2041 int irdma_puda_create_ah(struct irdma_sc_dev *dev,
2042 			 struct irdma_ah_info *ah_info, bool wait,
2043 			 enum puda_rsrc_type type, void *cb_param,
2044 			 struct irdma_sc_ah **ah_ret)
2045 {
2046 	struct irdma_sc_ah *ah;
2047 	struct irdma_pci_f *rf = dev_to_rf(dev);
2048 	int err;
2049 
2050 	ah = kzalloc(sizeof(*ah), GFP_ATOMIC);
2051 	*ah_ret = ah;
2052 	if (!ah)
2053 		return -ENOMEM;
2054 
2055 	err = irdma_alloc_rsrc(rf, rf->allocated_ahs, rf->max_ah,
2056 			       &ah_info->ah_idx, &rf->next_ah);
2057 	if (err)
2058 		goto err_free;
2059 
2060 	ah->dev = dev;
2061 	ah->ah_info = *ah_info;
2062 
2063 	if (type == IRDMA_PUDA_RSRC_TYPE_ILQ)
2064 		err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait,
2065 				      irdma_ilq_ah_cb, cb_param);
2066 	else
2067 		err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait,
2068 				      irdma_ieq_ah_cb, cb_param);
2069 
2070 	if (err)
2071 		goto error;
2072 	return 0;
2073 
2074 error:
2075 	irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx);
2076 err_free:
2077 	kfree(ah);
2078 	*ah_ret = NULL;
2079 	return -ENOMEM;
2080 }
2081 
2082 /**
2083  * irdma_puda_free_ah - free a puda address handle
2084  * @dev: device pointer
2085  * @ah: The address handle to free
2086  */
2087 void irdma_puda_free_ah(struct irdma_sc_dev *dev, struct irdma_sc_ah *ah)
2088 {
2089 	struct irdma_pci_f *rf = dev_to_rf(dev);
2090 
2091 	if (!ah)
2092 		return;
2093 
2094 	if (ah->ah_info.ah_valid) {
2095 		irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_DESTROY, false, NULL, NULL);
2096 		irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx);
2097 	}
2098 
2099 	kfree(ah);
2100 }
2101 
2102 /**
2103  * irdma_gsi_ud_qp_ah_cb - callback after creation of AH for GSI/ID QP
2104  * @cqp_request: pointer to cqp_request of create AH
2105  */
2106 void irdma_gsi_ud_qp_ah_cb(struct irdma_cqp_request *cqp_request)
2107 {
2108 	struct irdma_sc_ah *sc_ah = cqp_request->param;
2109 
2110 	if (!cqp_request->compl_info.op_ret_val)
2111 		sc_ah->ah_info.ah_valid = true;
2112 	else
2113 		sc_ah->ah_info.ah_valid = false;
2114 }
2115 
2116 /**
2117  * irdma_prm_add_pble_mem - add moemory to pble resources
2118  * @pprm: pble resource manager
2119  * @pchunk: chunk of memory to add
2120  */
2121 int irdma_prm_add_pble_mem(struct irdma_pble_prm *pprm,
2122 			   struct irdma_chunk *pchunk)
2123 {
2124 	u64 sizeofbitmap;
2125 
2126 	if (pchunk->size & 0xfff)
2127 		return -EINVAL;
2128 
2129 	sizeofbitmap = (u64)pchunk->size >> pprm->pble_shift;
2130 
2131 	pchunk->bitmapbuf = bitmap_zalloc(sizeofbitmap, GFP_KERNEL);
2132 	if (!pchunk->bitmapbuf)
2133 		return -ENOMEM;
2134 
2135 	pchunk->sizeofbitmap = sizeofbitmap;
2136 	/* each pble is 8 bytes hence shift by 3 */
2137 	pprm->total_pble_alloc += pchunk->size >> 3;
2138 	pprm->free_pble_cnt += pchunk->size >> 3;
2139 
2140 	return 0;
2141 }
2142 
2143 /**
2144  * irdma_prm_get_pbles - get pble's from prm
2145  * @pprm: pble resource manager
2146  * @chunkinfo: nformation about chunk where pble's were acquired
2147  * @mem_size: size of pble memory needed
2148  * @vaddr: returns virtual address of pble memory
2149  * @fpm_addr: returns fpm address of pble memory
2150  */
2151 int irdma_prm_get_pbles(struct irdma_pble_prm *pprm,
2152 			struct irdma_pble_chunkinfo *chunkinfo, u64 mem_size,
2153 			u64 **vaddr, u64 *fpm_addr)
2154 {
2155 	u64 bits_needed;
2156 	u64 bit_idx = PBLE_INVALID_IDX;
2157 	struct irdma_chunk *pchunk = NULL;
2158 	struct list_head *chunk_entry = pprm->clist.next;
2159 	u32 offset;
2160 	unsigned long flags;
2161 	*vaddr = NULL;
2162 	*fpm_addr = 0;
2163 
2164 	bits_needed = DIV_ROUND_UP_ULL(mem_size, BIT_ULL(pprm->pble_shift));
2165 
2166 	spin_lock_irqsave(&pprm->prm_lock, flags);
2167 	while (chunk_entry != &pprm->clist) {
2168 		pchunk = (struct irdma_chunk *)chunk_entry;
2169 		bit_idx = bitmap_find_next_zero_area(pchunk->bitmapbuf,
2170 						     pchunk->sizeofbitmap, 0,
2171 						     bits_needed, 0);
2172 		if (bit_idx < pchunk->sizeofbitmap)
2173 			break;
2174 
2175 		/* list.next used macro */
2176 		chunk_entry = pchunk->list.next;
2177 	}
2178 
2179 	if (!pchunk || bit_idx >= pchunk->sizeofbitmap) {
2180 		spin_unlock_irqrestore(&pprm->prm_lock, flags);
2181 		return -ENOMEM;
2182 	}
2183 
2184 	bitmap_set(pchunk->bitmapbuf, bit_idx, bits_needed);
2185 	offset = bit_idx << pprm->pble_shift;
2186 	*vaddr = pchunk->vaddr + offset;
2187 	*fpm_addr = pchunk->fpm_addr + offset;
2188 
2189 	chunkinfo->pchunk = pchunk;
2190 	chunkinfo->bit_idx = bit_idx;
2191 	chunkinfo->bits_used = bits_needed;
2192 	/* 3 is sizeof pble divide */
2193 	pprm->free_pble_cnt -= chunkinfo->bits_used << (pprm->pble_shift - 3);
2194 	spin_unlock_irqrestore(&pprm->prm_lock, flags);
2195 
2196 	return 0;
2197 }
2198 
2199 /**
2200  * irdma_prm_return_pbles - return pbles back to prm
2201  * @pprm: pble resource manager
2202  * @chunkinfo: chunk where pble's were acquired and to be freed
2203  */
2204 void irdma_prm_return_pbles(struct irdma_pble_prm *pprm,
2205 			    struct irdma_pble_chunkinfo *chunkinfo)
2206 {
2207 	unsigned long flags;
2208 
2209 	spin_lock_irqsave(&pprm->prm_lock, flags);
2210 	pprm->free_pble_cnt += chunkinfo->bits_used << (pprm->pble_shift - 3);
2211 	bitmap_clear(chunkinfo->pchunk->bitmapbuf, chunkinfo->bit_idx,
2212 		     chunkinfo->bits_used);
2213 	spin_unlock_irqrestore(&pprm->prm_lock, flags);
2214 }
2215 
2216 int irdma_map_vm_page_list(struct irdma_hw *hw, void *va, dma_addr_t *pg_dma,
2217 			   u32 pg_cnt)
2218 {
2219 	struct page *vm_page;
2220 	int i;
2221 	u8 *addr;
2222 
2223 	addr = (u8 *)(uintptr_t)va;
2224 	for (i = 0; i < pg_cnt; i++) {
2225 		vm_page = vmalloc_to_page(addr);
2226 		if (!vm_page)
2227 			goto err;
2228 
2229 		pg_dma[i] = dma_map_page(hw->device, vm_page, 0, PAGE_SIZE,
2230 					 DMA_BIDIRECTIONAL);
2231 		if (dma_mapping_error(hw->device, pg_dma[i]))
2232 			goto err;
2233 
2234 		addr += PAGE_SIZE;
2235 	}
2236 
2237 	return 0;
2238 
2239 err:
2240 	irdma_unmap_vm_page_list(hw, pg_dma, i);
2241 	return -ENOMEM;
2242 }
2243 
2244 void irdma_unmap_vm_page_list(struct irdma_hw *hw, dma_addr_t *pg_dma, u32 pg_cnt)
2245 {
2246 	int i;
2247 
2248 	for (i = 0; i < pg_cnt; i++)
2249 		dma_unmap_page(hw->device, pg_dma[i], PAGE_SIZE, DMA_BIDIRECTIONAL);
2250 }
2251 
2252 /**
2253  * irdma_pble_free_paged_mem - free virtual paged memory
2254  * @chunk: chunk to free with paged memory
2255  */
2256 void irdma_pble_free_paged_mem(struct irdma_chunk *chunk)
2257 {
2258 	if (!chunk->pg_cnt)
2259 		goto done;
2260 
2261 	irdma_unmap_vm_page_list(chunk->dev->hw, chunk->dmainfo.dmaaddrs,
2262 				 chunk->pg_cnt);
2263 
2264 done:
2265 	kfree(chunk->dmainfo.dmaaddrs);
2266 	chunk->dmainfo.dmaaddrs = NULL;
2267 	vfree(chunk->vaddr);
2268 	chunk->vaddr = NULL;
2269 	chunk->type = 0;
2270 }
2271 
2272 /**
2273  * irdma_pble_get_paged_mem -allocate paged memory for pbles
2274  * @chunk: chunk to add for paged memory
2275  * @pg_cnt: number of pages needed
2276  */
2277 int irdma_pble_get_paged_mem(struct irdma_chunk *chunk, u32 pg_cnt)
2278 {
2279 	u32 size;
2280 	void *va;
2281 
2282 	chunk->dmainfo.dmaaddrs = kzalloc(pg_cnt << 3, GFP_KERNEL);
2283 	if (!chunk->dmainfo.dmaaddrs)
2284 		return -ENOMEM;
2285 
2286 	size = PAGE_SIZE * pg_cnt;
2287 	va = vmalloc(size);
2288 	if (!va)
2289 		goto err;
2290 
2291 	if (irdma_map_vm_page_list(chunk->dev->hw, va, chunk->dmainfo.dmaaddrs,
2292 				   pg_cnt)) {
2293 		vfree(va);
2294 		goto err;
2295 	}
2296 	chunk->vaddr = va;
2297 	chunk->size = size;
2298 	chunk->pg_cnt = pg_cnt;
2299 	chunk->type = PBLE_SD_PAGED;
2300 
2301 	return 0;
2302 err:
2303 	kfree(chunk->dmainfo.dmaaddrs);
2304 	chunk->dmainfo.dmaaddrs = NULL;
2305 
2306 	return -ENOMEM;
2307 }
2308 
2309 /**
2310  * irdma_alloc_ws_node_id - Allocate a tx scheduler node ID
2311  * @dev: device pointer
2312  */
2313 u16 irdma_alloc_ws_node_id(struct irdma_sc_dev *dev)
2314 {
2315 	struct irdma_pci_f *rf = dev_to_rf(dev);
2316 	u32 next = 1;
2317 	u32 node_id;
2318 
2319 	if (irdma_alloc_rsrc(rf, rf->allocated_ws_nodes, rf->max_ws_node_id,
2320 			     &node_id, &next))
2321 		return IRDMA_WS_NODE_INVALID;
2322 
2323 	return (u16)node_id;
2324 }
2325 
2326 /**
2327  * irdma_free_ws_node_id - Free a tx scheduler node ID
2328  * @dev: device pointer
2329  * @node_id: Work scheduler node ID
2330  */
2331 void irdma_free_ws_node_id(struct irdma_sc_dev *dev, u16 node_id)
2332 {
2333 	struct irdma_pci_f *rf = dev_to_rf(dev);
2334 
2335 	irdma_free_rsrc(rf, rf->allocated_ws_nodes, (u32)node_id);
2336 }
2337 
2338 /**
2339  * irdma_modify_qp_to_err - Modify a QP to error
2340  * @sc_qp: qp structure
2341  */
2342 void irdma_modify_qp_to_err(struct irdma_sc_qp *sc_qp)
2343 {
2344 	struct irdma_qp *qp = sc_qp->qp_uk.back_qp;
2345 	struct ib_qp_attr attr;
2346 
2347 	if (qp->iwdev->rf->reset)
2348 		return;
2349 	attr.qp_state = IB_QPS_ERR;
2350 
2351 	if (rdma_protocol_roce(qp->ibqp.device, 1))
2352 		irdma_modify_qp_roce(&qp->ibqp, &attr, IB_QP_STATE, NULL);
2353 	else
2354 		irdma_modify_qp(&qp->ibqp, &attr, IB_QP_STATE, NULL);
2355 }
2356 
2357 void irdma_ib_qp_event(struct irdma_qp *iwqp, enum irdma_qp_event_type event)
2358 {
2359 	struct ib_event ibevent;
2360 
2361 	if (!iwqp->ibqp.event_handler)
2362 		return;
2363 
2364 	switch (event) {
2365 	case IRDMA_QP_EVENT_CATASTROPHIC:
2366 		ibevent.event = IB_EVENT_QP_FATAL;
2367 		break;
2368 	case IRDMA_QP_EVENT_ACCESS_ERR:
2369 		ibevent.event = IB_EVENT_QP_ACCESS_ERR;
2370 		break;
2371 	case IRDMA_QP_EVENT_REQ_ERR:
2372 		ibevent.event = IB_EVENT_QP_REQ_ERR;
2373 		break;
2374 	}
2375 	ibevent.device = iwqp->ibqp.device;
2376 	ibevent.element.qp = &iwqp->ibqp;
2377 	iwqp->ibqp.event_handler(&ibevent, iwqp->ibqp.qp_context);
2378 }
2379 
2380 bool irdma_cq_empty(struct irdma_cq *iwcq)
2381 {
2382 	struct irdma_cq_uk *ukcq;
2383 	u64 qword3;
2384 	__le64 *cqe;
2385 	u8 polarity;
2386 
2387 	ukcq  = &iwcq->sc_cq.cq_uk;
2388 	cqe = IRDMA_GET_CURRENT_CQ_ELEM(ukcq);
2389 	get_64bit_val(cqe, 24, &qword3);
2390 	polarity = (u8)FIELD_GET(IRDMA_CQ_VALID, qword3);
2391 
2392 	return polarity != ukcq->polarity;
2393 }
2394 
2395 void irdma_remove_cmpls_list(struct irdma_cq *iwcq)
2396 {
2397 	struct irdma_cmpl_gen *cmpl_node;
2398 	struct list_head *tmp_node, *list_node;
2399 
2400 	list_for_each_safe (list_node, tmp_node, &iwcq->cmpl_generated) {
2401 		cmpl_node = list_entry(list_node, struct irdma_cmpl_gen, list);
2402 		list_del(&cmpl_node->list);
2403 		kfree(cmpl_node);
2404 	}
2405 }
2406 
2407 int irdma_generated_cmpls(struct irdma_cq *iwcq, struct irdma_cq_poll_info *cq_poll_info)
2408 {
2409 	struct irdma_cmpl_gen *cmpl;
2410 
2411 	if (list_empty(&iwcq->cmpl_generated))
2412 		return -ENOENT;
2413 	cmpl = list_first_entry_or_null(&iwcq->cmpl_generated, struct irdma_cmpl_gen, list);
2414 	list_del(&cmpl->list);
2415 	memcpy(cq_poll_info, &cmpl->cpi, sizeof(*cq_poll_info));
2416 	kfree(cmpl);
2417 
2418 	ibdev_dbg(iwcq->ibcq.device,
2419 		  "VERBS: %s: Poll artificially generated completion for QP 0x%X, op %u, wr_id=0x%llx\n",
2420 		  __func__, cq_poll_info->qp_id, cq_poll_info->op_type,
2421 		  cq_poll_info->wr_id);
2422 
2423 	return 0;
2424 }
2425 
2426 /**
2427  * irdma_set_cpi_common_values - fill in values for polling info struct
2428  * @cpi: resulting structure of cq_poll_info type
2429  * @qp: QPair
2430  * @qp_num: id of the QP
2431  */
2432 static void irdma_set_cpi_common_values(struct irdma_cq_poll_info *cpi,
2433 					struct irdma_qp_uk *qp, u32 qp_num)
2434 {
2435 	cpi->comp_status = IRDMA_COMPL_STATUS_FLUSHED;
2436 	cpi->error = true;
2437 	cpi->major_err = IRDMA_FLUSH_MAJOR_ERR;
2438 	cpi->minor_err = FLUSH_GENERAL_ERR;
2439 	cpi->qp_handle = (irdma_qp_handle)(uintptr_t)qp;
2440 	cpi->qp_id = qp_num;
2441 }
2442 
2443 static inline void irdma_comp_handler(struct irdma_cq *cq)
2444 {
2445 	if (!cq->ibcq.comp_handler)
2446 		return;
2447 	if (atomic_cmpxchg(&cq->armed, 1, 0))
2448 		cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context);
2449 }
2450 
2451 void irdma_generate_flush_completions(struct irdma_qp *iwqp)
2452 {
2453 	struct irdma_qp_uk *qp = &iwqp->sc_qp.qp_uk;
2454 	struct irdma_ring *sq_ring = &qp->sq_ring;
2455 	struct irdma_ring *rq_ring = &qp->rq_ring;
2456 	struct irdma_cmpl_gen *cmpl;
2457 	__le64 *sw_wqe;
2458 	u64 wqe_qword;
2459 	u32 wqe_idx;
2460 	bool compl_generated = false;
2461 	unsigned long flags1;
2462 
2463 	spin_lock_irqsave(&iwqp->iwscq->lock, flags1);
2464 	if (irdma_cq_empty(iwqp->iwscq)) {
2465 		unsigned long flags2;
2466 
2467 		spin_lock_irqsave(&iwqp->lock, flags2);
2468 		while (IRDMA_RING_MORE_WORK(*sq_ring)) {
2469 			cmpl = kzalloc(sizeof(*cmpl), GFP_ATOMIC);
2470 			if (!cmpl) {
2471 				spin_unlock_irqrestore(&iwqp->lock, flags2);
2472 				spin_unlock_irqrestore(&iwqp->iwscq->lock, flags1);
2473 				return;
2474 			}
2475 
2476 			wqe_idx = sq_ring->tail;
2477 			irdma_set_cpi_common_values(&cmpl->cpi, qp, qp->qp_id);
2478 
2479 			cmpl->cpi.wr_id = qp->sq_wrtrk_array[wqe_idx].wrid;
2480 			sw_wqe = qp->sq_base[wqe_idx].elem;
2481 			get_64bit_val(sw_wqe, 24, &wqe_qword);
2482 			cmpl->cpi.op_type = (u8)FIELD_GET(IRDMAQPSQ_OPCODE, IRDMAQPSQ_OPCODE);
2483 			cmpl->cpi.q_type = IRDMA_CQE_QTYPE_SQ;
2484 			/* remove the SQ WR by moving SQ tail*/
2485 			IRDMA_RING_SET_TAIL(*sq_ring,
2486 				sq_ring->tail + qp->sq_wrtrk_array[sq_ring->tail].quanta);
2487 			if (cmpl->cpi.op_type == IRDMAQP_OP_NOP) {
2488 				kfree(cmpl);
2489 				continue;
2490 			}
2491 			ibdev_dbg(iwqp->iwscq->ibcq.device,
2492 				  "DEV: %s: adding wr_id = 0x%llx SQ Completion to list qp_id=%d\n",
2493 				  __func__, cmpl->cpi.wr_id, qp->qp_id);
2494 			list_add_tail(&cmpl->list, &iwqp->iwscq->cmpl_generated);
2495 			compl_generated = true;
2496 		}
2497 		spin_unlock_irqrestore(&iwqp->lock, flags2);
2498 		spin_unlock_irqrestore(&iwqp->iwscq->lock, flags1);
2499 		if (compl_generated)
2500 			irdma_comp_handler(iwqp->iwscq);
2501 	} else {
2502 		spin_unlock_irqrestore(&iwqp->iwscq->lock, flags1);
2503 		mod_delayed_work(iwqp->iwdev->cleanup_wq, &iwqp->dwork_flush,
2504 				 msecs_to_jiffies(IRDMA_FLUSH_DELAY_MS));
2505 	}
2506 
2507 	spin_lock_irqsave(&iwqp->iwrcq->lock, flags1);
2508 	if (irdma_cq_empty(iwqp->iwrcq)) {
2509 		unsigned long flags2;
2510 
2511 		spin_lock_irqsave(&iwqp->lock, flags2);
2512 		while (IRDMA_RING_MORE_WORK(*rq_ring)) {
2513 			cmpl = kzalloc(sizeof(*cmpl), GFP_ATOMIC);
2514 			if (!cmpl) {
2515 				spin_unlock_irqrestore(&iwqp->lock, flags2);
2516 				spin_unlock_irqrestore(&iwqp->iwrcq->lock, flags1);
2517 				return;
2518 			}
2519 
2520 			wqe_idx = rq_ring->tail;
2521 			irdma_set_cpi_common_values(&cmpl->cpi, qp, qp->qp_id);
2522 
2523 			cmpl->cpi.wr_id = qp->rq_wrid_array[wqe_idx];
2524 			cmpl->cpi.op_type = IRDMA_OP_TYPE_REC;
2525 			cmpl->cpi.q_type = IRDMA_CQE_QTYPE_RQ;
2526 			/* remove the RQ WR by moving RQ tail */
2527 			IRDMA_RING_SET_TAIL(*rq_ring, rq_ring->tail + 1);
2528 			ibdev_dbg(iwqp->iwrcq->ibcq.device,
2529 				  "DEV: %s: adding wr_id = 0x%llx RQ Completion to list qp_id=%d, wqe_idx=%d\n",
2530 				  __func__, cmpl->cpi.wr_id, qp->qp_id,
2531 				  wqe_idx);
2532 			list_add_tail(&cmpl->list, &iwqp->iwrcq->cmpl_generated);
2533 
2534 			compl_generated = true;
2535 		}
2536 		spin_unlock_irqrestore(&iwqp->lock, flags2);
2537 		spin_unlock_irqrestore(&iwqp->iwrcq->lock, flags1);
2538 		if (compl_generated)
2539 			irdma_comp_handler(iwqp->iwrcq);
2540 	} else {
2541 		spin_unlock_irqrestore(&iwqp->iwrcq->lock, flags1);
2542 		mod_delayed_work(iwqp->iwdev->cleanup_wq, &iwqp->dwork_flush,
2543 				 msecs_to_jiffies(IRDMA_FLUSH_DELAY_MS));
2544 	}
2545 }
2546