xref: /linux/drivers/infiniband/hw/irdma/utils.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /* Copyright (c) 2015 - 2021 Intel Corporation */
3 #include "main.h"
4 
5 /**
6  * irdma_arp_table -manage arp table
7  * @rf: RDMA PCI function
8  * @ip_addr: ip address for device
9  * @ipv4: IPv4 flag
10  * @mac_addr: mac address ptr
11  * @action: modify, delete or add
12  */
13 int irdma_arp_table(struct irdma_pci_f *rf, u32 *ip_addr, bool ipv4,
14 		    const u8 *mac_addr, u32 action)
15 {
16 	unsigned long flags;
17 	int arp_index;
18 	u32 ip[4] = {};
19 
20 	if (ipv4)
21 		ip[0] = *ip_addr;
22 	else
23 		memcpy(ip, ip_addr, sizeof(ip));
24 
25 	spin_lock_irqsave(&rf->arp_lock, flags);
26 	for (arp_index = 0; (u32)arp_index < rf->arp_table_size; arp_index++) {
27 		if (!memcmp(rf->arp_table[arp_index].ip_addr, ip, sizeof(ip)))
28 			break;
29 	}
30 
31 	switch (action) {
32 	case IRDMA_ARP_ADD:
33 		if (arp_index != rf->arp_table_size) {
34 			arp_index = -1;
35 			break;
36 		}
37 
38 		arp_index = 0;
39 		if (irdma_alloc_rsrc(rf, rf->allocated_arps, rf->arp_table_size,
40 				     (u32 *)&arp_index, &rf->next_arp_index)) {
41 			arp_index = -1;
42 			break;
43 		}
44 
45 		memcpy(rf->arp_table[arp_index].ip_addr, ip,
46 		       sizeof(rf->arp_table[arp_index].ip_addr));
47 		ether_addr_copy(rf->arp_table[arp_index].mac_addr, mac_addr);
48 		break;
49 	case IRDMA_ARP_RESOLVE:
50 		if (arp_index == rf->arp_table_size)
51 			arp_index = -1;
52 		break;
53 	case IRDMA_ARP_DELETE:
54 		if (arp_index == rf->arp_table_size) {
55 			arp_index = -1;
56 			break;
57 		}
58 
59 		memset(rf->arp_table[arp_index].ip_addr, 0,
60 		       sizeof(rf->arp_table[arp_index].ip_addr));
61 		eth_zero_addr(rf->arp_table[arp_index].mac_addr);
62 		irdma_free_rsrc(rf, rf->allocated_arps, arp_index);
63 		break;
64 	default:
65 		arp_index = -1;
66 		break;
67 	}
68 
69 	spin_unlock_irqrestore(&rf->arp_lock, flags);
70 	return arp_index;
71 }
72 
73 /**
74  * irdma_add_arp - add a new arp entry if needed
75  * @rf: RDMA function
76  * @ip: IP address
77  * @ipv4: IPv4 flag
78  * @mac: MAC address
79  */
80 int irdma_add_arp(struct irdma_pci_f *rf, u32 *ip, bool ipv4, const u8 *mac)
81 {
82 	int arpidx;
83 
84 	arpidx = irdma_arp_table(rf, &ip[0], ipv4, NULL, IRDMA_ARP_RESOLVE);
85 	if (arpidx >= 0) {
86 		if (ether_addr_equal(rf->arp_table[arpidx].mac_addr, mac))
87 			return arpidx;
88 
89 		irdma_manage_arp_cache(rf, rf->arp_table[arpidx].mac_addr, ip,
90 				       ipv4, IRDMA_ARP_DELETE);
91 	}
92 
93 	irdma_manage_arp_cache(rf, mac, ip, ipv4, IRDMA_ARP_ADD);
94 
95 	return irdma_arp_table(rf, ip, ipv4, NULL, IRDMA_ARP_RESOLVE);
96 }
97 
98 /**
99  * wr32 - write 32 bits to hw register
100  * @hw: hardware information including registers
101  * @reg: register offset
102  * @val: value to write to register
103  */
104 inline void wr32(struct irdma_hw *hw, u32 reg, u32 val)
105 {
106 	writel(val, hw->hw_addr + reg);
107 }
108 
109 /**
110  * rd32 - read a 32 bit hw register
111  * @hw: hardware information including registers
112  * @reg: register offset
113  *
114  * Return value of register content
115  */
116 inline u32 rd32(struct irdma_hw *hw, u32 reg)
117 {
118 	return readl(hw->hw_addr + reg);
119 }
120 
121 /**
122  * rd64 - read a 64 bit hw register
123  * @hw: hardware information including registers
124  * @reg: register offset
125  *
126  * Return value of register content
127  */
128 inline u64 rd64(struct irdma_hw *hw, u32 reg)
129 {
130 	return readq(hw->hw_addr + reg);
131 }
132 
133 static void irdma_gid_change_event(struct ib_device *ibdev)
134 {
135 	struct ib_event ib_event;
136 
137 	ib_event.event = IB_EVENT_GID_CHANGE;
138 	ib_event.device = ibdev;
139 	ib_event.element.port_num = 1;
140 	ib_dispatch_event(&ib_event);
141 }
142 
143 /**
144  * irdma_inetaddr_event - system notifier for ipv4 addr events
145  * @notifier: not used
146  * @event: event for notifier
147  * @ptr: if address
148  */
149 int irdma_inetaddr_event(struct notifier_block *notifier, unsigned long event,
150 			 void *ptr)
151 {
152 	struct in_ifaddr *ifa = ptr;
153 	struct net_device *real_dev, *netdev = ifa->ifa_dev->dev;
154 	struct irdma_device *iwdev;
155 	struct ib_device *ibdev;
156 	u32 local_ipaddr;
157 
158 	real_dev = rdma_vlan_dev_real_dev(netdev);
159 	if (!real_dev)
160 		real_dev = netdev;
161 
162 	ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA);
163 	if (!ibdev)
164 		return NOTIFY_DONE;
165 
166 	iwdev = to_iwdev(ibdev);
167 	local_ipaddr = ntohl(ifa->ifa_address);
168 	ibdev_dbg(&iwdev->ibdev,
169 		  "DEV: netdev %p event %lu local_ip=%pI4 MAC=%pM\n", real_dev,
170 		  event, &local_ipaddr, real_dev->dev_addr);
171 	switch (event) {
172 	case NETDEV_DOWN:
173 		irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr,
174 				       &local_ipaddr, true, IRDMA_ARP_DELETE);
175 		irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, false);
176 		irdma_gid_change_event(&iwdev->ibdev);
177 		break;
178 	case NETDEV_UP:
179 	case NETDEV_CHANGEADDR:
180 		irdma_add_arp(iwdev->rf, &local_ipaddr, true, real_dev->dev_addr);
181 		irdma_if_notify(iwdev, real_dev, &local_ipaddr, true, true);
182 		irdma_gid_change_event(&iwdev->ibdev);
183 		break;
184 	default:
185 		break;
186 	}
187 
188 	ib_device_put(ibdev);
189 
190 	return NOTIFY_DONE;
191 }
192 
193 /**
194  * irdma_inet6addr_event - system notifier for ipv6 addr events
195  * @notifier: not used
196  * @event: event for notifier
197  * @ptr: if address
198  */
199 int irdma_inet6addr_event(struct notifier_block *notifier, unsigned long event,
200 			  void *ptr)
201 {
202 	struct inet6_ifaddr *ifa = ptr;
203 	struct net_device *real_dev, *netdev = ifa->idev->dev;
204 	struct irdma_device *iwdev;
205 	struct ib_device *ibdev;
206 	u32 local_ipaddr6[4];
207 
208 	real_dev = rdma_vlan_dev_real_dev(netdev);
209 	if (!real_dev)
210 		real_dev = netdev;
211 
212 	ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA);
213 	if (!ibdev)
214 		return NOTIFY_DONE;
215 
216 	iwdev = to_iwdev(ibdev);
217 	irdma_copy_ip_ntohl(local_ipaddr6, ifa->addr.in6_u.u6_addr32);
218 	ibdev_dbg(&iwdev->ibdev,
219 		  "DEV: netdev %p event %lu local_ip=%pI6 MAC=%pM\n", real_dev,
220 		  event, local_ipaddr6, real_dev->dev_addr);
221 	switch (event) {
222 	case NETDEV_DOWN:
223 		irdma_manage_arp_cache(iwdev->rf, real_dev->dev_addr,
224 				       local_ipaddr6, false, IRDMA_ARP_DELETE);
225 		irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, false);
226 		irdma_gid_change_event(&iwdev->ibdev);
227 		break;
228 	case NETDEV_UP:
229 	case NETDEV_CHANGEADDR:
230 		irdma_add_arp(iwdev->rf, local_ipaddr6, false,
231 			      real_dev->dev_addr);
232 		irdma_if_notify(iwdev, real_dev, local_ipaddr6, false, true);
233 		irdma_gid_change_event(&iwdev->ibdev);
234 		break;
235 	default:
236 		break;
237 	}
238 
239 	ib_device_put(ibdev);
240 
241 	return NOTIFY_DONE;
242 }
243 
244 /**
245  * irdma_net_event - system notifier for net events
246  * @notifier: not used
247  * @event: event for notifier
248  * @ptr: neighbor
249  */
250 int irdma_net_event(struct notifier_block *notifier, unsigned long event,
251 		    void *ptr)
252 {
253 	struct neighbour *neigh = ptr;
254 	struct net_device *real_dev, *netdev = (struct net_device *)neigh->dev;
255 	struct irdma_device *iwdev;
256 	struct ib_device *ibdev;
257 	__be32 *p;
258 	u32 local_ipaddr[4] = {};
259 	bool ipv4 = true;
260 
261 	switch (event) {
262 	case NETEVENT_NEIGH_UPDATE:
263 		real_dev = rdma_vlan_dev_real_dev(netdev);
264 		if (!real_dev)
265 			real_dev = netdev;
266 		ibdev = ib_device_get_by_netdev(real_dev, RDMA_DRIVER_IRDMA);
267 		if (!ibdev)
268 			return NOTIFY_DONE;
269 
270 		iwdev = to_iwdev(ibdev);
271 		p = (__be32 *)neigh->primary_key;
272 		if (neigh->tbl->family == AF_INET6) {
273 			ipv4 = false;
274 			irdma_copy_ip_ntohl(local_ipaddr, p);
275 		} else {
276 			local_ipaddr[0] = ntohl(*p);
277 		}
278 
279 		ibdev_dbg(&iwdev->ibdev,
280 			  "DEV: netdev %p state %d local_ip=%pI4 MAC=%pM\n",
281 			  iwdev->netdev, neigh->nud_state, local_ipaddr,
282 			  neigh->ha);
283 
284 		if (neigh->nud_state & NUD_VALID)
285 			irdma_add_arp(iwdev->rf, local_ipaddr, ipv4, neigh->ha);
286 
287 		else
288 			irdma_manage_arp_cache(iwdev->rf, neigh->ha,
289 					       local_ipaddr, ipv4,
290 					       IRDMA_ARP_DELETE);
291 		ib_device_put(ibdev);
292 		break;
293 	default:
294 		break;
295 	}
296 
297 	return NOTIFY_DONE;
298 }
299 
300 /**
301  * irdma_netdevice_event - system notifier for netdev events
302  * @notifier: not used
303  * @event: event for notifier
304  * @ptr: netdev
305  */
306 int irdma_netdevice_event(struct notifier_block *notifier, unsigned long event,
307 			  void *ptr)
308 {
309 	struct irdma_device *iwdev;
310 	struct ib_device *ibdev;
311 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
312 
313 	ibdev = ib_device_get_by_netdev(netdev, RDMA_DRIVER_IRDMA);
314 	if (!ibdev)
315 		return NOTIFY_DONE;
316 
317 	iwdev = to_iwdev(ibdev);
318 	iwdev->iw_status = 1;
319 	switch (event) {
320 	case NETDEV_DOWN:
321 		iwdev->iw_status = 0;
322 		fallthrough;
323 	default:
324 		break;
325 	}
326 	ib_device_put(ibdev);
327 
328 	return NOTIFY_DONE;
329 }
330 
331 /**
332  * irdma_add_ipv6_addr - add ipv6 address to the hw arp table
333  * @iwdev: irdma device
334  */
335 static void irdma_add_ipv6_addr(struct irdma_device *iwdev)
336 {
337 	struct net_device *ip_dev;
338 	struct inet6_dev *idev;
339 	struct inet6_ifaddr *ifp, *tmp;
340 	u32 local_ipaddr6[4];
341 
342 	rcu_read_lock();
343 	for_each_netdev_rcu (&init_net, ip_dev) {
344 		if (((rdma_vlan_dev_vlan_id(ip_dev) < 0xFFFF &&
345 		      rdma_vlan_dev_real_dev(ip_dev) == iwdev->netdev) ||
346 		      ip_dev == iwdev->netdev) &&
347 		      (READ_ONCE(ip_dev->flags) & IFF_UP)) {
348 			idev = __in6_dev_get(ip_dev);
349 			if (!idev) {
350 				ibdev_err(&iwdev->ibdev, "ipv6 inet device not found\n");
351 				break;
352 			}
353 			list_for_each_entry_safe (ifp, tmp, &idev->addr_list,
354 						  if_list) {
355 				ibdev_dbg(&iwdev->ibdev,
356 					  "INIT: IP=%pI6, vlan_id=%d, MAC=%pM\n",
357 					  &ifp->addr,
358 					  rdma_vlan_dev_vlan_id(ip_dev),
359 					  ip_dev->dev_addr);
360 
361 				irdma_copy_ip_ntohl(local_ipaddr6,
362 						    ifp->addr.in6_u.u6_addr32);
363 				irdma_manage_arp_cache(iwdev->rf,
364 						       ip_dev->dev_addr,
365 						       local_ipaddr6, false,
366 						       IRDMA_ARP_ADD);
367 			}
368 		}
369 	}
370 	rcu_read_unlock();
371 }
372 
373 /**
374  * irdma_add_ipv4_addr - add ipv4 address to the hw arp table
375  * @iwdev: irdma device
376  */
377 static void irdma_add_ipv4_addr(struct irdma_device *iwdev)
378 {
379 	struct net_device *dev;
380 	struct in_device *idev;
381 	u32 ip_addr;
382 
383 	rcu_read_lock();
384 	for_each_netdev_rcu (&init_net, dev) {
385 		if (((rdma_vlan_dev_vlan_id(dev) < 0xFFFF &&
386 		      rdma_vlan_dev_real_dev(dev) == iwdev->netdev) ||
387 		      dev == iwdev->netdev) && (READ_ONCE(dev->flags) & IFF_UP)) {
388 			const struct in_ifaddr *ifa;
389 
390 			idev = __in_dev_get_rcu(dev);
391 			if (!idev)
392 				continue;
393 
394 			in_dev_for_each_ifa_rcu(ifa, idev) {
395 				ibdev_dbg(&iwdev->ibdev, "CM: IP=%pI4, vlan_id=%d, MAC=%pM\n",
396 					  &ifa->ifa_address, rdma_vlan_dev_vlan_id(dev),
397 					  dev->dev_addr);
398 
399 				ip_addr = ntohl(ifa->ifa_address);
400 				irdma_manage_arp_cache(iwdev->rf, dev->dev_addr,
401 						       &ip_addr, true,
402 						       IRDMA_ARP_ADD);
403 			}
404 		}
405 	}
406 	rcu_read_unlock();
407 }
408 
409 /**
410  * irdma_add_ip - add ip addresses
411  * @iwdev: irdma device
412  *
413  * Add ipv4/ipv6 addresses to the arp cache
414  */
415 void irdma_add_ip(struct irdma_device *iwdev)
416 {
417 	irdma_add_ipv4_addr(iwdev);
418 	irdma_add_ipv6_addr(iwdev);
419 }
420 
421 /**
422  * irdma_alloc_and_get_cqp_request - get cqp struct
423  * @cqp: device cqp ptr
424  * @wait: cqp to be used in wait mode
425  */
426 struct irdma_cqp_request *irdma_alloc_and_get_cqp_request(struct irdma_cqp *cqp,
427 							  bool wait)
428 {
429 	struct irdma_cqp_request *cqp_request = NULL;
430 	unsigned long flags;
431 
432 	spin_lock_irqsave(&cqp->req_lock, flags);
433 	if (!list_empty(&cqp->cqp_avail_reqs)) {
434 		cqp_request = list_first_entry(&cqp->cqp_avail_reqs,
435 					       struct irdma_cqp_request, list);
436 		list_del_init(&cqp_request->list);
437 	}
438 	spin_unlock_irqrestore(&cqp->req_lock, flags);
439 	if (!cqp_request) {
440 		cqp_request = kzalloc(sizeof(*cqp_request), GFP_ATOMIC);
441 		if (cqp_request) {
442 			cqp_request->dynamic = true;
443 			if (wait)
444 				init_waitqueue_head(&cqp_request->waitq);
445 		}
446 	}
447 	if (!cqp_request) {
448 		ibdev_dbg(to_ibdev(cqp->sc_cqp.dev), "ERR: CQP Request Fail: No Memory");
449 		return NULL;
450 	}
451 
452 	cqp_request->waiting = wait;
453 	refcount_set(&cqp_request->refcnt, 1);
454 	memset(&cqp_request->compl_info, 0, sizeof(cqp_request->compl_info));
455 
456 	return cqp_request;
457 }
458 
459 /**
460  * irdma_get_cqp_request - increase refcount for cqp_request
461  * @cqp_request: pointer to cqp_request instance
462  */
463 static inline void irdma_get_cqp_request(struct irdma_cqp_request *cqp_request)
464 {
465 	refcount_inc(&cqp_request->refcnt);
466 }
467 
468 /**
469  * irdma_free_cqp_request - free cqp request
470  * @cqp: cqp ptr
471  * @cqp_request: to be put back in cqp list
472  */
473 void irdma_free_cqp_request(struct irdma_cqp *cqp,
474 			    struct irdma_cqp_request *cqp_request)
475 {
476 	unsigned long flags;
477 
478 	if (cqp_request->dynamic) {
479 		kfree(cqp_request);
480 	} else {
481 		WRITE_ONCE(cqp_request->request_done, false);
482 		cqp_request->callback_fcn = NULL;
483 		cqp_request->waiting = false;
484 		cqp_request->pending = false;
485 
486 		spin_lock_irqsave(&cqp->req_lock, flags);
487 		list_add_tail(&cqp_request->list, &cqp->cqp_avail_reqs);
488 		spin_unlock_irqrestore(&cqp->req_lock, flags);
489 	}
490 	wake_up(&cqp->remove_wq);
491 }
492 
493 /**
494  * irdma_put_cqp_request - dec ref count and free if 0
495  * @cqp: cqp ptr
496  * @cqp_request: to be put back in cqp list
497  */
498 void irdma_put_cqp_request(struct irdma_cqp *cqp,
499 			   struct irdma_cqp_request *cqp_request)
500 {
501 	if (refcount_dec_and_test(&cqp_request->refcnt))
502 		irdma_free_cqp_request(cqp, cqp_request);
503 }
504 
505 /**
506  * irdma_free_pending_cqp_request -free pending cqp request objs
507  * @cqp: cqp ptr
508  * @cqp_request: to be put back in cqp list
509  */
510 static void
511 irdma_free_pending_cqp_request(struct irdma_cqp *cqp,
512 			       struct irdma_cqp_request *cqp_request)
513 {
514 	if (cqp_request->waiting) {
515 		cqp_request->compl_info.error = true;
516 		WRITE_ONCE(cqp_request->request_done, true);
517 		wake_up(&cqp_request->waitq);
518 	}
519 	wait_event_timeout(cqp->remove_wq,
520 			   refcount_read(&cqp_request->refcnt) == 1, 1000);
521 	irdma_put_cqp_request(cqp, cqp_request);
522 }
523 
524 /**
525  * irdma_cleanup_deferred_cqp_ops - clean-up cqp with no completions
526  * @dev: sc_dev
527  * @cqp: cqp
528  */
529 static void irdma_cleanup_deferred_cqp_ops(struct irdma_sc_dev *dev,
530 					   struct irdma_cqp *cqp)
531 {
532 	u64 scratch;
533 
534 	/* process all CQP requests with deferred/pending completions */
535 	while ((scratch = irdma_sc_cqp_cleanup_handler(dev)))
536 		irdma_free_pending_cqp_request(cqp, (struct irdma_cqp_request *)
537 						    (uintptr_t)scratch);
538 }
539 
540 /**
541  * irdma_cleanup_pending_cqp_op - clean-up cqp with no
542  * completions
543  * @rf: RDMA PCI function
544  */
545 void irdma_cleanup_pending_cqp_op(struct irdma_pci_f *rf)
546 {
547 	struct irdma_sc_dev *dev = &rf->sc_dev;
548 	struct irdma_cqp *cqp = &rf->cqp;
549 	struct irdma_cqp_request *cqp_request = NULL;
550 	struct cqp_cmds_info *pcmdinfo = NULL;
551 	u32 i, pending_work, wqe_idx;
552 
553 	if (dev->hw_attrs.uk_attrs.hw_rev >= IRDMA_GEN_3)
554 		irdma_cleanup_deferred_cqp_ops(dev, cqp);
555 	pending_work = IRDMA_RING_USED_QUANTA(cqp->sc_cqp.sq_ring);
556 	wqe_idx = IRDMA_RING_CURRENT_TAIL(cqp->sc_cqp.sq_ring);
557 	for (i = 0; i < pending_work; i++) {
558 		cqp_request = (struct irdma_cqp_request *)(unsigned long)
559 				      cqp->scratch_array[wqe_idx];
560 		if (cqp_request)
561 			irdma_free_pending_cqp_request(cqp, cqp_request);
562 		wqe_idx = (wqe_idx + 1) % IRDMA_RING_SIZE(cqp->sc_cqp.sq_ring);
563 	}
564 
565 	while (!list_empty(&dev->cqp_cmd_head)) {
566 		pcmdinfo = irdma_remove_cqp_head(dev);
567 		cqp_request =
568 			container_of(pcmdinfo, struct irdma_cqp_request, info);
569 		if (cqp_request)
570 			irdma_free_pending_cqp_request(cqp, cqp_request);
571 	}
572 }
573 
574 static int irdma_get_timeout_threshold(struct irdma_sc_dev *dev)
575 {
576 	u16 time_s = dev->vc_caps.cqp_timeout_s;
577 
578 	if (!time_s)
579 		return CQP_TIMEOUT_THRESHOLD;
580 
581 	return time_s * 1000 / dev->hw_attrs.max_cqp_compl_wait_time_ms;
582 }
583 
584 static int irdma_get_def_timeout_threshold(struct irdma_sc_dev *dev)
585 {
586 	u16 time_s = dev->vc_caps.cqp_def_timeout_s;
587 
588 	if (!time_s)
589 		return CQP_DEF_CMPL_TIMEOUT_THRESHOLD;
590 
591 	return time_s * 1000 / dev->hw_attrs.max_cqp_compl_wait_time_ms;
592 }
593 
594 /**
595  * irdma_wait_event - wait for completion
596  * @rf: RDMA PCI function
597  * @cqp_request: cqp request to wait
598  */
599 static int irdma_wait_event(struct irdma_pci_f *rf,
600 			    struct irdma_cqp_request *cqp_request)
601 {
602 	struct irdma_cqp_timeout cqp_timeout = {};
603 	int timeout_threshold = irdma_get_timeout_threshold(&rf->sc_dev);
604 	bool cqp_error = false;
605 	int err_code = 0;
606 
607 	cqp_timeout.compl_cqp_cmds = atomic64_read(&rf->sc_dev.cqp->completed_ops);
608 	do {
609 		irdma_cqp_ce_handler(rf, &rf->ccq.sc_cq);
610 		if (wait_event_timeout(cqp_request->waitq,
611 				       READ_ONCE(cqp_request->request_done),
612 				       msecs_to_jiffies(CQP_COMPL_WAIT_TIME_MS)))
613 			break;
614 
615 		if (cqp_request->pending)
616 			/* There was a deferred or pending completion
617 			 * received for this CQP request, so we need
618 			 * to wait longer than usual.
619 			 */
620 			timeout_threshold =
621 				irdma_get_def_timeout_threshold(&rf->sc_dev);
622 
623 		irdma_check_cqp_progress(&cqp_timeout, &rf->sc_dev);
624 
625 		if (cqp_timeout.count < timeout_threshold)
626 			continue;
627 
628 		if (!rf->reset) {
629 			rf->reset = true;
630 			rf->gen_ops.request_reset(rf);
631 		}
632 		return -ETIMEDOUT;
633 	} while (1);
634 
635 	cqp_error = cqp_request->compl_info.error;
636 	if (cqp_error) {
637 		err_code = -EIO;
638 		if (cqp_request->compl_info.maj_err_code == 0xFFFF) {
639 			if (cqp_request->compl_info.min_err_code == 0x8002)
640 				err_code = -EBUSY;
641 			else if (cqp_request->compl_info.min_err_code == 0x8029) {
642 				if (!rf->reset) {
643 					rf->reset = true;
644 					rf->gen_ops.request_reset(rf);
645 				}
646 			}
647 		}
648 	}
649 
650 	return err_code;
651 }
652 
653 static const char *const irdma_cqp_cmd_names[IRDMA_MAX_CQP_OPS] = {
654 	[IRDMA_OP_CEQ_DESTROY] = "Destroy CEQ Cmd",
655 	[IRDMA_OP_AEQ_DESTROY] = "Destroy AEQ Cmd",
656 	[IRDMA_OP_DELETE_ARP_CACHE_ENTRY] = "Delete ARP Cache Cmd",
657 	[IRDMA_OP_MANAGE_APBVT_ENTRY] = "Manage APBV Table Entry Cmd",
658 	[IRDMA_OP_CEQ_CREATE] = "CEQ Create Cmd",
659 	[IRDMA_OP_AEQ_CREATE] = "AEQ Destroy Cmd",
660 	[IRDMA_OP_MANAGE_QHASH_TABLE_ENTRY] = "Manage Quad Hash Table Entry Cmd",
661 	[IRDMA_OP_QP_MODIFY] = "Modify QP Cmd",
662 	[IRDMA_OP_QP_UPLOAD_CONTEXT] = "Upload Context Cmd",
663 	[IRDMA_OP_CQ_CREATE] = "Create CQ Cmd",
664 	[IRDMA_OP_CQ_DESTROY] = "Destroy CQ Cmd",
665 	[IRDMA_OP_QP_CREATE] = "Create QP Cmd",
666 	[IRDMA_OP_QP_DESTROY] = "Destroy QP Cmd",
667 	[IRDMA_OP_ALLOC_STAG] = "Allocate STag Cmd",
668 	[IRDMA_OP_MR_REG_NON_SHARED] = "Register Non-Shared MR Cmd",
669 	[IRDMA_OP_DEALLOC_STAG] = "Deallocate STag Cmd",
670 	[IRDMA_OP_MW_ALLOC] = "Allocate Memory Window Cmd",
671 	[IRDMA_OP_QP_FLUSH_WQES] = "Flush QP Cmd",
672 	[IRDMA_OP_ADD_ARP_CACHE_ENTRY] = "Add ARP Cache Cmd",
673 	[IRDMA_OP_MANAGE_PUSH_PAGE] = "Manage Push Page Cmd",
674 	[IRDMA_OP_UPDATE_PE_SDS] = "Update PE SDs Cmd",
675 	[IRDMA_OP_MANAGE_HMC_PM_FUNC_TABLE] = "Manage HMC PM Function Table Cmd",
676 	[IRDMA_OP_SUSPEND] = "Suspend QP Cmd",
677 	[IRDMA_OP_RESUME] = "Resume QP Cmd",
678 	[IRDMA_OP_MANAGE_VF_PBLE_BP] = "Manage VF PBLE Backing Pages Cmd",
679 	[IRDMA_OP_QUERY_FPM_VAL] = "Query FPM Values Cmd",
680 	[IRDMA_OP_COMMIT_FPM_VAL] = "Commit FPM Values Cmd",
681 	[IRDMA_OP_AH_CREATE] = "Create Address Handle Cmd",
682 	[IRDMA_OP_AH_MODIFY] = "Modify Address Handle Cmd",
683 	[IRDMA_OP_AH_DESTROY] = "Destroy Address Handle Cmd",
684 	[IRDMA_OP_MC_CREATE] = "Create Multicast Group Cmd",
685 	[IRDMA_OP_MC_DESTROY] = "Destroy Multicast Group Cmd",
686 	[IRDMA_OP_MC_MODIFY] = "Modify Multicast Group Cmd",
687 	[IRDMA_OP_STATS_ALLOCATE] = "Add Statistics Instance Cmd",
688 	[IRDMA_OP_STATS_FREE] = "Free Statistics Instance Cmd",
689 	[IRDMA_OP_STATS_GATHER] = "Gather Statistics Cmd",
690 	[IRDMA_OP_WS_ADD_NODE] = "Add Work Scheduler Node Cmd",
691 	[IRDMA_OP_WS_MODIFY_NODE] = "Modify Work Scheduler Node Cmd",
692 	[IRDMA_OP_WS_DELETE_NODE] = "Delete Work Scheduler Node Cmd",
693 	[IRDMA_OP_SET_UP_MAP] = "Set UP-UP Mapping Cmd",
694 	[IRDMA_OP_GEN_AE] = "Generate AE Cmd",
695 	[IRDMA_OP_QUERY_RDMA_FEATURES] = "RDMA Get Features Cmd",
696 	[IRDMA_OP_ALLOC_LOCAL_MAC_ENTRY] = "Allocate Local MAC Entry Cmd",
697 	[IRDMA_OP_ADD_LOCAL_MAC_ENTRY] = "Add Local MAC Entry Cmd",
698 	[IRDMA_OP_DELETE_LOCAL_MAC_ENTRY] = "Delete Local MAC Entry Cmd",
699 	[IRDMA_OP_CQ_MODIFY] = "CQ Modify Cmd",
700 	[IRDMA_OP_SRQ_CREATE] = "Create SRQ Cmd",
701 	[IRDMA_OP_SRQ_MODIFY] = "Modify SRQ Cmd",
702 	[IRDMA_OP_SRQ_DESTROY] = "Destroy SRQ Cmd",
703 };
704 
705 static const struct irdma_cqp_err_info irdma_noncrit_err_list[] = {
706 	{0xffff, 0x8002, "Invalid State"},
707 	{0xffff, 0x8006, "Flush No Wqe Pending"},
708 	{0xffff, 0x8007, "Modify QP Bad Close"},
709 	{0xffff, 0x8009, "LLP Closed"},
710 	{0xffff, 0x800a, "Reset Not Sent"}
711 };
712 
713 /**
714  * irdma_cqp_crit_err - check if CQP error is critical
715  * @dev: pointer to dev structure
716  * @cqp_cmd: code for last CQP operation
717  * @maj_err_code: major error code
718  * @min_err_code: minot error code
719  */
720 bool irdma_cqp_crit_err(struct irdma_sc_dev *dev, u8 cqp_cmd,
721 			u16 maj_err_code, u16 min_err_code)
722 {
723 	int i;
724 
725 	for (i = 0; i < ARRAY_SIZE(irdma_noncrit_err_list); ++i) {
726 		if (maj_err_code == irdma_noncrit_err_list[i].maj &&
727 		    min_err_code == irdma_noncrit_err_list[i].min) {
728 			ibdev_dbg(to_ibdev(dev),
729 				  "CQP: [%s Error][%s] maj=0x%x min=0x%x\n",
730 				  irdma_noncrit_err_list[i].desc,
731 				  irdma_cqp_cmd_names[cqp_cmd], maj_err_code,
732 				  min_err_code);
733 			return false;
734 		}
735 	}
736 	return true;
737 }
738 
739 /**
740  * irdma_handle_cqp_op - process cqp command
741  * @rf: RDMA PCI function
742  * @cqp_request: cqp request to process
743  */
744 int irdma_handle_cqp_op(struct irdma_pci_f *rf,
745 			struct irdma_cqp_request *cqp_request)
746 {
747 	struct irdma_sc_dev *dev = &rf->sc_dev;
748 	struct cqp_cmds_info *info = &cqp_request->info;
749 	int status;
750 	bool put_cqp_request = true;
751 
752 	if (rf->reset)
753 		return -EBUSY;
754 
755 	irdma_get_cqp_request(cqp_request);
756 	status = irdma_process_cqp_cmd(dev, info);
757 	if (status)
758 		goto err;
759 
760 	if (cqp_request->waiting) {
761 		put_cqp_request = false;
762 		status = irdma_wait_event(rf, cqp_request);
763 		if (status)
764 			goto err;
765 	}
766 
767 	return 0;
768 
769 err:
770 	if (irdma_cqp_crit_err(dev, info->cqp_cmd,
771 			       cqp_request->compl_info.maj_err_code,
772 			       cqp_request->compl_info.min_err_code))
773 		ibdev_err(&rf->iwdev->ibdev,
774 			  "[%s Error][op_code=%d] status=%d waiting=%d completion_err=%d maj=0x%x min=0x%x\n",
775 			  irdma_cqp_cmd_names[info->cqp_cmd], info->cqp_cmd, status, cqp_request->waiting,
776 			  cqp_request->compl_info.error, cqp_request->compl_info.maj_err_code,
777 			  cqp_request->compl_info.min_err_code);
778 
779 	if (put_cqp_request)
780 		irdma_put_cqp_request(&rf->cqp, cqp_request);
781 
782 	return status;
783 }
784 
785 void irdma_qp_add_ref(struct ib_qp *ibqp)
786 {
787 	struct irdma_qp *iwqp = (struct irdma_qp *)ibqp;
788 
789 	refcount_inc(&iwqp->refcnt);
790 }
791 
792 void irdma_qp_rem_ref(struct ib_qp *ibqp)
793 {
794 	struct irdma_qp *iwqp = to_iwqp(ibqp);
795 	struct irdma_device *iwdev = iwqp->iwdev;
796 	u32 qp_num;
797 	unsigned long flags;
798 
799 	spin_lock_irqsave(&iwdev->rf->qptable_lock, flags);
800 	if (!refcount_dec_and_test(&iwqp->refcnt)) {
801 		spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags);
802 		return;
803 	}
804 
805 	qp_num = iwqp->ibqp.qp_num;
806 	iwdev->rf->qp_table[qp_num] = NULL;
807 	spin_unlock_irqrestore(&iwdev->rf->qptable_lock, flags);
808 	complete(&iwqp->free_qp);
809 }
810 
811 void irdma_cq_add_ref(struct ib_cq *ibcq)
812 {
813 	struct irdma_cq *iwcq = to_iwcq(ibcq);
814 
815 	refcount_inc(&iwcq->refcnt);
816 }
817 
818 void irdma_cq_rem_ref(struct ib_cq *ibcq)
819 {
820 	struct ib_device *ibdev = ibcq->device;
821 	struct irdma_device *iwdev = to_iwdev(ibdev);
822 	struct irdma_cq *iwcq = to_iwcq(ibcq);
823 	unsigned long flags;
824 
825 	spin_lock_irqsave(&iwdev->rf->cqtable_lock, flags);
826 	if (!refcount_dec_and_test(&iwcq->refcnt)) {
827 		spin_unlock_irqrestore(&iwdev->rf->cqtable_lock, flags);
828 		return;
829 	}
830 
831 	iwdev->rf->cq_table[iwcq->cq_num] = NULL;
832 	spin_unlock_irqrestore(&iwdev->rf->cqtable_lock, flags);
833 	complete(&iwcq->free_cq);
834 }
835 
836 struct ib_device *to_ibdev(struct irdma_sc_dev *dev)
837 {
838 	return &(container_of(dev, struct irdma_pci_f, sc_dev))->iwdev->ibdev;
839 }
840 
841 /**
842  * irdma_get_qp - get qp address
843  * @device: iwarp device
844  * @qpn: qp number
845  */
846 struct ib_qp *irdma_get_qp(struct ib_device *device, int qpn)
847 {
848 	struct irdma_device *iwdev = to_iwdev(device);
849 
850 	if (qpn < IW_FIRST_QPN || qpn >= iwdev->rf->max_qp)
851 		return NULL;
852 
853 	return &iwdev->rf->qp_table[qpn]->ibqp;
854 }
855 
856 /**
857  * irdma_remove_cqp_head - return head entry and remove
858  * @dev: device
859  */
860 void *irdma_remove_cqp_head(struct irdma_sc_dev *dev)
861 {
862 	struct list_head *entry;
863 	struct list_head *list = &dev->cqp_cmd_head;
864 
865 	if (list_empty(list))
866 		return NULL;
867 
868 	entry = list->next;
869 	list_del(entry);
870 
871 	return entry;
872 }
873 
874 /**
875  * irdma_cqp_sds_cmd - create cqp command for sd
876  * @dev: hardware control device structure
877  * @sdinfo: information for sd cqp
878  *
879  */
880 int irdma_cqp_sds_cmd(struct irdma_sc_dev *dev,
881 		      struct irdma_update_sds_info *sdinfo)
882 {
883 	struct irdma_cqp_request *cqp_request;
884 	struct cqp_cmds_info *cqp_info;
885 	struct irdma_pci_f *rf = dev_to_rf(dev);
886 	int status;
887 
888 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
889 	if (!cqp_request)
890 		return -ENOMEM;
891 
892 	cqp_info = &cqp_request->info;
893 	memcpy(&cqp_info->in.u.update_pe_sds.info, sdinfo,
894 	       sizeof(cqp_info->in.u.update_pe_sds.info));
895 	cqp_info->cqp_cmd = IRDMA_OP_UPDATE_PE_SDS;
896 	cqp_info->post_sq = 1;
897 	cqp_info->in.u.update_pe_sds.dev = dev;
898 	cqp_info->in.u.update_pe_sds.scratch = (uintptr_t)cqp_request;
899 
900 	status = irdma_handle_cqp_op(rf, cqp_request);
901 	irdma_put_cqp_request(&rf->cqp, cqp_request);
902 
903 	return status;
904 }
905 
906 /**
907  * irdma_cqp_qp_suspend_resume - cqp command for suspend/resume
908  * @qp: hardware control qp
909  * @op: suspend or resume
910  */
911 int irdma_cqp_qp_suspend_resume(struct irdma_sc_qp *qp, u8 op)
912 {
913 	struct irdma_sc_dev *dev = qp->dev;
914 	struct irdma_cqp_request *cqp_request;
915 	struct irdma_sc_cqp *cqp = dev->cqp;
916 	struct cqp_cmds_info *cqp_info;
917 	struct irdma_pci_f *rf = dev_to_rf(dev);
918 	int status;
919 
920 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false);
921 	if (!cqp_request)
922 		return -ENOMEM;
923 
924 	cqp_info = &cqp_request->info;
925 	cqp_info->cqp_cmd = op;
926 	cqp_info->in.u.suspend_resume.cqp = cqp;
927 	cqp_info->in.u.suspend_resume.qp = qp;
928 	cqp_info->in.u.suspend_resume.scratch = (uintptr_t)cqp_request;
929 
930 	status = irdma_handle_cqp_op(rf, cqp_request);
931 	irdma_put_cqp_request(&rf->cqp, cqp_request);
932 
933 	return status;
934 }
935 
936 /**
937  * irdma_term_modify_qp - modify qp for term message
938  * @qp: hardware control qp
939  * @next_state: qp's next state
940  * @term: terminate code
941  * @term_len: length
942  */
943 void irdma_term_modify_qp(struct irdma_sc_qp *qp, u8 next_state, u8 term,
944 			  u8 term_len)
945 {
946 	struct irdma_qp *iwqp;
947 
948 	iwqp = qp->qp_uk.back_qp;
949 	irdma_next_iw_state(iwqp, next_state, 0, term, term_len);
950 };
951 
952 /**
953  * irdma_terminate_done - after terminate is completed
954  * @qp: hardware control qp
955  * @timeout_occurred: indicates if terminate timer expired
956  */
957 void irdma_terminate_done(struct irdma_sc_qp *qp, int timeout_occurred)
958 {
959 	struct irdma_qp *iwqp;
960 	u8 hte = 0;
961 	bool first_time;
962 	unsigned long flags;
963 
964 	iwqp = qp->qp_uk.back_qp;
965 	spin_lock_irqsave(&iwqp->lock, flags);
966 	if (iwqp->hte_added) {
967 		iwqp->hte_added = 0;
968 		hte = 1;
969 	}
970 	first_time = !(qp->term_flags & IRDMA_TERM_DONE);
971 	qp->term_flags |= IRDMA_TERM_DONE;
972 	spin_unlock_irqrestore(&iwqp->lock, flags);
973 	if (first_time) {
974 		if (!timeout_occurred)
975 			irdma_terminate_del_timer(qp);
976 
977 		irdma_next_iw_state(iwqp, IRDMA_QP_STATE_ERROR, hte, 0, 0);
978 		irdma_cm_disconn(iwqp);
979 	}
980 }
981 
982 static void irdma_terminate_timeout(struct timer_list *t)
983 {
984 	struct irdma_qp *iwqp = timer_container_of(iwqp, t, terminate_timer);
985 	struct irdma_sc_qp *qp = &iwqp->sc_qp;
986 
987 	irdma_terminate_done(qp, 1);
988 	irdma_qp_rem_ref(&iwqp->ibqp);
989 }
990 
991 /**
992  * irdma_terminate_start_timer - start terminate timeout
993  * @qp: hardware control qp
994  */
995 void irdma_terminate_start_timer(struct irdma_sc_qp *qp)
996 {
997 	struct irdma_qp *iwqp;
998 
999 	iwqp = qp->qp_uk.back_qp;
1000 	irdma_qp_add_ref(&iwqp->ibqp);
1001 	timer_setup(&iwqp->terminate_timer, irdma_terminate_timeout, 0);
1002 	iwqp->terminate_timer.expires = jiffies + HZ;
1003 
1004 	add_timer(&iwqp->terminate_timer);
1005 }
1006 
1007 /**
1008  * irdma_terminate_del_timer - delete terminate timeout
1009  * @qp: hardware control qp
1010  */
1011 void irdma_terminate_del_timer(struct irdma_sc_qp *qp)
1012 {
1013 	struct irdma_qp *iwqp;
1014 	int ret;
1015 
1016 	iwqp = qp->qp_uk.back_qp;
1017 	ret = timer_delete(&iwqp->terminate_timer);
1018 	if (ret)
1019 		irdma_qp_rem_ref(&iwqp->ibqp);
1020 }
1021 
1022 /**
1023  * irdma_cqp_cq_create_cmd - create a cq for the cqp
1024  * @dev: device pointer
1025  * @cq: pointer to created cq
1026  */
1027 int irdma_cqp_cq_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq)
1028 {
1029 	struct irdma_pci_f *rf = dev_to_rf(dev);
1030 	struct irdma_cqp *iwcqp = &rf->cqp;
1031 	struct irdma_cqp_request *cqp_request;
1032 	struct cqp_cmds_info *cqp_info;
1033 	int status;
1034 
1035 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true);
1036 	if (!cqp_request)
1037 		return -ENOMEM;
1038 
1039 	cqp_info = &cqp_request->info;
1040 	cqp_info->cqp_cmd = IRDMA_OP_CQ_CREATE;
1041 	cqp_info->post_sq = 1;
1042 	cqp_info->in.u.cq_create.cq = cq;
1043 	cqp_info->in.u.cq_create.scratch = (uintptr_t)cqp_request;
1044 
1045 	status = irdma_handle_cqp_op(rf, cqp_request);
1046 	irdma_put_cqp_request(iwcqp, cqp_request);
1047 
1048 	return status;
1049 }
1050 
1051 /**
1052  * irdma_cqp_qp_create_cmd - create a qp for the cqp
1053  * @dev: device pointer
1054  * @qp: pointer to created qp
1055  */
1056 int irdma_cqp_qp_create_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp)
1057 {
1058 	struct irdma_pci_f *rf = dev_to_rf(dev);
1059 	struct irdma_cqp *iwcqp = &rf->cqp;
1060 	struct irdma_cqp_request *cqp_request;
1061 	struct cqp_cmds_info *cqp_info;
1062 	struct irdma_create_qp_info *qp_info;
1063 	int status;
1064 
1065 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true);
1066 	if (!cqp_request)
1067 		return -ENOMEM;
1068 
1069 	cqp_info = &cqp_request->info;
1070 	qp_info = &cqp_request->info.in.u.qp_create.info;
1071 	memset(qp_info, 0, sizeof(*qp_info));
1072 	qp_info->cq_num_valid = true;
1073 	qp_info->next_iwarp_state = IRDMA_QP_STATE_RTS;
1074 	cqp_info->cqp_cmd = IRDMA_OP_QP_CREATE;
1075 	cqp_info->post_sq = 1;
1076 	cqp_info->in.u.qp_create.qp = qp;
1077 	cqp_info->in.u.qp_create.scratch = (uintptr_t)cqp_request;
1078 
1079 	status = irdma_handle_cqp_op(rf, cqp_request);
1080 	irdma_put_cqp_request(iwcqp, cqp_request);
1081 
1082 	return status;
1083 }
1084 
1085 /**
1086  * irdma_dealloc_push_page - free a push page for qp
1087  * @rf: RDMA PCI function
1088  * @qp: hardware control qp
1089  */
1090 static void irdma_dealloc_push_page(struct irdma_pci_f *rf,
1091 				    struct irdma_sc_qp *qp)
1092 {
1093 	struct irdma_cqp_request *cqp_request;
1094 	struct cqp_cmds_info *cqp_info;
1095 	int status;
1096 
1097 	if (qp->push_idx == IRDMA_INVALID_PUSH_PAGE_INDEX)
1098 		return;
1099 
1100 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, false);
1101 	if (!cqp_request)
1102 		return;
1103 
1104 	cqp_info = &cqp_request->info;
1105 	cqp_info->cqp_cmd = IRDMA_OP_MANAGE_PUSH_PAGE;
1106 	cqp_info->post_sq = 1;
1107 	cqp_info->in.u.manage_push_page.info.push_idx = qp->push_idx;
1108 	cqp_info->in.u.manage_push_page.info.qs_handle = qp->qs_handle;
1109 	cqp_info->in.u.manage_push_page.info.free_page = 1;
1110 	cqp_info->in.u.manage_push_page.info.push_page_type = 0;
1111 	cqp_info->in.u.manage_push_page.cqp = &rf->cqp.sc_cqp;
1112 	cqp_info->in.u.manage_push_page.scratch = (uintptr_t)cqp_request;
1113 	status = irdma_handle_cqp_op(rf, cqp_request);
1114 	if (!status)
1115 		qp->push_idx = IRDMA_INVALID_PUSH_PAGE_INDEX;
1116 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1117 }
1118 
1119 static void irdma_free_gsi_qp_rsrc(struct irdma_qp *iwqp, u32 qp_num)
1120 {
1121 	struct irdma_device *iwdev = iwqp->iwdev;
1122 	struct irdma_pci_f *rf = iwdev->rf;
1123 	unsigned long flags;
1124 
1125 	if (rf->sc_dev.hw_attrs.uk_attrs.hw_rev < IRDMA_GEN_3)
1126 		return;
1127 
1128 	irdma_vchnl_req_del_vport(&rf->sc_dev, iwdev->vport_id, qp_num);
1129 
1130 	if (qp_num == 1) {
1131 		spin_lock_irqsave(&rf->rsrc_lock, flags);
1132 		rf->hwqp1_rsvd = false;
1133 		spin_unlock_irqrestore(&rf->rsrc_lock, flags);
1134 	} else if (qp_num > 2) {
1135 		irdma_free_rsrc(rf, rf->allocated_qps, qp_num);
1136 	}
1137 }
1138 
1139 /**
1140  * irdma_free_qp_rsrc - free up memory resources for qp
1141  * @iwqp: qp ptr (user or kernel)
1142  */
1143 void irdma_free_qp_rsrc(struct irdma_qp *iwqp)
1144 {
1145 	struct irdma_device *iwdev = iwqp->iwdev;
1146 	struct irdma_pci_f *rf = iwdev->rf;
1147 	u32 qp_num = iwqp->sc_qp.qp_uk.qp_id;
1148 
1149 	irdma_ieq_cleanup_qp(iwdev->vsi.ieq, &iwqp->sc_qp);
1150 	irdma_dealloc_push_page(rf, &iwqp->sc_qp);
1151 	if (iwqp->sc_qp.vsi) {
1152 		irdma_qp_rem_qos(&iwqp->sc_qp);
1153 		iwqp->sc_qp.dev->ws_remove(iwqp->sc_qp.vsi,
1154 					   iwqp->sc_qp.user_pri);
1155 	}
1156 
1157 	if (iwqp->ibqp.qp_type == IB_QPT_GSI) {
1158 		irdma_free_gsi_qp_rsrc(iwqp, qp_num);
1159 	} else {
1160 		if (qp_num > 2)
1161 			irdma_free_rsrc(rf, rf->allocated_qps, qp_num);
1162 	}
1163 	dma_free_coherent(rf->sc_dev.hw->device, iwqp->q2_ctx_mem.size,
1164 			  iwqp->q2_ctx_mem.va, iwqp->q2_ctx_mem.pa);
1165 	iwqp->q2_ctx_mem.va = NULL;
1166 	dma_free_coherent(rf->sc_dev.hw->device, iwqp->kqp.dma_mem.size,
1167 			  iwqp->kqp.dma_mem.va, iwqp->kqp.dma_mem.pa);
1168 	iwqp->kqp.dma_mem.va = NULL;
1169 	kfree(iwqp->kqp.sq_wrid_mem);
1170 	kfree(iwqp->kqp.rq_wrid_mem);
1171 }
1172 
1173 /**
1174  * irdma_srq_wq_destroy - send srq destroy cqp
1175  * @rf: RDMA PCI function
1176  * @srq: hardware control srq
1177  */
1178 void irdma_srq_wq_destroy(struct irdma_pci_f *rf, struct irdma_sc_srq *srq)
1179 {
1180 	struct irdma_cqp_request *cqp_request;
1181 	struct cqp_cmds_info *cqp_info;
1182 
1183 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1184 	if (!cqp_request)
1185 		return;
1186 
1187 	cqp_info = &cqp_request->info;
1188 	cqp_info->cqp_cmd = IRDMA_OP_SRQ_DESTROY;
1189 	cqp_info->post_sq = 1;
1190 	cqp_info->in.u.srq_destroy.srq = srq;
1191 	cqp_info->in.u.srq_destroy.scratch = (uintptr_t)cqp_request;
1192 
1193 	irdma_handle_cqp_op(rf, cqp_request);
1194 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1195 }
1196 
1197 /**
1198  * irdma_cq_wq_destroy - send cq destroy cqp
1199  * @rf: RDMA PCI function
1200  * @cq: hardware control cq
1201  */
1202 void irdma_cq_wq_destroy(struct irdma_pci_f *rf, struct irdma_sc_cq *cq)
1203 {
1204 	struct irdma_cqp_request *cqp_request;
1205 	struct cqp_cmds_info *cqp_info;
1206 
1207 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1208 	if (!cqp_request)
1209 		return;
1210 
1211 	cqp_info = &cqp_request->info;
1212 	cqp_info->cqp_cmd = IRDMA_OP_CQ_DESTROY;
1213 	cqp_info->post_sq = 1;
1214 	cqp_info->in.u.cq_destroy.cq = cq;
1215 	cqp_info->in.u.cq_destroy.scratch = (uintptr_t)cqp_request;
1216 
1217 	irdma_handle_cqp_op(rf, cqp_request);
1218 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1219 }
1220 
1221 /**
1222  * irdma_hw_modify_qp_callback - handle state for modifyQPs that don't wait
1223  * @cqp_request: modify QP completion
1224  */
1225 static void irdma_hw_modify_qp_callback(struct irdma_cqp_request *cqp_request)
1226 {
1227 	struct cqp_cmds_info *cqp_info;
1228 	struct irdma_qp *iwqp;
1229 
1230 	cqp_info = &cqp_request->info;
1231 	iwqp = cqp_info->in.u.qp_modify.qp->qp_uk.back_qp;
1232 	atomic_dec(&iwqp->hw_mod_qp_pend);
1233 	wake_up(&iwqp->mod_qp_waitq);
1234 }
1235 
1236 /**
1237  * irdma_hw_modify_qp - setup cqp for modify qp
1238  * @iwdev: RDMA device
1239  * @iwqp: qp ptr (user or kernel)
1240  * @info: info for modify qp
1241  * @wait: flag to wait or not for modify qp completion
1242  */
1243 int irdma_hw_modify_qp(struct irdma_device *iwdev, struct irdma_qp *iwqp,
1244 		       struct irdma_modify_qp_info *info, bool wait)
1245 {
1246 	int status;
1247 	struct irdma_pci_f *rf = iwdev->rf;
1248 	struct irdma_cqp_request *cqp_request;
1249 	struct cqp_cmds_info *cqp_info;
1250 	struct irdma_modify_qp_info *m_info;
1251 
1252 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait);
1253 	if (!cqp_request)
1254 		return -ENOMEM;
1255 
1256 	if (!wait) {
1257 		cqp_request->callback_fcn = irdma_hw_modify_qp_callback;
1258 		atomic_inc(&iwqp->hw_mod_qp_pend);
1259 	}
1260 	cqp_info = &cqp_request->info;
1261 	m_info = &cqp_info->in.u.qp_modify.info;
1262 	memcpy(m_info, info, sizeof(*m_info));
1263 	cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY;
1264 	cqp_info->post_sq = 1;
1265 	cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp;
1266 	cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request;
1267 	status = irdma_handle_cqp_op(rf, cqp_request);
1268 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1269 	if (status) {
1270 		if (rdma_protocol_roce(&iwdev->ibdev, 1))
1271 			return status;
1272 
1273 		switch (m_info->next_iwarp_state) {
1274 			struct irdma_gen_ae_info ae_info;
1275 
1276 		case IRDMA_QP_STATE_RTS:
1277 		case IRDMA_QP_STATE_IDLE:
1278 		case IRDMA_QP_STATE_TERMINATE:
1279 		case IRDMA_QP_STATE_CLOSING:
1280 			if (info->curr_iwarp_state == IRDMA_QP_STATE_IDLE)
1281 				irdma_send_reset(iwqp->cm_node);
1282 			else
1283 				iwqp->sc_qp.term_flags = IRDMA_TERM_DONE;
1284 			if (!wait) {
1285 				ae_info.ae_code = IRDMA_AE_BAD_CLOSE;
1286 				ae_info.ae_src = 0;
1287 				irdma_gen_ae(rf, &iwqp->sc_qp, &ae_info, false);
1288 			} else {
1289 				cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp,
1290 									      wait);
1291 				if (!cqp_request)
1292 					return -ENOMEM;
1293 
1294 				cqp_info = &cqp_request->info;
1295 				m_info = &cqp_info->in.u.qp_modify.info;
1296 				memcpy(m_info, info, sizeof(*m_info));
1297 				cqp_info->cqp_cmd = IRDMA_OP_QP_MODIFY;
1298 				cqp_info->post_sq = 1;
1299 				cqp_info->in.u.qp_modify.qp = &iwqp->sc_qp;
1300 				cqp_info->in.u.qp_modify.scratch = (uintptr_t)cqp_request;
1301 				m_info->next_iwarp_state = IRDMA_QP_STATE_ERROR;
1302 				m_info->reset_tcp_conn = true;
1303 				irdma_handle_cqp_op(rf, cqp_request);
1304 				irdma_put_cqp_request(&rf->cqp, cqp_request);
1305 			}
1306 			break;
1307 		case IRDMA_QP_STATE_ERROR:
1308 		default:
1309 			break;
1310 		}
1311 	}
1312 
1313 	return status;
1314 }
1315 
1316 /**
1317  * irdma_cqp_cq_destroy_cmd - destroy the cqp cq
1318  * @dev: device pointer
1319  * @cq: pointer to cq
1320  */
1321 void irdma_cqp_cq_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_cq *cq)
1322 {
1323 	struct irdma_pci_f *rf = dev_to_rf(dev);
1324 
1325 	irdma_cq_wq_destroy(rf, cq);
1326 }
1327 
1328 /**
1329  * irdma_cqp_qp_destroy_cmd - destroy the cqp
1330  * @dev: device pointer
1331  * @qp: pointer to qp
1332  */
1333 int irdma_cqp_qp_destroy_cmd(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp)
1334 {
1335 	struct irdma_pci_f *rf = dev_to_rf(dev);
1336 	struct irdma_cqp *iwcqp = &rf->cqp;
1337 	struct irdma_cqp_request *cqp_request;
1338 	struct cqp_cmds_info *cqp_info;
1339 	int status;
1340 
1341 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, true);
1342 	if (!cqp_request)
1343 		return -ENOMEM;
1344 
1345 	cqp_info = &cqp_request->info;
1346 	memset(cqp_info, 0, sizeof(*cqp_info));
1347 	cqp_info->cqp_cmd = IRDMA_OP_QP_DESTROY;
1348 	cqp_info->post_sq = 1;
1349 	cqp_info->in.u.qp_destroy.qp = qp;
1350 	cqp_info->in.u.qp_destroy.scratch = (uintptr_t)cqp_request;
1351 	cqp_info->in.u.qp_destroy.remove_hash_idx = true;
1352 
1353 	status = irdma_handle_cqp_op(rf, cqp_request);
1354 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1355 
1356 	return status;
1357 }
1358 
1359 /**
1360  * irdma_ieq_mpa_crc_ae - generate AE for crc error
1361  * @dev: hardware control device structure
1362  * @qp: hardware control qp
1363  */
1364 void irdma_ieq_mpa_crc_ae(struct irdma_sc_dev *dev, struct irdma_sc_qp *qp)
1365 {
1366 	struct irdma_gen_ae_info info = {};
1367 	struct irdma_pci_f *rf = dev_to_rf(dev);
1368 
1369 	ibdev_dbg(&rf->iwdev->ibdev, "AEQ: Generate MPA CRC AE\n");
1370 	info.ae_code = IRDMA_AE_LLP_RECEIVED_MPA_CRC_ERROR;
1371 	info.ae_src = IRDMA_AE_SOURCE_RQ;
1372 	irdma_gen_ae(rf, qp, &info, false);
1373 }
1374 
1375 /**
1376  * irdma_ieq_check_mpacrc - check if mpa crc is OK
1377  * @addr: address of buffer for crc
1378  * @len: length of buffer
1379  * @val: value to be compared
1380  */
1381 int irdma_ieq_check_mpacrc(const void *addr, u32 len, u32 val)
1382 {
1383 	if ((__force u32)cpu_to_le32(~crc32c(~0, addr, len)) != val)
1384 		return -EINVAL;
1385 
1386 	return 0;
1387 }
1388 
1389 /**
1390  * irdma_ieq_get_qp - get qp based on quad in puda buffer
1391  * @dev: hardware control device structure
1392  * @buf: receive puda buffer on exception q
1393  */
1394 struct irdma_sc_qp *irdma_ieq_get_qp(struct irdma_sc_dev *dev,
1395 				     struct irdma_puda_buf *buf)
1396 {
1397 	struct irdma_qp *iwqp;
1398 	struct irdma_cm_node *cm_node;
1399 	struct irdma_device *iwdev = buf->vsi->back_vsi;
1400 	u32 loc_addr[4] = {};
1401 	u32 rem_addr[4] = {};
1402 	u16 loc_port, rem_port;
1403 	struct ipv6hdr *ip6h;
1404 	struct iphdr *iph = (struct iphdr *)buf->iph;
1405 	struct tcphdr *tcph = (struct tcphdr *)buf->tcph;
1406 
1407 	if (iph->version == 4) {
1408 		loc_addr[0] = ntohl(iph->daddr);
1409 		rem_addr[0] = ntohl(iph->saddr);
1410 	} else {
1411 		ip6h = (struct ipv6hdr *)buf->iph;
1412 		irdma_copy_ip_ntohl(loc_addr, ip6h->daddr.in6_u.u6_addr32);
1413 		irdma_copy_ip_ntohl(rem_addr, ip6h->saddr.in6_u.u6_addr32);
1414 	}
1415 	loc_port = ntohs(tcph->dest);
1416 	rem_port = ntohs(tcph->source);
1417 	cm_node = irdma_find_node(&iwdev->cm_core, rem_port, rem_addr, loc_port,
1418 				  loc_addr, buf->vlan_valid ? buf->vlan_id : 0xFFFF);
1419 	if (!cm_node)
1420 		return NULL;
1421 
1422 	iwqp = cm_node->iwqp;
1423 	irdma_rem_ref_cm_node(cm_node);
1424 
1425 	return &iwqp->sc_qp;
1426 }
1427 
1428 /**
1429  * irdma_send_ieq_ack - ACKs for duplicate or OOO partials FPDUs
1430  * @qp: qp ptr
1431  */
1432 void irdma_send_ieq_ack(struct irdma_sc_qp *qp)
1433 {
1434 	struct irdma_cm_node *cm_node = ((struct irdma_qp *)qp->qp_uk.back_qp)->cm_node;
1435 	struct irdma_puda_buf *buf = qp->pfpdu.lastrcv_buf;
1436 	struct tcphdr *tcph = (struct tcphdr *)buf->tcph;
1437 
1438 	cm_node->tcp_cntxt.rcv_nxt = qp->pfpdu.nextseqnum;
1439 	cm_node->tcp_cntxt.loc_seq_num = ntohl(tcph->ack_seq);
1440 
1441 	irdma_send_ack(cm_node);
1442 }
1443 
1444 /**
1445  * irdma_puda_ieq_get_ah_info - get AH info from IEQ buffer
1446  * @qp: qp pointer
1447  * @ah_info: AH info pointer
1448  */
1449 void irdma_puda_ieq_get_ah_info(struct irdma_sc_qp *qp,
1450 				struct irdma_ah_info *ah_info)
1451 {
1452 	struct irdma_puda_buf *buf = qp->pfpdu.ah_buf;
1453 	struct iphdr *iph;
1454 	struct ipv6hdr *ip6h;
1455 
1456 	memset(ah_info, 0, sizeof(*ah_info));
1457 	ah_info->do_lpbk = true;
1458 	ah_info->vlan_tag = buf->vlan_id;
1459 	ah_info->insert_vlan_tag = buf->vlan_valid;
1460 	ah_info->ipv4_valid = buf->ipv4;
1461 	ah_info->vsi = qp->vsi;
1462 
1463 	if (buf->smac_valid)
1464 		ether_addr_copy(ah_info->mac_addr, buf->smac);
1465 
1466 	if (buf->ipv4) {
1467 		ah_info->ipv4_valid = true;
1468 		iph = (struct iphdr *)buf->iph;
1469 		ah_info->hop_ttl = iph->ttl;
1470 		ah_info->tc_tos = iph->tos;
1471 		ah_info->dest_ip_addr[0] = ntohl(iph->daddr);
1472 		ah_info->src_ip_addr[0] = ntohl(iph->saddr);
1473 	} else {
1474 		ip6h = (struct ipv6hdr *)buf->iph;
1475 		ah_info->hop_ttl = ip6h->hop_limit;
1476 		ah_info->tc_tos = ip6h->priority;
1477 		irdma_copy_ip_ntohl(ah_info->dest_ip_addr,
1478 				    ip6h->daddr.in6_u.u6_addr32);
1479 		irdma_copy_ip_ntohl(ah_info->src_ip_addr,
1480 				    ip6h->saddr.in6_u.u6_addr32);
1481 	}
1482 
1483 	ah_info->dst_arpindex = irdma_arp_table(dev_to_rf(qp->dev),
1484 						ah_info->dest_ip_addr,
1485 						ah_info->ipv4_valid,
1486 						NULL, IRDMA_ARP_RESOLVE);
1487 }
1488 
1489 /**
1490  * irdma_gen1_ieq_update_tcpip_info - update tcpip in the buffer
1491  * @buf: puda to update
1492  * @len: length of buffer
1493  * @seqnum: seq number for tcp
1494  */
1495 static void irdma_gen1_ieq_update_tcpip_info(struct irdma_puda_buf *buf,
1496 					     u16 len, u32 seqnum)
1497 {
1498 	struct tcphdr *tcph;
1499 	struct iphdr *iph;
1500 	u16 iphlen;
1501 	u16 pktsize;
1502 	u8 *addr = buf->mem.va;
1503 
1504 	iphlen = (buf->ipv4) ? 20 : 40;
1505 	iph = (struct iphdr *)(addr + buf->maclen);
1506 	tcph = (struct tcphdr *)(addr + buf->maclen + iphlen);
1507 	pktsize = len + buf->tcphlen + iphlen;
1508 	iph->tot_len = htons(pktsize);
1509 	tcph->seq = htonl(seqnum);
1510 }
1511 
1512 /**
1513  * irdma_ieq_update_tcpip_info - update tcpip in the buffer
1514  * @buf: puda to update
1515  * @len: length of buffer
1516  * @seqnum: seq number for tcp
1517  */
1518 void irdma_ieq_update_tcpip_info(struct irdma_puda_buf *buf, u16 len,
1519 				 u32 seqnum)
1520 {
1521 	struct tcphdr *tcph;
1522 	u8 *addr;
1523 
1524 	if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1)
1525 		return irdma_gen1_ieq_update_tcpip_info(buf, len, seqnum);
1526 
1527 	addr = buf->mem.va;
1528 	tcph = (struct tcphdr *)addr;
1529 	tcph->seq = htonl(seqnum);
1530 }
1531 
1532 /**
1533  * irdma_gen1_puda_get_tcpip_info - get tcpip info from puda
1534  * buffer
1535  * @info: to get information
1536  * @buf: puda buffer
1537  */
1538 static int irdma_gen1_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info,
1539 					  struct irdma_puda_buf *buf)
1540 {
1541 	struct iphdr *iph;
1542 	struct ipv6hdr *ip6h;
1543 	struct tcphdr *tcph;
1544 	u16 iphlen;
1545 	u16 pkt_len;
1546 	u8 *mem = buf->mem.va;
1547 	struct ethhdr *ethh = buf->mem.va;
1548 
1549 	if (ethh->h_proto == htons(0x8100)) {
1550 		info->vlan_valid = true;
1551 		buf->vlan_id = ntohs(((struct vlan_ethhdr *)ethh)->h_vlan_TCI) &
1552 			       VLAN_VID_MASK;
1553 	}
1554 
1555 	buf->maclen = (info->vlan_valid) ? 18 : 14;
1556 	iphlen = (info->l3proto) ? 40 : 20;
1557 	buf->ipv4 = (info->l3proto) ? false : true;
1558 	buf->iph = mem + buf->maclen;
1559 	iph = (struct iphdr *)buf->iph;
1560 	buf->tcph = buf->iph + iphlen;
1561 	tcph = (struct tcphdr *)buf->tcph;
1562 
1563 	if (buf->ipv4) {
1564 		pkt_len = ntohs(iph->tot_len);
1565 	} else {
1566 		ip6h = (struct ipv6hdr *)buf->iph;
1567 		pkt_len = ntohs(ip6h->payload_len) + iphlen;
1568 	}
1569 
1570 	buf->totallen = pkt_len + buf->maclen;
1571 
1572 	if (info->payload_len < buf->totallen) {
1573 		ibdev_dbg(to_ibdev(buf->vsi->dev),
1574 			  "ERR: payload_len = 0x%x totallen expected0x%x\n",
1575 			  info->payload_len, buf->totallen);
1576 		return -EINVAL;
1577 	}
1578 
1579 	buf->tcphlen = tcph->doff << 2;
1580 	buf->datalen = pkt_len - iphlen - buf->tcphlen;
1581 	buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL;
1582 	buf->hdrlen = buf->maclen + iphlen + buf->tcphlen;
1583 	buf->seqnum = ntohl(tcph->seq);
1584 
1585 	return 0;
1586 }
1587 
1588 /**
1589  * irdma_puda_get_tcpip_info - get tcpip info from puda buffer
1590  * @info: to get information
1591  * @buf: puda buffer
1592  */
1593 int irdma_puda_get_tcpip_info(struct irdma_puda_cmpl_info *info,
1594 			      struct irdma_puda_buf *buf)
1595 {
1596 	struct tcphdr *tcph;
1597 	u32 pkt_len;
1598 	u8 *mem;
1599 
1600 	if (buf->vsi->dev->hw_attrs.uk_attrs.hw_rev == IRDMA_GEN_1)
1601 		return irdma_gen1_puda_get_tcpip_info(info, buf);
1602 
1603 	mem = buf->mem.va;
1604 	buf->vlan_valid = info->vlan_valid;
1605 	if (info->vlan_valid)
1606 		buf->vlan_id = info->vlan;
1607 
1608 	buf->ipv4 = info->ipv4;
1609 	if (buf->ipv4)
1610 		buf->iph = mem + IRDMA_IPV4_PAD;
1611 	else
1612 		buf->iph = mem;
1613 
1614 	buf->tcph = mem + IRDMA_TCP_OFFSET;
1615 	tcph = (struct tcphdr *)buf->tcph;
1616 	pkt_len = info->payload_len;
1617 	buf->totallen = pkt_len;
1618 	buf->tcphlen = tcph->doff << 2;
1619 	buf->datalen = pkt_len - IRDMA_TCP_OFFSET - buf->tcphlen;
1620 	buf->data = buf->datalen ? buf->tcph + buf->tcphlen : NULL;
1621 	buf->hdrlen = IRDMA_TCP_OFFSET + buf->tcphlen;
1622 	buf->seqnum = ntohl(tcph->seq);
1623 
1624 	if (info->smac_valid) {
1625 		ether_addr_copy(buf->smac, info->smac);
1626 		buf->smac_valid = true;
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 /**
1633  * irdma_hw_stats_timeout - Stats timer-handler which updates all HW stats
1634  * @t: timer_list pointer
1635  */
1636 static void irdma_hw_stats_timeout(struct timer_list *t)
1637 {
1638 	struct irdma_vsi_pestat *pf_devstat =
1639 		timer_container_of(pf_devstat, t, stats_timer);
1640 	struct irdma_sc_vsi *sc_vsi = pf_devstat->vsi;
1641 
1642 	if (sc_vsi->dev->hw_attrs.uk_attrs.hw_rev >= IRDMA_GEN_2)
1643 		irdma_cqp_gather_stats_cmd(sc_vsi->dev, sc_vsi->pestat, false);
1644 	else
1645 		irdma_cqp_gather_stats_gen1(sc_vsi->dev, sc_vsi->pestat);
1646 
1647 	mod_timer(&pf_devstat->stats_timer,
1648 		  jiffies + msecs_to_jiffies(STATS_TIMER_DELAY));
1649 }
1650 
1651 /**
1652  * irdma_hw_stats_start_timer - Start periodic stats timer
1653  * @vsi: vsi structure pointer
1654  */
1655 void irdma_hw_stats_start_timer(struct irdma_sc_vsi *vsi)
1656 {
1657 	struct irdma_vsi_pestat *devstat = vsi->pestat;
1658 
1659 	timer_setup(&devstat->stats_timer, irdma_hw_stats_timeout, 0);
1660 	mod_timer(&devstat->stats_timer,
1661 		  jiffies + msecs_to_jiffies(STATS_TIMER_DELAY));
1662 }
1663 
1664 /**
1665  * irdma_hw_stats_stop_timer - Delete periodic stats timer
1666  * @vsi: pointer to vsi structure
1667  */
1668 void irdma_hw_stats_stop_timer(struct irdma_sc_vsi *vsi)
1669 {
1670 	struct irdma_vsi_pestat *devstat = vsi->pestat;
1671 
1672 	timer_delete_sync(&devstat->stats_timer);
1673 }
1674 
1675 /**
1676  * irdma_process_stats - Checking for wrap and update stats
1677  * @pestat: stats structure pointer
1678  */
1679 static inline void irdma_process_stats(struct irdma_vsi_pestat *pestat)
1680 {
1681 	sc_vsi_update_stats(pestat->vsi);
1682 }
1683 
1684 /**
1685  * irdma_cqp_gather_stats_gen1 - Gather stats
1686  * @dev: pointer to device structure
1687  * @pestat: statistics structure
1688  */
1689 void irdma_cqp_gather_stats_gen1(struct irdma_sc_dev *dev,
1690 				 struct irdma_vsi_pestat *pestat)
1691 {
1692 	struct irdma_gather_stats *gather_stats =
1693 		pestat->gather_info.gather_stats_va;
1694 	const struct irdma_hw_stat_map *map = dev->hw_stats_map;
1695 	u16 max_stats_idx = dev->hw_attrs.max_stat_idx;
1696 	u32 stats_inst_offset_32;
1697 	u32 stats_inst_offset_64;
1698 	u64 new_val;
1699 	u16 i;
1700 
1701 	stats_inst_offset_32 = (pestat->gather_info.use_stats_inst) ?
1702 				pestat->gather_info.stats_inst_index :
1703 				pestat->hw->hmc.hmc_fn_id;
1704 	stats_inst_offset_32 *= 4;
1705 	stats_inst_offset_64 = stats_inst_offset_32 * 2;
1706 
1707 	for (i = 0; i < max_stats_idx; i++) {
1708 		if (map[i].bitmask <= IRDMA_MAX_STATS_32)
1709 			new_val = rd32(dev->hw,
1710 				       dev->hw_stats_regs[i] + stats_inst_offset_32);
1711 		else
1712 			new_val = rd64(dev->hw,
1713 				       dev->hw_stats_regs[i] + stats_inst_offset_64);
1714 		gather_stats->val[map[i].byteoff / sizeof(u64)] = new_val;
1715 	}
1716 
1717 	irdma_process_stats(pestat);
1718 }
1719 
1720 /**
1721  * irdma_process_cqp_stats - Checking for wrap and update stats
1722  * @cqp_request: cqp_request structure pointer
1723  */
1724 static void irdma_process_cqp_stats(struct irdma_cqp_request *cqp_request)
1725 {
1726 	struct irdma_vsi_pestat *pestat = cqp_request->param;
1727 
1728 	irdma_process_stats(pestat);
1729 }
1730 
1731 /**
1732  * irdma_cqp_gather_stats_cmd - Gather stats
1733  * @dev: pointer to device structure
1734  * @pestat: pointer to stats info
1735  * @wait: flag to wait or not wait for stats
1736  */
1737 int irdma_cqp_gather_stats_cmd(struct irdma_sc_dev *dev,
1738 			       struct irdma_vsi_pestat *pestat, bool wait)
1739 
1740 {
1741 	struct irdma_pci_f *rf = dev_to_rf(dev);
1742 	struct irdma_cqp *iwcqp = &rf->cqp;
1743 	struct irdma_cqp_request *cqp_request;
1744 	struct cqp_cmds_info *cqp_info;
1745 	int status;
1746 
1747 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait);
1748 	if (!cqp_request)
1749 		return -ENOMEM;
1750 
1751 	cqp_info = &cqp_request->info;
1752 	memset(cqp_info, 0, sizeof(*cqp_info));
1753 	cqp_info->cqp_cmd = IRDMA_OP_STATS_GATHER;
1754 	cqp_info->post_sq = 1;
1755 	cqp_info->in.u.stats_gather.info = pestat->gather_info;
1756 	cqp_info->in.u.stats_gather.scratch = (uintptr_t)cqp_request;
1757 	cqp_info->in.u.stats_gather.cqp = &rf->cqp.sc_cqp;
1758 	cqp_request->param = pestat;
1759 	if (!wait)
1760 		cqp_request->callback_fcn = irdma_process_cqp_stats;
1761 	status = irdma_handle_cqp_op(rf, cqp_request);
1762 	if (wait)
1763 		irdma_process_stats(pestat);
1764 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1765 
1766 	return status;
1767 }
1768 
1769 /**
1770  * irdma_cqp_stats_inst_cmd - Allocate/free stats instance
1771  * @vsi: pointer to vsi structure
1772  * @cmd: command to allocate or free
1773  * @stats_info: pointer to allocate stats info
1774  */
1775 int irdma_cqp_stats_inst_cmd(struct irdma_sc_vsi *vsi, u8 cmd,
1776 			     struct irdma_stats_inst_info *stats_info)
1777 {
1778 	struct irdma_pci_f *rf = dev_to_rf(vsi->dev);
1779 	struct irdma_cqp *iwcqp = &rf->cqp;
1780 	struct irdma_cqp_request *cqp_request;
1781 	struct cqp_cmds_info *cqp_info;
1782 	int status;
1783 	bool wait = false;
1784 
1785 	if (cmd == IRDMA_OP_STATS_ALLOCATE)
1786 		wait = true;
1787 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, wait);
1788 	if (!cqp_request)
1789 		return -ENOMEM;
1790 
1791 	cqp_info = &cqp_request->info;
1792 	memset(cqp_info, 0, sizeof(*cqp_info));
1793 	cqp_info->cqp_cmd = cmd;
1794 	cqp_info->post_sq = 1;
1795 	cqp_info->in.u.stats_manage.info = *stats_info;
1796 	cqp_info->in.u.stats_manage.scratch = (uintptr_t)cqp_request;
1797 	cqp_info->in.u.stats_manage.cqp = &rf->cqp.sc_cqp;
1798 	status = irdma_handle_cqp_op(rf, cqp_request);
1799 	if (wait)
1800 		stats_info->stats_idx = cqp_request->compl_info.op_ret_val;
1801 	irdma_put_cqp_request(iwcqp, cqp_request);
1802 
1803 	return status;
1804 }
1805 
1806 /**
1807  * irdma_cqp_ceq_cmd - Create/Destroy CEQ's after CEQ 0
1808  * @dev: pointer to device info
1809  * @sc_ceq: pointer to ceq structure
1810  * @op: Create or Destroy
1811  */
1812 int irdma_cqp_ceq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_ceq *sc_ceq,
1813 		      u8 op)
1814 {
1815 	struct irdma_cqp_request *cqp_request;
1816 	struct cqp_cmds_info *cqp_info;
1817 	struct irdma_pci_f *rf = dev_to_rf(dev);
1818 	int status;
1819 
1820 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1821 	if (!cqp_request)
1822 		return -ENOMEM;
1823 
1824 	cqp_info = &cqp_request->info;
1825 	cqp_info->post_sq = 1;
1826 	cqp_info->cqp_cmd = op;
1827 	cqp_info->in.u.ceq_create.ceq = sc_ceq;
1828 	cqp_info->in.u.ceq_create.scratch = (uintptr_t)cqp_request;
1829 
1830 	status = irdma_handle_cqp_op(rf, cqp_request);
1831 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1832 
1833 	return status;
1834 }
1835 
1836 /**
1837  * irdma_cqp_aeq_cmd - Create/Destroy AEQ
1838  * @dev: pointer to device info
1839  * @sc_aeq: pointer to aeq structure
1840  * @op: Create or Destroy
1841  */
1842 int irdma_cqp_aeq_cmd(struct irdma_sc_dev *dev, struct irdma_sc_aeq *sc_aeq,
1843 		      u8 op)
1844 {
1845 	struct irdma_cqp_request *cqp_request;
1846 	struct cqp_cmds_info *cqp_info;
1847 	struct irdma_pci_f *rf = dev_to_rf(dev);
1848 	int status;
1849 
1850 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, true);
1851 	if (!cqp_request)
1852 		return -ENOMEM;
1853 
1854 	cqp_info = &cqp_request->info;
1855 	cqp_info->post_sq = 1;
1856 	cqp_info->cqp_cmd = op;
1857 	cqp_info->in.u.aeq_create.aeq = sc_aeq;
1858 	cqp_info->in.u.aeq_create.scratch = (uintptr_t)cqp_request;
1859 
1860 	status = irdma_handle_cqp_op(rf, cqp_request);
1861 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1862 
1863 	return status;
1864 }
1865 
1866 /**
1867  * irdma_cqp_ws_node_cmd - Add/modify/delete ws node
1868  * @dev: pointer to device structure
1869  * @cmd: Add, modify or delete
1870  * @node_info: pointer to ws node info
1871  */
1872 int irdma_cqp_ws_node_cmd(struct irdma_sc_dev *dev, u8 cmd,
1873 			  struct irdma_ws_node_info *node_info)
1874 {
1875 	struct irdma_pci_f *rf = dev_to_rf(dev);
1876 	struct irdma_cqp *iwcqp = &rf->cqp;
1877 	struct irdma_sc_cqp *cqp = &iwcqp->sc_cqp;
1878 	struct irdma_cqp_request *cqp_request;
1879 	struct cqp_cmds_info *cqp_info;
1880 	int status;
1881 	bool poll;
1882 
1883 	if (!rf->sc_dev.ceq_valid)
1884 		poll = true;
1885 	else
1886 		poll = false;
1887 
1888 	cqp_request = irdma_alloc_and_get_cqp_request(iwcqp, !poll);
1889 	if (!cqp_request)
1890 		return -ENOMEM;
1891 
1892 	cqp_info = &cqp_request->info;
1893 	memset(cqp_info, 0, sizeof(*cqp_info));
1894 	cqp_info->cqp_cmd = cmd;
1895 	cqp_info->post_sq = 1;
1896 	cqp_info->in.u.ws_node.info = *node_info;
1897 	cqp_info->in.u.ws_node.cqp = cqp;
1898 	cqp_info->in.u.ws_node.scratch = (uintptr_t)cqp_request;
1899 	status = irdma_handle_cqp_op(rf, cqp_request);
1900 	if (status)
1901 		goto exit;
1902 
1903 	if (poll) {
1904 		struct irdma_ccq_cqe_info compl_info;
1905 
1906 		status = irdma_sc_poll_for_cqp_op_done(cqp, IRDMA_CQP_OP_WORK_SCHED_NODE,
1907 						       &compl_info);
1908 		node_info->qs_handle = compl_info.op_ret_val;
1909 		ibdev_dbg(&rf->iwdev->ibdev, "DCB: opcode=%d, compl_info.retval=%d\n",
1910 			  compl_info.op_code, compl_info.op_ret_val);
1911 	} else {
1912 		node_info->qs_handle = cqp_request->compl_info.op_ret_val;
1913 	}
1914 
1915 exit:
1916 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1917 
1918 	return status;
1919 }
1920 
1921 /**
1922  * irdma_ah_cqp_op - perform an AH cqp operation
1923  * @rf: RDMA PCI function
1924  * @sc_ah: address handle
1925  * @cmd: AH operation
1926  * @wait: wait if true
1927  * @callback_fcn: Callback function on CQP op completion
1928  * @cb_param: parameter for callback function
1929  *
1930  * returns errno
1931  */
1932 int irdma_ah_cqp_op(struct irdma_pci_f *rf, struct irdma_sc_ah *sc_ah, u8 cmd,
1933 		    bool wait,
1934 		    void (*callback_fcn)(struct irdma_cqp_request *),
1935 		    void *cb_param)
1936 {
1937 	struct irdma_cqp_request *cqp_request;
1938 	struct cqp_cmds_info *cqp_info;
1939 	int status;
1940 
1941 	if (cmd != IRDMA_OP_AH_CREATE && cmd != IRDMA_OP_AH_DESTROY)
1942 		return -EINVAL;
1943 
1944 	cqp_request = irdma_alloc_and_get_cqp_request(&rf->cqp, wait);
1945 	if (!cqp_request)
1946 		return -ENOMEM;
1947 
1948 	cqp_info = &cqp_request->info;
1949 	cqp_info->cqp_cmd = cmd;
1950 	cqp_info->post_sq = 1;
1951 	if (cmd == IRDMA_OP_AH_CREATE) {
1952 		cqp_info->in.u.ah_create.info = sc_ah->ah_info;
1953 		cqp_info->in.u.ah_create.scratch = (uintptr_t)cqp_request;
1954 		cqp_info->in.u.ah_create.cqp = &rf->cqp.sc_cqp;
1955 	} else if (cmd == IRDMA_OP_AH_DESTROY) {
1956 		cqp_info->in.u.ah_destroy.info = sc_ah->ah_info;
1957 		cqp_info->in.u.ah_destroy.scratch = (uintptr_t)cqp_request;
1958 		cqp_info->in.u.ah_destroy.cqp = &rf->cqp.sc_cqp;
1959 	}
1960 
1961 	if (!wait) {
1962 		cqp_request->callback_fcn = callback_fcn;
1963 		cqp_request->param = cb_param;
1964 	}
1965 	status = irdma_handle_cqp_op(rf, cqp_request);
1966 	irdma_put_cqp_request(&rf->cqp, cqp_request);
1967 
1968 	if (status)
1969 		return -ENOMEM;
1970 
1971 	if (wait)
1972 		sc_ah->ah_info.ah_valid = (cmd == IRDMA_OP_AH_CREATE);
1973 
1974 	return 0;
1975 }
1976 
1977 /**
1978  * irdma_ieq_ah_cb - callback after creation of AH for IEQ
1979  * @cqp_request: pointer to cqp_request of create AH
1980  */
1981 static void irdma_ieq_ah_cb(struct irdma_cqp_request *cqp_request)
1982 {
1983 	struct irdma_sc_qp *qp = cqp_request->param;
1984 	struct irdma_sc_ah *sc_ah = qp->pfpdu.ah;
1985 	unsigned long flags;
1986 
1987 	spin_lock_irqsave(&qp->pfpdu.lock, flags);
1988 	if (!cqp_request->compl_info.op_ret_val) {
1989 		sc_ah->ah_info.ah_valid = true;
1990 		irdma_ieq_process_fpdus(qp, qp->vsi->ieq);
1991 	} else {
1992 		sc_ah->ah_info.ah_valid = false;
1993 		irdma_ieq_cleanup_qp(qp->vsi->ieq, qp);
1994 	}
1995 	spin_unlock_irqrestore(&qp->pfpdu.lock, flags);
1996 }
1997 
1998 /**
1999  * irdma_ilq_ah_cb - callback after creation of AH for ILQ
2000  * @cqp_request: pointer to cqp_request of create AH
2001  */
2002 static void irdma_ilq_ah_cb(struct irdma_cqp_request *cqp_request)
2003 {
2004 	struct irdma_cm_node *cm_node = cqp_request->param;
2005 	struct irdma_sc_ah *sc_ah = cm_node->ah;
2006 
2007 	sc_ah->ah_info.ah_valid = !cqp_request->compl_info.op_ret_val;
2008 	irdma_add_conn_est_qh(cm_node);
2009 }
2010 
2011 /**
2012  * irdma_puda_create_ah - create AH for ILQ/IEQ qp's
2013  * @dev: device pointer
2014  * @ah_info: Address handle info
2015  * @wait: When true will wait for operation to complete
2016  * @type: ILQ/IEQ
2017  * @cb_param: Callback param when not waiting
2018  * @ah_ret: Returned pointer to address handle if created
2019  *
2020  */
2021 int irdma_puda_create_ah(struct irdma_sc_dev *dev,
2022 			 struct irdma_ah_info *ah_info, bool wait,
2023 			 enum puda_rsrc_type type, void *cb_param,
2024 			 struct irdma_sc_ah **ah_ret)
2025 {
2026 	struct irdma_sc_ah *ah;
2027 	struct irdma_pci_f *rf = dev_to_rf(dev);
2028 	int err;
2029 
2030 	ah = kzalloc(sizeof(*ah), GFP_ATOMIC);
2031 	*ah_ret = ah;
2032 	if (!ah)
2033 		return -ENOMEM;
2034 
2035 	err = irdma_alloc_rsrc(rf, rf->allocated_ahs, rf->max_ah,
2036 			       &ah_info->ah_idx, &rf->next_ah);
2037 	if (err)
2038 		goto err_free;
2039 
2040 	ah->dev = dev;
2041 	ah->ah_info = *ah_info;
2042 
2043 	if (type == IRDMA_PUDA_RSRC_TYPE_ILQ)
2044 		err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait,
2045 				      irdma_ilq_ah_cb, cb_param);
2046 	else
2047 		err = irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_CREATE, wait,
2048 				      irdma_ieq_ah_cb, cb_param);
2049 
2050 	if (err)
2051 		goto error;
2052 	return 0;
2053 
2054 error:
2055 	irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx);
2056 err_free:
2057 	kfree(ah);
2058 	*ah_ret = NULL;
2059 	return -ENOMEM;
2060 }
2061 
2062 /**
2063  * irdma_puda_free_ah - free a puda address handle
2064  * @dev: device pointer
2065  * @ah: The address handle to free
2066  */
2067 void irdma_puda_free_ah(struct irdma_sc_dev *dev, struct irdma_sc_ah *ah)
2068 {
2069 	struct irdma_pci_f *rf = dev_to_rf(dev);
2070 
2071 	if (!ah)
2072 		return;
2073 
2074 	if (ah->ah_info.ah_valid) {
2075 		irdma_ah_cqp_op(rf, ah, IRDMA_OP_AH_DESTROY, false, NULL, NULL);
2076 		irdma_free_rsrc(rf, rf->allocated_ahs, ah->ah_info.ah_idx);
2077 	}
2078 
2079 	kfree(ah);
2080 }
2081 
2082 /**
2083  * irdma_gsi_ud_qp_ah_cb - callback after creation of AH for GSI/ID QP
2084  * @cqp_request: pointer to cqp_request of create AH
2085  */
2086 void irdma_gsi_ud_qp_ah_cb(struct irdma_cqp_request *cqp_request)
2087 {
2088 	struct irdma_sc_ah *sc_ah = cqp_request->param;
2089 
2090 	if (!cqp_request->compl_info.op_ret_val)
2091 		sc_ah->ah_info.ah_valid = true;
2092 	else
2093 		sc_ah->ah_info.ah_valid = false;
2094 }
2095 
2096 /**
2097  * irdma_prm_add_pble_mem - add moemory to pble resources
2098  * @pprm: pble resource manager
2099  * @pchunk: chunk of memory to add
2100  */
2101 int irdma_prm_add_pble_mem(struct irdma_pble_prm *pprm,
2102 			   struct irdma_chunk *pchunk)
2103 {
2104 	u64 sizeofbitmap;
2105 
2106 	if (pchunk->size & 0xfff)
2107 		return -EINVAL;
2108 
2109 	sizeofbitmap = (u64)pchunk->size >> pprm->pble_shift;
2110 
2111 	pchunk->bitmapbuf = bitmap_zalloc(sizeofbitmap, GFP_KERNEL);
2112 	if (!pchunk->bitmapbuf)
2113 		return -ENOMEM;
2114 
2115 	pchunk->sizeofbitmap = sizeofbitmap;
2116 	/* each pble is 8 bytes hence shift by 3 */
2117 	pprm->total_pble_alloc += pchunk->size >> 3;
2118 	pprm->free_pble_cnt += pchunk->size >> 3;
2119 
2120 	return 0;
2121 }
2122 
2123 /**
2124  * irdma_prm_get_pbles - get pble's from prm
2125  * @pprm: pble resource manager
2126  * @chunkinfo: nformation about chunk where pble's were acquired
2127  * @mem_size: size of pble memory needed
2128  * @vaddr: returns virtual address of pble memory
2129  * @fpm_addr: returns fpm address of pble memory
2130  */
2131 int irdma_prm_get_pbles(struct irdma_pble_prm *pprm,
2132 			struct irdma_pble_chunkinfo *chunkinfo, u64 mem_size,
2133 			u64 **vaddr, u64 *fpm_addr)
2134 {
2135 	u64 bits_needed;
2136 	u64 bit_idx = PBLE_INVALID_IDX;
2137 	struct irdma_chunk *pchunk = NULL;
2138 	struct list_head *chunk_entry = pprm->clist.next;
2139 	u32 offset;
2140 	unsigned long flags;
2141 	*vaddr = NULL;
2142 	*fpm_addr = 0;
2143 
2144 	bits_needed = DIV_ROUND_UP_ULL(mem_size, BIT_ULL(pprm->pble_shift));
2145 
2146 	spin_lock_irqsave(&pprm->prm_lock, flags);
2147 	while (chunk_entry != &pprm->clist) {
2148 		pchunk = (struct irdma_chunk *)chunk_entry;
2149 		bit_idx = bitmap_find_next_zero_area(pchunk->bitmapbuf,
2150 						     pchunk->sizeofbitmap, 0,
2151 						     bits_needed, 0);
2152 		if (bit_idx < pchunk->sizeofbitmap)
2153 			break;
2154 
2155 		/* list.next used macro */
2156 		chunk_entry = pchunk->list.next;
2157 	}
2158 
2159 	if (!pchunk || bit_idx >= pchunk->sizeofbitmap) {
2160 		spin_unlock_irqrestore(&pprm->prm_lock, flags);
2161 		return -ENOMEM;
2162 	}
2163 
2164 	bitmap_set(pchunk->bitmapbuf, bit_idx, bits_needed);
2165 	offset = bit_idx << pprm->pble_shift;
2166 	*vaddr = pchunk->vaddr + offset;
2167 	*fpm_addr = pchunk->fpm_addr + offset;
2168 
2169 	chunkinfo->pchunk = pchunk;
2170 	chunkinfo->bit_idx = bit_idx;
2171 	chunkinfo->bits_used = bits_needed;
2172 	/* 3 is sizeof pble divide */
2173 	pprm->free_pble_cnt -= chunkinfo->bits_used << (pprm->pble_shift - 3);
2174 	spin_unlock_irqrestore(&pprm->prm_lock, flags);
2175 
2176 	return 0;
2177 }
2178 
2179 /**
2180  * irdma_prm_return_pbles - return pbles back to prm
2181  * @pprm: pble resource manager
2182  * @chunkinfo: chunk where pble's were acquired and to be freed
2183  */
2184 void irdma_prm_return_pbles(struct irdma_pble_prm *pprm,
2185 			    struct irdma_pble_chunkinfo *chunkinfo)
2186 {
2187 	unsigned long flags;
2188 
2189 	spin_lock_irqsave(&pprm->prm_lock, flags);
2190 	pprm->free_pble_cnt += chunkinfo->bits_used << (pprm->pble_shift - 3);
2191 	bitmap_clear(chunkinfo->pchunk->bitmapbuf, chunkinfo->bit_idx,
2192 		     chunkinfo->bits_used);
2193 	spin_unlock_irqrestore(&pprm->prm_lock, flags);
2194 }
2195 
2196 int irdma_map_vm_page_list(struct irdma_hw *hw, void *va, dma_addr_t *pg_dma,
2197 			   u32 pg_cnt)
2198 {
2199 	struct page *vm_page;
2200 	int i;
2201 	u8 *addr;
2202 
2203 	addr = (u8 *)(uintptr_t)va;
2204 	for (i = 0; i < pg_cnt; i++) {
2205 		vm_page = vmalloc_to_page(addr);
2206 		if (!vm_page)
2207 			goto err;
2208 
2209 		pg_dma[i] = dma_map_page(hw->device, vm_page, 0, PAGE_SIZE,
2210 					 DMA_BIDIRECTIONAL);
2211 		if (dma_mapping_error(hw->device, pg_dma[i]))
2212 			goto err;
2213 
2214 		addr += PAGE_SIZE;
2215 	}
2216 
2217 	return 0;
2218 
2219 err:
2220 	irdma_unmap_vm_page_list(hw, pg_dma, i);
2221 	return -ENOMEM;
2222 }
2223 
2224 void irdma_unmap_vm_page_list(struct irdma_hw *hw, dma_addr_t *pg_dma, u32 pg_cnt)
2225 {
2226 	int i;
2227 
2228 	for (i = 0; i < pg_cnt; i++)
2229 		dma_unmap_page(hw->device, pg_dma[i], PAGE_SIZE, DMA_BIDIRECTIONAL);
2230 }
2231 
2232 /**
2233  * irdma_pble_free_paged_mem - free virtual paged memory
2234  * @chunk: chunk to free with paged memory
2235  */
2236 void irdma_pble_free_paged_mem(struct irdma_chunk *chunk)
2237 {
2238 	if (!chunk->pg_cnt)
2239 		goto done;
2240 
2241 	irdma_unmap_vm_page_list(chunk->dev->hw, chunk->dmainfo.dmaaddrs,
2242 				 chunk->pg_cnt);
2243 
2244 done:
2245 	kfree(chunk->dmainfo.dmaaddrs);
2246 	chunk->dmainfo.dmaaddrs = NULL;
2247 	vfree(chunk->vaddr);
2248 	chunk->vaddr = NULL;
2249 	chunk->type = 0;
2250 }
2251 
2252 /**
2253  * irdma_pble_get_paged_mem -allocate paged memory for pbles
2254  * @chunk: chunk to add for paged memory
2255  * @pg_cnt: number of pages needed
2256  */
2257 int irdma_pble_get_paged_mem(struct irdma_chunk *chunk, u32 pg_cnt)
2258 {
2259 	u32 size;
2260 	void *va;
2261 
2262 	chunk->dmainfo.dmaaddrs = kzalloc(pg_cnt << 3, GFP_KERNEL);
2263 	if (!chunk->dmainfo.dmaaddrs)
2264 		return -ENOMEM;
2265 
2266 	size = PAGE_SIZE * pg_cnt;
2267 	va = vmalloc(size);
2268 	if (!va)
2269 		goto err;
2270 
2271 	if (irdma_map_vm_page_list(chunk->dev->hw, va, chunk->dmainfo.dmaaddrs,
2272 				   pg_cnt)) {
2273 		vfree(va);
2274 		goto err;
2275 	}
2276 	chunk->vaddr = va;
2277 	chunk->size = size;
2278 	chunk->pg_cnt = pg_cnt;
2279 	chunk->type = PBLE_SD_PAGED;
2280 
2281 	return 0;
2282 err:
2283 	kfree(chunk->dmainfo.dmaaddrs);
2284 	chunk->dmainfo.dmaaddrs = NULL;
2285 
2286 	return -ENOMEM;
2287 }
2288 
2289 /**
2290  * irdma_alloc_ws_node_id - Allocate a tx scheduler node ID
2291  * @dev: device pointer
2292  */
2293 u16 irdma_alloc_ws_node_id(struct irdma_sc_dev *dev)
2294 {
2295 	struct irdma_pci_f *rf = dev_to_rf(dev);
2296 	u32 next = 1;
2297 	u32 node_id;
2298 
2299 	if (irdma_alloc_rsrc(rf, rf->allocated_ws_nodes, rf->max_ws_node_id,
2300 			     &node_id, &next))
2301 		return IRDMA_WS_NODE_INVALID;
2302 
2303 	return (u16)node_id;
2304 }
2305 
2306 /**
2307  * irdma_free_ws_node_id - Free a tx scheduler node ID
2308  * @dev: device pointer
2309  * @node_id: Work scheduler node ID
2310  */
2311 void irdma_free_ws_node_id(struct irdma_sc_dev *dev, u16 node_id)
2312 {
2313 	struct irdma_pci_f *rf = dev_to_rf(dev);
2314 
2315 	irdma_free_rsrc(rf, rf->allocated_ws_nodes, (u32)node_id);
2316 }
2317 
2318 /**
2319  * irdma_modify_qp_to_err - Modify a QP to error
2320  * @sc_qp: qp structure
2321  */
2322 void irdma_modify_qp_to_err(struct irdma_sc_qp *sc_qp)
2323 {
2324 	struct irdma_qp *qp = sc_qp->qp_uk.back_qp;
2325 	struct ib_qp_attr attr;
2326 
2327 	if (qp->iwdev->rf->reset)
2328 		return;
2329 	attr.qp_state = IB_QPS_ERR;
2330 
2331 	if (rdma_protocol_roce(qp->ibqp.device, 1))
2332 		irdma_modify_qp_roce(&qp->ibqp, &attr, IB_QP_STATE, NULL);
2333 	else
2334 		irdma_modify_qp(&qp->ibqp, &attr, IB_QP_STATE, NULL);
2335 }
2336 
2337 void irdma_ib_qp_event(struct irdma_qp *iwqp, enum irdma_qp_event_type event)
2338 {
2339 	struct ib_event ibevent;
2340 
2341 	if (!iwqp->ibqp.event_handler)
2342 		return;
2343 
2344 	switch (event) {
2345 	case IRDMA_QP_EVENT_CATASTROPHIC:
2346 		ibevent.event = IB_EVENT_QP_FATAL;
2347 		break;
2348 	case IRDMA_QP_EVENT_ACCESS_ERR:
2349 		ibevent.event = IB_EVENT_QP_ACCESS_ERR;
2350 		break;
2351 	case IRDMA_QP_EVENT_REQ_ERR:
2352 		ibevent.event = IB_EVENT_QP_REQ_ERR;
2353 		break;
2354 	}
2355 	ibevent.device = iwqp->ibqp.device;
2356 	ibevent.element.qp = &iwqp->ibqp;
2357 	iwqp->ibqp.event_handler(&ibevent, iwqp->ibqp.qp_context);
2358 }
2359 
2360 bool irdma_cq_empty(struct irdma_cq *iwcq)
2361 {
2362 	struct irdma_cq_uk *ukcq;
2363 	u64 qword3;
2364 	__le64 *cqe;
2365 	u8 polarity;
2366 
2367 	ukcq  = &iwcq->sc_cq.cq_uk;
2368 	if (ukcq->avoid_mem_cflct)
2369 		cqe = IRDMA_GET_CURRENT_EXTENDED_CQ_ELEM(ukcq);
2370 	else
2371 		cqe = IRDMA_GET_CURRENT_CQ_ELEM(ukcq);
2372 	get_64bit_val(cqe, 24, &qword3);
2373 	polarity = (u8)FIELD_GET(IRDMA_CQ_VALID, qword3);
2374 
2375 	return polarity != ukcq->polarity;
2376 }
2377 
2378 void irdma_remove_cmpls_list(struct irdma_cq *iwcq)
2379 {
2380 	struct irdma_cmpl_gen *cmpl_node;
2381 	struct list_head *tmp_node, *list_node;
2382 
2383 	list_for_each_safe (list_node, tmp_node, &iwcq->cmpl_generated) {
2384 		cmpl_node = list_entry(list_node, struct irdma_cmpl_gen, list);
2385 		list_del(&cmpl_node->list);
2386 		kfree(cmpl_node);
2387 	}
2388 }
2389 
2390 int irdma_generated_cmpls(struct irdma_cq *iwcq, struct irdma_cq_poll_info *cq_poll_info)
2391 {
2392 	struct irdma_cmpl_gen *cmpl;
2393 
2394 	if (list_empty(&iwcq->cmpl_generated))
2395 		return -ENOENT;
2396 	cmpl = list_first_entry_or_null(&iwcq->cmpl_generated, struct irdma_cmpl_gen, list);
2397 	list_del(&cmpl->list);
2398 	memcpy(cq_poll_info, &cmpl->cpi, sizeof(*cq_poll_info));
2399 	kfree(cmpl);
2400 
2401 	ibdev_dbg(iwcq->ibcq.device,
2402 		  "VERBS: %s: Poll artificially generated completion for QP 0x%X, op %u, wr_id=0x%llx\n",
2403 		  __func__, cq_poll_info->qp_id, cq_poll_info->op_type,
2404 		  cq_poll_info->wr_id);
2405 
2406 	return 0;
2407 }
2408 
2409 /**
2410  * irdma_set_cpi_common_values - fill in values for polling info struct
2411  * @cpi: resulting structure of cq_poll_info type
2412  * @qp: QPair
2413  * @qp_num: id of the QP
2414  */
2415 static void irdma_set_cpi_common_values(struct irdma_cq_poll_info *cpi,
2416 					struct irdma_qp_uk *qp, u32 qp_num)
2417 {
2418 	cpi->comp_status = IRDMA_COMPL_STATUS_FLUSHED;
2419 	cpi->error = true;
2420 	cpi->major_err = IRDMA_FLUSH_MAJOR_ERR;
2421 	cpi->minor_err = FLUSH_GENERAL_ERR;
2422 	cpi->qp_handle = (irdma_qp_handle)(uintptr_t)qp;
2423 	cpi->qp_id = qp_num;
2424 }
2425 
2426 static inline void irdma_comp_handler(struct irdma_cq *cq)
2427 {
2428 	if (!cq->ibcq.comp_handler)
2429 		return;
2430 	if (atomic_cmpxchg(&cq->armed, 1, 0))
2431 		cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context);
2432 }
2433 
2434 void irdma_generate_flush_completions(struct irdma_qp *iwqp)
2435 {
2436 	struct irdma_qp_uk *qp = &iwqp->sc_qp.qp_uk;
2437 	struct irdma_ring *sq_ring = &qp->sq_ring;
2438 	struct irdma_ring *rq_ring = &qp->rq_ring;
2439 	struct irdma_cmpl_gen *cmpl;
2440 	__le64 *sw_wqe;
2441 	u64 wqe_qword;
2442 	u32 wqe_idx;
2443 	bool compl_generated = false;
2444 	unsigned long flags1;
2445 
2446 	spin_lock_irqsave(&iwqp->iwscq->lock, flags1);
2447 	if (irdma_cq_empty(iwqp->iwscq)) {
2448 		unsigned long flags2;
2449 
2450 		spin_lock_irqsave(&iwqp->lock, flags2);
2451 		while (IRDMA_RING_MORE_WORK(*sq_ring)) {
2452 			cmpl = kzalloc(sizeof(*cmpl), GFP_ATOMIC);
2453 			if (!cmpl) {
2454 				spin_unlock_irqrestore(&iwqp->lock, flags2);
2455 				spin_unlock_irqrestore(&iwqp->iwscq->lock, flags1);
2456 				return;
2457 			}
2458 
2459 			wqe_idx = sq_ring->tail;
2460 			irdma_set_cpi_common_values(&cmpl->cpi, qp, qp->qp_id);
2461 
2462 			cmpl->cpi.wr_id = qp->sq_wrtrk_array[wqe_idx].wrid;
2463 			sw_wqe = qp->sq_base[wqe_idx].elem;
2464 			get_64bit_val(sw_wqe, 24, &wqe_qword);
2465 			cmpl->cpi.op_type = (u8)FIELD_GET(IRDMAQPSQ_OPCODE, IRDMAQPSQ_OPCODE);
2466 			cmpl->cpi.q_type = IRDMA_CQE_QTYPE_SQ;
2467 			/* remove the SQ WR by moving SQ tail*/
2468 			IRDMA_RING_SET_TAIL(*sq_ring,
2469 				sq_ring->tail + qp->sq_wrtrk_array[sq_ring->tail].quanta);
2470 			if (cmpl->cpi.op_type == IRDMAQP_OP_NOP) {
2471 				kfree(cmpl);
2472 				continue;
2473 			}
2474 			ibdev_dbg(iwqp->iwscq->ibcq.device,
2475 				  "DEV: %s: adding wr_id = 0x%llx SQ Completion to list qp_id=%d\n",
2476 				  __func__, cmpl->cpi.wr_id, qp->qp_id);
2477 			list_add_tail(&cmpl->list, &iwqp->iwscq->cmpl_generated);
2478 			compl_generated = true;
2479 		}
2480 		spin_unlock_irqrestore(&iwqp->lock, flags2);
2481 		spin_unlock_irqrestore(&iwqp->iwscq->lock, flags1);
2482 		if (compl_generated)
2483 			irdma_comp_handler(iwqp->iwscq);
2484 	} else {
2485 		spin_unlock_irqrestore(&iwqp->iwscq->lock, flags1);
2486 		mod_delayed_work(iwqp->iwdev->cleanup_wq, &iwqp->dwork_flush,
2487 				 msecs_to_jiffies(IRDMA_FLUSH_DELAY_MS));
2488 	}
2489 
2490 	spin_lock_irqsave(&iwqp->iwrcq->lock, flags1);
2491 	if (irdma_cq_empty(iwqp->iwrcq)) {
2492 		unsigned long flags2;
2493 
2494 		spin_lock_irqsave(&iwqp->lock, flags2);
2495 		while (IRDMA_RING_MORE_WORK(*rq_ring)) {
2496 			cmpl = kzalloc(sizeof(*cmpl), GFP_ATOMIC);
2497 			if (!cmpl) {
2498 				spin_unlock_irqrestore(&iwqp->lock, flags2);
2499 				spin_unlock_irqrestore(&iwqp->iwrcq->lock, flags1);
2500 				return;
2501 			}
2502 
2503 			wqe_idx = rq_ring->tail;
2504 			irdma_set_cpi_common_values(&cmpl->cpi, qp, qp->qp_id);
2505 
2506 			cmpl->cpi.wr_id = qp->rq_wrid_array[wqe_idx];
2507 			cmpl->cpi.op_type = IRDMA_OP_TYPE_REC;
2508 			cmpl->cpi.q_type = IRDMA_CQE_QTYPE_RQ;
2509 			/* remove the RQ WR by moving RQ tail */
2510 			IRDMA_RING_SET_TAIL(*rq_ring, rq_ring->tail + 1);
2511 			ibdev_dbg(iwqp->iwrcq->ibcq.device,
2512 				  "DEV: %s: adding wr_id = 0x%llx RQ Completion to list qp_id=%d, wqe_idx=%d\n",
2513 				  __func__, cmpl->cpi.wr_id, qp->qp_id,
2514 				  wqe_idx);
2515 			list_add_tail(&cmpl->list, &iwqp->iwrcq->cmpl_generated);
2516 
2517 			compl_generated = true;
2518 		}
2519 		spin_unlock_irqrestore(&iwqp->lock, flags2);
2520 		spin_unlock_irqrestore(&iwqp->iwrcq->lock, flags1);
2521 		if (compl_generated)
2522 			irdma_comp_handler(iwqp->iwrcq);
2523 	} else {
2524 		spin_unlock_irqrestore(&iwqp->iwrcq->lock, flags1);
2525 		mod_delayed_work(iwqp->iwdev->cleanup_wq, &iwqp->dwork_flush,
2526 				 msecs_to_jiffies(IRDMA_FLUSH_DELAY_MS));
2527 	}
2528 }
2529