1 /* 2 * Copyright (c) 2016 Hisilicon Limited. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/vmalloc.h> 35 #include <rdma/ib_umem.h> 36 #include <linux/math.h> 37 #include "hns_roce_device.h" 38 #include "hns_roce_cmd.h" 39 #include "hns_roce_hem.h" 40 41 static u32 hw_index_to_key(int ind) 42 { 43 return ((u32)ind >> 24) | ((u32)ind << 8); 44 } 45 46 unsigned long key_to_hw_index(u32 key) 47 { 48 return (key << 24) | (key >> 8); 49 } 50 51 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 52 { 53 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 54 struct ib_device *ibdev = &hr_dev->ib_dev; 55 int err; 56 int id; 57 58 /* Allocate a key for mr from mr_table */ 59 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 60 GFP_KERNEL); 61 if (id < 0) { 62 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id); 63 return -ENOMEM; 64 } 65 66 mr->key = hw_index_to_key(id); /* MR key */ 67 68 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, 69 (unsigned long)id); 70 if (err) { 71 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err); 72 goto err_free_bitmap; 73 } 74 75 return 0; 76 err_free_bitmap: 77 ida_free(&mtpt_ida->ida, id); 78 return err; 79 } 80 81 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 82 { 83 unsigned long obj = key_to_hw_index(mr->key); 84 85 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj); 86 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj); 87 } 88 89 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, 90 struct ib_udata *udata, u64 start) 91 { 92 struct ib_device *ibdev = &hr_dev->ib_dev; 93 bool is_fast = mr->type == MR_TYPE_FRMR; 94 struct hns_roce_buf_attr buf_attr = {}; 95 int err; 96 97 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num; 98 buf_attr.page_shift = is_fast ? PAGE_SHIFT : 99 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT; 100 buf_attr.region[0].size = mr->size; 101 buf_attr.region[0].hopnum = mr->pbl_hop_num; 102 buf_attr.region_count = 1; 103 buf_attr.user_access = mr->access; 104 /* fast MR's buffer is alloced before mapping, not at creation */ 105 buf_attr.mtt_only = is_fast; 106 107 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr, 108 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT, 109 udata, start); 110 if (err) 111 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err); 112 else 113 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count; 114 115 return err; 116 } 117 118 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 119 { 120 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr); 121 } 122 123 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 124 { 125 struct ib_device *ibdev = &hr_dev->ib_dev; 126 int ret; 127 128 if (mr->enabled) { 129 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 130 key_to_hw_index(mr->key) & 131 (hr_dev->caps.num_mtpts - 1)); 132 if (ret) 133 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n", 134 ret); 135 } 136 137 free_mr_pbl(hr_dev, mr); 138 free_mr_key(hr_dev, mr); 139 } 140 141 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev, 142 struct hns_roce_mr *mr) 143 { 144 unsigned long mtpt_idx = key_to_hw_index(mr->key); 145 struct hns_roce_cmd_mailbox *mailbox; 146 struct device *dev = hr_dev->dev; 147 int ret; 148 149 /* Allocate mailbox memory */ 150 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 151 if (IS_ERR(mailbox)) 152 return PTR_ERR(mailbox); 153 154 if (mr->type != MR_TYPE_FRMR) 155 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr); 156 else 157 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr); 158 if (ret) { 159 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret); 160 goto err_page; 161 } 162 163 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 164 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 165 if (ret) { 166 dev_err(dev, "failed to create mpt, ret = %d.\n", ret); 167 goto err_page; 168 } 169 170 mr->enabled = 1; 171 172 err_page: 173 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 174 175 return ret; 176 } 177 178 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev) 179 { 180 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 181 182 ida_init(&mtpt_ida->ida); 183 mtpt_ida->max = hr_dev->caps.num_mtpts - 1; 184 mtpt_ida->min = hr_dev->caps.reserved_mrws; 185 } 186 187 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc) 188 { 189 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 190 struct hns_roce_mr *mr; 191 int ret; 192 193 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 194 if (!mr) 195 return ERR_PTR(-ENOMEM); 196 197 mr->type = MR_TYPE_DMA; 198 mr->pd = to_hr_pd(pd)->pdn; 199 mr->access = acc; 200 201 /* Allocate memory region key */ 202 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list); 203 ret = alloc_mr_key(hr_dev, mr); 204 if (ret) 205 goto err_free; 206 207 ret = hns_roce_mr_enable(hr_dev, mr); 208 if (ret) 209 goto err_mr; 210 211 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 212 213 return &mr->ibmr; 214 err_mr: 215 free_mr_key(hr_dev, mr); 216 217 err_free: 218 kfree(mr); 219 return ERR_PTR(ret); 220 } 221 222 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 223 u64 virt_addr, int access_flags, 224 struct ib_udata *udata) 225 { 226 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 227 struct hns_roce_mr *mr; 228 int ret; 229 230 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 231 if (!mr) { 232 ret = -ENOMEM; 233 goto err_out; 234 } 235 236 mr->iova = virt_addr; 237 mr->size = length; 238 mr->pd = to_hr_pd(pd)->pdn; 239 mr->access = access_flags; 240 mr->type = MR_TYPE_MR; 241 242 ret = alloc_mr_key(hr_dev, mr); 243 if (ret) 244 goto err_alloc_mr; 245 246 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 247 if (ret) 248 goto err_alloc_key; 249 250 ret = hns_roce_mr_enable(hr_dev, mr); 251 if (ret) 252 goto err_alloc_pbl; 253 254 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 255 256 return &mr->ibmr; 257 258 err_alloc_pbl: 259 free_mr_pbl(hr_dev, mr); 260 err_alloc_key: 261 free_mr_key(hr_dev, mr); 262 err_alloc_mr: 263 kfree(mr); 264 err_out: 265 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REG_ERR_CNT]); 266 267 return ERR_PTR(ret); 268 } 269 270 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, 271 u64 length, u64 virt_addr, 272 int mr_access_flags, struct ib_pd *pd, 273 struct ib_udata *udata) 274 { 275 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 276 struct ib_device *ib_dev = &hr_dev->ib_dev; 277 struct hns_roce_mr *mr = to_hr_mr(ibmr); 278 struct hns_roce_cmd_mailbox *mailbox; 279 unsigned long mtpt_idx; 280 int ret; 281 282 if (!mr->enabled) { 283 ret = -EINVAL; 284 goto err_out; 285 } 286 287 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 288 ret = PTR_ERR_OR_ZERO(mailbox); 289 if (ret) 290 goto err_out; 291 292 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1); 293 294 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT, 295 mtpt_idx); 296 if (ret) 297 goto free_cmd_mbox; 298 299 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 300 mtpt_idx); 301 if (ret) 302 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret); 303 304 mr->enabled = 0; 305 mr->iova = virt_addr; 306 mr->size = length; 307 308 if (flags & IB_MR_REREG_PD) 309 mr->pd = to_hr_pd(pd)->pdn; 310 311 if (flags & IB_MR_REREG_ACCESS) 312 mr->access = mr_access_flags; 313 314 if (flags & IB_MR_REREG_TRANS) { 315 free_mr_pbl(hr_dev, mr); 316 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 317 if (ret) { 318 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n", 319 ret); 320 goto free_cmd_mbox; 321 } 322 } 323 324 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf); 325 if (ret) { 326 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret); 327 goto free_cmd_mbox; 328 } 329 330 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 331 mtpt_idx); 332 if (ret) { 333 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret); 334 goto free_cmd_mbox; 335 } 336 337 mr->enabled = 1; 338 339 free_cmd_mbox: 340 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 341 342 err_out: 343 if (ret) { 344 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REREG_ERR_CNT]); 345 return ERR_PTR(ret); 346 } 347 348 return NULL; 349 } 350 351 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 352 { 353 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 354 struct hns_roce_mr *mr = to_hr_mr(ibmr); 355 356 if (hr_dev->hw->dereg_mr) 357 hr_dev->hw->dereg_mr(hr_dev); 358 359 hns_roce_mr_free(hr_dev, mr); 360 kfree(mr); 361 362 return 0; 363 } 364 365 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 366 u32 max_num_sg) 367 { 368 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 369 struct device *dev = hr_dev->dev; 370 struct hns_roce_mr *mr; 371 int ret; 372 373 if (mr_type != IB_MR_TYPE_MEM_REG) 374 return ERR_PTR(-EINVAL); 375 376 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) { 377 dev_err(dev, "max_num_sg larger than %d\n", 378 HNS_ROCE_FRMR_MAX_PA); 379 return ERR_PTR(-EINVAL); 380 } 381 382 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 383 if (!mr) 384 return ERR_PTR(-ENOMEM); 385 386 mr->type = MR_TYPE_FRMR; 387 mr->pd = to_hr_pd(pd)->pdn; 388 mr->size = max_num_sg * (1 << PAGE_SHIFT); 389 390 /* Allocate memory region key */ 391 ret = alloc_mr_key(hr_dev, mr); 392 if (ret) 393 goto err_free; 394 395 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0); 396 if (ret) 397 goto err_key; 398 399 ret = hns_roce_mr_enable(hr_dev, mr); 400 if (ret) 401 goto err_pbl; 402 403 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 404 mr->ibmr.length = mr->size; 405 406 return &mr->ibmr; 407 408 err_pbl: 409 free_mr_pbl(hr_dev, mr); 410 err_key: 411 free_mr_key(hr_dev, mr); 412 err_free: 413 kfree(mr); 414 return ERR_PTR(ret); 415 } 416 417 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr) 418 { 419 struct hns_roce_mr *mr = to_hr_mr(ibmr); 420 421 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) { 422 mr->page_list[mr->npages++] = addr; 423 return 0; 424 } 425 426 return -ENOBUFS; 427 } 428 429 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 430 unsigned int *sg_offset) 431 { 432 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 433 struct ib_device *ibdev = &hr_dev->ib_dev; 434 struct hns_roce_mr *mr = to_hr_mr(ibmr); 435 struct hns_roce_mtr *mtr = &mr->pbl_mtr; 436 int ret = 0; 437 438 mr->npages = 0; 439 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count, 440 sizeof(dma_addr_t), GFP_KERNEL); 441 if (!mr->page_list) 442 return ret; 443 444 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page); 445 if (ret < 1) { 446 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n", 447 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, ret); 448 goto err_page_list; 449 } 450 451 mtr->hem_cfg.region[0].offset = 0; 452 mtr->hem_cfg.region[0].count = mr->npages; 453 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num; 454 mtr->hem_cfg.region_count = 1; 455 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages); 456 if (ret) { 457 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret); 458 ret = 0; 459 } else { 460 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size); 461 ret = mr->npages; 462 } 463 464 err_page_list: 465 kvfree(mr->page_list); 466 mr->page_list = NULL; 467 468 return ret; 469 } 470 471 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev, 472 struct hns_roce_mw *mw) 473 { 474 struct device *dev = hr_dev->dev; 475 int ret; 476 477 if (mw->enabled) { 478 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 479 key_to_hw_index(mw->rkey) & 480 (hr_dev->caps.num_mtpts - 1)); 481 if (ret) 482 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret); 483 484 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, 485 key_to_hw_index(mw->rkey)); 486 } 487 488 ida_free(&hr_dev->mr_table.mtpt_ida.ida, 489 (int)key_to_hw_index(mw->rkey)); 490 } 491 492 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev, 493 struct hns_roce_mw *mw) 494 { 495 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table; 496 struct hns_roce_cmd_mailbox *mailbox; 497 struct device *dev = hr_dev->dev; 498 unsigned long mtpt_idx = key_to_hw_index(mw->rkey); 499 int ret; 500 501 /* prepare HEM entry memory */ 502 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx); 503 if (ret) 504 return ret; 505 506 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 507 if (IS_ERR(mailbox)) { 508 ret = PTR_ERR(mailbox); 509 goto err_table; 510 } 511 512 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw); 513 if (ret) { 514 dev_err(dev, "MW write mtpt fail!\n"); 515 goto err_page; 516 } 517 518 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 519 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 520 if (ret) { 521 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret); 522 goto err_page; 523 } 524 525 mw->enabled = 1; 526 527 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 528 529 return 0; 530 531 err_page: 532 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 533 534 err_table: 535 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx); 536 537 return ret; 538 } 539 540 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 541 { 542 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 543 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 544 struct ib_device *ibdev = &hr_dev->ib_dev; 545 struct hns_roce_mw *mw = to_hr_mw(ibmw); 546 int ret; 547 int id; 548 549 /* Allocate a key for mw from mr_table */ 550 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 551 GFP_KERNEL); 552 if (id < 0) { 553 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id); 554 return -ENOMEM; 555 } 556 557 mw->rkey = hw_index_to_key(id); 558 559 ibmw->rkey = mw->rkey; 560 mw->pdn = to_hr_pd(ibmw->pd)->pdn; 561 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num; 562 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz; 563 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz; 564 565 ret = hns_roce_mw_enable(hr_dev, mw); 566 if (ret) 567 goto err_mw; 568 569 return 0; 570 571 err_mw: 572 hns_roce_mw_free(hr_dev, mw); 573 return ret; 574 } 575 576 int hns_roce_dealloc_mw(struct ib_mw *ibmw) 577 { 578 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 579 struct hns_roce_mw *mw = to_hr_mw(ibmw); 580 581 hns_roce_mw_free(hr_dev, mw); 582 return 0; 583 } 584 585 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 586 struct hns_roce_buf_region *region, dma_addr_t *pages, 587 int max_count) 588 { 589 int count, npage; 590 int offset, end; 591 __le64 *mtts; 592 u64 addr; 593 int i; 594 595 offset = region->offset; 596 end = offset + region->count; 597 npage = 0; 598 while (offset < end && npage < max_count) { 599 count = 0; 600 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 601 offset, &count); 602 if (!mtts) 603 return -ENOBUFS; 604 605 for (i = 0; i < count && npage < max_count; i++) { 606 addr = pages[npage]; 607 608 mtts[i] = cpu_to_le64(addr); 609 npage++; 610 } 611 offset += count; 612 } 613 614 return npage; 615 } 616 617 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr) 618 { 619 int i; 620 621 for (i = 0; i < attr->region_count; i++) 622 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 && 623 attr->region[i].hopnum > 0) 624 return true; 625 626 /* because the mtr only one root base address, when hopnum is 0 means 627 * root base address equals the first buffer address, thus all alloced 628 * memory must in a continuous space accessed by direct mode. 629 */ 630 return false; 631 } 632 633 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr) 634 { 635 size_t size = 0; 636 int i; 637 638 for (i = 0; i < attr->region_count; i++) 639 size += attr->region[i].size; 640 641 return size; 642 } 643 644 /* 645 * check the given pages in continuous address space 646 * Returns 0 on success, or the error page num. 647 */ 648 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count, 649 unsigned int page_shift) 650 { 651 size_t page_size = 1 << page_shift; 652 int i; 653 654 for (i = 1; i < page_count; i++) 655 if (pages[i] - pages[i - 1] != page_size) 656 return i; 657 658 return 0; 659 } 660 661 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 662 { 663 /* release user buffers */ 664 if (mtr->umem) { 665 ib_umem_release(mtr->umem); 666 mtr->umem = NULL; 667 } 668 669 /* release kernel buffers */ 670 if (mtr->kmem) { 671 hns_roce_buf_free(hr_dev, mtr->kmem); 672 mtr->kmem = NULL; 673 } 674 } 675 676 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 677 struct hns_roce_buf_attr *buf_attr, 678 struct ib_udata *udata, unsigned long user_addr) 679 { 680 struct ib_device *ibdev = &hr_dev->ib_dev; 681 size_t total_size; 682 683 total_size = mtr_bufs_size(buf_attr); 684 685 if (udata) { 686 mtr->kmem = NULL; 687 mtr->umem = ib_umem_get(ibdev, user_addr, total_size, 688 buf_attr->user_access); 689 if (IS_ERR(mtr->umem)) { 690 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n", 691 PTR_ERR(mtr->umem)); 692 return -ENOMEM; 693 } 694 } else { 695 mtr->umem = NULL; 696 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size, 697 buf_attr->page_shift, 698 mtr->hem_cfg.is_direct ? 699 HNS_ROCE_BUF_DIRECT : 0); 700 if (IS_ERR(mtr->kmem)) { 701 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n", 702 PTR_ERR(mtr->kmem)); 703 return PTR_ERR(mtr->kmem); 704 } 705 } 706 707 return 0; 708 } 709 710 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 711 int page_count, unsigned int page_shift) 712 { 713 struct ib_device *ibdev = &hr_dev->ib_dev; 714 dma_addr_t *pages; 715 int npage; 716 int ret; 717 718 /* alloc a tmp array to store buffer's dma address */ 719 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL); 720 if (!pages) 721 return -ENOMEM; 722 723 if (mtr->umem) 724 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count, 725 mtr->umem, page_shift); 726 else 727 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, 728 mtr->kmem, page_shift); 729 730 if (npage != page_count) { 731 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage, 732 page_count); 733 ret = -ENOBUFS; 734 goto err_alloc_list; 735 } 736 737 if (mtr->hem_cfg.is_direct && npage > 1) { 738 ret = mtr_check_direct_pages(pages, npage, page_shift); 739 if (ret) { 740 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n", 741 mtr->umem ? "umtr" : "kmtr", ret, npage); 742 ret = -ENOBUFS; 743 goto err_alloc_list; 744 } 745 } 746 747 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count); 748 if (ret) 749 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret); 750 751 err_alloc_list: 752 kvfree(pages); 753 754 return ret; 755 } 756 757 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 758 dma_addr_t *pages, unsigned int page_cnt) 759 { 760 struct ib_device *ibdev = &hr_dev->ib_dev; 761 struct hns_roce_buf_region *r; 762 unsigned int i, mapped_cnt; 763 int ret = 0; 764 765 /* 766 * Only use the first page address as root ba when hopnum is 0, this 767 * is because the addresses of all pages are consecutive in this case. 768 */ 769 if (mtr->hem_cfg.is_direct) { 770 mtr->hem_cfg.root_ba = pages[0]; 771 return 0; 772 } 773 774 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count && 775 mapped_cnt < page_cnt; i++) { 776 r = &mtr->hem_cfg.region[i]; 777 /* if hopnum is 0, no need to map pages in this region */ 778 if (!r->hopnum) { 779 mapped_cnt += r->count; 780 continue; 781 } 782 783 if (r->offset + r->count > page_cnt) { 784 ret = -EINVAL; 785 ibdev_err(ibdev, 786 "failed to check mtr%u count %u + %u > %u.\n", 787 i, r->offset, r->count, page_cnt); 788 return ret; 789 } 790 791 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset], 792 page_cnt - mapped_cnt); 793 if (ret < 0) { 794 ibdev_err(ibdev, 795 "failed to map mtr%u offset %u, ret = %d.\n", 796 i, r->offset, ret); 797 return ret; 798 } 799 mapped_cnt += ret; 800 ret = 0; 801 } 802 803 if (mapped_cnt < page_cnt) { 804 ret = -ENOBUFS; 805 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n", 806 mapped_cnt, page_cnt); 807 } 808 809 return ret; 810 } 811 812 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 813 u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr) 814 { 815 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 816 int mtt_count, left; 817 u32 start_index; 818 int total = 0; 819 __le64 *mtts; 820 u32 npage; 821 u64 addr; 822 823 if (!mtt_buf || mtt_max < 1) 824 goto done; 825 826 /* no mtt memory in direct mode, so just return the buffer address */ 827 if (cfg->is_direct) { 828 start_index = offset >> HNS_HW_PAGE_SHIFT; 829 for (mtt_count = 0; mtt_count < cfg->region_count && 830 total < mtt_max; mtt_count++) { 831 npage = cfg->region[mtt_count].offset; 832 if (npage < start_index) 833 continue; 834 835 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT); 836 mtt_buf[total] = addr; 837 838 total++; 839 } 840 841 goto done; 842 } 843 844 start_index = offset >> cfg->buf_pg_shift; 845 left = mtt_max; 846 while (left > 0) { 847 mtt_count = 0; 848 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 849 start_index + total, 850 &mtt_count); 851 if (!mtts || !mtt_count) 852 goto done; 853 854 npage = min(mtt_count, left); 855 left -= npage; 856 for (mtt_count = 0; mtt_count < npage; mtt_count++) 857 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]); 858 } 859 860 done: 861 if (base_addr) 862 *base_addr = cfg->root_ba; 863 864 return total; 865 } 866 867 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev, 868 struct hns_roce_buf_attr *attr, 869 struct hns_roce_hem_cfg *cfg, 870 unsigned int *buf_page_shift, u64 unalinged_size) 871 { 872 struct hns_roce_buf_region *r; 873 u64 first_region_padding; 874 int page_cnt, region_cnt; 875 unsigned int page_shift; 876 size_t buf_size; 877 878 /* If mtt is disabled, all pages must be within a continuous range */ 879 cfg->is_direct = !mtr_has_mtt(attr); 880 buf_size = mtr_bufs_size(attr); 881 if (cfg->is_direct) { 882 /* When HEM buffer uses 0-level addressing, the page size is 883 * equal to the whole buffer size, and we split the buffer into 884 * small pages which is used to check whether the adjacent 885 * units are in the continuous space and its size is fixed to 886 * 4K based on hns ROCEE's requirement. 887 */ 888 page_shift = HNS_HW_PAGE_SHIFT; 889 890 /* The ROCEE requires the page size to be 4K * 2 ^ N. */ 891 cfg->buf_pg_count = 1; 892 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + 893 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE)); 894 first_region_padding = 0; 895 } else { 896 page_shift = attr->page_shift; 897 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size, 898 1 << page_shift); 899 cfg->buf_pg_shift = page_shift; 900 first_region_padding = unalinged_size; 901 } 902 903 /* Convert buffer size to page index and page count for each region and 904 * the buffer's offset needs to be appended to the first region. 905 */ 906 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count && 907 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) { 908 r = &cfg->region[region_cnt]; 909 r->offset = page_cnt; 910 buf_size = hr_hw_page_align(attr->region[region_cnt].size + 911 first_region_padding); 912 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift); 913 first_region_padding = 0; 914 page_cnt += r->count; 915 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum, 916 r->count); 917 } 918 919 cfg->region_count = region_cnt; 920 *buf_page_shift = page_shift; 921 922 return page_cnt; 923 } 924 925 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum) 926 { 927 return int_pow(ba_per_bt, hopnum - 1); 928 } 929 930 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev, 931 struct hns_roce_mtr *mtr, 932 unsigned int pg_shift) 933 { 934 unsigned long cap = hr_dev->caps.page_size_cap; 935 struct hns_roce_buf_region *re; 936 unsigned int pgs_per_l1ba; 937 unsigned int ba_per_bt; 938 unsigned int ba_num; 939 int i; 940 941 for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) { 942 if (!(BIT(pg_shift) & cap)) 943 continue; 944 945 ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN; 946 ba_num = 0; 947 for (i = 0; i < mtr->hem_cfg.region_count; i++) { 948 re = &mtr->hem_cfg.region[i]; 949 if (re->hopnum == 0) 950 continue; 951 952 pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum); 953 ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba); 954 } 955 956 if (ba_num <= ba_per_bt) 957 return pg_shift; 958 } 959 960 return 0; 961 } 962 963 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 964 unsigned int ba_page_shift) 965 { 966 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 967 int ret; 968 969 hns_roce_hem_list_init(&mtr->hem_list); 970 if (!cfg->is_direct) { 971 ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift); 972 if (!ba_page_shift) 973 return -ERANGE; 974 975 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list, 976 cfg->region, cfg->region_count, 977 ba_page_shift); 978 if (ret) 979 return ret; 980 cfg->root_ba = mtr->hem_list.root_ba; 981 cfg->ba_pg_shift = ba_page_shift; 982 } else { 983 cfg->ba_pg_shift = cfg->buf_pg_shift; 984 } 985 986 return 0; 987 } 988 989 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 990 { 991 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 992 } 993 994 /** 995 * hns_roce_mtr_create - Create hns memory translate region. 996 * 997 * @hr_dev: RoCE device struct pointer 998 * @mtr: memory translate region 999 * @buf_attr: buffer attribute for creating mtr 1000 * @ba_page_shift: page shift for multi-hop base address table 1001 * @udata: user space context, if it's NULL, means kernel space 1002 * @user_addr: userspace virtual address to start at 1003 */ 1004 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 1005 struct hns_roce_buf_attr *buf_attr, 1006 unsigned int ba_page_shift, struct ib_udata *udata, 1007 unsigned long user_addr) 1008 { 1009 struct ib_device *ibdev = &hr_dev->ib_dev; 1010 unsigned int buf_page_shift = 0; 1011 int buf_page_cnt; 1012 int ret; 1013 1014 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg, 1015 &buf_page_shift, 1016 udata ? user_addr & ~PAGE_MASK : 0); 1017 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) { 1018 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n", 1019 buf_page_cnt, buf_page_shift); 1020 return -EINVAL; 1021 } 1022 1023 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift); 1024 if (ret) { 1025 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret); 1026 return ret; 1027 } 1028 1029 /* The caller has its own buffer list and invokes the hns_roce_mtr_map() 1030 * to finish the MTT configuration. 1031 */ 1032 if (buf_attr->mtt_only) { 1033 mtr->umem = NULL; 1034 mtr->kmem = NULL; 1035 return 0; 1036 } 1037 1038 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr); 1039 if (ret) { 1040 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret); 1041 goto err_alloc_mtt; 1042 } 1043 1044 /* Write buffer's dma address to MTT */ 1045 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift); 1046 if (ret) 1047 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret); 1048 else 1049 return 0; 1050 1051 mtr_free_bufs(hr_dev, mtr); 1052 err_alloc_mtt: 1053 mtr_free_mtt(hr_dev, mtr); 1054 return ret; 1055 } 1056 1057 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1058 { 1059 /* release multi-hop addressing resource */ 1060 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1061 1062 /* free buffers */ 1063 mtr_free_bufs(hr_dev, mtr); 1064 } 1065