xref: /linux/drivers/infiniband/hw/hns/hns_roce_mr.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 /*
2  * Copyright (c) 2016 Hisilicon Limited.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/vmalloc.h>
35 #include <linux/count_zeros.h>
36 #include <rdma/ib_umem.h>
37 #include <linux/math.h>
38 #include "hns_roce_device.h"
39 #include "hns_roce_cmd.h"
40 #include "hns_roce_hem.h"
41 
42 static u32 hw_index_to_key(int ind)
43 {
44 	return ((u32)ind >> 24) | ((u32)ind << 8);
45 }
46 
47 unsigned long key_to_hw_index(u32 key)
48 {
49 	return (key << 24) | (key >> 8);
50 }
51 
52 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
53 {
54 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
55 	struct ib_device *ibdev = &hr_dev->ib_dev;
56 	int err;
57 	int id;
58 
59 	/* Allocate a key for mr from mr_table */
60 	id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
61 			     GFP_KERNEL);
62 	if (id < 0) {
63 		ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
64 		return -ENOMEM;
65 	}
66 
67 	mr->key = hw_index_to_key(id); /* MR key */
68 
69 	err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
70 				 (unsigned long)id);
71 	if (err) {
72 		ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
73 		goto err_free_bitmap;
74 	}
75 
76 	return 0;
77 err_free_bitmap:
78 	ida_free(&mtpt_ida->ida, id);
79 	return err;
80 }
81 
82 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
83 {
84 	unsigned long obj = key_to_hw_index(mr->key);
85 
86 	hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
87 	ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
88 }
89 
90 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
91 			struct ib_udata *udata, u64 start)
92 {
93 	struct ib_device *ibdev = &hr_dev->ib_dev;
94 	bool is_fast = mr->type == MR_TYPE_FRMR;
95 	struct hns_roce_buf_attr buf_attr = {};
96 	int err;
97 
98 	mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
99 	buf_attr.page_shift = is_fast ? PAGE_SHIFT :
100 			      hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
101 	buf_attr.region[0].size = mr->size;
102 	buf_attr.region[0].hopnum = mr->pbl_hop_num;
103 	buf_attr.region_count = 1;
104 	buf_attr.user_access = mr->access;
105 	/* fast MR's buffer is alloced before mapping, not at creation */
106 	buf_attr.mtt_only = is_fast;
107 	buf_attr.iova = mr->iova;
108 	/* pagesize and hopnum is fixed for fast MR */
109 	buf_attr.adaptive = !is_fast;
110 	buf_attr.type = MTR_PBL;
111 
112 	err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
113 				  hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
114 				  udata, start);
115 	if (err) {
116 		ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
117 		return err;
118 	}
119 
120 	mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
121 	mr->pbl_hop_num = buf_attr.region[0].hopnum;
122 
123 	return err;
124 }
125 
126 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
127 {
128 	hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
129 }
130 
131 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
132 {
133 	struct ib_device *ibdev = &hr_dev->ib_dev;
134 	int ret;
135 
136 	if (mr->enabled) {
137 		ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
138 					      key_to_hw_index(mr->key) &
139 					      (hr_dev->caps.num_mtpts - 1));
140 		if (ret)
141 			ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
142 				   ret);
143 	}
144 
145 	free_mr_pbl(hr_dev, mr);
146 	free_mr_key(hr_dev, mr);
147 }
148 
149 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
150 			      struct hns_roce_mr *mr)
151 {
152 	unsigned long mtpt_idx = key_to_hw_index(mr->key);
153 	struct hns_roce_cmd_mailbox *mailbox;
154 	struct device *dev = hr_dev->dev;
155 	int ret;
156 
157 	/* Allocate mailbox memory */
158 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
159 	if (IS_ERR(mailbox))
160 		return PTR_ERR(mailbox);
161 
162 	if (mr->type != MR_TYPE_FRMR)
163 		ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
164 	else
165 		ret = hr_dev->hw->frmr_write_mtpt(mailbox->buf, mr);
166 	if (ret) {
167 		dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
168 		goto err_page;
169 	}
170 
171 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
172 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
173 	if (ret) {
174 		dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
175 		goto err_page;
176 	}
177 
178 	mr->enabled = 1;
179 
180 err_page:
181 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
182 
183 	return ret;
184 }
185 
186 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
187 {
188 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
189 
190 	ida_init(&mtpt_ida->ida);
191 	mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
192 	mtpt_ida->min = hr_dev->caps.reserved_mrws;
193 }
194 
195 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
196 {
197 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
198 	struct hns_roce_mr *mr;
199 	int ret;
200 
201 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
202 	if (!mr)
203 		return  ERR_PTR(-ENOMEM);
204 
205 	mr->type = MR_TYPE_DMA;
206 	mr->pd = to_hr_pd(pd)->pdn;
207 	mr->access = acc;
208 
209 	/* Allocate memory region key */
210 	hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
211 	ret = alloc_mr_key(hr_dev, mr);
212 	if (ret)
213 		goto err_free;
214 
215 	ret = hns_roce_mr_enable(hr_dev, mr);
216 	if (ret)
217 		goto err_mr;
218 
219 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
220 
221 	return &mr->ibmr;
222 err_mr:
223 	free_mr_key(hr_dev, mr);
224 
225 err_free:
226 	kfree(mr);
227 	return ERR_PTR(ret);
228 }
229 
230 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
231 				   u64 virt_addr, int access_flags,
232 				   struct ib_udata *udata)
233 {
234 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
235 	struct hns_roce_mr *mr;
236 	int ret;
237 
238 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
239 	if (!mr) {
240 		ret = -ENOMEM;
241 		goto err_out;
242 	}
243 
244 	mr->iova = virt_addr;
245 	mr->size = length;
246 	mr->pd = to_hr_pd(pd)->pdn;
247 	mr->access = access_flags;
248 	mr->type = MR_TYPE_MR;
249 
250 	ret = alloc_mr_key(hr_dev, mr);
251 	if (ret)
252 		goto err_alloc_mr;
253 
254 	ret = alloc_mr_pbl(hr_dev, mr, udata, start);
255 	if (ret)
256 		goto err_alloc_key;
257 
258 	ret = hns_roce_mr_enable(hr_dev, mr);
259 	if (ret)
260 		goto err_alloc_pbl;
261 
262 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
263 
264 	return &mr->ibmr;
265 
266 err_alloc_pbl:
267 	free_mr_pbl(hr_dev, mr);
268 err_alloc_key:
269 	free_mr_key(hr_dev, mr);
270 err_alloc_mr:
271 	kfree(mr);
272 err_out:
273 	atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REG_ERR_CNT]);
274 
275 	return ERR_PTR(ret);
276 }
277 
278 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
279 				     u64 length, u64 virt_addr,
280 				     int mr_access_flags, struct ib_pd *pd,
281 				     struct ib_udata *udata)
282 {
283 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
284 	struct ib_device *ib_dev = &hr_dev->ib_dev;
285 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
286 	struct hns_roce_cmd_mailbox *mailbox;
287 	unsigned long mtpt_idx;
288 	int ret;
289 
290 	if (!mr->enabled) {
291 		ret = -EINVAL;
292 		goto err_out;
293 	}
294 
295 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
296 	ret = PTR_ERR_OR_ZERO(mailbox);
297 	if (ret)
298 		goto err_out;
299 
300 	mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
301 
302 	ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
303 				mtpt_idx);
304 	if (ret)
305 		goto free_cmd_mbox;
306 
307 	ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
308 				      mtpt_idx);
309 	if (ret)
310 		ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
311 
312 	mr->enabled = 0;
313 	mr->iova = virt_addr;
314 	mr->size = length;
315 
316 	if (flags & IB_MR_REREG_PD)
317 		mr->pd = to_hr_pd(pd)->pdn;
318 
319 	if (flags & IB_MR_REREG_ACCESS)
320 		mr->access = mr_access_flags;
321 
322 	if (flags & IB_MR_REREG_TRANS) {
323 		free_mr_pbl(hr_dev, mr);
324 		ret = alloc_mr_pbl(hr_dev, mr, udata, start);
325 		if (ret) {
326 			ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
327 				  ret);
328 			goto free_cmd_mbox;
329 		}
330 	}
331 
332 	ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
333 	if (ret) {
334 		ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
335 		goto free_cmd_mbox;
336 	}
337 
338 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
339 				     mtpt_idx);
340 	if (ret) {
341 		ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
342 		goto free_cmd_mbox;
343 	}
344 
345 	mr->enabled = 1;
346 
347 free_cmd_mbox:
348 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
349 
350 err_out:
351 	if (ret) {
352 		atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REREG_ERR_CNT]);
353 		return ERR_PTR(ret);
354 	}
355 
356 	return NULL;
357 }
358 
359 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
360 {
361 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
362 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
363 
364 	if (hr_dev->hw->dereg_mr)
365 		hr_dev->hw->dereg_mr(hr_dev);
366 
367 	hns_roce_mr_free(hr_dev, mr);
368 	kfree(mr);
369 
370 	return 0;
371 }
372 
373 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
374 				u32 max_num_sg)
375 {
376 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
377 	struct device *dev = hr_dev->dev;
378 	struct hns_roce_mr *mr;
379 	int ret;
380 
381 	if (mr_type != IB_MR_TYPE_MEM_REG)
382 		return ERR_PTR(-EINVAL);
383 
384 	if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
385 		dev_err(dev, "max_num_sg larger than %d\n",
386 			HNS_ROCE_FRMR_MAX_PA);
387 		return ERR_PTR(-EINVAL);
388 	}
389 
390 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
391 	if (!mr)
392 		return ERR_PTR(-ENOMEM);
393 
394 	mr->type = MR_TYPE_FRMR;
395 	mr->pd = to_hr_pd(pd)->pdn;
396 	mr->size = max_num_sg * (1 << PAGE_SHIFT);
397 
398 	/* Allocate memory region key */
399 	ret = alloc_mr_key(hr_dev, mr);
400 	if (ret)
401 		goto err_free;
402 
403 	ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
404 	if (ret)
405 		goto err_key;
406 
407 	ret = hns_roce_mr_enable(hr_dev, mr);
408 	if (ret)
409 		goto err_pbl;
410 
411 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
412 	mr->ibmr.length = mr->size;
413 
414 	return &mr->ibmr;
415 
416 err_pbl:
417 	free_mr_pbl(hr_dev, mr);
418 err_key:
419 	free_mr_key(hr_dev, mr);
420 err_free:
421 	kfree(mr);
422 	return ERR_PTR(ret);
423 }
424 
425 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
426 {
427 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
428 
429 	if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
430 		mr->page_list[mr->npages++] = addr;
431 		return 0;
432 	}
433 
434 	return -ENOBUFS;
435 }
436 
437 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
438 		       unsigned int *sg_offset)
439 {
440 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
441 	struct ib_device *ibdev = &hr_dev->ib_dev;
442 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
443 	struct hns_roce_mtr *mtr = &mr->pbl_mtr;
444 	int ret, sg_num = 0;
445 
446 	if (!IS_ALIGNED(*sg_offset, HNS_ROCE_FRMR_ALIGN_SIZE) ||
447 	    ibmr->page_size < HNS_HW_PAGE_SIZE ||
448 	    ibmr->page_size > HNS_HW_MAX_PAGE_SIZE)
449 		return sg_num;
450 
451 	mr->npages = 0;
452 	mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
453 				 sizeof(dma_addr_t), GFP_KERNEL);
454 	if (!mr->page_list)
455 		return sg_num;
456 
457 	sg_num = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
458 	if (sg_num < 1) {
459 		ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
460 			  mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, sg_num);
461 		goto err_page_list;
462 	}
463 
464 	mtr->hem_cfg.region[0].offset = 0;
465 	mtr->hem_cfg.region[0].count = mr->npages;
466 	mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
467 	mtr->hem_cfg.region_count = 1;
468 	ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
469 	if (ret) {
470 		ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
471 		sg_num = 0;
472 	} else {
473 		mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
474 	}
475 
476 err_page_list:
477 	kvfree(mr->page_list);
478 	mr->page_list = NULL;
479 
480 	return sg_num;
481 }
482 
483 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
484 			     struct hns_roce_mw *mw)
485 {
486 	struct device *dev = hr_dev->dev;
487 	int ret;
488 
489 	if (mw->enabled) {
490 		ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
491 					      key_to_hw_index(mw->rkey) &
492 					      (hr_dev->caps.num_mtpts - 1));
493 		if (ret)
494 			dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
495 
496 		hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
497 				   key_to_hw_index(mw->rkey));
498 	}
499 
500 	ida_free(&hr_dev->mr_table.mtpt_ida.ida,
501 		 (int)key_to_hw_index(mw->rkey));
502 }
503 
504 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
505 			      struct hns_roce_mw *mw)
506 {
507 	struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
508 	struct hns_roce_cmd_mailbox *mailbox;
509 	struct device *dev = hr_dev->dev;
510 	unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
511 	int ret;
512 
513 	/* prepare HEM entry memory */
514 	ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
515 	if (ret)
516 		return ret;
517 
518 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
519 	if (IS_ERR(mailbox)) {
520 		ret = PTR_ERR(mailbox);
521 		goto err_table;
522 	}
523 
524 	ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
525 	if (ret) {
526 		dev_err(dev, "MW write mtpt fail!\n");
527 		goto err_page;
528 	}
529 
530 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
531 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
532 	if (ret) {
533 		dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
534 		goto err_page;
535 	}
536 
537 	mw->enabled = 1;
538 
539 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
540 
541 	return 0;
542 
543 err_page:
544 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
545 
546 err_table:
547 	hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
548 
549 	return ret;
550 }
551 
552 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
553 {
554 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
555 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
556 	struct ib_device *ibdev = &hr_dev->ib_dev;
557 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
558 	int ret;
559 	int id;
560 
561 	/* Allocate a key for mw from mr_table */
562 	id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
563 			     GFP_KERNEL);
564 	if (id < 0) {
565 		ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id);
566 		return -ENOMEM;
567 	}
568 
569 	mw->rkey = hw_index_to_key(id);
570 
571 	ibmw->rkey = mw->rkey;
572 	mw->pdn = to_hr_pd(ibmw->pd)->pdn;
573 	mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
574 	mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
575 	mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
576 
577 	ret = hns_roce_mw_enable(hr_dev, mw);
578 	if (ret)
579 		goto err_mw;
580 
581 	return 0;
582 
583 err_mw:
584 	hns_roce_mw_free(hr_dev, mw);
585 	return ret;
586 }
587 
588 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
589 {
590 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
591 	struct hns_roce_mw *mw = to_hr_mw(ibmw);
592 
593 	hns_roce_mw_free(hr_dev, mw);
594 	return 0;
595 }
596 
597 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
598 			  struct hns_roce_buf_region *region, dma_addr_t *pages,
599 			  int max_count)
600 {
601 	int count, npage;
602 	int offset, end;
603 	__le64 *mtts;
604 	u64 addr;
605 	int i;
606 
607 	offset = region->offset;
608 	end = offset + region->count;
609 	npage = 0;
610 	while (offset < end && npage < max_count) {
611 		count = 0;
612 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
613 						  offset, &count);
614 		if (!mtts)
615 			return -ENOBUFS;
616 
617 		for (i = 0; i < count && npage < max_count; i++) {
618 			addr = pages[npage];
619 
620 			mtts[i] = cpu_to_le64(addr);
621 			npage++;
622 		}
623 		offset += count;
624 	}
625 
626 	return npage;
627 }
628 
629 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
630 {
631 	int i;
632 
633 	for (i = 0; i < attr->region_count; i++)
634 		if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
635 		    attr->region[i].hopnum > 0)
636 			return true;
637 
638 	/* because the mtr only one root base address, when hopnum is 0 means
639 	 * root base address equals the first buffer address, thus all alloced
640 	 * memory must in a continuous space accessed by direct mode.
641 	 */
642 	return false;
643 }
644 
645 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
646 {
647 	size_t size = 0;
648 	int i;
649 
650 	for (i = 0; i < attr->region_count; i++)
651 		size += attr->region[i].size;
652 
653 	return size;
654 }
655 
656 /*
657  * check the given pages in continuous address space
658  * Returns 0 on success, or the error page num.
659  */
660 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
661 					 unsigned int page_shift)
662 {
663 	size_t page_size = 1 << page_shift;
664 	int i;
665 
666 	for (i = 1; i < page_count; i++)
667 		if (pages[i] - pages[i - 1] != page_size)
668 			return i;
669 
670 	return 0;
671 }
672 
673 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
674 {
675 	/* release user buffers */
676 	if (mtr->umem) {
677 		ib_umem_release(mtr->umem);
678 		mtr->umem = NULL;
679 	}
680 
681 	/* release kernel buffers */
682 	if (mtr->kmem) {
683 		hns_roce_buf_free(hr_dev, mtr->kmem);
684 		mtr->kmem = NULL;
685 	}
686 }
687 
688 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
689 			  struct hns_roce_buf_attr *buf_attr,
690 			  struct ib_udata *udata, unsigned long user_addr)
691 {
692 	struct ib_device *ibdev = &hr_dev->ib_dev;
693 	size_t total_size;
694 
695 	total_size = mtr_bufs_size(buf_attr);
696 
697 	if (udata) {
698 		mtr->kmem = NULL;
699 		mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
700 					buf_attr->user_access);
701 		if (IS_ERR(mtr->umem)) {
702 			ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
703 				  PTR_ERR(mtr->umem));
704 			return -ENOMEM;
705 		}
706 	} else {
707 		mtr->umem = NULL;
708 		mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
709 					       buf_attr->page_shift,
710 					       !mtr_has_mtt(buf_attr) ?
711 					       HNS_ROCE_BUF_DIRECT : 0);
712 		if (IS_ERR(mtr->kmem)) {
713 			ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
714 				  PTR_ERR(mtr->kmem));
715 			return PTR_ERR(mtr->kmem);
716 		}
717 	}
718 
719 	return 0;
720 }
721 
722 static int cal_mtr_pg_cnt(struct hns_roce_mtr *mtr)
723 {
724 	struct hns_roce_buf_region *region;
725 	int page_cnt = 0;
726 	int i;
727 
728 	for (i = 0; i < mtr->hem_cfg.region_count; i++) {
729 		region = &mtr->hem_cfg.region[i];
730 		page_cnt += region->count;
731 	}
732 
733 	return page_cnt;
734 }
735 
736 static bool need_split_huge_page(struct hns_roce_mtr *mtr)
737 {
738 	/* When HEM buffer uses 0-level addressing, the page size is
739 	 * equal to the whole buffer size. If the current MTR has multiple
740 	 * regions, we split the buffer into small pages(4k, required by hns
741 	 * ROCEE). These pages will be used in multiple regions.
742 	 */
743 	return mtr->hem_cfg.is_direct && mtr->hem_cfg.region_count > 1;
744 }
745 
746 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
747 {
748 	struct ib_device *ibdev = &hr_dev->ib_dev;
749 	int page_count = cal_mtr_pg_cnt(mtr);
750 	unsigned int page_shift;
751 	dma_addr_t *pages;
752 	int npage;
753 	int ret;
754 
755 	page_shift = need_split_huge_page(mtr) ? HNS_HW_PAGE_SHIFT :
756 						 mtr->hem_cfg.buf_pg_shift;
757 	/* alloc a tmp array to store buffer's dma address */
758 	pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
759 	if (!pages)
760 		return -ENOMEM;
761 
762 	if (mtr->umem)
763 		npage = hns_roce_get_umem_bufs(pages, page_count,
764 					       mtr->umem, page_shift);
765 	else
766 		npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
767 					       mtr->kmem, page_shift);
768 
769 	if (npage != page_count) {
770 		ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
771 			  page_count);
772 		ret = -ENOBUFS;
773 		goto err_alloc_list;
774 	}
775 
776 	if (need_split_huge_page(mtr) && npage > 1) {
777 		ret = mtr_check_direct_pages(pages, npage, page_shift);
778 		if (ret) {
779 			ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
780 				  mtr->umem ? "umtr" : "kmtr", ret, npage);
781 			ret = -ENOBUFS;
782 			goto err_alloc_list;
783 		}
784 	}
785 
786 	ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
787 	if (ret)
788 		ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
789 
790 err_alloc_list:
791 	kvfree(pages);
792 
793 	return ret;
794 }
795 
796 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
797 		     dma_addr_t *pages, unsigned int page_cnt)
798 {
799 	struct ib_device *ibdev = &hr_dev->ib_dev;
800 	struct hns_roce_buf_region *r;
801 	unsigned int i, mapped_cnt;
802 	int ret = 0;
803 
804 	/*
805 	 * Only use the first page address as root ba when hopnum is 0, this
806 	 * is because the addresses of all pages are consecutive in this case.
807 	 */
808 	if (mtr->hem_cfg.is_direct) {
809 		mtr->hem_cfg.root_ba = pages[0];
810 		return 0;
811 	}
812 
813 	for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
814 	     mapped_cnt < page_cnt; i++) {
815 		r = &mtr->hem_cfg.region[i];
816 		/* if hopnum is 0, no need to map pages in this region */
817 		if (!r->hopnum) {
818 			mapped_cnt += r->count;
819 			continue;
820 		}
821 
822 		if (r->offset + r->count > page_cnt) {
823 			ret = -EINVAL;
824 			ibdev_err(ibdev,
825 				  "failed to check mtr%u count %u + %u > %u.\n",
826 				  i, r->offset, r->count, page_cnt);
827 			return ret;
828 		}
829 
830 		ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
831 				     page_cnt - mapped_cnt);
832 		if (ret < 0) {
833 			ibdev_err(ibdev,
834 				  "failed to map mtr%u offset %u, ret = %d.\n",
835 				  i, r->offset, ret);
836 			return ret;
837 		}
838 		mapped_cnt += ret;
839 		ret = 0;
840 	}
841 
842 	if (mapped_cnt < page_cnt) {
843 		ret = -ENOBUFS;
844 		ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
845 			  mapped_cnt, page_cnt);
846 	}
847 
848 	return ret;
849 }
850 
851 static int hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg *cfg,
852 					u32 start_index, u64 *mtt_buf,
853 					int mtt_cnt)
854 {
855 	int mtt_count;
856 	int total = 0;
857 	u32 npage;
858 	u64 addr;
859 
860 	if (mtt_cnt > cfg->region_count)
861 		return -EINVAL;
862 
863 	for (mtt_count = 0; mtt_count < cfg->region_count && total < mtt_cnt;
864 	     mtt_count++) {
865 		npage = cfg->region[mtt_count].offset;
866 		if (npage < start_index)
867 			continue;
868 
869 		addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
870 		mtt_buf[total] = addr;
871 
872 		total++;
873 	}
874 
875 	if (!total)
876 		return -ENOENT;
877 
878 	return 0;
879 }
880 
881 static int hns_roce_get_mhop_mtt(struct hns_roce_dev *hr_dev,
882 				 struct hns_roce_mtr *mtr, u32 start_index,
883 				 u64 *mtt_buf, int mtt_cnt)
884 {
885 	int left = mtt_cnt;
886 	int total = 0;
887 	int mtt_count;
888 	__le64 *mtts;
889 	u32 npage;
890 
891 	while (left > 0) {
892 		mtt_count = 0;
893 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
894 						  start_index + total,
895 						  &mtt_count);
896 		if (!mtts || !mtt_count)
897 			break;
898 
899 		npage = min(mtt_count, left);
900 		left -= npage;
901 		for (mtt_count = 0; mtt_count < npage; mtt_count++)
902 			mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
903 	}
904 
905 	if (!total)
906 		return -ENOENT;
907 
908 	return 0;
909 }
910 
911 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
912 		      u32 offset, u64 *mtt_buf, int mtt_max)
913 {
914 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
915 	u32 start_index;
916 	int ret;
917 
918 	if (!mtt_buf || mtt_max < 1)
919 		return -EINVAL;
920 
921 	/* no mtt memory in direct mode, so just return the buffer address */
922 	if (cfg->is_direct) {
923 		start_index = offset >> HNS_HW_PAGE_SHIFT;
924 		ret = hns_roce_get_direct_addr_mtt(cfg, start_index,
925 						   mtt_buf, mtt_max);
926 	} else {
927 		start_index = offset >> cfg->buf_pg_shift;
928 		ret = hns_roce_get_mhop_mtt(hr_dev, mtr, start_index,
929 					    mtt_buf, mtt_max);
930 	}
931 	return ret;
932 }
933 
934 static int get_best_page_shift(struct hns_roce_dev *hr_dev,
935 			       struct hns_roce_mtr *mtr,
936 			       struct hns_roce_buf_attr *buf_attr)
937 {
938 	unsigned int page_sz;
939 
940 	if (!buf_attr->adaptive || buf_attr->type != MTR_PBL || !mtr->umem)
941 		return 0;
942 
943 	page_sz = ib_umem_find_best_pgsz(mtr->umem,
944 					 hr_dev->caps.page_size_cap,
945 					 buf_attr->iova);
946 	if (!page_sz)
947 		return -EINVAL;
948 
949 	buf_attr->page_shift = order_base_2(page_sz);
950 	return 0;
951 }
952 
953 static int get_best_hop_num(struct hns_roce_dev *hr_dev,
954 			    struct hns_roce_mtr *mtr,
955 			    struct hns_roce_buf_attr *buf_attr,
956 			    unsigned int ba_pg_shift)
957 {
958 #define INVALID_HOPNUM -1
959 #define MIN_BA_CNT 1
960 	size_t buf_pg_sz = 1 << buf_attr->page_shift;
961 	struct ib_device *ibdev = &hr_dev->ib_dev;
962 	size_t ba_pg_sz = 1 << ba_pg_shift;
963 	int hop_num = INVALID_HOPNUM;
964 	size_t unit = MIN_BA_CNT;
965 	size_t ba_cnt;
966 	int j;
967 
968 	if (!buf_attr->adaptive || buf_attr->type != MTR_PBL)
969 		return 0;
970 
971 	/* Caculating the number of buf pages, each buf page need a BA */
972 	if (mtr->umem)
973 		ba_cnt = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
974 	else
975 		ba_cnt = DIV_ROUND_UP(buf_attr->region[0].size, buf_pg_sz);
976 
977 	for (j = 0; j <= HNS_ROCE_MAX_HOP_NUM; j++) {
978 		if (ba_cnt <= unit) {
979 			hop_num = j;
980 			break;
981 		}
982 		/* Number of BAs can be represented at per hop */
983 		unit *= ba_pg_sz / BA_BYTE_LEN;
984 	}
985 
986 	if (hop_num < 0) {
987 		ibdev_err(ibdev,
988 			  "failed to calculate a valid hopnum.\n");
989 		return -EINVAL;
990 	}
991 
992 	buf_attr->region[0].hopnum = hop_num;
993 
994 	return 0;
995 }
996 
997 static bool is_buf_attr_valid(struct hns_roce_dev *hr_dev,
998 			      struct hns_roce_buf_attr *attr)
999 {
1000 	struct ib_device *ibdev = &hr_dev->ib_dev;
1001 
1002 	if (attr->region_count > ARRAY_SIZE(attr->region) ||
1003 	    attr->region_count < 1 || attr->page_shift < HNS_HW_PAGE_SHIFT) {
1004 		ibdev_err(ibdev,
1005 			  "invalid buf attr, region count %d, page shift %u.\n",
1006 			  attr->region_count, attr->page_shift);
1007 		return false;
1008 	}
1009 
1010 	return true;
1011 }
1012 
1013 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
1014 			    struct hns_roce_mtr *mtr,
1015 			    struct hns_roce_buf_attr *attr)
1016 {
1017 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
1018 	struct hns_roce_buf_region *r;
1019 	size_t buf_pg_sz;
1020 	size_t buf_size;
1021 	int page_cnt, i;
1022 	u64 pgoff = 0;
1023 
1024 	if (!is_buf_attr_valid(hr_dev, attr))
1025 		return -EINVAL;
1026 
1027 	/* If mtt is disabled, all pages must be within a continuous range */
1028 	cfg->is_direct = !mtr_has_mtt(attr);
1029 	cfg->region_count = attr->region_count;
1030 	buf_size = mtr_bufs_size(attr);
1031 	if (need_split_huge_page(mtr)) {
1032 		buf_pg_sz = HNS_HW_PAGE_SIZE;
1033 		cfg->buf_pg_count = 1;
1034 		/* The ROCEE requires the page size to be 4K * 2 ^ N. */
1035 		cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
1036 			order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
1037 	} else {
1038 		buf_pg_sz = 1 << attr->page_shift;
1039 		cfg->buf_pg_count = mtr->umem ?
1040 			ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz) :
1041 			DIV_ROUND_UP(buf_size, buf_pg_sz);
1042 		cfg->buf_pg_shift = attr->page_shift;
1043 		pgoff = mtr->umem ? mtr->umem->address & ~PAGE_MASK : 0;
1044 	}
1045 
1046 	/* Convert buffer size to page index and page count for each region and
1047 	 * the buffer's offset needs to be appended to the first region.
1048 	 */
1049 	for (page_cnt = 0, i = 0; i < attr->region_count; i++) {
1050 		r = &cfg->region[i];
1051 		r->offset = page_cnt;
1052 		buf_size = hr_hw_page_align(attr->region[i].size + pgoff);
1053 		if (attr->type == MTR_PBL && mtr->umem)
1054 			r->count = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
1055 		else
1056 			r->count = DIV_ROUND_UP(buf_size, buf_pg_sz);
1057 
1058 		pgoff = 0;
1059 		page_cnt += r->count;
1060 		r->hopnum = to_hr_hem_hopnum(attr->region[i].hopnum, r->count);
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum)
1067 {
1068 	return int_pow(ba_per_bt, hopnum - 1);
1069 }
1070 
1071 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev,
1072 				      struct hns_roce_mtr *mtr,
1073 				      unsigned int pg_shift)
1074 {
1075 	unsigned long cap = hr_dev->caps.page_size_cap;
1076 	struct hns_roce_buf_region *re;
1077 	unsigned int pgs_per_l1ba;
1078 	unsigned int ba_per_bt;
1079 	unsigned int ba_num;
1080 	int i;
1081 
1082 	for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) {
1083 		if (!(BIT(pg_shift) & cap))
1084 			continue;
1085 
1086 		ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN;
1087 		ba_num = 0;
1088 		for (i = 0; i < mtr->hem_cfg.region_count; i++) {
1089 			re = &mtr->hem_cfg.region[i];
1090 			if (re->hopnum == 0)
1091 				continue;
1092 
1093 			pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum);
1094 			ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba);
1095 		}
1096 
1097 		if (ba_num <= ba_per_bt)
1098 			return pg_shift;
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1105 			 unsigned int ba_page_shift)
1106 {
1107 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
1108 	int ret;
1109 
1110 	hns_roce_hem_list_init(&mtr->hem_list);
1111 	if (!cfg->is_direct) {
1112 		ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift);
1113 		if (!ba_page_shift)
1114 			return -ERANGE;
1115 
1116 		ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
1117 						cfg->region, cfg->region_count,
1118 						ba_page_shift);
1119 		if (ret)
1120 			return ret;
1121 		cfg->root_ba = mtr->hem_list.root_ba;
1122 		cfg->ba_pg_shift = ba_page_shift;
1123 	} else {
1124 		cfg->ba_pg_shift = cfg->buf_pg_shift;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1131 {
1132 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1133 }
1134 
1135 /**
1136  * hns_roce_mtr_create - Create hns memory translate region.
1137  *
1138  * @hr_dev: RoCE device struct pointer
1139  * @mtr: memory translate region
1140  * @buf_attr: buffer attribute for creating mtr
1141  * @ba_page_shift: page shift for multi-hop base address table
1142  * @udata: user space context, if it's NULL, means kernel space
1143  * @user_addr: userspace virtual address to start at
1144  */
1145 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1146 			struct hns_roce_buf_attr *buf_attr,
1147 			unsigned int ba_page_shift, struct ib_udata *udata,
1148 			unsigned long user_addr)
1149 {
1150 	struct ib_device *ibdev = &hr_dev->ib_dev;
1151 	int ret;
1152 
1153 	/* The caller has its own buffer list and invokes the hns_roce_mtr_map()
1154 	 * to finish the MTT configuration.
1155 	 */
1156 	if (buf_attr->mtt_only) {
1157 		mtr->umem = NULL;
1158 		mtr->kmem = NULL;
1159 	} else {
1160 		ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
1161 		if (ret) {
1162 			ibdev_err(ibdev,
1163 				  "failed to alloc mtr bufs, ret = %d.\n", ret);
1164 			return ret;
1165 		}
1166 
1167 		ret = get_best_page_shift(hr_dev, mtr, buf_attr);
1168 		if (ret)
1169 			goto err_init_buf;
1170 
1171 		ret = get_best_hop_num(hr_dev, mtr, buf_attr, ba_page_shift);
1172 		if (ret)
1173 			goto err_init_buf;
1174 	}
1175 
1176 	ret = mtr_init_buf_cfg(hr_dev, mtr, buf_attr);
1177 	if (ret)
1178 		goto err_init_buf;
1179 
1180 	ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
1181 	if (ret) {
1182 		ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
1183 		goto err_init_buf;
1184 	}
1185 
1186 	if (buf_attr->mtt_only)
1187 		return 0;
1188 
1189 	/* Write buffer's dma address to MTT */
1190 	ret = mtr_map_bufs(hr_dev, mtr);
1191 	if (ret) {
1192 		ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
1193 		goto err_alloc_mtt;
1194 	}
1195 
1196 	return 0;
1197 
1198 err_alloc_mtt:
1199 	mtr_free_mtt(hr_dev, mtr);
1200 err_init_buf:
1201 	mtr_free_bufs(hr_dev, mtr);
1202 
1203 	return ret;
1204 }
1205 
1206 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1207 {
1208 	/* release multi-hop addressing resource */
1209 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1210 
1211 	/* free buffers */
1212 	mtr_free_bufs(hr_dev, mtr);
1213 }
1214