1 /* 2 * Copyright (c) 2016 Hisilicon Limited. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/vmalloc.h> 35 #include <linux/count_zeros.h> 36 #include <rdma/ib_umem.h> 37 #include <linux/math.h> 38 #include "hns_roce_device.h" 39 #include "hns_roce_cmd.h" 40 #include "hns_roce_hem.h" 41 42 static u32 hw_index_to_key(int ind) 43 { 44 return ((u32)ind >> 24) | ((u32)ind << 8); 45 } 46 47 unsigned long key_to_hw_index(u32 key) 48 { 49 return (key << 24) | (key >> 8); 50 } 51 52 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 53 { 54 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 55 struct ib_device *ibdev = &hr_dev->ib_dev; 56 int err; 57 int id; 58 59 /* Allocate a key for mr from mr_table */ 60 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 61 GFP_KERNEL); 62 if (id < 0) { 63 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id); 64 return -ENOMEM; 65 } 66 67 mr->key = hw_index_to_key(id); /* MR key */ 68 69 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, 70 (unsigned long)id); 71 if (err) { 72 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err); 73 goto err_free_bitmap; 74 } 75 76 return 0; 77 err_free_bitmap: 78 ida_free(&mtpt_ida->ida, id); 79 return err; 80 } 81 82 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 83 { 84 unsigned long obj = key_to_hw_index(mr->key); 85 86 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj); 87 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj); 88 } 89 90 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, 91 struct ib_udata *udata, u64 start) 92 { 93 struct ib_device *ibdev = &hr_dev->ib_dev; 94 bool is_fast = mr->type == MR_TYPE_FRMR; 95 struct hns_roce_buf_attr buf_attr = {}; 96 int err; 97 98 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num; 99 buf_attr.page_shift = is_fast ? PAGE_SHIFT : 100 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT; 101 buf_attr.region[0].size = mr->size; 102 buf_attr.region[0].hopnum = mr->pbl_hop_num; 103 buf_attr.region_count = 1; 104 buf_attr.user_access = mr->access; 105 /* fast MR's buffer is alloced before mapping, not at creation */ 106 buf_attr.mtt_only = is_fast; 107 buf_attr.iova = mr->iova; 108 /* pagesize and hopnum is fixed for fast MR */ 109 buf_attr.adaptive = !is_fast; 110 buf_attr.type = MTR_PBL; 111 112 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr, 113 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT, 114 udata, start); 115 if (err) { 116 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err); 117 return err; 118 } 119 120 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count; 121 mr->pbl_hop_num = buf_attr.region[0].hopnum; 122 123 return err; 124 } 125 126 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 127 { 128 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr); 129 } 130 131 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 132 { 133 struct ib_device *ibdev = &hr_dev->ib_dev; 134 int ret; 135 136 if (mr->enabled) { 137 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 138 key_to_hw_index(mr->key) & 139 (hr_dev->caps.num_mtpts - 1)); 140 if (ret) 141 ibdev_warn_ratelimited(ibdev, "failed to destroy mpt, ret = %d.\n", 142 ret); 143 } 144 145 free_mr_pbl(hr_dev, mr); 146 free_mr_key(hr_dev, mr); 147 } 148 149 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev, 150 struct hns_roce_mr *mr) 151 { 152 unsigned long mtpt_idx = key_to_hw_index(mr->key); 153 struct hns_roce_cmd_mailbox *mailbox; 154 struct device *dev = hr_dev->dev; 155 int ret; 156 157 /* Allocate mailbox memory */ 158 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 159 if (IS_ERR(mailbox)) 160 return PTR_ERR(mailbox); 161 162 if (mr->type != MR_TYPE_FRMR) 163 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr); 164 else 165 ret = hr_dev->hw->frmr_write_mtpt(mailbox->buf, mr); 166 if (ret) { 167 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret); 168 goto err_page; 169 } 170 171 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 172 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 173 if (ret) { 174 dev_err(dev, "failed to create mpt, ret = %d.\n", ret); 175 goto err_page; 176 } 177 178 mr->enabled = 1; 179 180 err_page: 181 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 182 183 return ret; 184 } 185 186 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev) 187 { 188 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 189 190 ida_init(&mtpt_ida->ida); 191 mtpt_ida->max = hr_dev->caps.num_mtpts - 1; 192 mtpt_ida->min = hr_dev->caps.reserved_mrws; 193 } 194 195 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc) 196 { 197 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 198 struct hns_roce_mr *mr; 199 int ret; 200 201 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 202 if (!mr) 203 return ERR_PTR(-ENOMEM); 204 205 mr->type = MR_TYPE_DMA; 206 mr->pd = to_hr_pd(pd)->pdn; 207 mr->access = acc; 208 209 /* Allocate memory region key */ 210 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list); 211 ret = alloc_mr_key(hr_dev, mr); 212 if (ret) 213 goto err_free; 214 215 ret = hns_roce_mr_enable(hr_dev, mr); 216 if (ret) 217 goto err_mr; 218 219 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 220 221 return &mr->ibmr; 222 err_mr: 223 free_mr_key(hr_dev, mr); 224 225 err_free: 226 kfree(mr); 227 return ERR_PTR(ret); 228 } 229 230 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 231 u64 virt_addr, int access_flags, 232 struct ib_udata *udata) 233 { 234 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 235 struct hns_roce_mr *mr; 236 int ret; 237 238 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 239 if (!mr) { 240 ret = -ENOMEM; 241 goto err_out; 242 } 243 244 mr->iova = virt_addr; 245 mr->size = length; 246 mr->pd = to_hr_pd(pd)->pdn; 247 mr->access = access_flags; 248 mr->type = MR_TYPE_MR; 249 250 ret = alloc_mr_key(hr_dev, mr); 251 if (ret) 252 goto err_alloc_mr; 253 254 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 255 if (ret) 256 goto err_alloc_key; 257 258 ret = hns_roce_mr_enable(hr_dev, mr); 259 if (ret) 260 goto err_alloc_pbl; 261 262 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 263 264 return &mr->ibmr; 265 266 err_alloc_pbl: 267 free_mr_pbl(hr_dev, mr); 268 err_alloc_key: 269 free_mr_key(hr_dev, mr); 270 err_alloc_mr: 271 kfree(mr); 272 err_out: 273 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REG_ERR_CNT]); 274 275 return ERR_PTR(ret); 276 } 277 278 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, 279 u64 length, u64 virt_addr, 280 int mr_access_flags, struct ib_pd *pd, 281 struct ib_udata *udata) 282 { 283 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 284 struct ib_device *ib_dev = &hr_dev->ib_dev; 285 struct hns_roce_mr *mr = to_hr_mr(ibmr); 286 struct hns_roce_cmd_mailbox *mailbox; 287 unsigned long mtpt_idx; 288 int ret; 289 290 if (!mr->enabled) { 291 ret = -EINVAL; 292 goto err_out; 293 } 294 295 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 296 ret = PTR_ERR_OR_ZERO(mailbox); 297 if (ret) 298 goto err_out; 299 300 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1); 301 302 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT, 303 mtpt_idx); 304 if (ret) 305 goto free_cmd_mbox; 306 307 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 308 mtpt_idx); 309 if (ret) 310 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret); 311 312 mr->enabled = 0; 313 mr->iova = virt_addr; 314 mr->size = length; 315 316 if (flags & IB_MR_REREG_PD) 317 mr->pd = to_hr_pd(pd)->pdn; 318 319 if (flags & IB_MR_REREG_ACCESS) 320 mr->access = mr_access_flags; 321 322 if (flags & IB_MR_REREG_TRANS) { 323 free_mr_pbl(hr_dev, mr); 324 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 325 if (ret) { 326 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n", 327 ret); 328 goto free_cmd_mbox; 329 } 330 } 331 332 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf); 333 if (ret) { 334 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret); 335 goto free_cmd_mbox; 336 } 337 338 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 339 mtpt_idx); 340 if (ret) { 341 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret); 342 goto free_cmd_mbox; 343 } 344 345 mr->enabled = 1; 346 347 free_cmd_mbox: 348 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 349 350 err_out: 351 if (ret) { 352 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REREG_ERR_CNT]); 353 return ERR_PTR(ret); 354 } 355 356 return NULL; 357 } 358 359 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 360 { 361 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 362 struct hns_roce_mr *mr = to_hr_mr(ibmr); 363 364 if (hr_dev->hw->dereg_mr) 365 hr_dev->hw->dereg_mr(hr_dev); 366 367 hns_roce_mr_free(hr_dev, mr); 368 kfree(mr); 369 370 return 0; 371 } 372 373 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 374 u32 max_num_sg) 375 { 376 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 377 struct device *dev = hr_dev->dev; 378 struct hns_roce_mr *mr; 379 int ret; 380 381 if (mr_type != IB_MR_TYPE_MEM_REG) 382 return ERR_PTR(-EINVAL); 383 384 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) { 385 dev_err(dev, "max_num_sg larger than %d\n", 386 HNS_ROCE_FRMR_MAX_PA); 387 return ERR_PTR(-EINVAL); 388 } 389 390 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 391 if (!mr) 392 return ERR_PTR(-ENOMEM); 393 394 mr->type = MR_TYPE_FRMR; 395 mr->pd = to_hr_pd(pd)->pdn; 396 mr->size = max_num_sg * (1 << PAGE_SHIFT); 397 398 /* Allocate memory region key */ 399 ret = alloc_mr_key(hr_dev, mr); 400 if (ret) 401 goto err_free; 402 403 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0); 404 if (ret) 405 goto err_key; 406 407 ret = hns_roce_mr_enable(hr_dev, mr); 408 if (ret) 409 goto err_pbl; 410 411 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 412 mr->ibmr.length = mr->size; 413 414 return &mr->ibmr; 415 416 err_pbl: 417 free_mr_pbl(hr_dev, mr); 418 err_key: 419 free_mr_key(hr_dev, mr); 420 err_free: 421 kfree(mr); 422 return ERR_PTR(ret); 423 } 424 425 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr) 426 { 427 struct hns_roce_mr *mr = to_hr_mr(ibmr); 428 429 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) { 430 mr->page_list[mr->npages++] = addr; 431 return 0; 432 } 433 434 return -ENOBUFS; 435 } 436 437 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 438 unsigned int *sg_offset_p) 439 { 440 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 441 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 442 struct ib_device *ibdev = &hr_dev->ib_dev; 443 struct hns_roce_mr *mr = to_hr_mr(ibmr); 444 struct hns_roce_mtr *mtr = &mr->pbl_mtr; 445 int ret, sg_num = 0; 446 447 if (!IS_ALIGNED(sg_offset, HNS_ROCE_FRMR_ALIGN_SIZE) || 448 ibmr->page_size < HNS_HW_PAGE_SIZE || 449 ibmr->page_size > HNS_HW_MAX_PAGE_SIZE) 450 return sg_num; 451 452 mr->npages = 0; 453 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count, 454 sizeof(dma_addr_t), GFP_KERNEL); 455 if (!mr->page_list) 456 return sg_num; 457 458 sg_num = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset_p, hns_roce_set_page); 459 if (sg_num < 1) { 460 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n", 461 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, sg_num); 462 goto err_page_list; 463 } 464 465 mtr->hem_cfg.region[0].offset = 0; 466 mtr->hem_cfg.region[0].count = mr->npages; 467 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num; 468 mtr->hem_cfg.region_count = 1; 469 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages); 470 if (ret) { 471 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret); 472 sg_num = 0; 473 } else { 474 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size); 475 } 476 477 err_page_list: 478 kvfree(mr->page_list); 479 mr->page_list = NULL; 480 481 return sg_num; 482 } 483 484 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev, 485 struct hns_roce_mw *mw) 486 { 487 struct device *dev = hr_dev->dev; 488 int ret; 489 490 if (mw->enabled) { 491 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 492 key_to_hw_index(mw->rkey) & 493 (hr_dev->caps.num_mtpts - 1)); 494 if (ret) 495 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret); 496 497 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, 498 key_to_hw_index(mw->rkey)); 499 } 500 501 ida_free(&hr_dev->mr_table.mtpt_ida.ida, 502 (int)key_to_hw_index(mw->rkey)); 503 } 504 505 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev, 506 struct hns_roce_mw *mw) 507 { 508 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table; 509 struct hns_roce_cmd_mailbox *mailbox; 510 struct device *dev = hr_dev->dev; 511 unsigned long mtpt_idx = key_to_hw_index(mw->rkey); 512 int ret; 513 514 /* prepare HEM entry memory */ 515 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx); 516 if (ret) 517 return ret; 518 519 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 520 if (IS_ERR(mailbox)) { 521 ret = PTR_ERR(mailbox); 522 goto err_table; 523 } 524 525 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw); 526 if (ret) { 527 dev_err(dev, "MW write mtpt fail!\n"); 528 goto err_page; 529 } 530 531 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 532 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 533 if (ret) { 534 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret); 535 goto err_page; 536 } 537 538 mw->enabled = 1; 539 540 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 541 542 return 0; 543 544 err_page: 545 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 546 547 err_table: 548 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx); 549 550 return ret; 551 } 552 553 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 554 { 555 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 556 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 557 struct ib_device *ibdev = &hr_dev->ib_dev; 558 struct hns_roce_mw *mw = to_hr_mw(ibmw); 559 int ret; 560 int id; 561 562 /* Allocate a key for mw from mr_table */ 563 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 564 GFP_KERNEL); 565 if (id < 0) { 566 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id); 567 return -ENOMEM; 568 } 569 570 mw->rkey = hw_index_to_key(id); 571 572 ibmw->rkey = mw->rkey; 573 mw->pdn = to_hr_pd(ibmw->pd)->pdn; 574 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num; 575 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz; 576 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz; 577 578 ret = hns_roce_mw_enable(hr_dev, mw); 579 if (ret) 580 goto err_mw; 581 582 return 0; 583 584 err_mw: 585 hns_roce_mw_free(hr_dev, mw); 586 return ret; 587 } 588 589 int hns_roce_dealloc_mw(struct ib_mw *ibmw) 590 { 591 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 592 struct hns_roce_mw *mw = to_hr_mw(ibmw); 593 594 hns_roce_mw_free(hr_dev, mw); 595 return 0; 596 } 597 598 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 599 struct hns_roce_buf_region *region, dma_addr_t *pages, 600 int max_count) 601 { 602 int count, npage; 603 int offset, end; 604 __le64 *mtts; 605 u64 addr; 606 int i; 607 608 offset = region->offset; 609 end = offset + region->count; 610 npage = 0; 611 while (offset < end && npage < max_count) { 612 count = 0; 613 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 614 offset, &count); 615 if (!mtts) 616 return -ENOBUFS; 617 618 for (i = 0; i < count && npage < max_count; i++) { 619 addr = pages[npage]; 620 621 mtts[i] = cpu_to_le64(addr); 622 npage++; 623 } 624 offset += count; 625 } 626 627 return npage; 628 } 629 630 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr) 631 { 632 int i; 633 634 for (i = 0; i < attr->region_count; i++) 635 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 && 636 attr->region[i].hopnum > 0) 637 return true; 638 639 /* because the mtr only one root base address, when hopnum is 0 means 640 * root base address equals the first buffer address, thus all alloced 641 * memory must in a continuous space accessed by direct mode. 642 */ 643 return false; 644 } 645 646 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr) 647 { 648 size_t size = 0; 649 int i; 650 651 for (i = 0; i < attr->region_count; i++) 652 size += attr->region[i].size; 653 654 return size; 655 } 656 657 /* 658 * check the given pages in continuous address space 659 * Returns 0 on success, or the error page num. 660 */ 661 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count, 662 unsigned int page_shift) 663 { 664 size_t page_size = 1 << page_shift; 665 int i; 666 667 for (i = 1; i < page_count; i++) 668 if (pages[i] - pages[i - 1] != page_size) 669 return i; 670 671 return 0; 672 } 673 674 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 675 { 676 /* release user buffers */ 677 if (mtr->umem) { 678 ib_umem_release(mtr->umem); 679 mtr->umem = NULL; 680 } 681 682 /* release kernel buffers */ 683 if (mtr->kmem) { 684 hns_roce_buf_free(hr_dev, mtr->kmem); 685 mtr->kmem = NULL; 686 } 687 } 688 689 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 690 struct hns_roce_buf_attr *buf_attr, 691 struct ib_udata *udata, unsigned long user_addr) 692 { 693 struct ib_device *ibdev = &hr_dev->ib_dev; 694 size_t total_size; 695 696 total_size = mtr_bufs_size(buf_attr); 697 698 if (udata) { 699 mtr->kmem = NULL; 700 mtr->umem = ib_umem_get(ibdev, user_addr, total_size, 701 buf_attr->user_access); 702 if (IS_ERR(mtr->umem)) { 703 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n", 704 PTR_ERR(mtr->umem)); 705 return -ENOMEM; 706 } 707 } else { 708 mtr->umem = NULL; 709 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size, 710 buf_attr->page_shift, 711 !mtr_has_mtt(buf_attr) ? 712 HNS_ROCE_BUF_DIRECT : 0); 713 if (IS_ERR(mtr->kmem)) { 714 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n", 715 PTR_ERR(mtr->kmem)); 716 return PTR_ERR(mtr->kmem); 717 } 718 } 719 720 return 0; 721 } 722 723 static int cal_mtr_pg_cnt(struct hns_roce_mtr *mtr) 724 { 725 struct hns_roce_buf_region *region; 726 int page_cnt = 0; 727 int i; 728 729 for (i = 0; i < mtr->hem_cfg.region_count; i++) { 730 region = &mtr->hem_cfg.region[i]; 731 page_cnt += region->count; 732 } 733 734 return page_cnt; 735 } 736 737 static bool need_split_huge_page(struct hns_roce_mtr *mtr) 738 { 739 /* When HEM buffer uses 0-level addressing, the page size is 740 * equal to the whole buffer size. If the current MTR has multiple 741 * regions, we split the buffer into small pages(4k, required by hns 742 * ROCEE). These pages will be used in multiple regions. 743 */ 744 return mtr->hem_cfg.is_direct && mtr->hem_cfg.region_count > 1; 745 } 746 747 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 748 { 749 struct ib_device *ibdev = &hr_dev->ib_dev; 750 int page_count = cal_mtr_pg_cnt(mtr); 751 unsigned int page_shift; 752 dma_addr_t *pages; 753 int npage; 754 int ret; 755 756 page_shift = need_split_huge_page(mtr) ? HNS_HW_PAGE_SHIFT : 757 mtr->hem_cfg.buf_pg_shift; 758 /* alloc a tmp array to store buffer's dma address */ 759 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL); 760 if (!pages) 761 return -ENOMEM; 762 763 if (mtr->umem) 764 npage = hns_roce_get_umem_bufs(pages, page_count, 765 mtr->umem, page_shift); 766 else 767 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, 768 mtr->kmem, page_shift); 769 770 if (npage != page_count) { 771 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage, 772 page_count); 773 ret = -ENOBUFS; 774 goto err_alloc_list; 775 } 776 777 if (need_split_huge_page(mtr) && npage > 1) { 778 ret = mtr_check_direct_pages(pages, npage, page_shift); 779 if (ret) { 780 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n", 781 mtr->umem ? "umtr" : "kmtr", ret, npage); 782 ret = -ENOBUFS; 783 goto err_alloc_list; 784 } 785 } 786 787 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count); 788 if (ret) 789 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret); 790 791 err_alloc_list: 792 kvfree(pages); 793 794 return ret; 795 } 796 797 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 798 dma_addr_t *pages, unsigned int page_cnt) 799 { 800 struct ib_device *ibdev = &hr_dev->ib_dev; 801 struct hns_roce_buf_region *r; 802 unsigned int i, mapped_cnt; 803 int ret = 0; 804 805 /* 806 * Only use the first page address as root ba when hopnum is 0, this 807 * is because the addresses of all pages are consecutive in this case. 808 */ 809 if (mtr->hem_cfg.is_direct) { 810 mtr->hem_cfg.root_ba = pages[0]; 811 return 0; 812 } 813 814 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count && 815 mapped_cnt < page_cnt; i++) { 816 r = &mtr->hem_cfg.region[i]; 817 /* if hopnum is 0, no need to map pages in this region */ 818 if (!r->hopnum) { 819 mapped_cnt += r->count; 820 continue; 821 } 822 823 if (r->offset + r->count > page_cnt) { 824 ret = -EINVAL; 825 ibdev_err(ibdev, 826 "failed to check mtr%u count %u + %u > %u.\n", 827 i, r->offset, r->count, page_cnt); 828 return ret; 829 } 830 831 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset], 832 page_cnt - mapped_cnt); 833 if (ret < 0) { 834 ibdev_err(ibdev, 835 "failed to map mtr%u offset %u, ret = %d.\n", 836 i, r->offset, ret); 837 return ret; 838 } 839 mapped_cnt += ret; 840 ret = 0; 841 } 842 843 if (mapped_cnt < page_cnt) { 844 ret = -ENOBUFS; 845 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n", 846 mapped_cnt, page_cnt); 847 } 848 849 return ret; 850 } 851 852 static int hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg *cfg, 853 u32 start_index, u64 *mtt_buf, 854 int mtt_cnt) 855 { 856 int mtt_count; 857 int total = 0; 858 u32 npage; 859 u64 addr; 860 861 if (mtt_cnt > cfg->region_count) 862 return -EINVAL; 863 864 for (mtt_count = 0; mtt_count < cfg->region_count && total < mtt_cnt; 865 mtt_count++) { 866 npage = cfg->region[mtt_count].offset; 867 if (npage < start_index) 868 continue; 869 870 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT); 871 mtt_buf[total] = addr; 872 873 total++; 874 } 875 876 if (!total) 877 return -ENOENT; 878 879 return 0; 880 } 881 882 static int hns_roce_get_mhop_mtt(struct hns_roce_dev *hr_dev, 883 struct hns_roce_mtr *mtr, u32 start_index, 884 u64 *mtt_buf, int mtt_cnt) 885 { 886 int left = mtt_cnt; 887 int total = 0; 888 int mtt_count; 889 __le64 *mtts; 890 u32 npage; 891 892 while (left > 0) { 893 mtt_count = 0; 894 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 895 start_index + total, 896 &mtt_count); 897 if (!mtts || !mtt_count) 898 break; 899 900 npage = min(mtt_count, left); 901 left -= npage; 902 for (mtt_count = 0; mtt_count < npage; mtt_count++) 903 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]); 904 } 905 906 if (!total) 907 return -ENOENT; 908 909 return 0; 910 } 911 912 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 913 u32 offset, u64 *mtt_buf, int mtt_max) 914 { 915 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 916 u32 start_index; 917 int ret; 918 919 if (!mtt_buf || mtt_max < 1) 920 return -EINVAL; 921 922 /* no mtt memory in direct mode, so just return the buffer address */ 923 if (cfg->is_direct) { 924 start_index = offset >> HNS_HW_PAGE_SHIFT; 925 ret = hns_roce_get_direct_addr_mtt(cfg, start_index, 926 mtt_buf, mtt_max); 927 } else { 928 start_index = offset >> cfg->buf_pg_shift; 929 ret = hns_roce_get_mhop_mtt(hr_dev, mtr, start_index, 930 mtt_buf, mtt_max); 931 } 932 return ret; 933 } 934 935 static int get_best_page_shift(struct hns_roce_dev *hr_dev, 936 struct hns_roce_mtr *mtr, 937 struct hns_roce_buf_attr *buf_attr) 938 { 939 unsigned int page_sz; 940 941 if (!buf_attr->adaptive || buf_attr->type != MTR_PBL || !mtr->umem) 942 return 0; 943 944 page_sz = ib_umem_find_best_pgsz(mtr->umem, 945 hr_dev->caps.page_size_cap, 946 buf_attr->iova); 947 if (!page_sz) 948 return -EINVAL; 949 950 buf_attr->page_shift = order_base_2(page_sz); 951 return 0; 952 } 953 954 static int get_best_hop_num(struct hns_roce_dev *hr_dev, 955 struct hns_roce_mtr *mtr, 956 struct hns_roce_buf_attr *buf_attr, 957 unsigned int ba_pg_shift) 958 { 959 #define INVALID_HOPNUM -1 960 #define MIN_BA_CNT 1 961 size_t buf_pg_sz = 1 << buf_attr->page_shift; 962 struct ib_device *ibdev = &hr_dev->ib_dev; 963 size_t ba_pg_sz = 1 << ba_pg_shift; 964 int hop_num = INVALID_HOPNUM; 965 size_t unit = MIN_BA_CNT; 966 size_t ba_cnt; 967 int j; 968 969 if (!buf_attr->adaptive || buf_attr->type != MTR_PBL) 970 return 0; 971 972 /* Caculating the number of buf pages, each buf page need a BA */ 973 if (mtr->umem) 974 ba_cnt = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz); 975 else 976 ba_cnt = DIV_ROUND_UP(buf_attr->region[0].size, buf_pg_sz); 977 978 for (j = 0; j <= HNS_ROCE_MAX_HOP_NUM; j++) { 979 if (ba_cnt <= unit) { 980 hop_num = j; 981 break; 982 } 983 /* Number of BAs can be represented at per hop */ 984 unit *= ba_pg_sz / BA_BYTE_LEN; 985 } 986 987 if (hop_num < 0) { 988 ibdev_err(ibdev, 989 "failed to calculate a valid hopnum.\n"); 990 return -EINVAL; 991 } 992 993 buf_attr->region[0].hopnum = hop_num; 994 995 return 0; 996 } 997 998 static bool is_buf_attr_valid(struct hns_roce_dev *hr_dev, 999 struct hns_roce_buf_attr *attr) 1000 { 1001 struct ib_device *ibdev = &hr_dev->ib_dev; 1002 1003 if (attr->region_count > ARRAY_SIZE(attr->region) || 1004 attr->region_count < 1 || attr->page_shift < HNS_HW_PAGE_SHIFT) { 1005 ibdev_err(ibdev, 1006 "invalid buf attr, region count %d, page shift %u.\n", 1007 attr->region_count, attr->page_shift); 1008 return false; 1009 } 1010 1011 return true; 1012 } 1013 1014 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev, 1015 struct hns_roce_mtr *mtr, 1016 struct hns_roce_buf_attr *attr) 1017 { 1018 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 1019 struct hns_roce_buf_region *r; 1020 size_t buf_pg_sz; 1021 size_t buf_size; 1022 int page_cnt, i; 1023 u64 pgoff = 0; 1024 1025 if (!is_buf_attr_valid(hr_dev, attr)) 1026 return -EINVAL; 1027 1028 /* If mtt is disabled, all pages must be within a continuous range */ 1029 cfg->is_direct = !mtr_has_mtt(attr); 1030 cfg->region_count = attr->region_count; 1031 buf_size = mtr_bufs_size(attr); 1032 if (need_split_huge_page(mtr)) { 1033 buf_pg_sz = HNS_HW_PAGE_SIZE; 1034 cfg->buf_pg_count = 1; 1035 /* The ROCEE requires the page size to be 4K * 2 ^ N. */ 1036 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + 1037 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE)); 1038 } else { 1039 buf_pg_sz = 1 << attr->page_shift; 1040 cfg->buf_pg_count = mtr->umem ? 1041 ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz) : 1042 DIV_ROUND_UP(buf_size, buf_pg_sz); 1043 cfg->buf_pg_shift = attr->page_shift; 1044 pgoff = mtr->umem ? mtr->umem->address & ~PAGE_MASK : 0; 1045 } 1046 1047 /* Convert buffer size to page index and page count for each region and 1048 * the buffer's offset needs to be appended to the first region. 1049 */ 1050 for (page_cnt = 0, i = 0; i < attr->region_count; i++) { 1051 r = &cfg->region[i]; 1052 r->offset = page_cnt; 1053 buf_size = hr_hw_page_align(attr->region[i].size + pgoff); 1054 if (attr->type == MTR_PBL && mtr->umem) 1055 r->count = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz); 1056 else 1057 r->count = DIV_ROUND_UP(buf_size, buf_pg_sz); 1058 1059 pgoff = 0; 1060 page_cnt += r->count; 1061 r->hopnum = to_hr_hem_hopnum(attr->region[i].hopnum, r->count); 1062 } 1063 1064 return 0; 1065 } 1066 1067 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum) 1068 { 1069 return int_pow(ba_per_bt, hopnum - 1); 1070 } 1071 1072 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev, 1073 struct hns_roce_mtr *mtr, 1074 unsigned int pg_shift) 1075 { 1076 unsigned long cap = hr_dev->caps.page_size_cap; 1077 struct hns_roce_buf_region *re; 1078 unsigned int pgs_per_l1ba; 1079 unsigned int ba_per_bt; 1080 unsigned int ba_num; 1081 int i; 1082 1083 for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) { 1084 if (!(BIT(pg_shift) & cap)) 1085 continue; 1086 1087 ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN; 1088 ba_num = 0; 1089 for (i = 0; i < mtr->hem_cfg.region_count; i++) { 1090 re = &mtr->hem_cfg.region[i]; 1091 if (re->hopnum == 0) 1092 continue; 1093 1094 pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum); 1095 ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba); 1096 } 1097 1098 if (ba_num <= ba_per_bt) 1099 return pg_shift; 1100 } 1101 1102 return 0; 1103 } 1104 1105 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 1106 unsigned int ba_page_shift) 1107 { 1108 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 1109 int ret; 1110 1111 hns_roce_hem_list_init(&mtr->hem_list); 1112 if (!cfg->is_direct) { 1113 ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift); 1114 if (!ba_page_shift) 1115 return -ERANGE; 1116 1117 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list, 1118 cfg->region, cfg->region_count, 1119 ba_page_shift); 1120 if (ret) 1121 return ret; 1122 cfg->root_ba = mtr->hem_list.root_ba; 1123 cfg->ba_pg_shift = ba_page_shift; 1124 } else { 1125 cfg->ba_pg_shift = cfg->buf_pg_shift; 1126 } 1127 1128 return 0; 1129 } 1130 1131 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1132 { 1133 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1134 } 1135 1136 /** 1137 * hns_roce_mtr_create - Create hns memory translate region. 1138 * 1139 * @hr_dev: RoCE device struct pointer 1140 * @mtr: memory translate region 1141 * @buf_attr: buffer attribute for creating mtr 1142 * @ba_page_shift: page shift for multi-hop base address table 1143 * @udata: user space context, if it's NULL, means kernel space 1144 * @user_addr: userspace virtual address to start at 1145 */ 1146 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 1147 struct hns_roce_buf_attr *buf_attr, 1148 unsigned int ba_page_shift, struct ib_udata *udata, 1149 unsigned long user_addr) 1150 { 1151 struct ib_device *ibdev = &hr_dev->ib_dev; 1152 int ret; 1153 1154 /* The caller has its own buffer list and invokes the hns_roce_mtr_map() 1155 * to finish the MTT configuration. 1156 */ 1157 if (buf_attr->mtt_only) { 1158 mtr->umem = NULL; 1159 mtr->kmem = NULL; 1160 } else { 1161 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr); 1162 if (ret) { 1163 ibdev_err(ibdev, 1164 "failed to alloc mtr bufs, ret = %d.\n", ret); 1165 return ret; 1166 } 1167 1168 ret = get_best_page_shift(hr_dev, mtr, buf_attr); 1169 if (ret) 1170 goto err_init_buf; 1171 1172 ret = get_best_hop_num(hr_dev, mtr, buf_attr, ba_page_shift); 1173 if (ret) 1174 goto err_init_buf; 1175 } 1176 1177 ret = mtr_init_buf_cfg(hr_dev, mtr, buf_attr); 1178 if (ret) 1179 goto err_init_buf; 1180 1181 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift); 1182 if (ret) { 1183 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret); 1184 goto err_init_buf; 1185 } 1186 1187 if (buf_attr->mtt_only) 1188 return 0; 1189 1190 /* Write buffer's dma address to MTT */ 1191 ret = mtr_map_bufs(hr_dev, mtr); 1192 if (ret) { 1193 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret); 1194 goto err_alloc_mtt; 1195 } 1196 1197 return 0; 1198 1199 err_alloc_mtt: 1200 mtr_free_mtt(hr_dev, mtr); 1201 err_init_buf: 1202 mtr_free_bufs(hr_dev, mtr); 1203 1204 return ret; 1205 } 1206 1207 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1208 { 1209 /* release multi-hop addressing resource */ 1210 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1211 1212 /* free buffers */ 1213 mtr_free_bufs(hr_dev, mtr); 1214 } 1215