1 /* 2 * Copyright (c) 2016 Hisilicon Limited. 3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/vmalloc.h> 35 #include <linux/count_zeros.h> 36 #include <rdma/ib_umem.h> 37 #include <linux/math.h> 38 #include "hns_roce_device.h" 39 #include "hns_roce_cmd.h" 40 #include "hns_roce_hem.h" 41 42 static u32 hw_index_to_key(int ind) 43 { 44 return ((u32)ind >> 24) | ((u32)ind << 8); 45 } 46 47 unsigned long key_to_hw_index(u32 key) 48 { 49 return (key << 24) | (key >> 8); 50 } 51 52 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 53 { 54 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 55 struct ib_device *ibdev = &hr_dev->ib_dev; 56 int err; 57 int id; 58 59 /* Allocate a key for mr from mr_table */ 60 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 61 GFP_KERNEL); 62 if (id < 0) { 63 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id); 64 return -ENOMEM; 65 } 66 67 mr->key = hw_index_to_key(id); /* MR key */ 68 69 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table, 70 (unsigned long)id); 71 if (err) { 72 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err); 73 goto err_free_bitmap; 74 } 75 76 return 0; 77 err_free_bitmap: 78 ida_free(&mtpt_ida->ida, id); 79 return err; 80 } 81 82 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 83 { 84 unsigned long obj = key_to_hw_index(mr->key); 85 86 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj); 87 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj); 88 } 89 90 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, 91 struct ib_udata *udata, u64 start) 92 { 93 struct ib_device *ibdev = &hr_dev->ib_dev; 94 bool is_fast = mr->type == MR_TYPE_FRMR; 95 struct hns_roce_buf_attr buf_attr = {}; 96 int err; 97 98 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num; 99 buf_attr.page_shift = is_fast ? PAGE_SHIFT : 100 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT; 101 buf_attr.region[0].size = mr->size; 102 buf_attr.region[0].hopnum = mr->pbl_hop_num; 103 buf_attr.region_count = 1; 104 buf_attr.user_access = mr->access; 105 /* fast MR's buffer is alloced before mapping, not at creation */ 106 buf_attr.mtt_only = is_fast; 107 buf_attr.iova = mr->iova; 108 /* pagesize and hopnum is fixed for fast MR */ 109 buf_attr.adaptive = !is_fast; 110 buf_attr.type = MTR_PBL; 111 112 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr, 113 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT, 114 udata, start); 115 if (err) { 116 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err); 117 return err; 118 } 119 120 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count; 121 mr->pbl_hop_num = buf_attr.region[0].hopnum; 122 123 return err; 124 } 125 126 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 127 { 128 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr); 129 } 130 131 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr) 132 { 133 struct ib_device *ibdev = &hr_dev->ib_dev; 134 int ret; 135 136 if (mr->enabled) { 137 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 138 key_to_hw_index(mr->key) & 139 (hr_dev->caps.num_mtpts - 1)); 140 if (ret) 141 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n", 142 ret); 143 } 144 145 free_mr_pbl(hr_dev, mr); 146 free_mr_key(hr_dev, mr); 147 } 148 149 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev, 150 struct hns_roce_mr *mr) 151 { 152 unsigned long mtpt_idx = key_to_hw_index(mr->key); 153 struct hns_roce_cmd_mailbox *mailbox; 154 struct device *dev = hr_dev->dev; 155 int ret; 156 157 /* Allocate mailbox memory */ 158 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 159 if (IS_ERR(mailbox)) 160 return PTR_ERR(mailbox); 161 162 if (mr->type != MR_TYPE_FRMR) 163 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr); 164 else 165 ret = hr_dev->hw->frmr_write_mtpt(mailbox->buf, mr); 166 if (ret) { 167 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret); 168 goto err_page; 169 } 170 171 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 172 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 173 if (ret) { 174 dev_err(dev, "failed to create mpt, ret = %d.\n", ret); 175 goto err_page; 176 } 177 178 mr->enabled = 1; 179 180 err_page: 181 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 182 183 return ret; 184 } 185 186 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev) 187 { 188 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 189 190 ida_init(&mtpt_ida->ida); 191 mtpt_ida->max = hr_dev->caps.num_mtpts - 1; 192 mtpt_ida->min = hr_dev->caps.reserved_mrws; 193 } 194 195 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc) 196 { 197 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 198 struct hns_roce_mr *mr; 199 int ret; 200 201 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 202 if (!mr) 203 return ERR_PTR(-ENOMEM); 204 205 mr->type = MR_TYPE_DMA; 206 mr->pd = to_hr_pd(pd)->pdn; 207 mr->access = acc; 208 209 /* Allocate memory region key */ 210 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list); 211 ret = alloc_mr_key(hr_dev, mr); 212 if (ret) 213 goto err_free; 214 215 ret = hns_roce_mr_enable(hr_dev, mr); 216 if (ret) 217 goto err_mr; 218 219 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 220 221 return &mr->ibmr; 222 err_mr: 223 free_mr_key(hr_dev, mr); 224 225 err_free: 226 kfree(mr); 227 return ERR_PTR(ret); 228 } 229 230 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 231 u64 virt_addr, int access_flags, 232 struct ib_udata *udata) 233 { 234 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 235 struct hns_roce_mr *mr; 236 int ret; 237 238 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 239 if (!mr) { 240 ret = -ENOMEM; 241 goto err_out; 242 } 243 244 mr->iova = virt_addr; 245 mr->size = length; 246 mr->pd = to_hr_pd(pd)->pdn; 247 mr->access = access_flags; 248 mr->type = MR_TYPE_MR; 249 250 ret = alloc_mr_key(hr_dev, mr); 251 if (ret) 252 goto err_alloc_mr; 253 254 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 255 if (ret) 256 goto err_alloc_key; 257 258 ret = hns_roce_mr_enable(hr_dev, mr); 259 if (ret) 260 goto err_alloc_pbl; 261 262 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 263 264 return &mr->ibmr; 265 266 err_alloc_pbl: 267 free_mr_pbl(hr_dev, mr); 268 err_alloc_key: 269 free_mr_key(hr_dev, mr); 270 err_alloc_mr: 271 kfree(mr); 272 err_out: 273 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REG_ERR_CNT]); 274 275 return ERR_PTR(ret); 276 } 277 278 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start, 279 u64 length, u64 virt_addr, 280 int mr_access_flags, struct ib_pd *pd, 281 struct ib_udata *udata) 282 { 283 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 284 struct ib_device *ib_dev = &hr_dev->ib_dev; 285 struct hns_roce_mr *mr = to_hr_mr(ibmr); 286 struct hns_roce_cmd_mailbox *mailbox; 287 unsigned long mtpt_idx; 288 int ret; 289 290 if (!mr->enabled) { 291 ret = -EINVAL; 292 goto err_out; 293 } 294 295 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 296 ret = PTR_ERR_OR_ZERO(mailbox); 297 if (ret) 298 goto err_out; 299 300 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1); 301 302 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT, 303 mtpt_idx); 304 if (ret) 305 goto free_cmd_mbox; 306 307 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 308 mtpt_idx); 309 if (ret) 310 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret); 311 312 mr->enabled = 0; 313 mr->iova = virt_addr; 314 mr->size = length; 315 316 if (flags & IB_MR_REREG_PD) 317 mr->pd = to_hr_pd(pd)->pdn; 318 319 if (flags & IB_MR_REREG_ACCESS) 320 mr->access = mr_access_flags; 321 322 if (flags & IB_MR_REREG_TRANS) { 323 free_mr_pbl(hr_dev, mr); 324 ret = alloc_mr_pbl(hr_dev, mr, udata, start); 325 if (ret) { 326 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n", 327 ret); 328 goto free_cmd_mbox; 329 } 330 } 331 332 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf); 333 if (ret) { 334 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret); 335 goto free_cmd_mbox; 336 } 337 338 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 339 mtpt_idx); 340 if (ret) { 341 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret); 342 goto free_cmd_mbox; 343 } 344 345 mr->enabled = 1; 346 347 free_cmd_mbox: 348 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 349 350 err_out: 351 if (ret) { 352 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REREG_ERR_CNT]); 353 return ERR_PTR(ret); 354 } 355 356 return NULL; 357 } 358 359 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) 360 { 361 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 362 struct hns_roce_mr *mr = to_hr_mr(ibmr); 363 364 if (hr_dev->hw->dereg_mr) 365 hr_dev->hw->dereg_mr(hr_dev); 366 367 hns_roce_mr_free(hr_dev, mr); 368 kfree(mr); 369 370 return 0; 371 } 372 373 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 374 u32 max_num_sg) 375 { 376 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device); 377 struct device *dev = hr_dev->dev; 378 struct hns_roce_mr *mr; 379 int ret; 380 381 if (mr_type != IB_MR_TYPE_MEM_REG) 382 return ERR_PTR(-EINVAL); 383 384 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) { 385 dev_err(dev, "max_num_sg larger than %d\n", 386 HNS_ROCE_FRMR_MAX_PA); 387 return ERR_PTR(-EINVAL); 388 } 389 390 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 391 if (!mr) 392 return ERR_PTR(-ENOMEM); 393 394 mr->type = MR_TYPE_FRMR; 395 mr->pd = to_hr_pd(pd)->pdn; 396 mr->size = max_num_sg * (1 << PAGE_SHIFT); 397 398 /* Allocate memory region key */ 399 ret = alloc_mr_key(hr_dev, mr); 400 if (ret) 401 goto err_free; 402 403 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0); 404 if (ret) 405 goto err_key; 406 407 ret = hns_roce_mr_enable(hr_dev, mr); 408 if (ret) 409 goto err_pbl; 410 411 mr->ibmr.rkey = mr->ibmr.lkey = mr->key; 412 mr->ibmr.length = mr->size; 413 414 return &mr->ibmr; 415 416 err_pbl: 417 free_mr_pbl(hr_dev, mr); 418 err_key: 419 free_mr_key(hr_dev, mr); 420 err_free: 421 kfree(mr); 422 return ERR_PTR(ret); 423 } 424 425 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr) 426 { 427 struct hns_roce_mr *mr = to_hr_mr(ibmr); 428 429 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) { 430 mr->page_list[mr->npages++] = addr; 431 return 0; 432 } 433 434 return -ENOBUFS; 435 } 436 437 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, 438 unsigned int *sg_offset) 439 { 440 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device); 441 struct ib_device *ibdev = &hr_dev->ib_dev; 442 struct hns_roce_mr *mr = to_hr_mr(ibmr); 443 struct hns_roce_mtr *mtr = &mr->pbl_mtr; 444 int ret, sg_num = 0; 445 446 if (!IS_ALIGNED(*sg_offset, HNS_ROCE_FRMR_ALIGN_SIZE) || 447 ibmr->page_size < HNS_HW_PAGE_SIZE || 448 ibmr->page_size > HNS_HW_MAX_PAGE_SIZE) 449 return sg_num; 450 451 mr->npages = 0; 452 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count, 453 sizeof(dma_addr_t), GFP_KERNEL); 454 if (!mr->page_list) 455 return sg_num; 456 457 sg_num = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page); 458 if (sg_num < 1) { 459 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n", 460 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, sg_num); 461 goto err_page_list; 462 } 463 464 mtr->hem_cfg.region[0].offset = 0; 465 mtr->hem_cfg.region[0].count = mr->npages; 466 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num; 467 mtr->hem_cfg.region_count = 1; 468 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages); 469 if (ret) { 470 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret); 471 sg_num = 0; 472 } else { 473 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size); 474 } 475 476 err_page_list: 477 kvfree(mr->page_list); 478 mr->page_list = NULL; 479 480 return sg_num; 481 } 482 483 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev, 484 struct hns_roce_mw *mw) 485 { 486 struct device *dev = hr_dev->dev; 487 int ret; 488 489 if (mw->enabled) { 490 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT, 491 key_to_hw_index(mw->rkey) & 492 (hr_dev->caps.num_mtpts - 1)); 493 if (ret) 494 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret); 495 496 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, 497 key_to_hw_index(mw->rkey)); 498 } 499 500 ida_free(&hr_dev->mr_table.mtpt_ida.ida, 501 (int)key_to_hw_index(mw->rkey)); 502 } 503 504 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev, 505 struct hns_roce_mw *mw) 506 { 507 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table; 508 struct hns_roce_cmd_mailbox *mailbox; 509 struct device *dev = hr_dev->dev; 510 unsigned long mtpt_idx = key_to_hw_index(mw->rkey); 511 int ret; 512 513 /* prepare HEM entry memory */ 514 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx); 515 if (ret) 516 return ret; 517 518 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); 519 if (IS_ERR(mailbox)) { 520 ret = PTR_ERR(mailbox); 521 goto err_table; 522 } 523 524 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw); 525 if (ret) { 526 dev_err(dev, "MW write mtpt fail!\n"); 527 goto err_page; 528 } 529 530 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT, 531 mtpt_idx & (hr_dev->caps.num_mtpts - 1)); 532 if (ret) { 533 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret); 534 goto err_page; 535 } 536 537 mw->enabled = 1; 538 539 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 540 541 return 0; 542 543 err_page: 544 hns_roce_free_cmd_mailbox(hr_dev, mailbox); 545 546 err_table: 547 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx); 548 549 return ret; 550 } 551 552 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) 553 { 554 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 555 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida; 556 struct ib_device *ibdev = &hr_dev->ib_dev; 557 struct hns_roce_mw *mw = to_hr_mw(ibmw); 558 int ret; 559 int id; 560 561 /* Allocate a key for mw from mr_table */ 562 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max, 563 GFP_KERNEL); 564 if (id < 0) { 565 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id); 566 return -ENOMEM; 567 } 568 569 mw->rkey = hw_index_to_key(id); 570 571 ibmw->rkey = mw->rkey; 572 mw->pdn = to_hr_pd(ibmw->pd)->pdn; 573 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num; 574 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz; 575 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz; 576 577 ret = hns_roce_mw_enable(hr_dev, mw); 578 if (ret) 579 goto err_mw; 580 581 return 0; 582 583 err_mw: 584 hns_roce_mw_free(hr_dev, mw); 585 return ret; 586 } 587 588 int hns_roce_dealloc_mw(struct ib_mw *ibmw) 589 { 590 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device); 591 struct hns_roce_mw *mw = to_hr_mw(ibmw); 592 593 hns_roce_mw_free(hr_dev, mw); 594 return 0; 595 } 596 597 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 598 struct hns_roce_buf_region *region, dma_addr_t *pages, 599 int max_count) 600 { 601 int count, npage; 602 int offset, end; 603 __le64 *mtts; 604 u64 addr; 605 int i; 606 607 offset = region->offset; 608 end = offset + region->count; 609 npage = 0; 610 while (offset < end && npage < max_count) { 611 count = 0; 612 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 613 offset, &count); 614 if (!mtts) 615 return -ENOBUFS; 616 617 for (i = 0; i < count && npage < max_count; i++) { 618 addr = pages[npage]; 619 620 mtts[i] = cpu_to_le64(addr); 621 npage++; 622 } 623 offset += count; 624 } 625 626 return npage; 627 } 628 629 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr) 630 { 631 int i; 632 633 for (i = 0; i < attr->region_count; i++) 634 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 && 635 attr->region[i].hopnum > 0) 636 return true; 637 638 /* because the mtr only one root base address, when hopnum is 0 means 639 * root base address equals the first buffer address, thus all alloced 640 * memory must in a continuous space accessed by direct mode. 641 */ 642 return false; 643 } 644 645 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr) 646 { 647 size_t size = 0; 648 int i; 649 650 for (i = 0; i < attr->region_count; i++) 651 size += attr->region[i].size; 652 653 return size; 654 } 655 656 /* 657 * check the given pages in continuous address space 658 * Returns 0 on success, or the error page num. 659 */ 660 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count, 661 unsigned int page_shift) 662 { 663 size_t page_size = 1 << page_shift; 664 int i; 665 666 for (i = 1; i < page_count; i++) 667 if (pages[i] - pages[i - 1] != page_size) 668 return i; 669 670 return 0; 671 } 672 673 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 674 { 675 /* release user buffers */ 676 if (mtr->umem) { 677 ib_umem_release(mtr->umem); 678 mtr->umem = NULL; 679 } 680 681 /* release kernel buffers */ 682 if (mtr->kmem) { 683 hns_roce_buf_free(hr_dev, mtr->kmem); 684 mtr->kmem = NULL; 685 } 686 } 687 688 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 689 struct hns_roce_buf_attr *buf_attr, 690 struct ib_udata *udata, unsigned long user_addr) 691 { 692 struct ib_device *ibdev = &hr_dev->ib_dev; 693 size_t total_size; 694 695 total_size = mtr_bufs_size(buf_attr); 696 697 if (udata) { 698 mtr->kmem = NULL; 699 mtr->umem = ib_umem_get(ibdev, user_addr, total_size, 700 buf_attr->user_access); 701 if (IS_ERR(mtr->umem)) { 702 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n", 703 PTR_ERR(mtr->umem)); 704 return -ENOMEM; 705 } 706 } else { 707 mtr->umem = NULL; 708 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size, 709 buf_attr->page_shift, 710 !mtr_has_mtt(buf_attr) ? 711 HNS_ROCE_BUF_DIRECT : 0); 712 if (IS_ERR(mtr->kmem)) { 713 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n", 714 PTR_ERR(mtr->kmem)); 715 return PTR_ERR(mtr->kmem); 716 } 717 } 718 719 return 0; 720 } 721 722 static int cal_mtr_pg_cnt(struct hns_roce_mtr *mtr) 723 { 724 struct hns_roce_buf_region *region; 725 int page_cnt = 0; 726 int i; 727 728 for (i = 0; i < mtr->hem_cfg.region_count; i++) { 729 region = &mtr->hem_cfg.region[i]; 730 page_cnt += region->count; 731 } 732 733 return page_cnt; 734 } 735 736 static bool need_split_huge_page(struct hns_roce_mtr *mtr) 737 { 738 /* When HEM buffer uses 0-level addressing, the page size is 739 * equal to the whole buffer size. If the current MTR has multiple 740 * regions, we split the buffer into small pages(4k, required by hns 741 * ROCEE). These pages will be used in multiple regions. 742 */ 743 return mtr->hem_cfg.is_direct && mtr->hem_cfg.region_count > 1; 744 } 745 746 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 747 { 748 struct ib_device *ibdev = &hr_dev->ib_dev; 749 int page_count = cal_mtr_pg_cnt(mtr); 750 unsigned int page_shift; 751 dma_addr_t *pages; 752 int npage; 753 int ret; 754 755 page_shift = need_split_huge_page(mtr) ? HNS_HW_PAGE_SHIFT : 756 mtr->hem_cfg.buf_pg_shift; 757 /* alloc a tmp array to store buffer's dma address */ 758 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL); 759 if (!pages) 760 return -ENOMEM; 761 762 if (mtr->umem) 763 npage = hns_roce_get_umem_bufs(pages, page_count, 764 mtr->umem, page_shift); 765 else 766 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count, 767 mtr->kmem, page_shift); 768 769 if (npage != page_count) { 770 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage, 771 page_count); 772 ret = -ENOBUFS; 773 goto err_alloc_list; 774 } 775 776 if (need_split_huge_page(mtr) && npage > 1) { 777 ret = mtr_check_direct_pages(pages, npage, page_shift); 778 if (ret) { 779 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n", 780 mtr->umem ? "umtr" : "kmtr", ret, npage); 781 ret = -ENOBUFS; 782 goto err_alloc_list; 783 } 784 } 785 786 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count); 787 if (ret) 788 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret); 789 790 err_alloc_list: 791 kvfree(pages); 792 793 return ret; 794 } 795 796 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 797 dma_addr_t *pages, unsigned int page_cnt) 798 { 799 struct ib_device *ibdev = &hr_dev->ib_dev; 800 struct hns_roce_buf_region *r; 801 unsigned int i, mapped_cnt; 802 int ret = 0; 803 804 /* 805 * Only use the first page address as root ba when hopnum is 0, this 806 * is because the addresses of all pages are consecutive in this case. 807 */ 808 if (mtr->hem_cfg.is_direct) { 809 mtr->hem_cfg.root_ba = pages[0]; 810 return 0; 811 } 812 813 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count && 814 mapped_cnt < page_cnt; i++) { 815 r = &mtr->hem_cfg.region[i]; 816 /* if hopnum is 0, no need to map pages in this region */ 817 if (!r->hopnum) { 818 mapped_cnt += r->count; 819 continue; 820 } 821 822 if (r->offset + r->count > page_cnt) { 823 ret = -EINVAL; 824 ibdev_err(ibdev, 825 "failed to check mtr%u count %u + %u > %u.\n", 826 i, r->offset, r->count, page_cnt); 827 return ret; 828 } 829 830 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset], 831 page_cnt - mapped_cnt); 832 if (ret < 0) { 833 ibdev_err(ibdev, 834 "failed to map mtr%u offset %u, ret = %d.\n", 835 i, r->offset, ret); 836 return ret; 837 } 838 mapped_cnt += ret; 839 ret = 0; 840 } 841 842 if (mapped_cnt < page_cnt) { 843 ret = -ENOBUFS; 844 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n", 845 mapped_cnt, page_cnt); 846 } 847 848 return ret; 849 } 850 851 static int hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg *cfg, 852 u32 start_index, u64 *mtt_buf, 853 int mtt_cnt) 854 { 855 int mtt_count; 856 int total = 0; 857 u32 npage; 858 u64 addr; 859 860 if (mtt_cnt > cfg->region_count) 861 return -EINVAL; 862 863 for (mtt_count = 0; mtt_count < cfg->region_count && total < mtt_cnt; 864 mtt_count++) { 865 npage = cfg->region[mtt_count].offset; 866 if (npage < start_index) 867 continue; 868 869 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT); 870 mtt_buf[total] = addr; 871 872 total++; 873 } 874 875 if (!total) 876 return -ENOENT; 877 878 return 0; 879 } 880 881 static int hns_roce_get_mhop_mtt(struct hns_roce_dev *hr_dev, 882 struct hns_roce_mtr *mtr, u32 start_index, 883 u64 *mtt_buf, int mtt_cnt) 884 { 885 int left = mtt_cnt; 886 int total = 0; 887 int mtt_count; 888 __le64 *mtts; 889 u32 npage; 890 891 while (left > 0) { 892 mtt_count = 0; 893 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list, 894 start_index + total, 895 &mtt_count); 896 if (!mtts || !mtt_count) 897 break; 898 899 npage = min(mtt_count, left); 900 left -= npage; 901 for (mtt_count = 0; mtt_count < npage; mtt_count++) 902 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]); 903 } 904 905 if (!total) 906 return -ENOENT; 907 908 return 0; 909 } 910 911 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 912 u32 offset, u64 *mtt_buf, int mtt_max) 913 { 914 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 915 u32 start_index; 916 int ret; 917 918 if (!mtt_buf || mtt_max < 1) 919 return -EINVAL; 920 921 /* no mtt memory in direct mode, so just return the buffer address */ 922 if (cfg->is_direct) { 923 start_index = offset >> HNS_HW_PAGE_SHIFT; 924 ret = hns_roce_get_direct_addr_mtt(cfg, start_index, 925 mtt_buf, mtt_max); 926 } else { 927 start_index = offset >> cfg->buf_pg_shift; 928 ret = hns_roce_get_mhop_mtt(hr_dev, mtr, start_index, 929 mtt_buf, mtt_max); 930 } 931 return ret; 932 } 933 934 static int get_best_page_shift(struct hns_roce_dev *hr_dev, 935 struct hns_roce_mtr *mtr, 936 struct hns_roce_buf_attr *buf_attr) 937 { 938 unsigned int page_sz; 939 940 if (!buf_attr->adaptive || buf_attr->type != MTR_PBL || !mtr->umem) 941 return 0; 942 943 page_sz = ib_umem_find_best_pgsz(mtr->umem, 944 hr_dev->caps.page_size_cap, 945 buf_attr->iova); 946 if (!page_sz) 947 return -EINVAL; 948 949 buf_attr->page_shift = order_base_2(page_sz); 950 return 0; 951 } 952 953 static int get_best_hop_num(struct hns_roce_dev *hr_dev, 954 struct hns_roce_mtr *mtr, 955 struct hns_roce_buf_attr *buf_attr, 956 unsigned int ba_pg_shift) 957 { 958 #define INVALID_HOPNUM -1 959 #define MIN_BA_CNT 1 960 size_t buf_pg_sz = 1 << buf_attr->page_shift; 961 struct ib_device *ibdev = &hr_dev->ib_dev; 962 size_t ba_pg_sz = 1 << ba_pg_shift; 963 int hop_num = INVALID_HOPNUM; 964 size_t unit = MIN_BA_CNT; 965 size_t ba_cnt; 966 int j; 967 968 if (!buf_attr->adaptive || buf_attr->type != MTR_PBL) 969 return 0; 970 971 /* Caculating the number of buf pages, each buf page need a BA */ 972 if (mtr->umem) 973 ba_cnt = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz); 974 else 975 ba_cnt = DIV_ROUND_UP(buf_attr->region[0].size, buf_pg_sz); 976 977 for (j = 0; j <= HNS_ROCE_MAX_HOP_NUM; j++) { 978 if (ba_cnt <= unit) { 979 hop_num = j; 980 break; 981 } 982 /* Number of BAs can be represented at per hop */ 983 unit *= ba_pg_sz / BA_BYTE_LEN; 984 } 985 986 if (hop_num < 0) { 987 ibdev_err(ibdev, 988 "failed to calculate a valid hopnum.\n"); 989 return -EINVAL; 990 } 991 992 buf_attr->region[0].hopnum = hop_num; 993 994 return 0; 995 } 996 997 static bool is_buf_attr_valid(struct hns_roce_dev *hr_dev, 998 struct hns_roce_buf_attr *attr) 999 { 1000 struct ib_device *ibdev = &hr_dev->ib_dev; 1001 1002 if (attr->region_count > ARRAY_SIZE(attr->region) || 1003 attr->region_count < 1 || attr->page_shift < HNS_HW_PAGE_SHIFT) { 1004 ibdev_err(ibdev, 1005 "invalid buf attr, region count %d, page shift %u.\n", 1006 attr->region_count, attr->page_shift); 1007 return false; 1008 } 1009 1010 return true; 1011 } 1012 1013 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev, 1014 struct hns_roce_mtr *mtr, 1015 struct hns_roce_buf_attr *attr) 1016 { 1017 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 1018 struct hns_roce_buf_region *r; 1019 size_t buf_pg_sz; 1020 size_t buf_size; 1021 int page_cnt, i; 1022 u64 pgoff = 0; 1023 1024 if (!is_buf_attr_valid(hr_dev, attr)) 1025 return -EINVAL; 1026 1027 /* If mtt is disabled, all pages must be within a continuous range */ 1028 cfg->is_direct = !mtr_has_mtt(attr); 1029 cfg->region_count = attr->region_count; 1030 buf_size = mtr_bufs_size(attr); 1031 if (need_split_huge_page(mtr)) { 1032 buf_pg_sz = HNS_HW_PAGE_SIZE; 1033 cfg->buf_pg_count = 1; 1034 /* The ROCEE requires the page size to be 4K * 2 ^ N. */ 1035 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT + 1036 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE)); 1037 } else { 1038 buf_pg_sz = 1 << attr->page_shift; 1039 cfg->buf_pg_count = mtr->umem ? 1040 ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz) : 1041 DIV_ROUND_UP(buf_size, buf_pg_sz); 1042 cfg->buf_pg_shift = attr->page_shift; 1043 pgoff = mtr->umem ? mtr->umem->address & ~PAGE_MASK : 0; 1044 } 1045 1046 /* Convert buffer size to page index and page count for each region and 1047 * the buffer's offset needs to be appended to the first region. 1048 */ 1049 for (page_cnt = 0, i = 0; i < attr->region_count; i++) { 1050 r = &cfg->region[i]; 1051 r->offset = page_cnt; 1052 buf_size = hr_hw_page_align(attr->region[i].size + pgoff); 1053 if (attr->type == MTR_PBL && mtr->umem) 1054 r->count = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz); 1055 else 1056 r->count = DIV_ROUND_UP(buf_size, buf_pg_sz); 1057 1058 pgoff = 0; 1059 page_cnt += r->count; 1060 r->hopnum = to_hr_hem_hopnum(attr->region[i].hopnum, r->count); 1061 } 1062 1063 return 0; 1064 } 1065 1066 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum) 1067 { 1068 return int_pow(ba_per_bt, hopnum - 1); 1069 } 1070 1071 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev, 1072 struct hns_roce_mtr *mtr, 1073 unsigned int pg_shift) 1074 { 1075 unsigned long cap = hr_dev->caps.page_size_cap; 1076 struct hns_roce_buf_region *re; 1077 unsigned int pgs_per_l1ba; 1078 unsigned int ba_per_bt; 1079 unsigned int ba_num; 1080 int i; 1081 1082 for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) { 1083 if (!(BIT(pg_shift) & cap)) 1084 continue; 1085 1086 ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN; 1087 ba_num = 0; 1088 for (i = 0; i < mtr->hem_cfg.region_count; i++) { 1089 re = &mtr->hem_cfg.region[i]; 1090 if (re->hopnum == 0) 1091 continue; 1092 1093 pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum); 1094 ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba); 1095 } 1096 1097 if (ba_num <= ba_per_bt) 1098 return pg_shift; 1099 } 1100 1101 return 0; 1102 } 1103 1104 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 1105 unsigned int ba_page_shift) 1106 { 1107 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg; 1108 int ret; 1109 1110 hns_roce_hem_list_init(&mtr->hem_list); 1111 if (!cfg->is_direct) { 1112 ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift); 1113 if (!ba_page_shift) 1114 return -ERANGE; 1115 1116 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list, 1117 cfg->region, cfg->region_count, 1118 ba_page_shift); 1119 if (ret) 1120 return ret; 1121 cfg->root_ba = mtr->hem_list.root_ba; 1122 cfg->ba_pg_shift = ba_page_shift; 1123 } else { 1124 cfg->ba_pg_shift = cfg->buf_pg_shift; 1125 } 1126 1127 return 0; 1128 } 1129 1130 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1131 { 1132 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1133 } 1134 1135 /** 1136 * hns_roce_mtr_create - Create hns memory translate region. 1137 * 1138 * @hr_dev: RoCE device struct pointer 1139 * @mtr: memory translate region 1140 * @buf_attr: buffer attribute for creating mtr 1141 * @ba_page_shift: page shift for multi-hop base address table 1142 * @udata: user space context, if it's NULL, means kernel space 1143 * @user_addr: userspace virtual address to start at 1144 */ 1145 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr, 1146 struct hns_roce_buf_attr *buf_attr, 1147 unsigned int ba_page_shift, struct ib_udata *udata, 1148 unsigned long user_addr) 1149 { 1150 struct ib_device *ibdev = &hr_dev->ib_dev; 1151 int ret; 1152 1153 /* The caller has its own buffer list and invokes the hns_roce_mtr_map() 1154 * to finish the MTT configuration. 1155 */ 1156 if (buf_attr->mtt_only) { 1157 mtr->umem = NULL; 1158 mtr->kmem = NULL; 1159 } else { 1160 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr); 1161 if (ret) { 1162 ibdev_err(ibdev, 1163 "failed to alloc mtr bufs, ret = %d.\n", ret); 1164 return ret; 1165 } 1166 1167 ret = get_best_page_shift(hr_dev, mtr, buf_attr); 1168 if (ret) 1169 goto err_init_buf; 1170 1171 ret = get_best_hop_num(hr_dev, mtr, buf_attr, ba_page_shift); 1172 if (ret) 1173 goto err_init_buf; 1174 } 1175 1176 ret = mtr_init_buf_cfg(hr_dev, mtr, buf_attr); 1177 if (ret) 1178 goto err_init_buf; 1179 1180 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift); 1181 if (ret) { 1182 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret); 1183 goto err_init_buf; 1184 } 1185 1186 if (buf_attr->mtt_only) 1187 return 0; 1188 1189 /* Write buffer's dma address to MTT */ 1190 ret = mtr_map_bufs(hr_dev, mtr); 1191 if (ret) { 1192 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret); 1193 goto err_alloc_mtt; 1194 } 1195 1196 return 0; 1197 1198 err_alloc_mtt: 1199 mtr_free_mtt(hr_dev, mtr); 1200 err_init_buf: 1201 mtr_free_bufs(hr_dev, mtr); 1202 1203 return ret; 1204 } 1205 1206 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr) 1207 { 1208 /* release multi-hop addressing resource */ 1209 hns_roce_hem_list_release(hr_dev, &mtr->hem_list); 1210 1211 /* free buffers */ 1212 mtr_free_bufs(hr_dev, mtr); 1213 } 1214