1 /* 2 * Copyright(c) 2015 - 2020 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <rdma/ib_mad.h> 49 #include <rdma/ib_user_verbs.h> 50 #include <linux/io.h> 51 #include <linux/module.h> 52 #include <linux/utsname.h> 53 #include <linux/rculist.h> 54 #include <linux/mm.h> 55 #include <linux/vmalloc.h> 56 #include <rdma/opa_addr.h> 57 #include <linux/nospec.h> 58 59 #include "hfi.h" 60 #include "common.h" 61 #include "device.h" 62 #include "trace.h" 63 #include "qp.h" 64 #include "verbs_txreq.h" 65 #include "debugfs.h" 66 #include "vnic.h" 67 #include "fault.h" 68 #include "affinity.h" 69 #include "ipoib.h" 70 71 static unsigned int hfi1_lkey_table_size = 16; 72 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, 73 S_IRUGO); 74 MODULE_PARM_DESC(lkey_table_size, 75 "LKEY table size in bits (2^n, 1 <= n <= 23)"); 76 77 static unsigned int hfi1_max_pds = 0xFFFF; 78 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); 79 MODULE_PARM_DESC(max_pds, 80 "Maximum number of protection domains to support"); 81 82 static unsigned int hfi1_max_ahs = 0xFFFF; 83 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); 84 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); 85 86 unsigned int hfi1_max_cqes = 0x2FFFFF; 87 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); 88 MODULE_PARM_DESC(max_cqes, 89 "Maximum number of completion queue entries to support"); 90 91 unsigned int hfi1_max_cqs = 0x1FFFF; 92 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); 93 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); 94 95 unsigned int hfi1_max_qp_wrs = 0x3FFF; 96 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); 97 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); 98 99 unsigned int hfi1_max_qps = 32768; 100 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); 101 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); 102 103 unsigned int hfi1_max_sges = 0x60; 104 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); 105 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); 106 107 unsigned int hfi1_max_mcast_grps = 16384; 108 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); 109 MODULE_PARM_DESC(max_mcast_grps, 110 "Maximum number of multicast groups to support"); 111 112 unsigned int hfi1_max_mcast_qp_attached = 16; 113 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, 114 uint, S_IRUGO); 115 MODULE_PARM_DESC(max_mcast_qp_attached, 116 "Maximum number of attached QPs to support"); 117 118 unsigned int hfi1_max_srqs = 1024; 119 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); 120 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); 121 122 unsigned int hfi1_max_srq_sges = 128; 123 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); 124 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); 125 126 unsigned int hfi1_max_srq_wrs = 0x1FFFF; 127 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); 128 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); 129 130 unsigned short piothreshold = 256; 131 module_param(piothreshold, ushort, S_IRUGO); 132 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio"); 133 134 static unsigned int sge_copy_mode; 135 module_param(sge_copy_mode, uint, S_IRUGO); 136 MODULE_PARM_DESC(sge_copy_mode, 137 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS"); 138 139 static void verbs_sdma_complete( 140 struct sdma_txreq *cookie, 141 int status); 142 143 static int pio_wait(struct rvt_qp *qp, 144 struct send_context *sc, 145 struct hfi1_pkt_state *ps, 146 u32 flag); 147 148 /* Length of buffer to create verbs txreq cache name */ 149 #define TXREQ_NAME_LEN 24 150 151 static uint wss_threshold = 80; 152 module_param(wss_threshold, uint, S_IRUGO); 153 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy"); 154 static uint wss_clean_period = 256; 155 module_param(wss_clean_period, uint, S_IRUGO); 156 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned"); 157 158 /* 159 * Translate ib_wr_opcode into ib_wc_opcode. 160 */ 161 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { 162 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, 163 [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE, 164 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, 165 [IB_WR_SEND] = IB_WC_SEND, 166 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, 167 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, 168 [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ, 169 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, 170 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, 171 [IB_WR_SEND_WITH_INV] = IB_WC_SEND, 172 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, 173 [IB_WR_REG_MR] = IB_WC_REG_MR 174 }; 175 176 /* 177 * Length of header by opcode, 0 --> not supported 178 */ 179 const u8 hdr_len_by_opcode[256] = { 180 /* RC */ 181 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, 182 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, 183 [IB_OPCODE_RC_SEND_LAST] = 12 + 8, 184 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 185 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, 186 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 187 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 188 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, 189 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, 190 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 191 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 192 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 193 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, 194 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, 195 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, 196 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, 197 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, 198 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, 199 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8, 200 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, 201 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, 202 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4, 203 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4, 204 [IB_OPCODE_TID_RDMA_READ_REQ] = 12 + 8 + 36, 205 [IB_OPCODE_TID_RDMA_READ_RESP] = 12 + 8 + 36, 206 [IB_OPCODE_TID_RDMA_WRITE_REQ] = 12 + 8 + 36, 207 [IB_OPCODE_TID_RDMA_WRITE_RESP] = 12 + 8 + 36, 208 [IB_OPCODE_TID_RDMA_WRITE_DATA] = 12 + 8 + 36, 209 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = 12 + 8 + 36, 210 [IB_OPCODE_TID_RDMA_ACK] = 12 + 8 + 36, 211 [IB_OPCODE_TID_RDMA_RESYNC] = 12 + 8 + 36, 212 /* UC */ 213 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, 214 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, 215 [IB_OPCODE_UC_SEND_LAST] = 12 + 8, 216 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 217 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, 218 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 219 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 220 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, 221 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, 222 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 223 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 224 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 225 /* UD */ 226 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, 227 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 228 }; 229 230 static const opcode_handler opcode_handler_tbl[256] = { 231 /* RC */ 232 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, 233 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, 234 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, 235 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 236 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, 237 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 238 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, 239 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, 240 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, 241 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 242 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, 243 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 244 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, 245 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, 246 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, 247 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, 248 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, 249 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, 250 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, 251 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, 252 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, 253 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv, 254 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv, 255 256 /* TID RDMA has separate handlers for different opcodes.*/ 257 [IB_OPCODE_TID_RDMA_WRITE_REQ] = &hfi1_rc_rcv_tid_rdma_write_req, 258 [IB_OPCODE_TID_RDMA_WRITE_RESP] = &hfi1_rc_rcv_tid_rdma_write_resp, 259 [IB_OPCODE_TID_RDMA_WRITE_DATA] = &hfi1_rc_rcv_tid_rdma_write_data, 260 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data, 261 [IB_OPCODE_TID_RDMA_READ_REQ] = &hfi1_rc_rcv_tid_rdma_read_req, 262 [IB_OPCODE_TID_RDMA_READ_RESP] = &hfi1_rc_rcv_tid_rdma_read_resp, 263 [IB_OPCODE_TID_RDMA_RESYNC] = &hfi1_rc_rcv_tid_rdma_resync, 264 [IB_OPCODE_TID_RDMA_ACK] = &hfi1_rc_rcv_tid_rdma_ack, 265 266 /* UC */ 267 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, 268 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, 269 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, 270 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 271 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, 272 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 273 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, 274 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, 275 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, 276 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 277 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, 278 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 279 /* UD */ 280 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, 281 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, 282 /* CNP */ 283 [IB_OPCODE_CNP] = &hfi1_cnp_rcv 284 }; 285 286 #define OPMASK 0x1f 287 288 static const u32 pio_opmask[BIT(3)] = { 289 /* RC */ 290 [IB_OPCODE_RC >> 5] = 291 BIT(RC_OP(SEND_ONLY) & OPMASK) | 292 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 293 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) | 294 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) | 295 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) | 296 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) | 297 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) | 298 BIT(RC_OP(COMPARE_SWAP) & OPMASK) | 299 BIT(RC_OP(FETCH_ADD) & OPMASK), 300 /* UC */ 301 [IB_OPCODE_UC >> 5] = 302 BIT(UC_OP(SEND_ONLY) & OPMASK) | 303 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 304 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) | 305 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK), 306 }; 307 308 /* 309 * System image GUID. 310 */ 311 __be64 ib_hfi1_sys_image_guid; 312 313 /* 314 * Make sure the QP is ready and able to accept the given opcode. 315 */ 316 static inline opcode_handler qp_ok(struct hfi1_packet *packet) 317 { 318 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 319 return NULL; 320 if (((packet->opcode & RVT_OPCODE_QP_MASK) == 321 packet->qp->allowed_ops) || 322 (packet->opcode == IB_OPCODE_CNP)) 323 return opcode_handler_tbl[packet->opcode]; 324 325 return NULL; 326 } 327 328 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc) 329 { 330 #ifdef CONFIG_FAULT_INJECTION 331 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) { 332 /* 333 * In order to drop non-IB traffic we 334 * set PbcInsertHrc to NONE (0x2). 335 * The packet will still be delivered 336 * to the receiving node but a 337 * KHdrHCRCErr (KDETH packet with a bad 338 * HCRC) will be triggered and the 339 * packet will not be delivered to the 340 * correct context. 341 */ 342 pbc &= ~PBC_INSERT_HCRC_SMASK; 343 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT; 344 } else { 345 /* 346 * In order to drop regular verbs 347 * traffic we set the PbcTestEbp 348 * flag. The packet will still be 349 * delivered to the receiving node but 350 * a 'late ebp error' will be 351 * triggered and will be dropped. 352 */ 353 pbc |= PBC_TEST_EBP; 354 } 355 #endif 356 return pbc; 357 } 358 359 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet) 360 { 361 if (packet->qp->ibqp.qp_type != IB_QPT_RC || 362 !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 363 return NULL; 364 if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA) 365 return opcode_handler_tbl[opcode]; 366 return NULL; 367 } 368 369 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet) 370 { 371 struct hfi1_ctxtdata *rcd = packet->rcd; 372 struct ib_header *hdr = packet->hdr; 373 u32 tlen = packet->tlen; 374 struct hfi1_pportdata *ppd = rcd->ppd; 375 struct hfi1_ibport *ibp = &ppd->ibport_data; 376 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 377 opcode_handler opcode_handler; 378 unsigned long flags; 379 u32 qp_num; 380 int lnh; 381 u8 opcode; 382 383 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ 384 if (unlikely(tlen < 15 * sizeof(u32))) 385 goto drop; 386 387 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 388 if (lnh != HFI1_LRH_BTH) 389 goto drop; 390 391 packet->ohdr = &hdr->u.oth; 392 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 393 394 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); 395 inc_opstats(tlen, &rcd->opstats->stats[opcode]); 396 397 /* verbs_qp can be picked up from any tid_rdma header struct */ 398 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) & 399 RVT_QPN_MASK; 400 401 rcu_read_lock(); 402 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 403 if (!packet->qp) 404 goto drop_rcu; 405 spin_lock_irqsave(&packet->qp->r_lock, flags); 406 opcode_handler = tid_qp_ok(opcode, packet); 407 if (likely(opcode_handler)) 408 opcode_handler(packet); 409 else 410 goto drop_unlock; 411 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 412 rcu_read_unlock(); 413 414 return; 415 drop_unlock: 416 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 417 drop_rcu: 418 rcu_read_unlock(); 419 drop: 420 ibp->rvp.n_pkt_drops++; 421 } 422 423 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet) 424 { 425 struct hfi1_ctxtdata *rcd = packet->rcd; 426 struct ib_header *hdr = packet->hdr; 427 u32 tlen = packet->tlen; 428 struct hfi1_pportdata *ppd = rcd->ppd; 429 struct hfi1_ibport *ibp = &ppd->ibport_data; 430 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 431 opcode_handler opcode_handler; 432 unsigned long flags; 433 u32 qp_num; 434 int lnh; 435 u8 opcode; 436 437 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ 438 if (unlikely(tlen < 15 * sizeof(u32))) 439 goto drop; 440 441 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 442 if (lnh != HFI1_LRH_BTH) 443 goto drop; 444 445 packet->ohdr = &hdr->u.oth; 446 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 447 448 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); 449 inc_opstats(tlen, &rcd->opstats->stats[opcode]); 450 451 /* verbs_qp can be picked up from any tid_rdma header struct */ 452 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) & 453 RVT_QPN_MASK; 454 455 rcu_read_lock(); 456 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 457 if (!packet->qp) 458 goto drop_rcu; 459 spin_lock_irqsave(&packet->qp->r_lock, flags); 460 opcode_handler = tid_qp_ok(opcode, packet); 461 if (likely(opcode_handler)) 462 opcode_handler(packet); 463 else 464 goto drop_unlock; 465 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 466 rcu_read_unlock(); 467 468 return; 469 drop_unlock: 470 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 471 drop_rcu: 472 rcu_read_unlock(); 473 drop: 474 ibp->rvp.n_pkt_drops++; 475 } 476 477 static int hfi1_do_pkey_check(struct hfi1_packet *packet) 478 { 479 struct hfi1_ctxtdata *rcd = packet->rcd; 480 struct hfi1_pportdata *ppd = rcd->ppd; 481 struct hfi1_16b_header *hdr = packet->hdr; 482 u16 pkey; 483 484 /* Pkey check needed only for bypass packets */ 485 if (packet->etype != RHF_RCV_TYPE_BYPASS) 486 return 0; 487 488 /* Perform pkey check */ 489 pkey = hfi1_16B_get_pkey(hdr); 490 return ingress_pkey_check(ppd, pkey, packet->sc, 491 packet->qp->s_pkey_index, 492 packet->slid, true); 493 } 494 495 static inline void hfi1_handle_packet(struct hfi1_packet *packet, 496 bool is_mcast) 497 { 498 u32 qp_num; 499 struct hfi1_ctxtdata *rcd = packet->rcd; 500 struct hfi1_pportdata *ppd = rcd->ppd; 501 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 502 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 503 opcode_handler packet_handler; 504 unsigned long flags; 505 506 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]); 507 508 if (unlikely(is_mcast)) { 509 struct rvt_mcast *mcast; 510 struct rvt_mcast_qp *p; 511 512 if (!packet->grh) 513 goto drop; 514 mcast = rvt_mcast_find(&ibp->rvp, 515 &packet->grh->dgid, 516 opa_get_lid(packet->dlid, 9B)); 517 if (!mcast) 518 goto drop; 519 rcu_read_lock(); 520 list_for_each_entry_rcu(p, &mcast->qp_list, list) { 521 packet->qp = p->qp; 522 if (hfi1_do_pkey_check(packet)) 523 goto unlock_drop; 524 spin_lock_irqsave(&packet->qp->r_lock, flags); 525 packet_handler = qp_ok(packet); 526 if (likely(packet_handler)) 527 packet_handler(packet); 528 else 529 ibp->rvp.n_pkt_drops++; 530 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 531 } 532 rcu_read_unlock(); 533 /* 534 * Notify rvt_multicast_detach() if it is waiting for us 535 * to finish. 536 */ 537 if (atomic_dec_return(&mcast->refcount) <= 1) 538 wake_up(&mcast->wait); 539 } else { 540 /* Get the destination QP number. */ 541 if (packet->etype == RHF_RCV_TYPE_BYPASS && 542 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM) 543 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt); 544 else 545 qp_num = ib_bth_get_qpn(packet->ohdr); 546 547 rcu_read_lock(); 548 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 549 if (!packet->qp) 550 goto unlock_drop; 551 552 if (hfi1_do_pkey_check(packet)) 553 goto unlock_drop; 554 555 spin_lock_irqsave(&packet->qp->r_lock, flags); 556 packet_handler = qp_ok(packet); 557 if (likely(packet_handler)) 558 packet_handler(packet); 559 else 560 ibp->rvp.n_pkt_drops++; 561 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 562 rcu_read_unlock(); 563 } 564 return; 565 unlock_drop: 566 rcu_read_unlock(); 567 drop: 568 ibp->rvp.n_pkt_drops++; 569 } 570 571 /** 572 * hfi1_ib_rcv - process an incoming packet 573 * @packet: data packet information 574 * 575 * This is called to process an incoming packet at interrupt level. 576 */ 577 void hfi1_ib_rcv(struct hfi1_packet *packet) 578 { 579 struct hfi1_ctxtdata *rcd = packet->rcd; 580 581 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 582 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 583 } 584 585 void hfi1_16B_rcv(struct hfi1_packet *packet) 586 { 587 struct hfi1_ctxtdata *rcd = packet->rcd; 588 589 trace_input_ibhdr(rcd->dd, packet, false); 590 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 591 } 592 593 /* 594 * This is called from a timer to check for QPs 595 * which need kernel memory in order to send a packet. 596 */ 597 static void mem_timer(struct timer_list *t) 598 { 599 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer); 600 struct list_head *list = &dev->memwait; 601 struct rvt_qp *qp = NULL; 602 struct iowait *wait; 603 unsigned long flags; 604 struct hfi1_qp_priv *priv; 605 606 write_seqlock_irqsave(&dev->iowait_lock, flags); 607 if (!list_empty(list)) { 608 wait = list_first_entry(list, struct iowait, list); 609 qp = iowait_to_qp(wait); 610 priv = qp->priv; 611 list_del_init(&priv->s_iowait.list); 612 priv->s_iowait.lock = NULL; 613 /* refcount held until actual wake up */ 614 if (!list_empty(list)) 615 mod_timer(&dev->mem_timer, jiffies + 1); 616 } 617 write_sequnlock_irqrestore(&dev->iowait_lock, flags); 618 619 if (qp) 620 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM); 621 } 622 623 /* 624 * This is called with progress side lock held. 625 */ 626 /* New API */ 627 static void verbs_sdma_complete( 628 struct sdma_txreq *cookie, 629 int status) 630 { 631 struct verbs_txreq *tx = 632 container_of(cookie, struct verbs_txreq, txreq); 633 struct rvt_qp *qp = tx->qp; 634 635 spin_lock(&qp->s_lock); 636 if (tx->wqe) { 637 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS); 638 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 639 struct hfi1_opa_header *hdr; 640 641 hdr = &tx->phdr.hdr; 642 if (unlikely(status == SDMA_TXREQ_S_ABORTED)) 643 hfi1_rc_verbs_aborted(qp, hdr); 644 hfi1_rc_send_complete(qp, hdr); 645 } 646 spin_unlock(&qp->s_lock); 647 648 hfi1_put_txreq(tx); 649 } 650 651 void hfi1_wait_kmem(struct rvt_qp *qp) 652 { 653 struct hfi1_qp_priv *priv = qp->priv; 654 struct ib_qp *ibqp = &qp->ibqp; 655 struct ib_device *ibdev = ibqp->device; 656 struct hfi1_ibdev *dev = to_idev(ibdev); 657 658 if (list_empty(&priv->s_iowait.list)) { 659 if (list_empty(&dev->memwait)) 660 mod_timer(&dev->mem_timer, jiffies + 1); 661 qp->s_flags |= RVT_S_WAIT_KMEM; 662 list_add_tail(&priv->s_iowait.list, &dev->memwait); 663 priv->s_iowait.lock = &dev->iowait_lock; 664 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM); 665 rvt_get_qp(qp); 666 } 667 } 668 669 static int wait_kmem(struct hfi1_ibdev *dev, 670 struct rvt_qp *qp, 671 struct hfi1_pkt_state *ps) 672 { 673 unsigned long flags; 674 int ret = 0; 675 676 spin_lock_irqsave(&qp->s_lock, flags); 677 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 678 write_seqlock(&dev->iowait_lock); 679 list_add_tail(&ps->s_txreq->txreq.list, 680 &ps->wait->tx_head); 681 hfi1_wait_kmem(qp); 682 write_sequnlock(&dev->iowait_lock); 683 hfi1_qp_unbusy(qp, ps->wait); 684 ret = -EBUSY; 685 } 686 spin_unlock_irqrestore(&qp->s_lock, flags); 687 688 return ret; 689 } 690 691 /* 692 * This routine calls txadds for each sg entry. 693 * 694 * Add failures will revert the sge cursor 695 */ 696 static noinline int build_verbs_ulp_payload( 697 struct sdma_engine *sde, 698 u32 length, 699 struct verbs_txreq *tx) 700 { 701 struct rvt_sge_state *ss = tx->ss; 702 struct rvt_sge *sg_list = ss->sg_list; 703 struct rvt_sge sge = ss->sge; 704 u8 num_sge = ss->num_sge; 705 u32 len; 706 int ret = 0; 707 708 while (length) { 709 len = rvt_get_sge_length(&ss->sge, length); 710 WARN_ON_ONCE(len == 0); 711 ret = sdma_txadd_kvaddr( 712 sde->dd, 713 &tx->txreq, 714 ss->sge.vaddr, 715 len); 716 if (ret) 717 goto bail_txadd; 718 rvt_update_sge(ss, len, false); 719 length -= len; 720 } 721 return ret; 722 bail_txadd: 723 /* unwind cursor */ 724 ss->sge = sge; 725 ss->num_sge = num_sge; 726 ss->sg_list = sg_list; 727 return ret; 728 } 729 730 /** 731 * update_tx_opstats - record stats by opcode 732 * @qp; the qp 733 * @ps: transmit packet state 734 * @plen: the plen in dwords 735 * 736 * This is a routine to record the tx opstats after a 737 * packet has been presented to the egress mechanism. 738 */ 739 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 740 u32 plen) 741 { 742 #ifdef CONFIG_DEBUG_FS 743 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 744 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats); 745 746 inc_opstats(plen * 4, &s->stats[ps->opcode]); 747 put_cpu_ptr(s); 748 #endif 749 } 750 751 /* 752 * Build the number of DMA descriptors needed to send length bytes of data. 753 * 754 * NOTE: DMA mapping is held in the tx until completed in the ring or 755 * the tx desc is freed without having been submitted to the ring 756 * 757 * This routine ensures all the helper routine calls succeed. 758 */ 759 /* New API */ 760 static int build_verbs_tx_desc( 761 struct sdma_engine *sde, 762 u32 length, 763 struct verbs_txreq *tx, 764 struct hfi1_ahg_info *ahg_info, 765 u64 pbc) 766 { 767 int ret = 0; 768 struct hfi1_sdma_header *phdr = &tx->phdr; 769 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2; 770 u8 extra_bytes = 0; 771 772 if (tx->phdr.hdr.hdr_type) { 773 /* 774 * hdrbytes accounts for PBC. Need to subtract 8 bytes 775 * before calculating padding. 776 */ 777 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) + 778 (SIZE_OF_CRC << 2) + SIZE_OF_LT; 779 } 780 if (!ahg_info->ahgcount) { 781 ret = sdma_txinit_ahg( 782 &tx->txreq, 783 ahg_info->tx_flags, 784 hdrbytes + length + 785 extra_bytes, 786 ahg_info->ahgidx, 787 0, 788 NULL, 789 0, 790 verbs_sdma_complete); 791 if (ret) 792 goto bail_txadd; 793 phdr->pbc = cpu_to_le64(pbc); 794 ret = sdma_txadd_kvaddr( 795 sde->dd, 796 &tx->txreq, 797 phdr, 798 hdrbytes); 799 if (ret) 800 goto bail_txadd; 801 } else { 802 ret = sdma_txinit_ahg( 803 &tx->txreq, 804 ahg_info->tx_flags, 805 length, 806 ahg_info->ahgidx, 807 ahg_info->ahgcount, 808 ahg_info->ahgdesc, 809 hdrbytes, 810 verbs_sdma_complete); 811 if (ret) 812 goto bail_txadd; 813 } 814 /* add the ulp payload - if any. tx->ss can be NULL for acks */ 815 if (tx->ss) { 816 ret = build_verbs_ulp_payload(sde, length, tx); 817 if (ret) 818 goto bail_txadd; 819 } 820 821 /* add icrc, lt byte, and padding to flit */ 822 if (extra_bytes) 823 ret = sdma_txadd_daddr(sde->dd, &tx->txreq, 824 sde->dd->sdma_pad_phys, extra_bytes); 825 826 bail_txadd: 827 return ret; 828 } 829 830 static u64 update_hcrc(u8 opcode, u64 pbc) 831 { 832 if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) { 833 pbc &= ~PBC_INSERT_HCRC_SMASK; 834 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT; 835 } 836 return pbc; 837 } 838 839 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 840 u64 pbc) 841 { 842 struct hfi1_qp_priv *priv = qp->priv; 843 struct hfi1_ahg_info *ahg_info = priv->s_ahg; 844 u32 hdrwords = ps->s_txreq->hdr_dwords; 845 u32 len = ps->s_txreq->s_cur_size; 846 u32 plen; 847 struct hfi1_ibdev *dev = ps->dev; 848 struct hfi1_pportdata *ppd = ps->ppd; 849 struct verbs_txreq *tx; 850 u8 sc5 = priv->s_sc; 851 int ret; 852 u32 dwords; 853 854 if (ps->s_txreq->phdr.hdr.hdr_type) { 855 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len); 856 857 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) + 858 SIZE_OF_LT) >> 2; 859 } else { 860 dwords = (len + 3) >> 2; 861 } 862 plen = hdrwords + dwords + sizeof(pbc) / 4; 863 864 tx = ps->s_txreq; 865 if (!sdma_txreq_built(&tx->txreq)) { 866 if (likely(pbc == 0)) { 867 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 868 869 /* No vl15 here */ 870 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 871 if (ps->s_txreq->phdr.hdr.hdr_type) 872 pbc |= PBC_PACKET_BYPASS | 873 PBC_INSERT_BYPASS_ICRC; 874 else 875 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 876 877 pbc = create_pbc(ppd, 878 pbc, 879 qp->srate_mbps, 880 vl, 881 plen); 882 883 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 884 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 885 else 886 /* Update HCRC based on packet opcode */ 887 pbc = update_hcrc(ps->opcode, pbc); 888 } 889 tx->wqe = qp->s_wqe; 890 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc); 891 if (unlikely(ret)) 892 goto bail_build; 893 } 894 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent); 895 if (unlikely(ret < 0)) { 896 if (ret == -ECOMM) 897 goto bail_ecomm; 898 return ret; 899 } 900 901 update_tx_opstats(qp, ps, plen); 902 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 903 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 904 return ret; 905 906 bail_ecomm: 907 /* The current one got "sent" */ 908 return 0; 909 bail_build: 910 ret = wait_kmem(dev, qp, ps); 911 if (!ret) { 912 /* free txreq - bad state */ 913 hfi1_put_txreq(ps->s_txreq); 914 ps->s_txreq = NULL; 915 } 916 return ret; 917 } 918 919 /* 920 * If we are now in the error state, return zero to flush the 921 * send work request. 922 */ 923 static int pio_wait(struct rvt_qp *qp, 924 struct send_context *sc, 925 struct hfi1_pkt_state *ps, 926 u32 flag) 927 { 928 struct hfi1_qp_priv *priv = qp->priv; 929 struct hfi1_devdata *dd = sc->dd; 930 unsigned long flags; 931 int ret = 0; 932 933 /* 934 * Note that as soon as want_buffer() is called and 935 * possibly before it returns, sc_piobufavail() 936 * could be called. Therefore, put QP on the I/O wait list before 937 * enabling the PIO avail interrupt. 938 */ 939 spin_lock_irqsave(&qp->s_lock, flags); 940 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 941 write_seqlock(&sc->waitlock); 942 list_add_tail(&ps->s_txreq->txreq.list, 943 &ps->wait->tx_head); 944 if (list_empty(&priv->s_iowait.list)) { 945 struct hfi1_ibdev *dev = &dd->verbs_dev; 946 int was_empty; 947 948 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO); 949 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN); 950 qp->s_flags |= flag; 951 was_empty = list_empty(&sc->piowait); 952 iowait_get_priority(&priv->s_iowait); 953 iowait_queue(ps->pkts_sent, &priv->s_iowait, 954 &sc->piowait); 955 priv->s_iowait.lock = &sc->waitlock; 956 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO); 957 rvt_get_qp(qp); 958 /* counting: only call wantpiobuf_intr if first user */ 959 if (was_empty) 960 hfi1_sc_wantpiobuf_intr(sc, 1); 961 } 962 write_sequnlock(&sc->waitlock); 963 hfi1_qp_unbusy(qp, ps->wait); 964 ret = -EBUSY; 965 } 966 spin_unlock_irqrestore(&qp->s_lock, flags); 967 return ret; 968 } 969 970 static void verbs_pio_complete(void *arg, int code) 971 { 972 struct rvt_qp *qp = (struct rvt_qp *)arg; 973 struct hfi1_qp_priv *priv = qp->priv; 974 975 if (iowait_pio_dec(&priv->s_iowait)) 976 iowait_drain_wakeup(&priv->s_iowait); 977 } 978 979 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 980 u64 pbc) 981 { 982 struct hfi1_qp_priv *priv = qp->priv; 983 u32 hdrwords = ps->s_txreq->hdr_dwords; 984 struct rvt_sge_state *ss = ps->s_txreq->ss; 985 u32 len = ps->s_txreq->s_cur_size; 986 u32 dwords; 987 u32 plen; 988 struct hfi1_pportdata *ppd = ps->ppd; 989 u32 *hdr; 990 u8 sc5; 991 unsigned long flags = 0; 992 struct send_context *sc; 993 struct pio_buf *pbuf; 994 int wc_status = IB_WC_SUCCESS; 995 int ret = 0; 996 pio_release_cb cb = NULL; 997 u8 extra_bytes = 0; 998 999 if (ps->s_txreq->phdr.hdr.hdr_type) { 1000 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len); 1001 1002 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT; 1003 dwords = (len + extra_bytes) >> 2; 1004 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah; 1005 } else { 1006 dwords = (len + 3) >> 2; 1007 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh; 1008 } 1009 plen = hdrwords + dwords + sizeof(pbc) / 4; 1010 1011 /* only RC/UC use complete */ 1012 switch (qp->ibqp.qp_type) { 1013 case IB_QPT_RC: 1014 case IB_QPT_UC: 1015 cb = verbs_pio_complete; 1016 break; 1017 default: 1018 break; 1019 } 1020 1021 /* vl15 special case taken care of in ud.c */ 1022 sc5 = priv->s_sc; 1023 sc = ps->s_txreq->psc; 1024 1025 if (likely(pbc == 0)) { 1026 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 1027 1028 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 1029 if (ps->s_txreq->phdr.hdr.hdr_type) 1030 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; 1031 else 1032 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 1033 1034 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen); 1035 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 1036 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 1037 else 1038 /* Update HCRC based on packet opcode */ 1039 pbc = update_hcrc(ps->opcode, pbc); 1040 } 1041 if (cb) 1042 iowait_pio_inc(&priv->s_iowait); 1043 pbuf = sc_buffer_alloc(sc, plen, cb, qp); 1044 if (IS_ERR_OR_NULL(pbuf)) { 1045 if (cb) 1046 verbs_pio_complete(qp, 0); 1047 if (IS_ERR(pbuf)) { 1048 /* 1049 * If we have filled the PIO buffers to capacity and are 1050 * not in an active state this request is not going to 1051 * go out to so just complete it with an error or else a 1052 * ULP or the core may be stuck waiting. 1053 */ 1054 hfi1_cdbg( 1055 PIO, 1056 "alloc failed. state not active, completing"); 1057 wc_status = IB_WC_GENERAL_ERR; 1058 goto pio_bail; 1059 } else { 1060 /* 1061 * This is a normal occurrence. The PIO buffs are full 1062 * up but we are still happily sending, well we could be 1063 * so lets continue to queue the request. 1064 */ 1065 hfi1_cdbg(PIO, "alloc failed. state active, queuing"); 1066 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO); 1067 if (!ret) 1068 /* txreq not queued - free */ 1069 goto bail; 1070 /* tx consumed in wait */ 1071 return ret; 1072 } 1073 } 1074 1075 if (dwords == 0) { 1076 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); 1077 } else { 1078 seg_pio_copy_start(pbuf, pbc, 1079 hdr, hdrwords * 4); 1080 if (ss) { 1081 while (len) { 1082 void *addr = ss->sge.vaddr; 1083 u32 slen = rvt_get_sge_length(&ss->sge, len); 1084 1085 rvt_update_sge(ss, slen, false); 1086 seg_pio_copy_mid(pbuf, addr, slen); 1087 len -= slen; 1088 } 1089 } 1090 /* add icrc, lt byte, and padding to flit */ 1091 if (extra_bytes) 1092 seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma, 1093 extra_bytes); 1094 1095 seg_pio_copy_end(pbuf); 1096 } 1097 1098 update_tx_opstats(qp, ps, plen); 1099 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 1100 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 1101 1102 pio_bail: 1103 spin_lock_irqsave(&qp->s_lock, flags); 1104 if (qp->s_wqe) { 1105 rvt_send_complete(qp, qp->s_wqe, wc_status); 1106 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 1107 if (unlikely(wc_status == IB_WC_GENERAL_ERR)) 1108 hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr); 1109 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr); 1110 } 1111 spin_unlock_irqrestore(&qp->s_lock, flags); 1112 1113 ret = 0; 1114 1115 bail: 1116 hfi1_put_txreq(ps->s_txreq); 1117 return ret; 1118 } 1119 1120 /* 1121 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1122 * being an entry from the partition key table), return 0 1123 * otherwise. Use the matching criteria for egress partition keys 1124 * specified in the OPAv1 spec., section 9.1l.7. 1125 */ 1126 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) 1127 { 1128 u16 mkey = pkey & PKEY_LOW_15_MASK; 1129 u16 mentry = ent & PKEY_LOW_15_MASK; 1130 1131 if (mkey == mentry) { 1132 /* 1133 * If pkey[15] is set (full partition member), 1134 * is bit 15 in the corresponding table element 1135 * clear (limited member)? 1136 */ 1137 if (pkey & PKEY_MEMBER_MASK) 1138 return !!(ent & PKEY_MEMBER_MASK); 1139 return 1; 1140 } 1141 return 0; 1142 } 1143 1144 /** 1145 * egress_pkey_check - check P_KEY of a packet 1146 * @ppd: Physical IB port data 1147 * @slid: SLID for packet 1148 * @bkey: PKEY for header 1149 * @sc5: SC for packet 1150 * @s_pkey_index: It will be used for look up optimization for kernel contexts 1151 * only. If it is negative value, then it means user contexts is calling this 1152 * function. 1153 * 1154 * It checks if hdr's pkey is valid. 1155 * 1156 * Return: 0 on success, otherwise, 1 1157 */ 1158 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1159 u8 sc5, int8_t s_pkey_index) 1160 { 1161 struct hfi1_devdata *dd; 1162 int i; 1163 int is_user_ctxt_mechanism = (s_pkey_index < 0); 1164 1165 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) 1166 return 0; 1167 1168 /* If SC15, pkey[0:14] must be 0x7fff */ 1169 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1170 goto bad; 1171 1172 /* Is the pkey = 0x0, or 0x8000? */ 1173 if ((pkey & PKEY_LOW_15_MASK) == 0) 1174 goto bad; 1175 1176 /* 1177 * For the kernel contexts only, if a qp is passed into the function, 1178 * the most likely matching pkey has index qp->s_pkey_index 1179 */ 1180 if (!is_user_ctxt_mechanism && 1181 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) { 1182 return 0; 1183 } 1184 1185 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1186 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1187 return 0; 1188 } 1189 bad: 1190 /* 1191 * For the user-context mechanism, the P_KEY check would only happen 1192 * once per SDMA request, not once per packet. Therefore, there's no 1193 * need to increment the counter for the user-context mechanism. 1194 */ 1195 if (!is_user_ctxt_mechanism) { 1196 incr_cntr64(&ppd->port_xmit_constraint_errors); 1197 dd = ppd->dd; 1198 if (!(dd->err_info_xmit_constraint.status & 1199 OPA_EI_STATUS_SMASK)) { 1200 dd->err_info_xmit_constraint.status |= 1201 OPA_EI_STATUS_SMASK; 1202 dd->err_info_xmit_constraint.slid = slid; 1203 dd->err_info_xmit_constraint.pkey = pkey; 1204 } 1205 } 1206 return 1; 1207 } 1208 1209 /** 1210 * get_send_routine - choose an egress routine 1211 * 1212 * Choose an egress routine based on QP type 1213 * and size 1214 */ 1215 static inline send_routine get_send_routine(struct rvt_qp *qp, 1216 struct hfi1_pkt_state *ps) 1217 { 1218 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1219 struct hfi1_qp_priv *priv = qp->priv; 1220 struct verbs_txreq *tx = ps->s_txreq; 1221 1222 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA))) 1223 return dd->process_pio_send; 1224 switch (qp->ibqp.qp_type) { 1225 case IB_QPT_SMI: 1226 return dd->process_pio_send; 1227 case IB_QPT_GSI: 1228 case IB_QPT_UD: 1229 break; 1230 case IB_QPT_UC: 1231 case IB_QPT_RC: 1232 priv->s_running_pkt_size = 1233 (tx->s_cur_size + priv->s_running_pkt_size) / 2; 1234 if (piothreshold && 1235 priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) && 1236 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) && 1237 iowait_sdma_pending(&priv->s_iowait) == 0 && 1238 !sdma_txreq_built(&tx->txreq)) 1239 return dd->process_pio_send; 1240 break; 1241 default: 1242 break; 1243 } 1244 return dd->process_dma_send; 1245 } 1246 1247 /** 1248 * hfi1_verbs_send - send a packet 1249 * @qp: the QP to send on 1250 * @ps: the state of the packet to send 1251 * 1252 * Return zero if packet is sent or queued OK. 1253 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise. 1254 */ 1255 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps) 1256 { 1257 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1258 struct hfi1_qp_priv *priv = qp->priv; 1259 struct ib_other_headers *ohdr = NULL; 1260 send_routine sr; 1261 int ret; 1262 u16 pkey; 1263 u32 slid; 1264 u8 l4 = 0; 1265 1266 /* locate the pkey within the headers */ 1267 if (ps->s_txreq->phdr.hdr.hdr_type) { 1268 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah; 1269 1270 l4 = hfi1_16B_get_l4(hdr); 1271 if (l4 == OPA_16B_L4_IB_LOCAL) 1272 ohdr = &hdr->u.oth; 1273 else if (l4 == OPA_16B_L4_IB_GLOBAL) 1274 ohdr = &hdr->u.l.oth; 1275 1276 slid = hfi1_16B_get_slid(hdr); 1277 pkey = hfi1_16B_get_pkey(hdr); 1278 } else { 1279 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh; 1280 u8 lnh = ib_get_lnh(hdr); 1281 1282 if (lnh == HFI1_LRH_GRH) 1283 ohdr = &hdr->u.l.oth; 1284 else 1285 ohdr = &hdr->u.oth; 1286 slid = ib_get_slid(hdr); 1287 pkey = ib_bth_get_pkey(ohdr); 1288 } 1289 1290 if (likely(l4 != OPA_16B_L4_FM)) 1291 ps->opcode = ib_bth_get_opcode(ohdr); 1292 else 1293 ps->opcode = IB_OPCODE_UD_SEND_ONLY; 1294 1295 sr = get_send_routine(qp, ps); 1296 ret = egress_pkey_check(dd->pport, slid, pkey, 1297 priv->s_sc, qp->s_pkey_index); 1298 if (unlikely(ret)) { 1299 /* 1300 * The value we are returning here does not get propagated to 1301 * the verbs caller. Thus we need to complete the request with 1302 * error otherwise the caller could be sitting waiting on the 1303 * completion event. Only do this for PIO. SDMA has its own 1304 * mechanism for handling the errors. So for SDMA we can just 1305 * return. 1306 */ 1307 if (sr == dd->process_pio_send) { 1308 unsigned long flags; 1309 1310 hfi1_cdbg(PIO, "%s() Failed. Completing with err", 1311 __func__); 1312 spin_lock_irqsave(&qp->s_lock, flags); 1313 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); 1314 spin_unlock_irqrestore(&qp->s_lock, flags); 1315 } 1316 return -EINVAL; 1317 } 1318 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait)) 1319 return pio_wait(qp, 1320 ps->s_txreq->psc, 1321 ps, 1322 HFI1_S_WAIT_PIO_DRAIN); 1323 return sr(qp, ps, 0); 1324 } 1325 1326 /** 1327 * hfi1_fill_device_attr - Fill in rvt dev info device attributes. 1328 * @dd: the device data structure 1329 */ 1330 static void hfi1_fill_device_attr(struct hfi1_devdata *dd) 1331 { 1332 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 1333 u32 ver = dd->dc8051_ver; 1334 1335 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props)); 1336 1337 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) | 1338 ((u64)(dc8051_ver_min(ver)) << 16) | 1339 (u64)dc8051_ver_patch(ver); 1340 1341 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | 1342 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | 1343 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | 1344 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE | 1345 IB_DEVICE_MEM_MGT_EXTENSIONS | 1346 IB_DEVICE_RDMA_NETDEV_OPA; 1347 rdi->dparms.props.page_size_cap = PAGE_SIZE; 1348 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; 1349 rdi->dparms.props.vendor_part_id = dd->pcidev->device; 1350 rdi->dparms.props.hw_ver = dd->minrev; 1351 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid; 1352 rdi->dparms.props.max_mr_size = U64_MAX; 1353 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX; 1354 rdi->dparms.props.max_qp = hfi1_max_qps; 1355 rdi->dparms.props.max_qp_wr = 1356 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ? 1357 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs); 1358 rdi->dparms.props.max_send_sge = hfi1_max_sges; 1359 rdi->dparms.props.max_recv_sge = hfi1_max_sges; 1360 rdi->dparms.props.max_sge_rd = hfi1_max_sges; 1361 rdi->dparms.props.max_cq = hfi1_max_cqs; 1362 rdi->dparms.props.max_ah = hfi1_max_ahs; 1363 rdi->dparms.props.max_cqe = hfi1_max_cqes; 1364 rdi->dparms.props.max_pd = hfi1_max_pds; 1365 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; 1366 rdi->dparms.props.max_qp_init_rd_atom = 255; 1367 rdi->dparms.props.max_srq = hfi1_max_srqs; 1368 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs; 1369 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges; 1370 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB; 1371 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd); 1372 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps; 1373 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached; 1374 rdi->dparms.props.max_total_mcast_qp_attach = 1375 rdi->dparms.props.max_mcast_qp_attach * 1376 rdi->dparms.props.max_mcast_grp; 1377 } 1378 1379 static inline u16 opa_speed_to_ib(u16 in) 1380 { 1381 u16 out = 0; 1382 1383 if (in & OPA_LINK_SPEED_25G) 1384 out |= IB_SPEED_EDR; 1385 if (in & OPA_LINK_SPEED_12_5G) 1386 out |= IB_SPEED_FDR; 1387 1388 return out; 1389 } 1390 1391 /* 1392 * Convert a single OPA link width (no multiple flags) to an IB value. 1393 * A zero OPA link width means link down, which means the IB width value 1394 * is a don't care. 1395 */ 1396 static inline u16 opa_width_to_ib(u16 in) 1397 { 1398 switch (in) { 1399 case OPA_LINK_WIDTH_1X: 1400 /* map 2x and 3x to 1x as they don't exist in IB */ 1401 case OPA_LINK_WIDTH_2X: 1402 case OPA_LINK_WIDTH_3X: 1403 return IB_WIDTH_1X; 1404 default: /* link down or unknown, return our largest width */ 1405 case OPA_LINK_WIDTH_4X: 1406 return IB_WIDTH_4X; 1407 } 1408 } 1409 1410 static int query_port(struct rvt_dev_info *rdi, u8 port_num, 1411 struct ib_port_attr *props) 1412 { 1413 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1414 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1415 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1416 u32 lid = ppd->lid; 1417 1418 /* props being zeroed by the caller, avoid zeroing it here */ 1419 props->lid = lid ? lid : 0; 1420 props->lmc = ppd->lmc; 1421 /* OPA logical states match IB logical states */ 1422 props->state = driver_lstate(ppd); 1423 props->phys_state = driver_pstate(ppd); 1424 props->gid_tbl_len = HFI1_GUIDS_PER_PORT; 1425 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); 1426 /* see rate_show() in ib core/sysfs.c */ 1427 props->active_speed = opa_speed_to_ib(ppd->link_speed_active); 1428 props->max_vl_num = ppd->vls_supported; 1429 1430 /* Once we are a "first class" citizen and have added the OPA MTUs to 1431 * the core we can advertise the larger MTU enum to the ULPs, for now 1432 * advertise only 4K. 1433 * 1434 * Those applications which are either OPA aware or pass the MTU enum 1435 * from the Path Records to us will get the new 8k MTU. Those that 1436 * attempt to process the MTU enum may fail in various ways. 1437 */ 1438 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? 1439 4096 : hfi1_max_mtu), IB_MTU_4096); 1440 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : 1441 mtu_to_enum(ppd->ibmtu, IB_MTU_4096); 1442 props->phys_mtu = HFI1_CAP_IS_KSET(AIP) ? hfi1_max_mtu : 1443 ib_mtu_enum_to_int(props->max_mtu); 1444 1445 return 0; 1446 } 1447 1448 static int modify_device(struct ib_device *device, 1449 int device_modify_mask, 1450 struct ib_device_modify *device_modify) 1451 { 1452 struct hfi1_devdata *dd = dd_from_ibdev(device); 1453 unsigned i; 1454 int ret; 1455 1456 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | 1457 IB_DEVICE_MODIFY_NODE_DESC)) { 1458 ret = -EOPNOTSUPP; 1459 goto bail; 1460 } 1461 1462 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { 1463 memcpy(device->node_desc, device_modify->node_desc, 1464 IB_DEVICE_NODE_DESC_MAX); 1465 for (i = 0; i < dd->num_pports; i++) { 1466 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1467 1468 hfi1_node_desc_chg(ibp); 1469 } 1470 } 1471 1472 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { 1473 ib_hfi1_sys_image_guid = 1474 cpu_to_be64(device_modify->sys_image_guid); 1475 for (i = 0; i < dd->num_pports; i++) { 1476 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1477 1478 hfi1_sys_guid_chg(ibp); 1479 } 1480 } 1481 1482 ret = 0; 1483 1484 bail: 1485 return ret; 1486 } 1487 1488 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num) 1489 { 1490 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1491 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1492 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1493 int ret; 1494 1495 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, 1496 OPA_LINKDOWN_REASON_UNKNOWN); 1497 ret = set_link_state(ppd, HLS_DN_DOWNDEF); 1498 return ret; 1499 } 1500 1501 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, 1502 int guid_index, __be64 *guid) 1503 { 1504 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp); 1505 1506 if (guid_index >= HFI1_GUIDS_PER_PORT) 1507 return -EINVAL; 1508 1509 *guid = get_sguid(ibp, guid_index); 1510 return 0; 1511 } 1512 1513 /* 1514 * convert ah port,sl to sc 1515 */ 1516 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah) 1517 { 1518 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah)); 1519 1520 return ibp->sl_to_sc[rdma_ah_get_sl(ah)]; 1521 } 1522 1523 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr) 1524 { 1525 struct hfi1_ibport *ibp; 1526 struct hfi1_pportdata *ppd; 1527 struct hfi1_devdata *dd; 1528 u8 sc5; 1529 u8 sl; 1530 1531 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) && 1532 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH)) 1533 return -EINVAL; 1534 1535 /* test the mapping for validity */ 1536 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1537 ppd = ppd_from_ibp(ibp); 1538 dd = dd_from_ppd(ppd); 1539 1540 sl = rdma_ah_get_sl(ah_attr); 1541 if (sl >= ARRAY_SIZE(ibp->sl_to_sc)) 1542 return -EINVAL; 1543 sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc)); 1544 1545 sc5 = ibp->sl_to_sc[sl]; 1546 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) 1547 return -EINVAL; 1548 return 0; 1549 } 1550 1551 static void hfi1_notify_new_ah(struct ib_device *ibdev, 1552 struct rdma_ah_attr *ah_attr, 1553 struct rvt_ah *ah) 1554 { 1555 struct hfi1_ibport *ibp; 1556 struct hfi1_pportdata *ppd; 1557 struct hfi1_devdata *dd; 1558 u8 sc5; 1559 struct rdma_ah_attr *attr = &ah->attr; 1560 1561 /* 1562 * Do not trust reading anything from rvt_ah at this point as it is not 1563 * done being setup. We can however modify things which we need to set. 1564 */ 1565 1566 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1567 ppd = ppd_from_ibp(ibp); 1568 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)]; 1569 hfi1_update_ah_attr(ibdev, attr); 1570 hfi1_make_opa_lid(attr); 1571 dd = dd_from_ppd(ppd); 1572 ah->vl = sc_to_vlt(dd, sc5); 1573 if (ah->vl < num_vls || ah->vl == 15) 1574 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu); 1575 } 1576 1577 /** 1578 * hfi1_get_npkeys - return the size of the PKEY table for context 0 1579 * @dd: the hfi1_ib device 1580 */ 1581 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) 1582 { 1583 return ARRAY_SIZE(dd->pport[0].pkeys); 1584 } 1585 1586 static void init_ibport(struct hfi1_pportdata *ppd) 1587 { 1588 struct hfi1_ibport *ibp = &ppd->ibport_data; 1589 size_t sz = ARRAY_SIZE(ibp->sl_to_sc); 1590 int i; 1591 1592 for (i = 0; i < sz; i++) { 1593 ibp->sl_to_sc[i] = i; 1594 ibp->sc_to_sl[i] = i; 1595 } 1596 1597 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++) 1598 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list); 1599 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0); 1600 1601 spin_lock_init(&ibp->rvp.lock); 1602 /* Set the prefix to the default value (see ch. 4.1.1) */ 1603 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX; 1604 ibp->rvp.sm_lid = 0; 1605 /* 1606 * Below should only set bits defined in OPA PortInfo.CapabilityMask 1607 * and PortInfo.CapabilityMask3 1608 */ 1609 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP | 1610 IB_PORT_CAP_MASK_NOTICE_SUP; 1611 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported; 1612 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; 1613 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; 1614 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; 1615 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; 1616 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; 1617 1618 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL); 1619 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL); 1620 } 1621 1622 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str) 1623 { 1624 struct rvt_dev_info *rdi = ib_to_rvt(ibdev); 1625 struct hfi1_ibdev *dev = dev_from_rdi(rdi); 1626 u32 ver = dd_from_dev(dev)->dc8051_ver; 1627 1628 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver), 1629 dc8051_ver_min(ver), dc8051_ver_patch(ver)); 1630 } 1631 1632 static const char * const driver_cntr_names[] = { 1633 /* must be element 0*/ 1634 "DRIVER_KernIntr", 1635 "DRIVER_ErrorIntr", 1636 "DRIVER_Tx_Errs", 1637 "DRIVER_Rcv_Errs", 1638 "DRIVER_HW_Errs", 1639 "DRIVER_NoPIOBufs", 1640 "DRIVER_CtxtsOpen", 1641 "DRIVER_RcvLen_Errs", 1642 "DRIVER_EgrBufFull", 1643 "DRIVER_EgrHdrFull" 1644 }; 1645 1646 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */ 1647 static const char **dev_cntr_names; 1648 static const char **port_cntr_names; 1649 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names); 1650 static int num_dev_cntrs; 1651 static int num_port_cntrs; 1652 static int cntr_names_initialized; 1653 1654 /* 1655 * Convert a list of names separated by '\n' into an array of NULL terminated 1656 * strings. Optionally some entries can be reserved in the array to hold extra 1657 * external strings. 1658 */ 1659 static int init_cntr_names(const char *names_in, 1660 const size_t names_len, 1661 int num_extra_names, 1662 int *num_cntrs, 1663 const char ***cntr_names) 1664 { 1665 char *names_out, *p, **q; 1666 int i, n; 1667 1668 n = 0; 1669 for (i = 0; i < names_len; i++) 1670 if (names_in[i] == '\n') 1671 n++; 1672 1673 names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len, 1674 GFP_KERNEL); 1675 if (!names_out) { 1676 *num_cntrs = 0; 1677 *cntr_names = NULL; 1678 return -ENOMEM; 1679 } 1680 1681 p = names_out + (n + num_extra_names) * sizeof(char *); 1682 memcpy(p, names_in, names_len); 1683 1684 q = (char **)names_out; 1685 for (i = 0; i < n; i++) { 1686 q[i] = p; 1687 p = strchr(p, '\n'); 1688 *p++ = '\0'; 1689 } 1690 1691 *num_cntrs = n; 1692 *cntr_names = (const char **)names_out; 1693 return 0; 1694 } 1695 1696 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev, 1697 u8 port_num) 1698 { 1699 int i, err; 1700 1701 mutex_lock(&cntr_names_lock); 1702 if (!cntr_names_initialized) { 1703 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1704 1705 err = init_cntr_names(dd->cntrnames, 1706 dd->cntrnameslen, 1707 num_driver_cntrs, 1708 &num_dev_cntrs, 1709 &dev_cntr_names); 1710 if (err) { 1711 mutex_unlock(&cntr_names_lock); 1712 return NULL; 1713 } 1714 1715 for (i = 0; i < num_driver_cntrs; i++) 1716 dev_cntr_names[num_dev_cntrs + i] = 1717 driver_cntr_names[i]; 1718 1719 err = init_cntr_names(dd->portcntrnames, 1720 dd->portcntrnameslen, 1721 0, 1722 &num_port_cntrs, 1723 &port_cntr_names); 1724 if (err) { 1725 kfree(dev_cntr_names); 1726 dev_cntr_names = NULL; 1727 mutex_unlock(&cntr_names_lock); 1728 return NULL; 1729 } 1730 cntr_names_initialized = 1; 1731 } 1732 mutex_unlock(&cntr_names_lock); 1733 1734 if (!port_num) 1735 return rdma_alloc_hw_stats_struct( 1736 dev_cntr_names, 1737 num_dev_cntrs + num_driver_cntrs, 1738 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1739 else 1740 return rdma_alloc_hw_stats_struct( 1741 port_cntr_names, 1742 num_port_cntrs, 1743 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1744 } 1745 1746 static u64 hfi1_sps_ints(void) 1747 { 1748 unsigned long index, flags; 1749 struct hfi1_devdata *dd; 1750 u64 sps_ints = 0; 1751 1752 xa_lock_irqsave(&hfi1_dev_table, flags); 1753 xa_for_each(&hfi1_dev_table, index, dd) { 1754 sps_ints += get_all_cpu_total(dd->int_counter); 1755 } 1756 xa_unlock_irqrestore(&hfi1_dev_table, flags); 1757 return sps_ints; 1758 } 1759 1760 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, 1761 u8 port, int index) 1762 { 1763 u64 *values; 1764 int count; 1765 1766 if (!port) { 1767 u64 *stats = (u64 *)&hfi1_stats; 1768 int i; 1769 1770 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values); 1771 values[num_dev_cntrs] = hfi1_sps_ints(); 1772 for (i = 1; i < num_driver_cntrs; i++) 1773 values[num_dev_cntrs + i] = stats[i]; 1774 count = num_dev_cntrs + num_driver_cntrs; 1775 } else { 1776 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1777 1778 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values); 1779 count = num_port_cntrs; 1780 } 1781 1782 memcpy(stats->value, values, count * sizeof(u64)); 1783 return count; 1784 } 1785 1786 static const struct ib_device_ops hfi1_dev_ops = { 1787 .owner = THIS_MODULE, 1788 .driver_id = RDMA_DRIVER_HFI1, 1789 1790 .alloc_hw_stats = alloc_hw_stats, 1791 .alloc_rdma_netdev = hfi1_vnic_alloc_rn, 1792 .get_dev_fw_str = hfi1_get_dev_fw_str, 1793 .get_hw_stats = get_hw_stats, 1794 .init_port = hfi1_create_port_files, 1795 .modify_device = modify_device, 1796 /* keep process mad in the driver */ 1797 .process_mad = hfi1_process_mad, 1798 .rdma_netdev_get_params = hfi1_ipoib_rn_get_params, 1799 }; 1800 1801 /** 1802 * hfi1_register_ib_device - register our device with the infiniband core 1803 * @dd: the device data structure 1804 * Return 0 if successful, errno if unsuccessful. 1805 */ 1806 int hfi1_register_ib_device(struct hfi1_devdata *dd) 1807 { 1808 struct hfi1_ibdev *dev = &dd->verbs_dev; 1809 struct ib_device *ibdev = &dev->rdi.ibdev; 1810 struct hfi1_pportdata *ppd = dd->pport; 1811 struct hfi1_ibport *ibp = &ppd->ibport_data; 1812 unsigned i; 1813 int ret; 1814 1815 for (i = 0; i < dd->num_pports; i++) 1816 init_ibport(ppd + i); 1817 1818 /* Only need to initialize non-zero fields. */ 1819 1820 timer_setup(&dev->mem_timer, mem_timer, 0); 1821 1822 seqlock_init(&dev->iowait_lock); 1823 seqlock_init(&dev->txwait_lock); 1824 INIT_LIST_HEAD(&dev->txwait); 1825 INIT_LIST_HEAD(&dev->memwait); 1826 1827 ret = verbs_txreq_init(dev); 1828 if (ret) 1829 goto err_verbs_txreq; 1830 1831 /* Use first-port GUID as node guid */ 1832 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX); 1833 1834 /* 1835 * The system image GUID is supposed to be the same for all 1836 * HFIs in a single system but since there can be other 1837 * device types in the system, we can't be sure this is unique. 1838 */ 1839 if (!ib_hfi1_sys_image_guid) 1840 ib_hfi1_sys_image_guid = ibdev->node_guid; 1841 ibdev->phys_port_cnt = dd->num_pports; 1842 ibdev->dev.parent = &dd->pcidev->dev; 1843 1844 ib_set_device_ops(ibdev, &hfi1_dev_ops); 1845 1846 strlcpy(ibdev->node_desc, init_utsname()->nodename, 1847 sizeof(ibdev->node_desc)); 1848 1849 /* 1850 * Fill in rvt info object. 1851 */ 1852 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev; 1853 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah; 1854 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah; 1855 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be; 1856 dd->verbs_dev.rdi.driver_f.query_port_state = query_port; 1857 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port; 1858 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg; 1859 /* 1860 * Fill in rvt info device attributes. 1861 */ 1862 hfi1_fill_device_attr(dd); 1863 1864 /* queue pair */ 1865 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size; 1866 dd->verbs_dev.rdi.dparms.qpn_start = 0; 1867 dd->verbs_dev.rdi.dparms.qpn_inc = 1; 1868 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift; 1869 dd->verbs_dev.rdi.dparms.qpn_res_start = RVT_KDETH_QP_BASE; 1870 dd->verbs_dev.rdi.dparms.qpn_res_end = RVT_AIP_QP_MAX; 1871 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC; 1872 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK; 1873 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT; 1874 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK; 1875 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA | 1876 RDMA_CORE_CAP_OPA_AH; 1877 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE; 1878 1879 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc; 1880 dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init; 1881 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free; 1882 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps; 1883 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset; 1884 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt; 1885 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send; 1886 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send; 1887 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr; 1888 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1889 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters; 1890 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue; 1891 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp; 1892 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1893 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp; 1894 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu; 1895 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp; 1896 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp; 1897 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc; 1898 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe; 1899 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup = 1900 hfi1_comp_vect_mappings_lookup; 1901 1902 /* completeion queue */ 1903 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus; 1904 dd->verbs_dev.rdi.dparms.node = dd->node; 1905 1906 /* misc settings */ 1907 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */ 1908 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size; 1909 dd->verbs_dev.rdi.dparms.nports = dd->num_pports; 1910 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd); 1911 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode; 1912 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold; 1913 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period; 1914 dd->verbs_dev.rdi.dparms.reserved_operations = 1; 1915 dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT; 1916 1917 /* post send table */ 1918 dd->verbs_dev.rdi.post_parms = hfi1_post_parms; 1919 1920 /* opcode translation table */ 1921 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode; 1922 1923 ppd = dd->pport; 1924 for (i = 0; i < dd->num_pports; i++, ppd++) 1925 rvt_init_port(&dd->verbs_dev.rdi, 1926 &ppd->ibport_data.rvp, 1927 i, 1928 ppd->pkeys); 1929 1930 rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev, 1931 &ib_hfi1_attr_group); 1932 1933 ret = rvt_register_device(&dd->verbs_dev.rdi); 1934 if (ret) 1935 goto err_verbs_txreq; 1936 1937 ret = hfi1_verbs_register_sysfs(dd); 1938 if (ret) 1939 goto err_class; 1940 1941 return ret; 1942 1943 err_class: 1944 rvt_unregister_device(&dd->verbs_dev.rdi); 1945 err_verbs_txreq: 1946 verbs_txreq_exit(dev); 1947 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); 1948 return ret; 1949 } 1950 1951 void hfi1_unregister_ib_device(struct hfi1_devdata *dd) 1952 { 1953 struct hfi1_ibdev *dev = &dd->verbs_dev; 1954 1955 hfi1_verbs_unregister_sysfs(dd); 1956 1957 rvt_unregister_device(&dd->verbs_dev.rdi); 1958 1959 if (!list_empty(&dev->txwait)) 1960 dd_dev_err(dd, "txwait list not empty!\n"); 1961 if (!list_empty(&dev->memwait)) 1962 dd_dev_err(dd, "memwait list not empty!\n"); 1963 1964 del_timer_sync(&dev->mem_timer); 1965 verbs_txreq_exit(dev); 1966 1967 mutex_lock(&cntr_names_lock); 1968 kfree(dev_cntr_names); 1969 kfree(port_cntr_names); 1970 dev_cntr_names = NULL; 1971 port_cntr_names = NULL; 1972 cntr_names_initialized = 0; 1973 mutex_unlock(&cntr_names_lock); 1974 } 1975 1976 void hfi1_cnp_rcv(struct hfi1_packet *packet) 1977 { 1978 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1979 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1980 struct ib_header *hdr = packet->hdr; 1981 struct rvt_qp *qp = packet->qp; 1982 u32 lqpn, rqpn = 0; 1983 u16 rlid = 0; 1984 u8 sl, sc5, svc_type; 1985 1986 switch (packet->qp->ibqp.qp_type) { 1987 case IB_QPT_UC: 1988 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1989 rqpn = qp->remote_qpn; 1990 svc_type = IB_CC_SVCTYPE_UC; 1991 break; 1992 case IB_QPT_RC: 1993 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1994 rqpn = qp->remote_qpn; 1995 svc_type = IB_CC_SVCTYPE_RC; 1996 break; 1997 case IB_QPT_SMI: 1998 case IB_QPT_GSI: 1999 case IB_QPT_UD: 2000 svc_type = IB_CC_SVCTYPE_UD; 2001 break; 2002 default: 2003 ibp->rvp.n_pkt_drops++; 2004 return; 2005 } 2006 2007 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); 2008 sl = ibp->sc_to_sl[sc5]; 2009 lqpn = qp->ibqp.qp_num; 2010 2011 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 2012 } 2013