1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2015 - 2020 Intel Corporation. 4 */ 5 6 #include <rdma/ib_mad.h> 7 #include <rdma/ib_user_verbs.h> 8 #include <linux/io.h> 9 #include <linux/module.h> 10 #include <linux/utsname.h> 11 #include <linux/rculist.h> 12 #include <linux/mm.h> 13 #include <linux/vmalloc.h> 14 #include <rdma/opa_addr.h> 15 #include <linux/nospec.h> 16 17 #include "hfi.h" 18 #include "common.h" 19 #include "device.h" 20 #include "trace.h" 21 #include "qp.h" 22 #include "verbs_txreq.h" 23 #include "debugfs.h" 24 #include "vnic.h" 25 #include "fault.h" 26 #include "affinity.h" 27 #include "ipoib.h" 28 29 static unsigned int hfi1_lkey_table_size = 16; 30 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, 31 S_IRUGO); 32 MODULE_PARM_DESC(lkey_table_size, 33 "LKEY table size in bits (2^n, 1 <= n <= 23)"); 34 35 static unsigned int hfi1_max_pds = 0xFFFF; 36 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); 37 MODULE_PARM_DESC(max_pds, 38 "Maximum number of protection domains to support"); 39 40 static unsigned int hfi1_max_ahs = 0xFFFF; 41 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); 42 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); 43 44 unsigned int hfi1_max_cqes = 0x2FFFFF; 45 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); 46 MODULE_PARM_DESC(max_cqes, 47 "Maximum number of completion queue entries to support"); 48 49 unsigned int hfi1_max_cqs = 0x1FFFF; 50 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); 51 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); 52 53 unsigned int hfi1_max_qp_wrs = 0x3FFF; 54 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); 55 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); 56 57 unsigned int hfi1_max_qps = 32768; 58 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); 59 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); 60 61 unsigned int hfi1_max_sges = 0x60; 62 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); 63 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); 64 65 unsigned int hfi1_max_mcast_grps = 16384; 66 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); 67 MODULE_PARM_DESC(max_mcast_grps, 68 "Maximum number of multicast groups to support"); 69 70 unsigned int hfi1_max_mcast_qp_attached = 16; 71 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, 72 uint, S_IRUGO); 73 MODULE_PARM_DESC(max_mcast_qp_attached, 74 "Maximum number of attached QPs to support"); 75 76 unsigned int hfi1_max_srqs = 1024; 77 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); 78 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); 79 80 unsigned int hfi1_max_srq_sges = 128; 81 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); 82 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); 83 84 unsigned int hfi1_max_srq_wrs = 0x1FFFF; 85 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); 86 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); 87 88 unsigned short piothreshold = 256; 89 module_param(piothreshold, ushort, S_IRUGO); 90 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio"); 91 92 static unsigned int sge_copy_mode; 93 module_param(sge_copy_mode, uint, S_IRUGO); 94 MODULE_PARM_DESC(sge_copy_mode, 95 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS"); 96 97 static void verbs_sdma_complete( 98 struct sdma_txreq *cookie, 99 int status); 100 101 static int pio_wait(struct rvt_qp *qp, 102 struct send_context *sc, 103 struct hfi1_pkt_state *ps, 104 u32 flag); 105 106 /* Length of buffer to create verbs txreq cache name */ 107 #define TXREQ_NAME_LEN 24 108 109 static uint wss_threshold = 80; 110 module_param(wss_threshold, uint, S_IRUGO); 111 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy"); 112 static uint wss_clean_period = 256; 113 module_param(wss_clean_period, uint, S_IRUGO); 114 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned"); 115 116 /* 117 * Translate ib_wr_opcode into ib_wc_opcode. 118 */ 119 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { 120 [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, 121 [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE, 122 [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, 123 [IB_WR_SEND] = IB_WC_SEND, 124 [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, 125 [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, 126 [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ, 127 [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, 128 [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, 129 [IB_WR_SEND_WITH_INV] = IB_WC_SEND, 130 [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, 131 [IB_WR_REG_MR] = IB_WC_REG_MR 132 }; 133 134 /* 135 * Length of header by opcode, 0 --> not supported 136 */ 137 const u8 hdr_len_by_opcode[256] = { 138 /* RC */ 139 [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, 140 [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, 141 [IB_OPCODE_RC_SEND_LAST] = 12 + 8, 142 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 143 [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, 144 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 145 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 146 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, 147 [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, 148 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 149 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 150 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 151 [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, 152 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, 153 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, 154 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, 155 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, 156 [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, 157 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8, 158 [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, 159 [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, 160 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4, 161 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4, 162 [IB_OPCODE_TID_RDMA_READ_REQ] = 12 + 8 + 36, 163 [IB_OPCODE_TID_RDMA_READ_RESP] = 12 + 8 + 36, 164 [IB_OPCODE_TID_RDMA_WRITE_REQ] = 12 + 8 + 36, 165 [IB_OPCODE_TID_RDMA_WRITE_RESP] = 12 + 8 + 36, 166 [IB_OPCODE_TID_RDMA_WRITE_DATA] = 12 + 8 + 36, 167 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = 12 + 8 + 36, 168 [IB_OPCODE_TID_RDMA_ACK] = 12 + 8 + 36, 169 [IB_OPCODE_TID_RDMA_RESYNC] = 12 + 8 + 36, 170 /* UC */ 171 [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, 172 [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, 173 [IB_OPCODE_UC_SEND_LAST] = 12 + 8, 174 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 175 [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, 176 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, 177 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, 178 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, 179 [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, 180 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, 181 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, 182 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, 183 /* UD */ 184 [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, 185 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 186 }; 187 188 static const opcode_handler opcode_handler_tbl[256] = { 189 /* RC */ 190 [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, 191 [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, 192 [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, 193 [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 194 [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, 195 [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 196 [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, 197 [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, 198 [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, 199 [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, 200 [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, 201 [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, 202 [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, 203 [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, 204 [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, 205 [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, 206 [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, 207 [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, 208 [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, 209 [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, 210 [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, 211 [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv, 212 [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv, 213 214 /* TID RDMA has separate handlers for different opcodes.*/ 215 [IB_OPCODE_TID_RDMA_WRITE_REQ] = &hfi1_rc_rcv_tid_rdma_write_req, 216 [IB_OPCODE_TID_RDMA_WRITE_RESP] = &hfi1_rc_rcv_tid_rdma_write_resp, 217 [IB_OPCODE_TID_RDMA_WRITE_DATA] = &hfi1_rc_rcv_tid_rdma_write_data, 218 [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data, 219 [IB_OPCODE_TID_RDMA_READ_REQ] = &hfi1_rc_rcv_tid_rdma_read_req, 220 [IB_OPCODE_TID_RDMA_READ_RESP] = &hfi1_rc_rcv_tid_rdma_read_resp, 221 [IB_OPCODE_TID_RDMA_RESYNC] = &hfi1_rc_rcv_tid_rdma_resync, 222 [IB_OPCODE_TID_RDMA_ACK] = &hfi1_rc_rcv_tid_rdma_ack, 223 224 /* UC */ 225 [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, 226 [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, 227 [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, 228 [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 229 [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, 230 [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 231 [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, 232 [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, 233 [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, 234 [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, 235 [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, 236 [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, 237 /* UD */ 238 [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, 239 [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, 240 /* CNP */ 241 [IB_OPCODE_CNP] = &hfi1_cnp_rcv 242 }; 243 244 #define OPMASK 0x1f 245 246 static const u32 pio_opmask[BIT(3)] = { 247 /* RC */ 248 [IB_OPCODE_RC >> 5] = 249 BIT(RC_OP(SEND_ONLY) & OPMASK) | 250 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 251 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) | 252 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) | 253 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) | 254 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) | 255 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) | 256 BIT(RC_OP(COMPARE_SWAP) & OPMASK) | 257 BIT(RC_OP(FETCH_ADD) & OPMASK), 258 /* UC */ 259 [IB_OPCODE_UC >> 5] = 260 BIT(UC_OP(SEND_ONLY) & OPMASK) | 261 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | 262 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) | 263 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK), 264 }; 265 266 /* 267 * System image GUID. 268 */ 269 __be64 ib_hfi1_sys_image_guid; 270 271 /* 272 * Make sure the QP is ready and able to accept the given opcode. 273 */ 274 static inline opcode_handler qp_ok(struct hfi1_packet *packet) 275 { 276 if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 277 return NULL; 278 if (((packet->opcode & RVT_OPCODE_QP_MASK) == 279 packet->qp->allowed_ops) || 280 (packet->opcode == IB_OPCODE_CNP)) 281 return opcode_handler_tbl[packet->opcode]; 282 283 return NULL; 284 } 285 286 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc) 287 { 288 #ifdef CONFIG_FAULT_INJECTION 289 if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) { 290 /* 291 * In order to drop non-IB traffic we 292 * set PbcInsertHrc to NONE (0x2). 293 * The packet will still be delivered 294 * to the receiving node but a 295 * KHdrHCRCErr (KDETH packet with a bad 296 * HCRC) will be triggered and the 297 * packet will not be delivered to the 298 * correct context. 299 */ 300 pbc &= ~PBC_INSERT_HCRC_SMASK; 301 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT; 302 } else { 303 /* 304 * In order to drop regular verbs 305 * traffic we set the PbcTestEbp 306 * flag. The packet will still be 307 * delivered to the receiving node but 308 * a 'late ebp error' will be 309 * triggered and will be dropped. 310 */ 311 pbc |= PBC_TEST_EBP; 312 } 313 #endif 314 return pbc; 315 } 316 317 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet) 318 { 319 if (packet->qp->ibqp.qp_type != IB_QPT_RC || 320 !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) 321 return NULL; 322 if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA) 323 return opcode_handler_tbl[opcode]; 324 return NULL; 325 } 326 327 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet) 328 { 329 struct hfi1_ctxtdata *rcd = packet->rcd; 330 struct ib_header *hdr = packet->hdr; 331 u32 tlen = packet->tlen; 332 struct hfi1_pportdata *ppd = rcd->ppd; 333 struct hfi1_ibport *ibp = &ppd->ibport_data; 334 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 335 opcode_handler opcode_handler; 336 unsigned long flags; 337 u32 qp_num; 338 int lnh; 339 u8 opcode; 340 341 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ 342 if (unlikely(tlen < 15 * sizeof(u32))) 343 goto drop; 344 345 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 346 if (lnh != HFI1_LRH_BTH) 347 goto drop; 348 349 packet->ohdr = &hdr->u.oth; 350 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 351 352 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); 353 inc_opstats(tlen, &rcd->opstats->stats[opcode]); 354 355 /* verbs_qp can be picked up from any tid_rdma header struct */ 356 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) & 357 RVT_QPN_MASK; 358 359 rcu_read_lock(); 360 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 361 if (!packet->qp) 362 goto drop_rcu; 363 spin_lock_irqsave(&packet->qp->r_lock, flags); 364 opcode_handler = tid_qp_ok(opcode, packet); 365 if (likely(opcode_handler)) 366 opcode_handler(packet); 367 else 368 goto drop_unlock; 369 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 370 rcu_read_unlock(); 371 372 return; 373 drop_unlock: 374 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 375 drop_rcu: 376 rcu_read_unlock(); 377 drop: 378 ibp->rvp.n_pkt_drops++; 379 } 380 381 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet) 382 { 383 struct hfi1_ctxtdata *rcd = packet->rcd; 384 struct ib_header *hdr = packet->hdr; 385 u32 tlen = packet->tlen; 386 struct hfi1_pportdata *ppd = rcd->ppd; 387 struct hfi1_ibport *ibp = &ppd->ibport_data; 388 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 389 opcode_handler opcode_handler; 390 unsigned long flags; 391 u32 qp_num; 392 int lnh; 393 u8 opcode; 394 395 /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */ 396 if (unlikely(tlen < 15 * sizeof(u32))) 397 goto drop; 398 399 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 400 if (lnh != HFI1_LRH_BTH) 401 goto drop; 402 403 packet->ohdr = &hdr->u.oth; 404 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 405 406 opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24); 407 inc_opstats(tlen, &rcd->opstats->stats[opcode]); 408 409 /* verbs_qp can be picked up from any tid_rdma header struct */ 410 qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) & 411 RVT_QPN_MASK; 412 413 rcu_read_lock(); 414 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 415 if (!packet->qp) 416 goto drop_rcu; 417 spin_lock_irqsave(&packet->qp->r_lock, flags); 418 opcode_handler = tid_qp_ok(opcode, packet); 419 if (likely(opcode_handler)) 420 opcode_handler(packet); 421 else 422 goto drop_unlock; 423 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 424 rcu_read_unlock(); 425 426 return; 427 drop_unlock: 428 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 429 drop_rcu: 430 rcu_read_unlock(); 431 drop: 432 ibp->rvp.n_pkt_drops++; 433 } 434 435 static int hfi1_do_pkey_check(struct hfi1_packet *packet) 436 { 437 struct hfi1_ctxtdata *rcd = packet->rcd; 438 struct hfi1_pportdata *ppd = rcd->ppd; 439 struct hfi1_16b_header *hdr = packet->hdr; 440 u16 pkey; 441 442 /* Pkey check needed only for bypass packets */ 443 if (packet->etype != RHF_RCV_TYPE_BYPASS) 444 return 0; 445 446 /* Perform pkey check */ 447 pkey = hfi1_16B_get_pkey(hdr); 448 return ingress_pkey_check(ppd, pkey, packet->sc, 449 packet->qp->s_pkey_index, 450 packet->slid, true); 451 } 452 453 static inline void hfi1_handle_packet(struct hfi1_packet *packet, 454 bool is_mcast) 455 { 456 u32 qp_num; 457 struct hfi1_ctxtdata *rcd = packet->rcd; 458 struct hfi1_pportdata *ppd = rcd->ppd; 459 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 460 struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; 461 opcode_handler packet_handler; 462 unsigned long flags; 463 464 inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]); 465 466 if (unlikely(is_mcast)) { 467 struct rvt_mcast *mcast; 468 struct rvt_mcast_qp *p; 469 470 if (!packet->grh) 471 goto drop; 472 mcast = rvt_mcast_find(&ibp->rvp, 473 &packet->grh->dgid, 474 opa_get_lid(packet->dlid, 9B)); 475 if (!mcast) 476 goto drop; 477 rcu_read_lock(); 478 list_for_each_entry_rcu(p, &mcast->qp_list, list) { 479 packet->qp = p->qp; 480 if (hfi1_do_pkey_check(packet)) 481 goto unlock_drop; 482 spin_lock_irqsave(&packet->qp->r_lock, flags); 483 packet_handler = qp_ok(packet); 484 if (likely(packet_handler)) 485 packet_handler(packet); 486 else 487 ibp->rvp.n_pkt_drops++; 488 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 489 } 490 rcu_read_unlock(); 491 /* 492 * Notify rvt_multicast_detach() if it is waiting for us 493 * to finish. 494 */ 495 if (atomic_dec_return(&mcast->refcount) <= 1) 496 wake_up(&mcast->wait); 497 } else { 498 /* Get the destination QP number. */ 499 if (packet->etype == RHF_RCV_TYPE_BYPASS && 500 hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM) 501 qp_num = hfi1_16B_get_dest_qpn(packet->mgmt); 502 else 503 qp_num = ib_bth_get_qpn(packet->ohdr); 504 505 rcu_read_lock(); 506 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 507 if (!packet->qp) 508 goto unlock_drop; 509 510 if (hfi1_do_pkey_check(packet)) 511 goto unlock_drop; 512 513 spin_lock_irqsave(&packet->qp->r_lock, flags); 514 packet_handler = qp_ok(packet); 515 if (likely(packet_handler)) 516 packet_handler(packet); 517 else 518 ibp->rvp.n_pkt_drops++; 519 spin_unlock_irqrestore(&packet->qp->r_lock, flags); 520 rcu_read_unlock(); 521 } 522 return; 523 unlock_drop: 524 rcu_read_unlock(); 525 drop: 526 ibp->rvp.n_pkt_drops++; 527 } 528 529 /** 530 * hfi1_ib_rcv - process an incoming packet 531 * @packet: data packet information 532 * 533 * This is called to process an incoming packet at interrupt level. 534 */ 535 void hfi1_ib_rcv(struct hfi1_packet *packet) 536 { 537 struct hfi1_ctxtdata *rcd = packet->rcd; 538 539 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 540 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 541 } 542 543 void hfi1_16B_rcv(struct hfi1_packet *packet) 544 { 545 struct hfi1_ctxtdata *rcd = packet->rcd; 546 547 trace_input_ibhdr(rcd->dd, packet, false); 548 hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); 549 } 550 551 /* 552 * This is called from a timer to check for QPs 553 * which need kernel memory in order to send a packet. 554 */ 555 static void mem_timer(struct timer_list *t) 556 { 557 struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer); 558 struct list_head *list = &dev->memwait; 559 struct rvt_qp *qp = NULL; 560 struct iowait *wait; 561 unsigned long flags; 562 struct hfi1_qp_priv *priv; 563 564 write_seqlock_irqsave(&dev->iowait_lock, flags); 565 if (!list_empty(list)) { 566 wait = list_first_entry(list, struct iowait, list); 567 qp = iowait_to_qp(wait); 568 priv = qp->priv; 569 list_del_init(&priv->s_iowait.list); 570 priv->s_iowait.lock = NULL; 571 /* refcount held until actual wake up */ 572 if (!list_empty(list)) 573 mod_timer(&dev->mem_timer, jiffies + 1); 574 } 575 write_sequnlock_irqrestore(&dev->iowait_lock, flags); 576 577 if (qp) 578 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM); 579 } 580 581 /* 582 * This is called with progress side lock held. 583 */ 584 /* New API */ 585 static void verbs_sdma_complete( 586 struct sdma_txreq *cookie, 587 int status) 588 { 589 struct verbs_txreq *tx = 590 container_of(cookie, struct verbs_txreq, txreq); 591 struct rvt_qp *qp = tx->qp; 592 593 spin_lock(&qp->s_lock); 594 if (tx->wqe) { 595 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS); 596 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 597 struct hfi1_opa_header *hdr; 598 599 hdr = &tx->phdr.hdr; 600 if (unlikely(status == SDMA_TXREQ_S_ABORTED)) 601 hfi1_rc_verbs_aborted(qp, hdr); 602 hfi1_rc_send_complete(qp, hdr); 603 } 604 spin_unlock(&qp->s_lock); 605 606 hfi1_put_txreq(tx); 607 } 608 609 void hfi1_wait_kmem(struct rvt_qp *qp) 610 { 611 struct hfi1_qp_priv *priv = qp->priv; 612 struct ib_qp *ibqp = &qp->ibqp; 613 struct ib_device *ibdev = ibqp->device; 614 struct hfi1_ibdev *dev = to_idev(ibdev); 615 616 if (list_empty(&priv->s_iowait.list)) { 617 if (list_empty(&dev->memwait)) 618 mod_timer(&dev->mem_timer, jiffies + 1); 619 qp->s_flags |= RVT_S_WAIT_KMEM; 620 list_add_tail(&priv->s_iowait.list, &dev->memwait); 621 priv->s_iowait.lock = &dev->iowait_lock; 622 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM); 623 rvt_get_qp(qp); 624 } 625 } 626 627 static int wait_kmem(struct hfi1_ibdev *dev, 628 struct rvt_qp *qp, 629 struct hfi1_pkt_state *ps) 630 { 631 unsigned long flags; 632 int ret = 0; 633 634 spin_lock_irqsave(&qp->s_lock, flags); 635 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 636 write_seqlock(&dev->iowait_lock); 637 list_add_tail(&ps->s_txreq->txreq.list, 638 &ps->wait->tx_head); 639 hfi1_wait_kmem(qp); 640 write_sequnlock(&dev->iowait_lock); 641 hfi1_qp_unbusy(qp, ps->wait); 642 ret = -EBUSY; 643 } 644 spin_unlock_irqrestore(&qp->s_lock, flags); 645 646 return ret; 647 } 648 649 /* 650 * This routine calls txadds for each sg entry. 651 * 652 * Add failures will revert the sge cursor 653 */ 654 static noinline int build_verbs_ulp_payload( 655 struct sdma_engine *sde, 656 u32 length, 657 struct verbs_txreq *tx) 658 { 659 struct rvt_sge_state *ss = tx->ss; 660 struct rvt_sge *sg_list = ss->sg_list; 661 struct rvt_sge sge = ss->sge; 662 u8 num_sge = ss->num_sge; 663 u32 len; 664 int ret = 0; 665 666 while (length) { 667 len = rvt_get_sge_length(&ss->sge, length); 668 WARN_ON_ONCE(len == 0); 669 ret = sdma_txadd_kvaddr( 670 sde->dd, 671 &tx->txreq, 672 ss->sge.vaddr, 673 len); 674 if (ret) 675 goto bail_txadd; 676 rvt_update_sge(ss, len, false); 677 length -= len; 678 } 679 return ret; 680 bail_txadd: 681 /* unwind cursor */ 682 ss->sge = sge; 683 ss->num_sge = num_sge; 684 ss->sg_list = sg_list; 685 return ret; 686 } 687 688 /** 689 * update_tx_opstats - record stats by opcode 690 * @qp: the qp 691 * @ps: transmit packet state 692 * @plen: the plen in dwords 693 * 694 * This is a routine to record the tx opstats after a 695 * packet has been presented to the egress mechanism. 696 */ 697 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 698 u32 plen) 699 { 700 #ifdef CONFIG_DEBUG_FS 701 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 702 struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats); 703 704 inc_opstats(plen * 4, &s->stats[ps->opcode]); 705 put_cpu_ptr(s); 706 #endif 707 } 708 709 /* 710 * Build the number of DMA descriptors needed to send length bytes of data. 711 * 712 * NOTE: DMA mapping is held in the tx until completed in the ring or 713 * the tx desc is freed without having been submitted to the ring 714 * 715 * This routine ensures all the helper routine calls succeed. 716 */ 717 /* New API */ 718 static int build_verbs_tx_desc( 719 struct sdma_engine *sde, 720 u32 length, 721 struct verbs_txreq *tx, 722 struct hfi1_ahg_info *ahg_info, 723 u64 pbc) 724 { 725 int ret = 0; 726 struct hfi1_sdma_header *phdr = &tx->phdr; 727 u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2; 728 u8 extra_bytes = 0; 729 730 if (tx->phdr.hdr.hdr_type) { 731 /* 732 * hdrbytes accounts for PBC. Need to subtract 8 bytes 733 * before calculating padding. 734 */ 735 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) + 736 (SIZE_OF_CRC << 2) + SIZE_OF_LT; 737 } 738 if (!ahg_info->ahgcount) { 739 ret = sdma_txinit_ahg( 740 &tx->txreq, 741 ahg_info->tx_flags, 742 hdrbytes + length + 743 extra_bytes, 744 ahg_info->ahgidx, 745 0, 746 NULL, 747 0, 748 verbs_sdma_complete); 749 if (ret) 750 goto bail_txadd; 751 phdr->pbc = cpu_to_le64(pbc); 752 ret = sdma_txadd_kvaddr( 753 sde->dd, 754 &tx->txreq, 755 phdr, 756 hdrbytes); 757 if (ret) 758 goto bail_txadd; 759 } else { 760 ret = sdma_txinit_ahg( 761 &tx->txreq, 762 ahg_info->tx_flags, 763 length, 764 ahg_info->ahgidx, 765 ahg_info->ahgcount, 766 ahg_info->ahgdesc, 767 hdrbytes, 768 verbs_sdma_complete); 769 if (ret) 770 goto bail_txadd; 771 } 772 /* add the ulp payload - if any. tx->ss can be NULL for acks */ 773 if (tx->ss) { 774 ret = build_verbs_ulp_payload(sde, length, tx); 775 if (ret) 776 goto bail_txadd; 777 } 778 779 /* add icrc, lt byte, and padding to flit */ 780 if (extra_bytes) 781 ret = sdma_txadd_daddr(sde->dd, &tx->txreq, 782 sde->dd->sdma_pad_phys, extra_bytes); 783 784 bail_txadd: 785 return ret; 786 } 787 788 static u64 update_hcrc(u8 opcode, u64 pbc) 789 { 790 if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) { 791 pbc &= ~PBC_INSERT_HCRC_SMASK; 792 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT; 793 } 794 return pbc; 795 } 796 797 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 798 u64 pbc) 799 { 800 struct hfi1_qp_priv *priv = qp->priv; 801 struct hfi1_ahg_info *ahg_info = priv->s_ahg; 802 u32 hdrwords = ps->s_txreq->hdr_dwords; 803 u32 len = ps->s_txreq->s_cur_size; 804 u32 plen; 805 struct hfi1_ibdev *dev = ps->dev; 806 struct hfi1_pportdata *ppd = ps->ppd; 807 struct verbs_txreq *tx; 808 u8 sc5 = priv->s_sc; 809 int ret; 810 u32 dwords; 811 812 if (ps->s_txreq->phdr.hdr.hdr_type) { 813 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len); 814 815 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) + 816 SIZE_OF_LT) >> 2; 817 } else { 818 dwords = (len + 3) >> 2; 819 } 820 plen = hdrwords + dwords + sizeof(pbc) / 4; 821 822 tx = ps->s_txreq; 823 if (!sdma_txreq_built(&tx->txreq)) { 824 if (likely(pbc == 0)) { 825 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 826 827 /* No vl15 here */ 828 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 829 if (ps->s_txreq->phdr.hdr.hdr_type) 830 pbc |= PBC_PACKET_BYPASS | 831 PBC_INSERT_BYPASS_ICRC; 832 else 833 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 834 835 pbc = create_pbc(ppd, 836 pbc, 837 qp->srate_mbps, 838 vl, 839 plen); 840 841 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 842 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 843 else 844 /* Update HCRC based on packet opcode */ 845 pbc = update_hcrc(ps->opcode, pbc); 846 } 847 tx->wqe = qp->s_wqe; 848 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc); 849 if (unlikely(ret)) 850 goto bail_build; 851 } 852 ret = sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent); 853 if (unlikely(ret < 0)) { 854 if (ret == -ECOMM) 855 goto bail_ecomm; 856 return ret; 857 } 858 859 update_tx_opstats(qp, ps, plen); 860 trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 861 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 862 return ret; 863 864 bail_ecomm: 865 /* The current one got "sent" */ 866 return 0; 867 bail_build: 868 ret = wait_kmem(dev, qp, ps); 869 if (!ret) { 870 /* free txreq - bad state */ 871 hfi1_put_txreq(ps->s_txreq); 872 ps->s_txreq = NULL; 873 } 874 return ret; 875 } 876 877 /* 878 * If we are now in the error state, return zero to flush the 879 * send work request. 880 */ 881 static int pio_wait(struct rvt_qp *qp, 882 struct send_context *sc, 883 struct hfi1_pkt_state *ps, 884 u32 flag) 885 { 886 struct hfi1_qp_priv *priv = qp->priv; 887 struct hfi1_devdata *dd = sc->dd; 888 unsigned long flags; 889 int ret = 0; 890 891 /* 892 * Note that as soon as want_buffer() is called and 893 * possibly before it returns, sc_piobufavail() 894 * could be called. Therefore, put QP on the I/O wait list before 895 * enabling the PIO avail interrupt. 896 */ 897 spin_lock_irqsave(&qp->s_lock, flags); 898 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { 899 write_seqlock(&sc->waitlock); 900 list_add_tail(&ps->s_txreq->txreq.list, 901 &ps->wait->tx_head); 902 if (list_empty(&priv->s_iowait.list)) { 903 struct hfi1_ibdev *dev = &dd->verbs_dev; 904 int was_empty; 905 906 dev->n_piowait += !!(flag & RVT_S_WAIT_PIO); 907 dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN); 908 qp->s_flags |= flag; 909 was_empty = list_empty(&sc->piowait); 910 iowait_get_priority(&priv->s_iowait); 911 iowait_queue(ps->pkts_sent, &priv->s_iowait, 912 &sc->piowait); 913 priv->s_iowait.lock = &sc->waitlock; 914 trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO); 915 rvt_get_qp(qp); 916 /* counting: only call wantpiobuf_intr if first user */ 917 if (was_empty) 918 hfi1_sc_wantpiobuf_intr(sc, 1); 919 } 920 write_sequnlock(&sc->waitlock); 921 hfi1_qp_unbusy(qp, ps->wait); 922 ret = -EBUSY; 923 } 924 spin_unlock_irqrestore(&qp->s_lock, flags); 925 return ret; 926 } 927 928 static void verbs_pio_complete(void *arg, int code) 929 { 930 struct rvt_qp *qp = (struct rvt_qp *)arg; 931 struct hfi1_qp_priv *priv = qp->priv; 932 933 if (iowait_pio_dec(&priv->s_iowait)) 934 iowait_drain_wakeup(&priv->s_iowait); 935 } 936 937 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps, 938 u64 pbc) 939 { 940 struct hfi1_qp_priv *priv = qp->priv; 941 u32 hdrwords = ps->s_txreq->hdr_dwords; 942 struct rvt_sge_state *ss = ps->s_txreq->ss; 943 u32 len = ps->s_txreq->s_cur_size; 944 u32 dwords; 945 u32 plen; 946 struct hfi1_pportdata *ppd = ps->ppd; 947 u32 *hdr; 948 u8 sc5; 949 unsigned long flags = 0; 950 struct send_context *sc; 951 struct pio_buf *pbuf; 952 int wc_status = IB_WC_SUCCESS; 953 int ret = 0; 954 pio_release_cb cb = NULL; 955 u8 extra_bytes = 0; 956 957 if (ps->s_txreq->phdr.hdr.hdr_type) { 958 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len); 959 960 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT; 961 dwords = (len + extra_bytes) >> 2; 962 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah; 963 } else { 964 dwords = (len + 3) >> 2; 965 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh; 966 } 967 plen = hdrwords + dwords + sizeof(pbc) / 4; 968 969 /* only RC/UC use complete */ 970 switch (qp->ibqp.qp_type) { 971 case IB_QPT_RC: 972 case IB_QPT_UC: 973 cb = verbs_pio_complete; 974 break; 975 default: 976 break; 977 } 978 979 /* vl15 special case taken care of in ud.c */ 980 sc5 = priv->s_sc; 981 sc = ps->s_txreq->psc; 982 983 if (likely(pbc == 0)) { 984 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); 985 986 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ 987 if (ps->s_txreq->phdr.hdr.hdr_type) 988 pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; 989 else 990 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); 991 992 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen); 993 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode))) 994 pbc = hfi1_fault_tx(qp, ps->opcode, pbc); 995 else 996 /* Update HCRC based on packet opcode */ 997 pbc = update_hcrc(ps->opcode, pbc); 998 } 999 if (cb) 1000 iowait_pio_inc(&priv->s_iowait); 1001 pbuf = sc_buffer_alloc(sc, plen, cb, qp); 1002 if (IS_ERR_OR_NULL(pbuf)) { 1003 if (cb) 1004 verbs_pio_complete(qp, 0); 1005 if (IS_ERR(pbuf)) { 1006 /* 1007 * If we have filled the PIO buffers to capacity and are 1008 * not in an active state this request is not going to 1009 * go out to so just complete it with an error or else a 1010 * ULP or the core may be stuck waiting. 1011 */ 1012 hfi1_cdbg( 1013 PIO, 1014 "alloc failed. state not active, completing"); 1015 wc_status = IB_WC_GENERAL_ERR; 1016 goto pio_bail; 1017 } else { 1018 /* 1019 * This is a normal occurrence. The PIO buffs are full 1020 * up but we are still happily sending, well we could be 1021 * so lets continue to queue the request. 1022 */ 1023 hfi1_cdbg(PIO, "alloc failed. state active, queuing"); 1024 ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO); 1025 if (!ret) 1026 /* txreq not queued - free */ 1027 goto bail; 1028 /* tx consumed in wait */ 1029 return ret; 1030 } 1031 } 1032 1033 if (dwords == 0) { 1034 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); 1035 } else { 1036 seg_pio_copy_start(pbuf, pbc, 1037 hdr, hdrwords * 4); 1038 if (ss) { 1039 while (len) { 1040 void *addr = ss->sge.vaddr; 1041 u32 slen = rvt_get_sge_length(&ss->sge, len); 1042 1043 rvt_update_sge(ss, slen, false); 1044 seg_pio_copy_mid(pbuf, addr, slen); 1045 len -= slen; 1046 } 1047 } 1048 /* add icrc, lt byte, and padding to flit */ 1049 if (extra_bytes) 1050 seg_pio_copy_mid(pbuf, ppd->dd->sdma_pad_dma, 1051 extra_bytes); 1052 1053 seg_pio_copy_end(pbuf); 1054 } 1055 1056 update_tx_opstats(qp, ps, plen); 1057 trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device), 1058 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); 1059 1060 pio_bail: 1061 spin_lock_irqsave(&qp->s_lock, flags); 1062 if (qp->s_wqe) { 1063 rvt_send_complete(qp, qp->s_wqe, wc_status); 1064 } else if (qp->ibqp.qp_type == IB_QPT_RC) { 1065 if (unlikely(wc_status == IB_WC_GENERAL_ERR)) 1066 hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr); 1067 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr); 1068 } 1069 spin_unlock_irqrestore(&qp->s_lock, flags); 1070 1071 ret = 0; 1072 1073 bail: 1074 hfi1_put_txreq(ps->s_txreq); 1075 return ret; 1076 } 1077 1078 /* 1079 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1080 * being an entry from the partition key table), return 0 1081 * otherwise. Use the matching criteria for egress partition keys 1082 * specified in the OPAv1 spec., section 9.1l.7. 1083 */ 1084 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) 1085 { 1086 u16 mkey = pkey & PKEY_LOW_15_MASK; 1087 u16 mentry = ent & PKEY_LOW_15_MASK; 1088 1089 if (mkey == mentry) { 1090 /* 1091 * If pkey[15] is set (full partition member), 1092 * is bit 15 in the corresponding table element 1093 * clear (limited member)? 1094 */ 1095 if (pkey & PKEY_MEMBER_MASK) 1096 return !!(ent & PKEY_MEMBER_MASK); 1097 return 1; 1098 } 1099 return 0; 1100 } 1101 1102 /** 1103 * egress_pkey_check - check P_KEY of a packet 1104 * @ppd: Physical IB port data 1105 * @slid: SLID for packet 1106 * @pkey: PKEY for header 1107 * @sc5: SC for packet 1108 * @s_pkey_index: It will be used for look up optimization for kernel contexts 1109 * only. If it is negative value, then it means user contexts is calling this 1110 * function. 1111 * 1112 * It checks if hdr's pkey is valid. 1113 * 1114 * Return: 0 on success, otherwise, 1 1115 */ 1116 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1117 u8 sc5, int8_t s_pkey_index) 1118 { 1119 struct hfi1_devdata *dd; 1120 int i; 1121 int is_user_ctxt_mechanism = (s_pkey_index < 0); 1122 1123 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) 1124 return 0; 1125 1126 /* If SC15, pkey[0:14] must be 0x7fff */ 1127 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1128 goto bad; 1129 1130 /* Is the pkey = 0x0, or 0x8000? */ 1131 if ((pkey & PKEY_LOW_15_MASK) == 0) 1132 goto bad; 1133 1134 /* 1135 * For the kernel contexts only, if a qp is passed into the function, 1136 * the most likely matching pkey has index qp->s_pkey_index 1137 */ 1138 if (!is_user_ctxt_mechanism && 1139 egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) { 1140 return 0; 1141 } 1142 1143 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1144 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1145 return 0; 1146 } 1147 bad: 1148 /* 1149 * For the user-context mechanism, the P_KEY check would only happen 1150 * once per SDMA request, not once per packet. Therefore, there's no 1151 * need to increment the counter for the user-context mechanism. 1152 */ 1153 if (!is_user_ctxt_mechanism) { 1154 incr_cntr64(&ppd->port_xmit_constraint_errors); 1155 dd = ppd->dd; 1156 if (!(dd->err_info_xmit_constraint.status & 1157 OPA_EI_STATUS_SMASK)) { 1158 dd->err_info_xmit_constraint.status |= 1159 OPA_EI_STATUS_SMASK; 1160 dd->err_info_xmit_constraint.slid = slid; 1161 dd->err_info_xmit_constraint.pkey = pkey; 1162 } 1163 } 1164 return 1; 1165 } 1166 1167 /* 1168 * get_send_routine - choose an egress routine 1169 * 1170 * Choose an egress routine based on QP type 1171 * and size 1172 */ 1173 static inline send_routine get_send_routine(struct rvt_qp *qp, 1174 struct hfi1_pkt_state *ps) 1175 { 1176 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1177 struct hfi1_qp_priv *priv = qp->priv; 1178 struct verbs_txreq *tx = ps->s_txreq; 1179 1180 if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA))) 1181 return dd->process_pio_send; 1182 switch (qp->ibqp.qp_type) { 1183 case IB_QPT_SMI: 1184 return dd->process_pio_send; 1185 case IB_QPT_GSI: 1186 case IB_QPT_UD: 1187 break; 1188 case IB_QPT_UC: 1189 case IB_QPT_RC: 1190 priv->s_running_pkt_size = 1191 (tx->s_cur_size + priv->s_running_pkt_size) / 2; 1192 if (piothreshold && 1193 priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) && 1194 (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) && 1195 iowait_sdma_pending(&priv->s_iowait) == 0 && 1196 !sdma_txreq_built(&tx->txreq)) 1197 return dd->process_pio_send; 1198 break; 1199 default: 1200 break; 1201 } 1202 return dd->process_dma_send; 1203 } 1204 1205 /** 1206 * hfi1_verbs_send - send a packet 1207 * @qp: the QP to send on 1208 * @ps: the state of the packet to send 1209 * 1210 * Return zero if packet is sent or queued OK. 1211 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise. 1212 */ 1213 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps) 1214 { 1215 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 1216 struct hfi1_qp_priv *priv = qp->priv; 1217 struct ib_other_headers *ohdr = NULL; 1218 send_routine sr; 1219 int ret; 1220 u16 pkey; 1221 u32 slid; 1222 u8 l4 = 0; 1223 1224 /* locate the pkey within the headers */ 1225 if (ps->s_txreq->phdr.hdr.hdr_type) { 1226 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah; 1227 1228 l4 = hfi1_16B_get_l4(hdr); 1229 if (l4 == OPA_16B_L4_IB_LOCAL) 1230 ohdr = &hdr->u.oth; 1231 else if (l4 == OPA_16B_L4_IB_GLOBAL) 1232 ohdr = &hdr->u.l.oth; 1233 1234 slid = hfi1_16B_get_slid(hdr); 1235 pkey = hfi1_16B_get_pkey(hdr); 1236 } else { 1237 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh; 1238 u8 lnh = ib_get_lnh(hdr); 1239 1240 if (lnh == HFI1_LRH_GRH) 1241 ohdr = &hdr->u.l.oth; 1242 else 1243 ohdr = &hdr->u.oth; 1244 slid = ib_get_slid(hdr); 1245 pkey = ib_bth_get_pkey(ohdr); 1246 } 1247 1248 if (likely(l4 != OPA_16B_L4_FM)) 1249 ps->opcode = ib_bth_get_opcode(ohdr); 1250 else 1251 ps->opcode = IB_OPCODE_UD_SEND_ONLY; 1252 1253 sr = get_send_routine(qp, ps); 1254 ret = egress_pkey_check(dd->pport, slid, pkey, 1255 priv->s_sc, qp->s_pkey_index); 1256 if (unlikely(ret)) { 1257 /* 1258 * The value we are returning here does not get propagated to 1259 * the verbs caller. Thus we need to complete the request with 1260 * error otherwise the caller could be sitting waiting on the 1261 * completion event. Only do this for PIO. SDMA has its own 1262 * mechanism for handling the errors. So for SDMA we can just 1263 * return. 1264 */ 1265 if (sr == dd->process_pio_send) { 1266 unsigned long flags; 1267 1268 hfi1_cdbg(PIO, "%s() Failed. Completing with err", 1269 __func__); 1270 spin_lock_irqsave(&qp->s_lock, flags); 1271 rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); 1272 spin_unlock_irqrestore(&qp->s_lock, flags); 1273 } 1274 return -EINVAL; 1275 } 1276 if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait)) 1277 return pio_wait(qp, 1278 ps->s_txreq->psc, 1279 ps, 1280 HFI1_S_WAIT_PIO_DRAIN); 1281 return sr(qp, ps, 0); 1282 } 1283 1284 /** 1285 * hfi1_fill_device_attr - Fill in rvt dev info device attributes. 1286 * @dd: the device data structure 1287 */ 1288 static void hfi1_fill_device_attr(struct hfi1_devdata *dd) 1289 { 1290 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 1291 u32 ver = dd->dc8051_ver; 1292 1293 memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props)); 1294 1295 rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) | 1296 ((u64)(dc8051_ver_min(ver)) << 16) | 1297 (u64)dc8051_ver_patch(ver); 1298 1299 rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | 1300 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | 1301 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | 1302 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE | 1303 IB_DEVICE_MEM_MGT_EXTENSIONS; 1304 rdi->dparms.props.kernel_cap_flags = IBK_RDMA_NETDEV_OPA; 1305 rdi->dparms.props.page_size_cap = PAGE_SIZE; 1306 rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; 1307 rdi->dparms.props.vendor_part_id = dd->pcidev->device; 1308 rdi->dparms.props.hw_ver = dd->minrev; 1309 rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid; 1310 rdi->dparms.props.max_mr_size = U64_MAX; 1311 rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX; 1312 rdi->dparms.props.max_qp = hfi1_max_qps; 1313 rdi->dparms.props.max_qp_wr = 1314 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ? 1315 HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs); 1316 rdi->dparms.props.max_send_sge = hfi1_max_sges; 1317 rdi->dparms.props.max_recv_sge = hfi1_max_sges; 1318 rdi->dparms.props.max_sge_rd = hfi1_max_sges; 1319 rdi->dparms.props.max_cq = hfi1_max_cqs; 1320 rdi->dparms.props.max_ah = hfi1_max_ahs; 1321 rdi->dparms.props.max_cqe = hfi1_max_cqes; 1322 rdi->dparms.props.max_pd = hfi1_max_pds; 1323 rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; 1324 rdi->dparms.props.max_qp_init_rd_atom = 255; 1325 rdi->dparms.props.max_srq = hfi1_max_srqs; 1326 rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs; 1327 rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges; 1328 rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB; 1329 rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd); 1330 rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps; 1331 rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached; 1332 rdi->dparms.props.max_total_mcast_qp_attach = 1333 rdi->dparms.props.max_mcast_qp_attach * 1334 rdi->dparms.props.max_mcast_grp; 1335 } 1336 1337 static inline u16 opa_speed_to_ib(u16 in) 1338 { 1339 u16 out = 0; 1340 1341 if (in & OPA_LINK_SPEED_25G) 1342 out |= IB_SPEED_EDR; 1343 if (in & OPA_LINK_SPEED_12_5G) 1344 out |= IB_SPEED_FDR; 1345 1346 return out; 1347 } 1348 1349 /* 1350 * Convert a single OPA link width (no multiple flags) to an IB value. 1351 * A zero OPA link width means link down, which means the IB width value 1352 * is a don't care. 1353 */ 1354 static inline u16 opa_width_to_ib(u16 in) 1355 { 1356 switch (in) { 1357 case OPA_LINK_WIDTH_1X: 1358 /* map 2x and 3x to 1x as they don't exist in IB */ 1359 case OPA_LINK_WIDTH_2X: 1360 case OPA_LINK_WIDTH_3X: 1361 return IB_WIDTH_1X; 1362 default: /* link down or unknown, return our largest width */ 1363 case OPA_LINK_WIDTH_4X: 1364 return IB_WIDTH_4X; 1365 } 1366 } 1367 1368 static int query_port(struct rvt_dev_info *rdi, u32 port_num, 1369 struct ib_port_attr *props) 1370 { 1371 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1372 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1373 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1374 u32 lid = ppd->lid; 1375 1376 /* props being zeroed by the caller, avoid zeroing it here */ 1377 props->lid = lid ? lid : 0; 1378 props->lmc = ppd->lmc; 1379 /* OPA logical states match IB logical states */ 1380 props->state = driver_lstate(ppd); 1381 props->phys_state = driver_pstate(ppd); 1382 props->gid_tbl_len = HFI1_GUIDS_PER_PORT; 1383 props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); 1384 /* see rate_show() in ib core/sysfs.c */ 1385 props->active_speed = opa_speed_to_ib(ppd->link_speed_active); 1386 props->max_vl_num = ppd->vls_supported; 1387 1388 /* Once we are a "first class" citizen and have added the OPA MTUs to 1389 * the core we can advertise the larger MTU enum to the ULPs, for now 1390 * advertise only 4K. 1391 * 1392 * Those applications which are either OPA aware or pass the MTU enum 1393 * from the Path Records to us will get the new 8k MTU. Those that 1394 * attempt to process the MTU enum may fail in various ways. 1395 */ 1396 props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? 1397 4096 : hfi1_max_mtu), IB_MTU_4096); 1398 props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : 1399 mtu_to_enum(ppd->ibmtu, IB_MTU_4096); 1400 props->phys_mtu = hfi1_max_mtu; 1401 1402 return 0; 1403 } 1404 1405 static int modify_device(struct ib_device *device, 1406 int device_modify_mask, 1407 struct ib_device_modify *device_modify) 1408 { 1409 struct hfi1_devdata *dd = dd_from_ibdev(device); 1410 unsigned i; 1411 int ret; 1412 1413 if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | 1414 IB_DEVICE_MODIFY_NODE_DESC)) { 1415 ret = -EOPNOTSUPP; 1416 goto bail; 1417 } 1418 1419 if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { 1420 memcpy(device->node_desc, device_modify->node_desc, 1421 IB_DEVICE_NODE_DESC_MAX); 1422 for (i = 0; i < dd->num_pports; i++) { 1423 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1424 1425 hfi1_node_desc_chg(ibp); 1426 } 1427 } 1428 1429 if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { 1430 ib_hfi1_sys_image_guid = 1431 cpu_to_be64(device_modify->sys_image_guid); 1432 for (i = 0; i < dd->num_pports; i++) { 1433 struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; 1434 1435 hfi1_sys_guid_chg(ibp); 1436 } 1437 } 1438 1439 ret = 0; 1440 1441 bail: 1442 return ret; 1443 } 1444 1445 static int shut_down_port(struct rvt_dev_info *rdi, u32 port_num) 1446 { 1447 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 1448 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 1449 struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; 1450 1451 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, 1452 OPA_LINKDOWN_REASON_UNKNOWN); 1453 return set_link_state(ppd, HLS_DN_DOWNDEF); 1454 } 1455 1456 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, 1457 int guid_index, __be64 *guid) 1458 { 1459 struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp); 1460 1461 if (guid_index >= HFI1_GUIDS_PER_PORT) 1462 return -EINVAL; 1463 1464 *guid = get_sguid(ibp, guid_index); 1465 return 0; 1466 } 1467 1468 /* 1469 * convert ah port,sl to sc 1470 */ 1471 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah) 1472 { 1473 struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah)); 1474 1475 return ibp->sl_to_sc[rdma_ah_get_sl(ah)]; 1476 } 1477 1478 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr) 1479 { 1480 struct hfi1_ibport *ibp; 1481 struct hfi1_pportdata *ppd; 1482 struct hfi1_devdata *dd; 1483 u8 sc5; 1484 u8 sl; 1485 1486 if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) && 1487 !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH)) 1488 return -EINVAL; 1489 1490 /* test the mapping for validity */ 1491 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1492 ppd = ppd_from_ibp(ibp); 1493 dd = dd_from_ppd(ppd); 1494 1495 sl = rdma_ah_get_sl(ah_attr); 1496 if (sl >= ARRAY_SIZE(ibp->sl_to_sc)) 1497 return -EINVAL; 1498 sl = array_index_nospec(sl, ARRAY_SIZE(ibp->sl_to_sc)); 1499 1500 sc5 = ibp->sl_to_sc[sl]; 1501 if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) 1502 return -EINVAL; 1503 return 0; 1504 } 1505 1506 static void hfi1_notify_new_ah(struct ib_device *ibdev, 1507 struct rdma_ah_attr *ah_attr, 1508 struct rvt_ah *ah) 1509 { 1510 struct hfi1_ibport *ibp; 1511 struct hfi1_pportdata *ppd; 1512 struct hfi1_devdata *dd; 1513 u8 sc5; 1514 struct rdma_ah_attr *attr = &ah->attr; 1515 1516 /* 1517 * Do not trust reading anything from rvt_ah at this point as it is not 1518 * done being setup. We can however modify things which we need to set. 1519 */ 1520 1521 ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); 1522 ppd = ppd_from_ibp(ibp); 1523 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)]; 1524 hfi1_update_ah_attr(ibdev, attr); 1525 hfi1_make_opa_lid(attr); 1526 dd = dd_from_ppd(ppd); 1527 ah->vl = sc_to_vlt(dd, sc5); 1528 if (ah->vl < num_vls || ah->vl == 15) 1529 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu); 1530 } 1531 1532 /** 1533 * hfi1_get_npkeys - return the size of the PKEY table for context 0 1534 * @dd: the hfi1_ib device 1535 */ 1536 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) 1537 { 1538 return ARRAY_SIZE(dd->pport[0].pkeys); 1539 } 1540 1541 static void init_ibport(struct hfi1_pportdata *ppd) 1542 { 1543 struct hfi1_ibport *ibp = &ppd->ibport_data; 1544 size_t sz = ARRAY_SIZE(ibp->sl_to_sc); 1545 int i; 1546 1547 for (i = 0; i < sz; i++) { 1548 ibp->sl_to_sc[i] = i; 1549 ibp->sc_to_sl[i] = i; 1550 } 1551 1552 for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++) 1553 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list); 1554 timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0); 1555 1556 spin_lock_init(&ibp->rvp.lock); 1557 /* Set the prefix to the default value (see ch. 4.1.1) */ 1558 ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX; 1559 ibp->rvp.sm_lid = 0; 1560 /* 1561 * Below should only set bits defined in OPA PortInfo.CapabilityMask 1562 * and PortInfo.CapabilityMask3 1563 */ 1564 ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP | 1565 IB_PORT_CAP_MASK_NOTICE_SUP; 1566 ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported; 1567 ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; 1568 ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; 1569 ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; 1570 ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; 1571 ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; 1572 1573 RCU_INIT_POINTER(ibp->rvp.qp[0], NULL); 1574 RCU_INIT_POINTER(ibp->rvp.qp[1], NULL); 1575 } 1576 1577 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str) 1578 { 1579 struct rvt_dev_info *rdi = ib_to_rvt(ibdev); 1580 struct hfi1_ibdev *dev = dev_from_rdi(rdi); 1581 u32 ver = dd_from_dev(dev)->dc8051_ver; 1582 1583 snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver), 1584 dc8051_ver_min(ver), dc8051_ver_patch(ver)); 1585 } 1586 1587 static const char * const driver_cntr_names[] = { 1588 /* must be element 0*/ 1589 "DRIVER_KernIntr", 1590 "DRIVER_ErrorIntr", 1591 "DRIVER_Tx_Errs", 1592 "DRIVER_Rcv_Errs", 1593 "DRIVER_HW_Errs", 1594 "DRIVER_NoPIOBufs", 1595 "DRIVER_CtxtsOpen", 1596 "DRIVER_RcvLen_Errs", 1597 "DRIVER_EgrBufFull", 1598 "DRIVER_EgrHdrFull" 1599 }; 1600 1601 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */ 1602 static struct rdma_stat_desc *dev_cntr_descs; 1603 static struct rdma_stat_desc *port_cntr_descs; 1604 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names); 1605 static int num_dev_cntrs; 1606 static int num_port_cntrs; 1607 static int cntr_names_initialized; 1608 1609 /* 1610 * Convert a list of names separated by '\n' into an array of NULL terminated 1611 * strings. Optionally some entries can be reserved in the array to hold extra 1612 * external strings. 1613 */ 1614 static int init_cntr_names(const char *names_in, const size_t names_len, 1615 int num_extra_names, int *num_cntrs, 1616 struct rdma_stat_desc **cntr_descs) 1617 { 1618 struct rdma_stat_desc *q; 1619 char *names_out, *p; 1620 int i, n; 1621 1622 n = 0; 1623 for (i = 0; i < names_len; i++) 1624 if (names_in[i] == '\n') 1625 n++; 1626 1627 names_out = 1628 kzalloc((n + num_extra_names) * sizeof(*q) + names_len, 1629 GFP_KERNEL); 1630 if (!names_out) { 1631 *num_cntrs = 0; 1632 *cntr_descs = NULL; 1633 return -ENOMEM; 1634 } 1635 1636 p = names_out + (n + num_extra_names) * sizeof(*q); 1637 memcpy(p, names_in, names_len); 1638 1639 q = (struct rdma_stat_desc *)names_out; 1640 for (i = 0; i < n; i++) { 1641 q[i].name = p; 1642 p = strchr(p, '\n'); 1643 *p++ = '\0'; 1644 } 1645 1646 *num_cntrs = n; 1647 *cntr_descs = (struct rdma_stat_desc *)names_out; 1648 return 0; 1649 } 1650 1651 static int init_counters(struct ib_device *ibdev) 1652 { 1653 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1654 int i, err = 0; 1655 1656 mutex_lock(&cntr_names_lock); 1657 if (cntr_names_initialized) 1658 goto out_unlock; 1659 1660 err = init_cntr_names(dd->cntrnames, dd->cntrnameslen, num_driver_cntrs, 1661 &num_dev_cntrs, &dev_cntr_descs); 1662 if (err) 1663 goto out_unlock; 1664 1665 for (i = 0; i < num_driver_cntrs; i++) 1666 dev_cntr_descs[num_dev_cntrs + i].name = driver_cntr_names[i]; 1667 1668 err = init_cntr_names(dd->portcntrnames, dd->portcntrnameslen, 0, 1669 &num_port_cntrs, &port_cntr_descs); 1670 if (err) { 1671 kfree(dev_cntr_descs); 1672 dev_cntr_descs = NULL; 1673 goto out_unlock; 1674 } 1675 cntr_names_initialized = 1; 1676 1677 out_unlock: 1678 mutex_unlock(&cntr_names_lock); 1679 return err; 1680 } 1681 1682 static struct rdma_hw_stats *hfi1_alloc_hw_device_stats(struct ib_device *ibdev) 1683 { 1684 if (init_counters(ibdev)) 1685 return NULL; 1686 return rdma_alloc_hw_stats_struct(dev_cntr_descs, 1687 num_dev_cntrs + num_driver_cntrs, 1688 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1689 } 1690 1691 static struct rdma_hw_stats *hfi_alloc_hw_port_stats(struct ib_device *ibdev, 1692 u32 port_num) 1693 { 1694 if (init_counters(ibdev)) 1695 return NULL; 1696 return rdma_alloc_hw_stats_struct(port_cntr_descs, num_port_cntrs, 1697 RDMA_HW_STATS_DEFAULT_LIFESPAN); 1698 } 1699 1700 static u64 hfi1_sps_ints(void) 1701 { 1702 unsigned long index, flags; 1703 struct hfi1_devdata *dd; 1704 u64 sps_ints = 0; 1705 1706 xa_lock_irqsave(&hfi1_dev_table, flags); 1707 xa_for_each(&hfi1_dev_table, index, dd) { 1708 sps_ints += get_all_cpu_total(dd->int_counter); 1709 } 1710 xa_unlock_irqrestore(&hfi1_dev_table, flags); 1711 return sps_ints; 1712 } 1713 1714 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, 1715 u32 port, int index) 1716 { 1717 u64 *values; 1718 int count; 1719 1720 if (!port) { 1721 u64 *stats = (u64 *)&hfi1_stats; 1722 int i; 1723 1724 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values); 1725 values[num_dev_cntrs] = hfi1_sps_ints(); 1726 for (i = 1; i < num_driver_cntrs; i++) 1727 values[num_dev_cntrs + i] = stats[i]; 1728 count = num_dev_cntrs + num_driver_cntrs; 1729 } else { 1730 struct hfi1_ibport *ibp = to_iport(ibdev, port); 1731 1732 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values); 1733 count = num_port_cntrs; 1734 } 1735 1736 memcpy(stats->value, values, count * sizeof(u64)); 1737 return count; 1738 } 1739 1740 static const struct ib_device_ops hfi1_dev_ops = { 1741 .owner = THIS_MODULE, 1742 .driver_id = RDMA_DRIVER_HFI1, 1743 1744 .alloc_hw_device_stats = hfi1_alloc_hw_device_stats, 1745 .alloc_hw_port_stats = hfi_alloc_hw_port_stats, 1746 .alloc_rdma_netdev = hfi1_vnic_alloc_rn, 1747 .device_group = &ib_hfi1_attr_group, 1748 .get_dev_fw_str = hfi1_get_dev_fw_str, 1749 .get_hw_stats = get_hw_stats, 1750 .modify_device = modify_device, 1751 .port_groups = hfi1_attr_port_groups, 1752 /* keep process mad in the driver */ 1753 .process_mad = hfi1_process_mad, 1754 .rdma_netdev_get_params = hfi1_ipoib_rn_get_params, 1755 }; 1756 1757 /** 1758 * hfi1_register_ib_device - register our device with the infiniband core 1759 * @dd: the device data structure 1760 * Return 0 if successful, errno if unsuccessful. 1761 */ 1762 int hfi1_register_ib_device(struct hfi1_devdata *dd) 1763 { 1764 struct hfi1_ibdev *dev = &dd->verbs_dev; 1765 struct ib_device *ibdev = &dev->rdi.ibdev; 1766 struct hfi1_pportdata *ppd = dd->pport; 1767 struct hfi1_ibport *ibp = &ppd->ibport_data; 1768 unsigned i; 1769 int ret; 1770 1771 for (i = 0; i < dd->num_pports; i++) 1772 init_ibport(ppd + i); 1773 1774 /* Only need to initialize non-zero fields. */ 1775 1776 timer_setup(&dev->mem_timer, mem_timer, 0); 1777 1778 seqlock_init(&dev->iowait_lock); 1779 seqlock_init(&dev->txwait_lock); 1780 INIT_LIST_HEAD(&dev->txwait); 1781 INIT_LIST_HEAD(&dev->memwait); 1782 1783 ret = verbs_txreq_init(dev); 1784 if (ret) 1785 goto err_verbs_txreq; 1786 1787 /* Use first-port GUID as node guid */ 1788 ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX); 1789 1790 /* 1791 * The system image GUID is supposed to be the same for all 1792 * HFIs in a single system but since there can be other 1793 * device types in the system, we can't be sure this is unique. 1794 */ 1795 if (!ib_hfi1_sys_image_guid) 1796 ib_hfi1_sys_image_guid = ibdev->node_guid; 1797 ibdev->phys_port_cnt = dd->num_pports; 1798 ibdev->dev.parent = &dd->pcidev->dev; 1799 1800 ib_set_device_ops(ibdev, &hfi1_dev_ops); 1801 1802 strscpy(ibdev->node_desc, init_utsname()->nodename, 1803 sizeof(ibdev->node_desc)); 1804 1805 /* 1806 * Fill in rvt info object. 1807 */ 1808 dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev; 1809 dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah; 1810 dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah; 1811 dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be; 1812 dd->verbs_dev.rdi.driver_f.query_port_state = query_port; 1813 dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port; 1814 dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg; 1815 /* 1816 * Fill in rvt info device attributes. 1817 */ 1818 hfi1_fill_device_attr(dd); 1819 1820 /* queue pair */ 1821 dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size; 1822 dd->verbs_dev.rdi.dparms.qpn_start = 0; 1823 dd->verbs_dev.rdi.dparms.qpn_inc = 1; 1824 dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift; 1825 dd->verbs_dev.rdi.dparms.qpn_res_start = RVT_KDETH_QP_BASE; 1826 dd->verbs_dev.rdi.dparms.qpn_res_end = RVT_AIP_QP_MAX; 1827 dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC; 1828 dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK; 1829 dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT; 1830 dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK; 1831 dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA | 1832 RDMA_CORE_CAP_OPA_AH; 1833 dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE; 1834 1835 dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc; 1836 dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init; 1837 dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free; 1838 dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps; 1839 dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset; 1840 dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt; 1841 dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send; 1842 dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send; 1843 dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr; 1844 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1845 dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters; 1846 dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue; 1847 dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp; 1848 dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; 1849 dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp; 1850 dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu; 1851 dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp; 1852 dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp; 1853 dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc; 1854 dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe; 1855 dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup = 1856 hfi1_comp_vect_mappings_lookup; 1857 1858 /* completeion queue */ 1859 dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus; 1860 dd->verbs_dev.rdi.dparms.node = dd->node; 1861 1862 /* misc settings */ 1863 dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */ 1864 dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size; 1865 dd->verbs_dev.rdi.dparms.nports = dd->num_pports; 1866 dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd); 1867 dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode; 1868 dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold; 1869 dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period; 1870 dd->verbs_dev.rdi.dparms.reserved_operations = 1; 1871 dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT; 1872 1873 /* post send table */ 1874 dd->verbs_dev.rdi.post_parms = hfi1_post_parms; 1875 1876 /* opcode translation table */ 1877 dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode; 1878 1879 ppd = dd->pport; 1880 for (i = 0; i < dd->num_pports; i++, ppd++) 1881 rvt_init_port(&dd->verbs_dev.rdi, 1882 &ppd->ibport_data.rvp, 1883 i, 1884 ppd->pkeys); 1885 1886 ret = rvt_register_device(&dd->verbs_dev.rdi); 1887 if (ret) 1888 goto err_verbs_txreq; 1889 1890 ret = hfi1_verbs_register_sysfs(dd); 1891 if (ret) 1892 goto err_class; 1893 1894 return ret; 1895 1896 err_class: 1897 rvt_unregister_device(&dd->verbs_dev.rdi); 1898 err_verbs_txreq: 1899 verbs_txreq_exit(dev); 1900 dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); 1901 return ret; 1902 } 1903 1904 void hfi1_unregister_ib_device(struct hfi1_devdata *dd) 1905 { 1906 struct hfi1_ibdev *dev = &dd->verbs_dev; 1907 1908 hfi1_verbs_unregister_sysfs(dd); 1909 1910 rvt_unregister_device(&dd->verbs_dev.rdi); 1911 1912 if (!list_empty(&dev->txwait)) 1913 dd_dev_err(dd, "txwait list not empty!\n"); 1914 if (!list_empty(&dev->memwait)) 1915 dd_dev_err(dd, "memwait list not empty!\n"); 1916 1917 del_timer_sync(&dev->mem_timer); 1918 verbs_txreq_exit(dev); 1919 1920 mutex_lock(&cntr_names_lock); 1921 kfree(dev_cntr_descs); 1922 kfree(port_cntr_descs); 1923 dev_cntr_descs = NULL; 1924 port_cntr_descs = NULL; 1925 cntr_names_initialized = 0; 1926 mutex_unlock(&cntr_names_lock); 1927 } 1928 1929 void hfi1_cnp_rcv(struct hfi1_packet *packet) 1930 { 1931 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1932 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1933 struct ib_header *hdr = packet->hdr; 1934 struct rvt_qp *qp = packet->qp; 1935 u32 lqpn, rqpn = 0; 1936 u16 rlid = 0; 1937 u8 sl, sc5, svc_type; 1938 1939 switch (packet->qp->ibqp.qp_type) { 1940 case IB_QPT_UC: 1941 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1942 rqpn = qp->remote_qpn; 1943 svc_type = IB_CC_SVCTYPE_UC; 1944 break; 1945 case IB_QPT_RC: 1946 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 1947 rqpn = qp->remote_qpn; 1948 svc_type = IB_CC_SVCTYPE_RC; 1949 break; 1950 case IB_QPT_SMI: 1951 case IB_QPT_GSI: 1952 case IB_QPT_UD: 1953 svc_type = IB_CC_SVCTYPE_UD; 1954 break; 1955 default: 1956 ibp->rvp.n_pkt_drops++; 1957 return; 1958 } 1959 1960 sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); 1961 sl = ibp->sc_to_sl[sc5]; 1962 lqpn = qp->ibqp.qp_num; 1963 1964 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 1965 } 1966