xref: /linux/drivers/infiniband/hw/hfi1/verbs.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63 
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66 		   S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68 		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
69 
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73 		 "Maximum number of protection domains to support");
74 
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78 
79 unsigned int hfi1_max_cqes = 0x2FFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82 		 "Maximum number of completion queue entries to support");
83 
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87 
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91 
92 unsigned int hfi1_max_qps = 16384;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95 
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99 
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103 		 "Maximum number of multicast groups to support");
104 
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107 		   uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109 		 "Maximum number of attached QPs to support");
110 
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114 
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118 
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122 
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126 
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE  2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132 		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133 
134 static void verbs_sdma_complete(
135 	struct sdma_txreq *cookie,
136 	int status);
137 
138 static int pio_wait(struct rvt_qp *qp,
139 		    struct send_context *sc,
140 		    struct hfi1_pkt_state *ps,
141 		    u32 flag);
142 
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145 
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152 
153 /* memory working set size */
154 struct hfi1_wss {
155 	unsigned long *entries;
156 	atomic_t total_count;
157 	atomic_t clean_counter;
158 	atomic_t clean_entry;
159 
160 	int threshold;
161 	int num_entries;
162 	long pages_mask;
163 };
164 
165 static struct hfi1_wss wss;
166 
167 int hfi1_wss_init(void)
168 {
169 	long llc_size;
170 	long llc_bits;
171 	long table_size;
172 	long table_bits;
173 
174 	/* check for a valid percent range - default to 80 if none or invalid */
175 	if (wss_threshold < 1 || wss_threshold > 100)
176 		wss_threshold = 80;
177 	/* reject a wildly large period */
178 	if (wss_clean_period > 1000000)
179 		wss_clean_period = 256;
180 	/* reject a zero period */
181 	if (wss_clean_period == 0)
182 		wss_clean_period = 1;
183 
184 	/*
185 	 * Calculate the table size - the next power of 2 larger than the
186 	 * LLC size.  LLC size is in KiB.
187 	 */
188 	llc_size = wss_llc_size() * 1024;
189 	table_size = roundup_pow_of_two(llc_size);
190 
191 	/* one bit per page in rounded up table */
192 	llc_bits = llc_size / PAGE_SIZE;
193 	table_bits = table_size / PAGE_SIZE;
194 	wss.pages_mask = table_bits - 1;
195 	wss.num_entries = table_bits / BITS_PER_LONG;
196 
197 	wss.threshold = (llc_bits * wss_threshold) / 100;
198 	if (wss.threshold == 0)
199 		wss.threshold = 1;
200 
201 	atomic_set(&wss.clean_counter, wss_clean_period);
202 
203 	wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204 			      GFP_KERNEL);
205 	if (!wss.entries) {
206 		hfi1_wss_exit();
207 		return -ENOMEM;
208 	}
209 
210 	return 0;
211 }
212 
213 void hfi1_wss_exit(void)
214 {
215 	/* coded to handle partially initialized and repeat callers */
216 	kfree(wss.entries);
217 	wss.entries = NULL;
218 }
219 
220 /*
221  * Advance the clean counter.  When the clean period has expired,
222  * clean an entry.
223  *
224  * This is implemented in atomics to avoid locking.  Because multiple
225  * variables are involved, it can be racy which can lead to slightly
226  * inaccurate information.  Since this is only a heuristic, this is
227  * OK.  Any innaccuracies will clean themselves out as the counter
228  * advances.  That said, it is unlikely the entry clean operation will
229  * race - the next possible racer will not start until the next clean
230  * period.
231  *
232  * The clean counter is implemented as a decrement to zero.  When zero
233  * is reached an entry is cleaned.
234  */
235 static void wss_advance_clean_counter(void)
236 {
237 	int entry;
238 	int weight;
239 	unsigned long bits;
240 
241 	/* become the cleaner if we decrement the counter to zero */
242 	if (atomic_dec_and_test(&wss.clean_counter)) {
243 		/*
244 		 * Set, not add, the clean period.  This avoids an issue
245 		 * where the counter could decrement below the clean period.
246 		 * Doing a set can result in lost decrements, slowing the
247 		 * clean advance.  Since this a heuristic, this possible
248 		 * slowdown is OK.
249 		 *
250 		 * An alternative is to loop, advancing the counter by a
251 		 * clean period until the result is > 0. However, this could
252 		 * lead to several threads keeping another in the clean loop.
253 		 * This could be mitigated by limiting the number of times
254 		 * we stay in the loop.
255 		 */
256 		atomic_set(&wss.clean_counter, wss_clean_period);
257 
258 		/*
259 		 * Uniquely grab the entry to clean and move to next.
260 		 * The current entry is always the lower bits of
261 		 * wss.clean_entry.  The table size, wss.num_entries,
262 		 * is always a power-of-2.
263 		 */
264 		entry = (atomic_inc_return(&wss.clean_entry) - 1)
265 			& (wss.num_entries - 1);
266 
267 		/* clear the entry and count the bits */
268 		bits = xchg(&wss.entries[entry], 0);
269 		weight = hweight64((u64)bits);
270 		/* only adjust the contended total count if needed */
271 		if (weight)
272 			atomic_sub(weight, &wss.total_count);
273 	}
274 }
275 
276 /*
277  * Insert the given address into the working set array.
278  */
279 static void wss_insert(void *address)
280 {
281 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283 	u32 nr = page & (BITS_PER_LONG - 1);
284 
285 	if (!test_and_set_bit(nr, &wss.entries[entry]))
286 		atomic_inc(&wss.total_count);
287 
288 	wss_advance_clean_counter();
289 }
290 
291 /*
292  * Is the working set larger than the threshold?
293  */
294 static inline int wss_exceeds_threshold(void)
295 {
296 	return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298 
299 /*
300  * Translate ib_wr_opcode into ib_wc_opcode.
301  */
302 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
303 	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
304 	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
305 	[IB_WR_SEND] = IB_WC_SEND,
306 	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
307 	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
308 	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
309 	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
310 };
311 
312 /*
313  * Length of header by opcode, 0 --> not supported
314  */
315 const u8 hdr_len_by_opcode[256] = {
316 	/* RC */
317 	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
318 	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
319 	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
320 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
321 	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
322 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
323 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
324 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
325 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
326 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
327 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
328 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
329 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
330 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
331 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
332 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
333 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
334 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
335 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
336 	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
337 	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
338 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
339 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
340 	/* UC */
341 	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
342 	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
343 	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
344 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
345 	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
346 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
347 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
348 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
349 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
350 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
351 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
352 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
353 	/* UD */
354 	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
355 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
356 };
357 
358 static const opcode_handler opcode_handler_tbl[256] = {
359 	/* RC */
360 	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
361 	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
362 	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
363 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
364 	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
365 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
366 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
367 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
368 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
369 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
370 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
371 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
372 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
373 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
374 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
375 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
376 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
377 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
378 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
379 	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
380 	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
381 	/* UC */
382 	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
383 	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
384 	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
385 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
386 	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
387 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
388 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
389 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
390 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
391 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
392 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
393 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
394 	/* UD */
395 	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
396 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
397 	/* CNP */
398 	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
399 };
400 
401 /*
402  * System image GUID.
403  */
404 __be64 ib_hfi1_sys_image_guid;
405 
406 /**
407  * hfi1_copy_sge - copy data to SGE memory
408  * @ss: the SGE state
409  * @data: the data to copy
410  * @length: the length of the data
411  * @copy_last: do a separate copy of the last 8 bytes
412  */
413 void hfi1_copy_sge(
414 	struct rvt_sge_state *ss,
415 	void *data, u32 length,
416 	int release,
417 	int copy_last)
418 {
419 	struct rvt_sge *sge = &ss->sge;
420 	int in_last = 0;
421 	int i;
422 	int cacheless_copy = 0;
423 
424 	if (sge_copy_mode == COPY_CACHELESS) {
425 		cacheless_copy = length >= PAGE_SIZE;
426 	} else if (sge_copy_mode == COPY_ADAPTIVE) {
427 		if (length >= PAGE_SIZE) {
428 			/*
429 			 * NOTE: this *assumes*:
430 			 * o The first vaddr is the dest.
431 			 * o If multiple pages, then vaddr is sequential.
432 			 */
433 			wss_insert(sge->vaddr);
434 			if (length >= (2 * PAGE_SIZE))
435 				wss_insert(sge->vaddr + PAGE_SIZE);
436 
437 			cacheless_copy = wss_exceeds_threshold();
438 		} else {
439 			wss_advance_clean_counter();
440 		}
441 	}
442 	if (copy_last) {
443 		if (length > 8) {
444 			length -= 8;
445 		} else {
446 			copy_last = 0;
447 			in_last = 1;
448 		}
449 	}
450 
451 again:
452 	while (length) {
453 		u32 len = sge->length;
454 
455 		if (len > length)
456 			len = length;
457 		if (len > sge->sge_length)
458 			len = sge->sge_length;
459 		WARN_ON_ONCE(len == 0);
460 		if (unlikely(in_last)) {
461 			/* enforce byte transfer ordering */
462 			for (i = 0; i < len; i++)
463 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
464 		} else if (cacheless_copy) {
465 			cacheless_memcpy(sge->vaddr, data, len);
466 		} else {
467 			memcpy(sge->vaddr, data, len);
468 		}
469 		sge->vaddr += len;
470 		sge->length -= len;
471 		sge->sge_length -= len;
472 		if (sge->sge_length == 0) {
473 			if (release)
474 				rvt_put_mr(sge->mr);
475 			if (--ss->num_sge)
476 				*sge = *ss->sg_list++;
477 		} else if (sge->length == 0 && sge->mr->lkey) {
478 			if (++sge->n >= RVT_SEGSZ) {
479 				if (++sge->m >= sge->mr->mapsz)
480 					break;
481 				sge->n = 0;
482 			}
483 			sge->vaddr =
484 				sge->mr->map[sge->m]->segs[sge->n].vaddr;
485 			sge->length =
486 				sge->mr->map[sge->m]->segs[sge->n].length;
487 		}
488 		data += len;
489 		length -= len;
490 	}
491 
492 	if (copy_last) {
493 		copy_last = 0;
494 		in_last = 1;
495 		length = 8;
496 		goto again;
497 	}
498 }
499 
500 /**
501  * hfi1_skip_sge - skip over SGE memory
502  * @ss: the SGE state
503  * @length: the number of bytes to skip
504  */
505 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
506 {
507 	struct rvt_sge *sge = &ss->sge;
508 
509 	while (length) {
510 		u32 len = sge->length;
511 
512 		if (len > length)
513 			len = length;
514 		if (len > sge->sge_length)
515 			len = sge->sge_length;
516 		WARN_ON_ONCE(len == 0);
517 		sge->vaddr += len;
518 		sge->length -= len;
519 		sge->sge_length -= len;
520 		if (sge->sge_length == 0) {
521 			if (release)
522 				rvt_put_mr(sge->mr);
523 			if (--ss->num_sge)
524 				*sge = *ss->sg_list++;
525 		} else if (sge->length == 0 && sge->mr->lkey) {
526 			if (++sge->n >= RVT_SEGSZ) {
527 				if (++sge->m >= sge->mr->mapsz)
528 					break;
529 				sge->n = 0;
530 			}
531 			sge->vaddr =
532 				sge->mr->map[sge->m]->segs[sge->n].vaddr;
533 			sge->length =
534 				sge->mr->map[sge->m]->segs[sge->n].length;
535 		}
536 		length -= len;
537 	}
538 }
539 
540 /*
541  * Make sure the QP is ready and able to accept the given opcode.
542  */
543 static inline int qp_ok(int opcode, struct hfi1_packet *packet)
544 {
545 	struct hfi1_ibport *ibp;
546 
547 	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
548 		goto dropit;
549 	if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
550 	    (opcode == IB_OPCODE_CNP))
551 		return 1;
552 dropit:
553 	ibp = &packet->rcd->ppd->ibport_data;
554 	ibp->rvp.n_pkt_drops++;
555 	return 0;
556 }
557 
558 /**
559  * hfi1_ib_rcv - process an incoming packet
560  * @packet: data packet information
561  *
562  * This is called to process an incoming packet at interrupt level.
563  *
564  * Tlen is the length of the header + data + CRC in bytes.
565  */
566 void hfi1_ib_rcv(struct hfi1_packet *packet)
567 {
568 	struct hfi1_ctxtdata *rcd = packet->rcd;
569 	struct hfi1_ib_header *hdr = packet->hdr;
570 	u32 tlen = packet->tlen;
571 	struct hfi1_pportdata *ppd = rcd->ppd;
572 	struct hfi1_ibport *ibp = &ppd->ibport_data;
573 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
574 	unsigned long flags;
575 	u32 qp_num;
576 	int lnh;
577 	u8 opcode;
578 	u16 lid;
579 
580 	/* Check for GRH */
581 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
582 	if (lnh == HFI1_LRH_BTH) {
583 		packet->ohdr = &hdr->u.oth;
584 	} else if (lnh == HFI1_LRH_GRH) {
585 		u32 vtf;
586 
587 		packet->ohdr = &hdr->u.l.oth;
588 		if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
589 			goto drop;
590 		vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
591 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
592 			goto drop;
593 		packet->rcv_flags |= HFI1_HAS_GRH;
594 	} else {
595 		goto drop;
596 	}
597 
598 	trace_input_ibhdr(rcd->dd, hdr);
599 
600 	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
601 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
602 
603 	/* Get the destination QP number. */
604 	qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
605 	lid = be16_to_cpu(hdr->lrh[1]);
606 	if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
607 		     (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
608 		struct rvt_mcast *mcast;
609 		struct rvt_mcast_qp *p;
610 
611 		if (lnh != HFI1_LRH_GRH)
612 			goto drop;
613 		mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
614 		if (!mcast)
615 			goto drop;
616 		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
617 			packet->qp = p->qp;
618 			spin_lock_irqsave(&packet->qp->r_lock, flags);
619 			if (likely((qp_ok(opcode, packet))))
620 				opcode_handler_tbl[opcode](packet);
621 			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
622 		}
623 		/*
624 		 * Notify rvt_multicast_detach() if it is waiting for us
625 		 * to finish.
626 		 */
627 		if (atomic_dec_return(&mcast->refcount) <= 1)
628 			wake_up(&mcast->wait);
629 	} else {
630 		rcu_read_lock();
631 		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
632 		if (!packet->qp) {
633 			rcu_read_unlock();
634 			goto drop;
635 		}
636 		spin_lock_irqsave(&packet->qp->r_lock, flags);
637 		if (likely((qp_ok(opcode, packet))))
638 			opcode_handler_tbl[opcode](packet);
639 		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
640 		rcu_read_unlock();
641 	}
642 	return;
643 
644 drop:
645 	ibp->rvp.n_pkt_drops++;
646 }
647 
648 /*
649  * This is called from a timer to check for QPs
650  * which need kernel memory in order to send a packet.
651  */
652 static void mem_timer(unsigned long data)
653 {
654 	struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
655 	struct list_head *list = &dev->memwait;
656 	struct rvt_qp *qp = NULL;
657 	struct iowait *wait;
658 	unsigned long flags;
659 	struct hfi1_qp_priv *priv;
660 
661 	write_seqlock_irqsave(&dev->iowait_lock, flags);
662 	if (!list_empty(list)) {
663 		wait = list_first_entry(list, struct iowait, list);
664 		qp = iowait_to_qp(wait);
665 		priv = qp->priv;
666 		list_del_init(&priv->s_iowait.list);
667 		/* refcount held until actual wake up */
668 		if (!list_empty(list))
669 			mod_timer(&dev->mem_timer, jiffies + 1);
670 	}
671 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
672 
673 	if (qp)
674 		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
675 }
676 
677 void update_sge(struct rvt_sge_state *ss, u32 length)
678 {
679 	struct rvt_sge *sge = &ss->sge;
680 
681 	sge->vaddr += length;
682 	sge->length -= length;
683 	sge->sge_length -= length;
684 	if (sge->sge_length == 0) {
685 		if (--ss->num_sge)
686 			*sge = *ss->sg_list++;
687 	} else if (sge->length == 0 && sge->mr->lkey) {
688 		if (++sge->n >= RVT_SEGSZ) {
689 			if (++sge->m >= sge->mr->mapsz)
690 				return;
691 			sge->n = 0;
692 		}
693 		sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
694 		sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
695 	}
696 }
697 
698 /*
699  * This is called with progress side lock held.
700  */
701 /* New API */
702 static void verbs_sdma_complete(
703 	struct sdma_txreq *cookie,
704 	int status)
705 {
706 	struct verbs_txreq *tx =
707 		container_of(cookie, struct verbs_txreq, txreq);
708 	struct rvt_qp *qp = tx->qp;
709 
710 	spin_lock(&qp->s_lock);
711 	if (tx->wqe) {
712 		hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
713 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
714 		struct hfi1_ib_header *hdr;
715 
716 		hdr = &tx->phdr.hdr;
717 		hfi1_rc_send_complete(qp, hdr);
718 	}
719 	spin_unlock(&qp->s_lock);
720 
721 	hfi1_put_txreq(tx);
722 }
723 
724 static int wait_kmem(struct hfi1_ibdev *dev,
725 		     struct rvt_qp *qp,
726 		     struct hfi1_pkt_state *ps)
727 {
728 	struct hfi1_qp_priv *priv = qp->priv;
729 	unsigned long flags;
730 	int ret = 0;
731 
732 	spin_lock_irqsave(&qp->s_lock, flags);
733 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
734 		write_seqlock(&dev->iowait_lock);
735 		list_add_tail(&ps->s_txreq->txreq.list,
736 			      &priv->s_iowait.tx_head);
737 		if (list_empty(&priv->s_iowait.list)) {
738 			if (list_empty(&dev->memwait))
739 				mod_timer(&dev->mem_timer, jiffies + 1);
740 			qp->s_flags |= RVT_S_WAIT_KMEM;
741 			list_add_tail(&priv->s_iowait.list, &dev->memwait);
742 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
743 			atomic_inc(&qp->refcount);
744 		}
745 		write_sequnlock(&dev->iowait_lock);
746 		qp->s_flags &= ~RVT_S_BUSY;
747 		ret = -EBUSY;
748 	}
749 	spin_unlock_irqrestore(&qp->s_lock, flags);
750 
751 	return ret;
752 }
753 
754 /*
755  * This routine calls txadds for each sg entry.
756  *
757  * Add failures will revert the sge cursor
758  */
759 static noinline int build_verbs_ulp_payload(
760 	struct sdma_engine *sde,
761 	struct rvt_sge_state *ss,
762 	u32 length,
763 	struct verbs_txreq *tx)
764 {
765 	struct rvt_sge *sg_list = ss->sg_list;
766 	struct rvt_sge sge = ss->sge;
767 	u8 num_sge = ss->num_sge;
768 	u32 len;
769 	int ret = 0;
770 
771 	while (length) {
772 		len = ss->sge.length;
773 		if (len > length)
774 			len = length;
775 		if (len > ss->sge.sge_length)
776 			len = ss->sge.sge_length;
777 		WARN_ON_ONCE(len == 0);
778 		ret = sdma_txadd_kvaddr(
779 			sde->dd,
780 			&tx->txreq,
781 			ss->sge.vaddr,
782 			len);
783 		if (ret)
784 			goto bail_txadd;
785 		update_sge(ss, len);
786 		length -= len;
787 	}
788 	return ret;
789 bail_txadd:
790 	/* unwind cursor */
791 	ss->sge = sge;
792 	ss->num_sge = num_sge;
793 	ss->sg_list = sg_list;
794 	return ret;
795 }
796 
797 /*
798  * Build the number of DMA descriptors needed to send length bytes of data.
799  *
800  * NOTE: DMA mapping is held in the tx until completed in the ring or
801  *       the tx desc is freed without having been submitted to the ring
802  *
803  * This routine ensures all the helper routine calls succeed.
804  */
805 /* New API */
806 static int build_verbs_tx_desc(
807 	struct sdma_engine *sde,
808 	struct rvt_sge_state *ss,
809 	u32 length,
810 	struct verbs_txreq *tx,
811 	struct ahg_ib_header *ahdr,
812 	u64 pbc)
813 {
814 	int ret = 0;
815 	struct hfi1_pio_header *phdr = &tx->phdr;
816 	u16 hdrbytes = tx->hdr_dwords << 2;
817 
818 	if (!ahdr->ahgcount) {
819 		ret = sdma_txinit_ahg(
820 			&tx->txreq,
821 			ahdr->tx_flags,
822 			hdrbytes + length,
823 			ahdr->ahgidx,
824 			0,
825 			NULL,
826 			0,
827 			verbs_sdma_complete);
828 		if (ret)
829 			goto bail_txadd;
830 		phdr->pbc = cpu_to_le64(pbc);
831 		ret = sdma_txadd_kvaddr(
832 			sde->dd,
833 			&tx->txreq,
834 			phdr,
835 			hdrbytes);
836 		if (ret)
837 			goto bail_txadd;
838 	} else {
839 		ret = sdma_txinit_ahg(
840 			&tx->txreq,
841 			ahdr->tx_flags,
842 			length,
843 			ahdr->ahgidx,
844 			ahdr->ahgcount,
845 			ahdr->ahgdesc,
846 			hdrbytes,
847 			verbs_sdma_complete);
848 		if (ret)
849 			goto bail_txadd;
850 	}
851 
852 	/* add the ulp payload - if any.  ss can be NULL for acks */
853 	if (ss)
854 		ret = build_verbs_ulp_payload(sde, ss, length, tx);
855 bail_txadd:
856 	return ret;
857 }
858 
859 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
860 			u64 pbc)
861 {
862 	struct hfi1_qp_priv *priv = qp->priv;
863 	struct ahg_ib_header *ahdr = priv->s_hdr;
864 	u32 hdrwords = qp->s_hdrwords;
865 	struct rvt_sge_state *ss = qp->s_cur_sge;
866 	u32 len = qp->s_cur_size;
867 	u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
868 	struct hfi1_ibdev *dev = ps->dev;
869 	struct hfi1_pportdata *ppd = ps->ppd;
870 	struct verbs_txreq *tx;
871 	u64 pbc_flags = 0;
872 	u8 sc5 = priv->s_sc;
873 
874 	int ret;
875 
876 	tx = ps->s_txreq;
877 	if (!sdma_txreq_built(&tx->txreq)) {
878 		if (likely(pbc == 0)) {
879 			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
880 			/* No vl15 here */
881 			/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
882 			pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
883 
884 			pbc = create_pbc(ppd,
885 					 pbc_flags,
886 					 qp->srate_mbps,
887 					 vl,
888 					 plen);
889 		}
890 		tx->wqe = qp->s_wqe;
891 		ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahdr, pbc);
892 		if (unlikely(ret))
893 			goto bail_build;
894 	}
895 	ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
896 	if (unlikely(ret < 0)) {
897 		if (ret == -ECOMM)
898 			goto bail_ecomm;
899 		return ret;
900 	}
901 	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
902 				&ps->s_txreq->phdr.hdr);
903 	return ret;
904 
905 bail_ecomm:
906 	/* The current one got "sent" */
907 	return 0;
908 bail_build:
909 	ret = wait_kmem(dev, qp, ps);
910 	if (!ret) {
911 		/* free txreq - bad state */
912 		hfi1_put_txreq(ps->s_txreq);
913 		ps->s_txreq = NULL;
914 	}
915 	return ret;
916 }
917 
918 /*
919  * If we are now in the error state, return zero to flush the
920  * send work request.
921  */
922 static int pio_wait(struct rvt_qp *qp,
923 		    struct send_context *sc,
924 		    struct hfi1_pkt_state *ps,
925 		    u32 flag)
926 {
927 	struct hfi1_qp_priv *priv = qp->priv;
928 	struct hfi1_devdata *dd = sc->dd;
929 	struct hfi1_ibdev *dev = &dd->verbs_dev;
930 	unsigned long flags;
931 	int ret = 0;
932 
933 	/*
934 	 * Note that as soon as want_buffer() is called and
935 	 * possibly before it returns, sc_piobufavail()
936 	 * could be called. Therefore, put QP on the I/O wait list before
937 	 * enabling the PIO avail interrupt.
938 	 */
939 	spin_lock_irqsave(&qp->s_lock, flags);
940 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
941 		write_seqlock(&dev->iowait_lock);
942 		list_add_tail(&ps->s_txreq->txreq.list,
943 			      &priv->s_iowait.tx_head);
944 		if (list_empty(&priv->s_iowait.list)) {
945 			struct hfi1_ibdev *dev = &dd->verbs_dev;
946 			int was_empty;
947 
948 			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
949 			dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
950 			qp->s_flags |= flag;
951 			was_empty = list_empty(&sc->piowait);
952 			list_add_tail(&priv->s_iowait.list, &sc->piowait);
953 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
954 			atomic_inc(&qp->refcount);
955 			/* counting: only call wantpiobuf_intr if first user */
956 			if (was_empty)
957 				hfi1_sc_wantpiobuf_intr(sc, 1);
958 		}
959 		write_sequnlock(&dev->iowait_lock);
960 		qp->s_flags &= ~RVT_S_BUSY;
961 		ret = -EBUSY;
962 	}
963 	spin_unlock_irqrestore(&qp->s_lock, flags);
964 	return ret;
965 }
966 
967 static void verbs_pio_complete(void *arg, int code)
968 {
969 	struct rvt_qp *qp = (struct rvt_qp *)arg;
970 	struct hfi1_qp_priv *priv = qp->priv;
971 
972 	if (iowait_pio_dec(&priv->s_iowait))
973 		iowait_drain_wakeup(&priv->s_iowait);
974 }
975 
976 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
977 			u64 pbc)
978 {
979 	struct hfi1_qp_priv *priv = qp->priv;
980 	u32 hdrwords = qp->s_hdrwords;
981 	struct rvt_sge_state *ss = qp->s_cur_sge;
982 	u32 len = qp->s_cur_size;
983 	u32 dwords = (len + 3) >> 2;
984 	u32 plen = hdrwords + dwords + 2; /* includes pbc */
985 	struct hfi1_pportdata *ppd = ps->ppd;
986 	u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
987 	u64 pbc_flags = 0;
988 	u8 sc5;
989 	unsigned long flags = 0;
990 	struct send_context *sc;
991 	struct pio_buf *pbuf;
992 	int wc_status = IB_WC_SUCCESS;
993 	int ret = 0;
994 	pio_release_cb cb = NULL;
995 
996 	/* only RC/UC use complete */
997 	switch (qp->ibqp.qp_type) {
998 	case IB_QPT_RC:
999 	case IB_QPT_UC:
1000 		cb = verbs_pio_complete;
1001 		break;
1002 	default:
1003 		break;
1004 	}
1005 
1006 	/* vl15 special case taken care of in ud.c */
1007 	sc5 = priv->s_sc;
1008 	sc = ps->s_txreq->psc;
1009 
1010 	if (likely(pbc == 0)) {
1011 		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1012 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1013 		pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1014 		pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1015 	}
1016 	if (cb)
1017 		iowait_pio_inc(&priv->s_iowait);
1018 	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1019 	if (unlikely(!pbuf)) {
1020 		if (cb)
1021 			verbs_pio_complete(qp, 0);
1022 		if (ppd->host_link_state != HLS_UP_ACTIVE) {
1023 			/*
1024 			 * If we have filled the PIO buffers to capacity and are
1025 			 * not in an active state this request is not going to
1026 			 * go out to so just complete it with an error or else a
1027 			 * ULP or the core may be stuck waiting.
1028 			 */
1029 			hfi1_cdbg(
1030 				PIO,
1031 				"alloc failed. state not active, completing");
1032 			wc_status = IB_WC_GENERAL_ERR;
1033 			goto pio_bail;
1034 		} else {
1035 			/*
1036 			 * This is a normal occurrence. The PIO buffs are full
1037 			 * up but we are still happily sending, well we could be
1038 			 * so lets continue to queue the request.
1039 			 */
1040 			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1041 			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1042 			if (!ret)
1043 				/* txreq not queued - free */
1044 				goto bail;
1045 			/* tx consumed in wait */
1046 			return ret;
1047 		}
1048 	}
1049 
1050 	if (len == 0) {
1051 		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1052 	} else {
1053 		if (ss) {
1054 			seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1055 			while (len) {
1056 				void *addr = ss->sge.vaddr;
1057 				u32 slen = ss->sge.length;
1058 
1059 				if (slen > len)
1060 					slen = len;
1061 				update_sge(ss, slen);
1062 				seg_pio_copy_mid(pbuf, addr, slen);
1063 				len -= slen;
1064 			}
1065 			seg_pio_copy_end(pbuf);
1066 		}
1067 	}
1068 
1069 	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1070 			       &ps->s_txreq->phdr.hdr);
1071 
1072 pio_bail:
1073 	if (qp->s_wqe) {
1074 		spin_lock_irqsave(&qp->s_lock, flags);
1075 		hfi1_send_complete(qp, qp->s_wqe, wc_status);
1076 		spin_unlock_irqrestore(&qp->s_lock, flags);
1077 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1078 		spin_lock_irqsave(&qp->s_lock, flags);
1079 		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1080 		spin_unlock_irqrestore(&qp->s_lock, flags);
1081 	}
1082 
1083 	ret = 0;
1084 
1085 bail:
1086 	hfi1_put_txreq(ps->s_txreq);
1087 	return ret;
1088 }
1089 
1090 /*
1091  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1092  * being an entry from the partition key table), return 0
1093  * otherwise. Use the matching criteria for egress partition keys
1094  * specified in the OPAv1 spec., section 9.1l.7.
1095  */
1096 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1097 {
1098 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1099 	u16 mentry = ent & PKEY_LOW_15_MASK;
1100 
1101 	if (mkey == mentry) {
1102 		/*
1103 		 * If pkey[15] is set (full partition member),
1104 		 * is bit 15 in the corresponding table element
1105 		 * clear (limited member)?
1106 		 */
1107 		if (pkey & PKEY_MEMBER_MASK)
1108 			return !!(ent & PKEY_MEMBER_MASK);
1109 		return 1;
1110 	}
1111 	return 0;
1112 }
1113 
1114 /**
1115  * egress_pkey_check - check P_KEY of a packet
1116  * @ppd:    Physical IB port data
1117  * @lrh: Local route header
1118  * @bth: Base transport header
1119  * @sc5:    SC for packet
1120  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1121  * only. If it is negative value, then it means user contexts is calling this
1122  * function.
1123  *
1124  * It checks if hdr's pkey is valid.
1125  *
1126  * Return: 0 on success, otherwise, 1
1127  */
1128 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1129 		      u8 sc5, int8_t s_pkey_index)
1130 {
1131 	struct hfi1_devdata *dd;
1132 	int i;
1133 	u16 pkey;
1134 	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1135 
1136 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1137 		return 0;
1138 
1139 	pkey = (u16)be32_to_cpu(bth[0]);
1140 
1141 	/* If SC15, pkey[0:14] must be 0x7fff */
1142 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1143 		goto bad;
1144 
1145 	/* Is the pkey = 0x0, or 0x8000? */
1146 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1147 		goto bad;
1148 
1149 	/*
1150 	 * For the kernel contexts only, if a qp is passed into the function,
1151 	 * the most likely matching pkey has index qp->s_pkey_index
1152 	 */
1153 	if (!is_user_ctxt_mechanism &&
1154 	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1155 		return 0;
1156 	}
1157 
1158 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1159 		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1160 			return 0;
1161 	}
1162 bad:
1163 	/*
1164 	 * For the user-context mechanism, the P_KEY check would only happen
1165 	 * once per SDMA request, not once per packet.  Therefore, there's no
1166 	 * need to increment the counter for the user-context mechanism.
1167 	 */
1168 	if (!is_user_ctxt_mechanism) {
1169 		incr_cntr64(&ppd->port_xmit_constraint_errors);
1170 		dd = ppd->dd;
1171 		if (!(dd->err_info_xmit_constraint.status &
1172 		      OPA_EI_STATUS_SMASK)) {
1173 			u16 slid = be16_to_cpu(lrh[3]);
1174 
1175 			dd->err_info_xmit_constraint.status |=
1176 				OPA_EI_STATUS_SMASK;
1177 			dd->err_info_xmit_constraint.slid = slid;
1178 			dd->err_info_xmit_constraint.pkey = pkey;
1179 		}
1180 	}
1181 	return 1;
1182 }
1183 
1184 /**
1185  * get_send_routine - choose an egress routine
1186  *
1187  * Choose an egress routine based on QP type
1188  * and size
1189  */
1190 static inline send_routine get_send_routine(struct rvt_qp *qp,
1191 					    struct verbs_txreq *tx)
1192 {
1193 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1194 	struct hfi1_qp_priv *priv = qp->priv;
1195 	struct hfi1_ib_header *h = &tx->phdr.hdr;
1196 
1197 	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1198 		return dd->process_pio_send;
1199 	switch (qp->ibqp.qp_type) {
1200 	case IB_QPT_SMI:
1201 		return dd->process_pio_send;
1202 	case IB_QPT_GSI:
1203 	case IB_QPT_UD:
1204 		break;
1205 	case IB_QPT_RC:
1206 		if (piothreshold &&
1207 		    qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1208 		    (BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
1209 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1210 		    !sdma_txreq_built(&tx->txreq))
1211 			return dd->process_pio_send;
1212 		break;
1213 	case IB_QPT_UC:
1214 		if (piothreshold &&
1215 		    qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1216 		    (BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
1217 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1218 		    !sdma_txreq_built(&tx->txreq))
1219 			return dd->process_pio_send;
1220 		break;
1221 	default:
1222 		break;
1223 	}
1224 	return dd->process_dma_send;
1225 }
1226 
1227 /**
1228  * hfi1_verbs_send - send a packet
1229  * @qp: the QP to send on
1230  * @ps: the state of the packet to send
1231  *
1232  * Return zero if packet is sent or queued OK.
1233  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1234  */
1235 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1236 {
1237 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1238 	struct hfi1_qp_priv *priv = qp->priv;
1239 	struct hfi1_other_headers *ohdr;
1240 	struct hfi1_ib_header *hdr;
1241 	send_routine sr;
1242 	int ret;
1243 	u8 lnh;
1244 
1245 	hdr = &ps->s_txreq->phdr.hdr;
1246 	/* locate the pkey within the headers */
1247 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1248 	if (lnh == HFI1_LRH_GRH)
1249 		ohdr = &hdr->u.l.oth;
1250 	else
1251 		ohdr = &hdr->u.oth;
1252 
1253 	sr = get_send_routine(qp, ps->s_txreq);
1254 	ret = egress_pkey_check(dd->pport,
1255 				hdr->lrh,
1256 				ohdr->bth,
1257 				priv->s_sc,
1258 				qp->s_pkey_index);
1259 	if (unlikely(ret)) {
1260 		/*
1261 		 * The value we are returning here does not get propagated to
1262 		 * the verbs caller. Thus we need to complete the request with
1263 		 * error otherwise the caller could be sitting waiting on the
1264 		 * completion event. Only do this for PIO. SDMA has its own
1265 		 * mechanism for handling the errors. So for SDMA we can just
1266 		 * return.
1267 		 */
1268 		if (sr == dd->process_pio_send) {
1269 			unsigned long flags;
1270 
1271 			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1272 				  __func__);
1273 			spin_lock_irqsave(&qp->s_lock, flags);
1274 			hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1275 			spin_unlock_irqrestore(&qp->s_lock, flags);
1276 		}
1277 		return -EINVAL;
1278 	}
1279 	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1280 		return pio_wait(qp,
1281 				ps->s_txreq->psc,
1282 				ps,
1283 				RVT_S_WAIT_PIO_DRAIN);
1284 	return sr(qp, ps, 0);
1285 }
1286 
1287 /**
1288  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1289  * @dd: the device data structure
1290  */
1291 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1292 {
1293 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1294 
1295 	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1296 
1297 	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1298 			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1299 			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1300 			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1301 	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1302 	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1303 	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1304 	rdi->dparms.props.hw_ver = dd->minrev;
1305 	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1306 	rdi->dparms.props.max_mr_size = ~0ULL;
1307 	rdi->dparms.props.max_qp = hfi1_max_qps;
1308 	rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1309 	rdi->dparms.props.max_sge = hfi1_max_sges;
1310 	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1311 	rdi->dparms.props.max_cq = hfi1_max_cqs;
1312 	rdi->dparms.props.max_ah = hfi1_max_ahs;
1313 	rdi->dparms.props.max_cqe = hfi1_max_cqes;
1314 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
1315 	rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1316 	rdi->dparms.props.max_map_per_fmr = 32767;
1317 	rdi->dparms.props.max_pd = hfi1_max_pds;
1318 	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1319 	rdi->dparms.props.max_qp_init_rd_atom = 255;
1320 	rdi->dparms.props.max_srq = hfi1_max_srqs;
1321 	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1322 	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1323 	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1324 	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1325 	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1326 	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1327 	rdi->dparms.props.max_total_mcast_qp_attach =
1328 					rdi->dparms.props.max_mcast_qp_attach *
1329 					rdi->dparms.props.max_mcast_grp;
1330 }
1331 
1332 static inline u16 opa_speed_to_ib(u16 in)
1333 {
1334 	u16 out = 0;
1335 
1336 	if (in & OPA_LINK_SPEED_25G)
1337 		out |= IB_SPEED_EDR;
1338 	if (in & OPA_LINK_SPEED_12_5G)
1339 		out |= IB_SPEED_FDR;
1340 
1341 	return out;
1342 }
1343 
1344 /*
1345  * Convert a single OPA link width (no multiple flags) to an IB value.
1346  * A zero OPA link width means link down, which means the IB width value
1347  * is a don't care.
1348  */
1349 static inline u16 opa_width_to_ib(u16 in)
1350 {
1351 	switch (in) {
1352 	case OPA_LINK_WIDTH_1X:
1353 	/* map 2x and 3x to 1x as they don't exist in IB */
1354 	case OPA_LINK_WIDTH_2X:
1355 	case OPA_LINK_WIDTH_3X:
1356 		return IB_WIDTH_1X;
1357 	default: /* link down or unknown, return our largest width */
1358 	case OPA_LINK_WIDTH_4X:
1359 		return IB_WIDTH_4X;
1360 	}
1361 }
1362 
1363 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1364 		      struct ib_port_attr *props)
1365 {
1366 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1367 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1368 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1369 	u16 lid = ppd->lid;
1370 
1371 	props->lid = lid ? lid : 0;
1372 	props->lmc = ppd->lmc;
1373 	/* OPA logical states match IB logical states */
1374 	props->state = driver_lstate(ppd);
1375 	props->phys_state = hfi1_ibphys_portstate(ppd);
1376 	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1377 	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1378 	/* see rate_show() in ib core/sysfs.c */
1379 	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1380 	props->max_vl_num = ppd->vls_supported;
1381 
1382 	/* Once we are a "first class" citizen and have added the OPA MTUs to
1383 	 * the core we can advertise the larger MTU enum to the ULPs, for now
1384 	 * advertise only 4K.
1385 	 *
1386 	 * Those applications which are either OPA aware or pass the MTU enum
1387 	 * from the Path Records to us will get the new 8k MTU.  Those that
1388 	 * attempt to process the MTU enum may fail in various ways.
1389 	 */
1390 	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1391 				      4096 : hfi1_max_mtu), IB_MTU_4096);
1392 	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1393 		mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1394 
1395 	return 0;
1396 }
1397 
1398 static int modify_device(struct ib_device *device,
1399 			 int device_modify_mask,
1400 			 struct ib_device_modify *device_modify)
1401 {
1402 	struct hfi1_devdata *dd = dd_from_ibdev(device);
1403 	unsigned i;
1404 	int ret;
1405 
1406 	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1407 				   IB_DEVICE_MODIFY_NODE_DESC)) {
1408 		ret = -EOPNOTSUPP;
1409 		goto bail;
1410 	}
1411 
1412 	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1413 		memcpy(device->node_desc, device_modify->node_desc, 64);
1414 		for (i = 0; i < dd->num_pports; i++) {
1415 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1416 
1417 			hfi1_node_desc_chg(ibp);
1418 		}
1419 	}
1420 
1421 	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1422 		ib_hfi1_sys_image_guid =
1423 			cpu_to_be64(device_modify->sys_image_guid);
1424 		for (i = 0; i < dd->num_pports; i++) {
1425 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1426 
1427 			hfi1_sys_guid_chg(ibp);
1428 		}
1429 	}
1430 
1431 	ret = 0;
1432 
1433 bail:
1434 	return ret;
1435 }
1436 
1437 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1438 {
1439 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1440 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1441 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1442 	int ret;
1443 
1444 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1445 			     OPA_LINKDOWN_REASON_UNKNOWN);
1446 	ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1447 	return ret;
1448 }
1449 
1450 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1451 			    int guid_index, __be64 *guid)
1452 {
1453 	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1454 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1455 
1456 	if (guid_index == 0)
1457 		*guid = cpu_to_be64(ppd->guid);
1458 	else if (guid_index < HFI1_GUIDS_PER_PORT)
1459 		*guid = ibp->guids[guid_index - 1];
1460 	else
1461 		return -EINVAL;
1462 
1463 	return 0;
1464 }
1465 
1466 /*
1467  * convert ah port,sl to sc
1468  */
1469 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1470 {
1471 	struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1472 
1473 	return ibp->sl_to_sc[ah->sl];
1474 }
1475 
1476 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1477 {
1478 	struct hfi1_ibport *ibp;
1479 	struct hfi1_pportdata *ppd;
1480 	struct hfi1_devdata *dd;
1481 	u8 sc5;
1482 
1483 	/* test the mapping for validity */
1484 	ibp = to_iport(ibdev, ah_attr->port_num);
1485 	ppd = ppd_from_ibp(ibp);
1486 	sc5 = ibp->sl_to_sc[ah_attr->sl];
1487 	dd = dd_from_ppd(ppd);
1488 	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1489 		return -EINVAL;
1490 	return 0;
1491 }
1492 
1493 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1494 			       struct ib_ah_attr *ah_attr,
1495 			       struct rvt_ah *ah)
1496 {
1497 	struct hfi1_ibport *ibp;
1498 	struct hfi1_pportdata *ppd;
1499 	struct hfi1_devdata *dd;
1500 	u8 sc5;
1501 
1502 	/*
1503 	 * Do not trust reading anything from rvt_ah at this point as it is not
1504 	 * done being setup. We can however modify things which we need to set.
1505 	 */
1506 
1507 	ibp = to_iport(ibdev, ah_attr->port_num);
1508 	ppd = ppd_from_ibp(ibp);
1509 	sc5 = ibp->sl_to_sc[ah->attr.sl];
1510 	dd = dd_from_ppd(ppd);
1511 	ah->vl = sc_to_vlt(dd, sc5);
1512 	if (ah->vl < num_vls || ah->vl == 15)
1513 		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1514 }
1515 
1516 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1517 {
1518 	struct ib_ah_attr attr;
1519 	struct ib_ah *ah = ERR_PTR(-EINVAL);
1520 	struct rvt_qp *qp0;
1521 
1522 	memset(&attr, 0, sizeof(attr));
1523 	attr.dlid = dlid;
1524 	attr.port_num = ppd_from_ibp(ibp)->port;
1525 	rcu_read_lock();
1526 	qp0 = rcu_dereference(ibp->rvp.qp[0]);
1527 	if (qp0)
1528 		ah = ib_create_ah(qp0->ibqp.pd, &attr);
1529 	rcu_read_unlock();
1530 	return ah;
1531 }
1532 
1533 /**
1534  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1535  * @dd: the hfi1_ib device
1536  */
1537 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1538 {
1539 	return ARRAY_SIZE(dd->pport[0].pkeys);
1540 }
1541 
1542 static void init_ibport(struct hfi1_pportdata *ppd)
1543 {
1544 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1545 	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1546 	int i;
1547 
1548 	for (i = 0; i < sz; i++) {
1549 		ibp->sl_to_sc[i] = i;
1550 		ibp->sc_to_sl[i] = i;
1551 	}
1552 
1553 	spin_lock_init(&ibp->rvp.lock);
1554 	/* Set the prefix to the default value (see ch. 4.1.1) */
1555 	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1556 	ibp->rvp.sm_lid = 0;
1557 	/* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1558 	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1559 		IB_PORT_CAP_MASK_NOTICE_SUP;
1560 	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1561 	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1562 	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1563 	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1564 	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1565 
1566 	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1567 	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1568 }
1569 
1570 /**
1571  * hfi1_register_ib_device - register our device with the infiniband core
1572  * @dd: the device data structure
1573  * Return 0 if successful, errno if unsuccessful.
1574  */
1575 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1576 {
1577 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1578 	struct ib_device *ibdev = &dev->rdi.ibdev;
1579 	struct hfi1_pportdata *ppd = dd->pport;
1580 	unsigned i;
1581 	int ret;
1582 	size_t lcpysz = IB_DEVICE_NAME_MAX;
1583 
1584 	for (i = 0; i < dd->num_pports; i++)
1585 		init_ibport(ppd + i);
1586 
1587 	/* Only need to initialize non-zero fields. */
1588 
1589 	setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1590 
1591 	seqlock_init(&dev->iowait_lock);
1592 	INIT_LIST_HEAD(&dev->txwait);
1593 	INIT_LIST_HEAD(&dev->memwait);
1594 
1595 	ret = verbs_txreq_init(dev);
1596 	if (ret)
1597 		goto err_verbs_txreq;
1598 
1599 	/*
1600 	 * The system image GUID is supposed to be the same for all
1601 	 * HFIs in a single system but since there can be other
1602 	 * device types in the system, we can't be sure this is unique.
1603 	 */
1604 	if (!ib_hfi1_sys_image_guid)
1605 		ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1606 	lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1607 	strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1608 	ibdev->owner = THIS_MODULE;
1609 	ibdev->node_guid = cpu_to_be64(ppd->guid);
1610 	ibdev->phys_port_cnt = dd->num_pports;
1611 	ibdev->dma_device = &dd->pcidev->dev;
1612 	ibdev->modify_device = modify_device;
1613 
1614 	/* keep process mad in the driver */
1615 	ibdev->process_mad = hfi1_process_mad;
1616 
1617 	strncpy(ibdev->node_desc, init_utsname()->nodename,
1618 		sizeof(ibdev->node_desc));
1619 
1620 	/*
1621 	 * Fill in rvt info object.
1622 	 */
1623 	dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1624 	dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1625 	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1626 	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1627 	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1628 	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1629 	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1630 	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1631 	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1632 	/*
1633 	 * Fill in rvt info device attributes.
1634 	 */
1635 	hfi1_fill_device_attr(dd);
1636 
1637 	/* queue pair */
1638 	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1639 	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1640 	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1641 	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1642 	dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1643 	dd->verbs_dev.rdi.dparms.qpn_res_end =
1644 	dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1645 	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1646 	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1647 	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1648 	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1649 	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1650 	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1651 
1652 	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1653 	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1654 	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1655 	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1656 	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1657 	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1658 	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1659 	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1660 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1661 	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1662 	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1663 	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1664 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1665 	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1666 	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1667 	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1668 	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1669 	dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1670 
1671 	/* completeion queue */
1672 	snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1673 		 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1674 		 "hfi1_cq%d", dd->unit);
1675 	dd->verbs_dev.rdi.dparms.node = dd->node;
1676 
1677 	/* misc settings */
1678 	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1679 	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1680 	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1681 	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1682 
1683 	ppd = dd->pport;
1684 	for (i = 0; i < dd->num_pports; i++, ppd++)
1685 		rvt_init_port(&dd->verbs_dev.rdi,
1686 			      &ppd->ibport_data.rvp,
1687 			      i,
1688 			      ppd->pkeys);
1689 
1690 	ret = rvt_register_device(&dd->verbs_dev.rdi);
1691 	if (ret)
1692 		goto err_verbs_txreq;
1693 
1694 	ret = hfi1_verbs_register_sysfs(dd);
1695 	if (ret)
1696 		goto err_class;
1697 
1698 	return ret;
1699 
1700 err_class:
1701 	rvt_unregister_device(&dd->verbs_dev.rdi);
1702 err_verbs_txreq:
1703 	verbs_txreq_exit(dev);
1704 	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1705 	return ret;
1706 }
1707 
1708 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1709 {
1710 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1711 
1712 	hfi1_verbs_unregister_sysfs(dd);
1713 
1714 	rvt_unregister_device(&dd->verbs_dev.rdi);
1715 
1716 	if (!list_empty(&dev->txwait))
1717 		dd_dev_err(dd, "txwait list not empty!\n");
1718 	if (!list_empty(&dev->memwait))
1719 		dd_dev_err(dd, "memwait list not empty!\n");
1720 
1721 	del_timer_sync(&dev->mem_timer);
1722 	verbs_txreq_exit(dev);
1723 }
1724 
1725 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1726 {
1727 	struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1728 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1729 	struct hfi1_ib_header *hdr = packet->hdr;
1730 	struct rvt_qp *qp = packet->qp;
1731 	u32 lqpn, rqpn = 0;
1732 	u16 rlid = 0;
1733 	u8 sl, sc5, sc4_bit, svc_type;
1734 	bool sc4_set = has_sc4_bit(packet);
1735 
1736 	switch (packet->qp->ibqp.qp_type) {
1737 	case IB_QPT_UC:
1738 		rlid = qp->remote_ah_attr.dlid;
1739 		rqpn = qp->remote_qpn;
1740 		svc_type = IB_CC_SVCTYPE_UC;
1741 		break;
1742 	case IB_QPT_RC:
1743 		rlid = qp->remote_ah_attr.dlid;
1744 		rqpn = qp->remote_qpn;
1745 		svc_type = IB_CC_SVCTYPE_RC;
1746 		break;
1747 	case IB_QPT_SMI:
1748 	case IB_QPT_GSI:
1749 	case IB_QPT_UD:
1750 		svc_type = IB_CC_SVCTYPE_UD;
1751 		break;
1752 	default:
1753 		ibp->rvp.n_pkt_drops++;
1754 		return;
1755 	}
1756 
1757 	sc4_bit = sc4_set << 4;
1758 	sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
1759 	sc5 |= sc4_bit;
1760 	sl = ibp->sc_to_sl[sc5];
1761 	lqpn = qp->ibqp.qp_num;
1762 
1763 	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1764 }
1765