xref: /linux/drivers/infiniband/hw/hfi1/verbs.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63 
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66 		   S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68 		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
69 
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73 		 "Maximum number of protection domains to support");
74 
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78 
79 unsigned int hfi1_max_cqes = 0x2FFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82 		 "Maximum number of completion queue entries to support");
83 
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87 
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91 
92 unsigned int hfi1_max_qps = 16384;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95 
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99 
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103 		 "Maximum number of multicast groups to support");
104 
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107 		   uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109 		 "Maximum number of attached QPs to support");
110 
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114 
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118 
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122 
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126 
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE  2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132 		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133 
134 static void verbs_sdma_complete(
135 	struct sdma_txreq *cookie,
136 	int status);
137 
138 static int pio_wait(struct rvt_qp *qp,
139 		    struct send_context *sc,
140 		    struct hfi1_pkt_state *ps,
141 		    u32 flag);
142 
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145 
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152 
153 /* memory working set size */
154 struct hfi1_wss {
155 	unsigned long *entries;
156 	atomic_t total_count;
157 	atomic_t clean_counter;
158 	atomic_t clean_entry;
159 
160 	int threshold;
161 	int num_entries;
162 	long pages_mask;
163 };
164 
165 static struct hfi1_wss wss;
166 
167 int hfi1_wss_init(void)
168 {
169 	long llc_size;
170 	long llc_bits;
171 	long table_size;
172 	long table_bits;
173 
174 	/* check for a valid percent range - default to 80 if none or invalid */
175 	if (wss_threshold < 1 || wss_threshold > 100)
176 		wss_threshold = 80;
177 	/* reject a wildly large period */
178 	if (wss_clean_period > 1000000)
179 		wss_clean_period = 256;
180 	/* reject a zero period */
181 	if (wss_clean_period == 0)
182 		wss_clean_period = 1;
183 
184 	/*
185 	 * Calculate the table size - the next power of 2 larger than the
186 	 * LLC size.  LLC size is in KiB.
187 	 */
188 	llc_size = wss_llc_size() * 1024;
189 	table_size = roundup_pow_of_two(llc_size);
190 
191 	/* one bit per page in rounded up table */
192 	llc_bits = llc_size / PAGE_SIZE;
193 	table_bits = table_size / PAGE_SIZE;
194 	wss.pages_mask = table_bits - 1;
195 	wss.num_entries = table_bits / BITS_PER_LONG;
196 
197 	wss.threshold = (llc_bits * wss_threshold) / 100;
198 	if (wss.threshold == 0)
199 		wss.threshold = 1;
200 
201 	atomic_set(&wss.clean_counter, wss_clean_period);
202 
203 	wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204 			      GFP_KERNEL);
205 	if (!wss.entries) {
206 		hfi1_wss_exit();
207 		return -ENOMEM;
208 	}
209 
210 	return 0;
211 }
212 
213 void hfi1_wss_exit(void)
214 {
215 	/* coded to handle partially initialized and repeat callers */
216 	kfree(wss.entries);
217 	wss.entries = NULL;
218 }
219 
220 /*
221  * Advance the clean counter.  When the clean period has expired,
222  * clean an entry.
223  *
224  * This is implemented in atomics to avoid locking.  Because multiple
225  * variables are involved, it can be racy which can lead to slightly
226  * inaccurate information.  Since this is only a heuristic, this is
227  * OK.  Any innaccuracies will clean themselves out as the counter
228  * advances.  That said, it is unlikely the entry clean operation will
229  * race - the next possible racer will not start until the next clean
230  * period.
231  *
232  * The clean counter is implemented as a decrement to zero.  When zero
233  * is reached an entry is cleaned.
234  */
235 static void wss_advance_clean_counter(void)
236 {
237 	int entry;
238 	int weight;
239 	unsigned long bits;
240 
241 	/* become the cleaner if we decrement the counter to zero */
242 	if (atomic_dec_and_test(&wss.clean_counter)) {
243 		/*
244 		 * Set, not add, the clean period.  This avoids an issue
245 		 * where the counter could decrement below the clean period.
246 		 * Doing a set can result in lost decrements, slowing the
247 		 * clean advance.  Since this a heuristic, this possible
248 		 * slowdown is OK.
249 		 *
250 		 * An alternative is to loop, advancing the counter by a
251 		 * clean period until the result is > 0. However, this could
252 		 * lead to several threads keeping another in the clean loop.
253 		 * This could be mitigated by limiting the number of times
254 		 * we stay in the loop.
255 		 */
256 		atomic_set(&wss.clean_counter, wss_clean_period);
257 
258 		/*
259 		 * Uniquely grab the entry to clean and move to next.
260 		 * The current entry is always the lower bits of
261 		 * wss.clean_entry.  The table size, wss.num_entries,
262 		 * is always a power-of-2.
263 		 */
264 		entry = (atomic_inc_return(&wss.clean_entry) - 1)
265 			& (wss.num_entries - 1);
266 
267 		/* clear the entry and count the bits */
268 		bits = xchg(&wss.entries[entry], 0);
269 		weight = hweight64((u64)bits);
270 		/* only adjust the contended total count if needed */
271 		if (weight)
272 			atomic_sub(weight, &wss.total_count);
273 	}
274 }
275 
276 /*
277  * Insert the given address into the working set array.
278  */
279 static void wss_insert(void *address)
280 {
281 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283 	u32 nr = page & (BITS_PER_LONG - 1);
284 
285 	if (!test_and_set_bit(nr, &wss.entries[entry]))
286 		atomic_inc(&wss.total_count);
287 
288 	wss_advance_clean_counter();
289 }
290 
291 /*
292  * Is the working set larger than the threshold?
293  */
294 static inline int wss_exceeds_threshold(void)
295 {
296 	return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298 
299 /*
300  * Translate ib_wr_opcode into ib_wc_opcode.
301  */
302 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
303 	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
304 	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
305 	[IB_WR_SEND] = IB_WC_SEND,
306 	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
307 	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
308 	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
309 	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
310 	[IB_WR_SEND_WITH_INV] = IB_WC_SEND,
311 	[IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
312 	[IB_WR_REG_MR] = IB_WC_REG_MR
313 };
314 
315 /*
316  * Length of header by opcode, 0 --> not supported
317  */
318 const u8 hdr_len_by_opcode[256] = {
319 	/* RC */
320 	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
321 	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
322 	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
323 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
324 	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
325 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
326 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
327 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
328 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
329 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
330 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
331 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
332 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
333 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
334 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
335 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
336 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
337 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
338 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
339 	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
340 	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
341 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
342 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
343 	/* UC */
344 	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
345 	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
346 	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
347 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
348 	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
349 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
350 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
351 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
352 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
353 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
354 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
355 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
356 	/* UD */
357 	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
358 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
359 };
360 
361 static const opcode_handler opcode_handler_tbl[256] = {
362 	/* RC */
363 	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
364 	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
365 	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
366 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
367 	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
368 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
369 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
370 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
371 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
372 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
373 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
374 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
375 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
376 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
377 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
378 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
379 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
380 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
381 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
382 	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
383 	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
384 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
385 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
386 	/* UC */
387 	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
388 	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
389 	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
390 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
391 	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
392 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
393 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
394 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
395 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
396 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
397 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
398 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
399 	/* UD */
400 	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
401 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
402 	/* CNP */
403 	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
404 };
405 
406 /*
407  * System image GUID.
408  */
409 __be64 ib_hfi1_sys_image_guid;
410 
411 /**
412  * hfi1_copy_sge - copy data to SGE memory
413  * @ss: the SGE state
414  * @data: the data to copy
415  * @length: the length of the data
416  * @copy_last: do a separate copy of the last 8 bytes
417  */
418 void hfi1_copy_sge(
419 	struct rvt_sge_state *ss,
420 	void *data, u32 length,
421 	int release,
422 	int copy_last)
423 {
424 	struct rvt_sge *sge = &ss->sge;
425 	int in_last = 0;
426 	int i;
427 	int cacheless_copy = 0;
428 
429 	if (sge_copy_mode == COPY_CACHELESS) {
430 		cacheless_copy = length >= PAGE_SIZE;
431 	} else if (sge_copy_mode == COPY_ADAPTIVE) {
432 		if (length >= PAGE_SIZE) {
433 			/*
434 			 * NOTE: this *assumes*:
435 			 * o The first vaddr is the dest.
436 			 * o If multiple pages, then vaddr is sequential.
437 			 */
438 			wss_insert(sge->vaddr);
439 			if (length >= (2 * PAGE_SIZE))
440 				wss_insert(sge->vaddr + PAGE_SIZE);
441 
442 			cacheless_copy = wss_exceeds_threshold();
443 		} else {
444 			wss_advance_clean_counter();
445 		}
446 	}
447 	if (copy_last) {
448 		if (length > 8) {
449 			length -= 8;
450 		} else {
451 			copy_last = 0;
452 			in_last = 1;
453 		}
454 	}
455 
456 again:
457 	while (length) {
458 		u32 len = sge->length;
459 
460 		if (len > length)
461 			len = length;
462 		if (len > sge->sge_length)
463 			len = sge->sge_length;
464 		WARN_ON_ONCE(len == 0);
465 		if (unlikely(in_last)) {
466 			/* enforce byte transfer ordering */
467 			for (i = 0; i < len; i++)
468 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
469 		} else if (cacheless_copy) {
470 			cacheless_memcpy(sge->vaddr, data, len);
471 		} else {
472 			memcpy(sge->vaddr, data, len);
473 		}
474 		sge->vaddr += len;
475 		sge->length -= len;
476 		sge->sge_length -= len;
477 		if (sge->sge_length == 0) {
478 			if (release)
479 				rvt_put_mr(sge->mr);
480 			if (--ss->num_sge)
481 				*sge = *ss->sg_list++;
482 		} else if (sge->length == 0 && sge->mr->lkey) {
483 			if (++sge->n >= RVT_SEGSZ) {
484 				if (++sge->m >= sge->mr->mapsz)
485 					break;
486 				sge->n = 0;
487 			}
488 			sge->vaddr =
489 				sge->mr->map[sge->m]->segs[sge->n].vaddr;
490 			sge->length =
491 				sge->mr->map[sge->m]->segs[sge->n].length;
492 		}
493 		data += len;
494 		length -= len;
495 	}
496 
497 	if (copy_last) {
498 		copy_last = 0;
499 		in_last = 1;
500 		length = 8;
501 		goto again;
502 	}
503 }
504 
505 /**
506  * hfi1_skip_sge - skip over SGE memory
507  * @ss: the SGE state
508  * @length: the number of bytes to skip
509  */
510 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
511 {
512 	struct rvt_sge *sge = &ss->sge;
513 
514 	while (length) {
515 		u32 len = sge->length;
516 
517 		if (len > length)
518 			len = length;
519 		if (len > sge->sge_length)
520 			len = sge->sge_length;
521 		WARN_ON_ONCE(len == 0);
522 		sge->vaddr += len;
523 		sge->length -= len;
524 		sge->sge_length -= len;
525 		if (sge->sge_length == 0) {
526 			if (release)
527 				rvt_put_mr(sge->mr);
528 			if (--ss->num_sge)
529 				*sge = *ss->sg_list++;
530 		} else if (sge->length == 0 && sge->mr->lkey) {
531 			if (++sge->n >= RVT_SEGSZ) {
532 				if (++sge->m >= sge->mr->mapsz)
533 					break;
534 				sge->n = 0;
535 			}
536 			sge->vaddr =
537 				sge->mr->map[sge->m]->segs[sge->n].vaddr;
538 			sge->length =
539 				sge->mr->map[sge->m]->segs[sge->n].length;
540 		}
541 		length -= len;
542 	}
543 }
544 
545 /*
546  * Make sure the QP is ready and able to accept the given opcode.
547  */
548 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
549 {
550 	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
551 		return NULL;
552 	if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
553 	    (opcode == IB_OPCODE_CNP))
554 		return opcode_handler_tbl[opcode];
555 
556 	return NULL;
557 }
558 
559 /**
560  * hfi1_ib_rcv - process an incoming packet
561  * @packet: data packet information
562  *
563  * This is called to process an incoming packet at interrupt level.
564  *
565  * Tlen is the length of the header + data + CRC in bytes.
566  */
567 void hfi1_ib_rcv(struct hfi1_packet *packet)
568 {
569 	struct hfi1_ctxtdata *rcd = packet->rcd;
570 	struct hfi1_ib_header *hdr = packet->hdr;
571 	u32 tlen = packet->tlen;
572 	struct hfi1_pportdata *ppd = rcd->ppd;
573 	struct hfi1_ibport *ibp = &ppd->ibport_data;
574 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
575 	opcode_handler packet_handler;
576 	unsigned long flags;
577 	u32 qp_num;
578 	int lnh;
579 	u8 opcode;
580 	u16 lid;
581 
582 	/* Check for GRH */
583 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
584 	if (lnh == HFI1_LRH_BTH) {
585 		packet->ohdr = &hdr->u.oth;
586 	} else if (lnh == HFI1_LRH_GRH) {
587 		u32 vtf;
588 
589 		packet->ohdr = &hdr->u.l.oth;
590 		if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
591 			goto drop;
592 		vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
593 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
594 			goto drop;
595 		packet->rcv_flags |= HFI1_HAS_GRH;
596 	} else {
597 		goto drop;
598 	}
599 
600 	trace_input_ibhdr(rcd->dd, hdr);
601 
602 	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
603 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
604 
605 	/* Get the destination QP number. */
606 	qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
607 	lid = be16_to_cpu(hdr->lrh[1]);
608 	if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
609 		     (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
610 		struct rvt_mcast *mcast;
611 		struct rvt_mcast_qp *p;
612 
613 		if (lnh != HFI1_LRH_GRH)
614 			goto drop;
615 		mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
616 		if (!mcast)
617 			goto drop;
618 		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
619 			packet->qp = p->qp;
620 			spin_lock_irqsave(&packet->qp->r_lock, flags);
621 			packet_handler = qp_ok(opcode, packet);
622 			if (likely(packet_handler))
623 				packet_handler(packet);
624 			else
625 				ibp->rvp.n_pkt_drops++;
626 			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
627 		}
628 		/*
629 		 * Notify rvt_multicast_detach() if it is waiting for us
630 		 * to finish.
631 		 */
632 		if (atomic_dec_return(&mcast->refcount) <= 1)
633 			wake_up(&mcast->wait);
634 	} else {
635 		rcu_read_lock();
636 		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
637 		if (!packet->qp) {
638 			rcu_read_unlock();
639 			goto drop;
640 		}
641 		spin_lock_irqsave(&packet->qp->r_lock, flags);
642 		packet_handler = qp_ok(opcode, packet);
643 		if (likely(packet_handler))
644 			packet_handler(packet);
645 		else
646 			ibp->rvp.n_pkt_drops++;
647 		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
648 		rcu_read_unlock();
649 	}
650 	return;
651 
652 drop:
653 	ibp->rvp.n_pkt_drops++;
654 }
655 
656 /*
657  * This is called from a timer to check for QPs
658  * which need kernel memory in order to send a packet.
659  */
660 static void mem_timer(unsigned long data)
661 {
662 	struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
663 	struct list_head *list = &dev->memwait;
664 	struct rvt_qp *qp = NULL;
665 	struct iowait *wait;
666 	unsigned long flags;
667 	struct hfi1_qp_priv *priv;
668 
669 	write_seqlock_irqsave(&dev->iowait_lock, flags);
670 	if (!list_empty(list)) {
671 		wait = list_first_entry(list, struct iowait, list);
672 		qp = iowait_to_qp(wait);
673 		priv = qp->priv;
674 		list_del_init(&priv->s_iowait.list);
675 		/* refcount held until actual wake up */
676 		if (!list_empty(list))
677 			mod_timer(&dev->mem_timer, jiffies + 1);
678 	}
679 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
680 
681 	if (qp)
682 		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
683 }
684 
685 void update_sge(struct rvt_sge_state *ss, u32 length)
686 {
687 	struct rvt_sge *sge = &ss->sge;
688 
689 	sge->vaddr += length;
690 	sge->length -= length;
691 	sge->sge_length -= length;
692 	if (sge->sge_length == 0) {
693 		if (--ss->num_sge)
694 			*sge = *ss->sg_list++;
695 	} else if (sge->length == 0 && sge->mr->lkey) {
696 		if (++sge->n >= RVT_SEGSZ) {
697 			if (++sge->m >= sge->mr->mapsz)
698 				return;
699 			sge->n = 0;
700 		}
701 		sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
702 		sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
703 	}
704 }
705 
706 /*
707  * This is called with progress side lock held.
708  */
709 /* New API */
710 static void verbs_sdma_complete(
711 	struct sdma_txreq *cookie,
712 	int status)
713 {
714 	struct verbs_txreq *tx =
715 		container_of(cookie, struct verbs_txreq, txreq);
716 	struct rvt_qp *qp = tx->qp;
717 
718 	spin_lock(&qp->s_lock);
719 	if (tx->wqe) {
720 		hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
721 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
722 		struct hfi1_ib_header *hdr;
723 
724 		hdr = &tx->phdr.hdr;
725 		hfi1_rc_send_complete(qp, hdr);
726 	}
727 	spin_unlock(&qp->s_lock);
728 
729 	hfi1_put_txreq(tx);
730 }
731 
732 static int wait_kmem(struct hfi1_ibdev *dev,
733 		     struct rvt_qp *qp,
734 		     struct hfi1_pkt_state *ps)
735 {
736 	struct hfi1_qp_priv *priv = qp->priv;
737 	unsigned long flags;
738 	int ret = 0;
739 
740 	spin_lock_irqsave(&qp->s_lock, flags);
741 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
742 		write_seqlock(&dev->iowait_lock);
743 		list_add_tail(&ps->s_txreq->txreq.list,
744 			      &priv->s_iowait.tx_head);
745 		if (list_empty(&priv->s_iowait.list)) {
746 			if (list_empty(&dev->memwait))
747 				mod_timer(&dev->mem_timer, jiffies + 1);
748 			qp->s_flags |= RVT_S_WAIT_KMEM;
749 			list_add_tail(&priv->s_iowait.list, &dev->memwait);
750 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
751 			atomic_inc(&qp->refcount);
752 		}
753 		write_sequnlock(&dev->iowait_lock);
754 		qp->s_flags &= ~RVT_S_BUSY;
755 		ret = -EBUSY;
756 	}
757 	spin_unlock_irqrestore(&qp->s_lock, flags);
758 
759 	return ret;
760 }
761 
762 /*
763  * This routine calls txadds for each sg entry.
764  *
765  * Add failures will revert the sge cursor
766  */
767 static noinline int build_verbs_ulp_payload(
768 	struct sdma_engine *sde,
769 	struct rvt_sge_state *ss,
770 	u32 length,
771 	struct verbs_txreq *tx)
772 {
773 	struct rvt_sge *sg_list = ss->sg_list;
774 	struct rvt_sge sge = ss->sge;
775 	u8 num_sge = ss->num_sge;
776 	u32 len;
777 	int ret = 0;
778 
779 	while (length) {
780 		len = ss->sge.length;
781 		if (len > length)
782 			len = length;
783 		if (len > ss->sge.sge_length)
784 			len = ss->sge.sge_length;
785 		WARN_ON_ONCE(len == 0);
786 		ret = sdma_txadd_kvaddr(
787 			sde->dd,
788 			&tx->txreq,
789 			ss->sge.vaddr,
790 			len);
791 		if (ret)
792 			goto bail_txadd;
793 		update_sge(ss, len);
794 		length -= len;
795 	}
796 	return ret;
797 bail_txadd:
798 	/* unwind cursor */
799 	ss->sge = sge;
800 	ss->num_sge = num_sge;
801 	ss->sg_list = sg_list;
802 	return ret;
803 }
804 
805 /*
806  * Build the number of DMA descriptors needed to send length bytes of data.
807  *
808  * NOTE: DMA mapping is held in the tx until completed in the ring or
809  *       the tx desc is freed without having been submitted to the ring
810  *
811  * This routine ensures all the helper routine calls succeed.
812  */
813 /* New API */
814 static int build_verbs_tx_desc(
815 	struct sdma_engine *sde,
816 	struct rvt_sge_state *ss,
817 	u32 length,
818 	struct verbs_txreq *tx,
819 	struct hfi1_ahg_info *ahg_info,
820 	u64 pbc)
821 {
822 	int ret = 0;
823 	struct hfi1_sdma_header *phdr = &tx->phdr;
824 	u16 hdrbytes = tx->hdr_dwords << 2;
825 
826 	if (!ahg_info->ahgcount) {
827 		ret = sdma_txinit_ahg(
828 			&tx->txreq,
829 			ahg_info->tx_flags,
830 			hdrbytes + length,
831 			ahg_info->ahgidx,
832 			0,
833 			NULL,
834 			0,
835 			verbs_sdma_complete);
836 		if (ret)
837 			goto bail_txadd;
838 		phdr->pbc = cpu_to_le64(pbc);
839 		ret = sdma_txadd_kvaddr(
840 			sde->dd,
841 			&tx->txreq,
842 			phdr,
843 			hdrbytes);
844 		if (ret)
845 			goto bail_txadd;
846 	} else {
847 		ret = sdma_txinit_ahg(
848 			&tx->txreq,
849 			ahg_info->tx_flags,
850 			length,
851 			ahg_info->ahgidx,
852 			ahg_info->ahgcount,
853 			ahg_info->ahgdesc,
854 			hdrbytes,
855 			verbs_sdma_complete);
856 		if (ret)
857 			goto bail_txadd;
858 	}
859 
860 	/* add the ulp payload - if any.  ss can be NULL for acks */
861 	if (ss)
862 		ret = build_verbs_ulp_payload(sde, ss, length, tx);
863 bail_txadd:
864 	return ret;
865 }
866 
867 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
868 			u64 pbc)
869 {
870 	struct hfi1_qp_priv *priv = qp->priv;
871 	struct hfi1_ahg_info *ahg_info = priv->s_ahg;
872 	u32 hdrwords = qp->s_hdrwords;
873 	struct rvt_sge_state *ss = qp->s_cur_sge;
874 	u32 len = qp->s_cur_size;
875 	u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
876 	struct hfi1_ibdev *dev = ps->dev;
877 	struct hfi1_pportdata *ppd = ps->ppd;
878 	struct verbs_txreq *tx;
879 	u64 pbc_flags = 0;
880 	u8 sc5 = priv->s_sc;
881 
882 	int ret;
883 
884 	tx = ps->s_txreq;
885 	if (!sdma_txreq_built(&tx->txreq)) {
886 		if (likely(pbc == 0)) {
887 			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
888 			/* No vl15 here */
889 			/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
890 			pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
891 
892 			pbc = create_pbc(ppd,
893 					 pbc_flags,
894 					 qp->srate_mbps,
895 					 vl,
896 					 plen);
897 		}
898 		tx->wqe = qp->s_wqe;
899 		ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahg_info, pbc);
900 		if (unlikely(ret))
901 			goto bail_build;
902 	}
903 	ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
904 	if (unlikely(ret < 0)) {
905 		if (ret == -ECOMM)
906 			goto bail_ecomm;
907 		return ret;
908 	}
909 	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
910 				&ps->s_txreq->phdr.hdr);
911 	return ret;
912 
913 bail_ecomm:
914 	/* The current one got "sent" */
915 	return 0;
916 bail_build:
917 	ret = wait_kmem(dev, qp, ps);
918 	if (!ret) {
919 		/* free txreq - bad state */
920 		hfi1_put_txreq(ps->s_txreq);
921 		ps->s_txreq = NULL;
922 	}
923 	return ret;
924 }
925 
926 /*
927  * If we are now in the error state, return zero to flush the
928  * send work request.
929  */
930 static int pio_wait(struct rvt_qp *qp,
931 		    struct send_context *sc,
932 		    struct hfi1_pkt_state *ps,
933 		    u32 flag)
934 {
935 	struct hfi1_qp_priv *priv = qp->priv;
936 	struct hfi1_devdata *dd = sc->dd;
937 	struct hfi1_ibdev *dev = &dd->verbs_dev;
938 	unsigned long flags;
939 	int ret = 0;
940 
941 	/*
942 	 * Note that as soon as want_buffer() is called and
943 	 * possibly before it returns, sc_piobufavail()
944 	 * could be called. Therefore, put QP on the I/O wait list before
945 	 * enabling the PIO avail interrupt.
946 	 */
947 	spin_lock_irqsave(&qp->s_lock, flags);
948 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
949 		write_seqlock(&dev->iowait_lock);
950 		list_add_tail(&ps->s_txreq->txreq.list,
951 			      &priv->s_iowait.tx_head);
952 		if (list_empty(&priv->s_iowait.list)) {
953 			struct hfi1_ibdev *dev = &dd->verbs_dev;
954 			int was_empty;
955 
956 			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
957 			dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
958 			qp->s_flags |= flag;
959 			was_empty = list_empty(&sc->piowait);
960 			list_add_tail(&priv->s_iowait.list, &sc->piowait);
961 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
962 			atomic_inc(&qp->refcount);
963 			/* counting: only call wantpiobuf_intr if first user */
964 			if (was_empty)
965 				hfi1_sc_wantpiobuf_intr(sc, 1);
966 		}
967 		write_sequnlock(&dev->iowait_lock);
968 		qp->s_flags &= ~RVT_S_BUSY;
969 		ret = -EBUSY;
970 	}
971 	spin_unlock_irqrestore(&qp->s_lock, flags);
972 	return ret;
973 }
974 
975 static void verbs_pio_complete(void *arg, int code)
976 {
977 	struct rvt_qp *qp = (struct rvt_qp *)arg;
978 	struct hfi1_qp_priv *priv = qp->priv;
979 
980 	if (iowait_pio_dec(&priv->s_iowait))
981 		iowait_drain_wakeup(&priv->s_iowait);
982 }
983 
984 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
985 			u64 pbc)
986 {
987 	struct hfi1_qp_priv *priv = qp->priv;
988 	u32 hdrwords = qp->s_hdrwords;
989 	struct rvt_sge_state *ss = qp->s_cur_sge;
990 	u32 len = qp->s_cur_size;
991 	u32 dwords = (len + 3) >> 2;
992 	u32 plen = hdrwords + dwords + 2; /* includes pbc */
993 	struct hfi1_pportdata *ppd = ps->ppd;
994 	u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
995 	u64 pbc_flags = 0;
996 	u8 sc5;
997 	unsigned long flags = 0;
998 	struct send_context *sc;
999 	struct pio_buf *pbuf;
1000 	int wc_status = IB_WC_SUCCESS;
1001 	int ret = 0;
1002 	pio_release_cb cb = NULL;
1003 
1004 	/* only RC/UC use complete */
1005 	switch (qp->ibqp.qp_type) {
1006 	case IB_QPT_RC:
1007 	case IB_QPT_UC:
1008 		cb = verbs_pio_complete;
1009 		break;
1010 	default:
1011 		break;
1012 	}
1013 
1014 	/* vl15 special case taken care of in ud.c */
1015 	sc5 = priv->s_sc;
1016 	sc = ps->s_txreq->psc;
1017 
1018 	if (likely(pbc == 0)) {
1019 		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1020 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1021 		pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1022 		pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1023 	}
1024 	if (cb)
1025 		iowait_pio_inc(&priv->s_iowait);
1026 	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1027 	if (unlikely(!pbuf)) {
1028 		if (cb)
1029 			verbs_pio_complete(qp, 0);
1030 		if (ppd->host_link_state != HLS_UP_ACTIVE) {
1031 			/*
1032 			 * If we have filled the PIO buffers to capacity and are
1033 			 * not in an active state this request is not going to
1034 			 * go out to so just complete it with an error or else a
1035 			 * ULP or the core may be stuck waiting.
1036 			 */
1037 			hfi1_cdbg(
1038 				PIO,
1039 				"alloc failed. state not active, completing");
1040 			wc_status = IB_WC_GENERAL_ERR;
1041 			goto pio_bail;
1042 		} else {
1043 			/*
1044 			 * This is a normal occurrence. The PIO buffs are full
1045 			 * up but we are still happily sending, well we could be
1046 			 * so lets continue to queue the request.
1047 			 */
1048 			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1049 			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1050 			if (!ret)
1051 				/* txreq not queued - free */
1052 				goto bail;
1053 			/* tx consumed in wait */
1054 			return ret;
1055 		}
1056 	}
1057 
1058 	if (len == 0) {
1059 		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1060 	} else {
1061 		if (ss) {
1062 			seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1063 			while (len) {
1064 				void *addr = ss->sge.vaddr;
1065 				u32 slen = ss->sge.length;
1066 
1067 				if (slen > len)
1068 					slen = len;
1069 				update_sge(ss, slen);
1070 				seg_pio_copy_mid(pbuf, addr, slen);
1071 				len -= slen;
1072 			}
1073 			seg_pio_copy_end(pbuf);
1074 		}
1075 	}
1076 
1077 	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1078 			       &ps->s_txreq->phdr.hdr);
1079 
1080 pio_bail:
1081 	if (qp->s_wqe) {
1082 		spin_lock_irqsave(&qp->s_lock, flags);
1083 		hfi1_send_complete(qp, qp->s_wqe, wc_status);
1084 		spin_unlock_irqrestore(&qp->s_lock, flags);
1085 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1086 		spin_lock_irqsave(&qp->s_lock, flags);
1087 		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1088 		spin_unlock_irqrestore(&qp->s_lock, flags);
1089 	}
1090 
1091 	ret = 0;
1092 
1093 bail:
1094 	hfi1_put_txreq(ps->s_txreq);
1095 	return ret;
1096 }
1097 
1098 /*
1099  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1100  * being an entry from the partition key table), return 0
1101  * otherwise. Use the matching criteria for egress partition keys
1102  * specified in the OPAv1 spec., section 9.1l.7.
1103  */
1104 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1105 {
1106 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1107 	u16 mentry = ent & PKEY_LOW_15_MASK;
1108 
1109 	if (mkey == mentry) {
1110 		/*
1111 		 * If pkey[15] is set (full partition member),
1112 		 * is bit 15 in the corresponding table element
1113 		 * clear (limited member)?
1114 		 */
1115 		if (pkey & PKEY_MEMBER_MASK)
1116 			return !!(ent & PKEY_MEMBER_MASK);
1117 		return 1;
1118 	}
1119 	return 0;
1120 }
1121 
1122 /**
1123  * egress_pkey_check - check P_KEY of a packet
1124  * @ppd:    Physical IB port data
1125  * @lrh: Local route header
1126  * @bth: Base transport header
1127  * @sc5:    SC for packet
1128  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1129  * only. If it is negative value, then it means user contexts is calling this
1130  * function.
1131  *
1132  * It checks if hdr's pkey is valid.
1133  *
1134  * Return: 0 on success, otherwise, 1
1135  */
1136 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1137 		      u8 sc5, int8_t s_pkey_index)
1138 {
1139 	struct hfi1_devdata *dd;
1140 	int i;
1141 	u16 pkey;
1142 	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1143 
1144 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1145 		return 0;
1146 
1147 	pkey = (u16)be32_to_cpu(bth[0]);
1148 
1149 	/* If SC15, pkey[0:14] must be 0x7fff */
1150 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1151 		goto bad;
1152 
1153 	/* Is the pkey = 0x0, or 0x8000? */
1154 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1155 		goto bad;
1156 
1157 	/*
1158 	 * For the kernel contexts only, if a qp is passed into the function,
1159 	 * the most likely matching pkey has index qp->s_pkey_index
1160 	 */
1161 	if (!is_user_ctxt_mechanism &&
1162 	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1163 		return 0;
1164 	}
1165 
1166 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1167 		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1168 			return 0;
1169 	}
1170 bad:
1171 	/*
1172 	 * For the user-context mechanism, the P_KEY check would only happen
1173 	 * once per SDMA request, not once per packet.  Therefore, there's no
1174 	 * need to increment the counter for the user-context mechanism.
1175 	 */
1176 	if (!is_user_ctxt_mechanism) {
1177 		incr_cntr64(&ppd->port_xmit_constraint_errors);
1178 		dd = ppd->dd;
1179 		if (!(dd->err_info_xmit_constraint.status &
1180 		      OPA_EI_STATUS_SMASK)) {
1181 			u16 slid = be16_to_cpu(lrh[3]);
1182 
1183 			dd->err_info_xmit_constraint.status |=
1184 				OPA_EI_STATUS_SMASK;
1185 			dd->err_info_xmit_constraint.slid = slid;
1186 			dd->err_info_xmit_constraint.pkey = pkey;
1187 		}
1188 	}
1189 	return 1;
1190 }
1191 
1192 /**
1193  * get_send_routine - choose an egress routine
1194  *
1195  * Choose an egress routine based on QP type
1196  * and size
1197  */
1198 static inline send_routine get_send_routine(struct rvt_qp *qp,
1199 					    struct verbs_txreq *tx)
1200 {
1201 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1202 	struct hfi1_qp_priv *priv = qp->priv;
1203 	struct hfi1_ib_header *h = &tx->phdr.hdr;
1204 
1205 	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1206 		return dd->process_pio_send;
1207 	switch (qp->ibqp.qp_type) {
1208 	case IB_QPT_SMI:
1209 		return dd->process_pio_send;
1210 	case IB_QPT_GSI:
1211 	case IB_QPT_UD:
1212 		break;
1213 	case IB_QPT_RC:
1214 		if (piothreshold &&
1215 		    qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1216 		    (BIT(get_opcode(h) & 0x1f) & rc_only_opcode) &&
1217 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1218 		    !sdma_txreq_built(&tx->txreq))
1219 			return dd->process_pio_send;
1220 		break;
1221 	case IB_QPT_UC:
1222 		if (piothreshold &&
1223 		    qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1224 		    (BIT(get_opcode(h) & 0x1f) & uc_only_opcode) &&
1225 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1226 		    !sdma_txreq_built(&tx->txreq))
1227 			return dd->process_pio_send;
1228 		break;
1229 	default:
1230 		break;
1231 	}
1232 	return dd->process_dma_send;
1233 }
1234 
1235 /**
1236  * hfi1_verbs_send - send a packet
1237  * @qp: the QP to send on
1238  * @ps: the state of the packet to send
1239  *
1240  * Return zero if packet is sent or queued OK.
1241  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1242  */
1243 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1244 {
1245 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1246 	struct hfi1_qp_priv *priv = qp->priv;
1247 	struct hfi1_other_headers *ohdr;
1248 	struct hfi1_ib_header *hdr;
1249 	send_routine sr;
1250 	int ret;
1251 	u8 lnh;
1252 
1253 	hdr = &ps->s_txreq->phdr.hdr;
1254 	/* locate the pkey within the headers */
1255 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1256 	if (lnh == HFI1_LRH_GRH)
1257 		ohdr = &hdr->u.l.oth;
1258 	else
1259 		ohdr = &hdr->u.oth;
1260 
1261 	sr = get_send_routine(qp, ps->s_txreq);
1262 	ret = egress_pkey_check(dd->pport,
1263 				hdr->lrh,
1264 				ohdr->bth,
1265 				priv->s_sc,
1266 				qp->s_pkey_index);
1267 	if (unlikely(ret)) {
1268 		/*
1269 		 * The value we are returning here does not get propagated to
1270 		 * the verbs caller. Thus we need to complete the request with
1271 		 * error otherwise the caller could be sitting waiting on the
1272 		 * completion event. Only do this for PIO. SDMA has its own
1273 		 * mechanism for handling the errors. So for SDMA we can just
1274 		 * return.
1275 		 */
1276 		if (sr == dd->process_pio_send) {
1277 			unsigned long flags;
1278 
1279 			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1280 				  __func__);
1281 			spin_lock_irqsave(&qp->s_lock, flags);
1282 			hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1283 			spin_unlock_irqrestore(&qp->s_lock, flags);
1284 		}
1285 		return -EINVAL;
1286 	}
1287 	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1288 		return pio_wait(qp,
1289 				ps->s_txreq->psc,
1290 				ps,
1291 				RVT_S_WAIT_PIO_DRAIN);
1292 	return sr(qp, ps, 0);
1293 }
1294 
1295 /**
1296  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1297  * @dd: the device data structure
1298  */
1299 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1300 {
1301 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1302 	u16 ver = dd->dc8051_ver;
1303 
1304 	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1305 
1306 	rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) |
1307 				    (u64)dc8051_ver_min(ver);
1308 	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1309 			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1310 			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1311 			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1312 			IB_DEVICE_MEM_MGT_EXTENSIONS;
1313 	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1314 	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1315 	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1316 	rdi->dparms.props.hw_ver = dd->minrev;
1317 	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1318 	rdi->dparms.props.max_mr_size = U64_MAX;
1319 	rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1320 	rdi->dparms.props.max_qp = hfi1_max_qps;
1321 	rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1322 	rdi->dparms.props.max_sge = hfi1_max_sges;
1323 	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1324 	rdi->dparms.props.max_cq = hfi1_max_cqs;
1325 	rdi->dparms.props.max_ah = hfi1_max_ahs;
1326 	rdi->dparms.props.max_cqe = hfi1_max_cqes;
1327 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
1328 	rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1329 	rdi->dparms.props.max_map_per_fmr = 32767;
1330 	rdi->dparms.props.max_pd = hfi1_max_pds;
1331 	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1332 	rdi->dparms.props.max_qp_init_rd_atom = 255;
1333 	rdi->dparms.props.max_srq = hfi1_max_srqs;
1334 	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1335 	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1336 	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1337 	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1338 	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1339 	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1340 	rdi->dparms.props.max_total_mcast_qp_attach =
1341 					rdi->dparms.props.max_mcast_qp_attach *
1342 					rdi->dparms.props.max_mcast_grp;
1343 }
1344 
1345 static inline u16 opa_speed_to_ib(u16 in)
1346 {
1347 	u16 out = 0;
1348 
1349 	if (in & OPA_LINK_SPEED_25G)
1350 		out |= IB_SPEED_EDR;
1351 	if (in & OPA_LINK_SPEED_12_5G)
1352 		out |= IB_SPEED_FDR;
1353 
1354 	return out;
1355 }
1356 
1357 /*
1358  * Convert a single OPA link width (no multiple flags) to an IB value.
1359  * A zero OPA link width means link down, which means the IB width value
1360  * is a don't care.
1361  */
1362 static inline u16 opa_width_to_ib(u16 in)
1363 {
1364 	switch (in) {
1365 	case OPA_LINK_WIDTH_1X:
1366 	/* map 2x and 3x to 1x as they don't exist in IB */
1367 	case OPA_LINK_WIDTH_2X:
1368 	case OPA_LINK_WIDTH_3X:
1369 		return IB_WIDTH_1X;
1370 	default: /* link down or unknown, return our largest width */
1371 	case OPA_LINK_WIDTH_4X:
1372 		return IB_WIDTH_4X;
1373 	}
1374 }
1375 
1376 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1377 		      struct ib_port_attr *props)
1378 {
1379 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1380 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1381 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1382 	u16 lid = ppd->lid;
1383 
1384 	props->lid = lid ? lid : 0;
1385 	props->lmc = ppd->lmc;
1386 	/* OPA logical states match IB logical states */
1387 	props->state = driver_lstate(ppd);
1388 	props->phys_state = hfi1_ibphys_portstate(ppd);
1389 	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1390 	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1391 	/* see rate_show() in ib core/sysfs.c */
1392 	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1393 	props->max_vl_num = ppd->vls_supported;
1394 
1395 	/* Once we are a "first class" citizen and have added the OPA MTUs to
1396 	 * the core we can advertise the larger MTU enum to the ULPs, for now
1397 	 * advertise only 4K.
1398 	 *
1399 	 * Those applications which are either OPA aware or pass the MTU enum
1400 	 * from the Path Records to us will get the new 8k MTU.  Those that
1401 	 * attempt to process the MTU enum may fail in various ways.
1402 	 */
1403 	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1404 				      4096 : hfi1_max_mtu), IB_MTU_4096);
1405 	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1406 		mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1407 
1408 	return 0;
1409 }
1410 
1411 static int modify_device(struct ib_device *device,
1412 			 int device_modify_mask,
1413 			 struct ib_device_modify *device_modify)
1414 {
1415 	struct hfi1_devdata *dd = dd_from_ibdev(device);
1416 	unsigned i;
1417 	int ret;
1418 
1419 	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1420 				   IB_DEVICE_MODIFY_NODE_DESC)) {
1421 		ret = -EOPNOTSUPP;
1422 		goto bail;
1423 	}
1424 
1425 	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1426 		memcpy(device->node_desc, device_modify->node_desc, 64);
1427 		for (i = 0; i < dd->num_pports; i++) {
1428 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1429 
1430 			hfi1_node_desc_chg(ibp);
1431 		}
1432 	}
1433 
1434 	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1435 		ib_hfi1_sys_image_guid =
1436 			cpu_to_be64(device_modify->sys_image_guid);
1437 		for (i = 0; i < dd->num_pports; i++) {
1438 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1439 
1440 			hfi1_sys_guid_chg(ibp);
1441 		}
1442 	}
1443 
1444 	ret = 0;
1445 
1446 bail:
1447 	return ret;
1448 }
1449 
1450 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1451 {
1452 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1453 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1454 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1455 	int ret;
1456 
1457 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1458 			     OPA_LINKDOWN_REASON_UNKNOWN);
1459 	ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1460 	return ret;
1461 }
1462 
1463 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1464 			    int guid_index, __be64 *guid)
1465 {
1466 	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1467 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1468 
1469 	if (guid_index == 0)
1470 		*guid = cpu_to_be64(ppd->guid);
1471 	else if (guid_index < HFI1_GUIDS_PER_PORT)
1472 		*guid = ibp->guids[guid_index - 1];
1473 	else
1474 		return -EINVAL;
1475 
1476 	return 0;
1477 }
1478 
1479 /*
1480  * convert ah port,sl to sc
1481  */
1482 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1483 {
1484 	struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1485 
1486 	return ibp->sl_to_sc[ah->sl];
1487 }
1488 
1489 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1490 {
1491 	struct hfi1_ibport *ibp;
1492 	struct hfi1_pportdata *ppd;
1493 	struct hfi1_devdata *dd;
1494 	u8 sc5;
1495 
1496 	/* test the mapping for validity */
1497 	ibp = to_iport(ibdev, ah_attr->port_num);
1498 	ppd = ppd_from_ibp(ibp);
1499 	sc5 = ibp->sl_to_sc[ah_attr->sl];
1500 	dd = dd_from_ppd(ppd);
1501 	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1502 		return -EINVAL;
1503 	return 0;
1504 }
1505 
1506 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1507 			       struct ib_ah_attr *ah_attr,
1508 			       struct rvt_ah *ah)
1509 {
1510 	struct hfi1_ibport *ibp;
1511 	struct hfi1_pportdata *ppd;
1512 	struct hfi1_devdata *dd;
1513 	u8 sc5;
1514 
1515 	/*
1516 	 * Do not trust reading anything from rvt_ah at this point as it is not
1517 	 * done being setup. We can however modify things which we need to set.
1518 	 */
1519 
1520 	ibp = to_iport(ibdev, ah_attr->port_num);
1521 	ppd = ppd_from_ibp(ibp);
1522 	sc5 = ibp->sl_to_sc[ah->attr.sl];
1523 	dd = dd_from_ppd(ppd);
1524 	ah->vl = sc_to_vlt(dd, sc5);
1525 	if (ah->vl < num_vls || ah->vl == 15)
1526 		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1527 }
1528 
1529 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1530 {
1531 	struct ib_ah_attr attr;
1532 	struct ib_ah *ah = ERR_PTR(-EINVAL);
1533 	struct rvt_qp *qp0;
1534 
1535 	memset(&attr, 0, sizeof(attr));
1536 	attr.dlid = dlid;
1537 	attr.port_num = ppd_from_ibp(ibp)->port;
1538 	rcu_read_lock();
1539 	qp0 = rcu_dereference(ibp->rvp.qp[0]);
1540 	if (qp0)
1541 		ah = ib_create_ah(qp0->ibqp.pd, &attr);
1542 	rcu_read_unlock();
1543 	return ah;
1544 }
1545 
1546 /**
1547  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1548  * @dd: the hfi1_ib device
1549  */
1550 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1551 {
1552 	return ARRAY_SIZE(dd->pport[0].pkeys);
1553 }
1554 
1555 static void init_ibport(struct hfi1_pportdata *ppd)
1556 {
1557 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1558 	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1559 	int i;
1560 
1561 	for (i = 0; i < sz; i++) {
1562 		ibp->sl_to_sc[i] = i;
1563 		ibp->sc_to_sl[i] = i;
1564 	}
1565 
1566 	spin_lock_init(&ibp->rvp.lock);
1567 	/* Set the prefix to the default value (see ch. 4.1.1) */
1568 	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1569 	ibp->rvp.sm_lid = 0;
1570 	/* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1571 	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1572 		IB_PORT_CAP_MASK_NOTICE_SUP;
1573 	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1574 	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1575 	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1576 	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1577 	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1578 
1579 	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1580 	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1581 }
1582 
1583 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1584 				size_t str_len)
1585 {
1586 	struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1587 	struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1588 	u16 ver = dd_from_dev(dev)->dc8051_ver;
1589 
1590 	snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver),
1591 		 dc8051_ver_min(ver));
1592 }
1593 
1594 /**
1595  * hfi1_register_ib_device - register our device with the infiniband core
1596  * @dd: the device data structure
1597  * Return 0 if successful, errno if unsuccessful.
1598  */
1599 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1600 {
1601 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1602 	struct ib_device *ibdev = &dev->rdi.ibdev;
1603 	struct hfi1_pportdata *ppd = dd->pport;
1604 	unsigned i;
1605 	int ret;
1606 	size_t lcpysz = IB_DEVICE_NAME_MAX;
1607 
1608 	for (i = 0; i < dd->num_pports; i++)
1609 		init_ibport(ppd + i);
1610 
1611 	/* Only need to initialize non-zero fields. */
1612 
1613 	setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1614 
1615 	seqlock_init(&dev->iowait_lock);
1616 	INIT_LIST_HEAD(&dev->txwait);
1617 	INIT_LIST_HEAD(&dev->memwait);
1618 
1619 	ret = verbs_txreq_init(dev);
1620 	if (ret)
1621 		goto err_verbs_txreq;
1622 
1623 	/*
1624 	 * The system image GUID is supposed to be the same for all
1625 	 * HFIs in a single system but since there can be other
1626 	 * device types in the system, we can't be sure this is unique.
1627 	 */
1628 	if (!ib_hfi1_sys_image_guid)
1629 		ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1630 	lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1631 	strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1632 	ibdev->owner = THIS_MODULE;
1633 	ibdev->node_guid = cpu_to_be64(ppd->guid);
1634 	ibdev->phys_port_cnt = dd->num_pports;
1635 	ibdev->dma_device = &dd->pcidev->dev;
1636 	ibdev->modify_device = modify_device;
1637 
1638 	/* keep process mad in the driver */
1639 	ibdev->process_mad = hfi1_process_mad;
1640 	ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1641 
1642 	strncpy(ibdev->node_desc, init_utsname()->nodename,
1643 		sizeof(ibdev->node_desc));
1644 
1645 	/*
1646 	 * Fill in rvt info object.
1647 	 */
1648 	dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1649 	dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1650 	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1651 	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1652 	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1653 	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1654 	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1655 	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1656 	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1657 	/*
1658 	 * Fill in rvt info device attributes.
1659 	 */
1660 	hfi1_fill_device_attr(dd);
1661 
1662 	/* queue pair */
1663 	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1664 	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1665 	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1666 	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1667 	dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1668 	dd->verbs_dev.rdi.dparms.qpn_res_end =
1669 	dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1670 	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1671 	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1672 	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1673 	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1674 	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1675 	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1676 
1677 	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1678 	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1679 	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1680 	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1681 	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send;
1682 	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1683 	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1684 	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1685 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1686 	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1687 	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1688 	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1689 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1690 	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1691 	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1692 	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1693 	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1694 	dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1695 
1696 	/* completeion queue */
1697 	snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1698 		 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1699 		 "hfi1_cq%d", dd->unit);
1700 	dd->verbs_dev.rdi.dparms.node = dd->node;
1701 
1702 	/* misc settings */
1703 	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1704 	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1705 	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1706 	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1707 
1708 	/* post send table */
1709 	dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1710 
1711 	ppd = dd->pport;
1712 	for (i = 0; i < dd->num_pports; i++, ppd++)
1713 		rvt_init_port(&dd->verbs_dev.rdi,
1714 			      &ppd->ibport_data.rvp,
1715 			      i,
1716 			      ppd->pkeys);
1717 
1718 	ret = rvt_register_device(&dd->verbs_dev.rdi);
1719 	if (ret)
1720 		goto err_verbs_txreq;
1721 
1722 	ret = hfi1_verbs_register_sysfs(dd);
1723 	if (ret)
1724 		goto err_class;
1725 
1726 	return ret;
1727 
1728 err_class:
1729 	rvt_unregister_device(&dd->verbs_dev.rdi);
1730 err_verbs_txreq:
1731 	verbs_txreq_exit(dev);
1732 	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1733 	return ret;
1734 }
1735 
1736 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1737 {
1738 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1739 
1740 	hfi1_verbs_unregister_sysfs(dd);
1741 
1742 	rvt_unregister_device(&dd->verbs_dev.rdi);
1743 
1744 	if (!list_empty(&dev->txwait))
1745 		dd_dev_err(dd, "txwait list not empty!\n");
1746 	if (!list_empty(&dev->memwait))
1747 		dd_dev_err(dd, "memwait list not empty!\n");
1748 
1749 	del_timer_sync(&dev->mem_timer);
1750 	verbs_txreq_exit(dev);
1751 }
1752 
1753 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1754 {
1755 	struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1756 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1757 	struct hfi1_ib_header *hdr = packet->hdr;
1758 	struct rvt_qp *qp = packet->qp;
1759 	u32 lqpn, rqpn = 0;
1760 	u16 rlid = 0;
1761 	u8 sl, sc5, svc_type;
1762 
1763 	switch (packet->qp->ibqp.qp_type) {
1764 	case IB_QPT_UC:
1765 		rlid = qp->remote_ah_attr.dlid;
1766 		rqpn = qp->remote_qpn;
1767 		svc_type = IB_CC_SVCTYPE_UC;
1768 		break;
1769 	case IB_QPT_RC:
1770 		rlid = qp->remote_ah_attr.dlid;
1771 		rqpn = qp->remote_qpn;
1772 		svc_type = IB_CC_SVCTYPE_RC;
1773 		break;
1774 	case IB_QPT_SMI:
1775 	case IB_QPT_GSI:
1776 	case IB_QPT_UD:
1777 		svc_type = IB_CC_SVCTYPE_UD;
1778 		break;
1779 	default:
1780 		ibp->rvp.n_pkt_drops++;
1781 		return;
1782 	}
1783 
1784 	sc5 = hdr2sc((struct hfi1_message_header *)hdr, packet->rhf);
1785 	sl = ibp->sc_to_sl[sc5];
1786 	lqpn = qp->ibqp.qp_num;
1787 
1788 	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1789 }
1790