xref: /linux/drivers/infiniband/hw/hfi1/user_sdma.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2020 - Cornelis Networks, Inc.
4  * Copyright(c) 2015 - 2018 Intel Corporation.
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/types.h>
9 #include <linux/device.h>
10 #include <linux/dmapool.h>
11 #include <linux/slab.h>
12 #include <linux/list.h>
13 #include <linux/highmem.h>
14 #include <linux/io.h>
15 #include <linux/uio.h>
16 #include <linux/rbtree.h>
17 #include <linux/spinlock.h>
18 #include <linux/delay.h>
19 #include <linux/kthread.h>
20 #include <linux/mmu_context.h>
21 #include <linux/module.h>
22 #include <linux/vmalloc.h>
23 #include <linux/string.h>
24 
25 #include "hfi.h"
26 #include "sdma.h"
27 #include "mmu_rb.h"
28 #include "user_sdma.h"
29 #include "verbs.h"  /* for the headers */
30 #include "common.h" /* for struct hfi1_tid_info */
31 #include "trace.h"
32 
33 static uint hfi1_sdma_comp_ring_size = 128;
34 module_param_named(sdma_comp_size, hfi1_sdma_comp_ring_size, uint, S_IRUGO);
35 MODULE_PARM_DESC(sdma_comp_size, "Size of User SDMA completion ring. Default: 128");
36 
37 static unsigned initial_pkt_count = 8;
38 
39 static int user_sdma_send_pkts(struct user_sdma_request *req, u16 maxpkts);
40 static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status);
41 static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq);
42 static void user_sdma_free_request(struct user_sdma_request *req, bool unpin);
43 static int pin_vector_pages(struct user_sdma_request *req,
44 			    struct user_sdma_iovec *iovec);
45 static void unpin_vector_pages(struct mm_struct *mm, struct page **pages,
46 			       unsigned start, unsigned npages);
47 static int check_header_template(struct user_sdma_request *req,
48 				 struct hfi1_pkt_header *hdr, u32 lrhlen,
49 				 u32 datalen);
50 static int set_txreq_header(struct user_sdma_request *req,
51 			    struct user_sdma_txreq *tx, u32 datalen);
52 static int set_txreq_header_ahg(struct user_sdma_request *req,
53 				struct user_sdma_txreq *tx, u32 len);
54 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq,
55 				  struct hfi1_user_sdma_comp_q *cq,
56 				  u16 idx, enum hfi1_sdma_comp_state state,
57 				  int ret);
58 static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags);
59 static inline u32 get_lrh_len(struct hfi1_pkt_header, u32 len);
60 
61 static int defer_packet_queue(
62 	struct sdma_engine *sde,
63 	struct iowait_work *wait,
64 	struct sdma_txreq *txreq,
65 	uint seq,
66 	bool pkts_sent);
67 static void activate_packet_queue(struct iowait *wait, int reason);
68 static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr,
69 			   unsigned long len);
70 static int sdma_rb_insert(void *arg, struct mmu_rb_node *mnode);
71 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode,
72 			 void *arg2, bool *stop);
73 static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode);
74 static int sdma_rb_invalidate(void *arg, struct mmu_rb_node *mnode);
75 
76 static struct mmu_rb_ops sdma_rb_ops = {
77 	.filter = sdma_rb_filter,
78 	.insert = sdma_rb_insert,
79 	.evict = sdma_rb_evict,
80 	.remove = sdma_rb_remove,
81 	.invalidate = sdma_rb_invalidate
82 };
83 
84 static int defer_packet_queue(
85 	struct sdma_engine *sde,
86 	struct iowait_work *wait,
87 	struct sdma_txreq *txreq,
88 	uint seq,
89 	bool pkts_sent)
90 {
91 	struct hfi1_user_sdma_pkt_q *pq =
92 		container_of(wait->iow, struct hfi1_user_sdma_pkt_q, busy);
93 
94 	write_seqlock(&sde->waitlock);
95 	trace_hfi1_usdma_defer(pq, sde, &pq->busy);
96 	if (sdma_progress(sde, seq, txreq))
97 		goto eagain;
98 	/*
99 	 * We are assuming that if the list is enqueued somewhere, it
100 	 * is to the dmawait list since that is the only place where
101 	 * it is supposed to be enqueued.
102 	 */
103 	xchg(&pq->state, SDMA_PKT_Q_DEFERRED);
104 	if (list_empty(&pq->busy.list)) {
105 		pq->busy.lock = &sde->waitlock;
106 		iowait_get_priority(&pq->busy);
107 		iowait_queue(pkts_sent, &pq->busy, &sde->dmawait);
108 	}
109 	write_sequnlock(&sde->waitlock);
110 	return -EBUSY;
111 eagain:
112 	write_sequnlock(&sde->waitlock);
113 	return -EAGAIN;
114 }
115 
116 static void activate_packet_queue(struct iowait *wait, int reason)
117 {
118 	struct hfi1_user_sdma_pkt_q *pq =
119 		container_of(wait, struct hfi1_user_sdma_pkt_q, busy);
120 
121 	trace_hfi1_usdma_activate(pq, wait, reason);
122 	xchg(&pq->state, SDMA_PKT_Q_ACTIVE);
123 	wake_up(&wait->wait_dma);
124 };
125 
126 int hfi1_user_sdma_alloc_queues(struct hfi1_ctxtdata *uctxt,
127 				struct hfi1_filedata *fd)
128 {
129 	int ret = -ENOMEM;
130 	char buf[64];
131 	struct hfi1_devdata *dd;
132 	struct hfi1_user_sdma_comp_q *cq;
133 	struct hfi1_user_sdma_pkt_q *pq;
134 
135 	if (!uctxt || !fd)
136 		return -EBADF;
137 
138 	if (!hfi1_sdma_comp_ring_size)
139 		return -EINVAL;
140 
141 	dd = uctxt->dd;
142 
143 	pq = kzalloc(sizeof(*pq), GFP_KERNEL);
144 	if (!pq)
145 		return -ENOMEM;
146 	pq->dd = dd;
147 	pq->ctxt = uctxt->ctxt;
148 	pq->subctxt = fd->subctxt;
149 	pq->n_max_reqs = hfi1_sdma_comp_ring_size;
150 	atomic_set(&pq->n_reqs, 0);
151 	init_waitqueue_head(&pq->wait);
152 	atomic_set(&pq->n_locked, 0);
153 
154 	iowait_init(&pq->busy, 0, NULL, NULL, defer_packet_queue,
155 		    activate_packet_queue, NULL, NULL);
156 	pq->reqidx = 0;
157 
158 	pq->reqs = kcalloc(hfi1_sdma_comp_ring_size,
159 			   sizeof(*pq->reqs),
160 			   GFP_KERNEL);
161 	if (!pq->reqs)
162 		goto pq_reqs_nomem;
163 
164 	pq->req_in_use = bitmap_zalloc(hfi1_sdma_comp_ring_size, GFP_KERNEL);
165 	if (!pq->req_in_use)
166 		goto pq_reqs_no_in_use;
167 
168 	snprintf(buf, 64, "txreq-kmem-cache-%u-%u-%u", dd->unit, uctxt->ctxt,
169 		 fd->subctxt);
170 	pq->txreq_cache = kmem_cache_create(buf,
171 					    sizeof(struct user_sdma_txreq),
172 					    L1_CACHE_BYTES,
173 					    SLAB_HWCACHE_ALIGN,
174 					    NULL);
175 	if (!pq->txreq_cache) {
176 		dd_dev_err(dd, "[%u] Failed to allocate TxReq cache\n",
177 			   uctxt->ctxt);
178 		goto pq_txreq_nomem;
179 	}
180 
181 	cq = kzalloc(sizeof(*cq), GFP_KERNEL);
182 	if (!cq)
183 		goto cq_nomem;
184 
185 	cq->comps = vmalloc_user(PAGE_ALIGN(sizeof(*cq->comps)
186 				 * hfi1_sdma_comp_ring_size));
187 	if (!cq->comps)
188 		goto cq_comps_nomem;
189 
190 	cq->nentries = hfi1_sdma_comp_ring_size;
191 
192 	ret = hfi1_mmu_rb_register(pq, &sdma_rb_ops, dd->pport->hfi1_wq,
193 				   &pq->handler);
194 	if (ret) {
195 		dd_dev_err(dd, "Failed to register with MMU %d", ret);
196 		goto pq_mmu_fail;
197 	}
198 
199 	rcu_assign_pointer(fd->pq, pq);
200 	fd->cq = cq;
201 
202 	return 0;
203 
204 pq_mmu_fail:
205 	vfree(cq->comps);
206 cq_comps_nomem:
207 	kfree(cq);
208 cq_nomem:
209 	kmem_cache_destroy(pq->txreq_cache);
210 pq_txreq_nomem:
211 	bitmap_free(pq->req_in_use);
212 pq_reqs_no_in_use:
213 	kfree(pq->reqs);
214 pq_reqs_nomem:
215 	kfree(pq);
216 
217 	return ret;
218 }
219 
220 static void flush_pq_iowait(struct hfi1_user_sdma_pkt_q *pq)
221 {
222 	unsigned long flags;
223 	seqlock_t *lock = pq->busy.lock;
224 
225 	if (!lock)
226 		return;
227 	write_seqlock_irqsave(lock, flags);
228 	if (!list_empty(&pq->busy.list)) {
229 		list_del_init(&pq->busy.list);
230 		pq->busy.lock = NULL;
231 	}
232 	write_sequnlock_irqrestore(lock, flags);
233 }
234 
235 int hfi1_user_sdma_free_queues(struct hfi1_filedata *fd,
236 			       struct hfi1_ctxtdata *uctxt)
237 {
238 	struct hfi1_user_sdma_pkt_q *pq;
239 
240 	trace_hfi1_sdma_user_free_queues(uctxt->dd, uctxt->ctxt, fd->subctxt);
241 
242 	spin_lock(&fd->pq_rcu_lock);
243 	pq = srcu_dereference_check(fd->pq, &fd->pq_srcu,
244 				    lockdep_is_held(&fd->pq_rcu_lock));
245 	if (pq) {
246 		rcu_assign_pointer(fd->pq, NULL);
247 		spin_unlock(&fd->pq_rcu_lock);
248 		synchronize_srcu(&fd->pq_srcu);
249 		/* at this point there can be no more new requests */
250 		if (pq->handler)
251 			hfi1_mmu_rb_unregister(pq->handler);
252 		iowait_sdma_drain(&pq->busy);
253 		/* Wait until all requests have been freed. */
254 		wait_event_interruptible(
255 			pq->wait,
256 			!atomic_read(&pq->n_reqs));
257 		kfree(pq->reqs);
258 		bitmap_free(pq->req_in_use);
259 		kmem_cache_destroy(pq->txreq_cache);
260 		flush_pq_iowait(pq);
261 		kfree(pq);
262 	} else {
263 		spin_unlock(&fd->pq_rcu_lock);
264 	}
265 	if (fd->cq) {
266 		vfree(fd->cq->comps);
267 		kfree(fd->cq);
268 		fd->cq = NULL;
269 	}
270 	return 0;
271 }
272 
273 static u8 dlid_to_selector(u16 dlid)
274 {
275 	static u8 mapping[256];
276 	static int initialized;
277 	static u8 next;
278 	int hash;
279 
280 	if (!initialized) {
281 		memset(mapping, 0xFF, 256);
282 		initialized = 1;
283 	}
284 
285 	hash = ((dlid >> 8) ^ dlid) & 0xFF;
286 	if (mapping[hash] == 0xFF) {
287 		mapping[hash] = next;
288 		next = (next + 1) & 0x7F;
289 	}
290 
291 	return mapping[hash];
292 }
293 
294 /**
295  * hfi1_user_sdma_process_request() - Process and start a user sdma request
296  * @fd: valid file descriptor
297  * @iovec: array of io vectors to process
298  * @dim: overall iovec array size
299  * @count: number of io vector array entries processed
300  */
301 int hfi1_user_sdma_process_request(struct hfi1_filedata *fd,
302 				   struct iovec *iovec, unsigned long dim,
303 				   unsigned long *count)
304 {
305 	int ret = 0, i;
306 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
307 	struct hfi1_user_sdma_pkt_q *pq =
308 		srcu_dereference(fd->pq, &fd->pq_srcu);
309 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
310 	struct hfi1_devdata *dd = pq->dd;
311 	unsigned long idx = 0;
312 	u8 pcount = initial_pkt_count;
313 	struct sdma_req_info info;
314 	struct user_sdma_request *req;
315 	u8 opcode, sc, vl;
316 	u16 pkey;
317 	u32 slid;
318 	u16 dlid;
319 	u32 selector;
320 
321 	if (iovec[idx].iov_len < sizeof(info) + sizeof(req->hdr)) {
322 		hfi1_cdbg(
323 		   SDMA,
324 		   "[%u:%u:%u] First vector not big enough for header %lu/%lu",
325 		   dd->unit, uctxt->ctxt, fd->subctxt,
326 		   iovec[idx].iov_len, sizeof(info) + sizeof(req->hdr));
327 		return -EINVAL;
328 	}
329 	ret = copy_from_user(&info, iovec[idx].iov_base, sizeof(info));
330 	if (ret) {
331 		hfi1_cdbg(SDMA, "[%u:%u:%u] Failed to copy info QW (%d)",
332 			  dd->unit, uctxt->ctxt, fd->subctxt, ret);
333 		return -EFAULT;
334 	}
335 
336 	trace_hfi1_sdma_user_reqinfo(dd, uctxt->ctxt, fd->subctxt,
337 				     (u16 *)&info);
338 	if (info.comp_idx >= hfi1_sdma_comp_ring_size) {
339 		hfi1_cdbg(SDMA,
340 			  "[%u:%u:%u:%u] Invalid comp index",
341 			  dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
342 		return -EINVAL;
343 	}
344 
345 	/*
346 	 * Sanity check the header io vector count.  Need at least 1 vector
347 	 * (header) and cannot be larger than the actual io vector count.
348 	 */
349 	if (req_iovcnt(info.ctrl) < 1 || req_iovcnt(info.ctrl) > dim) {
350 		hfi1_cdbg(SDMA,
351 			  "[%u:%u:%u:%u] Invalid iov count %d, dim %ld",
352 			  dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx,
353 			  req_iovcnt(info.ctrl), dim);
354 		return -EINVAL;
355 	}
356 
357 	if (!info.fragsize) {
358 		hfi1_cdbg(SDMA,
359 			  "[%u:%u:%u:%u] Request does not specify fragsize",
360 			  dd->unit, uctxt->ctxt, fd->subctxt, info.comp_idx);
361 		return -EINVAL;
362 	}
363 
364 	/* Try to claim the request. */
365 	if (test_and_set_bit(info.comp_idx, pq->req_in_use)) {
366 		hfi1_cdbg(SDMA, "[%u:%u:%u] Entry %u is in use",
367 			  dd->unit, uctxt->ctxt, fd->subctxt,
368 			  info.comp_idx);
369 		return -EBADSLT;
370 	}
371 	/*
372 	 * All safety checks have been done and this request has been claimed.
373 	 */
374 	trace_hfi1_sdma_user_process_request(dd, uctxt->ctxt, fd->subctxt,
375 					     info.comp_idx);
376 	req = pq->reqs + info.comp_idx;
377 	req->data_iovs = req_iovcnt(info.ctrl) - 1; /* subtract header vector */
378 	req->data_len  = 0;
379 	req->pq = pq;
380 	req->cq = cq;
381 	req->ahg_idx = -1;
382 	req->iov_idx = 0;
383 	req->sent = 0;
384 	req->seqnum = 0;
385 	req->seqcomp = 0;
386 	req->seqsubmitted = 0;
387 	req->tids = NULL;
388 	req->has_error = 0;
389 	INIT_LIST_HEAD(&req->txps);
390 
391 	memcpy(&req->info, &info, sizeof(info));
392 
393 	/* The request is initialized, count it */
394 	atomic_inc(&pq->n_reqs);
395 
396 	if (req_opcode(info.ctrl) == EXPECTED) {
397 		/* expected must have a TID info and at least one data vector */
398 		if (req->data_iovs < 2) {
399 			SDMA_DBG(req,
400 				 "Not enough vectors for expected request");
401 			ret = -EINVAL;
402 			goto free_req;
403 		}
404 		req->data_iovs--;
405 	}
406 
407 	if (!info.npkts || req->data_iovs > MAX_VECTORS_PER_REQ) {
408 		SDMA_DBG(req, "Too many vectors (%u/%u)", req->data_iovs,
409 			 MAX_VECTORS_PER_REQ);
410 		ret = -EINVAL;
411 		goto free_req;
412 	}
413 	/* Copy the header from the user buffer */
414 	ret = copy_from_user(&req->hdr, iovec[idx].iov_base + sizeof(info),
415 			     sizeof(req->hdr));
416 	if (ret) {
417 		SDMA_DBG(req, "Failed to copy header template (%d)", ret);
418 		ret = -EFAULT;
419 		goto free_req;
420 	}
421 
422 	/* If Static rate control is not enabled, sanitize the header. */
423 	if (!HFI1_CAP_IS_USET(STATIC_RATE_CTRL))
424 		req->hdr.pbc[2] = 0;
425 
426 	/* Validate the opcode. Do not trust packets from user space blindly. */
427 	opcode = (be32_to_cpu(req->hdr.bth[0]) >> 24) & 0xff;
428 	if ((opcode & USER_OPCODE_CHECK_MASK) !=
429 	     USER_OPCODE_CHECK_VAL) {
430 		SDMA_DBG(req, "Invalid opcode (%d)", opcode);
431 		ret = -EINVAL;
432 		goto free_req;
433 	}
434 	/*
435 	 * Validate the vl. Do not trust packets from user space blindly.
436 	 * VL comes from PBC, SC comes from LRH, and the VL needs to
437 	 * match the SC look up.
438 	 */
439 	vl = (le16_to_cpu(req->hdr.pbc[0]) >> 12) & 0xF;
440 	sc = (((be16_to_cpu(req->hdr.lrh[0]) >> 12) & 0xF) |
441 	      (((le16_to_cpu(req->hdr.pbc[1]) >> 14) & 0x1) << 4));
442 	if (vl >= dd->pport->vls_operational ||
443 	    vl != sc_to_vlt(dd, sc)) {
444 		SDMA_DBG(req, "Invalid SC(%u)/VL(%u)", sc, vl);
445 		ret = -EINVAL;
446 		goto free_req;
447 	}
448 
449 	/* Checking P_KEY for requests from user-space */
450 	pkey = (u16)be32_to_cpu(req->hdr.bth[0]);
451 	slid = be16_to_cpu(req->hdr.lrh[3]);
452 	if (egress_pkey_check(dd->pport, slid, pkey, sc, PKEY_CHECK_INVALID)) {
453 		ret = -EINVAL;
454 		goto free_req;
455 	}
456 
457 	/*
458 	 * Also should check the BTH.lnh. If it says the next header is GRH then
459 	 * the RXE parsing will be off and will land in the middle of the KDETH
460 	 * or miss it entirely.
461 	 */
462 	if ((be16_to_cpu(req->hdr.lrh[0]) & 0x3) == HFI1_LRH_GRH) {
463 		SDMA_DBG(req, "User tried to pass in a GRH");
464 		ret = -EINVAL;
465 		goto free_req;
466 	}
467 
468 	req->koffset = le32_to_cpu(req->hdr.kdeth.swdata[6]);
469 	/*
470 	 * Calculate the initial TID offset based on the values of
471 	 * KDETH.OFFSET and KDETH.OM that are passed in.
472 	 */
473 	req->tidoffset = KDETH_GET(req->hdr.kdeth.ver_tid_offset, OFFSET) *
474 		(KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
475 		 KDETH_OM_LARGE : KDETH_OM_SMALL);
476 	trace_hfi1_sdma_user_initial_tidoffset(dd, uctxt->ctxt, fd->subctxt,
477 					       info.comp_idx, req->tidoffset);
478 	idx++;
479 
480 	/* Save all the IO vector structures */
481 	for (i = 0; i < req->data_iovs; i++) {
482 		req->iovs[i].offset = 0;
483 		INIT_LIST_HEAD(&req->iovs[i].list);
484 		memcpy(&req->iovs[i].iov,
485 		       iovec + idx++,
486 		       sizeof(req->iovs[i].iov));
487 		ret = pin_vector_pages(req, &req->iovs[i]);
488 		if (ret) {
489 			req->data_iovs = i;
490 			goto free_req;
491 		}
492 		req->data_len += req->iovs[i].iov.iov_len;
493 	}
494 	trace_hfi1_sdma_user_data_length(dd, uctxt->ctxt, fd->subctxt,
495 					 info.comp_idx, req->data_len);
496 	if (pcount > req->info.npkts)
497 		pcount = req->info.npkts;
498 	/*
499 	 * Copy any TID info
500 	 * User space will provide the TID info only when the
501 	 * request type is EXPECTED. This is true even if there is
502 	 * only one packet in the request and the header is already
503 	 * setup. The reason for the singular TID case is that the
504 	 * driver needs to perform safety checks.
505 	 */
506 	if (req_opcode(req->info.ctrl) == EXPECTED) {
507 		u16 ntids = iovec[idx].iov_len / sizeof(*req->tids);
508 		u32 *tmp;
509 
510 		if (!ntids || ntids > MAX_TID_PAIR_ENTRIES) {
511 			ret = -EINVAL;
512 			goto free_req;
513 		}
514 
515 		/*
516 		 * We have to copy all of the tids because they may vary
517 		 * in size and, therefore, the TID count might not be
518 		 * equal to the pkt count. However, there is no way to
519 		 * tell at this point.
520 		 */
521 		tmp = memdup_user(iovec[idx].iov_base,
522 				  ntids * sizeof(*req->tids));
523 		if (IS_ERR(tmp)) {
524 			ret = PTR_ERR(tmp);
525 			SDMA_DBG(req, "Failed to copy %d TIDs (%d)",
526 				 ntids, ret);
527 			goto free_req;
528 		}
529 		req->tids = tmp;
530 		req->n_tids = ntids;
531 		req->tididx = 0;
532 		idx++;
533 	}
534 
535 	dlid = be16_to_cpu(req->hdr.lrh[1]);
536 	selector = dlid_to_selector(dlid);
537 	selector += uctxt->ctxt + fd->subctxt;
538 	req->sde = sdma_select_user_engine(dd, selector, vl);
539 
540 	if (!req->sde || !sdma_running(req->sde)) {
541 		ret = -ECOMM;
542 		goto free_req;
543 	}
544 
545 	/* We don't need an AHG entry if the request contains only one packet */
546 	if (req->info.npkts > 1 && HFI1_CAP_IS_USET(SDMA_AHG))
547 		req->ahg_idx = sdma_ahg_alloc(req->sde);
548 
549 	set_comp_state(pq, cq, info.comp_idx, QUEUED, 0);
550 	pq->state = SDMA_PKT_Q_ACTIVE;
551 
552 	/*
553 	 * This is a somewhat blocking send implementation.
554 	 * The driver will block the caller until all packets of the
555 	 * request have been submitted to the SDMA engine. However, it
556 	 * will not wait for send completions.
557 	 */
558 	while (req->seqsubmitted != req->info.npkts) {
559 		ret = user_sdma_send_pkts(req, pcount);
560 		if (ret < 0) {
561 			int we_ret;
562 
563 			if (ret != -EBUSY)
564 				goto free_req;
565 			we_ret = wait_event_interruptible_timeout(
566 				pq->busy.wait_dma,
567 				pq->state == SDMA_PKT_Q_ACTIVE,
568 				msecs_to_jiffies(
569 					SDMA_IOWAIT_TIMEOUT));
570 			trace_hfi1_usdma_we(pq, we_ret);
571 			if (we_ret <= 0)
572 				flush_pq_iowait(pq);
573 		}
574 	}
575 	*count += idx;
576 	return 0;
577 free_req:
578 	/*
579 	 * If the submitted seqsubmitted == npkts, the completion routine
580 	 * controls the final state.  If sequbmitted < npkts, wait for any
581 	 * outstanding packets to finish before cleaning up.
582 	 */
583 	if (req->seqsubmitted < req->info.npkts) {
584 		if (req->seqsubmitted)
585 			wait_event(pq->busy.wait_dma,
586 				   (req->seqcomp == req->seqsubmitted - 1));
587 		user_sdma_free_request(req, true);
588 		pq_update(pq);
589 		set_comp_state(pq, cq, info.comp_idx, ERROR, ret);
590 	}
591 	return ret;
592 }
593 
594 static inline u32 compute_data_length(struct user_sdma_request *req,
595 				      struct user_sdma_txreq *tx)
596 {
597 	/*
598 	 * Determine the proper size of the packet data.
599 	 * The size of the data of the first packet is in the header
600 	 * template. However, it includes the header and ICRC, which need
601 	 * to be subtracted.
602 	 * The minimum representable packet data length in a header is 4 bytes,
603 	 * therefore, when the data length request is less than 4 bytes, there's
604 	 * only one packet, and the packet data length is equal to that of the
605 	 * request data length.
606 	 * The size of the remaining packets is the minimum of the frag
607 	 * size (MTU) or remaining data in the request.
608 	 */
609 	u32 len;
610 
611 	if (!req->seqnum) {
612 		if (req->data_len < sizeof(u32))
613 			len = req->data_len;
614 		else
615 			len = ((be16_to_cpu(req->hdr.lrh[2]) << 2) -
616 			       (sizeof(tx->hdr) - 4));
617 	} else if (req_opcode(req->info.ctrl) == EXPECTED) {
618 		u32 tidlen = EXP_TID_GET(req->tids[req->tididx], LEN) *
619 			PAGE_SIZE;
620 		/*
621 		 * Get the data length based on the remaining space in the
622 		 * TID pair.
623 		 */
624 		len = min(tidlen - req->tidoffset, (u32)req->info.fragsize);
625 		/* If we've filled up the TID pair, move to the next one. */
626 		if (unlikely(!len) && ++req->tididx < req->n_tids &&
627 		    req->tids[req->tididx]) {
628 			tidlen = EXP_TID_GET(req->tids[req->tididx],
629 					     LEN) * PAGE_SIZE;
630 			req->tidoffset = 0;
631 			len = min_t(u32, tidlen, req->info.fragsize);
632 		}
633 		/*
634 		 * Since the TID pairs map entire pages, make sure that we
635 		 * are not going to try to send more data that we have
636 		 * remaining.
637 		 */
638 		len = min(len, req->data_len - req->sent);
639 	} else {
640 		len = min(req->data_len - req->sent, (u32)req->info.fragsize);
641 	}
642 	trace_hfi1_sdma_user_compute_length(req->pq->dd,
643 					    req->pq->ctxt,
644 					    req->pq->subctxt,
645 					    req->info.comp_idx,
646 					    len);
647 	return len;
648 }
649 
650 static inline u32 pad_len(u32 len)
651 {
652 	if (len & (sizeof(u32) - 1))
653 		len += sizeof(u32) - (len & (sizeof(u32) - 1));
654 	return len;
655 }
656 
657 static inline u32 get_lrh_len(struct hfi1_pkt_header hdr, u32 len)
658 {
659 	/* (Size of complete header - size of PBC) + 4B ICRC + data length */
660 	return ((sizeof(hdr) - sizeof(hdr.pbc)) + 4 + len);
661 }
662 
663 static int user_sdma_txadd_ahg(struct user_sdma_request *req,
664 			       struct user_sdma_txreq *tx,
665 			       u32 datalen)
666 {
667 	int ret;
668 	u16 pbclen = le16_to_cpu(req->hdr.pbc[0]);
669 	u32 lrhlen = get_lrh_len(req->hdr, pad_len(datalen));
670 	struct hfi1_user_sdma_pkt_q *pq = req->pq;
671 
672 	/*
673 	 * Copy the request header into the tx header
674 	 * because the HW needs a cacheline-aligned
675 	 * address.
676 	 * This copy can be optimized out if the hdr
677 	 * member of user_sdma_request were also
678 	 * cacheline aligned.
679 	 */
680 	memcpy(&tx->hdr, &req->hdr, sizeof(tx->hdr));
681 	if (PBC2LRH(pbclen) != lrhlen) {
682 		pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen);
683 		tx->hdr.pbc[0] = cpu_to_le16(pbclen);
684 	}
685 	ret = check_header_template(req, &tx->hdr, lrhlen, datalen);
686 	if (ret)
687 		return ret;
688 	ret = sdma_txinit_ahg(&tx->txreq, SDMA_TXREQ_F_AHG_COPY,
689 			      sizeof(tx->hdr) + datalen, req->ahg_idx,
690 			      0, NULL, 0, user_sdma_txreq_cb);
691 	if (ret)
692 		return ret;
693 	ret = sdma_txadd_kvaddr(pq->dd, &tx->txreq, &tx->hdr, sizeof(tx->hdr));
694 	if (ret)
695 		sdma_txclean(pq->dd, &tx->txreq);
696 	return ret;
697 }
698 
699 static int user_sdma_txadd(struct user_sdma_request *req,
700 			   struct user_sdma_txreq *tx,
701 			   struct user_sdma_iovec *iovec, u32 datalen,
702 			   u32 *queued_ptr, u32 *data_sent_ptr,
703 			   u64 *iov_offset_ptr)
704 {
705 	int ret;
706 	unsigned int pageidx, len;
707 	unsigned long base, offset;
708 	u64 iov_offset = *iov_offset_ptr;
709 	u32 queued = *queued_ptr, data_sent = *data_sent_ptr;
710 	struct hfi1_user_sdma_pkt_q *pq = req->pq;
711 
712 	base = (unsigned long)iovec->iov.iov_base;
713 	offset = offset_in_page(base + iovec->offset + iov_offset);
714 	pageidx = (((iovec->offset + iov_offset + base) - (base & PAGE_MASK)) >>
715 		   PAGE_SHIFT);
716 	len = offset + req->info.fragsize > PAGE_SIZE ?
717 		PAGE_SIZE - offset : req->info.fragsize;
718 	len = min((datalen - queued), len);
719 	ret = sdma_txadd_page(pq->dd, &tx->txreq, iovec->pages[pageidx],
720 			      offset, len);
721 	if (ret) {
722 		SDMA_DBG(req, "SDMA txreq add page failed %d\n", ret);
723 		return ret;
724 	}
725 	iov_offset += len;
726 	queued += len;
727 	data_sent += len;
728 	if (unlikely(queued < datalen && pageidx == iovec->npages &&
729 		     req->iov_idx < req->data_iovs - 1)) {
730 		iovec->offset += iov_offset;
731 		iovec = &req->iovs[++req->iov_idx];
732 		iov_offset = 0;
733 	}
734 
735 	*queued_ptr = queued;
736 	*data_sent_ptr = data_sent;
737 	*iov_offset_ptr = iov_offset;
738 	return ret;
739 }
740 
741 static int user_sdma_send_pkts(struct user_sdma_request *req, u16 maxpkts)
742 {
743 	int ret = 0;
744 	u16 count;
745 	unsigned npkts = 0;
746 	struct user_sdma_txreq *tx = NULL;
747 	struct hfi1_user_sdma_pkt_q *pq = NULL;
748 	struct user_sdma_iovec *iovec = NULL;
749 
750 	if (!req->pq)
751 		return -EINVAL;
752 
753 	pq = req->pq;
754 
755 	/* If tx completion has reported an error, we are done. */
756 	if (READ_ONCE(req->has_error))
757 		return -EFAULT;
758 
759 	/*
760 	 * Check if we might have sent the entire request already
761 	 */
762 	if (unlikely(req->seqnum == req->info.npkts)) {
763 		if (!list_empty(&req->txps))
764 			goto dosend;
765 		return ret;
766 	}
767 
768 	if (!maxpkts || maxpkts > req->info.npkts - req->seqnum)
769 		maxpkts = req->info.npkts - req->seqnum;
770 
771 	while (npkts < maxpkts) {
772 		u32 datalen = 0, queued = 0, data_sent = 0;
773 		u64 iov_offset = 0;
774 
775 		/*
776 		 * Check whether any of the completions have come back
777 		 * with errors. If so, we are not going to process any
778 		 * more packets from this request.
779 		 */
780 		if (READ_ONCE(req->has_error))
781 			return -EFAULT;
782 
783 		tx = kmem_cache_alloc(pq->txreq_cache, GFP_KERNEL);
784 		if (!tx)
785 			return -ENOMEM;
786 
787 		tx->flags = 0;
788 		tx->req = req;
789 		INIT_LIST_HEAD(&tx->list);
790 
791 		/*
792 		 * For the last packet set the ACK request
793 		 * and disable header suppression.
794 		 */
795 		if (req->seqnum == req->info.npkts - 1)
796 			tx->flags |= (TXREQ_FLAGS_REQ_ACK |
797 				      TXREQ_FLAGS_REQ_DISABLE_SH);
798 
799 		/*
800 		 * Calculate the payload size - this is min of the fragment
801 		 * (MTU) size or the remaining bytes in the request but only
802 		 * if we have payload data.
803 		 */
804 		if (req->data_len) {
805 			iovec = &req->iovs[req->iov_idx];
806 			if (READ_ONCE(iovec->offset) == iovec->iov.iov_len) {
807 				if (++req->iov_idx == req->data_iovs) {
808 					ret = -EFAULT;
809 					goto free_tx;
810 				}
811 				iovec = &req->iovs[req->iov_idx];
812 				WARN_ON(iovec->offset);
813 			}
814 
815 			datalen = compute_data_length(req, tx);
816 
817 			/*
818 			 * Disable header suppression for the payload <= 8DWS.
819 			 * If there is an uncorrectable error in the receive
820 			 * data FIFO when the received payload size is less than
821 			 * or equal to 8DWS then the RxDmaDataFifoRdUncErr is
822 			 * not reported.There is set RHF.EccErr if the header
823 			 * is not suppressed.
824 			 */
825 			if (!datalen) {
826 				SDMA_DBG(req,
827 					 "Request has data but pkt len is 0");
828 				ret = -EFAULT;
829 				goto free_tx;
830 			} else if (datalen <= 32) {
831 				tx->flags |= TXREQ_FLAGS_REQ_DISABLE_SH;
832 			}
833 		}
834 
835 		if (req->ahg_idx >= 0) {
836 			if (!req->seqnum) {
837 				ret = user_sdma_txadd_ahg(req, tx, datalen);
838 				if (ret)
839 					goto free_tx;
840 			} else {
841 				int changes;
842 
843 				changes = set_txreq_header_ahg(req, tx,
844 							       datalen);
845 				if (changes < 0) {
846 					ret = changes;
847 					goto free_tx;
848 				}
849 			}
850 		} else {
851 			ret = sdma_txinit(&tx->txreq, 0, sizeof(req->hdr) +
852 					  datalen, user_sdma_txreq_cb);
853 			if (ret)
854 				goto free_tx;
855 			/*
856 			 * Modify the header for this packet. This only needs
857 			 * to be done if we are not going to use AHG. Otherwise,
858 			 * the HW will do it based on the changes we gave it
859 			 * during sdma_txinit_ahg().
860 			 */
861 			ret = set_txreq_header(req, tx, datalen);
862 			if (ret)
863 				goto free_txreq;
864 		}
865 
866 		/*
867 		 * If the request contains any data vectors, add up to
868 		 * fragsize bytes to the descriptor.
869 		 */
870 		while (queued < datalen &&
871 		       (req->sent + data_sent) < req->data_len) {
872 			ret = user_sdma_txadd(req, tx, iovec, datalen,
873 					      &queued, &data_sent, &iov_offset);
874 			if (ret)
875 				goto free_txreq;
876 		}
877 		/*
878 		 * The txreq was submitted successfully so we can update
879 		 * the counters.
880 		 */
881 		req->koffset += datalen;
882 		if (req_opcode(req->info.ctrl) == EXPECTED)
883 			req->tidoffset += datalen;
884 		req->sent += data_sent;
885 		if (req->data_len)
886 			iovec->offset += iov_offset;
887 		list_add_tail(&tx->txreq.list, &req->txps);
888 		/*
889 		 * It is important to increment this here as it is used to
890 		 * generate the BTH.PSN and, therefore, can't be bulk-updated
891 		 * outside of the loop.
892 		 */
893 		tx->seqnum = req->seqnum++;
894 		npkts++;
895 	}
896 dosend:
897 	ret = sdma_send_txlist(req->sde,
898 			       iowait_get_ib_work(&pq->busy),
899 			       &req->txps, &count);
900 	req->seqsubmitted += count;
901 	if (req->seqsubmitted == req->info.npkts) {
902 		/*
903 		 * The txreq has already been submitted to the HW queue
904 		 * so we can free the AHG entry now. Corruption will not
905 		 * happen due to the sequential manner in which
906 		 * descriptors are processed.
907 		 */
908 		if (req->ahg_idx >= 0)
909 			sdma_ahg_free(req->sde, req->ahg_idx);
910 	}
911 	return ret;
912 
913 free_txreq:
914 	sdma_txclean(pq->dd, &tx->txreq);
915 free_tx:
916 	kmem_cache_free(pq->txreq_cache, tx);
917 	return ret;
918 }
919 
920 static u32 sdma_cache_evict(struct hfi1_user_sdma_pkt_q *pq, u32 npages)
921 {
922 	struct evict_data evict_data;
923 
924 	evict_data.cleared = 0;
925 	evict_data.target = npages;
926 	hfi1_mmu_rb_evict(pq->handler, &evict_data);
927 	return evict_data.cleared;
928 }
929 
930 static int pin_sdma_pages(struct user_sdma_request *req,
931 			  struct user_sdma_iovec *iovec,
932 			  struct sdma_mmu_node *node,
933 			  int npages)
934 {
935 	int pinned, cleared;
936 	struct page **pages;
937 	struct hfi1_user_sdma_pkt_q *pq = req->pq;
938 
939 	pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
940 	if (!pages)
941 		return -ENOMEM;
942 	memcpy(pages, node->pages, node->npages * sizeof(*pages));
943 
944 	npages -= node->npages;
945 retry:
946 	if (!hfi1_can_pin_pages(pq->dd, current->mm,
947 				atomic_read(&pq->n_locked), npages)) {
948 		cleared = sdma_cache_evict(pq, npages);
949 		if (cleared >= npages)
950 			goto retry;
951 	}
952 	pinned = hfi1_acquire_user_pages(current->mm,
953 					 ((unsigned long)iovec->iov.iov_base +
954 					 (node->npages * PAGE_SIZE)), npages, 0,
955 					 pages + node->npages);
956 	if (pinned < 0) {
957 		kfree(pages);
958 		return pinned;
959 	}
960 	if (pinned != npages) {
961 		unpin_vector_pages(current->mm, pages, node->npages, pinned);
962 		return -EFAULT;
963 	}
964 	kfree(node->pages);
965 	node->rb.len = iovec->iov.iov_len;
966 	node->pages = pages;
967 	atomic_add(pinned, &pq->n_locked);
968 	return pinned;
969 }
970 
971 static void unpin_sdma_pages(struct sdma_mmu_node *node)
972 {
973 	if (node->npages) {
974 		unpin_vector_pages(mm_from_sdma_node(node), node->pages, 0,
975 				   node->npages);
976 		atomic_sub(node->npages, &node->pq->n_locked);
977 	}
978 }
979 
980 static int pin_vector_pages(struct user_sdma_request *req,
981 			    struct user_sdma_iovec *iovec)
982 {
983 	int ret = 0, pinned, npages;
984 	struct hfi1_user_sdma_pkt_q *pq = req->pq;
985 	struct sdma_mmu_node *node = NULL;
986 	struct mmu_rb_node *rb_node;
987 	struct iovec *iov;
988 	bool extracted;
989 
990 	extracted =
991 		hfi1_mmu_rb_remove_unless_exact(pq->handler,
992 						(unsigned long)
993 						iovec->iov.iov_base,
994 						iovec->iov.iov_len, &rb_node);
995 	if (rb_node) {
996 		node = container_of(rb_node, struct sdma_mmu_node, rb);
997 		if (!extracted) {
998 			atomic_inc(&node->refcount);
999 			iovec->pages = node->pages;
1000 			iovec->npages = node->npages;
1001 			iovec->node = node;
1002 			return 0;
1003 		}
1004 	}
1005 
1006 	if (!node) {
1007 		node = kzalloc(sizeof(*node), GFP_KERNEL);
1008 		if (!node)
1009 			return -ENOMEM;
1010 
1011 		node->rb.addr = (unsigned long)iovec->iov.iov_base;
1012 		node->pq = pq;
1013 		atomic_set(&node->refcount, 0);
1014 	}
1015 
1016 	iov = &iovec->iov;
1017 	npages = num_user_pages((unsigned long)iov->iov_base, iov->iov_len);
1018 	if (node->npages < npages) {
1019 		pinned = pin_sdma_pages(req, iovec, node, npages);
1020 		if (pinned < 0) {
1021 			ret = pinned;
1022 			goto bail;
1023 		}
1024 		node->npages += pinned;
1025 		npages = node->npages;
1026 	}
1027 	iovec->pages = node->pages;
1028 	iovec->npages = npages;
1029 	iovec->node = node;
1030 
1031 	ret = hfi1_mmu_rb_insert(req->pq->handler, &node->rb);
1032 	if (ret) {
1033 		iovec->node = NULL;
1034 		goto bail;
1035 	}
1036 	return 0;
1037 bail:
1038 	unpin_sdma_pages(node);
1039 	kfree(node);
1040 	return ret;
1041 }
1042 
1043 static void unpin_vector_pages(struct mm_struct *mm, struct page **pages,
1044 			       unsigned start, unsigned npages)
1045 {
1046 	hfi1_release_user_pages(mm, pages + start, npages, false);
1047 	kfree(pages);
1048 }
1049 
1050 static int check_header_template(struct user_sdma_request *req,
1051 				 struct hfi1_pkt_header *hdr, u32 lrhlen,
1052 				 u32 datalen)
1053 {
1054 	/*
1055 	 * Perform safety checks for any type of packet:
1056 	 *    - transfer size is multiple of 64bytes
1057 	 *    - packet length is multiple of 4 bytes
1058 	 *    - packet length is not larger than MTU size
1059 	 *
1060 	 * These checks are only done for the first packet of the
1061 	 * transfer since the header is "given" to us by user space.
1062 	 * For the remainder of the packets we compute the values.
1063 	 */
1064 	if (req->info.fragsize % PIO_BLOCK_SIZE || lrhlen & 0x3 ||
1065 	    lrhlen > get_lrh_len(*hdr, req->info.fragsize))
1066 		return -EINVAL;
1067 
1068 	if (req_opcode(req->info.ctrl) == EXPECTED) {
1069 		/*
1070 		 * The header is checked only on the first packet. Furthermore,
1071 		 * we ensure that at least one TID entry is copied when the
1072 		 * request is submitted. Therefore, we don't have to verify that
1073 		 * tididx points to something sane.
1074 		 */
1075 		u32 tidval = req->tids[req->tididx],
1076 			tidlen = EXP_TID_GET(tidval, LEN) * PAGE_SIZE,
1077 			tididx = EXP_TID_GET(tidval, IDX),
1078 			tidctrl = EXP_TID_GET(tidval, CTRL),
1079 			tidoff;
1080 		__le32 kval = hdr->kdeth.ver_tid_offset;
1081 
1082 		tidoff = KDETH_GET(kval, OFFSET) *
1083 			  (KDETH_GET(req->hdr.kdeth.ver_tid_offset, OM) ?
1084 			   KDETH_OM_LARGE : KDETH_OM_SMALL);
1085 		/*
1086 		 * Expected receive packets have the following
1087 		 * additional checks:
1088 		 *     - offset is not larger than the TID size
1089 		 *     - TIDCtrl values match between header and TID array
1090 		 *     - TID indexes match between header and TID array
1091 		 */
1092 		if ((tidoff + datalen > tidlen) ||
1093 		    KDETH_GET(kval, TIDCTRL) != tidctrl ||
1094 		    KDETH_GET(kval, TID) != tididx)
1095 			return -EINVAL;
1096 	}
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Correctly set the BTH.PSN field based on type of
1102  * transfer - eager packets can just increment the PSN but
1103  * expected packets encode generation and sequence in the
1104  * BTH.PSN field so just incrementing will result in errors.
1105  */
1106 static inline u32 set_pkt_bth_psn(__be32 bthpsn, u8 expct, u32 frags)
1107 {
1108 	u32 val = be32_to_cpu(bthpsn),
1109 		mask = (HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffffull :
1110 			0xffffffull),
1111 		psn = val & mask;
1112 	if (expct)
1113 		psn = (psn & ~HFI1_KDETH_BTH_SEQ_MASK) |
1114 			((psn + frags) & HFI1_KDETH_BTH_SEQ_MASK);
1115 	else
1116 		psn = psn + frags;
1117 	return psn & mask;
1118 }
1119 
1120 static int set_txreq_header(struct user_sdma_request *req,
1121 			    struct user_sdma_txreq *tx, u32 datalen)
1122 {
1123 	struct hfi1_user_sdma_pkt_q *pq = req->pq;
1124 	struct hfi1_pkt_header *hdr = &tx->hdr;
1125 	u8 omfactor; /* KDETH.OM */
1126 	u16 pbclen;
1127 	int ret;
1128 	u32 tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen));
1129 
1130 	/* Copy the header template to the request before modification */
1131 	memcpy(hdr, &req->hdr, sizeof(*hdr));
1132 
1133 	/*
1134 	 * Check if the PBC and LRH length are mismatched. If so
1135 	 * adjust both in the header.
1136 	 */
1137 	pbclen = le16_to_cpu(hdr->pbc[0]);
1138 	if (PBC2LRH(pbclen) != lrhlen) {
1139 		pbclen = (pbclen & 0xf000) | LRH2PBC(lrhlen);
1140 		hdr->pbc[0] = cpu_to_le16(pbclen);
1141 		hdr->lrh[2] = cpu_to_be16(lrhlen >> 2);
1142 		/*
1143 		 * Third packet
1144 		 * This is the first packet in the sequence that has
1145 		 * a "static" size that can be used for the rest of
1146 		 * the packets (besides the last one).
1147 		 */
1148 		if (unlikely(req->seqnum == 2)) {
1149 			/*
1150 			 * From this point on the lengths in both the
1151 			 * PBC and LRH are the same until the last
1152 			 * packet.
1153 			 * Adjust the template so we don't have to update
1154 			 * every packet
1155 			 */
1156 			req->hdr.pbc[0] = hdr->pbc[0];
1157 			req->hdr.lrh[2] = hdr->lrh[2];
1158 		}
1159 	}
1160 	/*
1161 	 * We only have to modify the header if this is not the
1162 	 * first packet in the request. Otherwise, we use the
1163 	 * header given to us.
1164 	 */
1165 	if (unlikely(!req->seqnum)) {
1166 		ret = check_header_template(req, hdr, lrhlen, datalen);
1167 		if (ret)
1168 			return ret;
1169 		goto done;
1170 	}
1171 
1172 	hdr->bth[2] = cpu_to_be32(
1173 		set_pkt_bth_psn(hdr->bth[2],
1174 				(req_opcode(req->info.ctrl) == EXPECTED),
1175 				req->seqnum));
1176 
1177 	/* Set ACK request on last packet */
1178 	if (unlikely(tx->flags & TXREQ_FLAGS_REQ_ACK))
1179 		hdr->bth[2] |= cpu_to_be32(1UL << 31);
1180 
1181 	/* Set the new offset */
1182 	hdr->kdeth.swdata[6] = cpu_to_le32(req->koffset);
1183 	/* Expected packets have to fill in the new TID information */
1184 	if (req_opcode(req->info.ctrl) == EXPECTED) {
1185 		tidval = req->tids[req->tididx];
1186 		/*
1187 		 * If the offset puts us at the end of the current TID,
1188 		 * advance everything.
1189 		 */
1190 		if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
1191 					 PAGE_SIZE)) {
1192 			req->tidoffset = 0;
1193 			/*
1194 			 * Since we don't copy all the TIDs, all at once,
1195 			 * we have to check again.
1196 			 */
1197 			if (++req->tididx > req->n_tids - 1 ||
1198 			    !req->tids[req->tididx]) {
1199 				return -EINVAL;
1200 			}
1201 			tidval = req->tids[req->tididx];
1202 		}
1203 		omfactor = EXP_TID_GET(tidval, LEN) * PAGE_SIZE >=
1204 			KDETH_OM_MAX_SIZE ? KDETH_OM_LARGE_SHIFT :
1205 			KDETH_OM_SMALL_SHIFT;
1206 		/* Set KDETH.TIDCtrl based on value for this TID. */
1207 		KDETH_SET(hdr->kdeth.ver_tid_offset, TIDCTRL,
1208 			  EXP_TID_GET(tidval, CTRL));
1209 		/* Set KDETH.TID based on value for this TID */
1210 		KDETH_SET(hdr->kdeth.ver_tid_offset, TID,
1211 			  EXP_TID_GET(tidval, IDX));
1212 		/* Clear KDETH.SH when DISABLE_SH flag is set */
1213 		if (unlikely(tx->flags & TXREQ_FLAGS_REQ_DISABLE_SH))
1214 			KDETH_SET(hdr->kdeth.ver_tid_offset, SH, 0);
1215 		/*
1216 		 * Set the KDETH.OFFSET and KDETH.OM based on size of
1217 		 * transfer.
1218 		 */
1219 		trace_hfi1_sdma_user_tid_info(
1220 			pq->dd, pq->ctxt, pq->subctxt, req->info.comp_idx,
1221 			req->tidoffset, req->tidoffset >> omfactor,
1222 			omfactor != KDETH_OM_SMALL_SHIFT);
1223 		KDETH_SET(hdr->kdeth.ver_tid_offset, OFFSET,
1224 			  req->tidoffset >> omfactor);
1225 		KDETH_SET(hdr->kdeth.ver_tid_offset, OM,
1226 			  omfactor != KDETH_OM_SMALL_SHIFT);
1227 	}
1228 done:
1229 	trace_hfi1_sdma_user_header(pq->dd, pq->ctxt, pq->subctxt,
1230 				    req->info.comp_idx, hdr, tidval);
1231 	return sdma_txadd_kvaddr(pq->dd, &tx->txreq, hdr, sizeof(*hdr));
1232 }
1233 
1234 static int set_txreq_header_ahg(struct user_sdma_request *req,
1235 				struct user_sdma_txreq *tx, u32 datalen)
1236 {
1237 	u32 ahg[AHG_KDETH_ARRAY_SIZE];
1238 	int idx = 0;
1239 	u8 omfactor; /* KDETH.OM */
1240 	struct hfi1_user_sdma_pkt_q *pq = req->pq;
1241 	struct hfi1_pkt_header *hdr = &req->hdr;
1242 	u16 pbclen = le16_to_cpu(hdr->pbc[0]);
1243 	u32 val32, tidval = 0, lrhlen = get_lrh_len(*hdr, pad_len(datalen));
1244 	size_t array_size = ARRAY_SIZE(ahg);
1245 
1246 	if (PBC2LRH(pbclen) != lrhlen) {
1247 		/* PBC.PbcLengthDWs */
1248 		idx = ahg_header_set(ahg, idx, array_size, 0, 0, 12,
1249 				     (__force u16)cpu_to_le16(LRH2PBC(lrhlen)));
1250 		if (idx < 0)
1251 			return idx;
1252 		/* LRH.PktLen (we need the full 16 bits due to byte swap) */
1253 		idx = ahg_header_set(ahg, idx, array_size, 3, 0, 16,
1254 				     (__force u16)cpu_to_be16(lrhlen >> 2));
1255 		if (idx < 0)
1256 			return idx;
1257 	}
1258 
1259 	/*
1260 	 * Do the common updates
1261 	 */
1262 	/* BTH.PSN and BTH.A */
1263 	val32 = (be32_to_cpu(hdr->bth[2]) + req->seqnum) &
1264 		(HFI1_CAP_IS_KSET(EXTENDED_PSN) ? 0x7fffffff : 0xffffff);
1265 	if (unlikely(tx->flags & TXREQ_FLAGS_REQ_ACK))
1266 		val32 |= 1UL << 31;
1267 	idx = ahg_header_set(ahg, idx, array_size, 6, 0, 16,
1268 			     (__force u16)cpu_to_be16(val32 >> 16));
1269 	if (idx < 0)
1270 		return idx;
1271 	idx = ahg_header_set(ahg, idx, array_size, 6, 16, 16,
1272 			     (__force u16)cpu_to_be16(val32 & 0xffff));
1273 	if (idx < 0)
1274 		return idx;
1275 	/* KDETH.Offset */
1276 	idx = ahg_header_set(ahg, idx, array_size, 15, 0, 16,
1277 			     (__force u16)cpu_to_le16(req->koffset & 0xffff));
1278 	if (idx < 0)
1279 		return idx;
1280 	idx = ahg_header_set(ahg, idx, array_size, 15, 16, 16,
1281 			     (__force u16)cpu_to_le16(req->koffset >> 16));
1282 	if (idx < 0)
1283 		return idx;
1284 	if (req_opcode(req->info.ctrl) == EXPECTED) {
1285 		__le16 val;
1286 
1287 		tidval = req->tids[req->tididx];
1288 
1289 		/*
1290 		 * If the offset puts us at the end of the current TID,
1291 		 * advance everything.
1292 		 */
1293 		if ((req->tidoffset) == (EXP_TID_GET(tidval, LEN) *
1294 					 PAGE_SIZE)) {
1295 			req->tidoffset = 0;
1296 			/*
1297 			 * Since we don't copy all the TIDs, all at once,
1298 			 * we have to check again.
1299 			 */
1300 			if (++req->tididx > req->n_tids - 1 ||
1301 			    !req->tids[req->tididx])
1302 				return -EINVAL;
1303 			tidval = req->tids[req->tididx];
1304 		}
1305 		omfactor = ((EXP_TID_GET(tidval, LEN) *
1306 				  PAGE_SIZE) >=
1307 				 KDETH_OM_MAX_SIZE) ? KDETH_OM_LARGE_SHIFT :
1308 				 KDETH_OM_SMALL_SHIFT;
1309 		/* KDETH.OM and KDETH.OFFSET (TID) */
1310 		idx = ahg_header_set(
1311 				ahg, idx, array_size, 7, 0, 16,
1312 				((!!(omfactor - KDETH_OM_SMALL_SHIFT)) << 15 |
1313 				((req->tidoffset >> omfactor)
1314 				& 0x7fff)));
1315 		if (idx < 0)
1316 			return idx;
1317 		/* KDETH.TIDCtrl, KDETH.TID, KDETH.Intr, KDETH.SH */
1318 		val = cpu_to_le16(((EXP_TID_GET(tidval, CTRL) & 0x3) << 10) |
1319 				   (EXP_TID_GET(tidval, IDX) & 0x3ff));
1320 
1321 		if (unlikely(tx->flags & TXREQ_FLAGS_REQ_DISABLE_SH)) {
1322 			val |= cpu_to_le16((KDETH_GET(hdr->kdeth.ver_tid_offset,
1323 						      INTR) <<
1324 					    AHG_KDETH_INTR_SHIFT));
1325 		} else {
1326 			val |= KDETH_GET(hdr->kdeth.ver_tid_offset, SH) ?
1327 			       cpu_to_le16(0x1 << AHG_KDETH_SH_SHIFT) :
1328 			       cpu_to_le16((KDETH_GET(hdr->kdeth.ver_tid_offset,
1329 						      INTR) <<
1330 					     AHG_KDETH_INTR_SHIFT));
1331 		}
1332 
1333 		idx = ahg_header_set(ahg, idx, array_size,
1334 				     7, 16, 14, (__force u16)val);
1335 		if (idx < 0)
1336 			return idx;
1337 	}
1338 
1339 	trace_hfi1_sdma_user_header_ahg(pq->dd, pq->ctxt, pq->subctxt,
1340 					req->info.comp_idx, req->sde->this_idx,
1341 					req->ahg_idx, ahg, idx, tidval);
1342 	sdma_txinit_ahg(&tx->txreq,
1343 			SDMA_TXREQ_F_USE_AHG,
1344 			datalen, req->ahg_idx, idx,
1345 			ahg, sizeof(req->hdr),
1346 			user_sdma_txreq_cb);
1347 
1348 	return idx;
1349 }
1350 
1351 /**
1352  * user_sdma_txreq_cb() - SDMA tx request completion callback.
1353  * @txreq: valid sdma tx request
1354  * @status: success/failure of request
1355  *
1356  * Called when the SDMA progress state machine gets notification that
1357  * the SDMA descriptors for this tx request have been processed by the
1358  * DMA engine. Called in interrupt context.
1359  * Only do work on completed sequences.
1360  */
1361 static void user_sdma_txreq_cb(struct sdma_txreq *txreq, int status)
1362 {
1363 	struct user_sdma_txreq *tx =
1364 		container_of(txreq, struct user_sdma_txreq, txreq);
1365 	struct user_sdma_request *req;
1366 	struct hfi1_user_sdma_pkt_q *pq;
1367 	struct hfi1_user_sdma_comp_q *cq;
1368 	enum hfi1_sdma_comp_state state = COMPLETE;
1369 
1370 	if (!tx->req)
1371 		return;
1372 
1373 	req = tx->req;
1374 	pq = req->pq;
1375 	cq = req->cq;
1376 
1377 	if (status != SDMA_TXREQ_S_OK) {
1378 		SDMA_DBG(req, "SDMA completion with error %d",
1379 			 status);
1380 		WRITE_ONCE(req->has_error, 1);
1381 		state = ERROR;
1382 	}
1383 
1384 	req->seqcomp = tx->seqnum;
1385 	kmem_cache_free(pq->txreq_cache, tx);
1386 
1387 	/* sequence isn't complete?  We are done */
1388 	if (req->seqcomp != req->info.npkts - 1)
1389 		return;
1390 
1391 	user_sdma_free_request(req, false);
1392 	set_comp_state(pq, cq, req->info.comp_idx, state, status);
1393 	pq_update(pq);
1394 }
1395 
1396 static inline void pq_update(struct hfi1_user_sdma_pkt_q *pq)
1397 {
1398 	if (atomic_dec_and_test(&pq->n_reqs))
1399 		wake_up(&pq->wait);
1400 }
1401 
1402 static void user_sdma_free_request(struct user_sdma_request *req, bool unpin)
1403 {
1404 	int i;
1405 
1406 	if (!list_empty(&req->txps)) {
1407 		struct sdma_txreq *t, *p;
1408 
1409 		list_for_each_entry_safe(t, p, &req->txps, list) {
1410 			struct user_sdma_txreq *tx =
1411 				container_of(t, struct user_sdma_txreq, txreq);
1412 			list_del_init(&t->list);
1413 			sdma_txclean(req->pq->dd, t);
1414 			kmem_cache_free(req->pq->txreq_cache, tx);
1415 		}
1416 	}
1417 
1418 	for (i = 0; i < req->data_iovs; i++) {
1419 		struct sdma_mmu_node *node = req->iovs[i].node;
1420 
1421 		if (!node)
1422 			continue;
1423 
1424 		req->iovs[i].node = NULL;
1425 
1426 		if (unpin)
1427 			hfi1_mmu_rb_remove(req->pq->handler,
1428 					   &node->rb);
1429 		else
1430 			atomic_dec(&node->refcount);
1431 	}
1432 
1433 	kfree(req->tids);
1434 	clear_bit(req->info.comp_idx, req->pq->req_in_use);
1435 }
1436 
1437 static inline void set_comp_state(struct hfi1_user_sdma_pkt_q *pq,
1438 				  struct hfi1_user_sdma_comp_q *cq,
1439 				  u16 idx, enum hfi1_sdma_comp_state state,
1440 				  int ret)
1441 {
1442 	if (state == ERROR)
1443 		cq->comps[idx].errcode = -ret;
1444 	smp_wmb(); /* make sure errcode is visible first */
1445 	cq->comps[idx].status = state;
1446 	trace_hfi1_sdma_user_completion(pq->dd, pq->ctxt, pq->subctxt,
1447 					idx, state, ret);
1448 }
1449 
1450 static bool sdma_rb_filter(struct mmu_rb_node *node, unsigned long addr,
1451 			   unsigned long len)
1452 {
1453 	return (bool)(node->addr == addr);
1454 }
1455 
1456 static int sdma_rb_insert(void *arg, struct mmu_rb_node *mnode)
1457 {
1458 	struct sdma_mmu_node *node =
1459 		container_of(mnode, struct sdma_mmu_node, rb);
1460 
1461 	atomic_inc(&node->refcount);
1462 	return 0;
1463 }
1464 
1465 /*
1466  * Return 1 to remove the node from the rb tree and call the remove op.
1467  *
1468  * Called with the rb tree lock held.
1469  */
1470 static int sdma_rb_evict(void *arg, struct mmu_rb_node *mnode,
1471 			 void *evict_arg, bool *stop)
1472 {
1473 	struct sdma_mmu_node *node =
1474 		container_of(mnode, struct sdma_mmu_node, rb);
1475 	struct evict_data *evict_data = evict_arg;
1476 
1477 	/* is this node still being used? */
1478 	if (atomic_read(&node->refcount))
1479 		return 0; /* keep this node */
1480 
1481 	/* this node will be evicted, add its pages to our count */
1482 	evict_data->cleared += node->npages;
1483 
1484 	/* have enough pages been cleared? */
1485 	if (evict_data->cleared >= evict_data->target)
1486 		*stop = true;
1487 
1488 	return 1; /* remove this node */
1489 }
1490 
1491 static void sdma_rb_remove(void *arg, struct mmu_rb_node *mnode)
1492 {
1493 	struct sdma_mmu_node *node =
1494 		container_of(mnode, struct sdma_mmu_node, rb);
1495 
1496 	unpin_sdma_pages(node);
1497 	kfree(node);
1498 }
1499 
1500 static int sdma_rb_invalidate(void *arg, struct mmu_rb_node *mnode)
1501 {
1502 	struct sdma_mmu_node *node =
1503 		container_of(mnode, struct sdma_mmu_node, rb);
1504 
1505 	if (!atomic_read(&node->refcount))
1506 		return 1;
1507 	return 0;
1508 }
1509