1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright(c) 2020 Cornelis Networks, Inc. 4 * Copyright(c) 2015-2018 Intel Corporation. 5 */ 6 #include <asm/page.h> 7 #include <linux/string.h> 8 9 #include "mmu_rb.h" 10 #include "user_exp_rcv.h" 11 #include "trace.h" 12 13 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, 14 struct exp_tid_set *set, 15 struct hfi1_filedata *fd); 16 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages); 17 static int set_rcvarray_entry(struct hfi1_filedata *fd, 18 struct tid_user_buf *tbuf, 19 u32 rcventry, struct tid_group *grp, 20 u16 pageidx, unsigned int npages); 21 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, 22 struct tid_rb_node *tnode); 23 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni, 24 const struct mmu_notifier_range *range, 25 unsigned long cur_seq); 26 static bool tid_cover_invalidate(struct mmu_interval_notifier *mni, 27 const struct mmu_notifier_range *range, 28 unsigned long cur_seq); 29 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *, 30 struct tid_group *grp, u16 count, 31 u32 *tidlist, unsigned int *tididx, 32 unsigned int *pmapped); 33 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo); 34 static void __clear_tid_node(struct hfi1_filedata *fd, 35 struct tid_rb_node *node); 36 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node); 37 38 static const struct mmu_interval_notifier_ops tid_mn_ops = { 39 .invalidate = tid_rb_invalidate, 40 }; 41 static const struct mmu_interval_notifier_ops tid_cover_ops = { 42 .invalidate = tid_cover_invalidate, 43 }; 44 45 /* 46 * Initialize context and file private data needed for Expected 47 * receive caching. This needs to be done after the context has 48 * been configured with the eager/expected RcvEntry counts. 49 */ 50 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd, 51 struct hfi1_ctxtdata *uctxt) 52 { 53 int ret = 0; 54 55 fd->entry_to_rb = kcalloc(uctxt->expected_count, 56 sizeof(struct rb_node *), 57 GFP_KERNEL); 58 if (!fd->entry_to_rb) 59 return -ENOMEM; 60 61 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) { 62 fd->invalid_tid_idx = 0; 63 fd->invalid_tids = kcalloc(uctxt->expected_count, 64 sizeof(*fd->invalid_tids), 65 GFP_KERNEL); 66 if (!fd->invalid_tids) { 67 kfree(fd->entry_to_rb); 68 fd->entry_to_rb = NULL; 69 return -ENOMEM; 70 } 71 fd->use_mn = true; 72 } 73 74 /* 75 * PSM does not have a good way to separate, count, and 76 * effectively enforce a limit on RcvArray entries used by 77 * subctxts (when context sharing is used) when TID caching 78 * is enabled. To help with that, we calculate a per-process 79 * RcvArray entry share and enforce that. 80 * If TID caching is not in use, PSM deals with usage on its 81 * own. In that case, we allow any subctxt to take all of the 82 * entries. 83 * 84 * Make sure that we set the tid counts only after successful 85 * init. 86 */ 87 spin_lock(&fd->tid_lock); 88 if (uctxt->subctxt_cnt && fd->use_mn) { 89 u16 remainder; 90 91 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt; 92 remainder = uctxt->expected_count % uctxt->subctxt_cnt; 93 if (remainder && fd->subctxt < remainder) 94 fd->tid_limit++; 95 } else { 96 fd->tid_limit = uctxt->expected_count; 97 } 98 spin_unlock(&fd->tid_lock); 99 100 return ret; 101 } 102 103 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd) 104 { 105 struct hfi1_ctxtdata *uctxt = fd->uctxt; 106 107 mutex_lock(&uctxt->exp_mutex); 108 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list)) 109 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd); 110 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list)) 111 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd); 112 mutex_unlock(&uctxt->exp_mutex); 113 114 kfree(fd->invalid_tids); 115 fd->invalid_tids = NULL; 116 117 kfree(fd->entry_to_rb); 118 fd->entry_to_rb = NULL; 119 } 120 121 /* 122 * Release pinned receive buffer pages. 123 * 124 * @mapped: true if the pages have been DMA mapped. false otherwise. 125 * @idx: Index of the first page to unpin. 126 * @npages: No of pages to unpin. 127 * 128 * If the pages have been DMA mapped (indicated by mapped parameter), their 129 * info will be passed via a struct tid_rb_node. If they haven't been mapped, 130 * their info will be passed via a struct tid_user_buf. 131 */ 132 static void unpin_rcv_pages(struct hfi1_filedata *fd, 133 struct tid_user_buf *tidbuf, 134 struct tid_rb_node *node, 135 unsigned int idx, 136 unsigned int npages, 137 bool mapped) 138 { 139 struct page **pages; 140 struct hfi1_devdata *dd = fd->uctxt->dd; 141 struct mm_struct *mm; 142 143 if (mapped) { 144 dma_unmap_single(&dd->pcidev->dev, node->dma_addr, 145 node->npages * PAGE_SIZE, DMA_FROM_DEVICE); 146 pages = &node->pages[idx]; 147 mm = mm_from_tid_node(node); 148 } else { 149 pages = &tidbuf->pages[idx]; 150 mm = current->mm; 151 } 152 hfi1_release_user_pages(mm, pages, npages, mapped); 153 fd->tid_n_pinned -= npages; 154 } 155 156 /* 157 * Pin receive buffer pages. 158 */ 159 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf) 160 { 161 int pinned; 162 unsigned int npages = tidbuf->npages; 163 unsigned long vaddr = tidbuf->vaddr; 164 struct page **pages = NULL; 165 struct hfi1_devdata *dd = fd->uctxt->dd; 166 167 if (npages > fd->uctxt->expected_count) { 168 dd_dev_err(dd, "Expected buffer too big\n"); 169 return -EINVAL; 170 } 171 172 /* Allocate the array of struct page pointers needed for pinning */ 173 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); 174 if (!pages) 175 return -ENOMEM; 176 177 /* 178 * Pin all the pages of the user buffer. If we can't pin all the 179 * pages, accept the amount pinned so far and program only that. 180 * User space knows how to deal with partially programmed buffers. 181 */ 182 if (!hfi1_can_pin_pages(dd, current->mm, fd->tid_n_pinned, npages)) { 183 kfree(pages); 184 return -ENOMEM; 185 } 186 187 pinned = hfi1_acquire_user_pages(current->mm, vaddr, npages, true, pages); 188 if (pinned <= 0) { 189 kfree(pages); 190 return pinned; 191 } 192 tidbuf->pages = pages; 193 fd->tid_n_pinned += pinned; 194 return pinned; 195 } 196 197 /* 198 * RcvArray entry allocation for Expected Receives is done by the 199 * following algorithm: 200 * 201 * The context keeps 3 lists of groups of RcvArray entries: 202 * 1. List of empty groups - tid_group_list 203 * This list is created during user context creation and 204 * contains elements which describe sets (of 8) of empty 205 * RcvArray entries. 206 * 2. List of partially used groups - tid_used_list 207 * This list contains sets of RcvArray entries which are 208 * not completely used up. Another mapping request could 209 * use some of all of the remaining entries. 210 * 3. List of full groups - tid_full_list 211 * This is the list where sets that are completely used 212 * up go. 213 * 214 * An attempt to optimize the usage of RcvArray entries is 215 * made by finding all sets of physically contiguous pages in a 216 * user's buffer. 217 * These physically contiguous sets are further split into 218 * sizes supported by the receive engine of the HFI. The 219 * resulting sets of pages are stored in struct tid_pageset, 220 * which describes the sets as: 221 * * .count - number of pages in this set 222 * * .idx - starting index into struct page ** array 223 * of this set 224 * 225 * From this point on, the algorithm deals with the page sets 226 * described above. The number of pagesets is divided by the 227 * RcvArray group size to produce the number of full groups 228 * needed. 229 * 230 * Groups from the 3 lists are manipulated using the following 231 * rules: 232 * 1. For each set of 8 pagesets, a complete group from 233 * tid_group_list is taken, programmed, and moved to 234 * the tid_full_list list. 235 * 2. For all remaining pagesets: 236 * 2.1 If the tid_used_list is empty and the tid_group_list 237 * is empty, stop processing pageset and return only 238 * what has been programmed up to this point. 239 * 2.2 If the tid_used_list is empty and the tid_group_list 240 * is not empty, move a group from tid_group_list to 241 * tid_used_list. 242 * 2.3 For each group is tid_used_group, program as much as 243 * can fit into the group. If the group becomes fully 244 * used, move it to tid_full_list. 245 */ 246 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd, 247 struct hfi1_tid_info *tinfo) 248 { 249 int ret = 0, need_group = 0, pinned; 250 struct hfi1_ctxtdata *uctxt = fd->uctxt; 251 struct hfi1_devdata *dd = uctxt->dd; 252 unsigned int ngroups, pageset_count, 253 tididx = 0, mapped, mapped_pages = 0; 254 u32 *tidlist = NULL; 255 struct tid_user_buf *tidbuf; 256 unsigned long mmu_seq = 0; 257 258 if (!PAGE_ALIGNED(tinfo->vaddr)) 259 return -EINVAL; 260 if (tinfo->length == 0) 261 return -EINVAL; 262 263 tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL); 264 if (!tidbuf) 265 return -ENOMEM; 266 267 mutex_init(&tidbuf->cover_mutex); 268 tidbuf->vaddr = tinfo->vaddr; 269 tidbuf->length = tinfo->length; 270 tidbuf->npages = num_user_pages(tidbuf->vaddr, tidbuf->length); 271 tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets), 272 GFP_KERNEL); 273 if (!tidbuf->psets) { 274 ret = -ENOMEM; 275 goto fail_release_mem; 276 } 277 278 if (fd->use_mn) { 279 ret = mmu_interval_notifier_insert( 280 &tidbuf->notifier, current->mm, 281 tidbuf->vaddr, tidbuf->npages * PAGE_SIZE, 282 &tid_cover_ops); 283 if (ret) 284 goto fail_release_mem; 285 mmu_seq = mmu_interval_read_begin(&tidbuf->notifier); 286 } 287 288 pinned = pin_rcv_pages(fd, tidbuf); 289 if (pinned <= 0) { 290 ret = (pinned < 0) ? pinned : -ENOSPC; 291 goto fail_unpin; 292 } 293 294 /* Find sets of physically contiguous pages */ 295 tidbuf->n_psets = find_phys_blocks(tidbuf, pinned); 296 297 /* Reserve the number of expected tids to be used. */ 298 spin_lock(&fd->tid_lock); 299 if (fd->tid_used + tidbuf->n_psets > fd->tid_limit) 300 pageset_count = fd->tid_limit - fd->tid_used; 301 else 302 pageset_count = tidbuf->n_psets; 303 fd->tid_used += pageset_count; 304 spin_unlock(&fd->tid_lock); 305 306 if (!pageset_count) { 307 ret = -ENOSPC; 308 goto fail_unreserve; 309 } 310 311 ngroups = pageset_count / dd->rcv_entries.group_size; 312 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL); 313 if (!tidlist) { 314 ret = -ENOMEM; 315 goto fail_unreserve; 316 } 317 318 tididx = 0; 319 320 /* 321 * From this point on, we are going to be using shared (between master 322 * and subcontexts) context resources. We need to take the lock. 323 */ 324 mutex_lock(&uctxt->exp_mutex); 325 /* 326 * The first step is to program the RcvArray entries which are complete 327 * groups. 328 */ 329 while (ngroups && uctxt->tid_group_list.count) { 330 struct tid_group *grp = 331 tid_group_pop(&uctxt->tid_group_list); 332 333 ret = program_rcvarray(fd, tidbuf, grp, 334 dd->rcv_entries.group_size, 335 tidlist, &tididx, &mapped); 336 /* 337 * If there was a failure to program the RcvArray 338 * entries for the entire group, reset the grp fields 339 * and add the grp back to the free group list. 340 */ 341 if (ret <= 0) { 342 tid_group_add_tail(grp, &uctxt->tid_group_list); 343 hfi1_cdbg(TID, 344 "Failed to program RcvArray group %d", ret); 345 goto unlock; 346 } 347 348 tid_group_add_tail(grp, &uctxt->tid_full_list); 349 ngroups--; 350 mapped_pages += mapped; 351 } 352 353 while (tididx < pageset_count) { 354 struct tid_group *grp, *ptr; 355 /* 356 * If we don't have any partially used tid groups, check 357 * if we have empty groups. If so, take one from there and 358 * put in the partially used list. 359 */ 360 if (!uctxt->tid_used_list.count || need_group) { 361 if (!uctxt->tid_group_list.count) 362 goto unlock; 363 364 grp = tid_group_pop(&uctxt->tid_group_list); 365 tid_group_add_tail(grp, &uctxt->tid_used_list); 366 need_group = 0; 367 } 368 /* 369 * There is an optimization opportunity here - instead of 370 * fitting as many page sets as we can, check for a group 371 * later on in the list that could fit all of them. 372 */ 373 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list, 374 list) { 375 unsigned use = min_t(unsigned, pageset_count - tididx, 376 grp->size - grp->used); 377 378 ret = program_rcvarray(fd, tidbuf, grp, 379 use, tidlist, 380 &tididx, &mapped); 381 if (ret < 0) { 382 hfi1_cdbg(TID, 383 "Failed to program RcvArray entries %d", 384 ret); 385 goto unlock; 386 } else if (ret > 0) { 387 if (grp->used == grp->size) 388 tid_group_move(grp, 389 &uctxt->tid_used_list, 390 &uctxt->tid_full_list); 391 mapped_pages += mapped; 392 need_group = 0; 393 /* Check if we are done so we break out early */ 394 if (tididx >= pageset_count) 395 break; 396 } else if (WARN_ON(ret == 0)) { 397 /* 398 * If ret is 0, we did not program any entries 399 * into this group, which can only happen if 400 * we've screwed up the accounting somewhere. 401 * Warn and try to continue. 402 */ 403 need_group = 1; 404 } 405 } 406 } 407 unlock: 408 mutex_unlock(&uctxt->exp_mutex); 409 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx, 410 mapped_pages, ret); 411 412 /* fail if nothing was programmed, set error if none provided */ 413 if (tididx == 0) { 414 if (ret >= 0) 415 ret = -ENOSPC; 416 goto fail_unreserve; 417 } 418 419 /* adjust reserved tid_used to actual count */ 420 spin_lock(&fd->tid_lock); 421 fd->tid_used -= pageset_count - tididx; 422 spin_unlock(&fd->tid_lock); 423 424 /* unpin all pages not covered by a TID */ 425 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages, pinned - mapped_pages, 426 false); 427 428 if (fd->use_mn) { 429 /* check for an invalidate during setup */ 430 bool fail = false; 431 432 mutex_lock(&tidbuf->cover_mutex); 433 fail = mmu_interval_read_retry(&tidbuf->notifier, mmu_seq); 434 mutex_unlock(&tidbuf->cover_mutex); 435 436 if (fail) { 437 ret = -EBUSY; 438 goto fail_unprogram; 439 } 440 } 441 442 tinfo->tidcnt = tididx; 443 tinfo->length = mapped_pages * PAGE_SIZE; 444 445 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist), 446 tidlist, sizeof(tidlist[0]) * tididx)) { 447 ret = -EFAULT; 448 goto fail_unprogram; 449 } 450 451 if (fd->use_mn) 452 mmu_interval_notifier_remove(&tidbuf->notifier); 453 kfree(tidbuf->pages); 454 kfree(tidbuf->psets); 455 kfree(tidbuf); 456 kfree(tidlist); 457 return 0; 458 459 fail_unprogram: 460 /* unprogram, unmap, and unpin all allocated TIDs */ 461 tinfo->tidlist = (unsigned long)tidlist; 462 hfi1_user_exp_rcv_clear(fd, tinfo); 463 tinfo->tidlist = 0; 464 pinned = 0; /* nothing left to unpin */ 465 pageset_count = 0; /* nothing left reserved */ 466 fail_unreserve: 467 spin_lock(&fd->tid_lock); 468 fd->tid_used -= pageset_count; 469 spin_unlock(&fd->tid_lock); 470 fail_unpin: 471 if (fd->use_mn) 472 mmu_interval_notifier_remove(&tidbuf->notifier); 473 if (pinned > 0) 474 unpin_rcv_pages(fd, tidbuf, NULL, 0, pinned, false); 475 fail_release_mem: 476 kfree(tidbuf->pages); 477 kfree(tidbuf->psets); 478 kfree(tidbuf); 479 kfree(tidlist); 480 return ret; 481 } 482 483 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd, 484 struct hfi1_tid_info *tinfo) 485 { 486 int ret = 0; 487 struct hfi1_ctxtdata *uctxt = fd->uctxt; 488 u32 *tidinfo; 489 unsigned tididx; 490 491 if (unlikely(tinfo->tidcnt > fd->tid_used)) 492 return -EINVAL; 493 494 tidinfo = memdup_array_user(u64_to_user_ptr(tinfo->tidlist), 495 tinfo->tidcnt, sizeof(tidinfo[0])); 496 if (IS_ERR(tidinfo)) 497 return PTR_ERR(tidinfo); 498 499 mutex_lock(&uctxt->exp_mutex); 500 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) { 501 ret = unprogram_rcvarray(fd, tidinfo[tididx]); 502 if (ret) { 503 hfi1_cdbg(TID, "Failed to unprogram rcv array %d", 504 ret); 505 break; 506 } 507 } 508 spin_lock(&fd->tid_lock); 509 fd->tid_used -= tididx; 510 spin_unlock(&fd->tid_lock); 511 tinfo->tidcnt = tididx; 512 mutex_unlock(&uctxt->exp_mutex); 513 514 kfree(tidinfo); 515 return ret; 516 } 517 518 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd, 519 struct hfi1_tid_info *tinfo) 520 { 521 struct hfi1_ctxtdata *uctxt = fd->uctxt; 522 unsigned long *ev = uctxt->dd->events + 523 (uctxt_offset(uctxt) + fd->subctxt); 524 u32 *array; 525 int ret = 0; 526 527 /* 528 * copy_to_user() can sleep, which will leave the invalid_lock 529 * locked and cause the MMU notifier to be blocked on the lock 530 * for a long time. 531 * Copy the data to a local buffer so we can release the lock. 532 */ 533 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL); 534 if (!array) 535 return -EFAULT; 536 537 spin_lock(&fd->invalid_lock); 538 if (fd->invalid_tid_idx) { 539 memcpy(array, fd->invalid_tids, sizeof(*array) * 540 fd->invalid_tid_idx); 541 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) * 542 fd->invalid_tid_idx); 543 tinfo->tidcnt = fd->invalid_tid_idx; 544 fd->invalid_tid_idx = 0; 545 /* 546 * Reset the user flag while still holding the lock. 547 * Otherwise, PSM can miss events. 548 */ 549 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); 550 } else { 551 tinfo->tidcnt = 0; 552 } 553 spin_unlock(&fd->invalid_lock); 554 555 if (tinfo->tidcnt) { 556 if (copy_to_user((void __user *)tinfo->tidlist, 557 array, sizeof(*array) * tinfo->tidcnt)) 558 ret = -EFAULT; 559 } 560 kfree(array); 561 562 return ret; 563 } 564 565 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages) 566 { 567 unsigned pagecount, pageidx, setcount = 0, i; 568 unsigned long pfn, this_pfn; 569 struct page **pages = tidbuf->pages; 570 struct tid_pageset *list = tidbuf->psets; 571 572 if (!npages) 573 return 0; 574 575 /* 576 * Look for sets of physically contiguous pages in the user buffer. 577 * This will allow us to optimize Expected RcvArray entry usage by 578 * using the bigger supported sizes. 579 */ 580 pfn = page_to_pfn(pages[0]); 581 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) { 582 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0; 583 584 /* 585 * If the pfn's are not sequential, pages are not physically 586 * contiguous. 587 */ 588 if (this_pfn != ++pfn) { 589 /* 590 * At this point we have to loop over the set of 591 * physically contiguous pages and break them down it 592 * sizes supported by the HW. 593 * There are two main constraints: 594 * 1. The max buffer size is MAX_EXPECTED_BUFFER. 595 * If the total set size is bigger than that 596 * program only a MAX_EXPECTED_BUFFER chunk. 597 * 2. The buffer size has to be a power of two. If 598 * it is not, round down to the closes power of 599 * 2 and program that size. 600 */ 601 while (pagecount) { 602 int maxpages = pagecount; 603 u32 bufsize = pagecount * PAGE_SIZE; 604 605 if (bufsize > MAX_EXPECTED_BUFFER) 606 maxpages = 607 MAX_EXPECTED_BUFFER >> 608 PAGE_SHIFT; 609 else if (!is_power_of_2(bufsize)) 610 maxpages = 611 rounddown_pow_of_two(bufsize) >> 612 PAGE_SHIFT; 613 614 list[setcount].idx = pageidx; 615 list[setcount].count = maxpages; 616 pagecount -= maxpages; 617 pageidx += maxpages; 618 setcount++; 619 } 620 pageidx = i; 621 pagecount = 1; 622 pfn = this_pfn; 623 } else { 624 pagecount++; 625 } 626 } 627 return setcount; 628 } 629 630 /** 631 * program_rcvarray() - program an RcvArray group with receive buffers 632 * @fd: filedata pointer 633 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting 634 * virtual address, buffer length, page pointers, pagesets (array of 635 * struct tid_pageset holding information on physically contiguous 636 * chunks from the user buffer), and other fields. 637 * @grp: RcvArray group 638 * @count: number of struct tid_pageset's to program 639 * @tidlist: the array of u32 elements when the information about the 640 * programmed RcvArray entries is to be encoded. 641 * @tididx: starting offset into tidlist 642 * @pmapped: (output parameter) number of pages programmed into the RcvArray 643 * entries. 644 * 645 * This function will program up to 'count' number of RcvArray entries from the 646 * group 'grp'. To make best use of write-combining writes, the function will 647 * perform writes to the unused RcvArray entries which will be ignored by the 648 * HW. Each RcvArray entry will be programmed with a physically contiguous 649 * buffer chunk from the user's virtual buffer. 650 * 651 * Return: 652 * -EINVAL if the requested count is larger than the size of the group, 653 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or 654 * number of RcvArray entries programmed. 655 */ 656 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf, 657 struct tid_group *grp, u16 count, 658 u32 *tidlist, unsigned int *tididx, 659 unsigned int *pmapped) 660 { 661 struct hfi1_ctxtdata *uctxt = fd->uctxt; 662 struct hfi1_devdata *dd = uctxt->dd; 663 u16 idx; 664 unsigned int start = *tididx; 665 u32 tidinfo = 0, rcventry, useidx = 0; 666 int mapped = 0; 667 668 /* Count should never be larger than the group size */ 669 if (count > grp->size) 670 return -EINVAL; 671 672 /* Find the first unused entry in the group */ 673 for (idx = 0; idx < grp->size; idx++) { 674 if (!(grp->map & (1 << idx))) { 675 useidx = idx; 676 break; 677 } 678 rcv_array_wc_fill(dd, grp->base + idx); 679 } 680 681 idx = 0; 682 while (idx < count) { 683 u16 npages, pageidx, setidx = start + idx; 684 int ret = 0; 685 686 /* 687 * If this entry in the group is used, move to the next one. 688 * If we go past the end of the group, exit the loop. 689 */ 690 if (useidx >= grp->size) { 691 break; 692 } else if (grp->map & (1 << useidx)) { 693 rcv_array_wc_fill(dd, grp->base + useidx); 694 useidx++; 695 continue; 696 } 697 698 rcventry = grp->base + useidx; 699 npages = tbuf->psets[setidx].count; 700 pageidx = tbuf->psets[setidx].idx; 701 702 ret = set_rcvarray_entry(fd, tbuf, 703 rcventry, grp, pageidx, 704 npages); 705 if (ret) 706 return ret; 707 mapped += npages; 708 709 tidinfo = create_tid(rcventry - uctxt->expected_base, npages); 710 tidlist[(*tididx)++] = tidinfo; 711 grp->used++; 712 grp->map |= 1 << useidx++; 713 idx++; 714 } 715 716 /* Fill the rest of the group with "blank" writes */ 717 for (; useidx < grp->size; useidx++) 718 rcv_array_wc_fill(dd, grp->base + useidx); 719 *pmapped = mapped; 720 return idx; 721 } 722 723 static int set_rcvarray_entry(struct hfi1_filedata *fd, 724 struct tid_user_buf *tbuf, 725 u32 rcventry, struct tid_group *grp, 726 u16 pageidx, unsigned int npages) 727 { 728 int ret; 729 struct hfi1_ctxtdata *uctxt = fd->uctxt; 730 struct tid_rb_node *node; 731 struct hfi1_devdata *dd = uctxt->dd; 732 dma_addr_t phys; 733 struct page **pages = tbuf->pages + pageidx; 734 735 /* 736 * Allocate the node first so we can handle a potential 737 * failure before we've programmed anything. 738 */ 739 node = kzalloc(struct_size(node, pages, npages), GFP_KERNEL); 740 if (!node) 741 return -ENOMEM; 742 743 phys = dma_map_single(&dd->pcidev->dev, __va(page_to_phys(pages[0])), 744 npages * PAGE_SIZE, DMA_FROM_DEVICE); 745 if (dma_mapping_error(&dd->pcidev->dev, phys)) { 746 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n", 747 phys); 748 kfree(node); 749 return -EFAULT; 750 } 751 752 node->fdata = fd; 753 mutex_init(&node->invalidate_mutex); 754 node->phys = page_to_phys(pages[0]); 755 node->npages = npages; 756 node->rcventry = rcventry; 757 node->dma_addr = phys; 758 node->grp = grp; 759 node->freed = false; 760 memcpy(node->pages, pages, flex_array_size(node, pages, npages)); 761 762 if (fd->use_mn) { 763 ret = mmu_interval_notifier_insert( 764 &node->notifier, current->mm, 765 tbuf->vaddr + (pageidx * PAGE_SIZE), npages * PAGE_SIZE, 766 &tid_mn_ops); 767 if (ret) 768 goto out_unmap; 769 } 770 fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node; 771 772 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1); 773 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages, 774 node->notifier.interval_tree.start, node->phys, 775 phys); 776 return 0; 777 778 out_unmap: 779 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d", 780 node->rcventry, node->notifier.interval_tree.start, 781 node->phys, ret); 782 dma_unmap_single(&dd->pcidev->dev, phys, npages * PAGE_SIZE, 783 DMA_FROM_DEVICE); 784 kfree(node); 785 return -EFAULT; 786 } 787 788 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo) 789 { 790 struct hfi1_ctxtdata *uctxt = fd->uctxt; 791 struct hfi1_devdata *dd = uctxt->dd; 792 struct tid_rb_node *node; 793 u32 tidctrl = EXP_TID_GET(tidinfo, CTRL); 794 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry; 795 796 if (tidctrl == 0x3 || tidctrl == 0x0) 797 return -EINVAL; 798 799 rcventry = tididx + (tidctrl - 1); 800 801 if (rcventry >= uctxt->expected_count) { 802 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n", 803 rcventry, uctxt->ctxt); 804 return -EINVAL; 805 } 806 807 node = fd->entry_to_rb[rcventry]; 808 if (!node || node->rcventry != (uctxt->expected_base + rcventry)) 809 return -EBADF; 810 811 if (fd->use_mn) 812 mmu_interval_notifier_remove(&node->notifier); 813 cacheless_tid_rb_remove(fd, node); 814 815 return 0; 816 } 817 818 static void __clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) 819 { 820 struct hfi1_ctxtdata *uctxt = fd->uctxt; 821 struct hfi1_devdata *dd = uctxt->dd; 822 823 mutex_lock(&node->invalidate_mutex); 824 if (node->freed) 825 goto done; 826 node->freed = true; 827 828 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry, 829 node->npages, 830 node->notifier.interval_tree.start, node->phys, 831 node->dma_addr); 832 833 /* Make sure device has seen the write before pages are unpinned */ 834 hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0); 835 836 unpin_rcv_pages(fd, NULL, node, 0, node->npages, true); 837 done: 838 mutex_unlock(&node->invalidate_mutex); 839 } 840 841 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) 842 { 843 struct hfi1_ctxtdata *uctxt = fd->uctxt; 844 845 __clear_tid_node(fd, node); 846 847 node->grp->used--; 848 node->grp->map &= ~(1 << (node->rcventry - node->grp->base)); 849 850 if (node->grp->used == node->grp->size - 1) 851 tid_group_move(node->grp, &uctxt->tid_full_list, 852 &uctxt->tid_used_list); 853 else if (!node->grp->used) 854 tid_group_move(node->grp, &uctxt->tid_used_list, 855 &uctxt->tid_group_list); 856 kfree(node); 857 } 858 859 /* 860 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with 861 * clearing nodes in the non-cached case. 862 */ 863 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, 864 struct exp_tid_set *set, 865 struct hfi1_filedata *fd) 866 { 867 struct tid_group *grp, *ptr; 868 int i; 869 870 list_for_each_entry_safe(grp, ptr, &set->list, list) { 871 list_del_init(&grp->list); 872 873 for (i = 0; i < grp->size; i++) { 874 if (grp->map & (1 << i)) { 875 u16 rcventry = grp->base + i; 876 struct tid_rb_node *node; 877 878 node = fd->entry_to_rb[rcventry - 879 uctxt->expected_base]; 880 if (!node || node->rcventry != rcventry) 881 continue; 882 883 if (fd->use_mn) 884 mmu_interval_notifier_remove( 885 &node->notifier); 886 cacheless_tid_rb_remove(fd, node); 887 } 888 } 889 } 890 } 891 892 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni, 893 const struct mmu_notifier_range *range, 894 unsigned long cur_seq) 895 { 896 struct tid_rb_node *node = 897 container_of(mni, struct tid_rb_node, notifier); 898 struct hfi1_filedata *fdata = node->fdata; 899 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 900 901 if (node->freed) 902 return true; 903 904 /* take action only if unmapping */ 905 if (range->event != MMU_NOTIFY_UNMAP) 906 return true; 907 908 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, 909 node->notifier.interval_tree.start, 910 node->rcventry, node->npages, node->dma_addr); 911 912 /* clear the hardware rcvarray entry */ 913 __clear_tid_node(fdata, node); 914 915 spin_lock(&fdata->invalid_lock); 916 if (fdata->invalid_tid_idx < uctxt->expected_count) { 917 fdata->invalid_tids[fdata->invalid_tid_idx] = 918 create_tid(node->rcventry - uctxt->expected_base, 919 node->npages); 920 if (!fdata->invalid_tid_idx) { 921 unsigned long *ev; 922 923 /* 924 * hfi1_set_uevent_bits() sets a user event flag 925 * for all processes. Because calling into the 926 * driver to process TID cache invalidations is 927 * expensive and TID cache invalidations are 928 * handled on a per-process basis, we can 929 * optimize this to set the flag only for the 930 * process in question. 931 */ 932 ev = uctxt->dd->events + 933 (uctxt_offset(uctxt) + fdata->subctxt); 934 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); 935 } 936 fdata->invalid_tid_idx++; 937 } 938 spin_unlock(&fdata->invalid_lock); 939 return true; 940 } 941 942 static bool tid_cover_invalidate(struct mmu_interval_notifier *mni, 943 const struct mmu_notifier_range *range, 944 unsigned long cur_seq) 945 { 946 struct tid_user_buf *tidbuf = 947 container_of(mni, struct tid_user_buf, notifier); 948 949 /* take action only if unmapping */ 950 if (range->event == MMU_NOTIFY_UNMAP) { 951 mutex_lock(&tidbuf->cover_mutex); 952 mmu_interval_set_seq(mni, cur_seq); 953 mutex_unlock(&tidbuf->cover_mutex); 954 } 955 956 return true; 957 } 958 959 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, 960 struct tid_rb_node *tnode) 961 { 962 u32 base = fdata->uctxt->expected_base; 963 964 fdata->entry_to_rb[tnode->rcventry - base] = NULL; 965 clear_tid_node(fdata, tnode); 966 } 967