1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <asm/page.h> 48 #include <linux/string.h> 49 50 #include "mmu_rb.h" 51 #include "user_exp_rcv.h" 52 #include "trace.h" 53 54 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, 55 struct exp_tid_set *set, 56 struct hfi1_filedata *fd); 57 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages); 58 static int set_rcvarray_entry(struct hfi1_filedata *fd, 59 struct tid_user_buf *tbuf, 60 u32 rcventry, struct tid_group *grp, 61 u16 pageidx, unsigned int npages); 62 static int tid_rb_insert(void *arg, struct mmu_rb_node *node); 63 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, 64 struct tid_rb_node *tnode); 65 static void tid_rb_remove(void *arg, struct mmu_rb_node *node); 66 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode); 67 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *, 68 struct tid_group *grp, 69 unsigned int start, u16 count, 70 u32 *tidlist, unsigned int *tididx, 71 unsigned int *pmapped); 72 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo, 73 struct tid_group **grp); 74 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node); 75 76 static struct mmu_rb_ops tid_rb_ops = { 77 .insert = tid_rb_insert, 78 .remove = tid_rb_remove, 79 .invalidate = tid_rb_invalidate 80 }; 81 82 /* 83 * Initialize context and file private data needed for Expected 84 * receive caching. This needs to be done after the context has 85 * been configured with the eager/expected RcvEntry counts. 86 */ 87 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd, 88 struct hfi1_ctxtdata *uctxt) 89 { 90 struct hfi1_devdata *dd = uctxt->dd; 91 int ret = 0; 92 93 spin_lock_init(&fd->tid_lock); 94 spin_lock_init(&fd->invalid_lock); 95 96 fd->entry_to_rb = kcalloc(uctxt->expected_count, 97 sizeof(struct rb_node *), 98 GFP_KERNEL); 99 if (!fd->entry_to_rb) 100 return -ENOMEM; 101 102 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) { 103 fd->invalid_tid_idx = 0; 104 fd->invalid_tids = kcalloc(uctxt->expected_count, 105 sizeof(*fd->invalid_tids), 106 GFP_KERNEL); 107 if (!fd->invalid_tids) { 108 kfree(fd->entry_to_rb); 109 fd->entry_to_rb = NULL; 110 return -ENOMEM; 111 } 112 113 /* 114 * Register MMU notifier callbacks. If the registration 115 * fails, continue without TID caching for this context. 116 */ 117 ret = hfi1_mmu_rb_register(fd, fd->mm, &tid_rb_ops, 118 dd->pport->hfi1_wq, 119 &fd->handler); 120 if (ret) { 121 dd_dev_info(dd, 122 "Failed MMU notifier registration %d\n", 123 ret); 124 ret = 0; 125 } 126 } 127 128 /* 129 * PSM does not have a good way to separate, count, and 130 * effectively enforce a limit on RcvArray entries used by 131 * subctxts (when context sharing is used) when TID caching 132 * is enabled. To help with that, we calculate a per-process 133 * RcvArray entry share and enforce that. 134 * If TID caching is not in use, PSM deals with usage on its 135 * own. In that case, we allow any subctxt to take all of the 136 * entries. 137 * 138 * Make sure that we set the tid counts only after successful 139 * init. 140 */ 141 spin_lock(&fd->tid_lock); 142 if (uctxt->subctxt_cnt && fd->handler) { 143 u16 remainder; 144 145 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt; 146 remainder = uctxt->expected_count % uctxt->subctxt_cnt; 147 if (remainder && fd->subctxt < remainder) 148 fd->tid_limit++; 149 } else { 150 fd->tid_limit = uctxt->expected_count; 151 } 152 spin_unlock(&fd->tid_lock); 153 154 return ret; 155 } 156 157 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd) 158 { 159 struct hfi1_ctxtdata *uctxt = fd->uctxt; 160 161 /* 162 * The notifier would have been removed when the process'es mm 163 * was freed. 164 */ 165 if (fd->handler) { 166 hfi1_mmu_rb_unregister(fd->handler); 167 } else { 168 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list)) 169 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd); 170 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list)) 171 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd); 172 } 173 174 kfree(fd->invalid_tids); 175 fd->invalid_tids = NULL; 176 177 kfree(fd->entry_to_rb); 178 fd->entry_to_rb = NULL; 179 } 180 181 /** 182 * Release pinned receive buffer pages. 183 * 184 * @mapped - true if the pages have been DMA mapped. false otherwise. 185 * @idx - Index of the first page to unpin. 186 * @npages - No of pages to unpin. 187 * 188 * If the pages have been DMA mapped (indicated by mapped parameter), their 189 * info will be passed via a struct tid_rb_node. If they haven't been mapped, 190 * their info will be passed via a struct tid_user_buf. 191 */ 192 static void unpin_rcv_pages(struct hfi1_filedata *fd, 193 struct tid_user_buf *tidbuf, 194 struct tid_rb_node *node, 195 unsigned int idx, 196 unsigned int npages, 197 bool mapped) 198 { 199 struct page **pages; 200 struct hfi1_devdata *dd = fd->uctxt->dd; 201 202 if (mapped) { 203 pci_unmap_single(dd->pcidev, node->dma_addr, 204 node->mmu.len, PCI_DMA_FROMDEVICE); 205 pages = &node->pages[idx]; 206 } else { 207 pages = &tidbuf->pages[idx]; 208 } 209 hfi1_release_user_pages(fd->mm, pages, npages, mapped); 210 fd->tid_n_pinned -= npages; 211 } 212 213 /** 214 * Pin receive buffer pages. 215 */ 216 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf) 217 { 218 int pinned; 219 unsigned int npages; 220 unsigned long vaddr = tidbuf->vaddr; 221 struct page **pages = NULL; 222 struct hfi1_devdata *dd = fd->uctxt->dd; 223 224 /* Get the number of pages the user buffer spans */ 225 npages = num_user_pages(vaddr, tidbuf->length); 226 if (!npages) 227 return -EINVAL; 228 229 if (npages > fd->uctxt->expected_count) { 230 dd_dev_err(dd, "Expected buffer too big\n"); 231 return -EINVAL; 232 } 233 234 /* Verify that access is OK for the user buffer */ 235 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr, 236 npages * PAGE_SIZE)) { 237 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n", 238 (void *)vaddr, npages); 239 return -EFAULT; 240 } 241 /* Allocate the array of struct page pointers needed for pinning */ 242 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL); 243 if (!pages) 244 return -ENOMEM; 245 246 /* 247 * Pin all the pages of the user buffer. If we can't pin all the 248 * pages, accept the amount pinned so far and program only that. 249 * User space knows how to deal with partially programmed buffers. 250 */ 251 if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) { 252 kfree(pages); 253 return -ENOMEM; 254 } 255 256 pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages); 257 if (pinned <= 0) { 258 kfree(pages); 259 return pinned; 260 } 261 tidbuf->pages = pages; 262 tidbuf->npages = npages; 263 fd->tid_n_pinned += pinned; 264 return pinned; 265 } 266 267 /* 268 * RcvArray entry allocation for Expected Receives is done by the 269 * following algorithm: 270 * 271 * The context keeps 3 lists of groups of RcvArray entries: 272 * 1. List of empty groups - tid_group_list 273 * This list is created during user context creation and 274 * contains elements which describe sets (of 8) of empty 275 * RcvArray entries. 276 * 2. List of partially used groups - tid_used_list 277 * This list contains sets of RcvArray entries which are 278 * not completely used up. Another mapping request could 279 * use some of all of the remaining entries. 280 * 3. List of full groups - tid_full_list 281 * This is the list where sets that are completely used 282 * up go. 283 * 284 * An attempt to optimize the usage of RcvArray entries is 285 * made by finding all sets of physically contiguous pages in a 286 * user's buffer. 287 * These physically contiguous sets are further split into 288 * sizes supported by the receive engine of the HFI. The 289 * resulting sets of pages are stored in struct tid_pageset, 290 * which describes the sets as: 291 * * .count - number of pages in this set 292 * * .idx - starting index into struct page ** array 293 * of this set 294 * 295 * From this point on, the algorithm deals with the page sets 296 * described above. The number of pagesets is divided by the 297 * RcvArray group size to produce the number of full groups 298 * needed. 299 * 300 * Groups from the 3 lists are manipulated using the following 301 * rules: 302 * 1. For each set of 8 pagesets, a complete group from 303 * tid_group_list is taken, programmed, and moved to 304 * the tid_full_list list. 305 * 2. For all remaining pagesets: 306 * 2.1 If the tid_used_list is empty and the tid_group_list 307 * is empty, stop processing pageset and return only 308 * what has been programmed up to this point. 309 * 2.2 If the tid_used_list is empty and the tid_group_list 310 * is not empty, move a group from tid_group_list to 311 * tid_used_list. 312 * 2.3 For each group is tid_used_group, program as much as 313 * can fit into the group. If the group becomes fully 314 * used, move it to tid_full_list. 315 */ 316 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd, 317 struct hfi1_tid_info *tinfo) 318 { 319 int ret = 0, need_group = 0, pinned; 320 struct hfi1_ctxtdata *uctxt = fd->uctxt; 321 struct hfi1_devdata *dd = uctxt->dd; 322 unsigned int ngroups, pageidx = 0, pageset_count, 323 tididx = 0, mapped, mapped_pages = 0; 324 u32 *tidlist = NULL; 325 struct tid_user_buf *tidbuf; 326 327 tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL); 328 if (!tidbuf) 329 return -ENOMEM; 330 331 tidbuf->vaddr = tinfo->vaddr; 332 tidbuf->length = tinfo->length; 333 tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets), 334 GFP_KERNEL); 335 if (!tidbuf->psets) { 336 kfree(tidbuf); 337 return -ENOMEM; 338 } 339 340 pinned = pin_rcv_pages(fd, tidbuf); 341 if (pinned <= 0) { 342 kfree(tidbuf->psets); 343 kfree(tidbuf); 344 return pinned; 345 } 346 347 /* Find sets of physically contiguous pages */ 348 tidbuf->n_psets = find_phys_blocks(tidbuf, pinned); 349 350 /* 351 * We don't need to access this under a lock since tid_used is per 352 * process and the same process cannot be in hfi1_user_exp_rcv_clear() 353 * and hfi1_user_exp_rcv_setup() at the same time. 354 */ 355 spin_lock(&fd->tid_lock); 356 if (fd->tid_used + tidbuf->n_psets > fd->tid_limit) 357 pageset_count = fd->tid_limit - fd->tid_used; 358 else 359 pageset_count = tidbuf->n_psets; 360 spin_unlock(&fd->tid_lock); 361 362 if (!pageset_count) 363 goto bail; 364 365 ngroups = pageset_count / dd->rcv_entries.group_size; 366 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL); 367 if (!tidlist) { 368 ret = -ENOMEM; 369 goto nomem; 370 } 371 372 tididx = 0; 373 374 /* 375 * From this point on, we are going to be using shared (between master 376 * and subcontexts) context resources. We need to take the lock. 377 */ 378 mutex_lock(&uctxt->exp_lock); 379 /* 380 * The first step is to program the RcvArray entries which are complete 381 * groups. 382 */ 383 while (ngroups && uctxt->tid_group_list.count) { 384 struct tid_group *grp = 385 tid_group_pop(&uctxt->tid_group_list); 386 387 ret = program_rcvarray(fd, tidbuf, grp, 388 pageidx, dd->rcv_entries.group_size, 389 tidlist, &tididx, &mapped); 390 /* 391 * If there was a failure to program the RcvArray 392 * entries for the entire group, reset the grp fields 393 * and add the grp back to the free group list. 394 */ 395 if (ret <= 0) { 396 tid_group_add_tail(grp, &uctxt->tid_group_list); 397 hfi1_cdbg(TID, 398 "Failed to program RcvArray group %d", ret); 399 goto unlock; 400 } 401 402 tid_group_add_tail(grp, &uctxt->tid_full_list); 403 ngroups--; 404 pageidx += ret; 405 mapped_pages += mapped; 406 } 407 408 while (pageidx < pageset_count) { 409 struct tid_group *grp, *ptr; 410 /* 411 * If we don't have any partially used tid groups, check 412 * if we have empty groups. If so, take one from there and 413 * put in the partially used list. 414 */ 415 if (!uctxt->tid_used_list.count || need_group) { 416 if (!uctxt->tid_group_list.count) 417 goto unlock; 418 419 grp = tid_group_pop(&uctxt->tid_group_list); 420 tid_group_add_tail(grp, &uctxt->tid_used_list); 421 need_group = 0; 422 } 423 /* 424 * There is an optimization opportunity here - instead of 425 * fitting as many page sets as we can, check for a group 426 * later on in the list that could fit all of them. 427 */ 428 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list, 429 list) { 430 unsigned use = min_t(unsigned, pageset_count - pageidx, 431 grp->size - grp->used); 432 433 ret = program_rcvarray(fd, tidbuf, grp, 434 pageidx, use, tidlist, 435 &tididx, &mapped); 436 if (ret < 0) { 437 hfi1_cdbg(TID, 438 "Failed to program RcvArray entries %d", 439 ret); 440 ret = -EFAULT; 441 goto unlock; 442 } else if (ret > 0) { 443 if (grp->used == grp->size) 444 tid_group_move(grp, 445 &uctxt->tid_used_list, 446 &uctxt->tid_full_list); 447 pageidx += ret; 448 mapped_pages += mapped; 449 need_group = 0; 450 /* Check if we are done so we break out early */ 451 if (pageidx >= pageset_count) 452 break; 453 } else if (WARN_ON(ret == 0)) { 454 /* 455 * If ret is 0, we did not program any entries 456 * into this group, which can only happen if 457 * we've screwed up the accounting somewhere. 458 * Warn and try to continue. 459 */ 460 need_group = 1; 461 } 462 } 463 } 464 unlock: 465 mutex_unlock(&uctxt->exp_lock); 466 nomem: 467 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx, 468 mapped_pages, ret); 469 if (tididx) { 470 spin_lock(&fd->tid_lock); 471 fd->tid_used += tididx; 472 spin_unlock(&fd->tid_lock); 473 tinfo->tidcnt = tididx; 474 tinfo->length = mapped_pages * PAGE_SIZE; 475 476 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist, 477 tidlist, sizeof(tidlist[0]) * tididx)) { 478 /* 479 * On failure to copy to the user level, we need to undo 480 * everything done so far so we don't leak resources. 481 */ 482 tinfo->tidlist = (unsigned long)&tidlist; 483 hfi1_user_exp_rcv_clear(fd, tinfo); 484 tinfo->tidlist = 0; 485 ret = -EFAULT; 486 goto bail; 487 } 488 } 489 490 /* 491 * If not everything was mapped (due to insufficient RcvArray entries, 492 * for example), unpin all unmapped pages so we can pin them nex time. 493 */ 494 if (mapped_pages != pinned) 495 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages, 496 (pinned - mapped_pages), false); 497 bail: 498 kfree(tidbuf->psets); 499 kfree(tidlist); 500 kfree(tidbuf->pages); 501 kfree(tidbuf); 502 return ret > 0 ? 0 : ret; 503 } 504 505 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd, 506 struct hfi1_tid_info *tinfo) 507 { 508 int ret = 0; 509 struct hfi1_ctxtdata *uctxt = fd->uctxt; 510 u32 *tidinfo; 511 unsigned tididx; 512 513 if (unlikely(tinfo->tidcnt > fd->tid_used)) 514 return -EINVAL; 515 516 tidinfo = memdup_user((void __user *)(unsigned long)tinfo->tidlist, 517 sizeof(tidinfo[0]) * tinfo->tidcnt); 518 if (IS_ERR(tidinfo)) 519 return PTR_ERR(tidinfo); 520 521 mutex_lock(&uctxt->exp_lock); 522 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) { 523 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL); 524 if (ret) { 525 hfi1_cdbg(TID, "Failed to unprogram rcv array %d", 526 ret); 527 break; 528 } 529 } 530 spin_lock(&fd->tid_lock); 531 fd->tid_used -= tididx; 532 spin_unlock(&fd->tid_lock); 533 tinfo->tidcnt = tididx; 534 mutex_unlock(&uctxt->exp_lock); 535 536 kfree(tidinfo); 537 return ret; 538 } 539 540 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd, 541 struct hfi1_tid_info *tinfo) 542 { 543 struct hfi1_ctxtdata *uctxt = fd->uctxt; 544 unsigned long *ev = uctxt->dd->events + 545 (uctxt_offset(uctxt) + fd->subctxt); 546 u32 *array; 547 int ret = 0; 548 549 /* 550 * copy_to_user() can sleep, which will leave the invalid_lock 551 * locked and cause the MMU notifier to be blocked on the lock 552 * for a long time. 553 * Copy the data to a local buffer so we can release the lock. 554 */ 555 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL); 556 if (!array) 557 return -EFAULT; 558 559 spin_lock(&fd->invalid_lock); 560 if (fd->invalid_tid_idx) { 561 memcpy(array, fd->invalid_tids, sizeof(*array) * 562 fd->invalid_tid_idx); 563 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) * 564 fd->invalid_tid_idx); 565 tinfo->tidcnt = fd->invalid_tid_idx; 566 fd->invalid_tid_idx = 0; 567 /* 568 * Reset the user flag while still holding the lock. 569 * Otherwise, PSM can miss events. 570 */ 571 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); 572 } else { 573 tinfo->tidcnt = 0; 574 } 575 spin_unlock(&fd->invalid_lock); 576 577 if (tinfo->tidcnt) { 578 if (copy_to_user((void __user *)tinfo->tidlist, 579 array, sizeof(*array) * tinfo->tidcnt)) 580 ret = -EFAULT; 581 } 582 kfree(array); 583 584 return ret; 585 } 586 587 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages) 588 { 589 unsigned pagecount, pageidx, setcount = 0, i; 590 unsigned long pfn, this_pfn; 591 struct page **pages = tidbuf->pages; 592 struct tid_pageset *list = tidbuf->psets; 593 594 if (!npages) 595 return 0; 596 597 /* 598 * Look for sets of physically contiguous pages in the user buffer. 599 * This will allow us to optimize Expected RcvArray entry usage by 600 * using the bigger supported sizes. 601 */ 602 pfn = page_to_pfn(pages[0]); 603 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) { 604 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0; 605 606 /* 607 * If the pfn's are not sequential, pages are not physically 608 * contiguous. 609 */ 610 if (this_pfn != ++pfn) { 611 /* 612 * At this point we have to loop over the set of 613 * physically contiguous pages and break them down it 614 * sizes supported by the HW. 615 * There are two main constraints: 616 * 1. The max buffer size is MAX_EXPECTED_BUFFER. 617 * If the total set size is bigger than that 618 * program only a MAX_EXPECTED_BUFFER chunk. 619 * 2. The buffer size has to be a power of two. If 620 * it is not, round down to the closes power of 621 * 2 and program that size. 622 */ 623 while (pagecount) { 624 int maxpages = pagecount; 625 u32 bufsize = pagecount * PAGE_SIZE; 626 627 if (bufsize > MAX_EXPECTED_BUFFER) 628 maxpages = 629 MAX_EXPECTED_BUFFER >> 630 PAGE_SHIFT; 631 else if (!is_power_of_2(bufsize)) 632 maxpages = 633 rounddown_pow_of_two(bufsize) >> 634 PAGE_SHIFT; 635 636 list[setcount].idx = pageidx; 637 list[setcount].count = maxpages; 638 pagecount -= maxpages; 639 pageidx += maxpages; 640 setcount++; 641 } 642 pageidx = i; 643 pagecount = 1; 644 pfn = this_pfn; 645 } else { 646 pagecount++; 647 } 648 } 649 return setcount; 650 } 651 652 /** 653 * program_rcvarray() - program an RcvArray group with receive buffers 654 * @fd: filedata pointer 655 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting 656 * virtual address, buffer length, page pointers, pagesets (array of 657 * struct tid_pageset holding information on physically contiguous 658 * chunks from the user buffer), and other fields. 659 * @grp: RcvArray group 660 * @start: starting index into sets array 661 * @count: number of struct tid_pageset's to program 662 * @tidlist: the array of u32 elements when the information about the 663 * programmed RcvArray entries is to be encoded. 664 * @tididx: starting offset into tidlist 665 * @pmapped: (output parameter) number of pages programmed into the RcvArray 666 * entries. 667 * 668 * This function will program up to 'count' number of RcvArray entries from the 669 * group 'grp'. To make best use of write-combining writes, the function will 670 * perform writes to the unused RcvArray entries which will be ignored by the 671 * HW. Each RcvArray entry will be programmed with a physically contiguous 672 * buffer chunk from the user's virtual buffer. 673 * 674 * Return: 675 * -EINVAL if the requested count is larger than the size of the group, 676 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or 677 * number of RcvArray entries programmed. 678 */ 679 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf, 680 struct tid_group *grp, 681 unsigned int start, u16 count, 682 u32 *tidlist, unsigned int *tididx, 683 unsigned int *pmapped) 684 { 685 struct hfi1_ctxtdata *uctxt = fd->uctxt; 686 struct hfi1_devdata *dd = uctxt->dd; 687 u16 idx; 688 u32 tidinfo = 0, rcventry, useidx = 0; 689 int mapped = 0; 690 691 /* Count should never be larger than the group size */ 692 if (count > grp->size) 693 return -EINVAL; 694 695 /* Find the first unused entry in the group */ 696 for (idx = 0; idx < grp->size; idx++) { 697 if (!(grp->map & (1 << idx))) { 698 useidx = idx; 699 break; 700 } 701 rcv_array_wc_fill(dd, grp->base + idx); 702 } 703 704 idx = 0; 705 while (idx < count) { 706 u16 npages, pageidx, setidx = start + idx; 707 int ret = 0; 708 709 /* 710 * If this entry in the group is used, move to the next one. 711 * If we go past the end of the group, exit the loop. 712 */ 713 if (useidx >= grp->size) { 714 break; 715 } else if (grp->map & (1 << useidx)) { 716 rcv_array_wc_fill(dd, grp->base + useidx); 717 useidx++; 718 continue; 719 } 720 721 rcventry = grp->base + useidx; 722 npages = tbuf->psets[setidx].count; 723 pageidx = tbuf->psets[setidx].idx; 724 725 ret = set_rcvarray_entry(fd, tbuf, 726 rcventry, grp, pageidx, 727 npages); 728 if (ret) 729 return ret; 730 mapped += npages; 731 732 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) | 733 EXP_TID_SET(LEN, npages); 734 tidlist[(*tididx)++] = tidinfo; 735 grp->used++; 736 grp->map |= 1 << useidx++; 737 idx++; 738 } 739 740 /* Fill the rest of the group with "blank" writes */ 741 for (; useidx < grp->size; useidx++) 742 rcv_array_wc_fill(dd, grp->base + useidx); 743 *pmapped = mapped; 744 return idx; 745 } 746 747 static int set_rcvarray_entry(struct hfi1_filedata *fd, 748 struct tid_user_buf *tbuf, 749 u32 rcventry, struct tid_group *grp, 750 u16 pageidx, unsigned int npages) 751 { 752 int ret; 753 struct hfi1_ctxtdata *uctxt = fd->uctxt; 754 struct tid_rb_node *node; 755 struct hfi1_devdata *dd = uctxt->dd; 756 dma_addr_t phys; 757 struct page **pages = tbuf->pages + pageidx; 758 759 /* 760 * Allocate the node first so we can handle a potential 761 * failure before we've programmed anything. 762 */ 763 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages), 764 GFP_KERNEL); 765 if (!node) 766 return -ENOMEM; 767 768 phys = pci_map_single(dd->pcidev, 769 __va(page_to_phys(pages[0])), 770 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE); 771 if (dma_mapping_error(&dd->pcidev->dev, phys)) { 772 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n", 773 phys); 774 kfree(node); 775 return -EFAULT; 776 } 777 778 node->mmu.addr = tbuf->vaddr + (pageidx * PAGE_SIZE); 779 node->mmu.len = npages * PAGE_SIZE; 780 node->phys = page_to_phys(pages[0]); 781 node->npages = npages; 782 node->rcventry = rcventry; 783 node->dma_addr = phys; 784 node->grp = grp; 785 node->freed = false; 786 memcpy(node->pages, pages, sizeof(struct page *) * npages); 787 788 if (!fd->handler) 789 ret = tid_rb_insert(fd, &node->mmu); 790 else 791 ret = hfi1_mmu_rb_insert(fd->handler, &node->mmu); 792 793 if (ret) { 794 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d", 795 node->rcventry, node->mmu.addr, node->phys, ret); 796 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE, 797 PCI_DMA_FROMDEVICE); 798 kfree(node); 799 return -EFAULT; 800 } 801 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1); 802 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages, 803 node->mmu.addr, node->phys, phys); 804 return 0; 805 } 806 807 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo, 808 struct tid_group **grp) 809 { 810 struct hfi1_ctxtdata *uctxt = fd->uctxt; 811 struct hfi1_devdata *dd = uctxt->dd; 812 struct tid_rb_node *node; 813 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL); 814 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry; 815 816 if (tididx >= uctxt->expected_count) { 817 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n", 818 tididx, uctxt->ctxt); 819 return -EINVAL; 820 } 821 822 if (tidctrl == 0x3) 823 return -EINVAL; 824 825 rcventry = tididx + (tidctrl - 1); 826 827 node = fd->entry_to_rb[rcventry]; 828 if (!node || node->rcventry != (uctxt->expected_base + rcventry)) 829 return -EBADF; 830 831 if (grp) 832 *grp = node->grp; 833 834 if (!fd->handler) 835 cacheless_tid_rb_remove(fd, node); 836 else 837 hfi1_mmu_rb_remove(fd->handler, &node->mmu); 838 839 return 0; 840 } 841 842 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node) 843 { 844 struct hfi1_ctxtdata *uctxt = fd->uctxt; 845 struct hfi1_devdata *dd = uctxt->dd; 846 847 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry, 848 node->npages, node->mmu.addr, node->phys, 849 node->dma_addr); 850 851 /* 852 * Make sure device has seen the write before we unpin the 853 * pages. 854 */ 855 hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0); 856 857 unpin_rcv_pages(fd, NULL, node, 0, node->npages, true); 858 859 node->grp->used--; 860 node->grp->map &= ~(1 << (node->rcventry - node->grp->base)); 861 862 if (node->grp->used == node->grp->size - 1) 863 tid_group_move(node->grp, &uctxt->tid_full_list, 864 &uctxt->tid_used_list); 865 else if (!node->grp->used) 866 tid_group_move(node->grp, &uctxt->tid_used_list, 867 &uctxt->tid_group_list); 868 kfree(node); 869 } 870 871 /* 872 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with 873 * clearing nodes in the non-cached case. 874 */ 875 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt, 876 struct exp_tid_set *set, 877 struct hfi1_filedata *fd) 878 { 879 struct tid_group *grp, *ptr; 880 int i; 881 882 list_for_each_entry_safe(grp, ptr, &set->list, list) { 883 list_del_init(&grp->list); 884 885 for (i = 0; i < grp->size; i++) { 886 if (grp->map & (1 << i)) { 887 u16 rcventry = grp->base + i; 888 struct tid_rb_node *node; 889 890 node = fd->entry_to_rb[rcventry - 891 uctxt->expected_base]; 892 if (!node || node->rcventry != rcventry) 893 continue; 894 895 cacheless_tid_rb_remove(fd, node); 896 } 897 } 898 } 899 } 900 901 /* 902 * Always return 0 from this function. A non-zero return indicates that the 903 * remove operation will be called and that memory should be unpinned. 904 * However, the driver cannot unpin out from under PSM. Instead, retain the 905 * memory (by returning 0) and inform PSM that the memory is going away. PSM 906 * will call back later when it has removed the memory from its list. 907 */ 908 static int tid_rb_invalidate(void *arg, struct mmu_rb_node *mnode) 909 { 910 struct hfi1_filedata *fdata = arg; 911 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 912 struct tid_rb_node *node = 913 container_of(mnode, struct tid_rb_node, mmu); 914 915 if (node->freed) 916 return 0; 917 918 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr, 919 node->rcventry, node->npages, node->dma_addr); 920 node->freed = true; 921 922 spin_lock(&fdata->invalid_lock); 923 if (fdata->invalid_tid_idx < uctxt->expected_count) { 924 fdata->invalid_tids[fdata->invalid_tid_idx] = 925 rcventry2tidinfo(node->rcventry - uctxt->expected_base); 926 fdata->invalid_tids[fdata->invalid_tid_idx] |= 927 EXP_TID_SET(LEN, node->npages); 928 if (!fdata->invalid_tid_idx) { 929 unsigned long *ev; 930 931 /* 932 * hfi1_set_uevent_bits() sets a user event flag 933 * for all processes. Because calling into the 934 * driver to process TID cache invalidations is 935 * expensive and TID cache invalidations are 936 * handled on a per-process basis, we can 937 * optimize this to set the flag only for the 938 * process in question. 939 */ 940 ev = uctxt->dd->events + 941 (uctxt_offset(uctxt) + fdata->subctxt); 942 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev); 943 } 944 fdata->invalid_tid_idx++; 945 } 946 spin_unlock(&fdata->invalid_lock); 947 return 0; 948 } 949 950 static int tid_rb_insert(void *arg, struct mmu_rb_node *node) 951 { 952 struct hfi1_filedata *fdata = arg; 953 struct tid_rb_node *tnode = 954 container_of(node, struct tid_rb_node, mmu); 955 u32 base = fdata->uctxt->expected_base; 956 957 fdata->entry_to_rb[tnode->rcventry - base] = tnode; 958 return 0; 959 } 960 961 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata, 962 struct tid_rb_node *tnode) 963 { 964 u32 base = fdata->uctxt->expected_base; 965 966 fdata->entry_to_rb[tnode->rcventry - base] = NULL; 967 clear_tid_node(fdata, tnode); 968 } 969 970 static void tid_rb_remove(void *arg, struct mmu_rb_node *node) 971 { 972 struct hfi1_filedata *fdata = arg; 973 struct tid_rb_node *tnode = 974 container_of(node, struct tid_rb_node, mmu); 975 976 cacheless_tid_rb_remove(fdata, tnode); 977 } 978