xref: /linux/drivers/infiniband/hw/hfi1/user_exp_rcv.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <asm/page.h>
48 
49 #include "user_exp_rcv.h"
50 #include "trace.h"
51 #include "mmu_rb.h"
52 
53 struct tid_group {
54 	struct list_head list;
55 	unsigned base;
56 	u8 size;
57 	u8 used;
58 	u8 map;
59 };
60 
61 struct tid_rb_node {
62 	struct mmu_rb_node mmu;
63 	unsigned long phys;
64 	struct tid_group *grp;
65 	u32 rcventry;
66 	dma_addr_t dma_addr;
67 	bool freed;
68 	unsigned npages;
69 	struct page *pages[0];
70 };
71 
72 struct tid_pageset {
73 	u16 idx;
74 	u16 count;
75 };
76 
77 #define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
78 
79 #define num_user_pages(vaddr, len)				       \
80 	(1 + (((((unsigned long)(vaddr) +			       \
81 		 (unsigned long)(len) - 1) & PAGE_MASK) -	       \
82 	       ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
83 
84 static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
85 			    struct rb_root *);
86 static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
87 static int set_rcvarray_entry(struct file *, unsigned long, u32,
88 			      struct tid_group *, struct page **, unsigned);
89 static int mmu_rb_insert(struct rb_root *, struct mmu_rb_node *);
90 static void mmu_rb_remove(struct rb_root *, struct mmu_rb_node *,
91 			  struct mm_struct *);
92 static int mmu_rb_invalidate(struct rb_root *, struct mmu_rb_node *);
93 static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
94 			    struct tid_pageset *, unsigned, u16, struct page **,
95 			    u32 *, unsigned *, unsigned *);
96 static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
97 static void clear_tid_node(struct hfi1_filedata *, u16, struct tid_rb_node *);
98 
99 static struct mmu_rb_ops tid_rb_ops = {
100 	.insert = mmu_rb_insert,
101 	.remove = mmu_rb_remove,
102 	.invalidate = mmu_rb_invalidate
103 };
104 
105 static inline u32 rcventry2tidinfo(u32 rcventry)
106 {
107 	u32 pair = rcventry & ~0x1;
108 
109 	return EXP_TID_SET(IDX, pair >> 1) |
110 		EXP_TID_SET(CTRL, 1 << (rcventry - pair));
111 }
112 
113 static inline void exp_tid_group_init(struct exp_tid_set *set)
114 {
115 	INIT_LIST_HEAD(&set->list);
116 	set->count = 0;
117 }
118 
119 static inline void tid_group_remove(struct tid_group *grp,
120 				    struct exp_tid_set *set)
121 {
122 	list_del_init(&grp->list);
123 	set->count--;
124 }
125 
126 static inline void tid_group_add_tail(struct tid_group *grp,
127 				      struct exp_tid_set *set)
128 {
129 	list_add_tail(&grp->list, &set->list);
130 	set->count++;
131 }
132 
133 static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
134 {
135 	struct tid_group *grp =
136 		list_first_entry(&set->list, struct tid_group, list);
137 	list_del_init(&grp->list);
138 	set->count--;
139 	return grp;
140 }
141 
142 static inline void tid_group_move(struct tid_group *group,
143 				  struct exp_tid_set *s1,
144 				  struct exp_tid_set *s2)
145 {
146 	tid_group_remove(group, s1);
147 	tid_group_add_tail(group, s2);
148 }
149 
150 /*
151  * Initialize context and file private data needed for Expected
152  * receive caching. This needs to be done after the context has
153  * been configured with the eager/expected RcvEntry counts.
154  */
155 int hfi1_user_exp_rcv_init(struct file *fp)
156 {
157 	struct hfi1_filedata *fd = fp->private_data;
158 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
159 	struct hfi1_devdata *dd = uctxt->dd;
160 	unsigned tidbase;
161 	int i, ret = 0;
162 
163 	spin_lock_init(&fd->tid_lock);
164 	spin_lock_init(&fd->invalid_lock);
165 	fd->tid_rb_root = RB_ROOT;
166 
167 	if (!uctxt->subctxt_cnt || !fd->subctxt) {
168 		exp_tid_group_init(&uctxt->tid_group_list);
169 		exp_tid_group_init(&uctxt->tid_used_list);
170 		exp_tid_group_init(&uctxt->tid_full_list);
171 
172 		tidbase = uctxt->expected_base;
173 		for (i = 0; i < uctxt->expected_count /
174 			     dd->rcv_entries.group_size; i++) {
175 			struct tid_group *grp;
176 
177 			grp = kzalloc(sizeof(*grp), GFP_KERNEL);
178 			if (!grp) {
179 				/*
180 				 * If we fail here, the groups already
181 				 * allocated will be freed by the close
182 				 * call.
183 				 */
184 				ret = -ENOMEM;
185 				goto done;
186 			}
187 			grp->size = dd->rcv_entries.group_size;
188 			grp->base = tidbase;
189 			tid_group_add_tail(grp, &uctxt->tid_group_list);
190 			tidbase += dd->rcv_entries.group_size;
191 		}
192 	}
193 
194 	fd->entry_to_rb = kcalloc(uctxt->expected_count,
195 				     sizeof(struct rb_node *),
196 				     GFP_KERNEL);
197 	if (!fd->entry_to_rb)
198 		return -ENOMEM;
199 
200 	if (!HFI1_CAP_IS_USET(TID_UNMAP)) {
201 		fd->invalid_tid_idx = 0;
202 		fd->invalid_tids = kzalloc(uctxt->expected_count *
203 					   sizeof(u32), GFP_KERNEL);
204 		if (!fd->invalid_tids) {
205 			ret = -ENOMEM;
206 			goto done;
207 		}
208 
209 		/*
210 		 * Register MMU notifier callbacks. If the registration
211 		 * fails, continue but turn off the TID caching for
212 		 * all user contexts.
213 		 */
214 		ret = hfi1_mmu_rb_register(&fd->tid_rb_root, &tid_rb_ops);
215 		if (ret) {
216 			dd_dev_info(dd,
217 				    "Failed MMU notifier registration %d\n",
218 				    ret);
219 			HFI1_CAP_USET(TID_UNMAP);
220 			ret = 0;
221 		}
222 	}
223 
224 	/*
225 	 * PSM does not have a good way to separate, count, and
226 	 * effectively enforce a limit on RcvArray entries used by
227 	 * subctxts (when context sharing is used) when TID caching
228 	 * is enabled. To help with that, we calculate a per-process
229 	 * RcvArray entry share and enforce that.
230 	 * If TID caching is not in use, PSM deals with usage on its
231 	 * own. In that case, we allow any subctxt to take all of the
232 	 * entries.
233 	 *
234 	 * Make sure that we set the tid counts only after successful
235 	 * init.
236 	 */
237 	spin_lock(&fd->tid_lock);
238 	if (uctxt->subctxt_cnt && !HFI1_CAP_IS_USET(TID_UNMAP)) {
239 		u16 remainder;
240 
241 		fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
242 		remainder = uctxt->expected_count % uctxt->subctxt_cnt;
243 		if (remainder && fd->subctxt < remainder)
244 			fd->tid_limit++;
245 	} else {
246 		fd->tid_limit = uctxt->expected_count;
247 	}
248 	spin_unlock(&fd->tid_lock);
249 done:
250 	return ret;
251 }
252 
253 int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
254 {
255 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
256 	struct tid_group *grp, *gptr;
257 
258 	if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags))
259 		return 0;
260 	/*
261 	 * The notifier would have been removed when the process'es mm
262 	 * was freed.
263 	 */
264 	if (!HFI1_CAP_IS_USET(TID_UNMAP))
265 		hfi1_mmu_rb_unregister(&fd->tid_rb_root);
266 
267 	kfree(fd->invalid_tids);
268 
269 	if (!uctxt->cnt) {
270 		if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
271 			unlock_exp_tids(uctxt, &uctxt->tid_full_list,
272 					&fd->tid_rb_root);
273 		if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
274 			unlock_exp_tids(uctxt, &uctxt->tid_used_list,
275 					&fd->tid_rb_root);
276 		list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
277 					 list) {
278 			list_del_init(&grp->list);
279 			kfree(grp);
280 		}
281 		hfi1_clear_tids(uctxt);
282 	}
283 
284 	kfree(fd->entry_to_rb);
285 	return 0;
286 }
287 
288 /*
289  * Write an "empty" RcvArray entry.
290  * This function exists so the TID registaration code can use it
291  * to write to unused/unneeded entries and still take advantage
292  * of the WC performance improvements. The HFI will ignore this
293  * write to the RcvArray entry.
294  */
295 static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
296 {
297 	/*
298 	 * Doing the WC fill writes only makes sense if the device is
299 	 * present and the RcvArray has been mapped as WC memory.
300 	 */
301 	if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
302 		writeq(0, dd->rcvarray_wc + (index * 8));
303 }
304 
305 /*
306  * RcvArray entry allocation for Expected Receives is done by the
307  * following algorithm:
308  *
309  * The context keeps 3 lists of groups of RcvArray entries:
310  *   1. List of empty groups - tid_group_list
311  *      This list is created during user context creation and
312  *      contains elements which describe sets (of 8) of empty
313  *      RcvArray entries.
314  *   2. List of partially used groups - tid_used_list
315  *      This list contains sets of RcvArray entries which are
316  *      not completely used up. Another mapping request could
317  *      use some of all of the remaining entries.
318  *   3. List of full groups - tid_full_list
319  *      This is the list where sets that are completely used
320  *      up go.
321  *
322  * An attempt to optimize the usage of RcvArray entries is
323  * made by finding all sets of physically contiguous pages in a
324  * user's buffer.
325  * These physically contiguous sets are further split into
326  * sizes supported by the receive engine of the HFI. The
327  * resulting sets of pages are stored in struct tid_pageset,
328  * which describes the sets as:
329  *    * .count - number of pages in this set
330  *    * .idx - starting index into struct page ** array
331  *                    of this set
332  *
333  * From this point on, the algorithm deals with the page sets
334  * described above. The number of pagesets is divided by the
335  * RcvArray group size to produce the number of full groups
336  * needed.
337  *
338  * Groups from the 3 lists are manipulated using the following
339  * rules:
340  *   1. For each set of 8 pagesets, a complete group from
341  *      tid_group_list is taken, programmed, and moved to
342  *      the tid_full_list list.
343  *   2. For all remaining pagesets:
344  *      2.1 If the tid_used_list is empty and the tid_group_list
345  *          is empty, stop processing pageset and return only
346  *          what has been programmed up to this point.
347  *      2.2 If the tid_used_list is empty and the tid_group_list
348  *          is not empty, move a group from tid_group_list to
349  *          tid_used_list.
350  *      2.3 For each group is tid_used_group, program as much as
351  *          can fit into the group. If the group becomes fully
352  *          used, move it to tid_full_list.
353  */
354 int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
355 {
356 	int ret = 0, need_group = 0, pinned;
357 	struct hfi1_filedata *fd = fp->private_data;
358 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
359 	struct hfi1_devdata *dd = uctxt->dd;
360 	unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
361 		tididx = 0, mapped, mapped_pages = 0;
362 	unsigned long vaddr = tinfo->vaddr;
363 	struct page **pages = NULL;
364 	u32 *tidlist = NULL;
365 	struct tid_pageset *pagesets = NULL;
366 
367 	/* Get the number of pages the user buffer spans */
368 	npages = num_user_pages(vaddr, tinfo->length);
369 	if (!npages)
370 		return -EINVAL;
371 
372 	if (npages > uctxt->expected_count) {
373 		dd_dev_err(dd, "Expected buffer too big\n");
374 		return -EINVAL;
375 	}
376 
377 	/* Verify that access is OK for the user buffer */
378 	if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
379 		       npages * PAGE_SIZE)) {
380 		dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
381 			   (void *)vaddr, npages);
382 		return -EFAULT;
383 	}
384 
385 	pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
386 			   GFP_KERNEL);
387 	if (!pagesets)
388 		return -ENOMEM;
389 
390 	/* Allocate the array of struct page pointers needed for pinning */
391 	pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
392 	if (!pages) {
393 		ret = -ENOMEM;
394 		goto bail;
395 	}
396 
397 	/*
398 	 * Pin all the pages of the user buffer. If we can't pin all the
399 	 * pages, accept the amount pinned so far and program only that.
400 	 * User space knows how to deal with partially programmed buffers.
401 	 */
402 	if (!hfi1_can_pin_pages(dd, fd->tid_n_pinned, npages)) {
403 		ret = -ENOMEM;
404 		goto bail;
405 	}
406 
407 	pinned = hfi1_acquire_user_pages(vaddr, npages, true, pages);
408 	if (pinned <= 0) {
409 		ret = pinned;
410 		goto bail;
411 	}
412 	fd->tid_n_pinned += npages;
413 
414 	/* Find sets of physically contiguous pages */
415 	npagesets = find_phys_blocks(pages, pinned, pagesets);
416 
417 	/*
418 	 * We don't need to access this under a lock since tid_used is per
419 	 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
420 	 * and hfi1_user_exp_rcv_setup() at the same time.
421 	 */
422 	spin_lock(&fd->tid_lock);
423 	if (fd->tid_used + npagesets > fd->tid_limit)
424 		pageset_count = fd->tid_limit - fd->tid_used;
425 	else
426 		pageset_count = npagesets;
427 	spin_unlock(&fd->tid_lock);
428 
429 	if (!pageset_count)
430 		goto bail;
431 
432 	ngroups = pageset_count / dd->rcv_entries.group_size;
433 	tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
434 	if (!tidlist) {
435 		ret = -ENOMEM;
436 		goto nomem;
437 	}
438 
439 	tididx = 0;
440 
441 	/*
442 	 * From this point on, we are going to be using shared (between master
443 	 * and subcontexts) context resources. We need to take the lock.
444 	 */
445 	mutex_lock(&uctxt->exp_lock);
446 	/*
447 	 * The first step is to program the RcvArray entries which are complete
448 	 * groups.
449 	 */
450 	while (ngroups && uctxt->tid_group_list.count) {
451 		struct tid_group *grp =
452 			tid_group_pop(&uctxt->tid_group_list);
453 
454 		ret = program_rcvarray(fp, vaddr, grp, pagesets,
455 				       pageidx, dd->rcv_entries.group_size,
456 				       pages, tidlist, &tididx, &mapped);
457 		/*
458 		 * If there was a failure to program the RcvArray
459 		 * entries for the entire group, reset the grp fields
460 		 * and add the grp back to the free group list.
461 		 */
462 		if (ret <= 0) {
463 			tid_group_add_tail(grp, &uctxt->tid_group_list);
464 			hfi1_cdbg(TID,
465 				  "Failed to program RcvArray group %d", ret);
466 			goto unlock;
467 		}
468 
469 		tid_group_add_tail(grp, &uctxt->tid_full_list);
470 		ngroups--;
471 		pageidx += ret;
472 		mapped_pages += mapped;
473 	}
474 
475 	while (pageidx < pageset_count) {
476 		struct tid_group *grp, *ptr;
477 		/*
478 		 * If we don't have any partially used tid groups, check
479 		 * if we have empty groups. If so, take one from there and
480 		 * put in the partially used list.
481 		 */
482 		if (!uctxt->tid_used_list.count || need_group) {
483 			if (!uctxt->tid_group_list.count)
484 				goto unlock;
485 
486 			grp = tid_group_pop(&uctxt->tid_group_list);
487 			tid_group_add_tail(grp, &uctxt->tid_used_list);
488 			need_group = 0;
489 		}
490 		/*
491 		 * There is an optimization opportunity here - instead of
492 		 * fitting as many page sets as we can, check for a group
493 		 * later on in the list that could fit all of them.
494 		 */
495 		list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
496 					 list) {
497 			unsigned use = min_t(unsigned, pageset_count - pageidx,
498 					     grp->size - grp->used);
499 
500 			ret = program_rcvarray(fp, vaddr, grp, pagesets,
501 					       pageidx, use, pages, tidlist,
502 					       &tididx, &mapped);
503 			if (ret < 0) {
504 				hfi1_cdbg(TID,
505 					  "Failed to program RcvArray entries %d",
506 					  ret);
507 				ret = -EFAULT;
508 				goto unlock;
509 			} else if (ret > 0) {
510 				if (grp->used == grp->size)
511 					tid_group_move(grp,
512 						       &uctxt->tid_used_list,
513 						       &uctxt->tid_full_list);
514 				pageidx += ret;
515 				mapped_pages += mapped;
516 				need_group = 0;
517 				/* Check if we are done so we break out early */
518 				if (pageidx >= pageset_count)
519 					break;
520 			} else if (WARN_ON(ret == 0)) {
521 				/*
522 				 * If ret is 0, we did not program any entries
523 				 * into this group, which can only happen if
524 				 * we've screwed up the accounting somewhere.
525 				 * Warn and try to continue.
526 				 */
527 				need_group = 1;
528 			}
529 		}
530 	}
531 unlock:
532 	mutex_unlock(&uctxt->exp_lock);
533 nomem:
534 	hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
535 		  mapped_pages, ret);
536 	if (tididx) {
537 		spin_lock(&fd->tid_lock);
538 		fd->tid_used += tididx;
539 		spin_unlock(&fd->tid_lock);
540 		tinfo->tidcnt = tididx;
541 		tinfo->length = mapped_pages * PAGE_SIZE;
542 
543 		if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
544 				 tidlist, sizeof(tidlist[0]) * tididx)) {
545 			/*
546 			 * On failure to copy to the user level, we need to undo
547 			 * everything done so far so we don't leak resources.
548 			 */
549 			tinfo->tidlist = (unsigned long)&tidlist;
550 			hfi1_user_exp_rcv_clear(fp, tinfo);
551 			tinfo->tidlist = 0;
552 			ret = -EFAULT;
553 			goto bail;
554 		}
555 	}
556 
557 	/*
558 	 * If not everything was mapped (due to insufficient RcvArray entries,
559 	 * for example), unpin all unmapped pages so we can pin them nex time.
560 	 */
561 	if (mapped_pages != pinned) {
562 		hfi1_release_user_pages(current->mm, &pages[mapped_pages],
563 					pinned - mapped_pages,
564 					false);
565 		fd->tid_n_pinned -= pinned - mapped_pages;
566 	}
567 bail:
568 	kfree(pagesets);
569 	kfree(pages);
570 	kfree(tidlist);
571 	return ret > 0 ? 0 : ret;
572 }
573 
574 int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
575 {
576 	int ret = 0;
577 	struct hfi1_filedata *fd = fp->private_data;
578 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
579 	u32 *tidinfo;
580 	unsigned tididx;
581 
582 	tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
583 	if (!tidinfo)
584 		return -ENOMEM;
585 
586 	if (copy_from_user(tidinfo, (void __user *)(unsigned long)
587 			   tinfo->tidlist, sizeof(tidinfo[0]) *
588 			   tinfo->tidcnt)) {
589 		ret = -EFAULT;
590 		goto done;
591 	}
592 
593 	mutex_lock(&uctxt->exp_lock);
594 	for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
595 		ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
596 		if (ret) {
597 			hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
598 				  ret);
599 			break;
600 		}
601 	}
602 	spin_lock(&fd->tid_lock);
603 	fd->tid_used -= tididx;
604 	spin_unlock(&fd->tid_lock);
605 	tinfo->tidcnt = tididx;
606 	mutex_unlock(&uctxt->exp_lock);
607 done:
608 	kfree(tidinfo);
609 	return ret;
610 }
611 
612 int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
613 {
614 	struct hfi1_filedata *fd = fp->private_data;
615 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
616 	unsigned long *ev = uctxt->dd->events +
617 		(((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
618 		  HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
619 	u32 *array;
620 	int ret = 0;
621 
622 	if (!fd->invalid_tids)
623 		return -EINVAL;
624 
625 	/*
626 	 * copy_to_user() can sleep, which will leave the invalid_lock
627 	 * locked and cause the MMU notifier to be blocked on the lock
628 	 * for a long time.
629 	 * Copy the data to a local buffer so we can release the lock.
630 	 */
631 	array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
632 	if (!array)
633 		return -EFAULT;
634 
635 	spin_lock(&fd->invalid_lock);
636 	if (fd->invalid_tid_idx) {
637 		memcpy(array, fd->invalid_tids, sizeof(*array) *
638 		       fd->invalid_tid_idx);
639 		memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
640 		       fd->invalid_tid_idx);
641 		tinfo->tidcnt = fd->invalid_tid_idx;
642 		fd->invalid_tid_idx = 0;
643 		/*
644 		 * Reset the user flag while still holding the lock.
645 		 * Otherwise, PSM can miss events.
646 		 */
647 		clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
648 	} else {
649 		tinfo->tidcnt = 0;
650 	}
651 	spin_unlock(&fd->invalid_lock);
652 
653 	if (tinfo->tidcnt) {
654 		if (copy_to_user((void __user *)tinfo->tidlist,
655 				 array, sizeof(*array) * tinfo->tidcnt))
656 			ret = -EFAULT;
657 	}
658 	kfree(array);
659 
660 	return ret;
661 }
662 
663 static u32 find_phys_blocks(struct page **pages, unsigned npages,
664 			    struct tid_pageset *list)
665 {
666 	unsigned pagecount, pageidx, setcount = 0, i;
667 	unsigned long pfn, this_pfn;
668 
669 	if (!npages)
670 		return 0;
671 
672 	/*
673 	 * Look for sets of physically contiguous pages in the user buffer.
674 	 * This will allow us to optimize Expected RcvArray entry usage by
675 	 * using the bigger supported sizes.
676 	 */
677 	pfn = page_to_pfn(pages[0]);
678 	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
679 		this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
680 
681 		/*
682 		 * If the pfn's are not sequential, pages are not physically
683 		 * contiguous.
684 		 */
685 		if (this_pfn != ++pfn) {
686 			/*
687 			 * At this point we have to loop over the set of
688 			 * physically contiguous pages and break them down it
689 			 * sizes supported by the HW.
690 			 * There are two main constraints:
691 			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
692 			 *        If the total set size is bigger than that
693 			 *        program only a MAX_EXPECTED_BUFFER chunk.
694 			 *     2. The buffer size has to be a power of two. If
695 			 *        it is not, round down to the closes power of
696 			 *        2 and program that size.
697 			 */
698 			while (pagecount) {
699 				int maxpages = pagecount;
700 				u32 bufsize = pagecount * PAGE_SIZE;
701 
702 				if (bufsize > MAX_EXPECTED_BUFFER)
703 					maxpages =
704 						MAX_EXPECTED_BUFFER >>
705 						PAGE_SHIFT;
706 				else if (!is_power_of_2(bufsize))
707 					maxpages =
708 						rounddown_pow_of_two(bufsize) >>
709 						PAGE_SHIFT;
710 
711 				list[setcount].idx = pageidx;
712 				list[setcount].count = maxpages;
713 				pagecount -= maxpages;
714 				pageidx += maxpages;
715 				setcount++;
716 			}
717 			pageidx = i;
718 			pagecount = 1;
719 			pfn = this_pfn;
720 		} else {
721 			pagecount++;
722 		}
723 	}
724 	return setcount;
725 }
726 
727 /**
728  * program_rcvarray() - program an RcvArray group with receive buffers
729  * @fp: file pointer
730  * @vaddr: starting user virtual address
731  * @grp: RcvArray group
732  * @sets: array of struct tid_pageset holding information on physically
733  *        contiguous chunks from the user buffer
734  * @start: starting index into sets array
735  * @count: number of struct tid_pageset's to program
736  * @pages: an array of struct page * for the user buffer
737  * @tidlist: the array of u32 elements when the information about the
738  *           programmed RcvArray entries is to be encoded.
739  * @tididx: starting offset into tidlist
740  * @pmapped: (output parameter) number of pages programmed into the RcvArray
741  *           entries.
742  *
743  * This function will program up to 'count' number of RcvArray entries from the
744  * group 'grp'. To make best use of write-combining writes, the function will
745  * perform writes to the unused RcvArray entries which will be ignored by the
746  * HW. Each RcvArray entry will be programmed with a physically contiguous
747  * buffer chunk from the user's virtual buffer.
748  *
749  * Return:
750  * -EINVAL if the requested count is larger than the size of the group,
751  * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
752  * number of RcvArray entries programmed.
753  */
754 static int program_rcvarray(struct file *fp, unsigned long vaddr,
755 			    struct tid_group *grp,
756 			    struct tid_pageset *sets,
757 			    unsigned start, u16 count, struct page **pages,
758 			    u32 *tidlist, unsigned *tididx, unsigned *pmapped)
759 {
760 	struct hfi1_filedata *fd = fp->private_data;
761 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
762 	struct hfi1_devdata *dd = uctxt->dd;
763 	u16 idx;
764 	u32 tidinfo = 0, rcventry, useidx = 0;
765 	int mapped = 0;
766 
767 	/* Count should never be larger than the group size */
768 	if (count > grp->size)
769 		return -EINVAL;
770 
771 	/* Find the first unused entry in the group */
772 	for (idx = 0; idx < grp->size; idx++) {
773 		if (!(grp->map & (1 << idx))) {
774 			useidx = idx;
775 			break;
776 		}
777 		rcv_array_wc_fill(dd, grp->base + idx);
778 	}
779 
780 	idx = 0;
781 	while (idx < count) {
782 		u16 npages, pageidx, setidx = start + idx;
783 		int ret = 0;
784 
785 		/*
786 		 * If this entry in the group is used, move to the next one.
787 		 * If we go past the end of the group, exit the loop.
788 		 */
789 		if (useidx >= grp->size) {
790 			break;
791 		} else if (grp->map & (1 << useidx)) {
792 			rcv_array_wc_fill(dd, grp->base + useidx);
793 			useidx++;
794 			continue;
795 		}
796 
797 		rcventry = grp->base + useidx;
798 		npages = sets[setidx].count;
799 		pageidx = sets[setidx].idx;
800 
801 		ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
802 					 rcventry, grp, pages + pageidx,
803 					 npages);
804 		if (ret)
805 			return ret;
806 		mapped += npages;
807 
808 		tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
809 			EXP_TID_SET(LEN, npages);
810 		tidlist[(*tididx)++] = tidinfo;
811 		grp->used++;
812 		grp->map |= 1 << useidx++;
813 		idx++;
814 	}
815 
816 	/* Fill the rest of the group with "blank" writes */
817 	for (; useidx < grp->size; useidx++)
818 		rcv_array_wc_fill(dd, grp->base + useidx);
819 	*pmapped = mapped;
820 	return idx;
821 }
822 
823 static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
824 			      u32 rcventry, struct tid_group *grp,
825 			      struct page **pages, unsigned npages)
826 {
827 	int ret;
828 	struct hfi1_filedata *fd = fp->private_data;
829 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
830 	struct tid_rb_node *node;
831 	struct hfi1_devdata *dd = uctxt->dd;
832 	struct rb_root *root = &fd->tid_rb_root;
833 	dma_addr_t phys;
834 
835 	/*
836 	 * Allocate the node first so we can handle a potential
837 	 * failure before we've programmed anything.
838 	 */
839 	node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
840 		       GFP_KERNEL);
841 	if (!node)
842 		return -ENOMEM;
843 
844 	phys = pci_map_single(dd->pcidev,
845 			      __va(page_to_phys(pages[0])),
846 			      npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
847 	if (dma_mapping_error(&dd->pcidev->dev, phys)) {
848 		dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
849 			   phys);
850 		kfree(node);
851 		return -EFAULT;
852 	}
853 
854 	node->mmu.addr = vaddr;
855 	node->mmu.len = npages * PAGE_SIZE;
856 	node->phys = page_to_phys(pages[0]);
857 	node->npages = npages;
858 	node->rcventry = rcventry;
859 	node->dma_addr = phys;
860 	node->grp = grp;
861 	node->freed = false;
862 	memcpy(node->pages, pages, sizeof(struct page *) * npages);
863 
864 	if (HFI1_CAP_IS_USET(TID_UNMAP))
865 		ret = mmu_rb_insert(root, &node->mmu);
866 	else
867 		ret = hfi1_mmu_rb_insert(root, &node->mmu);
868 
869 	if (ret) {
870 		hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
871 			  node->rcventry, node->mmu.addr, node->phys, ret);
872 		pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
873 				 PCI_DMA_FROMDEVICE);
874 		kfree(node);
875 		return -EFAULT;
876 	}
877 	hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
878 	trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
879 			       node->mmu.addr, node->phys, phys);
880 	return 0;
881 }
882 
883 static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
884 			      struct tid_group **grp)
885 {
886 	struct hfi1_filedata *fd = fp->private_data;
887 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
888 	struct hfi1_devdata *dd = uctxt->dd;
889 	struct tid_rb_node *node;
890 	u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
891 	u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
892 
893 	if (tididx >= uctxt->expected_count) {
894 		dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
895 			   tididx, uctxt->ctxt);
896 		return -EINVAL;
897 	}
898 
899 	if (tidctrl == 0x3)
900 		return -EINVAL;
901 
902 	rcventry = tididx + (tidctrl - 1);
903 
904 	node = fd->entry_to_rb[rcventry];
905 	if (!node || node->rcventry != (uctxt->expected_base + rcventry))
906 		return -EBADF;
907 	if (HFI1_CAP_IS_USET(TID_UNMAP))
908 		mmu_rb_remove(&fd->tid_rb_root, &node->mmu, NULL);
909 	else
910 		hfi1_mmu_rb_remove(&fd->tid_rb_root, &node->mmu);
911 
912 	if (grp)
913 		*grp = node->grp;
914 	clear_tid_node(fd, fd->subctxt, node);
915 	return 0;
916 }
917 
918 static void clear_tid_node(struct hfi1_filedata *fd, u16 subctxt,
919 			   struct tid_rb_node *node)
920 {
921 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
922 	struct hfi1_devdata *dd = uctxt->dd;
923 
924 	trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
925 				 node->npages, node->mmu.addr, node->phys,
926 				 node->dma_addr);
927 
928 	hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
929 	/*
930 	 * Make sure device has seen the write before we unpin the
931 	 * pages.
932 	 */
933 	flush_wc();
934 
935 	pci_unmap_single(dd->pcidev, node->dma_addr, node->mmu.len,
936 			 PCI_DMA_FROMDEVICE);
937 	hfi1_release_user_pages(current->mm, node->pages, node->npages, true);
938 	fd->tid_n_pinned -= node->npages;
939 
940 	node->grp->used--;
941 	node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
942 
943 	if (node->grp->used == node->grp->size - 1)
944 		tid_group_move(node->grp, &uctxt->tid_full_list,
945 			       &uctxt->tid_used_list);
946 	else if (!node->grp->used)
947 		tid_group_move(node->grp, &uctxt->tid_used_list,
948 			       &uctxt->tid_group_list);
949 	kfree(node);
950 }
951 
952 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
953 			    struct exp_tid_set *set, struct rb_root *root)
954 {
955 	struct tid_group *grp, *ptr;
956 	struct hfi1_filedata *fd = container_of(root, struct hfi1_filedata,
957 						tid_rb_root);
958 	int i;
959 
960 	list_for_each_entry_safe(grp, ptr, &set->list, list) {
961 		list_del_init(&grp->list);
962 
963 		for (i = 0; i < grp->size; i++) {
964 			if (grp->map & (1 << i)) {
965 				u16 rcventry = grp->base + i;
966 				struct tid_rb_node *node;
967 
968 				node = fd->entry_to_rb[rcventry -
969 							  uctxt->expected_base];
970 				if (!node || node->rcventry != rcventry)
971 					continue;
972 				if (HFI1_CAP_IS_USET(TID_UNMAP))
973 					mmu_rb_remove(&fd->tid_rb_root,
974 						      &node->mmu, NULL);
975 				else
976 					hfi1_mmu_rb_remove(&fd->tid_rb_root,
977 							   &node->mmu);
978 				clear_tid_node(fd, -1, node);
979 			}
980 		}
981 	}
982 }
983 
984 static int mmu_rb_invalidate(struct rb_root *root, struct mmu_rb_node *mnode)
985 {
986 	struct hfi1_filedata *fdata =
987 		container_of(root, struct hfi1_filedata, tid_rb_root);
988 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
989 	struct tid_rb_node *node =
990 		container_of(mnode, struct tid_rb_node, mmu);
991 
992 	if (node->freed)
993 		return 0;
994 
995 	trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt, node->mmu.addr,
996 				 node->rcventry, node->npages, node->dma_addr);
997 	node->freed = true;
998 
999 	spin_lock(&fdata->invalid_lock);
1000 	if (fdata->invalid_tid_idx < uctxt->expected_count) {
1001 		fdata->invalid_tids[fdata->invalid_tid_idx] =
1002 			rcventry2tidinfo(node->rcventry - uctxt->expected_base);
1003 		fdata->invalid_tids[fdata->invalid_tid_idx] |=
1004 			EXP_TID_SET(LEN, node->npages);
1005 		if (!fdata->invalid_tid_idx) {
1006 			unsigned long *ev;
1007 
1008 			/*
1009 			 * hfi1_set_uevent_bits() sets a user event flag
1010 			 * for all processes. Because calling into the
1011 			 * driver to process TID cache invalidations is
1012 			 * expensive and TID cache invalidations are
1013 			 * handled on a per-process basis, we can
1014 			 * optimize this to set the flag only for the
1015 			 * process in question.
1016 			 */
1017 			ev = uctxt->dd->events +
1018 				(((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
1019 				  HFI1_MAX_SHARED_CTXTS) + fdata->subctxt);
1020 			set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1021 		}
1022 		fdata->invalid_tid_idx++;
1023 	}
1024 	spin_unlock(&fdata->invalid_lock);
1025 	return 0;
1026 }
1027 
1028 static int mmu_rb_insert(struct rb_root *root, struct mmu_rb_node *node)
1029 {
1030 	struct hfi1_filedata *fdata =
1031 		container_of(root, struct hfi1_filedata, tid_rb_root);
1032 	struct tid_rb_node *tnode =
1033 		container_of(node, struct tid_rb_node, mmu);
1034 	u32 base = fdata->uctxt->expected_base;
1035 
1036 	fdata->entry_to_rb[tnode->rcventry - base] = tnode;
1037 	return 0;
1038 }
1039 
1040 static void mmu_rb_remove(struct rb_root *root, struct mmu_rb_node *node,
1041 			  struct mm_struct *mm)
1042 {
1043 	struct hfi1_filedata *fdata =
1044 		container_of(root, struct hfi1_filedata, tid_rb_root);
1045 	struct tid_rb_node *tnode =
1046 		container_of(node, struct tid_rb_node, mmu);
1047 	u32 base = fdata->uctxt->expected_base;
1048 
1049 	fdata->entry_to_rb[tnode->rcventry - base] = NULL;
1050 }
1051