1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright(c) 2018 Intel Corporation. 4 * 5 */ 6 7 #include "hfi.h" 8 #include "qp.h" 9 #include "rc.h" 10 #include "verbs.h" 11 #include "tid_rdma.h" 12 #include "exp_rcv.h" 13 #include "trace.h" 14 15 /** 16 * DOC: TID RDMA READ protocol 17 * 18 * This is an end-to-end protocol at the hfi1 level between two nodes that 19 * improves performance by avoiding data copy on the requester side. It 20 * converts a qualified RDMA READ request into a TID RDMA READ request on 21 * the requester side and thereafter handles the request and response 22 * differently. To be qualified, the RDMA READ request should meet the 23 * following: 24 * -- The total data length should be greater than 256K; 25 * -- The total data length should be a multiple of 4K page size; 26 * -- Each local scatter-gather entry should be 4K page aligned; 27 * -- Each local scatter-gather entry should be a multiple of 4K page size; 28 */ 29 30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32) 31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33) 32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34) 33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35) 34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37) 35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38) 36 37 /* Maximum number of packets within a flow generation. */ 38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT) 39 40 #define GENERATION_MASK 0xFFFFF 41 42 static u32 mask_generation(u32 a) 43 { 44 return a & GENERATION_MASK; 45 } 46 47 /* Reserved generation value to set to unused flows for kernel contexts */ 48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX) 49 50 /* 51 * J_KEY for kernel contexts when TID RDMA is used. 52 * See generate_jkey() in hfi.h for more information. 53 */ 54 #define TID_RDMA_JKEY 32 55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE 56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1) 57 58 /* Maximum number of segments in flight per QP request. */ 59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ 6 60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4 61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \ 62 TID_RDMA_MAX_WRITE_SEGS_PER_REQ) 63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1) 64 65 #define MAX_EXPECTED_PAGES (MAX_EXPECTED_BUFFER / PAGE_SIZE) 66 67 #define TID_RDMA_DESTQP_FLOW_SHIFT 11 68 #define TID_RDMA_DESTQP_FLOW_MASK 0x1f 69 70 #define TID_OPFN_QP_CTXT_MASK 0xff 71 #define TID_OPFN_QP_CTXT_SHIFT 56 72 #define TID_OPFN_QP_KDETH_MASK 0xff 73 #define TID_OPFN_QP_KDETH_SHIFT 48 74 #define TID_OPFN_MAX_LEN_MASK 0x7ff 75 #define TID_OPFN_MAX_LEN_SHIFT 37 76 #define TID_OPFN_TIMEOUT_MASK 0x1f 77 #define TID_OPFN_TIMEOUT_SHIFT 32 78 #define TID_OPFN_RESERVED_MASK 0x3f 79 #define TID_OPFN_RESERVED_SHIFT 26 80 #define TID_OPFN_URG_MASK 0x1 81 #define TID_OPFN_URG_SHIFT 25 82 #define TID_OPFN_VER_MASK 0x7 83 #define TID_OPFN_VER_SHIFT 22 84 #define TID_OPFN_JKEY_MASK 0x3f 85 #define TID_OPFN_JKEY_SHIFT 16 86 #define TID_OPFN_MAX_READ_MASK 0x3f 87 #define TID_OPFN_MAX_READ_SHIFT 10 88 #define TID_OPFN_MAX_WRITE_MASK 0x3f 89 #define TID_OPFN_MAX_WRITE_SHIFT 4 90 91 /* 92 * OPFN TID layout 93 * 94 * 63 47 31 15 95 * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC 96 * 3210987654321098 7654321098765432 1098765432109876 5432109876543210 97 * N - the context Number 98 * K - the Kdeth_qp 99 * M - Max_len 100 * T - Timeout 101 * D - reserveD 102 * V - version 103 * U - Urg capable 104 * J - Jkey 105 * R - max_Read 106 * W - max_Write 107 * C - Capcode 108 */ 109 110 static u32 tid_rdma_flow_wt; 111 112 static void tid_rdma_trigger_resume(struct work_struct *work); 113 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req); 114 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req, 115 gfp_t gfp); 116 static void hfi1_init_trdma_req(struct rvt_qp *qp, 117 struct tid_rdma_request *req); 118 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx); 119 static void hfi1_tid_timeout(struct timer_list *t); 120 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp); 121 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp); 122 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp); 123 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp); 124 static void hfi1_tid_retry_timeout(struct timer_list *t); 125 static int make_tid_rdma_ack(struct rvt_qp *qp, 126 struct ib_other_headers *ohdr, 127 struct hfi1_pkt_state *ps); 128 static void hfi1_do_tid_send(struct rvt_qp *qp); 129 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx); 130 static void tid_rdma_rcv_err(struct hfi1_packet *packet, 131 struct ib_other_headers *ohdr, 132 struct rvt_qp *qp, u32 psn, int diff, bool fecn); 133 static void update_r_next_psn_fecn(struct hfi1_packet *packet, 134 struct hfi1_qp_priv *priv, 135 struct hfi1_ctxtdata *rcd, 136 struct tid_rdma_flow *flow, 137 bool fecn); 138 139 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p) 140 { 141 return 142 (((u64)p->qp & TID_OPFN_QP_CTXT_MASK) << 143 TID_OPFN_QP_CTXT_SHIFT) | 144 ((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) << 145 TID_OPFN_QP_KDETH_SHIFT) | 146 (((u64)((p->max_len >> PAGE_SHIFT) - 1) & 147 TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) | 148 (((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) << 149 TID_OPFN_TIMEOUT_SHIFT) | 150 (((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) | 151 (((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) | 152 (((u64)p->max_read & TID_OPFN_MAX_READ_MASK) << 153 TID_OPFN_MAX_READ_SHIFT) | 154 (((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) << 155 TID_OPFN_MAX_WRITE_SHIFT); 156 } 157 158 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data) 159 { 160 p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) & 161 TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT; 162 p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK; 163 p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) & 164 TID_OPFN_MAX_WRITE_MASK; 165 p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) & 166 TID_OPFN_MAX_READ_MASK; 167 p->qp = 168 ((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK) 169 << 16) | 170 ((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK)); 171 p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK; 172 p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK; 173 } 174 175 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p) 176 { 177 struct hfi1_qp_priv *priv = qp->priv; 178 179 p->qp = (kdeth_qp << 16) | priv->rcd->ctxt; 180 p->max_len = TID_RDMA_MAX_SEGMENT_SIZE; 181 p->jkey = priv->rcd->jkey; 182 p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ; 183 p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ; 184 p->timeout = qp->timeout; 185 p->urg = is_urg_masked(priv->rcd); 186 } 187 188 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data) 189 { 190 struct hfi1_qp_priv *priv = qp->priv; 191 192 *data = tid_rdma_opfn_encode(&priv->tid_rdma.local); 193 return true; 194 } 195 196 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data) 197 { 198 struct hfi1_qp_priv *priv = qp->priv; 199 struct tid_rdma_params *remote, *old; 200 bool ret = true; 201 202 old = rcu_dereference_protected(priv->tid_rdma.remote, 203 lockdep_is_held(&priv->opfn.lock)); 204 data &= ~0xfULL; 205 /* 206 * If data passed in is zero, return true so as not to continue the 207 * negotiation process 208 */ 209 if (!data || !HFI1_CAP_IS_KSET(TID_RDMA)) 210 goto null; 211 /* 212 * If kzalloc fails, return false. This will result in: 213 * * at the requester a new OPFN request being generated to retry 214 * the negotiation 215 * * at the responder, 0 being returned to the requester so as to 216 * disable TID RDMA at both the requester and the responder 217 */ 218 remote = kzalloc(sizeof(*remote), GFP_ATOMIC); 219 if (!remote) { 220 ret = false; 221 goto null; 222 } 223 224 tid_rdma_opfn_decode(remote, data); 225 priv->tid_timer_timeout_jiffies = 226 usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) / 227 1000UL) << 3) * 7); 228 trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local); 229 trace_hfi1_opfn_param(qp, 1, remote); 230 rcu_assign_pointer(priv->tid_rdma.remote, remote); 231 /* 232 * A TID RDMA READ request's segment size is not equal to 233 * remote->max_len only when the request's data length is smaller 234 * than remote->max_len. In that case, there will be only one segment. 235 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg 236 * during retry, it will lead to req->cur_seg = 0, which is exactly 237 * what is expected. 238 */ 239 priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len); 240 priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1; 241 goto free; 242 null: 243 RCU_INIT_POINTER(priv->tid_rdma.remote, NULL); 244 priv->timeout_shift = 0; 245 free: 246 if (old) 247 kfree_rcu(old, rcu_head); 248 return ret; 249 } 250 251 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data) 252 { 253 bool ret; 254 255 ret = tid_rdma_conn_reply(qp, *data); 256 *data = 0; 257 /* 258 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate 259 * TID RDMA could not be enabled. This will result in TID RDMA being 260 * disabled at the requester too. 261 */ 262 if (ret) 263 (void)tid_rdma_conn_req(qp, data); 264 return ret; 265 } 266 267 void tid_rdma_conn_error(struct rvt_qp *qp) 268 { 269 struct hfi1_qp_priv *priv = qp->priv; 270 struct tid_rdma_params *old; 271 272 old = rcu_dereference_protected(priv->tid_rdma.remote, 273 lockdep_is_held(&priv->opfn.lock)); 274 RCU_INIT_POINTER(priv->tid_rdma.remote, NULL); 275 if (old) 276 kfree_rcu(old, rcu_head); 277 } 278 279 /* This is called at context initialization time */ 280 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit) 281 { 282 if (reinit) 283 return 0; 284 285 BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY); 286 BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY); 287 rcd->jkey = TID_RDMA_JKEY; 288 hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey); 289 return hfi1_alloc_ctxt_rcv_groups(rcd); 290 } 291 292 /** 293 * qp_to_rcd - determine the receive context used by a qp 294 * @qp - the qp 295 * 296 * This routine returns the receive context associated 297 * with a a qp's qpn. 298 * 299 * Returns the context. 300 */ 301 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi, 302 struct rvt_qp *qp) 303 { 304 struct hfi1_ibdev *verbs_dev = container_of(rdi, 305 struct hfi1_ibdev, 306 rdi); 307 struct hfi1_devdata *dd = container_of(verbs_dev, 308 struct hfi1_devdata, 309 verbs_dev); 310 unsigned int ctxt; 311 312 if (qp->ibqp.qp_num == 0) 313 ctxt = 0; 314 else 315 ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift); 316 return dd->rcd[ctxt]; 317 } 318 319 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp, 320 struct ib_qp_init_attr *init_attr) 321 { 322 struct hfi1_qp_priv *qpriv = qp->priv; 323 int i, ret; 324 325 qpriv->rcd = qp_to_rcd(rdi, qp); 326 327 spin_lock_init(&qpriv->opfn.lock); 328 INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request); 329 INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume); 330 qpriv->flow_state.psn = 0; 331 qpriv->flow_state.index = RXE_NUM_TID_FLOWS; 332 qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS; 333 qpriv->flow_state.generation = KERN_GENERATION_RESERVED; 334 qpriv->s_state = TID_OP(WRITE_RESP); 335 qpriv->s_tid_cur = HFI1_QP_WQE_INVALID; 336 qpriv->s_tid_head = HFI1_QP_WQE_INVALID; 337 qpriv->s_tid_tail = HFI1_QP_WQE_INVALID; 338 qpriv->rnr_nak_state = TID_RNR_NAK_INIT; 339 qpriv->r_tid_head = HFI1_QP_WQE_INVALID; 340 qpriv->r_tid_tail = HFI1_QP_WQE_INVALID; 341 qpriv->r_tid_ack = HFI1_QP_WQE_INVALID; 342 qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID; 343 atomic_set(&qpriv->n_requests, 0); 344 atomic_set(&qpriv->n_tid_requests, 0); 345 timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0); 346 timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0); 347 INIT_LIST_HEAD(&qpriv->tid_wait); 348 349 if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) { 350 struct hfi1_devdata *dd = qpriv->rcd->dd; 351 352 qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES * 353 sizeof(*qpriv->pages), 354 GFP_KERNEL, dd->node); 355 if (!qpriv->pages) 356 return -ENOMEM; 357 for (i = 0; i < qp->s_size; i++) { 358 struct hfi1_swqe_priv *priv; 359 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i); 360 361 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, 362 dd->node); 363 if (!priv) 364 return -ENOMEM; 365 366 hfi1_init_trdma_req(qp, &priv->tid_req); 367 priv->tid_req.e.swqe = wqe; 368 wqe->priv = priv; 369 } 370 for (i = 0; i < rvt_max_atomic(rdi); i++) { 371 struct hfi1_ack_priv *priv; 372 373 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, 374 dd->node); 375 if (!priv) 376 return -ENOMEM; 377 378 hfi1_init_trdma_req(qp, &priv->tid_req); 379 priv->tid_req.e.ack = &qp->s_ack_queue[i]; 380 381 ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, 382 GFP_KERNEL); 383 if (ret) { 384 kfree(priv); 385 return ret; 386 } 387 qp->s_ack_queue[i].priv = priv; 388 } 389 } 390 391 return 0; 392 } 393 394 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp) 395 { 396 struct hfi1_qp_priv *qpriv = qp->priv; 397 struct rvt_swqe *wqe; 398 u32 i; 399 400 if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) { 401 for (i = 0; i < qp->s_size; i++) { 402 wqe = rvt_get_swqe_ptr(qp, i); 403 kfree(wqe->priv); 404 wqe->priv = NULL; 405 } 406 for (i = 0; i < rvt_max_atomic(rdi); i++) { 407 struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv; 408 409 if (priv) 410 hfi1_kern_exp_rcv_free_flows(&priv->tid_req); 411 kfree(priv); 412 qp->s_ack_queue[i].priv = NULL; 413 } 414 cancel_work_sync(&qpriv->opfn.opfn_work); 415 kfree(qpriv->pages); 416 qpriv->pages = NULL; 417 } 418 } 419 420 /* Flow and tid waiter functions */ 421 /** 422 * DOC: lock ordering 423 * 424 * There are two locks involved with the queuing 425 * routines: the qp s_lock and the exp_lock. 426 * 427 * Since the tid space allocation is called from 428 * the send engine, the qp s_lock is already held. 429 * 430 * The allocation routines will get the exp_lock. 431 * 432 * The first_qp() call is provided to allow the head of 433 * the rcd wait queue to be fetched under the exp_lock and 434 * followed by a drop of the exp_lock. 435 * 436 * Any qp in the wait list will have the qp reference count held 437 * to hold the qp in memory. 438 */ 439 440 /* 441 * return head of rcd wait list 442 * 443 * Must hold the exp_lock. 444 * 445 * Get a reference to the QP to hold the QP in memory. 446 * 447 * The caller must release the reference when the local 448 * is no longer being used. 449 */ 450 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd, 451 struct tid_queue *queue) 452 __must_hold(&rcd->exp_lock) 453 { 454 struct hfi1_qp_priv *priv; 455 456 lockdep_assert_held(&rcd->exp_lock); 457 priv = list_first_entry_or_null(&queue->queue_head, 458 struct hfi1_qp_priv, 459 tid_wait); 460 if (!priv) 461 return NULL; 462 rvt_get_qp(priv->owner); 463 return priv->owner; 464 } 465 466 /** 467 * kernel_tid_waiters - determine rcd wait 468 * @rcd: the receive context 469 * @qp: the head of the qp being processed 470 * 471 * This routine will return false IFF 472 * the list is NULL or the head of the 473 * list is the indicated qp. 474 * 475 * Must hold the qp s_lock and the exp_lock. 476 * 477 * Return: 478 * false if either of the conditions below are satisfied: 479 * 1. The list is empty or 480 * 2. The indicated qp is at the head of the list and the 481 * HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags. 482 * true is returned otherwise. 483 */ 484 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd, 485 struct tid_queue *queue, struct rvt_qp *qp) 486 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock) 487 { 488 struct rvt_qp *fqp; 489 bool ret = true; 490 491 lockdep_assert_held(&qp->s_lock); 492 lockdep_assert_held(&rcd->exp_lock); 493 fqp = first_qp(rcd, queue); 494 if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE))) 495 ret = false; 496 rvt_put_qp(fqp); 497 return ret; 498 } 499 500 /** 501 * dequeue_tid_waiter - dequeue the qp from the list 502 * @qp - the qp to remove the wait list 503 * 504 * This routine removes the indicated qp from the 505 * wait list if it is there. 506 * 507 * This should be done after the hardware flow and 508 * tid array resources have been allocated. 509 * 510 * Must hold the qp s_lock and the rcd exp_lock. 511 * 512 * It assumes the s_lock to protect the s_flags 513 * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag. 514 */ 515 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd, 516 struct tid_queue *queue, struct rvt_qp *qp) 517 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock) 518 { 519 struct hfi1_qp_priv *priv = qp->priv; 520 521 lockdep_assert_held(&qp->s_lock); 522 lockdep_assert_held(&rcd->exp_lock); 523 if (list_empty(&priv->tid_wait)) 524 return; 525 list_del_init(&priv->tid_wait); 526 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE; 527 queue->dequeue++; 528 rvt_put_qp(qp); 529 } 530 531 /** 532 * queue_qp_for_tid_wait - suspend QP on tid space 533 * @rcd: the receive context 534 * @qp: the qp 535 * 536 * The qp is inserted at the tail of the rcd 537 * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set. 538 * 539 * Must hold the qp s_lock and the exp_lock. 540 */ 541 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd, 542 struct tid_queue *queue, struct rvt_qp *qp) 543 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock) 544 { 545 struct hfi1_qp_priv *priv = qp->priv; 546 547 lockdep_assert_held(&qp->s_lock); 548 lockdep_assert_held(&rcd->exp_lock); 549 if (list_empty(&priv->tid_wait)) { 550 qp->s_flags |= HFI1_S_WAIT_TID_SPACE; 551 list_add_tail(&priv->tid_wait, &queue->queue_head); 552 priv->tid_enqueue = ++queue->enqueue; 553 rcd->dd->verbs_dev.n_tidwait++; 554 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE); 555 rvt_get_qp(qp); 556 } 557 } 558 559 /** 560 * __trigger_tid_waiter - trigger tid waiter 561 * @qp: the qp 562 * 563 * This is a private entrance to schedule the qp 564 * assuming the caller is holding the qp->s_lock. 565 */ 566 static void __trigger_tid_waiter(struct rvt_qp *qp) 567 __must_hold(&qp->s_lock) 568 { 569 lockdep_assert_held(&qp->s_lock); 570 if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE)) 571 return; 572 trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE); 573 hfi1_schedule_send(qp); 574 } 575 576 /** 577 * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp 578 * @qp - the qp 579 * 580 * trigger a schedule or a waiting qp in a deadlock 581 * safe manner. The qp reference is held prior 582 * to this call via first_qp(). 583 * 584 * If the qp trigger was already scheduled (!rval) 585 * the the reference is dropped, otherwise the resume 586 * or the destroy cancel will dispatch the reference. 587 */ 588 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp) 589 { 590 struct hfi1_qp_priv *priv; 591 struct hfi1_ibport *ibp; 592 struct hfi1_pportdata *ppd; 593 struct hfi1_devdata *dd; 594 bool rval; 595 596 if (!qp) 597 return; 598 599 priv = qp->priv; 600 ibp = to_iport(qp->ibqp.device, qp->port_num); 601 ppd = ppd_from_ibp(ibp); 602 dd = dd_from_ibdev(qp->ibqp.device); 603 604 rval = queue_work_on(priv->s_sde ? 605 priv->s_sde->cpu : 606 cpumask_first(cpumask_of_node(dd->node)), 607 ppd->hfi1_wq, 608 &priv->tid_rdma.trigger_work); 609 if (!rval) 610 rvt_put_qp(qp); 611 } 612 613 /** 614 * tid_rdma_trigger_resume - field a trigger work request 615 * @work - the work item 616 * 617 * Complete the off qp trigger processing by directly 618 * calling the progress routine. 619 */ 620 static void tid_rdma_trigger_resume(struct work_struct *work) 621 { 622 struct tid_rdma_qp_params *tr; 623 struct hfi1_qp_priv *priv; 624 struct rvt_qp *qp; 625 626 tr = container_of(work, struct tid_rdma_qp_params, trigger_work); 627 priv = container_of(tr, struct hfi1_qp_priv, tid_rdma); 628 qp = priv->owner; 629 spin_lock_irq(&qp->s_lock); 630 if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) { 631 spin_unlock_irq(&qp->s_lock); 632 hfi1_do_send(priv->owner, true); 633 } else { 634 spin_unlock_irq(&qp->s_lock); 635 } 636 rvt_put_qp(qp); 637 } 638 639 /** 640 * tid_rdma_flush_wait - unwind any tid space wait 641 * 642 * This is called when resetting a qp to 643 * allow a destroy or reset to get rid 644 * of any tid space linkage and reference counts. 645 */ 646 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue) 647 __must_hold(&qp->s_lock) 648 { 649 struct hfi1_qp_priv *priv; 650 651 if (!qp) 652 return; 653 lockdep_assert_held(&qp->s_lock); 654 priv = qp->priv; 655 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE; 656 spin_lock(&priv->rcd->exp_lock); 657 if (!list_empty(&priv->tid_wait)) { 658 list_del_init(&priv->tid_wait); 659 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE; 660 queue->dequeue++; 661 rvt_put_qp(qp); 662 } 663 spin_unlock(&priv->rcd->exp_lock); 664 } 665 666 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp) 667 __must_hold(&qp->s_lock) 668 { 669 struct hfi1_qp_priv *priv = qp->priv; 670 671 _tid_rdma_flush_wait(qp, &priv->rcd->flow_queue); 672 _tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue); 673 } 674 675 /* Flow functions */ 676 /** 677 * kern_reserve_flow - allocate a hardware flow 678 * @rcd - the context to use for allocation 679 * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to 680 * signify "don't care". 681 * 682 * Use a bit mask based allocation to reserve a hardware 683 * flow for use in receiving KDETH data packets. If a preferred flow is 684 * specified the function will attempt to reserve that flow again, if 685 * available. 686 * 687 * The exp_lock must be held. 688 * 689 * Return: 690 * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1 691 * On failure: -EAGAIN 692 */ 693 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last) 694 __must_hold(&rcd->exp_lock) 695 { 696 int nr; 697 698 /* Attempt to reserve the preferred flow index */ 699 if (last >= 0 && last < RXE_NUM_TID_FLOWS && 700 !test_and_set_bit(last, &rcd->flow_mask)) 701 return last; 702 703 nr = ffz(rcd->flow_mask); 704 BUILD_BUG_ON(RXE_NUM_TID_FLOWS >= 705 (sizeof(rcd->flow_mask) * BITS_PER_BYTE)); 706 if (nr > (RXE_NUM_TID_FLOWS - 1)) 707 return -EAGAIN; 708 set_bit(nr, &rcd->flow_mask); 709 return nr; 710 } 711 712 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation, 713 u32 flow_idx) 714 { 715 u64 reg; 716 717 reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) | 718 RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK | 719 RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK | 720 RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK | 721 RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK | 722 RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK; 723 724 if (generation != KERN_GENERATION_RESERVED) 725 reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK; 726 727 write_uctxt_csr(rcd->dd, rcd->ctxt, 728 RCV_TID_FLOW_TABLE + 8 * flow_idx, reg); 729 } 730 731 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx) 732 __must_hold(&rcd->exp_lock) 733 { 734 u32 generation = rcd->flows[flow_idx].generation; 735 736 kern_set_hw_flow(rcd, generation, flow_idx); 737 return generation; 738 } 739 740 static u32 kern_flow_generation_next(u32 gen) 741 { 742 u32 generation = mask_generation(gen + 1); 743 744 if (generation == KERN_GENERATION_RESERVED) 745 generation = mask_generation(generation + 1); 746 return generation; 747 } 748 749 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx) 750 __must_hold(&rcd->exp_lock) 751 { 752 rcd->flows[flow_idx].generation = 753 kern_flow_generation_next(rcd->flows[flow_idx].generation); 754 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx); 755 } 756 757 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp) 758 { 759 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv; 760 struct tid_flow_state *fs = &qpriv->flow_state; 761 struct rvt_qp *fqp; 762 unsigned long flags; 763 int ret = 0; 764 765 /* The QP already has an allocated flow */ 766 if (fs->index != RXE_NUM_TID_FLOWS) 767 return ret; 768 769 spin_lock_irqsave(&rcd->exp_lock, flags); 770 if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp)) 771 goto queue; 772 773 ret = kern_reserve_flow(rcd, fs->last_index); 774 if (ret < 0) 775 goto queue; 776 fs->index = ret; 777 fs->last_index = fs->index; 778 779 /* Generation received in a RESYNC overrides default flow generation */ 780 if (fs->generation != KERN_GENERATION_RESERVED) 781 rcd->flows[fs->index].generation = fs->generation; 782 fs->generation = kern_setup_hw_flow(rcd, fs->index); 783 fs->psn = 0; 784 dequeue_tid_waiter(rcd, &rcd->flow_queue, qp); 785 /* get head before dropping lock */ 786 fqp = first_qp(rcd, &rcd->flow_queue); 787 spin_unlock_irqrestore(&rcd->exp_lock, flags); 788 789 tid_rdma_schedule_tid_wakeup(fqp); 790 return 0; 791 queue: 792 queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp); 793 spin_unlock_irqrestore(&rcd->exp_lock, flags); 794 return -EAGAIN; 795 } 796 797 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp) 798 { 799 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv; 800 struct tid_flow_state *fs = &qpriv->flow_state; 801 struct rvt_qp *fqp; 802 unsigned long flags; 803 804 if (fs->index >= RXE_NUM_TID_FLOWS) 805 return; 806 spin_lock_irqsave(&rcd->exp_lock, flags); 807 kern_clear_hw_flow(rcd, fs->index); 808 clear_bit(fs->index, &rcd->flow_mask); 809 fs->index = RXE_NUM_TID_FLOWS; 810 fs->psn = 0; 811 fs->generation = KERN_GENERATION_RESERVED; 812 813 /* get head before dropping lock */ 814 fqp = first_qp(rcd, &rcd->flow_queue); 815 spin_unlock_irqrestore(&rcd->exp_lock, flags); 816 817 if (fqp == qp) { 818 __trigger_tid_waiter(fqp); 819 rvt_put_qp(fqp); 820 } else { 821 tid_rdma_schedule_tid_wakeup(fqp); 822 } 823 } 824 825 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd) 826 { 827 int i; 828 829 for (i = 0; i < RXE_NUM_TID_FLOWS; i++) { 830 rcd->flows[i].generation = mask_generation(prandom_u32()); 831 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i); 832 } 833 } 834 835 /* TID allocation functions */ 836 static u8 trdma_pset_order(struct tid_rdma_pageset *s) 837 { 838 u8 count = s->count; 839 840 return ilog2(count) + 1; 841 } 842 843 /** 844 * tid_rdma_find_phys_blocks_4k - get groups base on mr info 845 * @npages - number of pages 846 * @pages - pointer to an array of page structs 847 * @list - page set array to return 848 * 849 * This routine returns the number of groups associated with 850 * the current sge information. This implementation is based 851 * on the expected receive find_phys_blocks() adjusted to 852 * use the MR information vs. the pfn. 853 * 854 * Return: 855 * the number of RcvArray entries 856 */ 857 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow, 858 struct page **pages, 859 u32 npages, 860 struct tid_rdma_pageset *list) 861 { 862 u32 pagecount, pageidx, setcount = 0, i; 863 void *vaddr, *this_vaddr; 864 865 if (!npages) 866 return 0; 867 868 /* 869 * Look for sets of physically contiguous pages in the user buffer. 870 * This will allow us to optimize Expected RcvArray entry usage by 871 * using the bigger supported sizes. 872 */ 873 vaddr = page_address(pages[0]); 874 trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr); 875 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) { 876 this_vaddr = i < npages ? page_address(pages[i]) : NULL; 877 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0, 878 this_vaddr); 879 /* 880 * If the vaddr's are not sequential, pages are not physically 881 * contiguous. 882 */ 883 if (this_vaddr != (vaddr + PAGE_SIZE)) { 884 /* 885 * At this point we have to loop over the set of 886 * physically contiguous pages and break them down it 887 * sizes supported by the HW. 888 * There are two main constraints: 889 * 1. The max buffer size is MAX_EXPECTED_BUFFER. 890 * If the total set size is bigger than that 891 * program only a MAX_EXPECTED_BUFFER chunk. 892 * 2. The buffer size has to be a power of two. If 893 * it is not, round down to the closes power of 894 * 2 and program that size. 895 */ 896 while (pagecount) { 897 int maxpages = pagecount; 898 u32 bufsize = pagecount * PAGE_SIZE; 899 900 if (bufsize > MAX_EXPECTED_BUFFER) 901 maxpages = 902 MAX_EXPECTED_BUFFER >> 903 PAGE_SHIFT; 904 else if (!is_power_of_2(bufsize)) 905 maxpages = 906 rounddown_pow_of_two(bufsize) >> 907 PAGE_SHIFT; 908 909 list[setcount].idx = pageidx; 910 list[setcount].count = maxpages; 911 trace_hfi1_tid_pageset(flow->req->qp, setcount, 912 list[setcount].idx, 913 list[setcount].count); 914 pagecount -= maxpages; 915 pageidx += maxpages; 916 setcount++; 917 } 918 pageidx = i; 919 pagecount = 1; 920 vaddr = this_vaddr; 921 } else { 922 vaddr += PAGE_SIZE; 923 pagecount++; 924 } 925 } 926 /* insure we always return an even number of sets */ 927 if (setcount & 1) 928 list[setcount++].count = 0; 929 return setcount; 930 } 931 932 /** 933 * tid_flush_pages - dump out pages into pagesets 934 * @list - list of pagesets 935 * @idx - pointer to current page index 936 * @pages - number of pages to dump 937 * @sets - current number of pagesset 938 * 939 * This routine flushes out accumuated pages. 940 * 941 * To insure an even number of sets the 942 * code may add a filler. 943 * 944 * This can happen with when pages is not 945 * a power of 2 or pages is a power of 2 946 * less than the maximum pages. 947 * 948 * Return: 949 * The new number of sets 950 */ 951 952 static u32 tid_flush_pages(struct tid_rdma_pageset *list, 953 u32 *idx, u32 pages, u32 sets) 954 { 955 while (pages) { 956 u32 maxpages = pages; 957 958 if (maxpages > MAX_EXPECTED_PAGES) 959 maxpages = MAX_EXPECTED_PAGES; 960 else if (!is_power_of_2(maxpages)) 961 maxpages = rounddown_pow_of_two(maxpages); 962 list[sets].idx = *idx; 963 list[sets++].count = maxpages; 964 *idx += maxpages; 965 pages -= maxpages; 966 } 967 /* might need a filler */ 968 if (sets & 1) 969 list[sets++].count = 0; 970 return sets; 971 } 972 973 /** 974 * tid_rdma_find_phys_blocks_8k - get groups base on mr info 975 * @pages - pointer to an array of page structs 976 * @npages - number of pages 977 * @list - page set array to return 978 * 979 * This routine parses an array of pages to compute pagesets 980 * in an 8k compatible way. 981 * 982 * pages are tested two at a time, i, i + 1 for contiguous 983 * pages and i - 1 and i contiguous pages. 984 * 985 * If any condition is false, any accumlated pages are flushed and 986 * v0,v1 are emitted as separate PAGE_SIZE pagesets 987 * 988 * Otherwise, the current 8k is totaled for a future flush. 989 * 990 * Return: 991 * The number of pagesets 992 * list set with the returned number of pagesets 993 * 994 */ 995 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow, 996 struct page **pages, 997 u32 npages, 998 struct tid_rdma_pageset *list) 999 { 1000 u32 idx, sets = 0, i; 1001 u32 pagecnt = 0; 1002 void *v0, *v1, *vm1; 1003 1004 if (!npages) 1005 return 0; 1006 for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) { 1007 /* get a new v0 */ 1008 v0 = page_address(pages[i]); 1009 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0); 1010 v1 = i + 1 < npages ? 1011 page_address(pages[i + 1]) : NULL; 1012 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1); 1013 /* compare i, i + 1 vaddr */ 1014 if (v1 != (v0 + PAGE_SIZE)) { 1015 /* flush out pages */ 1016 sets = tid_flush_pages(list, &idx, pagecnt, sets); 1017 /* output v0,v1 as two pagesets */ 1018 list[sets].idx = idx++; 1019 list[sets++].count = 1; 1020 if (v1) { 1021 list[sets].count = 1; 1022 list[sets++].idx = idx++; 1023 } else { 1024 list[sets++].count = 0; 1025 } 1026 vm1 = NULL; 1027 pagecnt = 0; 1028 continue; 1029 } 1030 /* i,i+1 consecutive, look at i-1,i */ 1031 if (vm1 && v0 != (vm1 + PAGE_SIZE)) { 1032 /* flush out pages */ 1033 sets = tid_flush_pages(list, &idx, pagecnt, sets); 1034 pagecnt = 0; 1035 } 1036 /* pages will always be a multiple of 8k */ 1037 pagecnt += 2; 1038 /* save i-1 */ 1039 vm1 = v1; 1040 /* move to next pair */ 1041 } 1042 /* dump residual pages at end */ 1043 sets = tid_flush_pages(list, &idx, npages - idx, sets); 1044 /* by design cannot be odd sets */ 1045 WARN_ON(sets & 1); 1046 return sets; 1047 } 1048 1049 /** 1050 * Find pages for one segment of a sge array represented by @ss. The function 1051 * does not check the sge, the sge must have been checked for alignment with a 1052 * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of 1053 * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge 1054 * copy maintained in @ss->sge, the original sge is not modified. 1055 * 1056 * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not 1057 * releasing the MR reference count at the same time. Otherwise, we'll "leak" 1058 * references to the MR. This difference requires that we keep track of progress 1059 * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request 1060 * structure. 1061 */ 1062 static u32 kern_find_pages(struct tid_rdma_flow *flow, 1063 struct page **pages, 1064 struct rvt_sge_state *ss, bool *last) 1065 { 1066 struct tid_rdma_request *req = flow->req; 1067 struct rvt_sge *sge = &ss->sge; 1068 u32 length = flow->req->seg_len; 1069 u32 len = PAGE_SIZE; 1070 u32 i = 0; 1071 1072 while (length && req->isge < ss->num_sge) { 1073 pages[i++] = virt_to_page(sge->vaddr); 1074 1075 sge->vaddr += len; 1076 sge->length -= len; 1077 sge->sge_length -= len; 1078 if (!sge->sge_length) { 1079 if (++req->isge < ss->num_sge) 1080 *sge = ss->sg_list[req->isge - 1]; 1081 } else if (sge->length == 0 && sge->mr->lkey) { 1082 if (++sge->n >= RVT_SEGSZ) { 1083 ++sge->m; 1084 sge->n = 0; 1085 } 1086 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr; 1087 sge->length = sge->mr->map[sge->m]->segs[sge->n].length; 1088 } 1089 length -= len; 1090 } 1091 1092 flow->length = flow->req->seg_len - length; 1093 *last = req->isge == ss->num_sge ? false : true; 1094 return i; 1095 } 1096 1097 static void dma_unmap_flow(struct tid_rdma_flow *flow) 1098 { 1099 struct hfi1_devdata *dd; 1100 int i; 1101 struct tid_rdma_pageset *pset; 1102 1103 dd = flow->req->rcd->dd; 1104 for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets; 1105 i++, pset++) { 1106 if (pset->count && pset->addr) { 1107 dma_unmap_page(&dd->pcidev->dev, 1108 pset->addr, 1109 PAGE_SIZE * pset->count, 1110 DMA_FROM_DEVICE); 1111 pset->mapped = 0; 1112 } 1113 } 1114 } 1115 1116 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages) 1117 { 1118 int i; 1119 struct hfi1_devdata *dd = flow->req->rcd->dd; 1120 struct tid_rdma_pageset *pset; 1121 1122 for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets; 1123 i++, pset++) { 1124 if (pset->count) { 1125 pset->addr = dma_map_page(&dd->pcidev->dev, 1126 pages[pset->idx], 1127 0, 1128 PAGE_SIZE * pset->count, 1129 DMA_FROM_DEVICE); 1130 1131 if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) { 1132 dma_unmap_flow(flow); 1133 return -ENOMEM; 1134 } 1135 pset->mapped = 1; 1136 } 1137 } 1138 return 0; 1139 } 1140 1141 static inline bool dma_mapped(struct tid_rdma_flow *flow) 1142 { 1143 return !!flow->pagesets[0].mapped; 1144 } 1145 1146 /* 1147 * Get pages pointers and identify contiguous physical memory chunks for a 1148 * segment. All segments are of length flow->req->seg_len. 1149 */ 1150 static int kern_get_phys_blocks(struct tid_rdma_flow *flow, 1151 struct page **pages, 1152 struct rvt_sge_state *ss, bool *last) 1153 { 1154 u8 npages; 1155 1156 /* Reuse previously computed pagesets, if any */ 1157 if (flow->npagesets) { 1158 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, 1159 flow); 1160 if (!dma_mapped(flow)) 1161 return dma_map_flow(flow, pages); 1162 return 0; 1163 } 1164 1165 npages = kern_find_pages(flow, pages, ss, last); 1166 1167 if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096)) 1168 flow->npagesets = 1169 tid_rdma_find_phys_blocks_4k(flow, pages, npages, 1170 flow->pagesets); 1171 else 1172 flow->npagesets = 1173 tid_rdma_find_phys_blocks_8k(flow, pages, npages, 1174 flow->pagesets); 1175 1176 return dma_map_flow(flow, pages); 1177 } 1178 1179 static inline void kern_add_tid_node(struct tid_rdma_flow *flow, 1180 struct hfi1_ctxtdata *rcd, char *s, 1181 struct tid_group *grp, u8 cnt) 1182 { 1183 struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++]; 1184 1185 WARN_ON_ONCE(flow->tnode_cnt >= 1186 (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT)); 1187 if (WARN_ON_ONCE(cnt & 1)) 1188 dd_dev_err(rcd->dd, 1189 "unexpected odd allocation cnt %u map 0x%x used %u", 1190 cnt, grp->map, grp->used); 1191 1192 node->grp = grp; 1193 node->map = grp->map; 1194 node->cnt = cnt; 1195 trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1, 1196 grp->base, grp->map, grp->used, cnt); 1197 } 1198 1199 /* 1200 * Try to allocate pageset_count TID's from TID groups for a context 1201 * 1202 * This function allocates TID's without moving groups between lists or 1203 * modifying grp->map. This is done as follows, being cogizant of the lists 1204 * between which the TID groups will move: 1205 * 1. First allocate complete groups of 8 TID's since this is more efficient, 1206 * these groups will move from group->full without affecting used 1207 * 2. If more TID's are needed allocate from used (will move from used->full or 1208 * stay in used) 1209 * 3. If we still don't have the required number of TID's go back and look again 1210 * at a complete group (will move from group->used) 1211 */ 1212 static int kern_alloc_tids(struct tid_rdma_flow *flow) 1213 { 1214 struct hfi1_ctxtdata *rcd = flow->req->rcd; 1215 struct hfi1_devdata *dd = rcd->dd; 1216 u32 ngroups, pageidx = 0; 1217 struct tid_group *group = NULL, *used; 1218 u8 use; 1219 1220 flow->tnode_cnt = 0; 1221 ngroups = flow->npagesets / dd->rcv_entries.group_size; 1222 if (!ngroups) 1223 goto used_list; 1224 1225 /* First look at complete groups */ 1226 list_for_each_entry(group, &rcd->tid_group_list.list, list) { 1227 kern_add_tid_node(flow, rcd, "complete groups", group, 1228 group->size); 1229 1230 pageidx += group->size; 1231 if (!--ngroups) 1232 break; 1233 } 1234 1235 if (pageidx >= flow->npagesets) 1236 goto ok; 1237 1238 used_list: 1239 /* Now look at partially used groups */ 1240 list_for_each_entry(used, &rcd->tid_used_list.list, list) { 1241 use = min_t(u32, flow->npagesets - pageidx, 1242 used->size - used->used); 1243 kern_add_tid_node(flow, rcd, "used groups", used, use); 1244 1245 pageidx += use; 1246 if (pageidx >= flow->npagesets) 1247 goto ok; 1248 } 1249 1250 /* 1251 * Look again at a complete group, continuing from where we left. 1252 * However, if we are at the head, we have reached the end of the 1253 * complete groups list from the first loop above 1254 */ 1255 if (group && &group->list == &rcd->tid_group_list.list) 1256 goto bail_eagain; 1257 group = list_prepare_entry(group, &rcd->tid_group_list.list, 1258 list); 1259 if (list_is_last(&group->list, &rcd->tid_group_list.list)) 1260 goto bail_eagain; 1261 group = list_next_entry(group, list); 1262 use = min_t(u32, flow->npagesets - pageidx, group->size); 1263 kern_add_tid_node(flow, rcd, "complete continue", group, use); 1264 pageidx += use; 1265 if (pageidx >= flow->npagesets) 1266 goto ok; 1267 bail_eagain: 1268 trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ", 1269 (u64)flow->npagesets); 1270 return -EAGAIN; 1271 ok: 1272 return 0; 1273 } 1274 1275 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num, 1276 u32 *pset_idx) 1277 { 1278 struct hfi1_ctxtdata *rcd = flow->req->rcd; 1279 struct hfi1_devdata *dd = rcd->dd; 1280 struct kern_tid_node *node = &flow->tnode[grp_num]; 1281 struct tid_group *grp = node->grp; 1282 struct tid_rdma_pageset *pset; 1283 u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT; 1284 u32 rcventry, npages = 0, pair = 0, tidctrl; 1285 u8 i, cnt = 0; 1286 1287 for (i = 0; i < grp->size; i++) { 1288 rcventry = grp->base + i; 1289 1290 if (node->map & BIT(i) || cnt >= node->cnt) { 1291 rcv_array_wc_fill(dd, rcventry); 1292 continue; 1293 } 1294 pset = &flow->pagesets[(*pset_idx)++]; 1295 if (pset->count) { 1296 hfi1_put_tid(dd, rcventry, PT_EXPECTED, 1297 pset->addr, trdma_pset_order(pset)); 1298 } else { 1299 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0); 1300 } 1301 npages += pset->count; 1302 1303 rcventry -= rcd->expected_base; 1304 tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1; 1305 /* 1306 * A single TID entry will be used to use a rcvarr pair (with 1307 * tidctrl 0x3), if ALL these are true (a) the bit pos is even 1308 * (b) the group map shows current and the next bits as free 1309 * indicating two consecutive rcvarry entries are available (c) 1310 * we actually need 2 more entries 1311 */ 1312 pair = !(i & 0x1) && !((node->map >> i) & 0x3) && 1313 node->cnt >= cnt + 2; 1314 if (!pair) { 1315 if (!pset->count) 1316 tidctrl = 0x1; 1317 flow->tid_entry[flow->tidcnt++] = 1318 EXP_TID_SET(IDX, rcventry >> 1) | 1319 EXP_TID_SET(CTRL, tidctrl) | 1320 EXP_TID_SET(LEN, npages); 1321 trace_hfi1_tid_entry_alloc(/* entry */ 1322 flow->req->qp, flow->tidcnt - 1, 1323 flow->tid_entry[flow->tidcnt - 1]); 1324 1325 /* Efficient DIV_ROUND_UP(npages, pmtu_pg) */ 1326 flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg); 1327 npages = 0; 1328 } 1329 1330 if (grp->used == grp->size - 1) 1331 tid_group_move(grp, &rcd->tid_used_list, 1332 &rcd->tid_full_list); 1333 else if (!grp->used) 1334 tid_group_move(grp, &rcd->tid_group_list, 1335 &rcd->tid_used_list); 1336 1337 grp->used++; 1338 grp->map |= BIT(i); 1339 cnt++; 1340 } 1341 } 1342 1343 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num) 1344 { 1345 struct hfi1_ctxtdata *rcd = flow->req->rcd; 1346 struct hfi1_devdata *dd = rcd->dd; 1347 struct kern_tid_node *node = &flow->tnode[grp_num]; 1348 struct tid_group *grp = node->grp; 1349 u32 rcventry; 1350 u8 i, cnt = 0; 1351 1352 for (i = 0; i < grp->size; i++) { 1353 rcventry = grp->base + i; 1354 1355 if (node->map & BIT(i) || cnt >= node->cnt) { 1356 rcv_array_wc_fill(dd, rcventry); 1357 continue; 1358 } 1359 1360 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0); 1361 1362 grp->used--; 1363 grp->map &= ~BIT(i); 1364 cnt++; 1365 1366 if (grp->used == grp->size - 1) 1367 tid_group_move(grp, &rcd->tid_full_list, 1368 &rcd->tid_used_list); 1369 else if (!grp->used) 1370 tid_group_move(grp, &rcd->tid_used_list, 1371 &rcd->tid_group_list); 1372 } 1373 if (WARN_ON_ONCE(cnt & 1)) { 1374 struct hfi1_ctxtdata *rcd = flow->req->rcd; 1375 struct hfi1_devdata *dd = rcd->dd; 1376 1377 dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u", 1378 cnt, grp->map, grp->used); 1379 } 1380 } 1381 1382 static void kern_program_rcvarray(struct tid_rdma_flow *flow) 1383 { 1384 u32 pset_idx = 0; 1385 int i; 1386 1387 flow->npkts = 0; 1388 flow->tidcnt = 0; 1389 for (i = 0; i < flow->tnode_cnt; i++) 1390 kern_program_rcv_group(flow, i, &pset_idx); 1391 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow); 1392 } 1393 1394 /** 1395 * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a 1396 * TID RDMA request 1397 * 1398 * @req: TID RDMA request for which the segment/flow is being set up 1399 * @ss: sge state, maintains state across successive segments of a sge 1400 * @last: set to true after the last sge segment has been processed 1401 * 1402 * This function 1403 * (1) finds a free flow entry in the flow circular buffer 1404 * (2) finds pages and continuous physical chunks constituing one segment 1405 * of an sge 1406 * (3) allocates TID group entries for those chunks 1407 * (4) programs rcvarray entries in the hardware corresponding to those 1408 * TID's 1409 * (5) computes a tidarray with formatted TID entries which can be sent 1410 * to the sender 1411 * (6) Reserves and programs HW flows. 1412 * (7) It also manages queing the QP when TID/flow resources are not 1413 * available. 1414 * 1415 * @req points to struct tid_rdma_request of which the segments are a part. The 1416 * function uses qp, rcd and seg_len members of @req. In the absence of errors, 1417 * req->flow_idx is the index of the flow which has been prepared in this 1418 * invocation of function call. With flow = &req->flows[req->flow_idx], 1419 * flow->tid_entry contains the TID array which the sender can use for TID RDMA 1420 * sends and flow->npkts contains number of packets required to send the 1421 * segment. 1422 * 1423 * hfi1_check_sge_align should be called prior to calling this function and if 1424 * it signals error TID RDMA cannot be used for this sge and this function 1425 * should not be called. 1426 * 1427 * For the queuing, caller must hold the flow->req->qp s_lock from the send 1428 * engine and the function will procure the exp_lock. 1429 * 1430 * Return: 1431 * The function returns -EAGAIN if sufficient number of TID/flow resources to 1432 * map the segment could not be allocated. In this case the function should be 1433 * called again with previous arguments to retry the TID allocation. There are 1434 * no other error returns. The function returns 0 on success. 1435 */ 1436 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req, 1437 struct rvt_sge_state *ss, bool *last) 1438 __must_hold(&req->qp->s_lock) 1439 { 1440 struct tid_rdma_flow *flow = &req->flows[req->setup_head]; 1441 struct hfi1_ctxtdata *rcd = req->rcd; 1442 struct hfi1_qp_priv *qpriv = req->qp->priv; 1443 unsigned long flags; 1444 struct rvt_qp *fqp; 1445 u16 clear_tail = req->clear_tail; 1446 1447 lockdep_assert_held(&req->qp->s_lock); 1448 /* 1449 * We return error if either (a) we don't have space in the flow 1450 * circular buffer, or (b) we already have max entries in the buffer. 1451 * Max entries depend on the type of request we are processing and the 1452 * negotiated TID RDMA parameters. 1453 */ 1454 if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) || 1455 CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >= 1456 req->n_flows) 1457 return -EINVAL; 1458 1459 /* 1460 * Get pages, identify contiguous physical memory chunks for the segment 1461 * If we can not determine a DMA address mapping we will treat it just 1462 * like if we ran out of space above. 1463 */ 1464 if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) { 1465 hfi1_wait_kmem(flow->req->qp); 1466 return -ENOMEM; 1467 } 1468 1469 spin_lock_irqsave(&rcd->exp_lock, flags); 1470 if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp)) 1471 goto queue; 1472 1473 /* 1474 * At this point we know the number of pagesets and hence the number of 1475 * TID's to map the segment. Allocate the TID's from the TID groups. If 1476 * we cannot allocate the required number we exit and try again later 1477 */ 1478 if (kern_alloc_tids(flow)) 1479 goto queue; 1480 /* 1481 * Finally program the TID entries with the pagesets, compute the 1482 * tidarray and enable the HW flow 1483 */ 1484 kern_program_rcvarray(flow); 1485 1486 /* 1487 * Setup the flow state with relevant information. 1488 * This information is used for tracking the sequence of data packets 1489 * for the segment. 1490 * The flow is setup here as this is the most accurate time and place 1491 * to do so. Doing at a later time runs the risk of the flow data in 1492 * qpriv getting out of sync. 1493 */ 1494 memset(&flow->flow_state, 0x0, sizeof(flow->flow_state)); 1495 flow->idx = qpriv->flow_state.index; 1496 flow->flow_state.generation = qpriv->flow_state.generation; 1497 flow->flow_state.spsn = qpriv->flow_state.psn; 1498 flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1; 1499 flow->flow_state.r_next_psn = 1500 full_flow_psn(flow, flow->flow_state.spsn); 1501 qpriv->flow_state.psn += flow->npkts; 1502 1503 dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp); 1504 /* get head before dropping lock */ 1505 fqp = first_qp(rcd, &rcd->rarr_queue); 1506 spin_unlock_irqrestore(&rcd->exp_lock, flags); 1507 tid_rdma_schedule_tid_wakeup(fqp); 1508 1509 req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1); 1510 return 0; 1511 queue: 1512 queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp); 1513 spin_unlock_irqrestore(&rcd->exp_lock, flags); 1514 return -EAGAIN; 1515 } 1516 1517 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow) 1518 { 1519 flow->npagesets = 0; 1520 } 1521 1522 /* 1523 * This function is called after one segment has been successfully sent to 1524 * release the flow and TID HW/SW resources for that segment. The segments for a 1525 * TID RDMA request are setup and cleared in FIFO order which is managed using a 1526 * circular buffer. 1527 */ 1528 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req) 1529 __must_hold(&req->qp->s_lock) 1530 { 1531 struct tid_rdma_flow *flow = &req->flows[req->clear_tail]; 1532 struct hfi1_ctxtdata *rcd = req->rcd; 1533 unsigned long flags; 1534 int i; 1535 struct rvt_qp *fqp; 1536 1537 lockdep_assert_held(&req->qp->s_lock); 1538 /* Exit if we have nothing in the flow circular buffer */ 1539 if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) 1540 return -EINVAL; 1541 1542 spin_lock_irqsave(&rcd->exp_lock, flags); 1543 1544 for (i = 0; i < flow->tnode_cnt; i++) 1545 kern_unprogram_rcv_group(flow, i); 1546 /* To prevent double unprogramming */ 1547 flow->tnode_cnt = 0; 1548 /* get head before dropping lock */ 1549 fqp = first_qp(rcd, &rcd->rarr_queue); 1550 spin_unlock_irqrestore(&rcd->exp_lock, flags); 1551 1552 dma_unmap_flow(flow); 1553 1554 hfi1_tid_rdma_reset_flow(flow); 1555 req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1); 1556 1557 if (fqp == req->qp) { 1558 __trigger_tid_waiter(fqp); 1559 rvt_put_qp(fqp); 1560 } else { 1561 tid_rdma_schedule_tid_wakeup(fqp); 1562 } 1563 1564 return 0; 1565 } 1566 1567 /* 1568 * This function is called to release all the tid entries for 1569 * a request. 1570 */ 1571 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req) 1572 __must_hold(&req->qp->s_lock) 1573 { 1574 /* Use memory barrier for proper ordering */ 1575 while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) { 1576 if (hfi1_kern_exp_rcv_clear(req)) 1577 break; 1578 } 1579 } 1580 1581 /** 1582 * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information 1583 * @req - the tid rdma request to be cleaned 1584 */ 1585 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req) 1586 { 1587 kfree(req->flows); 1588 req->flows = NULL; 1589 } 1590 1591 /** 1592 * __trdma_clean_swqe - clean up for large sized QPs 1593 * @qp: the queue patch 1594 * @wqe: the send wqe 1595 */ 1596 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe) 1597 { 1598 struct hfi1_swqe_priv *p = wqe->priv; 1599 1600 hfi1_kern_exp_rcv_free_flows(&p->tid_req); 1601 } 1602 1603 /* 1604 * This can be called at QP create time or in the data path. 1605 */ 1606 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req, 1607 gfp_t gfp) 1608 { 1609 struct tid_rdma_flow *flows; 1610 int i; 1611 1612 if (likely(req->flows)) 1613 return 0; 1614 flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp, 1615 req->rcd->numa_id); 1616 if (!flows) 1617 return -ENOMEM; 1618 /* mini init */ 1619 for (i = 0; i < MAX_FLOWS; i++) { 1620 flows[i].req = req; 1621 flows[i].npagesets = 0; 1622 flows[i].pagesets[0].mapped = 0; 1623 flows[i].resync_npkts = 0; 1624 } 1625 req->flows = flows; 1626 return 0; 1627 } 1628 1629 static void hfi1_init_trdma_req(struct rvt_qp *qp, 1630 struct tid_rdma_request *req) 1631 { 1632 struct hfi1_qp_priv *qpriv = qp->priv; 1633 1634 /* 1635 * Initialize various TID RDMA request variables. 1636 * These variables are "static", which is why they 1637 * can be pre-initialized here before the WRs has 1638 * even been submitted. 1639 * However, non-NULL values for these variables do not 1640 * imply that this WQE has been enabled for TID RDMA. 1641 * Drivers should check the WQE's opcode to determine 1642 * if a request is a TID RDMA one or not. 1643 */ 1644 req->qp = qp; 1645 req->rcd = qpriv->rcd; 1646 } 1647 1648 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry, 1649 void *context, int vl, int mode, u64 data) 1650 { 1651 struct hfi1_devdata *dd = context; 1652 1653 return dd->verbs_dev.n_tidwait; 1654 } 1655 1656 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req, 1657 u32 psn, u16 *fidx) 1658 { 1659 u16 head, tail; 1660 struct tid_rdma_flow *flow; 1661 1662 head = req->setup_head; 1663 tail = req->clear_tail; 1664 for ( ; CIRC_CNT(head, tail, MAX_FLOWS); 1665 tail = CIRC_NEXT(tail, MAX_FLOWS)) { 1666 flow = &req->flows[tail]; 1667 if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 && 1668 cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) { 1669 if (fidx) 1670 *fidx = tail; 1671 return flow; 1672 } 1673 } 1674 return NULL; 1675 } 1676 1677 /* TID RDMA READ functions */ 1678 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe, 1679 struct ib_other_headers *ohdr, u32 *bth1, 1680 u32 *bth2, u32 *len) 1681 { 1682 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 1683 struct tid_rdma_flow *flow = &req->flows[req->flow_idx]; 1684 struct rvt_qp *qp = req->qp; 1685 struct hfi1_qp_priv *qpriv = qp->priv; 1686 struct hfi1_swqe_priv *wpriv = wqe->priv; 1687 struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req; 1688 struct tid_rdma_params *remote; 1689 u32 req_len = 0; 1690 void *req_addr = NULL; 1691 1692 /* This is the IB psn used to send the request */ 1693 *bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt); 1694 trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow); 1695 1696 /* TID Entries for TID RDMA READ payload */ 1697 req_addr = &flow->tid_entry[flow->tid_idx]; 1698 req_len = sizeof(*flow->tid_entry) * 1699 (flow->tidcnt - flow->tid_idx); 1700 1701 memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req)); 1702 wpriv->ss.sge.vaddr = req_addr; 1703 wpriv->ss.sge.sge_length = req_len; 1704 wpriv->ss.sge.length = wpriv->ss.sge.sge_length; 1705 /* 1706 * We can safely zero these out. Since the first SGE covers the 1707 * entire packet, nothing else should even look at the MR. 1708 */ 1709 wpriv->ss.sge.mr = NULL; 1710 wpriv->ss.sge.m = 0; 1711 wpriv->ss.sge.n = 0; 1712 1713 wpriv->ss.sg_list = NULL; 1714 wpriv->ss.total_len = wpriv->ss.sge.sge_length; 1715 wpriv->ss.num_sge = 1; 1716 1717 /* Construct the TID RDMA READ REQ packet header */ 1718 rcu_read_lock(); 1719 remote = rcu_dereference(qpriv->tid_rdma.remote); 1720 1721 KDETH_RESET(rreq->kdeth0, KVER, 0x1); 1722 KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey); 1723 rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr + 1724 req->cur_seg * req->seg_len + flow->sent); 1725 rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey); 1726 rreq->reth.length = cpu_to_be32(*len); 1727 rreq->tid_flow_psn = 1728 cpu_to_be32((flow->flow_state.generation << 1729 HFI1_KDETH_BTH_SEQ_SHIFT) | 1730 ((flow->flow_state.spsn + flow->pkt) & 1731 HFI1_KDETH_BTH_SEQ_MASK)); 1732 rreq->tid_flow_qp = 1733 cpu_to_be32(qpriv->tid_rdma.local.qp | 1734 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) << 1735 TID_RDMA_DESTQP_FLOW_SHIFT) | 1736 qpriv->rcd->ctxt); 1737 rreq->verbs_qp = cpu_to_be32(qp->remote_qpn); 1738 *bth1 &= ~RVT_QPN_MASK; 1739 *bth1 |= remote->qp; 1740 *bth2 |= IB_BTH_REQ_ACK; 1741 rcu_read_unlock(); 1742 1743 /* We are done with this segment */ 1744 flow->sent += *len; 1745 req->cur_seg++; 1746 qp->s_state = TID_OP(READ_REQ); 1747 req->ack_pending++; 1748 req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1); 1749 qpriv->pending_tid_r_segs++; 1750 qp->s_num_rd_atomic++; 1751 1752 /* Set the TID RDMA READ request payload size */ 1753 *len = req_len; 1754 1755 return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32); 1756 } 1757 1758 /* 1759 * @len: contains the data length to read upon entry and the read request 1760 * payload length upon exit. 1761 */ 1762 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe, 1763 struct ib_other_headers *ohdr, u32 *bth1, 1764 u32 *bth2, u32 *len) 1765 __must_hold(&qp->s_lock) 1766 { 1767 struct hfi1_qp_priv *qpriv = qp->priv; 1768 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 1769 struct tid_rdma_flow *flow = NULL; 1770 u32 hdwords = 0; 1771 bool last; 1772 bool retry = true; 1773 u32 npkts = rvt_div_round_up_mtu(qp, *len); 1774 1775 trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn, 1776 wqe->lpsn, req); 1777 /* 1778 * Check sync conditions. Make sure that there are no pending 1779 * segments before freeing the flow. 1780 */ 1781 sync_check: 1782 if (req->state == TID_REQUEST_SYNC) { 1783 if (qpriv->pending_tid_r_segs) 1784 goto done; 1785 1786 hfi1_kern_clear_hw_flow(req->rcd, qp); 1787 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN; 1788 req->state = TID_REQUEST_ACTIVE; 1789 } 1790 1791 /* 1792 * If the request for this segment is resent, the tid resources should 1793 * have been allocated before. In this case, req->flow_idx should 1794 * fall behind req->setup_head. 1795 */ 1796 if (req->flow_idx == req->setup_head) { 1797 retry = false; 1798 if (req->state == TID_REQUEST_RESEND) { 1799 /* 1800 * This is the first new segment for a request whose 1801 * earlier segments have been re-sent. We need to 1802 * set up the sge pointer correctly. 1803 */ 1804 restart_sge(&qp->s_sge, wqe, req->s_next_psn, 1805 qp->pmtu); 1806 req->isge = 0; 1807 req->state = TID_REQUEST_ACTIVE; 1808 } 1809 1810 /* 1811 * Check sync. The last PSN of each generation is reserved for 1812 * RESYNC. 1813 */ 1814 if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) { 1815 req->state = TID_REQUEST_SYNC; 1816 goto sync_check; 1817 } 1818 1819 /* Allocate the flow if not yet */ 1820 if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp)) 1821 goto done; 1822 1823 /* 1824 * The following call will advance req->setup_head after 1825 * allocating the tid entries. 1826 */ 1827 if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) { 1828 req->state = TID_REQUEST_QUEUED; 1829 1830 /* 1831 * We don't have resources for this segment. The QP has 1832 * already been queued. 1833 */ 1834 goto done; 1835 } 1836 } 1837 1838 /* req->flow_idx should only be one slot behind req->setup_head */ 1839 flow = &req->flows[req->flow_idx]; 1840 flow->pkt = 0; 1841 flow->tid_idx = 0; 1842 flow->sent = 0; 1843 if (!retry) { 1844 /* Set the first and last IB PSN for the flow in use.*/ 1845 flow->flow_state.ib_spsn = req->s_next_psn; 1846 flow->flow_state.ib_lpsn = 1847 flow->flow_state.ib_spsn + flow->npkts - 1; 1848 } 1849 1850 /* Calculate the next segment start psn.*/ 1851 req->s_next_psn += flow->npkts; 1852 1853 /* Build the packet header */ 1854 hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len); 1855 done: 1856 return hdwords; 1857 } 1858 1859 /* 1860 * Validate and accept the TID RDMA READ request parameters. 1861 * Return 0 if the request is accepted successfully; 1862 * Return 1 otherwise. 1863 */ 1864 static int tid_rdma_rcv_read_request(struct rvt_qp *qp, 1865 struct rvt_ack_entry *e, 1866 struct hfi1_packet *packet, 1867 struct ib_other_headers *ohdr, 1868 u32 bth0, u32 psn, u64 vaddr, u32 len) 1869 { 1870 struct hfi1_qp_priv *qpriv = qp->priv; 1871 struct tid_rdma_request *req; 1872 struct tid_rdma_flow *flow; 1873 u32 flow_psn, i, tidlen = 0, pktlen, tlen; 1874 1875 req = ack_to_tid_req(e); 1876 1877 /* Validate the payload first */ 1878 flow = &req->flows[req->setup_head]; 1879 1880 /* payload length = packet length - (header length + ICRC length) */ 1881 pktlen = packet->tlen - (packet->hlen + 4); 1882 if (pktlen > sizeof(flow->tid_entry)) 1883 return 1; 1884 memcpy(flow->tid_entry, packet->ebuf, pktlen); 1885 flow->tidcnt = pktlen / sizeof(*flow->tid_entry); 1886 1887 /* 1888 * Walk the TID_ENTRY list to make sure we have enough space for a 1889 * complete segment. Also calculate the number of required packets. 1890 */ 1891 flow->npkts = rvt_div_round_up_mtu(qp, len); 1892 for (i = 0; i < flow->tidcnt; i++) { 1893 trace_hfi1_tid_entry_rcv_read_req(qp, i, 1894 flow->tid_entry[i]); 1895 tlen = EXP_TID_GET(flow->tid_entry[i], LEN); 1896 if (!tlen) 1897 return 1; 1898 1899 /* 1900 * For tid pair (tidctr == 3), the buffer size of the pair 1901 * should be the sum of the buffer size described by each 1902 * tid entry. However, only the first entry needs to be 1903 * specified in the request (see WFR HAS Section 8.5.7.1). 1904 */ 1905 tidlen += tlen; 1906 } 1907 if (tidlen * PAGE_SIZE < len) 1908 return 1; 1909 1910 /* Empty the flow array */ 1911 req->clear_tail = req->setup_head; 1912 flow->pkt = 0; 1913 flow->tid_idx = 0; 1914 flow->tid_offset = 0; 1915 flow->sent = 0; 1916 flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp); 1917 flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) & 1918 TID_RDMA_DESTQP_FLOW_MASK; 1919 flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn)); 1920 flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT; 1921 flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK; 1922 flow->length = len; 1923 1924 flow->flow_state.lpsn = flow->flow_state.spsn + 1925 flow->npkts - 1; 1926 flow->flow_state.ib_spsn = psn; 1927 flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1; 1928 1929 trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow); 1930 /* Set the initial flow index to the current flow. */ 1931 req->flow_idx = req->setup_head; 1932 1933 /* advance circular buffer head */ 1934 req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1); 1935 1936 /* 1937 * Compute last PSN for request. 1938 */ 1939 e->opcode = (bth0 >> 24) & 0xff; 1940 e->psn = psn; 1941 e->lpsn = psn + flow->npkts - 1; 1942 e->sent = 0; 1943 1944 req->n_flows = qpriv->tid_rdma.local.max_read; 1945 req->state = TID_REQUEST_ACTIVE; 1946 req->cur_seg = 0; 1947 req->comp_seg = 0; 1948 req->ack_seg = 0; 1949 req->isge = 0; 1950 req->seg_len = qpriv->tid_rdma.local.max_len; 1951 req->total_len = len; 1952 req->total_segs = 1; 1953 req->r_flow_psn = e->psn; 1954 1955 trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn, 1956 req); 1957 return 0; 1958 } 1959 1960 static int tid_rdma_rcv_error(struct hfi1_packet *packet, 1961 struct ib_other_headers *ohdr, 1962 struct rvt_qp *qp, u32 psn, int diff) 1963 { 1964 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 1965 struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd; 1966 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 1967 struct hfi1_qp_priv *qpriv = qp->priv; 1968 struct rvt_ack_entry *e; 1969 struct tid_rdma_request *req; 1970 unsigned long flags; 1971 u8 prev; 1972 bool old_req; 1973 1974 trace_hfi1_rsp_tid_rcv_error(qp, psn); 1975 trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff); 1976 if (diff > 0) { 1977 /* sequence error */ 1978 if (!qp->r_nak_state) { 1979 ibp->rvp.n_rc_seqnak++; 1980 qp->r_nak_state = IB_NAK_PSN_ERROR; 1981 qp->r_ack_psn = qp->r_psn; 1982 rc_defered_ack(rcd, qp); 1983 } 1984 goto done; 1985 } 1986 1987 ibp->rvp.n_rc_dupreq++; 1988 1989 spin_lock_irqsave(&qp->s_lock, flags); 1990 e = find_prev_entry(qp, psn, &prev, NULL, &old_req); 1991 if (!e || (e->opcode != TID_OP(READ_REQ) && 1992 e->opcode != TID_OP(WRITE_REQ))) 1993 goto unlock; 1994 1995 req = ack_to_tid_req(e); 1996 req->r_flow_psn = psn; 1997 trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req); 1998 if (e->opcode == TID_OP(READ_REQ)) { 1999 struct ib_reth *reth; 2000 u32 len; 2001 u32 rkey; 2002 u64 vaddr; 2003 int ok; 2004 u32 bth0; 2005 2006 reth = &ohdr->u.tid_rdma.r_req.reth; 2007 /* 2008 * The requester always restarts from the start of the original 2009 * request. 2010 */ 2011 len = be32_to_cpu(reth->length); 2012 if (psn != e->psn || len != req->total_len) 2013 goto unlock; 2014 2015 release_rdma_sge_mr(e); 2016 2017 rkey = be32_to_cpu(reth->rkey); 2018 vaddr = get_ib_reth_vaddr(reth); 2019 2020 qp->r_len = len; 2021 ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey, 2022 IB_ACCESS_REMOTE_READ); 2023 if (unlikely(!ok)) 2024 goto unlock; 2025 2026 /* 2027 * If all the response packets for the current request have 2028 * been sent out and this request is complete (old_request 2029 * == false) and the TID flow may be unusable (the 2030 * req->clear_tail is advanced). However, when an earlier 2031 * request is received, this request will not be complete any 2032 * more (qp->s_tail_ack_queue is moved back, see below). 2033 * Consequently, we need to update the TID flow info everytime 2034 * a duplicate request is received. 2035 */ 2036 bth0 = be32_to_cpu(ohdr->bth[0]); 2037 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, 2038 vaddr, len)) 2039 goto unlock; 2040 2041 /* 2042 * True if the request is already scheduled (between 2043 * qp->s_tail_ack_queue and qp->r_head_ack_queue); 2044 */ 2045 if (old_req) 2046 goto unlock; 2047 } else { 2048 struct flow_state *fstate; 2049 bool schedule = false; 2050 u8 i; 2051 2052 if (req->state == TID_REQUEST_RESEND) { 2053 req->state = TID_REQUEST_RESEND_ACTIVE; 2054 } else if (req->state == TID_REQUEST_INIT_RESEND) { 2055 req->state = TID_REQUEST_INIT; 2056 schedule = true; 2057 } 2058 2059 /* 2060 * True if the request is already scheduled (between 2061 * qp->s_tail_ack_queue and qp->r_head_ack_queue). 2062 * Also, don't change requests, which are at the SYNC 2063 * point and haven't generated any responses yet. 2064 * There is nothing to retransmit for them yet. 2065 */ 2066 if (old_req || req->state == TID_REQUEST_INIT || 2067 (req->state == TID_REQUEST_SYNC && !req->cur_seg)) { 2068 for (i = prev + 1; ; i++) { 2069 if (i > rvt_size_atomic(&dev->rdi)) 2070 i = 0; 2071 if (i == qp->r_head_ack_queue) 2072 break; 2073 e = &qp->s_ack_queue[i]; 2074 req = ack_to_tid_req(e); 2075 if (e->opcode == TID_OP(WRITE_REQ) && 2076 req->state == TID_REQUEST_INIT) 2077 req->state = TID_REQUEST_INIT_RESEND; 2078 } 2079 /* 2080 * If the state of the request has been changed, 2081 * the first leg needs to get scheduled in order to 2082 * pick up the change. Otherwise, normal response 2083 * processing should take care of it. 2084 */ 2085 if (!schedule) 2086 goto unlock; 2087 } 2088 2089 /* 2090 * If there is no more allocated segment, just schedule the qp 2091 * without changing any state. 2092 */ 2093 if (req->clear_tail == req->setup_head) 2094 goto schedule; 2095 /* 2096 * If this request has sent responses for segments, which have 2097 * not received data yet (flow_idx != clear_tail), the flow_idx 2098 * pointer needs to be adjusted so the same responses can be 2099 * re-sent. 2100 */ 2101 if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) { 2102 fstate = &req->flows[req->clear_tail].flow_state; 2103 qpriv->pending_tid_w_segs -= 2104 CIRC_CNT(req->flow_idx, req->clear_tail, 2105 MAX_FLOWS); 2106 req->flow_idx = 2107 CIRC_ADD(req->clear_tail, 2108 delta_psn(psn, fstate->resp_ib_psn), 2109 MAX_FLOWS); 2110 qpriv->pending_tid_w_segs += 2111 delta_psn(psn, fstate->resp_ib_psn); 2112 /* 2113 * When flow_idx == setup_head, we've gotten a duplicate 2114 * request for a segment, which has not been allocated 2115 * yet. In that case, don't adjust this request. 2116 * However, we still want to go through the loop below 2117 * to adjust all subsequent requests. 2118 */ 2119 if (CIRC_CNT(req->setup_head, req->flow_idx, 2120 MAX_FLOWS)) { 2121 req->cur_seg = delta_psn(psn, e->psn); 2122 req->state = TID_REQUEST_RESEND_ACTIVE; 2123 } 2124 } 2125 2126 for (i = prev + 1; ; i++) { 2127 /* 2128 * Look at everything up to and including 2129 * s_tail_ack_queue 2130 */ 2131 if (i > rvt_size_atomic(&dev->rdi)) 2132 i = 0; 2133 if (i == qp->r_head_ack_queue) 2134 break; 2135 e = &qp->s_ack_queue[i]; 2136 req = ack_to_tid_req(e); 2137 trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, 2138 e->lpsn, req); 2139 if (e->opcode != TID_OP(WRITE_REQ) || 2140 req->cur_seg == req->comp_seg || 2141 req->state == TID_REQUEST_INIT || 2142 req->state == TID_REQUEST_INIT_RESEND) { 2143 if (req->state == TID_REQUEST_INIT) 2144 req->state = TID_REQUEST_INIT_RESEND; 2145 continue; 2146 } 2147 qpriv->pending_tid_w_segs -= 2148 CIRC_CNT(req->flow_idx, 2149 req->clear_tail, 2150 MAX_FLOWS); 2151 req->flow_idx = req->clear_tail; 2152 req->state = TID_REQUEST_RESEND; 2153 req->cur_seg = req->comp_seg; 2154 } 2155 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK; 2156 } 2157 /* Re-process old requests.*/ 2158 if (qp->s_acked_ack_queue == qp->s_tail_ack_queue) 2159 qp->s_acked_ack_queue = prev; 2160 qp->s_tail_ack_queue = prev; 2161 /* 2162 * Since the qp->s_tail_ack_queue is modified, the 2163 * qp->s_ack_state must be changed to re-initialize 2164 * qp->s_ack_rdma_sge; Otherwise, we will end up in 2165 * wrong memory region. 2166 */ 2167 qp->s_ack_state = OP(ACKNOWLEDGE); 2168 schedule: 2169 /* 2170 * It's possible to receive a retry psn that is earlier than an RNRNAK 2171 * psn. In this case, the rnrnak state should be cleared. 2172 */ 2173 if (qpriv->rnr_nak_state) { 2174 qp->s_nak_state = 0; 2175 qpriv->rnr_nak_state = TID_RNR_NAK_INIT; 2176 qp->r_psn = e->lpsn + 1; 2177 hfi1_tid_write_alloc_resources(qp, true); 2178 } 2179 2180 qp->r_state = e->opcode; 2181 qp->r_nak_state = 0; 2182 qp->s_flags |= RVT_S_RESP_PENDING; 2183 hfi1_schedule_send(qp); 2184 unlock: 2185 spin_unlock_irqrestore(&qp->s_lock, flags); 2186 done: 2187 return 1; 2188 } 2189 2190 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet) 2191 { 2192 /* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/ 2193 2194 /* 2195 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ 2196 * (see hfi1_rc_rcv()) 2197 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue) 2198 * - Setup struct tid_rdma_req with request info 2199 * - Initialize struct tid_rdma_flow info; 2200 * - Copy TID entries; 2201 * 3. Set the qp->s_ack_state. 2202 * 4. Set RVT_S_RESP_PENDING in s_flags. 2203 * 5. Kick the send engine (hfi1_schedule_send()) 2204 */ 2205 struct hfi1_ctxtdata *rcd = packet->rcd; 2206 struct rvt_qp *qp = packet->qp; 2207 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 2208 struct ib_other_headers *ohdr = packet->ohdr; 2209 struct rvt_ack_entry *e; 2210 unsigned long flags; 2211 struct ib_reth *reth; 2212 struct hfi1_qp_priv *qpriv = qp->priv; 2213 u32 bth0, psn, len, rkey; 2214 bool fecn; 2215 u8 next; 2216 u64 vaddr; 2217 int diff; 2218 u8 nack_state = IB_NAK_INVALID_REQUEST; 2219 2220 bth0 = be32_to_cpu(ohdr->bth[0]); 2221 if (hfi1_ruc_check_hdr(ibp, packet)) 2222 return; 2223 2224 fecn = process_ecn(qp, packet); 2225 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 2226 trace_hfi1_rsp_rcv_tid_read_req(qp, psn); 2227 2228 if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST)) 2229 rvt_comm_est(qp); 2230 2231 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) 2232 goto nack_inv; 2233 2234 reth = &ohdr->u.tid_rdma.r_req.reth; 2235 vaddr = be64_to_cpu(reth->vaddr); 2236 len = be32_to_cpu(reth->length); 2237 /* The length needs to be in multiples of PAGE_SIZE */ 2238 if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len) 2239 goto nack_inv; 2240 2241 diff = delta_psn(psn, qp->r_psn); 2242 if (unlikely(diff)) { 2243 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn); 2244 return; 2245 } 2246 2247 /* We've verified the request, insert it into the ack queue. */ 2248 next = qp->r_head_ack_queue + 1; 2249 if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) 2250 next = 0; 2251 spin_lock_irqsave(&qp->s_lock, flags); 2252 if (unlikely(next == qp->s_tail_ack_queue)) { 2253 if (!qp->s_ack_queue[next].sent) { 2254 nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR; 2255 goto nack_inv_unlock; 2256 } 2257 update_ack_queue(qp, next); 2258 } 2259 e = &qp->s_ack_queue[qp->r_head_ack_queue]; 2260 release_rdma_sge_mr(e); 2261 2262 rkey = be32_to_cpu(reth->rkey); 2263 qp->r_len = len; 2264 2265 if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr, 2266 rkey, IB_ACCESS_REMOTE_READ))) 2267 goto nack_acc; 2268 2269 /* Accept the request parameters */ 2270 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr, 2271 len)) 2272 goto nack_inv_unlock; 2273 2274 qp->r_state = e->opcode; 2275 qp->r_nak_state = 0; 2276 /* 2277 * We need to increment the MSN here instead of when we 2278 * finish sending the result since a duplicate request would 2279 * increment it more than once. 2280 */ 2281 qp->r_msn++; 2282 qp->r_psn += e->lpsn - e->psn + 1; 2283 2284 qp->r_head_ack_queue = next; 2285 2286 /* 2287 * For all requests other than TID WRITE which are added to the ack 2288 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to 2289 * do this because of interlocks between these and TID WRITE 2290 * requests. The same change has also been made in hfi1_rc_rcv(). 2291 */ 2292 qpriv->r_tid_alloc = qp->r_head_ack_queue; 2293 2294 /* Schedule the send tasklet. */ 2295 qp->s_flags |= RVT_S_RESP_PENDING; 2296 if (fecn) 2297 qp->s_flags |= RVT_S_ECN; 2298 hfi1_schedule_send(qp); 2299 2300 spin_unlock_irqrestore(&qp->s_lock, flags); 2301 return; 2302 2303 nack_inv_unlock: 2304 spin_unlock_irqrestore(&qp->s_lock, flags); 2305 nack_inv: 2306 rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); 2307 qp->r_nak_state = nack_state; 2308 qp->r_ack_psn = qp->r_psn; 2309 /* Queue NAK for later */ 2310 rc_defered_ack(rcd, qp); 2311 return; 2312 nack_acc: 2313 spin_unlock_irqrestore(&qp->s_lock, flags); 2314 rvt_rc_error(qp, IB_WC_LOC_PROT_ERR); 2315 qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR; 2316 qp->r_ack_psn = qp->r_psn; 2317 } 2318 2319 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e, 2320 struct ib_other_headers *ohdr, u32 *bth0, 2321 u32 *bth1, u32 *bth2, u32 *len, bool *last) 2322 { 2323 struct hfi1_ack_priv *epriv = e->priv; 2324 struct tid_rdma_request *req = &epriv->tid_req; 2325 struct hfi1_qp_priv *qpriv = qp->priv; 2326 struct tid_rdma_flow *flow = &req->flows[req->clear_tail]; 2327 u32 tidentry = flow->tid_entry[flow->tid_idx]; 2328 u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT; 2329 struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp; 2330 u32 next_offset, om = KDETH_OM_LARGE; 2331 bool last_pkt; 2332 u32 hdwords = 0; 2333 struct tid_rdma_params *remote; 2334 2335 *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset); 2336 flow->sent += *len; 2337 next_offset = flow->tid_offset + *len; 2338 last_pkt = (flow->sent >= flow->length); 2339 2340 trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry); 2341 trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow); 2342 2343 rcu_read_lock(); 2344 remote = rcu_dereference(qpriv->tid_rdma.remote); 2345 if (!remote) { 2346 rcu_read_unlock(); 2347 goto done; 2348 } 2349 KDETH_RESET(resp->kdeth0, KVER, 0x1); 2350 KDETH_SET(resp->kdeth0, SH, !last_pkt); 2351 KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg)); 2352 KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL)); 2353 KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX)); 2354 KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE); 2355 KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om); 2356 KDETH_RESET(resp->kdeth1, JKEY, remote->jkey); 2357 resp->verbs_qp = cpu_to_be32(qp->remote_qpn); 2358 rcu_read_unlock(); 2359 2360 resp->aeth = rvt_compute_aeth(qp); 2361 resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn + 2362 flow->pkt)); 2363 2364 *bth0 = TID_OP(READ_RESP) << 24; 2365 *bth1 = flow->tid_qpn; 2366 *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) & 2367 HFI1_KDETH_BTH_SEQ_MASK) | 2368 (flow->flow_state.generation << 2369 HFI1_KDETH_BTH_SEQ_SHIFT)); 2370 *last = last_pkt; 2371 if (last_pkt) 2372 /* Advance to next flow */ 2373 req->clear_tail = (req->clear_tail + 1) & 2374 (MAX_FLOWS - 1); 2375 2376 if (next_offset >= tidlen) { 2377 flow->tid_offset = 0; 2378 flow->tid_idx++; 2379 } else { 2380 flow->tid_offset = next_offset; 2381 } 2382 2383 hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32); 2384 2385 done: 2386 return hdwords; 2387 } 2388 2389 static inline struct tid_rdma_request * 2390 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode) 2391 __must_hold(&qp->s_lock) 2392 { 2393 struct rvt_swqe *wqe; 2394 struct tid_rdma_request *req = NULL; 2395 u32 i, end; 2396 2397 end = qp->s_cur + 1; 2398 if (end == qp->s_size) 2399 end = 0; 2400 for (i = qp->s_acked; i != end;) { 2401 wqe = rvt_get_swqe_ptr(qp, i); 2402 if (cmp_psn(psn, wqe->psn) >= 0 && 2403 cmp_psn(psn, wqe->lpsn) <= 0) { 2404 if (wqe->wr.opcode == opcode) 2405 req = wqe_to_tid_req(wqe); 2406 break; 2407 } 2408 if (++i == qp->s_size) 2409 i = 0; 2410 } 2411 2412 return req; 2413 } 2414 2415 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet) 2416 { 2417 /* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */ 2418 2419 /* 2420 * 1. Find matching SWQE 2421 * 2. Check that the entire segment has been read. 2422 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags. 2423 * 4. Free the TID flow resources. 2424 * 5. Kick the send engine (hfi1_schedule_send()) 2425 */ 2426 struct ib_other_headers *ohdr = packet->ohdr; 2427 struct rvt_qp *qp = packet->qp; 2428 struct hfi1_qp_priv *priv = qp->priv; 2429 struct hfi1_ctxtdata *rcd = packet->rcd; 2430 struct tid_rdma_request *req; 2431 struct tid_rdma_flow *flow; 2432 u32 opcode, aeth; 2433 bool fecn; 2434 unsigned long flags; 2435 u32 kpsn, ipsn; 2436 2437 trace_hfi1_sender_rcv_tid_read_resp(qp); 2438 fecn = process_ecn(qp, packet); 2439 kpsn = mask_psn(be32_to_cpu(ohdr->bth[2])); 2440 aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth); 2441 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff; 2442 2443 spin_lock_irqsave(&qp->s_lock, flags); 2444 ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn)); 2445 req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ); 2446 if (unlikely(!req)) 2447 goto ack_op_err; 2448 2449 flow = &req->flows[req->clear_tail]; 2450 /* When header suppression is disabled */ 2451 if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) { 2452 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn); 2453 2454 if (cmp_psn(kpsn, flow->flow_state.r_next_psn)) 2455 goto ack_done; 2456 flow->flow_state.r_next_psn = mask_psn(kpsn + 1); 2457 /* 2458 * Copy the payload to destination buffer if this packet is 2459 * delivered as an eager packet due to RSM rule and FECN. 2460 * The RSM rule selects FECN bit in BTH and SH bit in 2461 * KDETH header and therefore will not match the last 2462 * packet of each segment that has SH bit cleared. 2463 */ 2464 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) { 2465 struct rvt_sge_state ss; 2466 u32 len; 2467 u32 tlen = packet->tlen; 2468 u16 hdrsize = packet->hlen; 2469 u8 pad = packet->pad; 2470 u8 extra_bytes = pad + packet->extra_byte + 2471 (SIZE_OF_CRC << 2); 2472 u32 pmtu = qp->pmtu; 2473 2474 if (unlikely(tlen != (hdrsize + pmtu + extra_bytes))) 2475 goto ack_op_err; 2476 len = restart_sge(&ss, req->e.swqe, ipsn, pmtu); 2477 if (unlikely(len < pmtu)) 2478 goto ack_op_err; 2479 rvt_copy_sge(qp, &ss, packet->payload, pmtu, false, 2480 false); 2481 /* Raise the sw sequence check flag for next packet */ 2482 priv->s_flags |= HFI1_R_TID_SW_PSN; 2483 } 2484 2485 goto ack_done; 2486 } 2487 flow->flow_state.r_next_psn = mask_psn(kpsn + 1); 2488 req->ack_pending--; 2489 priv->pending_tid_r_segs--; 2490 qp->s_num_rd_atomic--; 2491 if ((qp->s_flags & RVT_S_WAIT_FENCE) && 2492 !qp->s_num_rd_atomic) { 2493 qp->s_flags &= ~(RVT_S_WAIT_FENCE | 2494 RVT_S_WAIT_ACK); 2495 hfi1_schedule_send(qp); 2496 } 2497 if (qp->s_flags & RVT_S_WAIT_RDMAR) { 2498 qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK); 2499 hfi1_schedule_send(qp); 2500 } 2501 2502 trace_hfi1_ack(qp, ipsn); 2503 trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode, 2504 req->e.swqe->psn, req->e.swqe->lpsn, 2505 req); 2506 trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow); 2507 2508 /* Release the tid resources */ 2509 hfi1_kern_exp_rcv_clear(req); 2510 2511 if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd)) 2512 goto ack_done; 2513 2514 /* If not done yet, build next read request */ 2515 if (++req->comp_seg >= req->total_segs) { 2516 priv->tid_r_comp++; 2517 req->state = TID_REQUEST_COMPLETE; 2518 } 2519 2520 /* 2521 * Clear the hw flow under two conditions: 2522 * 1. This request is a sync point and it is complete; 2523 * 2. Current request is completed and there are no more requests. 2524 */ 2525 if ((req->state == TID_REQUEST_SYNC && 2526 req->comp_seg == req->cur_seg) || 2527 priv->tid_r_comp == priv->tid_r_reqs) { 2528 hfi1_kern_clear_hw_flow(priv->rcd, qp); 2529 priv->s_flags &= ~HFI1_R_TID_SW_PSN; 2530 if (req->state == TID_REQUEST_SYNC) 2531 req->state = TID_REQUEST_ACTIVE; 2532 } 2533 2534 hfi1_schedule_send(qp); 2535 goto ack_done; 2536 2537 ack_op_err: 2538 /* 2539 * The test indicates that the send engine has finished its cleanup 2540 * after sending the request and it's now safe to put the QP into error 2541 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail 2542 * == qp->s_head), it would be unsafe to complete the wqe pointed by 2543 * qp->s_acked here. Putting the qp into error state will safely flush 2544 * all remaining requests. 2545 */ 2546 if (qp->s_last == qp->s_acked) 2547 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 2548 2549 ack_done: 2550 spin_unlock_irqrestore(&qp->s_lock, flags); 2551 } 2552 2553 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp) 2554 __must_hold(&qp->s_lock) 2555 { 2556 u32 n = qp->s_acked; 2557 struct rvt_swqe *wqe; 2558 struct tid_rdma_request *req; 2559 struct hfi1_qp_priv *priv = qp->priv; 2560 2561 lockdep_assert_held(&qp->s_lock); 2562 /* Free any TID entries */ 2563 while (n != qp->s_tail) { 2564 wqe = rvt_get_swqe_ptr(qp, n); 2565 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { 2566 req = wqe_to_tid_req(wqe); 2567 hfi1_kern_exp_rcv_clear_all(req); 2568 } 2569 2570 if (++n == qp->s_size) 2571 n = 0; 2572 } 2573 /* Free flow */ 2574 hfi1_kern_clear_hw_flow(priv->rcd, qp); 2575 } 2576 2577 static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type) 2578 { 2579 struct rvt_qp *qp = packet->qp; 2580 2581 if (rcv_type >= RHF_RCV_TYPE_IB) 2582 goto done; 2583 2584 spin_lock(&qp->s_lock); 2585 2586 /* 2587 * We've ran out of space in the eager buffer. 2588 * Eagerly received KDETH packets which require space in the 2589 * Eager buffer (packet that have payload) are TID RDMA WRITE 2590 * response packets. In this case, we have to re-transmit the 2591 * TID RDMA WRITE request. 2592 */ 2593 if (rcv_type == RHF_RCV_TYPE_EAGER) { 2594 hfi1_restart_rc(qp, qp->s_last_psn + 1, 1); 2595 hfi1_schedule_send(qp); 2596 } 2597 2598 /* Since no payload is delivered, just drop the packet */ 2599 spin_unlock(&qp->s_lock); 2600 done: 2601 return true; 2602 } 2603 2604 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd, 2605 struct rvt_qp *qp, struct rvt_swqe *wqe) 2606 { 2607 struct tid_rdma_request *req; 2608 struct tid_rdma_flow *flow; 2609 2610 /* Start from the right segment */ 2611 qp->r_flags |= RVT_R_RDMAR_SEQ; 2612 req = wqe_to_tid_req(wqe); 2613 flow = &req->flows[req->clear_tail]; 2614 hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0); 2615 if (list_empty(&qp->rspwait)) { 2616 qp->r_flags |= RVT_R_RSP_SEND; 2617 rvt_get_qp(qp); 2618 list_add_tail(&qp->rspwait, &rcd->qp_wait_list); 2619 } 2620 } 2621 2622 /* 2623 * Handle the KDETH eflags for TID RDMA READ response. 2624 * 2625 * Return true if the last packet for a segment has been received and it is 2626 * time to process the response normally; otherwise, return true. 2627 * 2628 * The caller must hold the packet->qp->r_lock and the rcu_read_lock. 2629 */ 2630 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd, 2631 struct hfi1_packet *packet, u8 rcv_type, 2632 u8 rte, u32 psn, u32 ibpsn) 2633 __must_hold(&packet->qp->r_lock) __must_hold(RCU) 2634 { 2635 struct hfi1_pportdata *ppd = rcd->ppd; 2636 struct hfi1_devdata *dd = ppd->dd; 2637 struct hfi1_ibport *ibp; 2638 struct rvt_swqe *wqe; 2639 struct tid_rdma_request *req; 2640 struct tid_rdma_flow *flow; 2641 u32 ack_psn; 2642 struct rvt_qp *qp = packet->qp; 2643 struct hfi1_qp_priv *priv = qp->priv; 2644 bool ret = true; 2645 int diff = 0; 2646 u32 fpsn; 2647 2648 lockdep_assert_held(&qp->r_lock); 2649 spin_lock(&qp->s_lock); 2650 /* If the psn is out of valid range, drop the packet */ 2651 if (cmp_psn(ibpsn, qp->s_last_psn) < 0 || 2652 cmp_psn(ibpsn, qp->s_psn) > 0) 2653 goto s_unlock; 2654 2655 /* 2656 * Note that NAKs implicitly ACK outstanding SEND and RDMA write 2657 * requests and implicitly NAK RDMA read and atomic requests issued 2658 * before the NAK'ed request. 2659 */ 2660 ack_psn = ibpsn - 1; 2661 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 2662 ibp = to_iport(qp->ibqp.device, qp->port_num); 2663 2664 /* Complete WQEs that the PSN finishes. */ 2665 while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) { 2666 /* 2667 * If this request is a RDMA read or atomic, and the NACK is 2668 * for a later operation, this NACK NAKs the RDMA read or 2669 * atomic. 2670 */ 2671 if (wqe->wr.opcode == IB_WR_RDMA_READ || 2672 wqe->wr.opcode == IB_WR_TID_RDMA_READ || 2673 wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || 2674 wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) { 2675 /* Retry this request. */ 2676 if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) { 2677 qp->r_flags |= RVT_R_RDMAR_SEQ; 2678 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { 2679 restart_tid_rdma_read_req(rcd, qp, 2680 wqe); 2681 } else { 2682 hfi1_restart_rc(qp, qp->s_last_psn + 1, 2683 0); 2684 if (list_empty(&qp->rspwait)) { 2685 qp->r_flags |= RVT_R_RSP_SEND; 2686 rvt_get_qp(qp); 2687 list_add_tail(/* wait */ 2688 &qp->rspwait, 2689 &rcd->qp_wait_list); 2690 } 2691 } 2692 } 2693 /* 2694 * No need to process the NAK since we are 2695 * restarting an earlier request. 2696 */ 2697 break; 2698 } 2699 2700 wqe = do_rc_completion(qp, wqe, ibp); 2701 if (qp->s_acked == qp->s_tail) 2702 goto s_unlock; 2703 } 2704 2705 if (qp->s_acked == qp->s_tail) 2706 goto s_unlock; 2707 2708 /* Handle the eflags for the request */ 2709 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ) 2710 goto s_unlock; 2711 2712 req = wqe_to_tid_req(wqe); 2713 switch (rcv_type) { 2714 case RHF_RCV_TYPE_EXPECTED: 2715 switch (rte) { 2716 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR: 2717 /* 2718 * On the first occurrence of a Flow Sequence error, 2719 * the flag TID_FLOW_SW_PSN is set. 2720 * 2721 * After that, the flow is *not* reprogrammed and the 2722 * protocol falls back to SW PSN checking. This is done 2723 * to prevent continuous Flow Sequence errors for any 2724 * packets that could be still in the fabric. 2725 */ 2726 flow = &req->flows[req->clear_tail]; 2727 if (priv->s_flags & HFI1_R_TID_SW_PSN) { 2728 diff = cmp_psn(psn, 2729 flow->flow_state.r_next_psn); 2730 if (diff > 0) { 2731 if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) 2732 restart_tid_rdma_read_req(rcd, 2733 qp, 2734 wqe); 2735 2736 /* Drop the packet.*/ 2737 goto s_unlock; 2738 } else if (diff < 0) { 2739 /* 2740 * If a response packet for a restarted 2741 * request has come back, reset the 2742 * restart flag. 2743 */ 2744 if (qp->r_flags & RVT_R_RDMAR_SEQ) 2745 qp->r_flags &= 2746 ~RVT_R_RDMAR_SEQ; 2747 2748 /* Drop the packet.*/ 2749 goto s_unlock; 2750 } 2751 2752 /* 2753 * If SW PSN verification is successful and 2754 * this is the last packet in the segment, tell 2755 * the caller to process it as a normal packet. 2756 */ 2757 fpsn = full_flow_psn(flow, 2758 flow->flow_state.lpsn); 2759 if (cmp_psn(fpsn, psn) == 0) { 2760 ret = false; 2761 if (qp->r_flags & RVT_R_RDMAR_SEQ) 2762 qp->r_flags &= 2763 ~RVT_R_RDMAR_SEQ; 2764 } 2765 flow->flow_state.r_next_psn = 2766 mask_psn(psn + 1); 2767 } else { 2768 u32 last_psn; 2769 2770 last_psn = read_r_next_psn(dd, rcd->ctxt, 2771 flow->idx); 2772 flow->flow_state.r_next_psn = last_psn; 2773 priv->s_flags |= HFI1_R_TID_SW_PSN; 2774 /* 2775 * If no request has been restarted yet, 2776 * restart the current one. 2777 */ 2778 if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) 2779 restart_tid_rdma_read_req(rcd, qp, 2780 wqe); 2781 } 2782 2783 break; 2784 2785 case RHF_RTE_EXPECTED_FLOW_GEN_ERR: 2786 /* 2787 * Since the TID flow is able to ride through 2788 * generation mismatch, drop this stale packet. 2789 */ 2790 break; 2791 2792 default: 2793 break; 2794 } 2795 break; 2796 2797 case RHF_RCV_TYPE_ERROR: 2798 switch (rte) { 2799 case RHF_RTE_ERROR_OP_CODE_ERR: 2800 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR: 2801 case RHF_RTE_ERROR_KHDR_HCRC_ERR: 2802 case RHF_RTE_ERROR_KHDR_KVER_ERR: 2803 case RHF_RTE_ERROR_CONTEXT_ERR: 2804 case RHF_RTE_ERROR_KHDR_TID_ERR: 2805 default: 2806 break; 2807 } 2808 default: 2809 break; 2810 } 2811 s_unlock: 2812 spin_unlock(&qp->s_lock); 2813 return ret; 2814 } 2815 2816 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd, 2817 struct hfi1_pportdata *ppd, 2818 struct hfi1_packet *packet) 2819 { 2820 struct hfi1_ibport *ibp = &ppd->ibport_data; 2821 struct hfi1_devdata *dd = ppd->dd; 2822 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 2823 u8 rcv_type = rhf_rcv_type(packet->rhf); 2824 u8 rte = rhf_rcv_type_err(packet->rhf); 2825 struct ib_header *hdr = packet->hdr; 2826 struct ib_other_headers *ohdr = NULL; 2827 int lnh = be16_to_cpu(hdr->lrh[0]) & 3; 2828 u16 lid = be16_to_cpu(hdr->lrh[1]); 2829 u8 opcode; 2830 u32 qp_num, psn, ibpsn; 2831 struct rvt_qp *qp; 2832 struct hfi1_qp_priv *qpriv; 2833 unsigned long flags; 2834 bool ret = true; 2835 struct rvt_ack_entry *e; 2836 struct tid_rdma_request *req; 2837 struct tid_rdma_flow *flow; 2838 int diff = 0; 2839 2840 trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ", 2841 packet->rhf); 2842 if (packet->rhf & RHF_ICRC_ERR) 2843 return ret; 2844 2845 packet->ohdr = &hdr->u.oth; 2846 ohdr = packet->ohdr; 2847 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 2848 2849 /* Get the destination QP number. */ 2850 qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) & 2851 RVT_QPN_MASK; 2852 if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) 2853 goto drop; 2854 2855 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 2856 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff; 2857 2858 rcu_read_lock(); 2859 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 2860 if (!qp) 2861 goto rcu_unlock; 2862 2863 packet->qp = qp; 2864 2865 /* Check for valid receive state. */ 2866 spin_lock_irqsave(&qp->r_lock, flags); 2867 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { 2868 ibp->rvp.n_pkt_drops++; 2869 goto r_unlock; 2870 } 2871 2872 if (packet->rhf & RHF_TID_ERR) { 2873 /* For TIDERR and RC QPs preemptively schedule a NAK */ 2874 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 2875 2876 /* Sanity check packet */ 2877 if (tlen < 24) 2878 goto r_unlock; 2879 2880 /* 2881 * Check for GRH. We should never get packets with GRH in this 2882 * path. 2883 */ 2884 if (lnh == HFI1_LRH_GRH) 2885 goto r_unlock; 2886 2887 if (tid_rdma_tid_err(packet, rcv_type)) 2888 goto r_unlock; 2889 } 2890 2891 /* handle TID RDMA READ */ 2892 if (opcode == TID_OP(READ_RESP)) { 2893 ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn); 2894 ibpsn = mask_psn(ibpsn); 2895 ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn, 2896 ibpsn); 2897 goto r_unlock; 2898 } 2899 2900 /* 2901 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being 2902 * processed. These a completed sequentially so we can be sure that 2903 * the pointer will not change until the entire request has completed. 2904 */ 2905 spin_lock(&qp->s_lock); 2906 qpriv = qp->priv; 2907 if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID || 2908 qpriv->r_tid_tail == qpriv->r_tid_head) 2909 goto unlock; 2910 e = &qp->s_ack_queue[qpriv->r_tid_tail]; 2911 if (e->opcode != TID_OP(WRITE_REQ)) 2912 goto unlock; 2913 req = ack_to_tid_req(e); 2914 if (req->comp_seg == req->cur_seg) 2915 goto unlock; 2916 flow = &req->flows[req->clear_tail]; 2917 trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn); 2918 trace_hfi1_rsp_handle_kdeth_eflags(qp, psn); 2919 trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp); 2920 trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn, 2921 e->lpsn, req); 2922 trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow); 2923 2924 switch (rcv_type) { 2925 case RHF_RCV_TYPE_EXPECTED: 2926 switch (rte) { 2927 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR: 2928 if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) { 2929 qpriv->s_flags |= HFI1_R_TID_SW_PSN; 2930 flow->flow_state.r_next_psn = 2931 read_r_next_psn(dd, rcd->ctxt, 2932 flow->idx); 2933 qpriv->r_next_psn_kdeth = 2934 flow->flow_state.r_next_psn; 2935 goto nak_psn; 2936 } else { 2937 /* 2938 * If the received PSN does not match the next 2939 * expected PSN, NAK the packet. 2940 * However, only do that if we know that the a 2941 * NAK has already been sent. Otherwise, this 2942 * mismatch could be due to packets that were 2943 * already in flight. 2944 */ 2945 diff = cmp_psn(psn, 2946 flow->flow_state.r_next_psn); 2947 if (diff > 0) 2948 goto nak_psn; 2949 else if (diff < 0) 2950 break; 2951 2952 qpriv->s_nak_state = 0; 2953 /* 2954 * If SW PSN verification is successful and this 2955 * is the last packet in the segment, tell the 2956 * caller to process it as a normal packet. 2957 */ 2958 if (psn == full_flow_psn(flow, 2959 flow->flow_state.lpsn)) 2960 ret = false; 2961 flow->flow_state.r_next_psn = 2962 mask_psn(psn + 1); 2963 qpriv->r_next_psn_kdeth = 2964 flow->flow_state.r_next_psn; 2965 } 2966 break; 2967 2968 case RHF_RTE_EXPECTED_FLOW_GEN_ERR: 2969 goto nak_psn; 2970 2971 default: 2972 break; 2973 } 2974 break; 2975 2976 case RHF_RCV_TYPE_ERROR: 2977 switch (rte) { 2978 case RHF_RTE_ERROR_OP_CODE_ERR: 2979 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR: 2980 case RHF_RTE_ERROR_KHDR_HCRC_ERR: 2981 case RHF_RTE_ERROR_KHDR_KVER_ERR: 2982 case RHF_RTE_ERROR_CONTEXT_ERR: 2983 case RHF_RTE_ERROR_KHDR_TID_ERR: 2984 default: 2985 break; 2986 } 2987 default: 2988 break; 2989 } 2990 2991 unlock: 2992 spin_unlock(&qp->s_lock); 2993 r_unlock: 2994 spin_unlock_irqrestore(&qp->r_lock, flags); 2995 rcu_unlock: 2996 rcu_read_unlock(); 2997 drop: 2998 return ret; 2999 nak_psn: 3000 ibp->rvp.n_rc_seqnak++; 3001 if (!qpriv->s_nak_state) { 3002 qpriv->s_nak_state = IB_NAK_PSN_ERROR; 3003 /* We are NAK'ing the next expected PSN */ 3004 qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn); 3005 qpriv->s_flags |= RVT_S_ACK_PENDING; 3006 if (qpriv->r_tid_ack == HFI1_QP_WQE_INVALID) 3007 qpriv->r_tid_ack = qpriv->r_tid_tail; 3008 hfi1_schedule_tid_send(qp); 3009 } 3010 goto unlock; 3011 } 3012 3013 /* 3014 * "Rewind" the TID request information. 3015 * This means that we reset the state back to ACTIVE, 3016 * find the proper flow, set the flow index to that flow, 3017 * and reset the flow information. 3018 */ 3019 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe, 3020 u32 *bth2) 3021 { 3022 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 3023 struct tid_rdma_flow *flow; 3024 struct hfi1_qp_priv *qpriv = qp->priv; 3025 int diff, delta_pkts; 3026 u32 tididx = 0, i; 3027 u16 fidx; 3028 3029 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { 3030 *bth2 = mask_psn(qp->s_psn); 3031 flow = find_flow_ib(req, *bth2, &fidx); 3032 if (!flow) { 3033 trace_hfi1_msg_tid_restart_req(/* msg */ 3034 qp, "!!!!!! Could not find flow to restart: bth2 ", 3035 (u64)*bth2); 3036 trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, 3037 wqe->psn, wqe->lpsn, 3038 req); 3039 return; 3040 } 3041 } else { 3042 fidx = req->acked_tail; 3043 flow = &req->flows[fidx]; 3044 *bth2 = mask_psn(req->r_ack_psn); 3045 } 3046 3047 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) 3048 delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn); 3049 else 3050 delta_pkts = delta_psn(*bth2, 3051 full_flow_psn(flow, 3052 flow->flow_state.spsn)); 3053 3054 trace_hfi1_tid_flow_restart_req(qp, fidx, flow); 3055 diff = delta_pkts + flow->resync_npkts; 3056 3057 flow->sent = 0; 3058 flow->pkt = 0; 3059 flow->tid_idx = 0; 3060 flow->tid_offset = 0; 3061 if (diff) { 3062 for (tididx = 0; tididx < flow->tidcnt; tididx++) { 3063 u32 tidentry = flow->tid_entry[tididx], tidlen, 3064 tidnpkts, npkts; 3065 3066 flow->tid_offset = 0; 3067 tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE; 3068 tidnpkts = rvt_div_round_up_mtu(qp, tidlen); 3069 npkts = min_t(u32, diff, tidnpkts); 3070 flow->pkt += npkts; 3071 flow->sent += (npkts == tidnpkts ? tidlen : 3072 npkts * qp->pmtu); 3073 flow->tid_offset += npkts * qp->pmtu; 3074 diff -= npkts; 3075 if (!diff) 3076 break; 3077 } 3078 } 3079 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) { 3080 rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) + 3081 flow->sent, 0); 3082 /* 3083 * Packet PSN is based on flow_state.spsn + flow->pkt. However, 3084 * during a RESYNC, the generation is incremented and the 3085 * sequence is reset to 0. Since we've adjusted the npkts in the 3086 * flow and the SGE has been sufficiently advanced, we have to 3087 * adjust flow->pkt in order to calculate the correct PSN. 3088 */ 3089 flow->pkt -= flow->resync_npkts; 3090 } 3091 3092 if (flow->tid_offset == 3093 EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) { 3094 tididx++; 3095 flow->tid_offset = 0; 3096 } 3097 flow->tid_idx = tididx; 3098 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) 3099 /* Move flow_idx to correct index */ 3100 req->flow_idx = fidx; 3101 else 3102 req->clear_tail = fidx; 3103 3104 trace_hfi1_tid_flow_restart_req(qp, fidx, flow); 3105 trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn, 3106 wqe->lpsn, req); 3107 req->state = TID_REQUEST_ACTIVE; 3108 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) { 3109 /* Reset all the flows that we are going to resend */ 3110 fidx = CIRC_NEXT(fidx, MAX_FLOWS); 3111 i = qpriv->s_tid_tail; 3112 do { 3113 for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS); 3114 fidx = CIRC_NEXT(fidx, MAX_FLOWS)) { 3115 req->flows[fidx].sent = 0; 3116 req->flows[fidx].pkt = 0; 3117 req->flows[fidx].tid_idx = 0; 3118 req->flows[fidx].tid_offset = 0; 3119 req->flows[fidx].resync_npkts = 0; 3120 } 3121 if (i == qpriv->s_tid_cur) 3122 break; 3123 do { 3124 i = (++i == qp->s_size ? 0 : i); 3125 wqe = rvt_get_swqe_ptr(qp, i); 3126 } while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE); 3127 req = wqe_to_tid_req(wqe); 3128 req->cur_seg = req->ack_seg; 3129 fidx = req->acked_tail; 3130 /* Pull req->clear_tail back */ 3131 req->clear_tail = fidx; 3132 } while (1); 3133 } 3134 } 3135 3136 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp) 3137 { 3138 int i, ret; 3139 struct hfi1_qp_priv *qpriv = qp->priv; 3140 struct tid_flow_state *fs; 3141 3142 if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA)) 3143 return; 3144 3145 /* 3146 * First, clear the flow to help prevent any delayed packets from 3147 * being delivered. 3148 */ 3149 fs = &qpriv->flow_state; 3150 if (fs->index != RXE_NUM_TID_FLOWS) 3151 hfi1_kern_clear_hw_flow(qpriv->rcd, qp); 3152 3153 for (i = qp->s_acked; i != qp->s_head;) { 3154 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i); 3155 3156 if (++i == qp->s_size) 3157 i = 0; 3158 /* Free only locally allocated TID entries */ 3159 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ) 3160 continue; 3161 do { 3162 struct hfi1_swqe_priv *priv = wqe->priv; 3163 3164 ret = hfi1_kern_exp_rcv_clear(&priv->tid_req); 3165 } while (!ret); 3166 } 3167 for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) { 3168 struct rvt_ack_entry *e = &qp->s_ack_queue[i]; 3169 3170 if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device))) 3171 i = 0; 3172 /* Free only locally allocated TID entries */ 3173 if (e->opcode != TID_OP(WRITE_REQ)) 3174 continue; 3175 do { 3176 struct hfi1_ack_priv *priv = e->priv; 3177 3178 ret = hfi1_kern_exp_rcv_clear(&priv->tid_req); 3179 } while (!ret); 3180 } 3181 } 3182 3183 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe) 3184 { 3185 struct rvt_swqe *prev; 3186 struct hfi1_qp_priv *priv = qp->priv; 3187 u32 s_prev; 3188 struct tid_rdma_request *req; 3189 3190 s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1; 3191 prev = rvt_get_swqe_ptr(qp, s_prev); 3192 3193 switch (wqe->wr.opcode) { 3194 case IB_WR_SEND: 3195 case IB_WR_SEND_WITH_IMM: 3196 case IB_WR_SEND_WITH_INV: 3197 case IB_WR_ATOMIC_CMP_AND_SWP: 3198 case IB_WR_ATOMIC_FETCH_AND_ADD: 3199 case IB_WR_RDMA_WRITE: 3200 switch (prev->wr.opcode) { 3201 case IB_WR_TID_RDMA_WRITE: 3202 req = wqe_to_tid_req(prev); 3203 if (req->ack_seg != req->total_segs) 3204 goto interlock; 3205 default: 3206 break; 3207 } 3208 break; 3209 case IB_WR_RDMA_READ: 3210 if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE) 3211 break; 3212 /* fall through */ 3213 case IB_WR_TID_RDMA_READ: 3214 switch (prev->wr.opcode) { 3215 case IB_WR_RDMA_READ: 3216 if (qp->s_acked != qp->s_cur) 3217 goto interlock; 3218 break; 3219 case IB_WR_TID_RDMA_WRITE: 3220 req = wqe_to_tid_req(prev); 3221 if (req->ack_seg != req->total_segs) 3222 goto interlock; 3223 default: 3224 break; 3225 } 3226 default: 3227 break; 3228 } 3229 return false; 3230 3231 interlock: 3232 priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK; 3233 return true; 3234 } 3235 3236 /* Does @sge meet the alignment requirements for tid rdma? */ 3237 static inline bool hfi1_check_sge_align(struct rvt_qp *qp, 3238 struct rvt_sge *sge, int num_sge) 3239 { 3240 int i; 3241 3242 for (i = 0; i < num_sge; i++, sge++) { 3243 trace_hfi1_sge_check_align(qp, i, sge); 3244 if ((u64)sge->vaddr & ~PAGE_MASK || 3245 sge->sge_length & ~PAGE_MASK) 3246 return false; 3247 } 3248 return true; 3249 } 3250 3251 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe) 3252 { 3253 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv; 3254 struct hfi1_swqe_priv *priv = wqe->priv; 3255 struct tid_rdma_params *remote; 3256 enum ib_wr_opcode new_opcode; 3257 bool do_tid_rdma = false; 3258 struct hfi1_pportdata *ppd = qpriv->rcd->ppd; 3259 3260 if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) == 3261 ppd->lid) 3262 return; 3263 if (qpriv->hdr_type != HFI1_PKT_TYPE_9B) 3264 return; 3265 3266 rcu_read_lock(); 3267 remote = rcu_dereference(qpriv->tid_rdma.remote); 3268 /* 3269 * If TID RDMA is disabled by the negotiation, don't 3270 * use it. 3271 */ 3272 if (!remote) 3273 goto exit; 3274 3275 if (wqe->wr.opcode == IB_WR_RDMA_READ) { 3276 if (hfi1_check_sge_align(qp, &wqe->sg_list[0], 3277 wqe->wr.num_sge)) { 3278 new_opcode = IB_WR_TID_RDMA_READ; 3279 do_tid_rdma = true; 3280 } 3281 } else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) { 3282 /* 3283 * TID RDMA is enabled for this RDMA WRITE request iff: 3284 * 1. The remote address is page-aligned, 3285 * 2. The length is larger than the minimum segment size, 3286 * 3. The length is page-multiple. 3287 */ 3288 if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) && 3289 !(wqe->length & ~PAGE_MASK)) { 3290 new_opcode = IB_WR_TID_RDMA_WRITE; 3291 do_tid_rdma = true; 3292 } 3293 } 3294 3295 if (do_tid_rdma) { 3296 if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC)) 3297 goto exit; 3298 wqe->wr.opcode = new_opcode; 3299 priv->tid_req.seg_len = 3300 min_t(u32, remote->max_len, wqe->length); 3301 priv->tid_req.total_segs = 3302 DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len); 3303 /* Compute the last PSN of the request */ 3304 wqe->lpsn = wqe->psn; 3305 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { 3306 priv->tid_req.n_flows = remote->max_read; 3307 qpriv->tid_r_reqs++; 3308 wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1; 3309 } else { 3310 wqe->lpsn += priv->tid_req.total_segs - 1; 3311 atomic_inc(&qpriv->n_requests); 3312 } 3313 3314 priv->tid_req.cur_seg = 0; 3315 priv->tid_req.comp_seg = 0; 3316 priv->tid_req.ack_seg = 0; 3317 priv->tid_req.state = TID_REQUEST_INACTIVE; 3318 /* 3319 * Reset acked_tail. 3320 * TID RDMA READ does not have ACKs so it does not 3321 * update the pointer. We have to reset it so TID RDMA 3322 * WRITE does not get confused. 3323 */ 3324 priv->tid_req.acked_tail = priv->tid_req.setup_head; 3325 trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode, 3326 wqe->psn, wqe->lpsn, 3327 &priv->tid_req); 3328 } 3329 exit: 3330 rcu_read_unlock(); 3331 } 3332 3333 /* TID RDMA WRITE functions */ 3334 3335 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe, 3336 struct ib_other_headers *ohdr, 3337 u32 *bth1, u32 *bth2, u32 *len) 3338 { 3339 struct hfi1_qp_priv *qpriv = qp->priv; 3340 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 3341 struct tid_rdma_params *remote; 3342 3343 rcu_read_lock(); 3344 remote = rcu_dereference(qpriv->tid_rdma.remote); 3345 /* 3346 * Set the number of flow to be used based on negotiated 3347 * parameters. 3348 */ 3349 req->n_flows = remote->max_write; 3350 req->state = TID_REQUEST_ACTIVE; 3351 3352 KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1); 3353 KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey); 3354 ohdr->u.tid_rdma.w_req.reth.vaddr = 3355 cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len)); 3356 ohdr->u.tid_rdma.w_req.reth.rkey = 3357 cpu_to_be32(wqe->rdma_wr.rkey); 3358 ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len); 3359 ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn); 3360 *bth1 &= ~RVT_QPN_MASK; 3361 *bth1 |= remote->qp; 3362 qp->s_state = TID_OP(WRITE_REQ); 3363 qp->s_flags |= HFI1_S_WAIT_TID_RESP; 3364 *bth2 |= IB_BTH_REQ_ACK; 3365 *len = 0; 3366 3367 rcu_read_unlock(); 3368 return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32); 3369 } 3370 3371 void hfi1_compute_tid_rdma_flow_wt(void) 3372 { 3373 /* 3374 * Heuristic for computing the RNR timeout when waiting on the flow 3375 * queue. Rather than a computationaly expensive exact estimate of when 3376 * a flow will be available, we assume that if a QP is at position N in 3377 * the flow queue it has to wait approximately (N + 1) * (number of 3378 * segments between two sync points), assuming PMTU of 4K. The rationale 3379 * for this is that flows are released and recycled at each sync point. 3380 */ 3381 tid_rdma_flow_wt = MAX_TID_FLOW_PSN * enum_to_mtu(OPA_MTU_4096) / 3382 TID_RDMA_MAX_SEGMENT_SIZE; 3383 } 3384 3385 static u32 position_in_queue(struct hfi1_qp_priv *qpriv, 3386 struct tid_queue *queue) 3387 { 3388 return qpriv->tid_enqueue - queue->dequeue; 3389 } 3390 3391 /* 3392 * @qp: points to rvt_qp context. 3393 * @to_seg: desired RNR timeout in segments. 3394 * Return: index of the next highest timeout in the ib_hfi1_rnr_table[] 3395 */ 3396 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg) 3397 { 3398 struct hfi1_qp_priv *qpriv = qp->priv; 3399 u64 timeout; 3400 u32 bytes_per_us; 3401 u8 i; 3402 3403 bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8; 3404 timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us; 3405 /* 3406 * Find the next highest value in the RNR table to the required 3407 * timeout. This gives the responder some padding. 3408 */ 3409 for (i = 1; i <= IB_AETH_CREDIT_MASK; i++) 3410 if (rvt_rnr_tbl_to_usec(i) >= timeout) 3411 return i; 3412 return 0; 3413 } 3414 3415 /** 3416 * Central place for resource allocation at TID write responder, 3417 * is called from write_req and write_data interrupt handlers as 3418 * well as the send thread when a queued QP is scheduled for 3419 * resource allocation. 3420 * 3421 * Iterates over (a) segments of a request and then (b) queued requests 3422 * themselves to allocate resources for up to local->max_write 3423 * segments across multiple requests. Stop allocating when we 3424 * hit a sync point, resume allocating after data packets at 3425 * sync point have been received. 3426 * 3427 * Resource allocation and sending of responses is decoupled. The 3428 * request/segment which are being allocated and sent are as follows. 3429 * Resources are allocated for: 3430 * [request: qpriv->r_tid_alloc, segment: req->alloc_seg] 3431 * The send thread sends: 3432 * [request: qp->s_tail_ack_queue, segment:req->cur_seg] 3433 */ 3434 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx) 3435 { 3436 struct tid_rdma_request *req; 3437 struct hfi1_qp_priv *qpriv = qp->priv; 3438 struct hfi1_ctxtdata *rcd = qpriv->rcd; 3439 struct tid_rdma_params *local = &qpriv->tid_rdma.local; 3440 struct rvt_ack_entry *e; 3441 u32 npkts, to_seg; 3442 bool last; 3443 int ret = 0; 3444 3445 lockdep_assert_held(&qp->s_lock); 3446 3447 while (1) { 3448 trace_hfi1_rsp_tid_write_alloc_res(qp, 0); 3449 trace_hfi1_tid_write_rsp_alloc_res(qp); 3450 /* 3451 * Don't allocate more segments if a RNR NAK has already been 3452 * scheduled to avoid messing up qp->r_psn: the RNR NAK will 3453 * be sent only when all allocated segments have been sent. 3454 * However, if more segments are allocated before that, TID RDMA 3455 * WRITE RESP packets will be sent out for these new segments 3456 * before the RNR NAK packet. When the requester receives the 3457 * RNR NAK packet, it will restart with qp->s_last_psn + 1, 3458 * which does not match qp->r_psn and will be dropped. 3459 * Consequently, the requester will exhaust its retries and 3460 * put the qp into error state. 3461 */ 3462 if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND) 3463 break; 3464 3465 /* No requests left to process */ 3466 if (qpriv->r_tid_alloc == qpriv->r_tid_head) { 3467 /* If all data has been received, clear the flow */ 3468 if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS && 3469 !qpriv->alloc_w_segs) { 3470 hfi1_kern_clear_hw_flow(rcd, qp); 3471 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN; 3472 } 3473 break; 3474 } 3475 3476 e = &qp->s_ack_queue[qpriv->r_tid_alloc]; 3477 if (e->opcode != TID_OP(WRITE_REQ)) 3478 goto next_req; 3479 req = ack_to_tid_req(e); 3480 trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn, 3481 e->lpsn, req); 3482 /* Finished allocating for all segments of this request */ 3483 if (req->alloc_seg >= req->total_segs) 3484 goto next_req; 3485 3486 /* Can allocate only a maximum of local->max_write for a QP */ 3487 if (qpriv->alloc_w_segs >= local->max_write) 3488 break; 3489 3490 /* Don't allocate at a sync point with data packets pending */ 3491 if (qpriv->sync_pt && qpriv->alloc_w_segs) 3492 break; 3493 3494 /* All data received at the sync point, continue */ 3495 if (qpriv->sync_pt && !qpriv->alloc_w_segs) { 3496 hfi1_kern_clear_hw_flow(rcd, qp); 3497 qpriv->sync_pt = false; 3498 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN; 3499 } 3500 3501 /* Allocate flow if we don't have one */ 3502 if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) { 3503 ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp); 3504 if (ret) { 3505 to_seg = tid_rdma_flow_wt * 3506 position_in_queue(qpriv, 3507 &rcd->flow_queue); 3508 break; 3509 } 3510 } 3511 3512 npkts = rvt_div_round_up_mtu(qp, req->seg_len); 3513 3514 /* 3515 * We are at a sync point if we run out of KDETH PSN space. 3516 * Last PSN of every generation is reserved for RESYNC. 3517 */ 3518 if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) { 3519 qpriv->sync_pt = true; 3520 break; 3521 } 3522 3523 /* 3524 * If overtaking req->acked_tail, send an RNR NAK. Because the 3525 * QP is not queued in this case, and the issue can only be 3526 * caused due a delay in scheduling the second leg which we 3527 * cannot estimate, we use a rather arbitrary RNR timeout of 3528 * (MAX_FLOWS / 2) segments 3529 */ 3530 if (!CIRC_SPACE(req->setup_head, req->acked_tail, 3531 MAX_FLOWS)) { 3532 ret = -EAGAIN; 3533 to_seg = MAX_FLOWS >> 1; 3534 qpriv->s_flags |= RVT_S_ACK_PENDING; 3535 hfi1_schedule_tid_send(qp); 3536 break; 3537 } 3538 3539 /* Try to allocate rcv array / TID entries */ 3540 ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last); 3541 if (ret == -EAGAIN) 3542 to_seg = position_in_queue(qpriv, &rcd->rarr_queue); 3543 if (ret) 3544 break; 3545 3546 qpriv->alloc_w_segs++; 3547 req->alloc_seg++; 3548 continue; 3549 next_req: 3550 /* Begin processing the next request */ 3551 if (++qpriv->r_tid_alloc > 3552 rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) 3553 qpriv->r_tid_alloc = 0; 3554 } 3555 3556 /* 3557 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation 3558 * has failed (b) we are called from the rcv handler interrupt context 3559 * (c) an RNR NAK has not already been scheduled 3560 */ 3561 if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state) 3562 goto send_rnr_nak; 3563 3564 return; 3565 3566 send_rnr_nak: 3567 lockdep_assert_held(&qp->r_lock); 3568 3569 /* Set r_nak_state to prevent unrelated events from generating NAK's */ 3570 qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK; 3571 3572 /* Pull back r_psn to the segment being RNR NAK'd */ 3573 qp->r_psn = e->psn + req->alloc_seg; 3574 qp->r_ack_psn = qp->r_psn; 3575 /* 3576 * Pull back r_head_ack_queue to the ack entry following the request 3577 * being RNR NAK'd. This allows resources to be allocated to the request 3578 * if the queued QP is scheduled. 3579 */ 3580 qp->r_head_ack_queue = qpriv->r_tid_alloc + 1; 3581 if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) 3582 qp->r_head_ack_queue = 0; 3583 qpriv->r_tid_head = qp->r_head_ack_queue; 3584 /* 3585 * These send side fields are used in make_rc_ack(). They are set in 3586 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock 3587 * for consistency 3588 */ 3589 qp->s_nak_state = qp->r_nak_state; 3590 qp->s_ack_psn = qp->r_ack_psn; 3591 /* 3592 * Clear the ACK PENDING flag to prevent unwanted ACK because we 3593 * have modified qp->s_ack_psn here. 3594 */ 3595 qp->s_flags &= ~(RVT_S_ACK_PENDING); 3596 3597 trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn); 3598 /* 3599 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK 3600 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be 3601 * used for this because qp->s_lock is dropped before calling 3602 * hfi1_send_rc_ack() leading to inconsistency between the receive 3603 * interrupt handlers and the send thread in make_rc_ack() 3604 */ 3605 qpriv->rnr_nak_state = TID_RNR_NAK_SEND; 3606 3607 /* 3608 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive 3609 * interrupt handlers but will be sent from the send engine behind any 3610 * previous responses that may have been scheduled 3611 */ 3612 rc_defered_ack(rcd, qp); 3613 } 3614 3615 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet) 3616 { 3617 /* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/ 3618 3619 /* 3620 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST 3621 * (see hfi1_rc_rcv()) 3622 * - Don't allow 0-length requests. 3623 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue) 3624 * - Setup struct tid_rdma_req with request info 3625 * - Prepare struct tid_rdma_flow array? 3626 * 3. Set the qp->s_ack_state as state diagram in design doc. 3627 * 4. Set RVT_S_RESP_PENDING in s_flags. 3628 * 5. Kick the send engine (hfi1_schedule_send()) 3629 */ 3630 struct hfi1_ctxtdata *rcd = packet->rcd; 3631 struct rvt_qp *qp = packet->qp; 3632 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 3633 struct ib_other_headers *ohdr = packet->ohdr; 3634 struct rvt_ack_entry *e; 3635 unsigned long flags; 3636 struct ib_reth *reth; 3637 struct hfi1_qp_priv *qpriv = qp->priv; 3638 struct tid_rdma_request *req; 3639 u32 bth0, psn, len, rkey, num_segs; 3640 bool fecn; 3641 u8 next; 3642 u64 vaddr; 3643 int diff; 3644 3645 bth0 = be32_to_cpu(ohdr->bth[0]); 3646 if (hfi1_ruc_check_hdr(ibp, packet)) 3647 return; 3648 3649 fecn = process_ecn(qp, packet); 3650 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 3651 trace_hfi1_rsp_rcv_tid_write_req(qp, psn); 3652 3653 if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST)) 3654 rvt_comm_est(qp); 3655 3656 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) 3657 goto nack_inv; 3658 3659 reth = &ohdr->u.tid_rdma.w_req.reth; 3660 vaddr = be64_to_cpu(reth->vaddr); 3661 len = be32_to_cpu(reth->length); 3662 3663 num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len); 3664 diff = delta_psn(psn, qp->r_psn); 3665 if (unlikely(diff)) { 3666 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn); 3667 return; 3668 } 3669 3670 /* 3671 * The resent request which was previously RNR NAK'd is inserted at the 3672 * location of the original request, which is one entry behind 3673 * r_head_ack_queue 3674 */ 3675 if (qpriv->rnr_nak_state) 3676 qp->r_head_ack_queue = qp->r_head_ack_queue ? 3677 qp->r_head_ack_queue - 1 : 3678 rvt_size_atomic(ib_to_rvt(qp->ibqp.device)); 3679 3680 /* We've verified the request, insert it into the ack queue. */ 3681 next = qp->r_head_ack_queue + 1; 3682 if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) 3683 next = 0; 3684 spin_lock_irqsave(&qp->s_lock, flags); 3685 if (unlikely(next == qp->s_acked_ack_queue)) { 3686 if (!qp->s_ack_queue[next].sent) 3687 goto nack_inv_unlock; 3688 update_ack_queue(qp, next); 3689 } 3690 e = &qp->s_ack_queue[qp->r_head_ack_queue]; 3691 req = ack_to_tid_req(e); 3692 3693 /* Bring previously RNR NAK'd request back to life */ 3694 if (qpriv->rnr_nak_state) { 3695 qp->r_nak_state = 0; 3696 qp->s_nak_state = 0; 3697 qpriv->rnr_nak_state = TID_RNR_NAK_INIT; 3698 qp->r_psn = e->lpsn + 1; 3699 req->state = TID_REQUEST_INIT; 3700 goto update_head; 3701 } 3702 3703 release_rdma_sge_mr(e); 3704 3705 /* The length needs to be in multiples of PAGE_SIZE */ 3706 if (!len || len & ~PAGE_MASK) 3707 goto nack_inv_unlock; 3708 3709 rkey = be32_to_cpu(reth->rkey); 3710 qp->r_len = len; 3711 3712 if (e->opcode == TID_OP(WRITE_REQ) && 3713 (req->setup_head != req->clear_tail || 3714 req->clear_tail != req->acked_tail)) 3715 goto nack_inv_unlock; 3716 3717 if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr, 3718 rkey, IB_ACCESS_REMOTE_WRITE))) 3719 goto nack_acc; 3720 3721 qp->r_psn += num_segs - 1; 3722 3723 e->opcode = (bth0 >> 24) & 0xff; 3724 e->psn = psn; 3725 e->lpsn = qp->r_psn; 3726 e->sent = 0; 3727 3728 req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write); 3729 req->state = TID_REQUEST_INIT; 3730 req->cur_seg = 0; 3731 req->comp_seg = 0; 3732 req->ack_seg = 0; 3733 req->alloc_seg = 0; 3734 req->isge = 0; 3735 req->seg_len = qpriv->tid_rdma.local.max_len; 3736 req->total_len = len; 3737 req->total_segs = num_segs; 3738 req->r_flow_psn = e->psn; 3739 req->ss.sge = e->rdma_sge; 3740 req->ss.num_sge = 1; 3741 3742 req->flow_idx = req->setup_head; 3743 req->clear_tail = req->setup_head; 3744 req->acked_tail = req->setup_head; 3745 3746 qp->r_state = e->opcode; 3747 qp->r_nak_state = 0; 3748 /* 3749 * We need to increment the MSN here instead of when we 3750 * finish sending the result since a duplicate request would 3751 * increment it more than once. 3752 */ 3753 qp->r_msn++; 3754 qp->r_psn++; 3755 3756 trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn, 3757 req); 3758 3759 if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) { 3760 qpriv->r_tid_tail = qp->r_head_ack_queue; 3761 } else if (qpriv->r_tid_tail == qpriv->r_tid_head) { 3762 struct tid_rdma_request *ptr; 3763 3764 e = &qp->s_ack_queue[qpriv->r_tid_tail]; 3765 ptr = ack_to_tid_req(e); 3766 3767 if (e->opcode != TID_OP(WRITE_REQ) || 3768 ptr->comp_seg == ptr->total_segs) { 3769 if (qpriv->r_tid_tail == qpriv->r_tid_ack) 3770 qpriv->r_tid_ack = qp->r_head_ack_queue; 3771 qpriv->r_tid_tail = qp->r_head_ack_queue; 3772 } 3773 } 3774 update_head: 3775 qp->r_head_ack_queue = next; 3776 qpriv->r_tid_head = qp->r_head_ack_queue; 3777 3778 hfi1_tid_write_alloc_resources(qp, true); 3779 trace_hfi1_tid_write_rsp_rcv_req(qp); 3780 3781 /* Schedule the send tasklet. */ 3782 qp->s_flags |= RVT_S_RESP_PENDING; 3783 if (fecn) 3784 qp->s_flags |= RVT_S_ECN; 3785 hfi1_schedule_send(qp); 3786 3787 spin_unlock_irqrestore(&qp->s_lock, flags); 3788 return; 3789 3790 nack_inv_unlock: 3791 spin_unlock_irqrestore(&qp->s_lock, flags); 3792 nack_inv: 3793 rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); 3794 qp->r_nak_state = IB_NAK_INVALID_REQUEST; 3795 qp->r_ack_psn = qp->r_psn; 3796 /* Queue NAK for later */ 3797 rc_defered_ack(rcd, qp); 3798 return; 3799 nack_acc: 3800 spin_unlock_irqrestore(&qp->s_lock, flags); 3801 rvt_rc_error(qp, IB_WC_LOC_PROT_ERR); 3802 qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR; 3803 qp->r_ack_psn = qp->r_psn; 3804 } 3805 3806 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e, 3807 struct ib_other_headers *ohdr, u32 *bth1, 3808 u32 bth2, u32 *len, 3809 struct rvt_sge_state **ss) 3810 { 3811 struct hfi1_ack_priv *epriv = e->priv; 3812 struct tid_rdma_request *req = &epriv->tid_req; 3813 struct hfi1_qp_priv *qpriv = qp->priv; 3814 struct tid_rdma_flow *flow = NULL; 3815 u32 resp_len = 0, hdwords = 0; 3816 void *resp_addr = NULL; 3817 struct tid_rdma_params *remote; 3818 3819 trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn, 3820 req); 3821 trace_hfi1_tid_write_rsp_build_resp(qp); 3822 trace_hfi1_rsp_build_tid_write_resp(qp, bth2); 3823 flow = &req->flows[req->flow_idx]; 3824 switch (req->state) { 3825 default: 3826 /* 3827 * Try to allocate resources here in case QP was queued and was 3828 * later scheduled when resources became available 3829 */ 3830 hfi1_tid_write_alloc_resources(qp, false); 3831 3832 /* We've already sent everything which is ready */ 3833 if (req->cur_seg >= req->alloc_seg) 3834 goto done; 3835 3836 /* 3837 * Resources can be assigned but responses cannot be sent in 3838 * rnr_nak state, till the resent request is received 3839 */ 3840 if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT) 3841 goto done; 3842 3843 req->state = TID_REQUEST_ACTIVE; 3844 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow); 3845 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS); 3846 hfi1_add_tid_reap_timer(qp); 3847 break; 3848 3849 case TID_REQUEST_RESEND_ACTIVE: 3850 case TID_REQUEST_RESEND: 3851 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow); 3852 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS); 3853 if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS)) 3854 req->state = TID_REQUEST_ACTIVE; 3855 3856 hfi1_mod_tid_reap_timer(qp); 3857 break; 3858 } 3859 flow->flow_state.resp_ib_psn = bth2; 3860 resp_addr = (void *)flow->tid_entry; 3861 resp_len = sizeof(*flow->tid_entry) * flow->tidcnt; 3862 req->cur_seg++; 3863 3864 memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp)); 3865 epriv->ss.sge.vaddr = resp_addr; 3866 epriv->ss.sge.sge_length = resp_len; 3867 epriv->ss.sge.length = epriv->ss.sge.sge_length; 3868 /* 3869 * We can safely zero these out. Since the first SGE covers the 3870 * entire packet, nothing else should even look at the MR. 3871 */ 3872 epriv->ss.sge.mr = NULL; 3873 epriv->ss.sge.m = 0; 3874 epriv->ss.sge.n = 0; 3875 3876 epriv->ss.sg_list = NULL; 3877 epriv->ss.total_len = epriv->ss.sge.sge_length; 3878 epriv->ss.num_sge = 1; 3879 3880 *ss = &epriv->ss; 3881 *len = epriv->ss.total_len; 3882 3883 /* Construct the TID RDMA WRITE RESP packet header */ 3884 rcu_read_lock(); 3885 remote = rcu_dereference(qpriv->tid_rdma.remote); 3886 3887 KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1); 3888 KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey); 3889 ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp); 3890 ohdr->u.tid_rdma.w_rsp.tid_flow_psn = 3891 cpu_to_be32((flow->flow_state.generation << 3892 HFI1_KDETH_BTH_SEQ_SHIFT) | 3893 (flow->flow_state.spsn & 3894 HFI1_KDETH_BTH_SEQ_MASK)); 3895 ohdr->u.tid_rdma.w_rsp.tid_flow_qp = 3896 cpu_to_be32(qpriv->tid_rdma.local.qp | 3897 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) << 3898 TID_RDMA_DESTQP_FLOW_SHIFT) | 3899 qpriv->rcd->ctxt); 3900 ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn); 3901 *bth1 = remote->qp; 3902 rcu_read_unlock(); 3903 hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32); 3904 qpriv->pending_tid_w_segs++; 3905 done: 3906 return hdwords; 3907 } 3908 3909 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp) 3910 { 3911 struct hfi1_qp_priv *qpriv = qp->priv; 3912 3913 lockdep_assert_held(&qp->s_lock); 3914 if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) { 3915 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER; 3916 qpriv->s_tid_timer.expires = jiffies + 3917 qpriv->tid_timer_timeout_jiffies; 3918 add_timer(&qpriv->s_tid_timer); 3919 } 3920 } 3921 3922 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp) 3923 { 3924 struct hfi1_qp_priv *qpriv = qp->priv; 3925 3926 lockdep_assert_held(&qp->s_lock); 3927 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER; 3928 mod_timer(&qpriv->s_tid_timer, jiffies + 3929 qpriv->tid_timer_timeout_jiffies); 3930 } 3931 3932 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp) 3933 { 3934 struct hfi1_qp_priv *qpriv = qp->priv; 3935 int rval = 0; 3936 3937 lockdep_assert_held(&qp->s_lock); 3938 if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) { 3939 rval = del_timer(&qpriv->s_tid_timer); 3940 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER; 3941 } 3942 return rval; 3943 } 3944 3945 void hfi1_del_tid_reap_timer(struct rvt_qp *qp) 3946 { 3947 struct hfi1_qp_priv *qpriv = qp->priv; 3948 3949 del_timer_sync(&qpriv->s_tid_timer); 3950 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER; 3951 } 3952 3953 static void hfi1_tid_timeout(struct timer_list *t) 3954 { 3955 struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer); 3956 struct rvt_qp *qp = qpriv->owner; 3957 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 3958 unsigned long flags; 3959 u32 i; 3960 3961 spin_lock_irqsave(&qp->r_lock, flags); 3962 spin_lock(&qp->s_lock); 3963 if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) { 3964 dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n", 3965 qp->ibqp.qp_num, __func__, __LINE__); 3966 trace_hfi1_msg_tid_timeout(/* msg */ 3967 qp, "resource timeout = ", 3968 (u64)qpriv->tid_timer_timeout_jiffies); 3969 hfi1_stop_tid_reap_timer(qp); 3970 /* 3971 * Go though the entire ack queue and clear any outstanding 3972 * HW flow and RcvArray resources. 3973 */ 3974 hfi1_kern_clear_hw_flow(qpriv->rcd, qp); 3975 for (i = 0; i < rvt_max_atomic(rdi); i++) { 3976 struct tid_rdma_request *req = 3977 ack_to_tid_req(&qp->s_ack_queue[i]); 3978 3979 hfi1_kern_exp_rcv_clear_all(req); 3980 } 3981 spin_unlock(&qp->s_lock); 3982 if (qp->ibqp.event_handler) { 3983 struct ib_event ev; 3984 3985 ev.device = qp->ibqp.device; 3986 ev.element.qp = &qp->ibqp; 3987 ev.event = IB_EVENT_QP_FATAL; 3988 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); 3989 } 3990 rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR); 3991 goto unlock_r_lock; 3992 } 3993 spin_unlock(&qp->s_lock); 3994 unlock_r_lock: 3995 spin_unlock_irqrestore(&qp->r_lock, flags); 3996 } 3997 3998 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet) 3999 { 4000 /* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */ 4001 4002 /* 4003 * 1. Find matching SWQE 4004 * 2. Check that TIDENTRY array has enough space for a complete 4005 * segment. If not, put QP in error state. 4006 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow 4007 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags. 4008 * 5. Set qp->s_state 4009 * 6. Kick the send engine (hfi1_schedule_send()) 4010 */ 4011 struct ib_other_headers *ohdr = packet->ohdr; 4012 struct rvt_qp *qp = packet->qp; 4013 struct hfi1_qp_priv *qpriv = qp->priv; 4014 struct hfi1_ctxtdata *rcd = packet->rcd; 4015 struct rvt_swqe *wqe; 4016 struct tid_rdma_request *req; 4017 struct tid_rdma_flow *flow; 4018 enum ib_wc_status status; 4019 u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen; 4020 bool fecn; 4021 unsigned long flags; 4022 4023 fecn = process_ecn(qp, packet); 4024 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4025 aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth); 4026 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff; 4027 4028 spin_lock_irqsave(&qp->s_lock, flags); 4029 4030 /* Ignore invalid responses */ 4031 if (cmp_psn(psn, qp->s_next_psn) >= 0) 4032 goto ack_done; 4033 4034 /* Ignore duplicate responses. */ 4035 if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0)) 4036 goto ack_done; 4037 4038 if (unlikely(qp->s_acked == qp->s_tail)) 4039 goto ack_done; 4040 4041 /* 4042 * If we are waiting for a particular packet sequence number 4043 * due to a request being resent, check for it. Otherwise, 4044 * ensure that we haven't missed anything. 4045 */ 4046 if (qp->r_flags & RVT_R_RDMAR_SEQ) { 4047 if (cmp_psn(psn, qp->s_last_psn + 1) != 0) 4048 goto ack_done; 4049 qp->r_flags &= ~RVT_R_RDMAR_SEQ; 4050 } 4051 4052 wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur); 4053 if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)) 4054 goto ack_op_err; 4055 4056 req = wqe_to_tid_req(wqe); 4057 /* 4058 * If we've lost ACKs and our acked_tail pointer is too far 4059 * behind, don't overwrite segments. Just drop the packet and 4060 * let the reliability protocol take care of it. 4061 */ 4062 if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS)) 4063 goto ack_done; 4064 4065 /* 4066 * The call to do_rc_ack() should be last in the chain of 4067 * packet checks because it will end up updating the QP state. 4068 * Therefore, anything that would prevent the packet from 4069 * being accepted as a successful response should be prior 4070 * to it. 4071 */ 4072 if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd)) 4073 goto ack_done; 4074 4075 trace_hfi1_ack(qp, psn); 4076 4077 flow = &req->flows[req->setup_head]; 4078 flow->pkt = 0; 4079 flow->tid_idx = 0; 4080 flow->tid_offset = 0; 4081 flow->sent = 0; 4082 flow->resync_npkts = 0; 4083 flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp); 4084 flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) & 4085 TID_RDMA_DESTQP_FLOW_MASK; 4086 flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn)); 4087 flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT; 4088 flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK; 4089 flow->flow_state.resp_ib_psn = psn; 4090 flow->length = min_t(u32, req->seg_len, 4091 (wqe->length - (req->comp_seg * req->seg_len))); 4092 4093 flow->npkts = rvt_div_round_up_mtu(qp, flow->length); 4094 flow->flow_state.lpsn = flow->flow_state.spsn + 4095 flow->npkts - 1; 4096 /* payload length = packet length - (header length + ICRC length) */ 4097 pktlen = packet->tlen - (packet->hlen + 4); 4098 if (pktlen > sizeof(flow->tid_entry)) { 4099 status = IB_WC_LOC_LEN_ERR; 4100 goto ack_err; 4101 } 4102 memcpy(flow->tid_entry, packet->ebuf, pktlen); 4103 flow->tidcnt = pktlen / sizeof(*flow->tid_entry); 4104 trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow); 4105 4106 req->comp_seg++; 4107 trace_hfi1_tid_write_sender_rcv_resp(qp, 0); 4108 /* 4109 * Walk the TID_ENTRY list to make sure we have enough space for a 4110 * complete segment. 4111 */ 4112 for (i = 0; i < flow->tidcnt; i++) { 4113 trace_hfi1_tid_entry_rcv_write_resp(/* entry */ 4114 qp, i, flow->tid_entry[i]); 4115 if (!EXP_TID_GET(flow->tid_entry[i], LEN)) { 4116 status = IB_WC_LOC_LEN_ERR; 4117 goto ack_err; 4118 } 4119 tidlen += EXP_TID_GET(flow->tid_entry[i], LEN); 4120 } 4121 if (tidlen * PAGE_SIZE < flow->length) { 4122 status = IB_WC_LOC_LEN_ERR; 4123 goto ack_err; 4124 } 4125 4126 trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn, 4127 wqe->lpsn, req); 4128 /* 4129 * If this is the first response for this request, set the initial 4130 * flow index to the current flow. 4131 */ 4132 if (!cmp_psn(psn, wqe->psn)) { 4133 req->r_last_acked = mask_psn(wqe->psn - 1); 4134 /* Set acked flow index to head index */ 4135 req->acked_tail = req->setup_head; 4136 } 4137 4138 /* advance circular buffer head */ 4139 req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS); 4140 req->state = TID_REQUEST_ACTIVE; 4141 4142 /* 4143 * If all responses for this TID RDMA WRITE request have been received 4144 * advance the pointer to the next one. 4145 * Since TID RDMA requests could be mixed in with regular IB requests, 4146 * they might not appear sequentially in the queue. Therefore, the 4147 * next request needs to be "found". 4148 */ 4149 if (qpriv->s_tid_cur != qpriv->s_tid_head && 4150 req->comp_seg == req->total_segs) { 4151 for (i = qpriv->s_tid_cur + 1; ; i++) { 4152 if (i == qp->s_size) 4153 i = 0; 4154 wqe = rvt_get_swqe_ptr(qp, i); 4155 if (i == qpriv->s_tid_head) 4156 break; 4157 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) 4158 break; 4159 } 4160 qpriv->s_tid_cur = i; 4161 } 4162 qp->s_flags &= ~HFI1_S_WAIT_TID_RESP; 4163 hfi1_schedule_tid_send(qp); 4164 goto ack_done; 4165 4166 ack_op_err: 4167 status = IB_WC_LOC_QP_OP_ERR; 4168 ack_err: 4169 rvt_error_qp(qp, status); 4170 ack_done: 4171 if (fecn) 4172 qp->s_flags |= RVT_S_ECN; 4173 spin_unlock_irqrestore(&qp->s_lock, flags); 4174 } 4175 4176 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe, 4177 struct ib_other_headers *ohdr, 4178 u32 *bth1, u32 *bth2, u32 *len) 4179 { 4180 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 4181 struct tid_rdma_flow *flow = &req->flows[req->clear_tail]; 4182 struct tid_rdma_params *remote; 4183 struct rvt_qp *qp = req->qp; 4184 struct hfi1_qp_priv *qpriv = qp->priv; 4185 u32 tidentry = flow->tid_entry[flow->tid_idx]; 4186 u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT; 4187 struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data; 4188 u32 next_offset, om = KDETH_OM_LARGE; 4189 bool last_pkt; 4190 4191 if (!tidlen) { 4192 hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR); 4193 rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR); 4194 } 4195 4196 *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset); 4197 flow->sent += *len; 4198 next_offset = flow->tid_offset + *len; 4199 last_pkt = (flow->tid_idx == (flow->tidcnt - 1) && 4200 next_offset >= tidlen) || (flow->sent >= flow->length); 4201 trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry); 4202 trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow); 4203 4204 rcu_read_lock(); 4205 remote = rcu_dereference(qpriv->tid_rdma.remote); 4206 KDETH_RESET(wd->kdeth0, KVER, 0x1); 4207 KDETH_SET(wd->kdeth0, SH, !last_pkt); 4208 KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg)); 4209 KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL)); 4210 KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX)); 4211 KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE); 4212 KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om); 4213 KDETH_RESET(wd->kdeth1, JKEY, remote->jkey); 4214 wd->verbs_qp = cpu_to_be32(qp->remote_qpn); 4215 rcu_read_unlock(); 4216 4217 *bth1 = flow->tid_qpn; 4218 *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) & 4219 HFI1_KDETH_BTH_SEQ_MASK) | 4220 (flow->flow_state.generation << 4221 HFI1_KDETH_BTH_SEQ_SHIFT)); 4222 if (last_pkt) { 4223 /* PSNs are zero-based, so +1 to count number of packets */ 4224 if (flow->flow_state.lpsn + 1 + 4225 rvt_div_round_up_mtu(qp, req->seg_len) > 4226 MAX_TID_FLOW_PSN) 4227 req->state = TID_REQUEST_SYNC; 4228 *bth2 |= IB_BTH_REQ_ACK; 4229 } 4230 4231 if (next_offset >= tidlen) { 4232 flow->tid_offset = 0; 4233 flow->tid_idx++; 4234 } else { 4235 flow->tid_offset = next_offset; 4236 } 4237 return last_pkt; 4238 } 4239 4240 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet) 4241 { 4242 struct rvt_qp *qp = packet->qp; 4243 struct hfi1_qp_priv *priv = qp->priv; 4244 struct hfi1_ctxtdata *rcd = priv->rcd; 4245 struct ib_other_headers *ohdr = packet->ohdr; 4246 struct rvt_ack_entry *e; 4247 struct tid_rdma_request *req; 4248 struct tid_rdma_flow *flow; 4249 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 4250 unsigned long flags; 4251 u32 psn, next; 4252 u8 opcode; 4253 bool fecn; 4254 4255 fecn = process_ecn(qp, packet); 4256 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4257 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff; 4258 4259 /* 4260 * All error handling should be done by now. If we are here, the packet 4261 * is either good or been accepted by the error handler. 4262 */ 4263 spin_lock_irqsave(&qp->s_lock, flags); 4264 e = &qp->s_ack_queue[priv->r_tid_tail]; 4265 req = ack_to_tid_req(e); 4266 flow = &req->flows[req->clear_tail]; 4267 if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) { 4268 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn); 4269 4270 if (cmp_psn(psn, flow->flow_state.r_next_psn)) 4271 goto send_nak; 4272 4273 flow->flow_state.r_next_psn = mask_psn(psn + 1); 4274 /* 4275 * Copy the payload to destination buffer if this packet is 4276 * delivered as an eager packet due to RSM rule and FECN. 4277 * The RSM rule selects FECN bit in BTH and SH bit in 4278 * KDETH header and therefore will not match the last 4279 * packet of each segment that has SH bit cleared. 4280 */ 4281 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) { 4282 struct rvt_sge_state ss; 4283 u32 len; 4284 u32 tlen = packet->tlen; 4285 u16 hdrsize = packet->hlen; 4286 u8 pad = packet->pad; 4287 u8 extra_bytes = pad + packet->extra_byte + 4288 (SIZE_OF_CRC << 2); 4289 u32 pmtu = qp->pmtu; 4290 4291 if (unlikely(tlen != (hdrsize + pmtu + extra_bytes))) 4292 goto send_nak; 4293 len = req->comp_seg * req->seg_len; 4294 len += delta_psn(psn, 4295 full_flow_psn(flow, flow->flow_state.spsn)) * 4296 pmtu; 4297 if (unlikely(req->total_len - len < pmtu)) 4298 goto send_nak; 4299 4300 /* 4301 * The e->rdma_sge field is set when TID RDMA WRITE REQ 4302 * is first received and is never modified thereafter. 4303 */ 4304 ss.sge = e->rdma_sge; 4305 ss.sg_list = NULL; 4306 ss.num_sge = 1; 4307 ss.total_len = req->total_len; 4308 rvt_skip_sge(&ss, len, false); 4309 rvt_copy_sge(qp, &ss, packet->payload, pmtu, false, 4310 false); 4311 /* Raise the sw sequence check flag for next packet */ 4312 priv->r_next_psn_kdeth = mask_psn(psn + 1); 4313 priv->s_flags |= HFI1_R_TID_SW_PSN; 4314 } 4315 goto exit; 4316 } 4317 flow->flow_state.r_next_psn = mask_psn(psn + 1); 4318 hfi1_kern_exp_rcv_clear(req); 4319 priv->alloc_w_segs--; 4320 rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK; 4321 req->comp_seg++; 4322 priv->s_nak_state = 0; 4323 4324 /* 4325 * Release the flow if one of the following conditions has been met: 4326 * - The request has reached a sync point AND all outstanding 4327 * segments have been completed, or 4328 * - The entire request is complete and there are no more requests 4329 * (of any kind) in the queue. 4330 */ 4331 trace_hfi1_rsp_rcv_tid_write_data(qp, psn); 4332 trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn, 4333 req); 4334 trace_hfi1_tid_write_rsp_rcv_data(qp); 4335 if (priv->r_tid_ack == HFI1_QP_WQE_INVALID) 4336 priv->r_tid_ack = priv->r_tid_tail; 4337 4338 if (opcode == TID_OP(WRITE_DATA_LAST)) { 4339 release_rdma_sge_mr(e); 4340 for (next = priv->r_tid_tail + 1; ; next++) { 4341 if (next > rvt_size_atomic(&dev->rdi)) 4342 next = 0; 4343 if (next == priv->r_tid_head) 4344 break; 4345 e = &qp->s_ack_queue[next]; 4346 if (e->opcode == TID_OP(WRITE_REQ)) 4347 break; 4348 } 4349 priv->r_tid_tail = next; 4350 if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi)) 4351 qp->s_acked_ack_queue = 0; 4352 } 4353 4354 hfi1_tid_write_alloc_resources(qp, true); 4355 4356 /* 4357 * If we need to generate more responses, schedule the 4358 * send engine. 4359 */ 4360 if (req->cur_seg < req->total_segs || 4361 qp->s_tail_ack_queue != qp->r_head_ack_queue) { 4362 qp->s_flags |= RVT_S_RESP_PENDING; 4363 hfi1_schedule_send(qp); 4364 } 4365 4366 priv->pending_tid_w_segs--; 4367 if (priv->s_flags & HFI1_R_TID_RSC_TIMER) { 4368 if (priv->pending_tid_w_segs) 4369 hfi1_mod_tid_reap_timer(req->qp); 4370 else 4371 hfi1_stop_tid_reap_timer(req->qp); 4372 } 4373 4374 done: 4375 priv->s_flags |= RVT_S_ACK_PENDING; 4376 hfi1_schedule_tid_send(qp); 4377 exit: 4378 priv->r_next_psn_kdeth = flow->flow_state.r_next_psn; 4379 if (fecn) 4380 qp->s_flags |= RVT_S_ECN; 4381 spin_unlock_irqrestore(&qp->s_lock, flags); 4382 return; 4383 4384 send_nak: 4385 if (!priv->s_nak_state) { 4386 priv->s_nak_state = IB_NAK_PSN_ERROR; 4387 priv->s_nak_psn = flow->flow_state.r_next_psn; 4388 priv->s_flags |= RVT_S_ACK_PENDING; 4389 if (priv->r_tid_ack == HFI1_QP_WQE_INVALID) 4390 priv->r_tid_ack = priv->r_tid_tail; 4391 hfi1_schedule_tid_send(qp); 4392 } 4393 goto done; 4394 } 4395 4396 static bool hfi1_tid_rdma_is_resync_psn(u32 psn) 4397 { 4398 return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) == 4399 HFI1_KDETH_BTH_SEQ_MASK); 4400 } 4401 4402 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e, 4403 struct ib_other_headers *ohdr, u16 iflow, 4404 u32 *bth1, u32 *bth2) 4405 { 4406 struct hfi1_qp_priv *qpriv = qp->priv; 4407 struct tid_flow_state *fs = &qpriv->flow_state; 4408 struct tid_rdma_request *req = ack_to_tid_req(e); 4409 struct tid_rdma_flow *flow = &req->flows[iflow]; 4410 struct tid_rdma_params *remote; 4411 4412 rcu_read_lock(); 4413 remote = rcu_dereference(qpriv->tid_rdma.remote); 4414 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey); 4415 ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn); 4416 *bth1 = remote->qp; 4417 rcu_read_unlock(); 4418 4419 if (qpriv->resync) { 4420 *bth2 = mask_psn((fs->generation << 4421 HFI1_KDETH_BTH_SEQ_SHIFT) - 1); 4422 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp); 4423 } else if (qpriv->s_nak_state) { 4424 *bth2 = mask_psn(qpriv->s_nak_psn); 4425 ohdr->u.tid_rdma.ack.aeth = 4426 cpu_to_be32((qp->r_msn & IB_MSN_MASK) | 4427 (qpriv->s_nak_state << 4428 IB_AETH_CREDIT_SHIFT)); 4429 } else { 4430 *bth2 = full_flow_psn(flow, flow->flow_state.lpsn); 4431 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp); 4432 } 4433 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1); 4434 ohdr->u.tid_rdma.ack.tid_flow_qp = 4435 cpu_to_be32(qpriv->tid_rdma.local.qp | 4436 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) << 4437 TID_RDMA_DESTQP_FLOW_SHIFT) | 4438 qpriv->rcd->ctxt); 4439 4440 ohdr->u.tid_rdma.ack.tid_flow_psn = 0; 4441 ohdr->u.tid_rdma.ack.verbs_psn = 4442 cpu_to_be32(flow->flow_state.resp_ib_psn); 4443 4444 if (qpriv->resync) { 4445 /* 4446 * If the PSN before the current expect KDETH PSN is the 4447 * RESYNC PSN, then we never received a good TID RDMA WRITE 4448 * DATA packet after a previous RESYNC. 4449 * In this case, the next expected KDETH PSN stays the same. 4450 */ 4451 if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) { 4452 ohdr->u.tid_rdma.ack.tid_flow_psn = 4453 cpu_to_be32(qpriv->r_next_psn_kdeth_save); 4454 } else { 4455 /* 4456 * Because the KDETH PSNs jump during a RESYNC, it's 4457 * not possible to infer (or compute) the previous value 4458 * of r_next_psn_kdeth in the case of back-to-back 4459 * RESYNC packets. Therefore, we save it. 4460 */ 4461 qpriv->r_next_psn_kdeth_save = 4462 qpriv->r_next_psn_kdeth - 1; 4463 ohdr->u.tid_rdma.ack.tid_flow_psn = 4464 cpu_to_be32(qpriv->r_next_psn_kdeth_save); 4465 qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1); 4466 } 4467 qpriv->resync = false; 4468 } 4469 4470 return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32); 4471 } 4472 4473 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet) 4474 { 4475 struct ib_other_headers *ohdr = packet->ohdr; 4476 struct rvt_qp *qp = packet->qp; 4477 struct hfi1_qp_priv *qpriv = qp->priv; 4478 struct rvt_swqe *wqe; 4479 struct tid_rdma_request *req; 4480 struct tid_rdma_flow *flow; 4481 u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn; 4482 unsigned long flags; 4483 u16 fidx; 4484 4485 trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0); 4486 process_ecn(qp, packet); 4487 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4488 aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth); 4489 req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn)); 4490 resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn)); 4491 4492 spin_lock_irqsave(&qp->s_lock, flags); 4493 trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn); 4494 4495 /* If we are waiting for an ACK to RESYNC, drop any other packets */ 4496 if ((qp->s_flags & HFI1_S_WAIT_HALT) && 4497 cmp_psn(psn, qpriv->s_resync_psn)) 4498 goto ack_op_err; 4499 4500 ack_psn = req_psn; 4501 if (hfi1_tid_rdma_is_resync_psn(psn)) 4502 ack_kpsn = resync_psn; 4503 else 4504 ack_kpsn = psn; 4505 if (aeth >> 29) { 4506 ack_psn--; 4507 ack_kpsn--; 4508 } 4509 4510 if (unlikely(qp->s_acked == qp->s_tail)) 4511 goto ack_op_err; 4512 4513 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 4514 4515 if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE) 4516 goto ack_op_err; 4517 4518 req = wqe_to_tid_req(wqe); 4519 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn, 4520 wqe->lpsn, req); 4521 flow = &req->flows[req->acked_tail]; 4522 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow); 4523 4524 /* Drop stale ACK/NAK */ 4525 if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 || 4526 cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0) 4527 goto ack_op_err; 4528 4529 while (cmp_psn(ack_kpsn, 4530 full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 && 4531 req->ack_seg < req->cur_seg) { 4532 req->ack_seg++; 4533 /* advance acked segment pointer */ 4534 req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS); 4535 req->r_last_acked = flow->flow_state.resp_ib_psn; 4536 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn, 4537 wqe->lpsn, req); 4538 if (req->ack_seg == req->total_segs) { 4539 req->state = TID_REQUEST_COMPLETE; 4540 wqe = do_rc_completion(qp, wqe, 4541 to_iport(qp->ibqp.device, 4542 qp->port_num)); 4543 trace_hfi1_sender_rcv_tid_ack(qp); 4544 atomic_dec(&qpriv->n_tid_requests); 4545 if (qp->s_acked == qp->s_tail) 4546 break; 4547 if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE) 4548 break; 4549 req = wqe_to_tid_req(wqe); 4550 } 4551 flow = &req->flows[req->acked_tail]; 4552 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow); 4553 } 4554 4555 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn, 4556 wqe->lpsn, req); 4557 switch (aeth >> 29) { 4558 case 0: /* ACK */ 4559 if (qpriv->s_flags & RVT_S_WAIT_ACK) 4560 qpriv->s_flags &= ~RVT_S_WAIT_ACK; 4561 if (!hfi1_tid_rdma_is_resync_psn(psn)) { 4562 /* Check if there is any pending TID ACK */ 4563 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE && 4564 req->ack_seg < req->cur_seg) 4565 hfi1_mod_tid_retry_timer(qp); 4566 else 4567 hfi1_stop_tid_retry_timer(qp); 4568 hfi1_schedule_send(qp); 4569 } else { 4570 u32 spsn, fpsn, last_acked, generation; 4571 struct tid_rdma_request *rptr; 4572 4573 /* ACK(RESYNC) */ 4574 hfi1_stop_tid_retry_timer(qp); 4575 /* Allow new requests (see hfi1_make_tid_rdma_pkt) */ 4576 qp->s_flags &= ~HFI1_S_WAIT_HALT; 4577 /* 4578 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA 4579 * ACK is received after the TID retry timer is fired 4580 * again. In this case, do not send any more TID 4581 * RESYNC request or wait for any more TID ACK packet. 4582 */ 4583 qpriv->s_flags &= ~RVT_S_SEND_ONE; 4584 hfi1_schedule_send(qp); 4585 4586 if ((qp->s_acked == qpriv->s_tid_tail && 4587 req->ack_seg == req->total_segs) || 4588 qp->s_acked == qp->s_tail) { 4589 qpriv->s_state = TID_OP(WRITE_DATA_LAST); 4590 goto done; 4591 } 4592 4593 if (req->ack_seg == req->comp_seg) { 4594 qpriv->s_state = TID_OP(WRITE_DATA); 4595 goto done; 4596 } 4597 4598 /* 4599 * The PSN to start with is the next PSN after the 4600 * RESYNC PSN. 4601 */ 4602 psn = mask_psn(psn + 1); 4603 generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT; 4604 spsn = 0; 4605 4606 /* 4607 * Update to the correct WQE when we get an ACK(RESYNC) 4608 * in the middle of a request. 4609 */ 4610 if (delta_psn(ack_psn, wqe->lpsn)) 4611 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 4612 req = wqe_to_tid_req(wqe); 4613 flow = &req->flows[req->acked_tail]; 4614 /* 4615 * RESYNC re-numbers the PSN ranges of all remaining 4616 * segments. Also, PSN's start from 0 in the middle of a 4617 * segment and the first segment size is less than the 4618 * default number of packets. flow->resync_npkts is used 4619 * to track the number of packets from the start of the 4620 * real segment to the point of 0 PSN after the RESYNC 4621 * in order to later correctly rewind the SGE. 4622 */ 4623 fpsn = full_flow_psn(flow, flow->flow_state.spsn); 4624 req->r_ack_psn = psn; 4625 flow->resync_npkts += 4626 delta_psn(mask_psn(resync_psn + 1), fpsn); 4627 /* 4628 * Renumber all packet sequence number ranges 4629 * based on the new generation. 4630 */ 4631 last_acked = qp->s_acked; 4632 rptr = req; 4633 while (1) { 4634 /* start from last acked segment */ 4635 for (fidx = rptr->acked_tail; 4636 CIRC_CNT(rptr->setup_head, fidx, 4637 MAX_FLOWS); 4638 fidx = CIRC_NEXT(fidx, MAX_FLOWS)) { 4639 u32 lpsn; 4640 u32 gen; 4641 4642 flow = &rptr->flows[fidx]; 4643 gen = flow->flow_state.generation; 4644 if (WARN_ON(gen == generation && 4645 flow->flow_state.spsn != 4646 spsn)) 4647 continue; 4648 lpsn = flow->flow_state.lpsn; 4649 lpsn = full_flow_psn(flow, lpsn); 4650 flow->npkts = 4651 delta_psn(lpsn, 4652 mask_psn(resync_psn) 4653 ); 4654 flow->flow_state.generation = 4655 generation; 4656 flow->flow_state.spsn = spsn; 4657 flow->flow_state.lpsn = 4658 flow->flow_state.spsn + 4659 flow->npkts - 1; 4660 flow->pkt = 0; 4661 spsn += flow->npkts; 4662 resync_psn += flow->npkts; 4663 trace_hfi1_tid_flow_rcv_tid_ack(qp, 4664 fidx, 4665 flow); 4666 } 4667 if (++last_acked == qpriv->s_tid_cur + 1) 4668 break; 4669 if (last_acked == qp->s_size) 4670 last_acked = 0; 4671 wqe = rvt_get_swqe_ptr(qp, last_acked); 4672 rptr = wqe_to_tid_req(wqe); 4673 } 4674 req->cur_seg = req->ack_seg; 4675 qpriv->s_tid_tail = qp->s_acked; 4676 qpriv->s_state = TID_OP(WRITE_REQ); 4677 hfi1_schedule_tid_send(qp); 4678 } 4679 done: 4680 qpriv->s_retry = qp->s_retry_cnt; 4681 break; 4682 4683 case 3: /* NAK */ 4684 hfi1_stop_tid_retry_timer(qp); 4685 switch ((aeth >> IB_AETH_CREDIT_SHIFT) & 4686 IB_AETH_CREDIT_MASK) { 4687 case 0: /* PSN sequence error */ 4688 if (!req->flows) 4689 break; 4690 flow = &req->flows[req->acked_tail]; 4691 flpsn = full_flow_psn(flow, flow->flow_state.lpsn); 4692 if (cmp_psn(psn, flpsn) > 0) 4693 break; 4694 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, 4695 flow); 4696 req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4697 req->cur_seg = req->ack_seg; 4698 qpriv->s_tid_tail = qp->s_acked; 4699 qpriv->s_state = TID_OP(WRITE_REQ); 4700 qpriv->s_retry = qp->s_retry_cnt; 4701 hfi1_schedule_tid_send(qp); 4702 break; 4703 4704 default: 4705 break; 4706 } 4707 break; 4708 4709 default: 4710 break; 4711 } 4712 4713 ack_op_err: 4714 spin_unlock_irqrestore(&qp->s_lock, flags); 4715 } 4716 4717 void hfi1_add_tid_retry_timer(struct rvt_qp *qp) 4718 { 4719 struct hfi1_qp_priv *priv = qp->priv; 4720 struct ib_qp *ibqp = &qp->ibqp; 4721 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 4722 4723 lockdep_assert_held(&qp->s_lock); 4724 if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) { 4725 priv->s_flags |= HFI1_S_TID_RETRY_TIMER; 4726 priv->s_tid_retry_timer.expires = jiffies + 4727 priv->tid_retry_timeout_jiffies + rdi->busy_jiffies; 4728 add_timer(&priv->s_tid_retry_timer); 4729 } 4730 } 4731 4732 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp) 4733 { 4734 struct hfi1_qp_priv *priv = qp->priv; 4735 struct ib_qp *ibqp = &qp->ibqp; 4736 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 4737 4738 lockdep_assert_held(&qp->s_lock); 4739 priv->s_flags |= HFI1_S_TID_RETRY_TIMER; 4740 mod_timer(&priv->s_tid_retry_timer, jiffies + 4741 priv->tid_retry_timeout_jiffies + rdi->busy_jiffies); 4742 } 4743 4744 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp) 4745 { 4746 struct hfi1_qp_priv *priv = qp->priv; 4747 int rval = 0; 4748 4749 lockdep_assert_held(&qp->s_lock); 4750 if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) { 4751 rval = del_timer(&priv->s_tid_retry_timer); 4752 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER; 4753 } 4754 return rval; 4755 } 4756 4757 void hfi1_del_tid_retry_timer(struct rvt_qp *qp) 4758 { 4759 struct hfi1_qp_priv *priv = qp->priv; 4760 4761 del_timer_sync(&priv->s_tid_retry_timer); 4762 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER; 4763 } 4764 4765 static void hfi1_tid_retry_timeout(struct timer_list *t) 4766 { 4767 struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer); 4768 struct rvt_qp *qp = priv->owner; 4769 struct rvt_swqe *wqe; 4770 unsigned long flags; 4771 struct tid_rdma_request *req; 4772 4773 spin_lock_irqsave(&qp->r_lock, flags); 4774 spin_lock(&qp->s_lock); 4775 trace_hfi1_tid_write_sender_retry_timeout(qp, 0); 4776 if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) { 4777 hfi1_stop_tid_retry_timer(qp); 4778 if (!priv->s_retry) { 4779 trace_hfi1_msg_tid_retry_timeout(/* msg */ 4780 qp, 4781 "Exhausted retries. Tid retry timeout = ", 4782 (u64)priv->tid_retry_timeout_jiffies); 4783 4784 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 4785 hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR); 4786 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); 4787 } else { 4788 wqe = rvt_get_swqe_ptr(qp, qp->s_acked); 4789 req = wqe_to_tid_req(wqe); 4790 trace_hfi1_tid_req_tid_retry_timeout(/* req */ 4791 qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req); 4792 4793 priv->s_flags &= ~RVT_S_WAIT_ACK; 4794 /* Only send one packet (the RESYNC) */ 4795 priv->s_flags |= RVT_S_SEND_ONE; 4796 /* 4797 * No additional request shall be made by this QP until 4798 * the RESYNC has been complete. 4799 */ 4800 qp->s_flags |= HFI1_S_WAIT_HALT; 4801 priv->s_state = TID_OP(RESYNC); 4802 priv->s_retry--; 4803 hfi1_schedule_tid_send(qp); 4804 } 4805 } 4806 spin_unlock(&qp->s_lock); 4807 spin_unlock_irqrestore(&qp->r_lock, flags); 4808 } 4809 4810 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe, 4811 struct ib_other_headers *ohdr, u32 *bth1, 4812 u32 *bth2, u16 fidx) 4813 { 4814 struct hfi1_qp_priv *qpriv = qp->priv; 4815 struct tid_rdma_params *remote; 4816 struct tid_rdma_request *req = wqe_to_tid_req(wqe); 4817 struct tid_rdma_flow *flow = &req->flows[fidx]; 4818 u32 generation; 4819 4820 rcu_read_lock(); 4821 remote = rcu_dereference(qpriv->tid_rdma.remote); 4822 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey); 4823 ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn); 4824 *bth1 = remote->qp; 4825 rcu_read_unlock(); 4826 4827 generation = kern_flow_generation_next(flow->flow_state.generation); 4828 *bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1); 4829 qpriv->s_resync_psn = *bth2; 4830 *bth2 |= IB_BTH_REQ_ACK; 4831 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1); 4832 4833 return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32); 4834 } 4835 4836 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet) 4837 { 4838 struct ib_other_headers *ohdr = packet->ohdr; 4839 struct rvt_qp *qp = packet->qp; 4840 struct hfi1_qp_priv *qpriv = qp->priv; 4841 struct hfi1_ctxtdata *rcd = qpriv->rcd; 4842 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 4843 struct rvt_ack_entry *e; 4844 struct tid_rdma_request *req; 4845 struct tid_rdma_flow *flow; 4846 struct tid_flow_state *fs = &qpriv->flow_state; 4847 u32 psn, generation, idx, gen_next; 4848 bool fecn; 4849 unsigned long flags; 4850 4851 fecn = process_ecn(qp, packet); 4852 psn = mask_psn(be32_to_cpu(ohdr->bth[2])); 4853 4854 generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT; 4855 spin_lock_irqsave(&qp->s_lock, flags); 4856 4857 gen_next = (fs->generation == KERN_GENERATION_RESERVED) ? 4858 generation : kern_flow_generation_next(fs->generation); 4859 /* 4860 * RESYNC packet contains the "next" generation and can only be 4861 * from the current or previous generations 4862 */ 4863 if (generation != mask_generation(gen_next - 1) && 4864 generation != gen_next) 4865 goto bail; 4866 /* Already processing a resync */ 4867 if (qpriv->resync) 4868 goto bail; 4869 4870 spin_lock(&rcd->exp_lock); 4871 if (fs->index >= RXE_NUM_TID_FLOWS) { 4872 /* 4873 * If we don't have a flow, save the generation so it can be 4874 * applied when a new flow is allocated 4875 */ 4876 fs->generation = generation; 4877 } else { 4878 /* Reprogram the QP flow with new generation */ 4879 rcd->flows[fs->index].generation = generation; 4880 fs->generation = kern_setup_hw_flow(rcd, fs->index); 4881 } 4882 fs->psn = 0; 4883 /* 4884 * Disable SW PSN checking since a RESYNC is equivalent to a 4885 * sync point and the flow has/will be reprogrammed 4886 */ 4887 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN; 4888 trace_hfi1_tid_write_rsp_rcv_resync(qp); 4889 4890 /* 4891 * Reset all TID flow information with the new generation. 4892 * This is done for all requests and segments after the 4893 * last received segment 4894 */ 4895 for (idx = qpriv->r_tid_tail; ; idx++) { 4896 u16 flow_idx; 4897 4898 if (idx > rvt_size_atomic(&dev->rdi)) 4899 idx = 0; 4900 e = &qp->s_ack_queue[idx]; 4901 if (e->opcode == TID_OP(WRITE_REQ)) { 4902 req = ack_to_tid_req(e); 4903 trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn, 4904 e->lpsn, req); 4905 4906 /* start from last unacked segment */ 4907 for (flow_idx = req->clear_tail; 4908 CIRC_CNT(req->setup_head, flow_idx, 4909 MAX_FLOWS); 4910 flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) { 4911 u32 lpsn; 4912 u32 next; 4913 4914 flow = &req->flows[flow_idx]; 4915 lpsn = full_flow_psn(flow, 4916 flow->flow_state.lpsn); 4917 next = flow->flow_state.r_next_psn; 4918 flow->npkts = delta_psn(lpsn, next - 1); 4919 flow->flow_state.generation = fs->generation; 4920 flow->flow_state.spsn = fs->psn; 4921 flow->flow_state.lpsn = 4922 flow->flow_state.spsn + flow->npkts - 1; 4923 flow->flow_state.r_next_psn = 4924 full_flow_psn(flow, 4925 flow->flow_state.spsn); 4926 fs->psn += flow->npkts; 4927 trace_hfi1_tid_flow_rcv_resync(qp, flow_idx, 4928 flow); 4929 } 4930 } 4931 if (idx == qp->s_tail_ack_queue) 4932 break; 4933 } 4934 4935 spin_unlock(&rcd->exp_lock); 4936 qpriv->resync = true; 4937 /* RESYNC request always gets a TID RDMA ACK. */ 4938 qpriv->s_nak_state = 0; 4939 qpriv->s_flags |= RVT_S_ACK_PENDING; 4940 hfi1_schedule_tid_send(qp); 4941 bail: 4942 if (fecn) 4943 qp->s_flags |= RVT_S_ECN; 4944 spin_unlock_irqrestore(&qp->s_lock, flags); 4945 } 4946 4947 /* 4948 * Call this function when the last TID RDMA WRITE DATA packet for a request 4949 * is built. 4950 */ 4951 static void update_tid_tail(struct rvt_qp *qp) 4952 __must_hold(&qp->s_lock) 4953 { 4954 struct hfi1_qp_priv *priv = qp->priv; 4955 u32 i; 4956 struct rvt_swqe *wqe; 4957 4958 lockdep_assert_held(&qp->s_lock); 4959 /* Can't move beyond s_tid_cur */ 4960 if (priv->s_tid_tail == priv->s_tid_cur) 4961 return; 4962 for (i = priv->s_tid_tail + 1; ; i++) { 4963 if (i == qp->s_size) 4964 i = 0; 4965 4966 if (i == priv->s_tid_cur) 4967 break; 4968 wqe = rvt_get_swqe_ptr(qp, i); 4969 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) 4970 break; 4971 } 4972 priv->s_tid_tail = i; 4973 priv->s_state = TID_OP(WRITE_RESP); 4974 } 4975 4976 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps) 4977 __must_hold(&qp->s_lock) 4978 { 4979 struct hfi1_qp_priv *priv = qp->priv; 4980 struct rvt_swqe *wqe; 4981 u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0; 4982 struct ib_other_headers *ohdr; 4983 struct rvt_sge_state *ss = &qp->s_sge; 4984 struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue]; 4985 struct tid_rdma_request *req = ack_to_tid_req(e); 4986 bool last = false; 4987 u8 opcode = TID_OP(WRITE_DATA); 4988 4989 lockdep_assert_held(&qp->s_lock); 4990 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0); 4991 /* 4992 * Prioritize the sending of the requests and responses over the 4993 * sending of the TID RDMA data packets. 4994 */ 4995 if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) && 4996 atomic_read(&priv->n_requests) && 4997 !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK | 4998 HFI1_S_ANY_WAIT_IO))) || 4999 (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg && 5000 !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) { 5001 struct iowait_work *iowork; 5002 5003 iowork = iowait_get_ib_work(&priv->s_iowait); 5004 ps->s_txreq = get_waiting_verbs_txreq(iowork); 5005 if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) { 5006 priv->s_flags |= HFI1_S_TID_BUSY_SET; 5007 return 1; 5008 } 5009 } 5010 5011 ps->s_txreq = get_txreq(ps->dev, qp); 5012 if (!ps->s_txreq) 5013 goto bail_no_tx; 5014 5015 ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth; 5016 5017 if ((priv->s_flags & RVT_S_ACK_PENDING) && 5018 make_tid_rdma_ack(qp, ohdr, ps)) 5019 return 1; 5020 5021 /* 5022 * Bail out if we can't send data. 5023 * Be reminded that this check must been done after the call to 5024 * make_tid_rdma_ack() because the responding QP could be in 5025 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA. 5026 */ 5027 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK)) 5028 goto bail; 5029 5030 if (priv->s_flags & RVT_S_WAIT_ACK) 5031 goto bail; 5032 5033 /* Check whether there is anything to do. */ 5034 if (priv->s_tid_tail == HFI1_QP_WQE_INVALID) 5035 goto bail; 5036 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail); 5037 req = wqe_to_tid_req(wqe); 5038 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn, 5039 wqe->lpsn, req); 5040 switch (priv->s_state) { 5041 case TID_OP(WRITE_REQ): 5042 case TID_OP(WRITE_RESP): 5043 priv->tid_ss.sge = wqe->sg_list[0]; 5044 priv->tid_ss.sg_list = wqe->sg_list + 1; 5045 priv->tid_ss.num_sge = wqe->wr.num_sge; 5046 priv->tid_ss.total_len = wqe->length; 5047 5048 if (priv->s_state == TID_OP(WRITE_REQ)) 5049 hfi1_tid_rdma_restart_req(qp, wqe, &bth2); 5050 priv->s_state = TID_OP(WRITE_DATA); 5051 /* fall through */ 5052 5053 case TID_OP(WRITE_DATA): 5054 /* 5055 * 1. Check whether TID RDMA WRITE RESP available. 5056 * 2. If no: 5057 * 2.1 If have more segments and no TID RDMA WRITE RESP, 5058 * set HFI1_S_WAIT_TID_RESP 5059 * 2.2 Return indicating no progress made. 5060 * 3. If yes: 5061 * 3.1 Build TID RDMA WRITE DATA packet. 5062 * 3.2 If last packet in segment: 5063 * 3.2.1 Change KDETH header bits 5064 * 3.2.2 Advance RESP pointers. 5065 * 3.3 Return indicating progress made. 5066 */ 5067 trace_hfi1_sender_make_tid_pkt(qp); 5068 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0); 5069 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail); 5070 req = wqe_to_tid_req(wqe); 5071 len = wqe->length; 5072 5073 if (!req->comp_seg || req->cur_seg == req->comp_seg) 5074 goto bail; 5075 5076 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, 5077 wqe->psn, wqe->lpsn, req); 5078 last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2, 5079 &len); 5080 5081 if (last) { 5082 /* move pointer to next flow */ 5083 req->clear_tail = CIRC_NEXT(req->clear_tail, 5084 MAX_FLOWS); 5085 if (++req->cur_seg < req->total_segs) { 5086 if (!CIRC_CNT(req->setup_head, req->clear_tail, 5087 MAX_FLOWS)) 5088 qp->s_flags |= HFI1_S_WAIT_TID_RESP; 5089 } else { 5090 priv->s_state = TID_OP(WRITE_DATA_LAST); 5091 opcode = TID_OP(WRITE_DATA_LAST); 5092 5093 /* Advance the s_tid_tail now */ 5094 update_tid_tail(qp); 5095 } 5096 } 5097 hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32); 5098 ss = &priv->tid_ss; 5099 break; 5100 5101 case TID_OP(RESYNC): 5102 trace_hfi1_sender_make_tid_pkt(qp); 5103 /* Use generation from the most recently received response */ 5104 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur); 5105 req = wqe_to_tid_req(wqe); 5106 /* If no responses for this WQE look at the previous one */ 5107 if (!req->comp_seg) { 5108 wqe = rvt_get_swqe_ptr(qp, 5109 (!priv->s_tid_cur ? qp->s_size : 5110 priv->s_tid_cur) - 1); 5111 req = wqe_to_tid_req(wqe); 5112 } 5113 hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1, 5114 &bth2, 5115 CIRC_PREV(req->setup_head, 5116 MAX_FLOWS)); 5117 ss = NULL; 5118 len = 0; 5119 opcode = TID_OP(RESYNC); 5120 break; 5121 5122 default: 5123 goto bail; 5124 } 5125 if (priv->s_flags & RVT_S_SEND_ONE) { 5126 priv->s_flags &= ~RVT_S_SEND_ONE; 5127 priv->s_flags |= RVT_S_WAIT_ACK; 5128 bth2 |= IB_BTH_REQ_ACK; 5129 } 5130 qp->s_len -= len; 5131 ps->s_txreq->hdr_dwords = hwords; 5132 ps->s_txreq->sde = priv->s_sde; 5133 ps->s_txreq->ss = ss; 5134 ps->s_txreq->s_cur_size = len; 5135 hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2, 5136 middle, ps); 5137 return 1; 5138 bail: 5139 hfi1_put_txreq(ps->s_txreq); 5140 bail_no_tx: 5141 ps->s_txreq = NULL; 5142 priv->s_flags &= ~RVT_S_BUSY; 5143 /* 5144 * If we didn't get a txreq, the QP will be woken up later to try 5145 * again, set the flags to the the wake up which work item to wake 5146 * up. 5147 * (A better algorithm should be found to do this and generalize the 5148 * sleep/wakeup flags.) 5149 */ 5150 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID); 5151 return 0; 5152 } 5153 5154 static int make_tid_rdma_ack(struct rvt_qp *qp, 5155 struct ib_other_headers *ohdr, 5156 struct hfi1_pkt_state *ps) 5157 { 5158 struct rvt_ack_entry *e; 5159 struct hfi1_qp_priv *qpriv = qp->priv; 5160 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 5161 u32 hwords, next; 5162 u32 len = 0; 5163 u32 bth1 = 0, bth2 = 0; 5164 int middle = 0; 5165 u16 flow; 5166 struct tid_rdma_request *req, *nreq; 5167 5168 trace_hfi1_tid_write_rsp_make_tid_ack(qp); 5169 /* Don't send an ACK if we aren't supposed to. */ 5170 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) 5171 goto bail; 5172 5173 /* header size in 32-bit words LRH+BTH = (8+12)/4. */ 5174 hwords = 5; 5175 5176 e = &qp->s_ack_queue[qpriv->r_tid_ack]; 5177 req = ack_to_tid_req(e); 5178 /* 5179 * In the RESYNC case, we are exactly one segment past the 5180 * previously sent ack or at the previously sent NAK. So to send 5181 * the resync ack, we go back one segment (which might be part of 5182 * the previous request) and let the do-while loop execute again. 5183 * The advantage of executing the do-while loop is that any data 5184 * received after the previous ack is automatically acked in the 5185 * RESYNC ack. It turns out that for the do-while loop we only need 5186 * to pull back qpriv->r_tid_ack, not the segment 5187 * indices/counters. The scheme works even if the previous request 5188 * was not a TID WRITE request. 5189 */ 5190 if (qpriv->resync) { 5191 if (!req->ack_seg || req->ack_seg == req->total_segs) 5192 qpriv->r_tid_ack = !qpriv->r_tid_ack ? 5193 rvt_size_atomic(&dev->rdi) : 5194 qpriv->r_tid_ack - 1; 5195 e = &qp->s_ack_queue[qpriv->r_tid_ack]; 5196 req = ack_to_tid_req(e); 5197 } 5198 5199 trace_hfi1_rsp_make_tid_ack(qp, e->psn); 5200 trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn, 5201 req); 5202 /* 5203 * If we've sent all the ACKs that we can, we are done 5204 * until we get more segments... 5205 */ 5206 if (!qpriv->s_nak_state && !qpriv->resync && 5207 req->ack_seg == req->comp_seg) 5208 goto bail; 5209 5210 do { 5211 /* 5212 * To deal with coalesced ACKs, the acked_tail pointer 5213 * into the flow array is used. The distance between it 5214 * and the clear_tail is the number of flows that are 5215 * being ACK'ed. 5216 */ 5217 req->ack_seg += 5218 /* Get up-to-date value */ 5219 CIRC_CNT(req->clear_tail, req->acked_tail, 5220 MAX_FLOWS); 5221 /* Advance acked index */ 5222 req->acked_tail = req->clear_tail; 5223 5224 /* 5225 * req->clear_tail points to the segment currently being 5226 * received. So, when sending an ACK, the previous 5227 * segment is being ACK'ed. 5228 */ 5229 flow = CIRC_PREV(req->acked_tail, MAX_FLOWS); 5230 if (req->ack_seg != req->total_segs) 5231 break; 5232 req->state = TID_REQUEST_COMPLETE; 5233 5234 next = qpriv->r_tid_ack + 1; 5235 if (next > rvt_size_atomic(&dev->rdi)) 5236 next = 0; 5237 qpriv->r_tid_ack = next; 5238 if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ)) 5239 break; 5240 nreq = ack_to_tid_req(&qp->s_ack_queue[next]); 5241 if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg) 5242 break; 5243 5244 /* Move to the next ack entry now */ 5245 e = &qp->s_ack_queue[qpriv->r_tid_ack]; 5246 req = ack_to_tid_req(e); 5247 } while (1); 5248 5249 /* 5250 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and 5251 * req could be pointing at the previous ack queue entry 5252 */ 5253 if (qpriv->s_nak_state || 5254 (qpriv->resync && 5255 !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) && 5256 (cmp_psn(qpriv->r_next_psn_kdeth - 1, 5257 full_flow_psn(&req->flows[flow], 5258 req->flows[flow].flow_state.lpsn)) > 0))) { 5259 /* 5260 * A NAK will implicitly acknowledge all previous TID RDMA 5261 * requests. Therefore, we NAK with the req->acked_tail 5262 * segment for the request at qpriv->r_tid_ack (same at 5263 * this point as the req->clear_tail segment for the 5264 * qpriv->r_tid_tail request) 5265 */ 5266 e = &qp->s_ack_queue[qpriv->r_tid_ack]; 5267 req = ack_to_tid_req(e); 5268 flow = req->acked_tail; 5269 } else if (req->ack_seg == req->total_segs && 5270 qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK) 5271 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK; 5272 5273 trace_hfi1_tid_write_rsp_make_tid_ack(qp); 5274 trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn, 5275 req); 5276 hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1, 5277 &bth2); 5278 len = 0; 5279 qpriv->s_flags &= ~RVT_S_ACK_PENDING; 5280 ps->s_txreq->hdr_dwords = hwords; 5281 ps->s_txreq->sde = qpriv->s_sde; 5282 ps->s_txreq->s_cur_size = len; 5283 ps->s_txreq->ss = NULL; 5284 hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle, 5285 ps); 5286 ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP; 5287 return 1; 5288 bail: 5289 /* 5290 * Ensure s_rdma_ack_cnt changes are committed prior to resetting 5291 * RVT_S_RESP_PENDING 5292 */ 5293 smp_wmb(); 5294 qpriv->s_flags &= ~RVT_S_ACK_PENDING; 5295 return 0; 5296 } 5297 5298 static int hfi1_send_tid_ok(struct rvt_qp *qp) 5299 { 5300 struct hfi1_qp_priv *priv = qp->priv; 5301 5302 return !(priv->s_flags & RVT_S_BUSY || 5303 qp->s_flags & HFI1_S_ANY_WAIT_IO) && 5304 (verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) || 5305 (priv->s_flags & RVT_S_RESP_PENDING) || 5306 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND)); 5307 } 5308 5309 void _hfi1_do_tid_send(struct work_struct *work) 5310 { 5311 struct iowait_work *w = container_of(work, struct iowait_work, iowork); 5312 struct rvt_qp *qp = iowait_to_qp(w->iow); 5313 5314 hfi1_do_tid_send(qp); 5315 } 5316 5317 static void hfi1_do_tid_send(struct rvt_qp *qp) 5318 { 5319 struct hfi1_pkt_state ps; 5320 struct hfi1_qp_priv *priv = qp->priv; 5321 5322 ps.dev = to_idev(qp->ibqp.device); 5323 ps.ibp = to_iport(qp->ibqp.device, qp->port_num); 5324 ps.ppd = ppd_from_ibp(ps.ibp); 5325 ps.wait = iowait_get_tid_work(&priv->s_iowait); 5326 ps.in_thread = false; 5327 ps.timeout_int = qp->timeout_jiffies / 8; 5328 5329 trace_hfi1_rc_do_tid_send(qp, false); 5330 spin_lock_irqsave(&qp->s_lock, ps.flags); 5331 5332 /* Return if we are already busy processing a work request. */ 5333 if (!hfi1_send_tid_ok(qp)) { 5334 if (qp->s_flags & HFI1_S_ANY_WAIT_IO) 5335 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID); 5336 spin_unlock_irqrestore(&qp->s_lock, ps.flags); 5337 return; 5338 } 5339 5340 priv->s_flags |= RVT_S_BUSY; 5341 5342 ps.timeout = jiffies + ps.timeout_int; 5343 ps.cpu = priv->s_sde ? priv->s_sde->cpu : 5344 cpumask_first(cpumask_of_node(ps.ppd->dd->node)); 5345 ps.pkts_sent = false; 5346 5347 /* insure a pre-built packet is handled */ 5348 ps.s_txreq = get_waiting_verbs_txreq(ps.wait); 5349 do { 5350 /* Check for a constructed packet to be sent. */ 5351 if (ps.s_txreq) { 5352 if (priv->s_flags & HFI1_S_TID_BUSY_SET) { 5353 qp->s_flags |= RVT_S_BUSY; 5354 ps.wait = iowait_get_ib_work(&priv->s_iowait); 5355 } 5356 spin_unlock_irqrestore(&qp->s_lock, ps.flags); 5357 5358 /* 5359 * If the packet cannot be sent now, return and 5360 * the send tasklet will be woken up later. 5361 */ 5362 if (hfi1_verbs_send(qp, &ps)) 5363 return; 5364 5365 /* allow other tasks to run */ 5366 if (hfi1_schedule_send_yield(qp, &ps, true)) 5367 return; 5368 5369 spin_lock_irqsave(&qp->s_lock, ps.flags); 5370 if (priv->s_flags & HFI1_S_TID_BUSY_SET) { 5371 qp->s_flags &= ~RVT_S_BUSY; 5372 priv->s_flags &= ~HFI1_S_TID_BUSY_SET; 5373 ps.wait = iowait_get_tid_work(&priv->s_iowait); 5374 if (iowait_flag_set(&priv->s_iowait, 5375 IOWAIT_PENDING_IB)) 5376 hfi1_schedule_send(qp); 5377 } 5378 } 5379 } while (hfi1_make_tid_rdma_pkt(qp, &ps)); 5380 iowait_starve_clear(ps.pkts_sent, &priv->s_iowait); 5381 spin_unlock_irqrestore(&qp->s_lock, ps.flags); 5382 } 5383 5384 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp) 5385 { 5386 struct hfi1_qp_priv *priv = qp->priv; 5387 struct hfi1_ibport *ibp = 5388 to_iport(qp->ibqp.device, qp->port_num); 5389 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 5390 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); 5391 5392 return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq, 5393 priv->s_sde ? 5394 priv->s_sde->cpu : 5395 cpumask_first(cpumask_of_node(dd->node))); 5396 } 5397 5398 /** 5399 * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine 5400 * @qp: the QP 5401 * 5402 * This schedules qp progress on the TID RDMA state machine. Caller 5403 * should hold the s_lock. 5404 * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because 5405 * the two state machines can step on each other with respect to the 5406 * RVT_S_BUSY flag. 5407 * Therefore, a modified test is used. 5408 * @return true if the second leg is scheduled; 5409 * false if the second leg is not scheduled. 5410 */ 5411 bool hfi1_schedule_tid_send(struct rvt_qp *qp) 5412 { 5413 lockdep_assert_held(&qp->s_lock); 5414 if (hfi1_send_tid_ok(qp)) { 5415 /* 5416 * The following call returns true if the qp is not on the 5417 * queue and false if the qp is already on the queue before 5418 * this call. Either way, the qp will be on the queue when the 5419 * call returns. 5420 */ 5421 _hfi1_schedule_tid_send(qp); 5422 return true; 5423 } 5424 if (qp->s_flags & HFI1_S_ANY_WAIT_IO) 5425 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait, 5426 IOWAIT_PENDING_TID); 5427 return false; 5428 } 5429 5430 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e) 5431 { 5432 struct rvt_ack_entry *prev; 5433 struct tid_rdma_request *req; 5434 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); 5435 struct hfi1_qp_priv *priv = qp->priv; 5436 u32 s_prev; 5437 5438 s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) : 5439 (qp->s_tail_ack_queue - 1); 5440 prev = &qp->s_ack_queue[s_prev]; 5441 5442 if ((e->opcode == TID_OP(READ_REQ) || 5443 e->opcode == OP(RDMA_READ_REQUEST)) && 5444 prev->opcode == TID_OP(WRITE_REQ)) { 5445 req = ack_to_tid_req(prev); 5446 if (req->ack_seg != req->total_segs) { 5447 priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK; 5448 return true; 5449 } 5450 } 5451 return false; 5452 } 5453 5454 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx) 5455 { 5456 u64 reg; 5457 5458 /* 5459 * The only sane way to get the amount of 5460 * progress is to read the HW flow state. 5461 */ 5462 reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx)); 5463 return mask_psn(reg); 5464 } 5465 5466 static void tid_rdma_rcv_err(struct hfi1_packet *packet, 5467 struct ib_other_headers *ohdr, 5468 struct rvt_qp *qp, u32 psn, int diff, bool fecn) 5469 { 5470 unsigned long flags; 5471 5472 tid_rdma_rcv_error(packet, ohdr, qp, psn, diff); 5473 if (fecn) { 5474 spin_lock_irqsave(&qp->s_lock, flags); 5475 qp->s_flags |= RVT_S_ECN; 5476 spin_unlock_irqrestore(&qp->s_lock, flags); 5477 } 5478 } 5479 5480 static void update_r_next_psn_fecn(struct hfi1_packet *packet, 5481 struct hfi1_qp_priv *priv, 5482 struct hfi1_ctxtdata *rcd, 5483 struct tid_rdma_flow *flow, 5484 bool fecn) 5485 { 5486 /* 5487 * If a start/middle packet is delivered here due to 5488 * RSM rule and FECN, we need to update the r_next_psn. 5489 */ 5490 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER && 5491 !(priv->s_flags & HFI1_R_TID_SW_PSN)) { 5492 struct hfi1_devdata *dd = rcd->dd; 5493 5494 flow->flow_state.r_next_psn = 5495 read_r_next_psn(dd, rcd->ctxt, flow->idx); 5496 } 5497 } 5498