xref: /linux/drivers/infiniband/hw/hfi1/tid_rdma.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright(c) 2018 - 2020 Intel Corporation.
4  *
5  */
6 
7 #include "hfi.h"
8 #include "qp.h"
9 #include "rc.h"
10 #include "verbs.h"
11 #include "tid_rdma.h"
12 #include "exp_rcv.h"
13 #include "trace.h"
14 
15 /**
16  * DOC: TID RDMA READ protocol
17  *
18  * This is an end-to-end protocol at the hfi1 level between two nodes that
19  * improves performance by avoiding data copy on the requester side. It
20  * converts a qualified RDMA READ request into a TID RDMA READ request on
21  * the requester side and thereafter handles the request and response
22  * differently. To be qualified, the RDMA READ request should meet the
23  * following:
24  * -- The total data length should be greater than 256K;
25  * -- The total data length should be a multiple of 4K page size;
26  * -- Each local scatter-gather entry should be 4K page aligned;
27  * -- Each local scatter-gather entry should be a multiple of 4K page size;
28  */
29 
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
36 
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
39 
40 #define GENERATION_MASK 0xFFFFF
41 
42 static u32 mask_generation(u32 a)
43 {
44 	return a & GENERATION_MASK;
45 }
46 
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
49 
50 /*
51  * J_KEY for kernel contexts when TID RDMA is used.
52  * See generate_jkey() in hfi.h for more information.
53  */
54 #define TID_RDMA_JKEY                   32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
57 
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ  6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62 			TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
64 
65 #define MAX_EXPECTED_PAGES     (MAX_EXPECTED_BUFFER / PAGE_SIZE)
66 
67 #define TID_RDMA_DESTQP_FLOW_SHIFT      11
68 #define TID_RDMA_DESTQP_FLOW_MASK       0x1f
69 
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
90 
91 /*
92  * OPFN TID layout
93  *
94  * 63               47               31               15
95  * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96  * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97  * N - the context Number
98  * K - the Kdeth_qp
99  * M - Max_len
100  * T - Timeout
101  * D - reserveD
102  * V - version
103  * U - Urg capable
104  * J - Jkey
105  * R - max_Read
106  * W - max_Write
107  * C - Capcode
108  */
109 
110 static void tid_rdma_trigger_resume(struct work_struct *work);
111 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
112 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
113 					 gfp_t gfp);
114 static void hfi1_init_trdma_req(struct rvt_qp *qp,
115 				struct tid_rdma_request *req);
116 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
117 static void hfi1_tid_timeout(struct timer_list *t);
118 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
119 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
120 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
121 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
122 static void hfi1_tid_retry_timeout(struct timer_list *t);
123 static int make_tid_rdma_ack(struct rvt_qp *qp,
124 			     struct ib_other_headers *ohdr,
125 			     struct hfi1_pkt_state *ps);
126 static void hfi1_do_tid_send(struct rvt_qp *qp);
127 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
128 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
129 			     struct ib_other_headers *ohdr,
130 			     struct rvt_qp *qp, u32 psn, int diff, bool fecn);
131 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
132 				   struct hfi1_qp_priv *priv,
133 				   struct hfi1_ctxtdata *rcd,
134 				   struct tid_rdma_flow *flow,
135 				   bool fecn);
136 
137 static void validate_r_tid_ack(struct hfi1_qp_priv *priv)
138 {
139 	if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
140 		priv->r_tid_ack = priv->r_tid_tail;
141 }
142 
143 static void tid_rdma_schedule_ack(struct rvt_qp *qp)
144 {
145 	struct hfi1_qp_priv *priv = qp->priv;
146 
147 	priv->s_flags |= RVT_S_ACK_PENDING;
148 	hfi1_schedule_tid_send(qp);
149 }
150 
151 static void tid_rdma_trigger_ack(struct rvt_qp *qp)
152 {
153 	validate_r_tid_ack(qp->priv);
154 	tid_rdma_schedule_ack(qp);
155 }
156 
157 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
158 {
159 	return
160 		(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
161 			TID_OPFN_QP_CTXT_SHIFT) |
162 		((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
163 			TID_OPFN_QP_KDETH_SHIFT) |
164 		(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
165 			TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
166 		(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
167 			TID_OPFN_TIMEOUT_SHIFT) |
168 		(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
169 		(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
170 		(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
171 			TID_OPFN_MAX_READ_SHIFT) |
172 		(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
173 			TID_OPFN_MAX_WRITE_SHIFT);
174 }
175 
176 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
177 {
178 	p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
179 		TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
180 	p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
181 	p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
182 		TID_OPFN_MAX_WRITE_MASK;
183 	p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
184 		TID_OPFN_MAX_READ_MASK;
185 	p->qp =
186 		((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
187 			<< 16) |
188 		((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
189 	p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
190 	p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
191 }
192 
193 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
194 {
195 	struct hfi1_qp_priv *priv = qp->priv;
196 
197 	p->qp = (RVT_KDETH_QP_PREFIX << 16) | priv->rcd->ctxt;
198 	p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
199 	p->jkey = priv->rcd->jkey;
200 	p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
201 	p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
202 	p->timeout = qp->timeout;
203 	p->urg = is_urg_masked(priv->rcd);
204 }
205 
206 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
207 {
208 	struct hfi1_qp_priv *priv = qp->priv;
209 
210 	*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
211 	return true;
212 }
213 
214 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
215 {
216 	struct hfi1_qp_priv *priv = qp->priv;
217 	struct tid_rdma_params *remote, *old;
218 	bool ret = true;
219 
220 	old = rcu_dereference_protected(priv->tid_rdma.remote,
221 					lockdep_is_held(&priv->opfn.lock));
222 	data &= ~0xfULL;
223 	/*
224 	 * If data passed in is zero, return true so as not to continue the
225 	 * negotiation process
226 	 */
227 	if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
228 		goto null;
229 	/*
230 	 * If kzalloc fails, return false. This will result in:
231 	 * * at the requester a new OPFN request being generated to retry
232 	 *   the negotiation
233 	 * * at the responder, 0 being returned to the requester so as to
234 	 *   disable TID RDMA at both the requester and the responder
235 	 */
236 	remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
237 	if (!remote) {
238 		ret = false;
239 		goto null;
240 	}
241 
242 	tid_rdma_opfn_decode(remote, data);
243 	priv->tid_timer_timeout_jiffies =
244 		usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
245 				   1000UL) << 3) * 7);
246 	trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
247 	trace_hfi1_opfn_param(qp, 1, remote);
248 	rcu_assign_pointer(priv->tid_rdma.remote, remote);
249 	/*
250 	 * A TID RDMA READ request's segment size is not equal to
251 	 * remote->max_len only when the request's data length is smaller
252 	 * than remote->max_len. In that case, there will be only one segment.
253 	 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
254 	 * during retry, it will lead to req->cur_seg = 0, which is exactly
255 	 * what is expected.
256 	 */
257 	priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
258 	priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
259 	goto free;
260 null:
261 	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
262 	priv->timeout_shift = 0;
263 free:
264 	if (old)
265 		kfree_rcu(old, rcu_head);
266 	return ret;
267 }
268 
269 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
270 {
271 	bool ret;
272 
273 	ret = tid_rdma_conn_reply(qp, *data);
274 	*data = 0;
275 	/*
276 	 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
277 	 * TID RDMA could not be enabled. This will result in TID RDMA being
278 	 * disabled at the requester too.
279 	 */
280 	if (ret)
281 		(void)tid_rdma_conn_req(qp, data);
282 	return ret;
283 }
284 
285 void tid_rdma_conn_error(struct rvt_qp *qp)
286 {
287 	struct hfi1_qp_priv *priv = qp->priv;
288 	struct tid_rdma_params *old;
289 
290 	old = rcu_dereference_protected(priv->tid_rdma.remote,
291 					lockdep_is_held(&priv->opfn.lock));
292 	RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
293 	if (old)
294 		kfree_rcu(old, rcu_head);
295 }
296 
297 /* This is called at context initialization time */
298 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
299 {
300 	if (reinit)
301 		return 0;
302 
303 	BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
304 	BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
305 	rcd->jkey = TID_RDMA_JKEY;
306 	hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
307 	return hfi1_alloc_ctxt_rcv_groups(rcd);
308 }
309 
310 /**
311  * qp_to_rcd - determine the receive context used by a qp
312  * @rdi: rvt dev struct
313  * @qp: the qp
314  *
315  * This routine returns the receive context associated
316  * with a a qp's qpn.
317  *
318  * Returns the context.
319  */
320 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
321 				       struct rvt_qp *qp)
322 {
323 	struct hfi1_ibdev *verbs_dev = container_of(rdi,
324 						    struct hfi1_ibdev,
325 						    rdi);
326 	struct hfi1_devdata *dd = container_of(verbs_dev,
327 					       struct hfi1_devdata,
328 					       verbs_dev);
329 	unsigned int ctxt;
330 
331 	if (qp->ibqp.qp_num == 0)
332 		ctxt = 0;
333 	else
334 		ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
335 	return dd->rcd[ctxt];
336 }
337 
338 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
339 		      struct ib_qp_init_attr *init_attr)
340 {
341 	struct hfi1_qp_priv *qpriv = qp->priv;
342 	int i, ret;
343 
344 	qpriv->rcd = qp_to_rcd(rdi, qp);
345 
346 	spin_lock_init(&qpriv->opfn.lock);
347 	INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
348 	INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
349 	qpriv->flow_state.psn = 0;
350 	qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
351 	qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
352 	qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
353 	qpriv->s_state = TID_OP(WRITE_RESP);
354 	qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
355 	qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
356 	qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
357 	qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
358 	qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
359 	qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
360 	qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
361 	qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
362 	atomic_set(&qpriv->n_requests, 0);
363 	atomic_set(&qpriv->n_tid_requests, 0);
364 	timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
365 	timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
366 	INIT_LIST_HEAD(&qpriv->tid_wait);
367 
368 	if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
369 		struct hfi1_devdata *dd = qpriv->rcd->dd;
370 
371 		qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
372 						sizeof(*qpriv->pages),
373 					    GFP_KERNEL, dd->node);
374 		if (!qpriv->pages)
375 			return -ENOMEM;
376 		for (i = 0; i < qp->s_size; i++) {
377 			struct hfi1_swqe_priv *priv;
378 			struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
379 
380 			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
381 					    dd->node);
382 			if (!priv)
383 				return -ENOMEM;
384 
385 			hfi1_init_trdma_req(qp, &priv->tid_req);
386 			priv->tid_req.e.swqe = wqe;
387 			wqe->priv = priv;
388 		}
389 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
390 			struct hfi1_ack_priv *priv;
391 
392 			priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
393 					    dd->node);
394 			if (!priv)
395 				return -ENOMEM;
396 
397 			hfi1_init_trdma_req(qp, &priv->tid_req);
398 			priv->tid_req.e.ack = &qp->s_ack_queue[i];
399 
400 			ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
401 							    GFP_KERNEL);
402 			if (ret) {
403 				kfree(priv);
404 				return ret;
405 			}
406 			qp->s_ack_queue[i].priv = priv;
407 		}
408 	}
409 
410 	return 0;
411 }
412 
413 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
414 {
415 	struct hfi1_qp_priv *qpriv = qp->priv;
416 	struct rvt_swqe *wqe;
417 	u32 i;
418 
419 	if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
420 		for (i = 0; i < qp->s_size; i++) {
421 			wqe = rvt_get_swqe_ptr(qp, i);
422 			kfree(wqe->priv);
423 			wqe->priv = NULL;
424 		}
425 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
426 			struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
427 
428 			if (priv)
429 				hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
430 			kfree(priv);
431 			qp->s_ack_queue[i].priv = NULL;
432 		}
433 		cancel_work_sync(&qpriv->opfn.opfn_work);
434 		kfree(qpriv->pages);
435 		qpriv->pages = NULL;
436 	}
437 }
438 
439 /* Flow and tid waiter functions */
440 /**
441  * DOC: lock ordering
442  *
443  * There are two locks involved with the queuing
444  * routines: the qp s_lock and the exp_lock.
445  *
446  * Since the tid space allocation is called from
447  * the send engine, the qp s_lock is already held.
448  *
449  * The allocation routines will get the exp_lock.
450  *
451  * The first_qp() call is provided to allow the head of
452  * the rcd wait queue to be fetched under the exp_lock and
453  * followed by a drop of the exp_lock.
454  *
455  * Any qp in the wait list will have the qp reference count held
456  * to hold the qp in memory.
457  */
458 
459 /*
460  * return head of rcd wait list
461  *
462  * Must hold the exp_lock.
463  *
464  * Get a reference to the QP to hold the QP in memory.
465  *
466  * The caller must release the reference when the local
467  * is no longer being used.
468  */
469 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
470 			       struct tid_queue *queue)
471 	__must_hold(&rcd->exp_lock)
472 {
473 	struct hfi1_qp_priv *priv;
474 
475 	lockdep_assert_held(&rcd->exp_lock);
476 	priv = list_first_entry_or_null(&queue->queue_head,
477 					struct hfi1_qp_priv,
478 					tid_wait);
479 	if (!priv)
480 		return NULL;
481 	rvt_get_qp(priv->owner);
482 	return priv->owner;
483 }
484 
485 /**
486  * kernel_tid_waiters - determine rcd wait
487  * @rcd: the receive context
488  * @queue: the queue to operate on
489  * @qp: the head of the qp being processed
490  *
491  * This routine will return false IFF
492  * the list is NULL or the head of the
493  * list is the indicated qp.
494  *
495  * Must hold the qp s_lock and the exp_lock.
496  *
497  * Return:
498  * false if either of the conditions below are satisfied:
499  * 1. The list is empty or
500  * 2. The indicated qp is at the head of the list and the
501  *    HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
502  * true is returned otherwise.
503  */
504 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
505 			       struct tid_queue *queue, struct rvt_qp *qp)
506 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
507 {
508 	struct rvt_qp *fqp;
509 	bool ret = true;
510 
511 	lockdep_assert_held(&qp->s_lock);
512 	lockdep_assert_held(&rcd->exp_lock);
513 	fqp = first_qp(rcd, queue);
514 	if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
515 		ret = false;
516 	rvt_put_qp(fqp);
517 	return ret;
518 }
519 
520 /**
521  * dequeue_tid_waiter - dequeue the qp from the list
522  * @rcd: the receive context
523  * @queue: the queue to operate on
524  * @qp: the qp to remove the wait list
525  *
526  * This routine removes the indicated qp from the
527  * wait list if it is there.
528  *
529  * This should be done after the hardware flow and
530  * tid array resources have been allocated.
531  *
532  * Must hold the qp s_lock and the rcd exp_lock.
533  *
534  * It assumes the s_lock to protect the s_flags
535  * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
536  */
537 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
538 			       struct tid_queue *queue, struct rvt_qp *qp)
539 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
540 {
541 	struct hfi1_qp_priv *priv = qp->priv;
542 
543 	lockdep_assert_held(&qp->s_lock);
544 	lockdep_assert_held(&rcd->exp_lock);
545 	if (list_empty(&priv->tid_wait))
546 		return;
547 	list_del_init(&priv->tid_wait);
548 	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
549 	queue->dequeue++;
550 	rvt_put_qp(qp);
551 }
552 
553 /**
554  * queue_qp_for_tid_wait - suspend QP on tid space
555  * @rcd: the receive context
556  * @queue: the queue to operate on
557  * @qp: the qp
558  *
559  * The qp is inserted at the tail of the rcd
560  * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
561  *
562  * Must hold the qp s_lock and the exp_lock.
563  */
564 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
565 				  struct tid_queue *queue, struct rvt_qp *qp)
566 	__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
567 {
568 	struct hfi1_qp_priv *priv = qp->priv;
569 
570 	lockdep_assert_held(&qp->s_lock);
571 	lockdep_assert_held(&rcd->exp_lock);
572 	if (list_empty(&priv->tid_wait)) {
573 		qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
574 		list_add_tail(&priv->tid_wait, &queue->queue_head);
575 		priv->tid_enqueue = ++queue->enqueue;
576 		rcd->dd->verbs_dev.n_tidwait++;
577 		trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
578 		rvt_get_qp(qp);
579 	}
580 }
581 
582 /**
583  * __trigger_tid_waiter - trigger tid waiter
584  * @qp: the qp
585  *
586  * This is a private entrance to schedule the qp
587  * assuming the caller is holding the qp->s_lock.
588  */
589 static void __trigger_tid_waiter(struct rvt_qp *qp)
590 	__must_hold(&qp->s_lock)
591 {
592 	lockdep_assert_held(&qp->s_lock);
593 	if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
594 		return;
595 	trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
596 	hfi1_schedule_send(qp);
597 }
598 
599 /**
600  * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
601  * @qp: the qp
602  *
603  * trigger a schedule or a waiting qp in a deadlock
604  * safe manner.  The qp reference is held prior
605  * to this call via first_qp().
606  *
607  * If the qp trigger was already scheduled (!rval)
608  * the reference is dropped, otherwise the resume
609  * or the destroy cancel will dispatch the reference.
610  */
611 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
612 {
613 	struct hfi1_qp_priv *priv;
614 	struct hfi1_ibport *ibp;
615 	struct hfi1_pportdata *ppd;
616 	struct hfi1_devdata *dd;
617 	bool rval;
618 
619 	if (!qp)
620 		return;
621 
622 	priv = qp->priv;
623 	ibp = to_iport(qp->ibqp.device, qp->port_num);
624 	ppd = ppd_from_ibp(ibp);
625 	dd = dd_from_ibdev(qp->ibqp.device);
626 
627 	rval = queue_work_on(priv->s_sde ?
628 			     priv->s_sde->cpu :
629 			     cpumask_first(cpumask_of_node(dd->node)),
630 			     ppd->hfi1_wq,
631 			     &priv->tid_rdma.trigger_work);
632 	if (!rval)
633 		rvt_put_qp(qp);
634 }
635 
636 /**
637  * tid_rdma_trigger_resume - field a trigger work request
638  * @work: the work item
639  *
640  * Complete the off qp trigger processing by directly
641  * calling the progress routine.
642  */
643 static void tid_rdma_trigger_resume(struct work_struct *work)
644 {
645 	struct tid_rdma_qp_params *tr;
646 	struct hfi1_qp_priv *priv;
647 	struct rvt_qp *qp;
648 
649 	tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
650 	priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
651 	qp = priv->owner;
652 	spin_lock_irq(&qp->s_lock);
653 	if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
654 		spin_unlock_irq(&qp->s_lock);
655 		hfi1_do_send(priv->owner, true);
656 	} else {
657 		spin_unlock_irq(&qp->s_lock);
658 	}
659 	rvt_put_qp(qp);
660 }
661 
662 /*
663  * tid_rdma_flush_wait - unwind any tid space wait
664  *
665  * This is called when resetting a qp to
666  * allow a destroy or reset to get rid
667  * of any tid space linkage and reference counts.
668  */
669 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
670 	__must_hold(&qp->s_lock)
671 {
672 	struct hfi1_qp_priv *priv;
673 
674 	if (!qp)
675 		return;
676 	lockdep_assert_held(&qp->s_lock);
677 	priv = qp->priv;
678 	qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
679 	spin_lock(&priv->rcd->exp_lock);
680 	if (!list_empty(&priv->tid_wait)) {
681 		list_del_init(&priv->tid_wait);
682 		qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
683 		queue->dequeue++;
684 		rvt_put_qp(qp);
685 	}
686 	spin_unlock(&priv->rcd->exp_lock);
687 }
688 
689 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
690 	__must_hold(&qp->s_lock)
691 {
692 	struct hfi1_qp_priv *priv = qp->priv;
693 
694 	_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
695 	_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
696 }
697 
698 /* Flow functions */
699 /**
700  * kern_reserve_flow - allocate a hardware flow
701  * @rcd: the context to use for allocation
702  * @last: the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
703  *         signify "don't care".
704  *
705  * Use a bit mask based allocation to reserve a hardware
706  * flow for use in receiving KDETH data packets. If a preferred flow is
707  * specified the function will attempt to reserve that flow again, if
708  * available.
709  *
710  * The exp_lock must be held.
711  *
712  * Return:
713  * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
714  * On failure: -EAGAIN
715  */
716 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
717 	__must_hold(&rcd->exp_lock)
718 {
719 	int nr;
720 
721 	/* Attempt to reserve the preferred flow index */
722 	if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
723 	    !test_and_set_bit(last, &rcd->flow_mask))
724 		return last;
725 
726 	nr = ffz(rcd->flow_mask);
727 	BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
728 		     (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
729 	if (nr > (RXE_NUM_TID_FLOWS - 1))
730 		return -EAGAIN;
731 	set_bit(nr, &rcd->flow_mask);
732 	return nr;
733 }
734 
735 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
736 			     u32 flow_idx)
737 {
738 	u64 reg;
739 
740 	reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
741 		RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
742 		RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
743 		RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
744 		RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
745 		RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
746 
747 	if (generation != KERN_GENERATION_RESERVED)
748 		reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
749 
750 	write_uctxt_csr(rcd->dd, rcd->ctxt,
751 			RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
752 }
753 
754 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
755 	__must_hold(&rcd->exp_lock)
756 {
757 	u32 generation = rcd->flows[flow_idx].generation;
758 
759 	kern_set_hw_flow(rcd, generation, flow_idx);
760 	return generation;
761 }
762 
763 static u32 kern_flow_generation_next(u32 gen)
764 {
765 	u32 generation = mask_generation(gen + 1);
766 
767 	if (generation == KERN_GENERATION_RESERVED)
768 		generation = mask_generation(generation + 1);
769 	return generation;
770 }
771 
772 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
773 	__must_hold(&rcd->exp_lock)
774 {
775 	rcd->flows[flow_idx].generation =
776 		kern_flow_generation_next(rcd->flows[flow_idx].generation);
777 	kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
778 }
779 
780 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
781 {
782 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
783 	struct tid_flow_state *fs = &qpriv->flow_state;
784 	struct rvt_qp *fqp;
785 	unsigned long flags;
786 	int ret = 0;
787 
788 	/* The QP already has an allocated flow */
789 	if (fs->index != RXE_NUM_TID_FLOWS)
790 		return ret;
791 
792 	spin_lock_irqsave(&rcd->exp_lock, flags);
793 	if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
794 		goto queue;
795 
796 	ret = kern_reserve_flow(rcd, fs->last_index);
797 	if (ret < 0)
798 		goto queue;
799 	fs->index = ret;
800 	fs->last_index = fs->index;
801 
802 	/* Generation received in a RESYNC overrides default flow generation */
803 	if (fs->generation != KERN_GENERATION_RESERVED)
804 		rcd->flows[fs->index].generation = fs->generation;
805 	fs->generation = kern_setup_hw_flow(rcd, fs->index);
806 	fs->psn = 0;
807 	dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
808 	/* get head before dropping lock */
809 	fqp = first_qp(rcd, &rcd->flow_queue);
810 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
811 
812 	tid_rdma_schedule_tid_wakeup(fqp);
813 	return 0;
814 queue:
815 	queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
816 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
817 	return -EAGAIN;
818 }
819 
820 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
821 {
822 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
823 	struct tid_flow_state *fs = &qpriv->flow_state;
824 	struct rvt_qp *fqp;
825 	unsigned long flags;
826 
827 	if (fs->index >= RXE_NUM_TID_FLOWS)
828 		return;
829 	spin_lock_irqsave(&rcd->exp_lock, flags);
830 	kern_clear_hw_flow(rcd, fs->index);
831 	clear_bit(fs->index, &rcd->flow_mask);
832 	fs->index = RXE_NUM_TID_FLOWS;
833 	fs->psn = 0;
834 	fs->generation = KERN_GENERATION_RESERVED;
835 
836 	/* get head before dropping lock */
837 	fqp = first_qp(rcd, &rcd->flow_queue);
838 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
839 
840 	if (fqp == qp) {
841 		__trigger_tid_waiter(fqp);
842 		rvt_put_qp(fqp);
843 	} else {
844 		tid_rdma_schedule_tid_wakeup(fqp);
845 	}
846 }
847 
848 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
849 {
850 	int i;
851 
852 	for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
853 		rcd->flows[i].generation = mask_generation(prandom_u32());
854 		kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
855 	}
856 }
857 
858 /* TID allocation functions */
859 static u8 trdma_pset_order(struct tid_rdma_pageset *s)
860 {
861 	u8 count = s->count;
862 
863 	return ilog2(count) + 1;
864 }
865 
866 /**
867  * tid_rdma_find_phys_blocks_4k - get groups base on mr info
868  * @flow: overall info for a TID RDMA segment
869  * @pages: pointer to an array of page structs
870  * @npages: number of pages
871  * @list: page set array to return
872  *
873  * This routine returns the number of groups associated with
874  * the current sge information.  This implementation is based
875  * on the expected receive find_phys_blocks() adjusted to
876  * use the MR information vs. the pfn.
877  *
878  * Return:
879  * the number of RcvArray entries
880  */
881 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
882 					struct page **pages,
883 					u32 npages,
884 					struct tid_rdma_pageset *list)
885 {
886 	u32 pagecount, pageidx, setcount = 0, i;
887 	void *vaddr, *this_vaddr;
888 
889 	if (!npages)
890 		return 0;
891 
892 	/*
893 	 * Look for sets of physically contiguous pages in the user buffer.
894 	 * This will allow us to optimize Expected RcvArray entry usage by
895 	 * using the bigger supported sizes.
896 	 */
897 	vaddr = page_address(pages[0]);
898 	trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
899 	for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
900 		this_vaddr = i < npages ? page_address(pages[i]) : NULL;
901 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
902 					 this_vaddr);
903 		/*
904 		 * If the vaddr's are not sequential, pages are not physically
905 		 * contiguous.
906 		 */
907 		if (this_vaddr != (vaddr + PAGE_SIZE)) {
908 			/*
909 			 * At this point we have to loop over the set of
910 			 * physically contiguous pages and break them down it
911 			 * sizes supported by the HW.
912 			 * There are two main constraints:
913 			 *     1. The max buffer size is MAX_EXPECTED_BUFFER.
914 			 *        If the total set size is bigger than that
915 			 *        program only a MAX_EXPECTED_BUFFER chunk.
916 			 *     2. The buffer size has to be a power of two. If
917 			 *        it is not, round down to the closes power of
918 			 *        2 and program that size.
919 			 */
920 			while (pagecount) {
921 				int maxpages = pagecount;
922 				u32 bufsize = pagecount * PAGE_SIZE;
923 
924 				if (bufsize > MAX_EXPECTED_BUFFER)
925 					maxpages =
926 						MAX_EXPECTED_BUFFER >>
927 						PAGE_SHIFT;
928 				else if (!is_power_of_2(bufsize))
929 					maxpages =
930 						rounddown_pow_of_two(bufsize) >>
931 						PAGE_SHIFT;
932 
933 				list[setcount].idx = pageidx;
934 				list[setcount].count = maxpages;
935 				trace_hfi1_tid_pageset(flow->req->qp, setcount,
936 						       list[setcount].idx,
937 						       list[setcount].count);
938 				pagecount -= maxpages;
939 				pageidx += maxpages;
940 				setcount++;
941 			}
942 			pageidx = i;
943 			pagecount = 1;
944 			vaddr = this_vaddr;
945 		} else {
946 			vaddr += PAGE_SIZE;
947 			pagecount++;
948 		}
949 	}
950 	/* insure we always return an even number of sets */
951 	if (setcount & 1)
952 		list[setcount++].count = 0;
953 	return setcount;
954 }
955 
956 /**
957  * tid_flush_pages - dump out pages into pagesets
958  * @list: list of pagesets
959  * @idx: pointer to current page index
960  * @pages: number of pages to dump
961  * @sets: current number of pagesset
962  *
963  * This routine flushes out accumuated pages.
964  *
965  * To insure an even number of sets the
966  * code may add a filler.
967  *
968  * This can happen with when pages is not
969  * a power of 2 or pages is a power of 2
970  * less than the maximum pages.
971  *
972  * Return:
973  * The new number of sets
974  */
975 
976 static u32 tid_flush_pages(struct tid_rdma_pageset *list,
977 			   u32 *idx, u32 pages, u32 sets)
978 {
979 	while (pages) {
980 		u32 maxpages = pages;
981 
982 		if (maxpages > MAX_EXPECTED_PAGES)
983 			maxpages = MAX_EXPECTED_PAGES;
984 		else if (!is_power_of_2(maxpages))
985 			maxpages = rounddown_pow_of_two(maxpages);
986 		list[sets].idx = *idx;
987 		list[sets++].count = maxpages;
988 		*idx += maxpages;
989 		pages -= maxpages;
990 	}
991 	/* might need a filler */
992 	if (sets & 1)
993 		list[sets++].count = 0;
994 	return sets;
995 }
996 
997 /**
998  * tid_rdma_find_phys_blocks_8k - get groups base on mr info
999  * @flow: overall info for a TID RDMA segment
1000  * @pages: pointer to an array of page structs
1001  * @npages: number of pages
1002  * @list: page set array to return
1003  *
1004  * This routine parses an array of pages to compute pagesets
1005  * in an 8k compatible way.
1006  *
1007  * pages are tested two at a time, i, i + 1 for contiguous
1008  * pages and i - 1 and i contiguous pages.
1009  *
1010  * If any condition is false, any accumlated pages are flushed and
1011  * v0,v1 are emitted as separate PAGE_SIZE pagesets
1012  *
1013  * Otherwise, the current 8k is totaled for a future flush.
1014  *
1015  * Return:
1016  * The number of pagesets
1017  * list set with the returned number of pagesets
1018  *
1019  */
1020 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
1021 					struct page **pages,
1022 					u32 npages,
1023 					struct tid_rdma_pageset *list)
1024 {
1025 	u32 idx, sets = 0, i;
1026 	u32 pagecnt = 0;
1027 	void *v0, *v1, *vm1;
1028 
1029 	if (!npages)
1030 		return 0;
1031 	for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1032 		/* get a new v0 */
1033 		v0 = page_address(pages[i]);
1034 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1035 		v1 = i + 1 < npages ?
1036 				page_address(pages[i + 1]) : NULL;
1037 		trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1038 		/* compare i, i + 1 vaddr */
1039 		if (v1 != (v0 + PAGE_SIZE)) {
1040 			/* flush out pages */
1041 			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1042 			/* output v0,v1 as two pagesets */
1043 			list[sets].idx = idx++;
1044 			list[sets++].count = 1;
1045 			if (v1) {
1046 				list[sets].count = 1;
1047 				list[sets++].idx = idx++;
1048 			} else {
1049 				list[sets++].count = 0;
1050 			}
1051 			vm1 = NULL;
1052 			pagecnt = 0;
1053 			continue;
1054 		}
1055 		/* i,i+1 consecutive, look at i-1,i */
1056 		if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1057 			/* flush out pages */
1058 			sets = tid_flush_pages(list, &idx, pagecnt, sets);
1059 			pagecnt = 0;
1060 		}
1061 		/* pages will always be a multiple of 8k */
1062 		pagecnt += 2;
1063 		/* save i-1 */
1064 		vm1 = v1;
1065 		/* move to next pair */
1066 	}
1067 	/* dump residual pages at end */
1068 	sets = tid_flush_pages(list, &idx, npages - idx, sets);
1069 	/* by design cannot be odd sets */
1070 	WARN_ON(sets & 1);
1071 	return sets;
1072 }
1073 
1074 /*
1075  * Find pages for one segment of a sge array represented by @ss. The function
1076  * does not check the sge, the sge must have been checked for alignment with a
1077  * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1078  * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1079  * copy maintained in @ss->sge, the original sge is not modified.
1080  *
1081  * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1082  * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1083  * references to the MR. This difference requires that we keep track of progress
1084  * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1085  * structure.
1086  */
1087 static u32 kern_find_pages(struct tid_rdma_flow *flow,
1088 			   struct page **pages,
1089 			   struct rvt_sge_state *ss, bool *last)
1090 {
1091 	struct tid_rdma_request *req = flow->req;
1092 	struct rvt_sge *sge = &ss->sge;
1093 	u32 length = flow->req->seg_len;
1094 	u32 len = PAGE_SIZE;
1095 	u32 i = 0;
1096 
1097 	while (length && req->isge < ss->num_sge) {
1098 		pages[i++] = virt_to_page(sge->vaddr);
1099 
1100 		sge->vaddr += len;
1101 		sge->length -= len;
1102 		sge->sge_length -= len;
1103 		if (!sge->sge_length) {
1104 			if (++req->isge < ss->num_sge)
1105 				*sge = ss->sg_list[req->isge - 1];
1106 		} else if (sge->length == 0 && sge->mr->lkey) {
1107 			if (++sge->n >= RVT_SEGSZ) {
1108 				++sge->m;
1109 				sge->n = 0;
1110 			}
1111 			sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1112 			sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1113 		}
1114 		length -= len;
1115 	}
1116 
1117 	flow->length = flow->req->seg_len - length;
1118 	*last = req->isge != ss->num_sge;
1119 	return i;
1120 }
1121 
1122 static void dma_unmap_flow(struct tid_rdma_flow *flow)
1123 {
1124 	struct hfi1_devdata *dd;
1125 	int i;
1126 	struct tid_rdma_pageset *pset;
1127 
1128 	dd = flow->req->rcd->dd;
1129 	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1130 			i++, pset++) {
1131 		if (pset->count && pset->addr) {
1132 			dma_unmap_page(&dd->pcidev->dev,
1133 				       pset->addr,
1134 				       PAGE_SIZE * pset->count,
1135 				       DMA_FROM_DEVICE);
1136 			pset->mapped = 0;
1137 		}
1138 	}
1139 }
1140 
1141 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1142 {
1143 	int i;
1144 	struct hfi1_devdata *dd = flow->req->rcd->dd;
1145 	struct tid_rdma_pageset *pset;
1146 
1147 	for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1148 			i++, pset++) {
1149 		if (pset->count) {
1150 			pset->addr = dma_map_page(&dd->pcidev->dev,
1151 						  pages[pset->idx],
1152 						  0,
1153 						  PAGE_SIZE * pset->count,
1154 						  DMA_FROM_DEVICE);
1155 
1156 			if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1157 				dma_unmap_flow(flow);
1158 				return -ENOMEM;
1159 			}
1160 			pset->mapped = 1;
1161 		}
1162 	}
1163 	return 0;
1164 }
1165 
1166 static inline bool dma_mapped(struct tid_rdma_flow *flow)
1167 {
1168 	return !!flow->pagesets[0].mapped;
1169 }
1170 
1171 /*
1172  * Get pages pointers and identify contiguous physical memory chunks for a
1173  * segment. All segments are of length flow->req->seg_len.
1174  */
1175 static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1176 				struct page **pages,
1177 				struct rvt_sge_state *ss, bool *last)
1178 {
1179 	u8 npages;
1180 
1181 	/* Reuse previously computed pagesets, if any */
1182 	if (flow->npagesets) {
1183 		trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1184 					  flow);
1185 		if (!dma_mapped(flow))
1186 			return dma_map_flow(flow, pages);
1187 		return 0;
1188 	}
1189 
1190 	npages = kern_find_pages(flow, pages, ss, last);
1191 
1192 	if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1193 		flow->npagesets =
1194 			tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1195 						     flow->pagesets);
1196 	else
1197 		flow->npagesets =
1198 			tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1199 						     flow->pagesets);
1200 
1201 	return dma_map_flow(flow, pages);
1202 }
1203 
1204 static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1205 				     struct hfi1_ctxtdata *rcd, char *s,
1206 				     struct tid_group *grp, u8 cnt)
1207 {
1208 	struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1209 
1210 	WARN_ON_ONCE(flow->tnode_cnt >=
1211 		     (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1212 	if (WARN_ON_ONCE(cnt & 1))
1213 		dd_dev_err(rcd->dd,
1214 			   "unexpected odd allocation cnt %u map 0x%x used %u",
1215 			   cnt, grp->map, grp->used);
1216 
1217 	node->grp = grp;
1218 	node->map = grp->map;
1219 	node->cnt = cnt;
1220 	trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1221 				grp->base, grp->map, grp->used, cnt);
1222 }
1223 
1224 /*
1225  * Try to allocate pageset_count TID's from TID groups for a context
1226  *
1227  * This function allocates TID's without moving groups between lists or
1228  * modifying grp->map. This is done as follows, being cogizant of the lists
1229  * between which the TID groups will move:
1230  * 1. First allocate complete groups of 8 TID's since this is more efficient,
1231  *    these groups will move from group->full without affecting used
1232  * 2. If more TID's are needed allocate from used (will move from used->full or
1233  *    stay in used)
1234  * 3. If we still don't have the required number of TID's go back and look again
1235  *    at a complete group (will move from group->used)
1236  */
1237 static int kern_alloc_tids(struct tid_rdma_flow *flow)
1238 {
1239 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1240 	struct hfi1_devdata *dd = rcd->dd;
1241 	u32 ngroups, pageidx = 0;
1242 	struct tid_group *group = NULL, *used;
1243 	u8 use;
1244 
1245 	flow->tnode_cnt = 0;
1246 	ngroups = flow->npagesets / dd->rcv_entries.group_size;
1247 	if (!ngroups)
1248 		goto used_list;
1249 
1250 	/* First look at complete groups */
1251 	list_for_each_entry(group,  &rcd->tid_group_list.list, list) {
1252 		kern_add_tid_node(flow, rcd, "complete groups", group,
1253 				  group->size);
1254 
1255 		pageidx += group->size;
1256 		if (!--ngroups)
1257 			break;
1258 	}
1259 
1260 	if (pageidx >= flow->npagesets)
1261 		goto ok;
1262 
1263 used_list:
1264 	/* Now look at partially used groups */
1265 	list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1266 		use = min_t(u32, flow->npagesets - pageidx,
1267 			    used->size - used->used);
1268 		kern_add_tid_node(flow, rcd, "used groups", used, use);
1269 
1270 		pageidx += use;
1271 		if (pageidx >= flow->npagesets)
1272 			goto ok;
1273 	}
1274 
1275 	/*
1276 	 * Look again at a complete group, continuing from where we left.
1277 	 * However, if we are at the head, we have reached the end of the
1278 	 * complete groups list from the first loop above
1279 	 */
1280 	if (group && &group->list == &rcd->tid_group_list.list)
1281 		goto bail_eagain;
1282 	group = list_prepare_entry(group, &rcd->tid_group_list.list,
1283 				   list);
1284 	if (list_is_last(&group->list, &rcd->tid_group_list.list))
1285 		goto bail_eagain;
1286 	group = list_next_entry(group, list);
1287 	use = min_t(u32, flow->npagesets - pageidx, group->size);
1288 	kern_add_tid_node(flow, rcd, "complete continue", group, use);
1289 	pageidx += use;
1290 	if (pageidx >= flow->npagesets)
1291 		goto ok;
1292 bail_eagain:
1293 	trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1294 				  (u64)flow->npagesets);
1295 	return -EAGAIN;
1296 ok:
1297 	return 0;
1298 }
1299 
1300 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1301 				   u32 *pset_idx)
1302 {
1303 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1304 	struct hfi1_devdata *dd = rcd->dd;
1305 	struct kern_tid_node *node = &flow->tnode[grp_num];
1306 	struct tid_group *grp = node->grp;
1307 	struct tid_rdma_pageset *pset;
1308 	u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1309 	u32 rcventry, npages = 0, pair = 0, tidctrl;
1310 	u8 i, cnt = 0;
1311 
1312 	for (i = 0; i < grp->size; i++) {
1313 		rcventry = grp->base + i;
1314 
1315 		if (node->map & BIT(i) || cnt >= node->cnt) {
1316 			rcv_array_wc_fill(dd, rcventry);
1317 			continue;
1318 		}
1319 		pset = &flow->pagesets[(*pset_idx)++];
1320 		if (pset->count) {
1321 			hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1322 				     pset->addr, trdma_pset_order(pset));
1323 		} else {
1324 			hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1325 		}
1326 		npages += pset->count;
1327 
1328 		rcventry -= rcd->expected_base;
1329 		tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1330 		/*
1331 		 * A single TID entry will be used to use a rcvarr pair (with
1332 		 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1333 		 * (b) the group map shows current and the next bits as free
1334 		 * indicating two consecutive rcvarry entries are available (c)
1335 		 * we actually need 2 more entries
1336 		 */
1337 		pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1338 			node->cnt >= cnt + 2;
1339 		if (!pair) {
1340 			if (!pset->count)
1341 				tidctrl = 0x1;
1342 			flow->tid_entry[flow->tidcnt++] =
1343 				EXP_TID_SET(IDX, rcventry >> 1) |
1344 				EXP_TID_SET(CTRL, tidctrl) |
1345 				EXP_TID_SET(LEN, npages);
1346 			trace_hfi1_tid_entry_alloc(/* entry */
1347 			   flow->req->qp, flow->tidcnt - 1,
1348 			   flow->tid_entry[flow->tidcnt - 1]);
1349 
1350 			/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1351 			flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1352 			npages = 0;
1353 		}
1354 
1355 		if (grp->used == grp->size - 1)
1356 			tid_group_move(grp, &rcd->tid_used_list,
1357 				       &rcd->tid_full_list);
1358 		else if (!grp->used)
1359 			tid_group_move(grp, &rcd->tid_group_list,
1360 				       &rcd->tid_used_list);
1361 
1362 		grp->used++;
1363 		grp->map |= BIT(i);
1364 		cnt++;
1365 	}
1366 }
1367 
1368 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1369 {
1370 	struct hfi1_ctxtdata *rcd = flow->req->rcd;
1371 	struct hfi1_devdata *dd = rcd->dd;
1372 	struct kern_tid_node *node = &flow->tnode[grp_num];
1373 	struct tid_group *grp = node->grp;
1374 	u32 rcventry;
1375 	u8 i, cnt = 0;
1376 
1377 	for (i = 0; i < grp->size; i++) {
1378 		rcventry = grp->base + i;
1379 
1380 		if (node->map & BIT(i) || cnt >= node->cnt) {
1381 			rcv_array_wc_fill(dd, rcventry);
1382 			continue;
1383 		}
1384 
1385 		hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1386 
1387 		grp->used--;
1388 		grp->map &= ~BIT(i);
1389 		cnt++;
1390 
1391 		if (grp->used == grp->size - 1)
1392 			tid_group_move(grp, &rcd->tid_full_list,
1393 				       &rcd->tid_used_list);
1394 		else if (!grp->used)
1395 			tid_group_move(grp, &rcd->tid_used_list,
1396 				       &rcd->tid_group_list);
1397 	}
1398 	if (WARN_ON_ONCE(cnt & 1)) {
1399 		struct hfi1_ctxtdata *rcd = flow->req->rcd;
1400 		struct hfi1_devdata *dd = rcd->dd;
1401 
1402 		dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1403 			   cnt, grp->map, grp->used);
1404 	}
1405 }
1406 
1407 static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1408 {
1409 	u32 pset_idx = 0;
1410 	int i;
1411 
1412 	flow->npkts = 0;
1413 	flow->tidcnt = 0;
1414 	for (i = 0; i < flow->tnode_cnt; i++)
1415 		kern_program_rcv_group(flow, i, &pset_idx);
1416 	trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1417 }
1418 
1419 /**
1420  * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1421  * TID RDMA request
1422  *
1423  * @req: TID RDMA request for which the segment/flow is being set up
1424  * @ss: sge state, maintains state across successive segments of a sge
1425  * @last: set to true after the last sge segment has been processed
1426  *
1427  * This function
1428  * (1) finds a free flow entry in the flow circular buffer
1429  * (2) finds pages and continuous physical chunks constituing one segment
1430  *     of an sge
1431  * (3) allocates TID group entries for those chunks
1432  * (4) programs rcvarray entries in the hardware corresponding to those
1433  *     TID's
1434  * (5) computes a tidarray with formatted TID entries which can be sent
1435  *     to the sender
1436  * (6) Reserves and programs HW flows.
1437  * (7) It also manages queing the QP when TID/flow resources are not
1438  *     available.
1439  *
1440  * @req points to struct tid_rdma_request of which the segments are a part. The
1441  * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1442  * req->flow_idx is the index of the flow which has been prepared in this
1443  * invocation of function call. With flow = &req->flows[req->flow_idx],
1444  * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1445  * sends and flow->npkts contains number of packets required to send the
1446  * segment.
1447  *
1448  * hfi1_check_sge_align should be called prior to calling this function and if
1449  * it signals error TID RDMA cannot be used for this sge and this function
1450  * should not be called.
1451  *
1452  * For the queuing, caller must hold the flow->req->qp s_lock from the send
1453  * engine and the function will procure the exp_lock.
1454  *
1455  * Return:
1456  * The function returns -EAGAIN if sufficient number of TID/flow resources to
1457  * map the segment could not be allocated. In this case the function should be
1458  * called again with previous arguments to retry the TID allocation. There are
1459  * no other error returns. The function returns 0 on success.
1460  */
1461 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1462 			    struct rvt_sge_state *ss, bool *last)
1463 	__must_hold(&req->qp->s_lock)
1464 {
1465 	struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1466 	struct hfi1_ctxtdata *rcd = req->rcd;
1467 	struct hfi1_qp_priv *qpriv = req->qp->priv;
1468 	unsigned long flags;
1469 	struct rvt_qp *fqp;
1470 	u16 clear_tail = req->clear_tail;
1471 
1472 	lockdep_assert_held(&req->qp->s_lock);
1473 	/*
1474 	 * We return error if either (a) we don't have space in the flow
1475 	 * circular buffer, or (b) we already have max entries in the buffer.
1476 	 * Max entries depend on the type of request we are processing and the
1477 	 * negotiated TID RDMA parameters.
1478 	 */
1479 	if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1480 	    CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1481 	    req->n_flows)
1482 		return -EINVAL;
1483 
1484 	/*
1485 	 * Get pages, identify contiguous physical memory chunks for the segment
1486 	 * If we can not determine a DMA address mapping we will treat it just
1487 	 * like if we ran out of space above.
1488 	 */
1489 	if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1490 		hfi1_wait_kmem(flow->req->qp);
1491 		return -ENOMEM;
1492 	}
1493 
1494 	spin_lock_irqsave(&rcd->exp_lock, flags);
1495 	if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1496 		goto queue;
1497 
1498 	/*
1499 	 * At this point we know the number of pagesets and hence the number of
1500 	 * TID's to map the segment. Allocate the TID's from the TID groups. If
1501 	 * we cannot allocate the required number we exit and try again later
1502 	 */
1503 	if (kern_alloc_tids(flow))
1504 		goto queue;
1505 	/*
1506 	 * Finally program the TID entries with the pagesets, compute the
1507 	 * tidarray and enable the HW flow
1508 	 */
1509 	kern_program_rcvarray(flow);
1510 
1511 	/*
1512 	 * Setup the flow state with relevant information.
1513 	 * This information is used for tracking the sequence of data packets
1514 	 * for the segment.
1515 	 * The flow is setup here as this is the most accurate time and place
1516 	 * to do so. Doing at a later time runs the risk of the flow data in
1517 	 * qpriv getting out of sync.
1518 	 */
1519 	memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1520 	flow->idx = qpriv->flow_state.index;
1521 	flow->flow_state.generation = qpriv->flow_state.generation;
1522 	flow->flow_state.spsn = qpriv->flow_state.psn;
1523 	flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1524 	flow->flow_state.r_next_psn =
1525 		full_flow_psn(flow, flow->flow_state.spsn);
1526 	qpriv->flow_state.psn += flow->npkts;
1527 
1528 	dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1529 	/* get head before dropping lock */
1530 	fqp = first_qp(rcd, &rcd->rarr_queue);
1531 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1532 	tid_rdma_schedule_tid_wakeup(fqp);
1533 
1534 	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1535 	return 0;
1536 queue:
1537 	queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1538 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1539 	return -EAGAIN;
1540 }
1541 
1542 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1543 {
1544 	flow->npagesets = 0;
1545 }
1546 
1547 /*
1548  * This function is called after one segment has been successfully sent to
1549  * release the flow and TID HW/SW resources for that segment. The segments for a
1550  * TID RDMA request are setup and cleared in FIFO order which is managed using a
1551  * circular buffer.
1552  */
1553 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1554 	__must_hold(&req->qp->s_lock)
1555 {
1556 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1557 	struct hfi1_ctxtdata *rcd = req->rcd;
1558 	unsigned long flags;
1559 	int i;
1560 	struct rvt_qp *fqp;
1561 
1562 	lockdep_assert_held(&req->qp->s_lock);
1563 	/* Exit if we have nothing in the flow circular buffer */
1564 	if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1565 		return -EINVAL;
1566 
1567 	spin_lock_irqsave(&rcd->exp_lock, flags);
1568 
1569 	for (i = 0; i < flow->tnode_cnt; i++)
1570 		kern_unprogram_rcv_group(flow, i);
1571 	/* To prevent double unprogramming */
1572 	flow->tnode_cnt = 0;
1573 	/* get head before dropping lock */
1574 	fqp = first_qp(rcd, &rcd->rarr_queue);
1575 	spin_unlock_irqrestore(&rcd->exp_lock, flags);
1576 
1577 	dma_unmap_flow(flow);
1578 
1579 	hfi1_tid_rdma_reset_flow(flow);
1580 	req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1581 
1582 	if (fqp == req->qp) {
1583 		__trigger_tid_waiter(fqp);
1584 		rvt_put_qp(fqp);
1585 	} else {
1586 		tid_rdma_schedule_tid_wakeup(fqp);
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 /*
1593  * This function is called to release all the tid entries for
1594  * a request.
1595  */
1596 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1597 	__must_hold(&req->qp->s_lock)
1598 {
1599 	/* Use memory barrier for proper ordering */
1600 	while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1601 		if (hfi1_kern_exp_rcv_clear(req))
1602 			break;
1603 	}
1604 }
1605 
1606 /**
1607  * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1608  * @req: the tid rdma request to be cleaned
1609  */
1610 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1611 {
1612 	kfree(req->flows);
1613 	req->flows = NULL;
1614 }
1615 
1616 /**
1617  * __trdma_clean_swqe - clean up for large sized QPs
1618  * @qp: the queue patch
1619  * @wqe: the send wqe
1620  */
1621 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1622 {
1623 	struct hfi1_swqe_priv *p = wqe->priv;
1624 
1625 	hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1626 }
1627 
1628 /*
1629  * This can be called at QP create time or in the data path.
1630  */
1631 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1632 					 gfp_t gfp)
1633 {
1634 	struct tid_rdma_flow *flows;
1635 	int i;
1636 
1637 	if (likely(req->flows))
1638 		return 0;
1639 	flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1640 			     req->rcd->numa_id);
1641 	if (!flows)
1642 		return -ENOMEM;
1643 	/* mini init */
1644 	for (i = 0; i < MAX_FLOWS; i++) {
1645 		flows[i].req = req;
1646 		flows[i].npagesets = 0;
1647 		flows[i].pagesets[0].mapped =  0;
1648 		flows[i].resync_npkts = 0;
1649 	}
1650 	req->flows = flows;
1651 	return 0;
1652 }
1653 
1654 static void hfi1_init_trdma_req(struct rvt_qp *qp,
1655 				struct tid_rdma_request *req)
1656 {
1657 	struct hfi1_qp_priv *qpriv = qp->priv;
1658 
1659 	/*
1660 	 * Initialize various TID RDMA request variables.
1661 	 * These variables are "static", which is why they
1662 	 * can be pre-initialized here before the WRs has
1663 	 * even been submitted.
1664 	 * However, non-NULL values for these variables do not
1665 	 * imply that this WQE has been enabled for TID RDMA.
1666 	 * Drivers should check the WQE's opcode to determine
1667 	 * if a request is a TID RDMA one or not.
1668 	 */
1669 	req->qp = qp;
1670 	req->rcd = qpriv->rcd;
1671 }
1672 
1673 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1674 			    void *context, int vl, int mode, u64 data)
1675 {
1676 	struct hfi1_devdata *dd = context;
1677 
1678 	return dd->verbs_dev.n_tidwait;
1679 }
1680 
1681 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1682 					  u32 psn, u16 *fidx)
1683 {
1684 	u16 head, tail;
1685 	struct tid_rdma_flow *flow;
1686 
1687 	head = req->setup_head;
1688 	tail = req->clear_tail;
1689 	for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1690 	     tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1691 		flow = &req->flows[tail];
1692 		if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1693 		    cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1694 			if (fidx)
1695 				*fidx = tail;
1696 			return flow;
1697 		}
1698 	}
1699 	return NULL;
1700 }
1701 
1702 /* TID RDMA READ functions */
1703 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1704 				    struct ib_other_headers *ohdr, u32 *bth1,
1705 				    u32 *bth2, u32 *len)
1706 {
1707 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1708 	struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1709 	struct rvt_qp *qp = req->qp;
1710 	struct hfi1_qp_priv *qpriv = qp->priv;
1711 	struct hfi1_swqe_priv *wpriv = wqe->priv;
1712 	struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1713 	struct tid_rdma_params *remote;
1714 	u32 req_len = 0;
1715 	void *req_addr = NULL;
1716 
1717 	/* This is the IB psn used to send the request */
1718 	*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1719 	trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1720 
1721 	/* TID Entries for TID RDMA READ payload */
1722 	req_addr = &flow->tid_entry[flow->tid_idx];
1723 	req_len = sizeof(*flow->tid_entry) *
1724 			(flow->tidcnt - flow->tid_idx);
1725 
1726 	memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1727 	wpriv->ss.sge.vaddr = req_addr;
1728 	wpriv->ss.sge.sge_length = req_len;
1729 	wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1730 	/*
1731 	 * We can safely zero these out. Since the first SGE covers the
1732 	 * entire packet, nothing else should even look at the MR.
1733 	 */
1734 	wpriv->ss.sge.mr = NULL;
1735 	wpriv->ss.sge.m = 0;
1736 	wpriv->ss.sge.n = 0;
1737 
1738 	wpriv->ss.sg_list = NULL;
1739 	wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1740 	wpriv->ss.num_sge = 1;
1741 
1742 	/* Construct the TID RDMA READ REQ packet header */
1743 	rcu_read_lock();
1744 	remote = rcu_dereference(qpriv->tid_rdma.remote);
1745 
1746 	KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1747 	KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1748 	rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1749 			   req->cur_seg * req->seg_len + flow->sent);
1750 	rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1751 	rreq->reth.length = cpu_to_be32(*len);
1752 	rreq->tid_flow_psn =
1753 		cpu_to_be32((flow->flow_state.generation <<
1754 			     HFI1_KDETH_BTH_SEQ_SHIFT) |
1755 			    ((flow->flow_state.spsn + flow->pkt) &
1756 			     HFI1_KDETH_BTH_SEQ_MASK));
1757 	rreq->tid_flow_qp =
1758 		cpu_to_be32(qpriv->tid_rdma.local.qp |
1759 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1760 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
1761 			    qpriv->rcd->ctxt);
1762 	rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1763 	*bth1 &= ~RVT_QPN_MASK;
1764 	*bth1 |= remote->qp;
1765 	*bth2 |= IB_BTH_REQ_ACK;
1766 	rcu_read_unlock();
1767 
1768 	/* We are done with this segment */
1769 	flow->sent += *len;
1770 	req->cur_seg++;
1771 	qp->s_state = TID_OP(READ_REQ);
1772 	req->ack_pending++;
1773 	req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1774 	qpriv->pending_tid_r_segs++;
1775 	qp->s_num_rd_atomic++;
1776 
1777 	/* Set the TID RDMA READ request payload size */
1778 	*len = req_len;
1779 
1780 	return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1781 }
1782 
1783 /*
1784  * @len: contains the data length to read upon entry and the read request
1785  *       payload length upon exit.
1786  */
1787 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1788 				 struct ib_other_headers *ohdr, u32 *bth1,
1789 				 u32 *bth2, u32 *len)
1790 	__must_hold(&qp->s_lock)
1791 {
1792 	struct hfi1_qp_priv *qpriv = qp->priv;
1793 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1794 	struct tid_rdma_flow *flow = NULL;
1795 	u32 hdwords = 0;
1796 	bool last;
1797 	bool retry = true;
1798 	u32 npkts = rvt_div_round_up_mtu(qp, *len);
1799 
1800 	trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1801 					  wqe->lpsn, req);
1802 	/*
1803 	 * Check sync conditions. Make sure that there are no pending
1804 	 * segments before freeing the flow.
1805 	 */
1806 sync_check:
1807 	if (req->state == TID_REQUEST_SYNC) {
1808 		if (qpriv->pending_tid_r_segs)
1809 			goto done;
1810 
1811 		hfi1_kern_clear_hw_flow(req->rcd, qp);
1812 		qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1813 		req->state = TID_REQUEST_ACTIVE;
1814 	}
1815 
1816 	/*
1817 	 * If the request for this segment is resent, the tid resources should
1818 	 * have been allocated before. In this case, req->flow_idx should
1819 	 * fall behind req->setup_head.
1820 	 */
1821 	if (req->flow_idx == req->setup_head) {
1822 		retry = false;
1823 		if (req->state == TID_REQUEST_RESEND) {
1824 			/*
1825 			 * This is the first new segment for a request whose
1826 			 * earlier segments have been re-sent. We need to
1827 			 * set up the sge pointer correctly.
1828 			 */
1829 			restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1830 				    qp->pmtu);
1831 			req->isge = 0;
1832 			req->state = TID_REQUEST_ACTIVE;
1833 		}
1834 
1835 		/*
1836 		 * Check sync. The last PSN of each generation is reserved for
1837 		 * RESYNC.
1838 		 */
1839 		if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1840 			req->state = TID_REQUEST_SYNC;
1841 			goto sync_check;
1842 		}
1843 
1844 		/* Allocate the flow if not yet */
1845 		if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1846 			goto done;
1847 
1848 		/*
1849 		 * The following call will advance req->setup_head after
1850 		 * allocating the tid entries.
1851 		 */
1852 		if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1853 			req->state = TID_REQUEST_QUEUED;
1854 
1855 			/*
1856 			 * We don't have resources for this segment. The QP has
1857 			 * already been queued.
1858 			 */
1859 			goto done;
1860 		}
1861 	}
1862 
1863 	/* req->flow_idx should only be one slot behind req->setup_head */
1864 	flow = &req->flows[req->flow_idx];
1865 	flow->pkt = 0;
1866 	flow->tid_idx = 0;
1867 	flow->sent = 0;
1868 	if (!retry) {
1869 		/* Set the first and last IB PSN for the flow in use.*/
1870 		flow->flow_state.ib_spsn = req->s_next_psn;
1871 		flow->flow_state.ib_lpsn =
1872 			flow->flow_state.ib_spsn + flow->npkts - 1;
1873 	}
1874 
1875 	/* Calculate the next segment start psn.*/
1876 	req->s_next_psn += flow->npkts;
1877 
1878 	/* Build the packet header */
1879 	hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1880 done:
1881 	return hdwords;
1882 }
1883 
1884 /*
1885  * Validate and accept the TID RDMA READ request parameters.
1886  * Return 0 if the request is accepted successfully;
1887  * Return 1 otherwise.
1888  */
1889 static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1890 				     struct rvt_ack_entry *e,
1891 				     struct hfi1_packet *packet,
1892 				     struct ib_other_headers *ohdr,
1893 				     u32 bth0, u32 psn, u64 vaddr, u32 len)
1894 {
1895 	struct hfi1_qp_priv *qpriv = qp->priv;
1896 	struct tid_rdma_request *req;
1897 	struct tid_rdma_flow *flow;
1898 	u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1899 
1900 	req = ack_to_tid_req(e);
1901 
1902 	/* Validate the payload first */
1903 	flow = &req->flows[req->setup_head];
1904 
1905 	/* payload length = packet length - (header length + ICRC length) */
1906 	pktlen = packet->tlen - (packet->hlen + 4);
1907 	if (pktlen > sizeof(flow->tid_entry))
1908 		return 1;
1909 	memcpy(flow->tid_entry, packet->ebuf, pktlen);
1910 	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1911 
1912 	/*
1913 	 * Walk the TID_ENTRY list to make sure we have enough space for a
1914 	 * complete segment. Also calculate the number of required packets.
1915 	 */
1916 	flow->npkts = rvt_div_round_up_mtu(qp, len);
1917 	for (i = 0; i < flow->tidcnt; i++) {
1918 		trace_hfi1_tid_entry_rcv_read_req(qp, i,
1919 						  flow->tid_entry[i]);
1920 		tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1921 		if (!tlen)
1922 			return 1;
1923 
1924 		/*
1925 		 * For tid pair (tidctr == 3), the buffer size of the pair
1926 		 * should be the sum of the buffer size described by each
1927 		 * tid entry. However, only the first entry needs to be
1928 		 * specified in the request (see WFR HAS Section 8.5.7.1).
1929 		 */
1930 		tidlen += tlen;
1931 	}
1932 	if (tidlen * PAGE_SIZE < len)
1933 		return 1;
1934 
1935 	/* Empty the flow array */
1936 	req->clear_tail = req->setup_head;
1937 	flow->pkt = 0;
1938 	flow->tid_idx = 0;
1939 	flow->tid_offset = 0;
1940 	flow->sent = 0;
1941 	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1942 	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1943 		    TID_RDMA_DESTQP_FLOW_MASK;
1944 	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1945 	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1946 	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1947 	flow->length = len;
1948 
1949 	flow->flow_state.lpsn = flow->flow_state.spsn +
1950 		flow->npkts - 1;
1951 	flow->flow_state.ib_spsn = psn;
1952 	flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1953 
1954 	trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1955 	/* Set the initial flow index to the current flow. */
1956 	req->flow_idx = req->setup_head;
1957 
1958 	/* advance circular buffer head */
1959 	req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1960 
1961 	/*
1962 	 * Compute last PSN for request.
1963 	 */
1964 	e->opcode = (bth0 >> 24) & 0xff;
1965 	e->psn = psn;
1966 	e->lpsn = psn + flow->npkts - 1;
1967 	e->sent = 0;
1968 
1969 	req->n_flows = qpriv->tid_rdma.local.max_read;
1970 	req->state = TID_REQUEST_ACTIVE;
1971 	req->cur_seg = 0;
1972 	req->comp_seg = 0;
1973 	req->ack_seg = 0;
1974 	req->isge = 0;
1975 	req->seg_len = qpriv->tid_rdma.local.max_len;
1976 	req->total_len = len;
1977 	req->total_segs = 1;
1978 	req->r_flow_psn = e->psn;
1979 
1980 	trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1981 					req);
1982 	return 0;
1983 }
1984 
1985 static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1986 			      struct ib_other_headers *ohdr,
1987 			      struct rvt_qp *qp, u32 psn, int diff)
1988 {
1989 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1990 	struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1991 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1992 	struct hfi1_qp_priv *qpriv = qp->priv;
1993 	struct rvt_ack_entry *e;
1994 	struct tid_rdma_request *req;
1995 	unsigned long flags;
1996 	u8 prev;
1997 	bool old_req;
1998 
1999 	trace_hfi1_rsp_tid_rcv_error(qp, psn);
2000 	trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
2001 	if (diff > 0) {
2002 		/* sequence error */
2003 		if (!qp->r_nak_state) {
2004 			ibp->rvp.n_rc_seqnak++;
2005 			qp->r_nak_state = IB_NAK_PSN_ERROR;
2006 			qp->r_ack_psn = qp->r_psn;
2007 			rc_defered_ack(rcd, qp);
2008 		}
2009 		goto done;
2010 	}
2011 
2012 	ibp->rvp.n_rc_dupreq++;
2013 
2014 	spin_lock_irqsave(&qp->s_lock, flags);
2015 	e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
2016 	if (!e || (e->opcode != TID_OP(READ_REQ) &&
2017 		   e->opcode != TID_OP(WRITE_REQ)))
2018 		goto unlock;
2019 
2020 	req = ack_to_tid_req(e);
2021 	req->r_flow_psn = psn;
2022 	trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
2023 	if (e->opcode == TID_OP(READ_REQ)) {
2024 		struct ib_reth *reth;
2025 		u32 len;
2026 		u32 rkey;
2027 		u64 vaddr;
2028 		int ok;
2029 		u32 bth0;
2030 
2031 		reth = &ohdr->u.tid_rdma.r_req.reth;
2032 		/*
2033 		 * The requester always restarts from the start of the original
2034 		 * request.
2035 		 */
2036 		len = be32_to_cpu(reth->length);
2037 		if (psn != e->psn || len != req->total_len)
2038 			goto unlock;
2039 
2040 		release_rdma_sge_mr(e);
2041 
2042 		rkey = be32_to_cpu(reth->rkey);
2043 		vaddr = get_ib_reth_vaddr(reth);
2044 
2045 		qp->r_len = len;
2046 		ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2047 				 IB_ACCESS_REMOTE_READ);
2048 		if (unlikely(!ok))
2049 			goto unlock;
2050 
2051 		/*
2052 		 * If all the response packets for the current request have
2053 		 * been sent out and this request is complete (old_request
2054 		 * == false) and the TID flow may be unusable (the
2055 		 * req->clear_tail is advanced). However, when an earlier
2056 		 * request is received, this request will not be complete any
2057 		 * more (qp->s_tail_ack_queue is moved back, see below).
2058 		 * Consequently, we need to update the TID flow info everytime
2059 		 * a duplicate request is received.
2060 		 */
2061 		bth0 = be32_to_cpu(ohdr->bth[0]);
2062 		if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2063 					      vaddr, len))
2064 			goto unlock;
2065 
2066 		/*
2067 		 * True if the request is already scheduled (between
2068 		 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2069 		 */
2070 		if (old_req)
2071 			goto unlock;
2072 	} else {
2073 		struct flow_state *fstate;
2074 		bool schedule = false;
2075 		u8 i;
2076 
2077 		if (req->state == TID_REQUEST_RESEND) {
2078 			req->state = TID_REQUEST_RESEND_ACTIVE;
2079 		} else if (req->state == TID_REQUEST_INIT_RESEND) {
2080 			req->state = TID_REQUEST_INIT;
2081 			schedule = true;
2082 		}
2083 
2084 		/*
2085 		 * True if the request is already scheduled (between
2086 		 * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2087 		 * Also, don't change requests, which are at the SYNC
2088 		 * point and haven't generated any responses yet.
2089 		 * There is nothing to retransmit for them yet.
2090 		 */
2091 		if (old_req || req->state == TID_REQUEST_INIT ||
2092 		    (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2093 			for (i = prev + 1; ; i++) {
2094 				if (i > rvt_size_atomic(&dev->rdi))
2095 					i = 0;
2096 				if (i == qp->r_head_ack_queue)
2097 					break;
2098 				e = &qp->s_ack_queue[i];
2099 				req = ack_to_tid_req(e);
2100 				if (e->opcode == TID_OP(WRITE_REQ) &&
2101 				    req->state == TID_REQUEST_INIT)
2102 					req->state = TID_REQUEST_INIT_RESEND;
2103 			}
2104 			/*
2105 			 * If the state of the request has been changed,
2106 			 * the first leg needs to get scheduled in order to
2107 			 * pick up the change. Otherwise, normal response
2108 			 * processing should take care of it.
2109 			 */
2110 			if (!schedule)
2111 				goto unlock;
2112 		}
2113 
2114 		/*
2115 		 * If there is no more allocated segment, just schedule the qp
2116 		 * without changing any state.
2117 		 */
2118 		if (req->clear_tail == req->setup_head)
2119 			goto schedule;
2120 		/*
2121 		 * If this request has sent responses for segments, which have
2122 		 * not received data yet (flow_idx != clear_tail), the flow_idx
2123 		 * pointer needs to be adjusted so the same responses can be
2124 		 * re-sent.
2125 		 */
2126 		if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2127 			fstate = &req->flows[req->clear_tail].flow_state;
2128 			qpriv->pending_tid_w_segs -=
2129 				CIRC_CNT(req->flow_idx, req->clear_tail,
2130 					 MAX_FLOWS);
2131 			req->flow_idx =
2132 				CIRC_ADD(req->clear_tail,
2133 					 delta_psn(psn, fstate->resp_ib_psn),
2134 					 MAX_FLOWS);
2135 			qpriv->pending_tid_w_segs +=
2136 				delta_psn(psn, fstate->resp_ib_psn);
2137 			/*
2138 			 * When flow_idx == setup_head, we've gotten a duplicate
2139 			 * request for a segment, which has not been allocated
2140 			 * yet. In that case, don't adjust this request.
2141 			 * However, we still want to go through the loop below
2142 			 * to adjust all subsequent requests.
2143 			 */
2144 			if (CIRC_CNT(req->setup_head, req->flow_idx,
2145 				     MAX_FLOWS)) {
2146 				req->cur_seg = delta_psn(psn, e->psn);
2147 				req->state = TID_REQUEST_RESEND_ACTIVE;
2148 			}
2149 		}
2150 
2151 		for (i = prev + 1; ; i++) {
2152 			/*
2153 			 * Look at everything up to and including
2154 			 * s_tail_ack_queue
2155 			 */
2156 			if (i > rvt_size_atomic(&dev->rdi))
2157 				i = 0;
2158 			if (i == qp->r_head_ack_queue)
2159 				break;
2160 			e = &qp->s_ack_queue[i];
2161 			req = ack_to_tid_req(e);
2162 			trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2163 						   e->lpsn, req);
2164 			if (e->opcode != TID_OP(WRITE_REQ) ||
2165 			    req->cur_seg == req->comp_seg ||
2166 			    req->state == TID_REQUEST_INIT ||
2167 			    req->state == TID_REQUEST_INIT_RESEND) {
2168 				if (req->state == TID_REQUEST_INIT)
2169 					req->state = TID_REQUEST_INIT_RESEND;
2170 				continue;
2171 			}
2172 			qpriv->pending_tid_w_segs -=
2173 				CIRC_CNT(req->flow_idx,
2174 					 req->clear_tail,
2175 					 MAX_FLOWS);
2176 			req->flow_idx = req->clear_tail;
2177 			req->state = TID_REQUEST_RESEND;
2178 			req->cur_seg = req->comp_seg;
2179 		}
2180 		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2181 	}
2182 	/* Re-process old requests.*/
2183 	if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2184 		qp->s_acked_ack_queue = prev;
2185 	qp->s_tail_ack_queue = prev;
2186 	/*
2187 	 * Since the qp->s_tail_ack_queue is modified, the
2188 	 * qp->s_ack_state must be changed to re-initialize
2189 	 * qp->s_ack_rdma_sge; Otherwise, we will end up in
2190 	 * wrong memory region.
2191 	 */
2192 	qp->s_ack_state = OP(ACKNOWLEDGE);
2193 schedule:
2194 	/*
2195 	 * It's possible to receive a retry psn that is earlier than an RNRNAK
2196 	 * psn. In this case, the rnrnak state should be cleared.
2197 	 */
2198 	if (qpriv->rnr_nak_state) {
2199 		qp->s_nak_state = 0;
2200 		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2201 		qp->r_psn = e->lpsn + 1;
2202 		hfi1_tid_write_alloc_resources(qp, true);
2203 	}
2204 
2205 	qp->r_state = e->opcode;
2206 	qp->r_nak_state = 0;
2207 	qp->s_flags |= RVT_S_RESP_PENDING;
2208 	hfi1_schedule_send(qp);
2209 unlock:
2210 	spin_unlock_irqrestore(&qp->s_lock, flags);
2211 done:
2212 	return 1;
2213 }
2214 
2215 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2216 {
2217 	/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2218 
2219 	/*
2220 	 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2221 	 *    (see hfi1_rc_rcv())
2222 	 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2223 	 *     - Setup struct tid_rdma_req with request info
2224 	 *     - Initialize struct tid_rdma_flow info;
2225 	 *     - Copy TID entries;
2226 	 * 3. Set the qp->s_ack_state.
2227 	 * 4. Set RVT_S_RESP_PENDING in s_flags.
2228 	 * 5. Kick the send engine (hfi1_schedule_send())
2229 	 */
2230 	struct hfi1_ctxtdata *rcd = packet->rcd;
2231 	struct rvt_qp *qp = packet->qp;
2232 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2233 	struct ib_other_headers *ohdr = packet->ohdr;
2234 	struct rvt_ack_entry *e;
2235 	unsigned long flags;
2236 	struct ib_reth *reth;
2237 	struct hfi1_qp_priv *qpriv = qp->priv;
2238 	u32 bth0, psn, len, rkey;
2239 	bool fecn;
2240 	u8 next;
2241 	u64 vaddr;
2242 	int diff;
2243 	u8 nack_state = IB_NAK_INVALID_REQUEST;
2244 
2245 	bth0 = be32_to_cpu(ohdr->bth[0]);
2246 	if (hfi1_ruc_check_hdr(ibp, packet))
2247 		return;
2248 
2249 	fecn = process_ecn(qp, packet);
2250 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2251 	trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2252 
2253 	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2254 		rvt_comm_est(qp);
2255 
2256 	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2257 		goto nack_inv;
2258 
2259 	reth = &ohdr->u.tid_rdma.r_req.reth;
2260 	vaddr = be64_to_cpu(reth->vaddr);
2261 	len = be32_to_cpu(reth->length);
2262 	/* The length needs to be in multiples of PAGE_SIZE */
2263 	if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2264 		goto nack_inv;
2265 
2266 	diff = delta_psn(psn, qp->r_psn);
2267 	if (unlikely(diff)) {
2268 		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2269 		return;
2270 	}
2271 
2272 	/* We've verified the request, insert it into the ack queue. */
2273 	next = qp->r_head_ack_queue + 1;
2274 	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2275 		next = 0;
2276 	spin_lock_irqsave(&qp->s_lock, flags);
2277 	if (unlikely(next == qp->s_tail_ack_queue)) {
2278 		if (!qp->s_ack_queue[next].sent) {
2279 			nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2280 			goto nack_inv_unlock;
2281 		}
2282 		update_ack_queue(qp, next);
2283 	}
2284 	e = &qp->s_ack_queue[qp->r_head_ack_queue];
2285 	release_rdma_sge_mr(e);
2286 
2287 	rkey = be32_to_cpu(reth->rkey);
2288 	qp->r_len = len;
2289 
2290 	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2291 				  rkey, IB_ACCESS_REMOTE_READ)))
2292 		goto nack_acc;
2293 
2294 	/* Accept the request parameters */
2295 	if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2296 				      len))
2297 		goto nack_inv_unlock;
2298 
2299 	qp->r_state = e->opcode;
2300 	qp->r_nak_state = 0;
2301 	/*
2302 	 * We need to increment the MSN here instead of when we
2303 	 * finish sending the result since a duplicate request would
2304 	 * increment it more than once.
2305 	 */
2306 	qp->r_msn++;
2307 	qp->r_psn += e->lpsn - e->psn + 1;
2308 
2309 	qp->r_head_ack_queue = next;
2310 
2311 	/*
2312 	 * For all requests other than TID WRITE which are added to the ack
2313 	 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2314 	 * do this because of interlocks between these and TID WRITE
2315 	 * requests. The same change has also been made in hfi1_rc_rcv().
2316 	 */
2317 	qpriv->r_tid_alloc = qp->r_head_ack_queue;
2318 
2319 	/* Schedule the send tasklet. */
2320 	qp->s_flags |= RVT_S_RESP_PENDING;
2321 	if (fecn)
2322 		qp->s_flags |= RVT_S_ECN;
2323 	hfi1_schedule_send(qp);
2324 
2325 	spin_unlock_irqrestore(&qp->s_lock, flags);
2326 	return;
2327 
2328 nack_inv_unlock:
2329 	spin_unlock_irqrestore(&qp->s_lock, flags);
2330 nack_inv:
2331 	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2332 	qp->r_nak_state = nack_state;
2333 	qp->r_ack_psn = qp->r_psn;
2334 	/* Queue NAK for later */
2335 	rc_defered_ack(rcd, qp);
2336 	return;
2337 nack_acc:
2338 	spin_unlock_irqrestore(&qp->s_lock, flags);
2339 	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2340 	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2341 	qp->r_ack_psn = qp->r_psn;
2342 }
2343 
2344 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2345 				  struct ib_other_headers *ohdr, u32 *bth0,
2346 				  u32 *bth1, u32 *bth2, u32 *len, bool *last)
2347 {
2348 	struct hfi1_ack_priv *epriv = e->priv;
2349 	struct tid_rdma_request *req = &epriv->tid_req;
2350 	struct hfi1_qp_priv *qpriv = qp->priv;
2351 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2352 	u32 tidentry = flow->tid_entry[flow->tid_idx];
2353 	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2354 	struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2355 	u32 next_offset, om = KDETH_OM_LARGE;
2356 	bool last_pkt;
2357 	u32 hdwords = 0;
2358 	struct tid_rdma_params *remote;
2359 
2360 	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2361 	flow->sent += *len;
2362 	next_offset = flow->tid_offset + *len;
2363 	last_pkt = (flow->sent >= flow->length);
2364 
2365 	trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2366 	trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2367 
2368 	rcu_read_lock();
2369 	remote = rcu_dereference(qpriv->tid_rdma.remote);
2370 	if (!remote) {
2371 		rcu_read_unlock();
2372 		goto done;
2373 	}
2374 	KDETH_RESET(resp->kdeth0, KVER, 0x1);
2375 	KDETH_SET(resp->kdeth0, SH, !last_pkt);
2376 	KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2377 	KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2378 	KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2379 	KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2380 	KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2381 	KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2382 	resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2383 	rcu_read_unlock();
2384 
2385 	resp->aeth = rvt_compute_aeth(qp);
2386 	resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2387 					       flow->pkt));
2388 
2389 	*bth0 = TID_OP(READ_RESP) << 24;
2390 	*bth1 = flow->tid_qpn;
2391 	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2392 			  HFI1_KDETH_BTH_SEQ_MASK) |
2393 			 (flow->flow_state.generation <<
2394 			  HFI1_KDETH_BTH_SEQ_SHIFT));
2395 	*last = last_pkt;
2396 	if (last_pkt)
2397 		/* Advance to next flow */
2398 		req->clear_tail = (req->clear_tail + 1) &
2399 				  (MAX_FLOWS - 1);
2400 
2401 	if (next_offset >= tidlen) {
2402 		flow->tid_offset = 0;
2403 		flow->tid_idx++;
2404 	} else {
2405 		flow->tid_offset = next_offset;
2406 	}
2407 
2408 	hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2409 
2410 done:
2411 	return hdwords;
2412 }
2413 
2414 static inline struct tid_rdma_request *
2415 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2416 	__must_hold(&qp->s_lock)
2417 {
2418 	struct rvt_swqe *wqe;
2419 	struct tid_rdma_request *req = NULL;
2420 	u32 i, end;
2421 
2422 	end = qp->s_cur + 1;
2423 	if (end == qp->s_size)
2424 		end = 0;
2425 	for (i = qp->s_acked; i != end;) {
2426 		wqe = rvt_get_swqe_ptr(qp, i);
2427 		if (cmp_psn(psn, wqe->psn) >= 0 &&
2428 		    cmp_psn(psn, wqe->lpsn) <= 0) {
2429 			if (wqe->wr.opcode == opcode)
2430 				req = wqe_to_tid_req(wqe);
2431 			break;
2432 		}
2433 		if (++i == qp->s_size)
2434 			i = 0;
2435 	}
2436 
2437 	return req;
2438 }
2439 
2440 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2441 {
2442 	/* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2443 
2444 	/*
2445 	 * 1. Find matching SWQE
2446 	 * 2. Check that the entire segment has been read.
2447 	 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2448 	 * 4. Free the TID flow resources.
2449 	 * 5. Kick the send engine (hfi1_schedule_send())
2450 	 */
2451 	struct ib_other_headers *ohdr = packet->ohdr;
2452 	struct rvt_qp *qp = packet->qp;
2453 	struct hfi1_qp_priv *priv = qp->priv;
2454 	struct hfi1_ctxtdata *rcd = packet->rcd;
2455 	struct tid_rdma_request *req;
2456 	struct tid_rdma_flow *flow;
2457 	u32 opcode, aeth;
2458 	bool fecn;
2459 	unsigned long flags;
2460 	u32 kpsn, ipsn;
2461 
2462 	trace_hfi1_sender_rcv_tid_read_resp(qp);
2463 	fecn = process_ecn(qp, packet);
2464 	kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2465 	aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2466 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2467 
2468 	spin_lock_irqsave(&qp->s_lock, flags);
2469 	ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2470 	req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2471 	if (unlikely(!req))
2472 		goto ack_op_err;
2473 
2474 	flow = &req->flows[req->clear_tail];
2475 	/* When header suppression is disabled */
2476 	if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2477 		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2478 
2479 		if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2480 			goto ack_done;
2481 		flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2482 		/*
2483 		 * Copy the payload to destination buffer if this packet is
2484 		 * delivered as an eager packet due to RSM rule and FECN.
2485 		 * The RSM rule selects FECN bit in BTH and SH bit in
2486 		 * KDETH header and therefore will not match the last
2487 		 * packet of each segment that has SH bit cleared.
2488 		 */
2489 		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2490 			struct rvt_sge_state ss;
2491 			u32 len;
2492 			u32 tlen = packet->tlen;
2493 			u16 hdrsize = packet->hlen;
2494 			u8 pad = packet->pad;
2495 			u8 extra_bytes = pad + packet->extra_byte +
2496 				(SIZE_OF_CRC << 2);
2497 			u32 pmtu = qp->pmtu;
2498 
2499 			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2500 				goto ack_op_err;
2501 			len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2502 			if (unlikely(len < pmtu))
2503 				goto ack_op_err;
2504 			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2505 				     false);
2506 			/* Raise the sw sequence check flag for next packet */
2507 			priv->s_flags |= HFI1_R_TID_SW_PSN;
2508 		}
2509 
2510 		goto ack_done;
2511 	}
2512 	flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2513 	req->ack_pending--;
2514 	priv->pending_tid_r_segs--;
2515 	qp->s_num_rd_atomic--;
2516 	if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2517 	    !qp->s_num_rd_atomic) {
2518 		qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2519 				 RVT_S_WAIT_ACK);
2520 		hfi1_schedule_send(qp);
2521 	}
2522 	if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2523 		qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2524 		hfi1_schedule_send(qp);
2525 	}
2526 
2527 	trace_hfi1_ack(qp, ipsn);
2528 	trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2529 					 req->e.swqe->psn, req->e.swqe->lpsn,
2530 					 req);
2531 	trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2532 
2533 	/* Release the tid resources */
2534 	hfi1_kern_exp_rcv_clear(req);
2535 
2536 	if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2537 		goto ack_done;
2538 
2539 	/* If not done yet, build next read request */
2540 	if (++req->comp_seg >= req->total_segs) {
2541 		priv->tid_r_comp++;
2542 		req->state = TID_REQUEST_COMPLETE;
2543 	}
2544 
2545 	/*
2546 	 * Clear the hw flow under two conditions:
2547 	 * 1. This request is a sync point and it is complete;
2548 	 * 2. Current request is completed and there are no more requests.
2549 	 */
2550 	if ((req->state == TID_REQUEST_SYNC &&
2551 	     req->comp_seg == req->cur_seg) ||
2552 	    priv->tid_r_comp == priv->tid_r_reqs) {
2553 		hfi1_kern_clear_hw_flow(priv->rcd, qp);
2554 		priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2555 		if (req->state == TID_REQUEST_SYNC)
2556 			req->state = TID_REQUEST_ACTIVE;
2557 	}
2558 
2559 	hfi1_schedule_send(qp);
2560 	goto ack_done;
2561 
2562 ack_op_err:
2563 	/*
2564 	 * The test indicates that the send engine has finished its cleanup
2565 	 * after sending the request and it's now safe to put the QP into error
2566 	 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2567 	 * == qp->s_head), it would be unsafe to complete the wqe pointed by
2568 	 * qp->s_acked here. Putting the qp into error state will safely flush
2569 	 * all remaining requests.
2570 	 */
2571 	if (qp->s_last == qp->s_acked)
2572 		rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2573 
2574 ack_done:
2575 	spin_unlock_irqrestore(&qp->s_lock, flags);
2576 }
2577 
2578 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2579 	__must_hold(&qp->s_lock)
2580 {
2581 	u32 n = qp->s_acked;
2582 	struct rvt_swqe *wqe;
2583 	struct tid_rdma_request *req;
2584 	struct hfi1_qp_priv *priv = qp->priv;
2585 
2586 	lockdep_assert_held(&qp->s_lock);
2587 	/* Free any TID entries */
2588 	while (n != qp->s_tail) {
2589 		wqe = rvt_get_swqe_ptr(qp, n);
2590 		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2591 			req = wqe_to_tid_req(wqe);
2592 			hfi1_kern_exp_rcv_clear_all(req);
2593 		}
2594 
2595 		if (++n == qp->s_size)
2596 			n = 0;
2597 	}
2598 	/* Free flow */
2599 	hfi1_kern_clear_hw_flow(priv->rcd, qp);
2600 }
2601 
2602 static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type)
2603 {
2604 	struct rvt_qp *qp = packet->qp;
2605 
2606 	if (rcv_type >= RHF_RCV_TYPE_IB)
2607 		goto done;
2608 
2609 	spin_lock(&qp->s_lock);
2610 
2611 	/*
2612 	 * We've ran out of space in the eager buffer.
2613 	 * Eagerly received KDETH packets which require space in the
2614 	 * Eager buffer (packet that have payload) are TID RDMA WRITE
2615 	 * response packets. In this case, we have to re-transmit the
2616 	 * TID RDMA WRITE request.
2617 	 */
2618 	if (rcv_type == RHF_RCV_TYPE_EAGER) {
2619 		hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2620 		hfi1_schedule_send(qp);
2621 	}
2622 
2623 	/* Since no payload is delivered, just drop the packet */
2624 	spin_unlock(&qp->s_lock);
2625 done:
2626 	return true;
2627 }
2628 
2629 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2630 				      struct rvt_qp *qp, struct rvt_swqe *wqe)
2631 {
2632 	struct tid_rdma_request *req;
2633 	struct tid_rdma_flow *flow;
2634 
2635 	/* Start from the right segment */
2636 	qp->r_flags |= RVT_R_RDMAR_SEQ;
2637 	req = wqe_to_tid_req(wqe);
2638 	flow = &req->flows[req->clear_tail];
2639 	hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2640 	if (list_empty(&qp->rspwait)) {
2641 		qp->r_flags |= RVT_R_RSP_SEND;
2642 		rvt_get_qp(qp);
2643 		list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2644 	}
2645 }
2646 
2647 /*
2648  * Handle the KDETH eflags for TID RDMA READ response.
2649  *
2650  * Return true if the last packet for a segment has been received and it is
2651  * time to process the response normally; otherwise, return true.
2652  *
2653  * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2654  */
2655 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2656 				     struct hfi1_packet *packet, u8 rcv_type,
2657 				     u8 rte, u32 psn, u32 ibpsn)
2658 	__must_hold(&packet->qp->r_lock) __must_hold(RCU)
2659 {
2660 	struct hfi1_pportdata *ppd = rcd->ppd;
2661 	struct hfi1_devdata *dd = ppd->dd;
2662 	struct hfi1_ibport *ibp;
2663 	struct rvt_swqe *wqe;
2664 	struct tid_rdma_request *req;
2665 	struct tid_rdma_flow *flow;
2666 	u32 ack_psn;
2667 	struct rvt_qp *qp = packet->qp;
2668 	struct hfi1_qp_priv *priv = qp->priv;
2669 	bool ret = true;
2670 	int diff = 0;
2671 	u32 fpsn;
2672 
2673 	lockdep_assert_held(&qp->r_lock);
2674 	trace_hfi1_rsp_read_kdeth_eflags(qp, ibpsn);
2675 	trace_hfi1_sender_read_kdeth_eflags(qp);
2676 	trace_hfi1_tid_read_sender_kdeth_eflags(qp, 0);
2677 	spin_lock(&qp->s_lock);
2678 	/* If the psn is out of valid range, drop the packet */
2679 	if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2680 	    cmp_psn(ibpsn, qp->s_psn) > 0)
2681 		goto s_unlock;
2682 
2683 	/*
2684 	 * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2685 	 * requests and implicitly NAK RDMA read and atomic requests issued
2686 	 * before the NAK'ed request.
2687 	 */
2688 	ack_psn = ibpsn - 1;
2689 	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2690 	ibp = to_iport(qp->ibqp.device, qp->port_num);
2691 
2692 	/* Complete WQEs that the PSN finishes. */
2693 	while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2694 		/*
2695 		 * If this request is a RDMA read or atomic, and the NACK is
2696 		 * for a later operation, this NACK NAKs the RDMA read or
2697 		 * atomic.
2698 		 */
2699 		if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2700 		    wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2701 		    wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2702 		    wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2703 			/* Retry this request. */
2704 			if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2705 				qp->r_flags |= RVT_R_RDMAR_SEQ;
2706 				if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2707 					restart_tid_rdma_read_req(rcd, qp,
2708 								  wqe);
2709 				} else {
2710 					hfi1_restart_rc(qp, qp->s_last_psn + 1,
2711 							0);
2712 					if (list_empty(&qp->rspwait)) {
2713 						qp->r_flags |= RVT_R_RSP_SEND;
2714 						rvt_get_qp(qp);
2715 						list_add_tail(/* wait */
2716 						   &qp->rspwait,
2717 						   &rcd->qp_wait_list);
2718 					}
2719 				}
2720 			}
2721 			/*
2722 			 * No need to process the NAK since we are
2723 			 * restarting an earlier request.
2724 			 */
2725 			break;
2726 		}
2727 
2728 		wqe = do_rc_completion(qp, wqe, ibp);
2729 		if (qp->s_acked == qp->s_tail)
2730 			goto s_unlock;
2731 	}
2732 
2733 	if (qp->s_acked == qp->s_tail)
2734 		goto s_unlock;
2735 
2736 	/* Handle the eflags for the request */
2737 	if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2738 		goto s_unlock;
2739 
2740 	req = wqe_to_tid_req(wqe);
2741 	trace_hfi1_tid_req_read_kdeth_eflags(qp, 0, wqe->wr.opcode, wqe->psn,
2742 					     wqe->lpsn, req);
2743 	switch (rcv_type) {
2744 	case RHF_RCV_TYPE_EXPECTED:
2745 		switch (rte) {
2746 		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2747 			/*
2748 			 * On the first occurrence of a Flow Sequence error,
2749 			 * the flag TID_FLOW_SW_PSN is set.
2750 			 *
2751 			 * After that, the flow is *not* reprogrammed and the
2752 			 * protocol falls back to SW PSN checking. This is done
2753 			 * to prevent continuous Flow Sequence errors for any
2754 			 * packets that could be still in the fabric.
2755 			 */
2756 			flow = &req->flows[req->clear_tail];
2757 			trace_hfi1_tid_flow_read_kdeth_eflags(qp,
2758 							      req->clear_tail,
2759 							      flow);
2760 			if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2761 				diff = cmp_psn(psn,
2762 					       flow->flow_state.r_next_psn);
2763 				if (diff > 0) {
2764 					/* Drop the packet.*/
2765 					goto s_unlock;
2766 				} else if (diff < 0) {
2767 					/*
2768 					 * If a response packet for a restarted
2769 					 * request has come back, reset the
2770 					 * restart flag.
2771 					 */
2772 					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2773 						qp->r_flags &=
2774 							~RVT_R_RDMAR_SEQ;
2775 
2776 					/* Drop the packet.*/
2777 					goto s_unlock;
2778 				}
2779 
2780 				/*
2781 				 * If SW PSN verification is successful and
2782 				 * this is the last packet in the segment, tell
2783 				 * the caller to process it as a normal packet.
2784 				 */
2785 				fpsn = full_flow_psn(flow,
2786 						     flow->flow_state.lpsn);
2787 				if (cmp_psn(fpsn, psn) == 0) {
2788 					ret = false;
2789 					if (qp->r_flags & RVT_R_RDMAR_SEQ)
2790 						qp->r_flags &=
2791 							~RVT_R_RDMAR_SEQ;
2792 				}
2793 				flow->flow_state.r_next_psn =
2794 					mask_psn(psn + 1);
2795 			} else {
2796 				u32 last_psn;
2797 
2798 				last_psn = read_r_next_psn(dd, rcd->ctxt,
2799 							   flow->idx);
2800 				flow->flow_state.r_next_psn = last_psn;
2801 				priv->s_flags |= HFI1_R_TID_SW_PSN;
2802 				/*
2803 				 * If no request has been restarted yet,
2804 				 * restart the current one.
2805 				 */
2806 				if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2807 					restart_tid_rdma_read_req(rcd, qp,
2808 								  wqe);
2809 			}
2810 
2811 			break;
2812 
2813 		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2814 			/*
2815 			 * Since the TID flow is able to ride through
2816 			 * generation mismatch, drop this stale packet.
2817 			 */
2818 			break;
2819 
2820 		default:
2821 			break;
2822 		}
2823 		break;
2824 
2825 	case RHF_RCV_TYPE_ERROR:
2826 		switch (rte) {
2827 		case RHF_RTE_ERROR_OP_CODE_ERR:
2828 		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2829 		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2830 		case RHF_RTE_ERROR_KHDR_KVER_ERR:
2831 		case RHF_RTE_ERROR_CONTEXT_ERR:
2832 		case RHF_RTE_ERROR_KHDR_TID_ERR:
2833 		default:
2834 			break;
2835 		}
2836 		break;
2837 	default:
2838 		break;
2839 	}
2840 s_unlock:
2841 	spin_unlock(&qp->s_lock);
2842 	return ret;
2843 }
2844 
2845 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2846 			      struct hfi1_pportdata *ppd,
2847 			      struct hfi1_packet *packet)
2848 {
2849 	struct hfi1_ibport *ibp = &ppd->ibport_data;
2850 	struct hfi1_devdata *dd = ppd->dd;
2851 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2852 	u8 rcv_type = rhf_rcv_type(packet->rhf);
2853 	u8 rte = rhf_rcv_type_err(packet->rhf);
2854 	struct ib_header *hdr = packet->hdr;
2855 	struct ib_other_headers *ohdr = NULL;
2856 	int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2857 	u16 lid  = be16_to_cpu(hdr->lrh[1]);
2858 	u8 opcode;
2859 	u32 qp_num, psn, ibpsn;
2860 	struct rvt_qp *qp;
2861 	struct hfi1_qp_priv *qpriv;
2862 	unsigned long flags;
2863 	bool ret = true;
2864 	struct rvt_ack_entry *e;
2865 	struct tid_rdma_request *req;
2866 	struct tid_rdma_flow *flow;
2867 	int diff = 0;
2868 
2869 	trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2870 					   packet->rhf);
2871 	if (packet->rhf & RHF_ICRC_ERR)
2872 		return ret;
2873 
2874 	packet->ohdr = &hdr->u.oth;
2875 	ohdr = packet->ohdr;
2876 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2877 
2878 	/* Get the destination QP number. */
2879 	qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2880 		RVT_QPN_MASK;
2881 	if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2882 		goto drop;
2883 
2884 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2885 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2886 
2887 	rcu_read_lock();
2888 	qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2889 	if (!qp)
2890 		goto rcu_unlock;
2891 
2892 	packet->qp = qp;
2893 
2894 	/* Check for valid receive state. */
2895 	spin_lock_irqsave(&qp->r_lock, flags);
2896 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2897 		ibp->rvp.n_pkt_drops++;
2898 		goto r_unlock;
2899 	}
2900 
2901 	if (packet->rhf & RHF_TID_ERR) {
2902 		/* For TIDERR and RC QPs preemptively schedule a NAK */
2903 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2904 
2905 		/* Sanity check packet */
2906 		if (tlen < 24)
2907 			goto r_unlock;
2908 
2909 		/*
2910 		 * Check for GRH. We should never get packets with GRH in this
2911 		 * path.
2912 		 */
2913 		if (lnh == HFI1_LRH_GRH)
2914 			goto r_unlock;
2915 
2916 		if (tid_rdma_tid_err(packet, rcv_type))
2917 			goto r_unlock;
2918 	}
2919 
2920 	/* handle TID RDMA READ */
2921 	if (opcode == TID_OP(READ_RESP)) {
2922 		ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2923 		ibpsn = mask_psn(ibpsn);
2924 		ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2925 					       ibpsn);
2926 		goto r_unlock;
2927 	}
2928 
2929 	/*
2930 	 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2931 	 * processed. These a completed sequentially so we can be sure that
2932 	 * the pointer will not change until the entire request has completed.
2933 	 */
2934 	spin_lock(&qp->s_lock);
2935 	qpriv = qp->priv;
2936 	if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID ||
2937 	    qpriv->r_tid_tail == qpriv->r_tid_head)
2938 		goto unlock;
2939 	e = &qp->s_ack_queue[qpriv->r_tid_tail];
2940 	if (e->opcode != TID_OP(WRITE_REQ))
2941 		goto unlock;
2942 	req = ack_to_tid_req(e);
2943 	if (req->comp_seg == req->cur_seg)
2944 		goto unlock;
2945 	flow = &req->flows[req->clear_tail];
2946 	trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2947 	trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2948 	trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2949 	trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2950 					       e->lpsn, req);
2951 	trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2952 
2953 	switch (rcv_type) {
2954 	case RHF_RCV_TYPE_EXPECTED:
2955 		switch (rte) {
2956 		case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2957 			if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
2958 				qpriv->s_flags |= HFI1_R_TID_SW_PSN;
2959 				flow->flow_state.r_next_psn =
2960 					read_r_next_psn(dd, rcd->ctxt,
2961 							flow->idx);
2962 				qpriv->r_next_psn_kdeth =
2963 					flow->flow_state.r_next_psn;
2964 				goto nak_psn;
2965 			} else {
2966 				/*
2967 				 * If the received PSN does not match the next
2968 				 * expected PSN, NAK the packet.
2969 				 * However, only do that if we know that the a
2970 				 * NAK has already been sent. Otherwise, this
2971 				 * mismatch could be due to packets that were
2972 				 * already in flight.
2973 				 */
2974 				diff = cmp_psn(psn,
2975 					       flow->flow_state.r_next_psn);
2976 				if (diff > 0)
2977 					goto nak_psn;
2978 				else if (diff < 0)
2979 					break;
2980 
2981 				qpriv->s_nak_state = 0;
2982 				/*
2983 				 * If SW PSN verification is successful and this
2984 				 * is the last packet in the segment, tell the
2985 				 * caller to process it as a normal packet.
2986 				 */
2987 				if (psn == full_flow_psn(flow,
2988 							 flow->flow_state.lpsn))
2989 					ret = false;
2990 				flow->flow_state.r_next_psn =
2991 					mask_psn(psn + 1);
2992 				qpriv->r_next_psn_kdeth =
2993 					flow->flow_state.r_next_psn;
2994 			}
2995 			break;
2996 
2997 		case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2998 			goto nak_psn;
2999 
3000 		default:
3001 			break;
3002 		}
3003 		break;
3004 
3005 	case RHF_RCV_TYPE_ERROR:
3006 		switch (rte) {
3007 		case RHF_RTE_ERROR_OP_CODE_ERR:
3008 		case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
3009 		case RHF_RTE_ERROR_KHDR_HCRC_ERR:
3010 		case RHF_RTE_ERROR_KHDR_KVER_ERR:
3011 		case RHF_RTE_ERROR_CONTEXT_ERR:
3012 		case RHF_RTE_ERROR_KHDR_TID_ERR:
3013 		default:
3014 			break;
3015 		}
3016 		break;
3017 	default:
3018 		break;
3019 	}
3020 
3021 unlock:
3022 	spin_unlock(&qp->s_lock);
3023 r_unlock:
3024 	spin_unlock_irqrestore(&qp->r_lock, flags);
3025 rcu_unlock:
3026 	rcu_read_unlock();
3027 drop:
3028 	return ret;
3029 nak_psn:
3030 	ibp->rvp.n_rc_seqnak++;
3031 	if (!qpriv->s_nak_state) {
3032 		qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3033 		/* We are NAK'ing the next expected PSN */
3034 		qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3035 		tid_rdma_trigger_ack(qp);
3036 	}
3037 	goto unlock;
3038 }
3039 
3040 /*
3041  * "Rewind" the TID request information.
3042  * This means that we reset the state back to ACTIVE,
3043  * find the proper flow, set the flow index to that flow,
3044  * and reset the flow information.
3045  */
3046 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3047 			       u32 *bth2)
3048 {
3049 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3050 	struct tid_rdma_flow *flow;
3051 	struct hfi1_qp_priv *qpriv = qp->priv;
3052 	int diff, delta_pkts;
3053 	u32 tididx = 0, i;
3054 	u16 fidx;
3055 
3056 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3057 		*bth2 = mask_psn(qp->s_psn);
3058 		flow = find_flow_ib(req, *bth2, &fidx);
3059 		if (!flow) {
3060 			trace_hfi1_msg_tid_restart_req(/* msg */
3061 			   qp, "!!!!!! Could not find flow to restart: bth2 ",
3062 			   (u64)*bth2);
3063 			trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3064 						       wqe->psn, wqe->lpsn,
3065 						       req);
3066 			return;
3067 		}
3068 	} else {
3069 		fidx = req->acked_tail;
3070 		flow = &req->flows[fidx];
3071 		*bth2 = mask_psn(req->r_ack_psn);
3072 	}
3073 
3074 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3075 		delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3076 	else
3077 		delta_pkts = delta_psn(*bth2,
3078 				       full_flow_psn(flow,
3079 						     flow->flow_state.spsn));
3080 
3081 	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3082 	diff = delta_pkts + flow->resync_npkts;
3083 
3084 	flow->sent = 0;
3085 	flow->pkt = 0;
3086 	flow->tid_idx = 0;
3087 	flow->tid_offset = 0;
3088 	if (diff) {
3089 		for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3090 			u32 tidentry = flow->tid_entry[tididx], tidlen,
3091 				tidnpkts, npkts;
3092 
3093 			flow->tid_offset = 0;
3094 			tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3095 			tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3096 			npkts = min_t(u32, diff, tidnpkts);
3097 			flow->pkt += npkts;
3098 			flow->sent += (npkts == tidnpkts ? tidlen :
3099 				       npkts * qp->pmtu);
3100 			flow->tid_offset += npkts * qp->pmtu;
3101 			diff -= npkts;
3102 			if (!diff)
3103 				break;
3104 		}
3105 	}
3106 	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3107 		rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3108 			     flow->sent, 0);
3109 		/*
3110 		 * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3111 		 * during a RESYNC, the generation is incremented and the
3112 		 * sequence is reset to 0. Since we've adjusted the npkts in the
3113 		 * flow and the SGE has been sufficiently advanced, we have to
3114 		 * adjust flow->pkt in order to calculate the correct PSN.
3115 		 */
3116 		flow->pkt -= flow->resync_npkts;
3117 	}
3118 
3119 	if (flow->tid_offset ==
3120 	    EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3121 		tididx++;
3122 		flow->tid_offset = 0;
3123 	}
3124 	flow->tid_idx = tididx;
3125 	if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3126 		/* Move flow_idx to correct index */
3127 		req->flow_idx = fidx;
3128 	else
3129 		req->clear_tail = fidx;
3130 
3131 	trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3132 	trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3133 				       wqe->lpsn, req);
3134 	req->state = TID_REQUEST_ACTIVE;
3135 	if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3136 		/* Reset all the flows that we are going to resend */
3137 		fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3138 		i = qpriv->s_tid_tail;
3139 		do {
3140 			for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3141 			      fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3142 				req->flows[fidx].sent = 0;
3143 				req->flows[fidx].pkt = 0;
3144 				req->flows[fidx].tid_idx = 0;
3145 				req->flows[fidx].tid_offset = 0;
3146 				req->flows[fidx].resync_npkts = 0;
3147 			}
3148 			if (i == qpriv->s_tid_cur)
3149 				break;
3150 			do {
3151 				i = (++i == qp->s_size ? 0 : i);
3152 				wqe = rvt_get_swqe_ptr(qp, i);
3153 			} while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3154 			req = wqe_to_tid_req(wqe);
3155 			req->cur_seg = req->ack_seg;
3156 			fidx = req->acked_tail;
3157 			/* Pull req->clear_tail back */
3158 			req->clear_tail = fidx;
3159 		} while (1);
3160 	}
3161 }
3162 
3163 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3164 {
3165 	int i, ret;
3166 	struct hfi1_qp_priv *qpriv = qp->priv;
3167 	struct tid_flow_state *fs;
3168 
3169 	if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3170 		return;
3171 
3172 	/*
3173 	 * First, clear the flow to help prevent any delayed packets from
3174 	 * being delivered.
3175 	 */
3176 	fs = &qpriv->flow_state;
3177 	if (fs->index != RXE_NUM_TID_FLOWS)
3178 		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3179 
3180 	for (i = qp->s_acked; i != qp->s_head;) {
3181 		struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3182 
3183 		if (++i == qp->s_size)
3184 			i = 0;
3185 		/* Free only locally allocated TID entries */
3186 		if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3187 			continue;
3188 		do {
3189 			struct hfi1_swqe_priv *priv = wqe->priv;
3190 
3191 			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3192 		} while (!ret);
3193 	}
3194 	for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3195 		struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3196 
3197 		if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3198 			i = 0;
3199 		/* Free only locally allocated TID entries */
3200 		if (e->opcode != TID_OP(WRITE_REQ))
3201 			continue;
3202 		do {
3203 			struct hfi1_ack_priv *priv = e->priv;
3204 
3205 			ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3206 		} while (!ret);
3207 	}
3208 }
3209 
3210 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3211 {
3212 	struct rvt_swqe *prev;
3213 	struct hfi1_qp_priv *priv = qp->priv;
3214 	u32 s_prev;
3215 	struct tid_rdma_request *req;
3216 
3217 	s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3218 	prev = rvt_get_swqe_ptr(qp, s_prev);
3219 
3220 	switch (wqe->wr.opcode) {
3221 	case IB_WR_SEND:
3222 	case IB_WR_SEND_WITH_IMM:
3223 	case IB_WR_SEND_WITH_INV:
3224 	case IB_WR_ATOMIC_CMP_AND_SWP:
3225 	case IB_WR_ATOMIC_FETCH_AND_ADD:
3226 	case IB_WR_RDMA_WRITE:
3227 	case IB_WR_RDMA_WRITE_WITH_IMM:
3228 		switch (prev->wr.opcode) {
3229 		case IB_WR_TID_RDMA_WRITE:
3230 			req = wqe_to_tid_req(prev);
3231 			if (req->ack_seg != req->total_segs)
3232 				goto interlock;
3233 			break;
3234 		default:
3235 			break;
3236 		}
3237 		break;
3238 	case IB_WR_RDMA_READ:
3239 		if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3240 			break;
3241 		fallthrough;
3242 	case IB_WR_TID_RDMA_READ:
3243 		switch (prev->wr.opcode) {
3244 		case IB_WR_RDMA_READ:
3245 			if (qp->s_acked != qp->s_cur)
3246 				goto interlock;
3247 			break;
3248 		case IB_WR_TID_RDMA_WRITE:
3249 			req = wqe_to_tid_req(prev);
3250 			if (req->ack_seg != req->total_segs)
3251 				goto interlock;
3252 			break;
3253 		default:
3254 			break;
3255 		}
3256 		break;
3257 	default:
3258 		break;
3259 	}
3260 	return false;
3261 
3262 interlock:
3263 	priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3264 	return true;
3265 }
3266 
3267 /* Does @sge meet the alignment requirements for tid rdma? */
3268 static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3269 					struct rvt_sge *sge, int num_sge)
3270 {
3271 	int i;
3272 
3273 	for (i = 0; i < num_sge; i++, sge++) {
3274 		trace_hfi1_sge_check_align(qp, i, sge);
3275 		if ((u64)sge->vaddr & ~PAGE_MASK ||
3276 		    sge->sge_length & ~PAGE_MASK)
3277 			return false;
3278 	}
3279 	return true;
3280 }
3281 
3282 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3283 {
3284 	struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3285 	struct hfi1_swqe_priv *priv = wqe->priv;
3286 	struct tid_rdma_params *remote;
3287 	enum ib_wr_opcode new_opcode;
3288 	bool do_tid_rdma = false;
3289 	struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3290 
3291 	if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3292 				ppd->lid)
3293 		return;
3294 	if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3295 		return;
3296 
3297 	rcu_read_lock();
3298 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3299 	/*
3300 	 * If TID RDMA is disabled by the negotiation, don't
3301 	 * use it.
3302 	 */
3303 	if (!remote)
3304 		goto exit;
3305 
3306 	if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3307 		if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3308 					 wqe->wr.num_sge)) {
3309 			new_opcode = IB_WR_TID_RDMA_READ;
3310 			do_tid_rdma = true;
3311 		}
3312 	} else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3313 		/*
3314 		 * TID RDMA is enabled for this RDMA WRITE request iff:
3315 		 *   1. The remote address is page-aligned,
3316 		 *   2. The length is larger than the minimum segment size,
3317 		 *   3. The length is page-multiple.
3318 		 */
3319 		if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3320 		    !(wqe->length & ~PAGE_MASK)) {
3321 			new_opcode = IB_WR_TID_RDMA_WRITE;
3322 			do_tid_rdma = true;
3323 		}
3324 	}
3325 
3326 	if (do_tid_rdma) {
3327 		if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3328 			goto exit;
3329 		wqe->wr.opcode = new_opcode;
3330 		priv->tid_req.seg_len =
3331 			min_t(u32, remote->max_len, wqe->length);
3332 		priv->tid_req.total_segs =
3333 			DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3334 		/* Compute the last PSN of the request */
3335 		wqe->lpsn = wqe->psn;
3336 		if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3337 			priv->tid_req.n_flows = remote->max_read;
3338 			qpriv->tid_r_reqs++;
3339 			wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3340 		} else {
3341 			wqe->lpsn += priv->tid_req.total_segs - 1;
3342 			atomic_inc(&qpriv->n_requests);
3343 		}
3344 
3345 		priv->tid_req.cur_seg = 0;
3346 		priv->tid_req.comp_seg = 0;
3347 		priv->tid_req.ack_seg = 0;
3348 		priv->tid_req.state = TID_REQUEST_INACTIVE;
3349 		/*
3350 		 * Reset acked_tail.
3351 		 * TID RDMA READ does not have ACKs so it does not
3352 		 * update the pointer. We have to reset it so TID RDMA
3353 		 * WRITE does not get confused.
3354 		 */
3355 		priv->tid_req.acked_tail = priv->tid_req.setup_head;
3356 		trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3357 						 wqe->psn, wqe->lpsn,
3358 						 &priv->tid_req);
3359 	}
3360 exit:
3361 	rcu_read_unlock();
3362 }
3363 
3364 /* TID RDMA WRITE functions */
3365 
3366 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3367 				  struct ib_other_headers *ohdr,
3368 				  u32 *bth1, u32 *bth2, u32 *len)
3369 {
3370 	struct hfi1_qp_priv *qpriv = qp->priv;
3371 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3372 	struct tid_rdma_params *remote;
3373 
3374 	rcu_read_lock();
3375 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3376 	/*
3377 	 * Set the number of flow to be used based on negotiated
3378 	 * parameters.
3379 	 */
3380 	req->n_flows = remote->max_write;
3381 	req->state = TID_REQUEST_ACTIVE;
3382 
3383 	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3384 	KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3385 	ohdr->u.tid_rdma.w_req.reth.vaddr =
3386 		cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3387 	ohdr->u.tid_rdma.w_req.reth.rkey =
3388 		cpu_to_be32(wqe->rdma_wr.rkey);
3389 	ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3390 	ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3391 	*bth1 &= ~RVT_QPN_MASK;
3392 	*bth1 |= remote->qp;
3393 	qp->s_state = TID_OP(WRITE_REQ);
3394 	qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3395 	*bth2 |= IB_BTH_REQ_ACK;
3396 	*len = 0;
3397 
3398 	rcu_read_unlock();
3399 	return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3400 }
3401 
3402 static u32 hfi1_compute_tid_rdma_flow_wt(struct rvt_qp *qp)
3403 {
3404 	/*
3405 	 * Heuristic for computing the RNR timeout when waiting on the flow
3406 	 * queue. Rather than a computationaly expensive exact estimate of when
3407 	 * a flow will be available, we assume that if a QP is at position N in
3408 	 * the flow queue it has to wait approximately (N + 1) * (number of
3409 	 * segments between two sync points). The rationale for this is that
3410 	 * flows are released and recycled at each sync point.
3411 	 */
3412 	return (MAX_TID_FLOW_PSN * qp->pmtu) >> TID_RDMA_SEGMENT_SHIFT;
3413 }
3414 
3415 static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3416 			     struct tid_queue *queue)
3417 {
3418 	return qpriv->tid_enqueue - queue->dequeue;
3419 }
3420 
3421 /*
3422  * @qp: points to rvt_qp context.
3423  * @to_seg: desired RNR timeout in segments.
3424  * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3425  */
3426 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3427 {
3428 	struct hfi1_qp_priv *qpriv = qp->priv;
3429 	u64 timeout;
3430 	u32 bytes_per_us;
3431 	u8 i;
3432 
3433 	bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3434 	timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3435 	/*
3436 	 * Find the next highest value in the RNR table to the required
3437 	 * timeout. This gives the responder some padding.
3438 	 */
3439 	for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3440 		if (rvt_rnr_tbl_to_usec(i) >= timeout)
3441 			return i;
3442 	return 0;
3443 }
3444 
3445 /*
3446  * Central place for resource allocation at TID write responder,
3447  * is called from write_req and write_data interrupt handlers as
3448  * well as the send thread when a queued QP is scheduled for
3449  * resource allocation.
3450  *
3451  * Iterates over (a) segments of a request and then (b) queued requests
3452  * themselves to allocate resources for up to local->max_write
3453  * segments across multiple requests. Stop allocating when we
3454  * hit a sync point, resume allocating after data packets at
3455  * sync point have been received.
3456  *
3457  * Resource allocation and sending of responses is decoupled. The
3458  * request/segment which are being allocated and sent are as follows.
3459  * Resources are allocated for:
3460  *     [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3461  * The send thread sends:
3462  *     [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3463  */
3464 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3465 {
3466 	struct tid_rdma_request *req;
3467 	struct hfi1_qp_priv *qpriv = qp->priv;
3468 	struct hfi1_ctxtdata *rcd = qpriv->rcd;
3469 	struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3470 	struct rvt_ack_entry *e;
3471 	u32 npkts, to_seg;
3472 	bool last;
3473 	int ret = 0;
3474 
3475 	lockdep_assert_held(&qp->s_lock);
3476 
3477 	while (1) {
3478 		trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3479 		trace_hfi1_tid_write_rsp_alloc_res(qp);
3480 		/*
3481 		 * Don't allocate more segments if a RNR NAK has already been
3482 		 * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3483 		 * be sent only when all allocated segments have been sent.
3484 		 * However, if more segments are allocated before that, TID RDMA
3485 		 * WRITE RESP packets will be sent out for these new segments
3486 		 * before the RNR NAK packet. When the requester receives the
3487 		 * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3488 		 * which does not match qp->r_psn and will be dropped.
3489 		 * Consequently, the requester will exhaust its retries and
3490 		 * put the qp into error state.
3491 		 */
3492 		if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3493 			break;
3494 
3495 		/* No requests left to process */
3496 		if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3497 			/* If all data has been received, clear the flow */
3498 			if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3499 			    !qpriv->alloc_w_segs) {
3500 				hfi1_kern_clear_hw_flow(rcd, qp);
3501 				qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3502 			}
3503 			break;
3504 		}
3505 
3506 		e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3507 		if (e->opcode != TID_OP(WRITE_REQ))
3508 			goto next_req;
3509 		req = ack_to_tid_req(e);
3510 		trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3511 						   e->lpsn, req);
3512 		/* Finished allocating for all segments of this request */
3513 		if (req->alloc_seg >= req->total_segs)
3514 			goto next_req;
3515 
3516 		/* Can allocate only a maximum of local->max_write for a QP */
3517 		if (qpriv->alloc_w_segs >= local->max_write)
3518 			break;
3519 
3520 		/* Don't allocate at a sync point with data packets pending */
3521 		if (qpriv->sync_pt && qpriv->alloc_w_segs)
3522 			break;
3523 
3524 		/* All data received at the sync point, continue */
3525 		if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3526 			hfi1_kern_clear_hw_flow(rcd, qp);
3527 			qpriv->sync_pt = false;
3528 			qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3529 		}
3530 
3531 		/* Allocate flow if we don't have one */
3532 		if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3533 			ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3534 			if (ret) {
3535 				to_seg = hfi1_compute_tid_rdma_flow_wt(qp) *
3536 					position_in_queue(qpriv,
3537 							  &rcd->flow_queue);
3538 				break;
3539 			}
3540 		}
3541 
3542 		npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3543 
3544 		/*
3545 		 * We are at a sync point if we run out of KDETH PSN space.
3546 		 * Last PSN of every generation is reserved for RESYNC.
3547 		 */
3548 		if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3549 			qpriv->sync_pt = true;
3550 			break;
3551 		}
3552 
3553 		/*
3554 		 * If overtaking req->acked_tail, send an RNR NAK. Because the
3555 		 * QP is not queued in this case, and the issue can only be
3556 		 * caused by a delay in scheduling the second leg which we
3557 		 * cannot estimate, we use a rather arbitrary RNR timeout of
3558 		 * (MAX_FLOWS / 2) segments
3559 		 */
3560 		if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3561 				MAX_FLOWS)) {
3562 			ret = -EAGAIN;
3563 			to_seg = MAX_FLOWS >> 1;
3564 			tid_rdma_trigger_ack(qp);
3565 			break;
3566 		}
3567 
3568 		/* Try to allocate rcv array / TID entries */
3569 		ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3570 		if (ret == -EAGAIN)
3571 			to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3572 		if (ret)
3573 			break;
3574 
3575 		qpriv->alloc_w_segs++;
3576 		req->alloc_seg++;
3577 		continue;
3578 next_req:
3579 		/* Begin processing the next request */
3580 		if (++qpriv->r_tid_alloc >
3581 		    rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3582 			qpriv->r_tid_alloc = 0;
3583 	}
3584 
3585 	/*
3586 	 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3587 	 * has failed (b) we are called from the rcv handler interrupt context
3588 	 * (c) an RNR NAK has not already been scheduled
3589 	 */
3590 	if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3591 		goto send_rnr_nak;
3592 
3593 	return;
3594 
3595 send_rnr_nak:
3596 	lockdep_assert_held(&qp->r_lock);
3597 
3598 	/* Set r_nak_state to prevent unrelated events from generating NAK's */
3599 	qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3600 
3601 	/* Pull back r_psn to the segment being RNR NAK'd */
3602 	qp->r_psn = e->psn + req->alloc_seg;
3603 	qp->r_ack_psn = qp->r_psn;
3604 	/*
3605 	 * Pull back r_head_ack_queue to the ack entry following the request
3606 	 * being RNR NAK'd. This allows resources to be allocated to the request
3607 	 * if the queued QP is scheduled.
3608 	 */
3609 	qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3610 	if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3611 		qp->r_head_ack_queue = 0;
3612 	qpriv->r_tid_head = qp->r_head_ack_queue;
3613 	/*
3614 	 * These send side fields are used in make_rc_ack(). They are set in
3615 	 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3616 	 * for consistency
3617 	 */
3618 	qp->s_nak_state = qp->r_nak_state;
3619 	qp->s_ack_psn = qp->r_ack_psn;
3620 	/*
3621 	 * Clear the ACK PENDING flag to prevent unwanted ACK because we
3622 	 * have modified qp->s_ack_psn here.
3623 	 */
3624 	qp->s_flags &= ~(RVT_S_ACK_PENDING);
3625 
3626 	trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3627 	/*
3628 	 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3629 	 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3630 	 * used for this because qp->s_lock is dropped before calling
3631 	 * hfi1_send_rc_ack() leading to inconsistency between the receive
3632 	 * interrupt handlers and the send thread in make_rc_ack()
3633 	 */
3634 	qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3635 
3636 	/*
3637 	 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3638 	 * interrupt handlers but will be sent from the send engine behind any
3639 	 * previous responses that may have been scheduled
3640 	 */
3641 	rc_defered_ack(rcd, qp);
3642 }
3643 
3644 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3645 {
3646 	/* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3647 
3648 	/*
3649 	 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3650 	 *    (see hfi1_rc_rcv())
3651 	 *     - Don't allow 0-length requests.
3652 	 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3653 	 *     - Setup struct tid_rdma_req with request info
3654 	 *     - Prepare struct tid_rdma_flow array?
3655 	 * 3. Set the qp->s_ack_state as state diagram in design doc.
3656 	 * 4. Set RVT_S_RESP_PENDING in s_flags.
3657 	 * 5. Kick the send engine (hfi1_schedule_send())
3658 	 */
3659 	struct hfi1_ctxtdata *rcd = packet->rcd;
3660 	struct rvt_qp *qp = packet->qp;
3661 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3662 	struct ib_other_headers *ohdr = packet->ohdr;
3663 	struct rvt_ack_entry *e;
3664 	unsigned long flags;
3665 	struct ib_reth *reth;
3666 	struct hfi1_qp_priv *qpriv = qp->priv;
3667 	struct tid_rdma_request *req;
3668 	u32 bth0, psn, len, rkey, num_segs;
3669 	bool fecn;
3670 	u8 next;
3671 	u64 vaddr;
3672 	int diff;
3673 
3674 	bth0 = be32_to_cpu(ohdr->bth[0]);
3675 	if (hfi1_ruc_check_hdr(ibp, packet))
3676 		return;
3677 
3678 	fecn = process_ecn(qp, packet);
3679 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3680 	trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3681 
3682 	if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3683 		rvt_comm_est(qp);
3684 
3685 	if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3686 		goto nack_inv;
3687 
3688 	reth = &ohdr->u.tid_rdma.w_req.reth;
3689 	vaddr = be64_to_cpu(reth->vaddr);
3690 	len = be32_to_cpu(reth->length);
3691 
3692 	num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3693 	diff = delta_psn(psn, qp->r_psn);
3694 	if (unlikely(diff)) {
3695 		tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3696 		return;
3697 	}
3698 
3699 	/*
3700 	 * The resent request which was previously RNR NAK'd is inserted at the
3701 	 * location of the original request, which is one entry behind
3702 	 * r_head_ack_queue
3703 	 */
3704 	if (qpriv->rnr_nak_state)
3705 		qp->r_head_ack_queue = qp->r_head_ack_queue ?
3706 			qp->r_head_ack_queue - 1 :
3707 			rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3708 
3709 	/* We've verified the request, insert it into the ack queue. */
3710 	next = qp->r_head_ack_queue + 1;
3711 	if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3712 		next = 0;
3713 	spin_lock_irqsave(&qp->s_lock, flags);
3714 	if (unlikely(next == qp->s_acked_ack_queue)) {
3715 		if (!qp->s_ack_queue[next].sent)
3716 			goto nack_inv_unlock;
3717 		update_ack_queue(qp, next);
3718 	}
3719 	e = &qp->s_ack_queue[qp->r_head_ack_queue];
3720 	req = ack_to_tid_req(e);
3721 
3722 	/* Bring previously RNR NAK'd request back to life */
3723 	if (qpriv->rnr_nak_state) {
3724 		qp->r_nak_state = 0;
3725 		qp->s_nak_state = 0;
3726 		qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3727 		qp->r_psn = e->lpsn + 1;
3728 		req->state = TID_REQUEST_INIT;
3729 		goto update_head;
3730 	}
3731 
3732 	release_rdma_sge_mr(e);
3733 
3734 	/* The length needs to be in multiples of PAGE_SIZE */
3735 	if (!len || len & ~PAGE_MASK)
3736 		goto nack_inv_unlock;
3737 
3738 	rkey = be32_to_cpu(reth->rkey);
3739 	qp->r_len = len;
3740 
3741 	if (e->opcode == TID_OP(WRITE_REQ) &&
3742 	    (req->setup_head != req->clear_tail ||
3743 	     req->clear_tail != req->acked_tail))
3744 		goto nack_inv_unlock;
3745 
3746 	if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3747 				  rkey, IB_ACCESS_REMOTE_WRITE)))
3748 		goto nack_acc;
3749 
3750 	qp->r_psn += num_segs - 1;
3751 
3752 	e->opcode = (bth0 >> 24) & 0xff;
3753 	e->psn = psn;
3754 	e->lpsn = qp->r_psn;
3755 	e->sent = 0;
3756 
3757 	req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3758 	req->state = TID_REQUEST_INIT;
3759 	req->cur_seg = 0;
3760 	req->comp_seg = 0;
3761 	req->ack_seg = 0;
3762 	req->alloc_seg = 0;
3763 	req->isge = 0;
3764 	req->seg_len = qpriv->tid_rdma.local.max_len;
3765 	req->total_len = len;
3766 	req->total_segs = num_segs;
3767 	req->r_flow_psn = e->psn;
3768 	req->ss.sge = e->rdma_sge;
3769 	req->ss.num_sge = 1;
3770 
3771 	req->flow_idx = req->setup_head;
3772 	req->clear_tail = req->setup_head;
3773 	req->acked_tail = req->setup_head;
3774 
3775 	qp->r_state = e->opcode;
3776 	qp->r_nak_state = 0;
3777 	/*
3778 	 * We need to increment the MSN here instead of when we
3779 	 * finish sending the result since a duplicate request would
3780 	 * increment it more than once.
3781 	 */
3782 	qp->r_msn++;
3783 	qp->r_psn++;
3784 
3785 	trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3786 					 req);
3787 
3788 	if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3789 		qpriv->r_tid_tail = qp->r_head_ack_queue;
3790 	} else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3791 		struct tid_rdma_request *ptr;
3792 
3793 		e = &qp->s_ack_queue[qpriv->r_tid_tail];
3794 		ptr = ack_to_tid_req(e);
3795 
3796 		if (e->opcode != TID_OP(WRITE_REQ) ||
3797 		    ptr->comp_seg == ptr->total_segs) {
3798 			if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3799 				qpriv->r_tid_ack = qp->r_head_ack_queue;
3800 			qpriv->r_tid_tail = qp->r_head_ack_queue;
3801 		}
3802 	}
3803 update_head:
3804 	qp->r_head_ack_queue = next;
3805 	qpriv->r_tid_head = qp->r_head_ack_queue;
3806 
3807 	hfi1_tid_write_alloc_resources(qp, true);
3808 	trace_hfi1_tid_write_rsp_rcv_req(qp);
3809 
3810 	/* Schedule the send tasklet. */
3811 	qp->s_flags |= RVT_S_RESP_PENDING;
3812 	if (fecn)
3813 		qp->s_flags |= RVT_S_ECN;
3814 	hfi1_schedule_send(qp);
3815 
3816 	spin_unlock_irqrestore(&qp->s_lock, flags);
3817 	return;
3818 
3819 nack_inv_unlock:
3820 	spin_unlock_irqrestore(&qp->s_lock, flags);
3821 nack_inv:
3822 	rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3823 	qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3824 	qp->r_ack_psn = qp->r_psn;
3825 	/* Queue NAK for later */
3826 	rc_defered_ack(rcd, qp);
3827 	return;
3828 nack_acc:
3829 	spin_unlock_irqrestore(&qp->s_lock, flags);
3830 	rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3831 	qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3832 	qp->r_ack_psn = qp->r_psn;
3833 }
3834 
3835 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3836 				   struct ib_other_headers *ohdr, u32 *bth1,
3837 				   u32 bth2, u32 *len,
3838 				   struct rvt_sge_state **ss)
3839 {
3840 	struct hfi1_ack_priv *epriv = e->priv;
3841 	struct tid_rdma_request *req = &epriv->tid_req;
3842 	struct hfi1_qp_priv *qpriv = qp->priv;
3843 	struct tid_rdma_flow *flow = NULL;
3844 	u32 resp_len = 0, hdwords = 0;
3845 	void *resp_addr = NULL;
3846 	struct tid_rdma_params *remote;
3847 
3848 	trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3849 					    req);
3850 	trace_hfi1_tid_write_rsp_build_resp(qp);
3851 	trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3852 	flow = &req->flows[req->flow_idx];
3853 	switch (req->state) {
3854 	default:
3855 		/*
3856 		 * Try to allocate resources here in case QP was queued and was
3857 		 * later scheduled when resources became available
3858 		 */
3859 		hfi1_tid_write_alloc_resources(qp, false);
3860 
3861 		/* We've already sent everything which is ready */
3862 		if (req->cur_seg >= req->alloc_seg)
3863 			goto done;
3864 
3865 		/*
3866 		 * Resources can be assigned but responses cannot be sent in
3867 		 * rnr_nak state, till the resent request is received
3868 		 */
3869 		if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3870 			goto done;
3871 
3872 		req->state = TID_REQUEST_ACTIVE;
3873 		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3874 		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3875 		hfi1_add_tid_reap_timer(qp);
3876 		break;
3877 
3878 	case TID_REQUEST_RESEND_ACTIVE:
3879 	case TID_REQUEST_RESEND:
3880 		trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3881 		req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3882 		if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3883 			req->state = TID_REQUEST_ACTIVE;
3884 
3885 		hfi1_mod_tid_reap_timer(qp);
3886 		break;
3887 	}
3888 	flow->flow_state.resp_ib_psn = bth2;
3889 	resp_addr = (void *)flow->tid_entry;
3890 	resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3891 	req->cur_seg++;
3892 
3893 	memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3894 	epriv->ss.sge.vaddr = resp_addr;
3895 	epriv->ss.sge.sge_length = resp_len;
3896 	epriv->ss.sge.length = epriv->ss.sge.sge_length;
3897 	/*
3898 	 * We can safely zero these out. Since the first SGE covers the
3899 	 * entire packet, nothing else should even look at the MR.
3900 	 */
3901 	epriv->ss.sge.mr = NULL;
3902 	epriv->ss.sge.m = 0;
3903 	epriv->ss.sge.n = 0;
3904 
3905 	epriv->ss.sg_list = NULL;
3906 	epriv->ss.total_len = epriv->ss.sge.sge_length;
3907 	epriv->ss.num_sge = 1;
3908 
3909 	*ss = &epriv->ss;
3910 	*len = epriv->ss.total_len;
3911 
3912 	/* Construct the TID RDMA WRITE RESP packet header */
3913 	rcu_read_lock();
3914 	remote = rcu_dereference(qpriv->tid_rdma.remote);
3915 
3916 	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3917 	KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3918 	ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3919 	ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3920 		cpu_to_be32((flow->flow_state.generation <<
3921 			     HFI1_KDETH_BTH_SEQ_SHIFT) |
3922 			    (flow->flow_state.spsn &
3923 			     HFI1_KDETH_BTH_SEQ_MASK));
3924 	ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3925 		cpu_to_be32(qpriv->tid_rdma.local.qp |
3926 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3927 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
3928 			    qpriv->rcd->ctxt);
3929 	ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3930 	*bth1 = remote->qp;
3931 	rcu_read_unlock();
3932 	hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3933 	qpriv->pending_tid_w_segs++;
3934 done:
3935 	return hdwords;
3936 }
3937 
3938 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3939 {
3940 	struct hfi1_qp_priv *qpriv = qp->priv;
3941 
3942 	lockdep_assert_held(&qp->s_lock);
3943 	if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3944 		qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3945 		qpriv->s_tid_timer.expires = jiffies +
3946 			qpriv->tid_timer_timeout_jiffies;
3947 		add_timer(&qpriv->s_tid_timer);
3948 	}
3949 }
3950 
3951 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3952 {
3953 	struct hfi1_qp_priv *qpriv = qp->priv;
3954 
3955 	lockdep_assert_held(&qp->s_lock);
3956 	qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3957 	mod_timer(&qpriv->s_tid_timer, jiffies +
3958 		  qpriv->tid_timer_timeout_jiffies);
3959 }
3960 
3961 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
3962 {
3963 	struct hfi1_qp_priv *qpriv = qp->priv;
3964 	int rval = 0;
3965 
3966 	lockdep_assert_held(&qp->s_lock);
3967 	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3968 		rval = del_timer(&qpriv->s_tid_timer);
3969 		qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3970 	}
3971 	return rval;
3972 }
3973 
3974 void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
3975 {
3976 	struct hfi1_qp_priv *qpriv = qp->priv;
3977 
3978 	del_timer_sync(&qpriv->s_tid_timer);
3979 	qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3980 }
3981 
3982 static void hfi1_tid_timeout(struct timer_list *t)
3983 {
3984 	struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
3985 	struct rvt_qp *qp = qpriv->owner;
3986 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
3987 	unsigned long flags;
3988 	u32 i;
3989 
3990 	spin_lock_irqsave(&qp->r_lock, flags);
3991 	spin_lock(&qp->s_lock);
3992 	if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3993 		dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
3994 			    qp->ibqp.qp_num, __func__, __LINE__);
3995 		trace_hfi1_msg_tid_timeout(/* msg */
3996 			qp, "resource timeout = ",
3997 			(u64)qpriv->tid_timer_timeout_jiffies);
3998 		hfi1_stop_tid_reap_timer(qp);
3999 		/*
4000 		 * Go though the entire ack queue and clear any outstanding
4001 		 * HW flow and RcvArray resources.
4002 		 */
4003 		hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
4004 		for (i = 0; i < rvt_max_atomic(rdi); i++) {
4005 			struct tid_rdma_request *req =
4006 				ack_to_tid_req(&qp->s_ack_queue[i]);
4007 
4008 			hfi1_kern_exp_rcv_clear_all(req);
4009 		}
4010 		spin_unlock(&qp->s_lock);
4011 		if (qp->ibqp.event_handler) {
4012 			struct ib_event ev;
4013 
4014 			ev.device = qp->ibqp.device;
4015 			ev.element.qp = &qp->ibqp;
4016 			ev.event = IB_EVENT_QP_FATAL;
4017 			qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
4018 		}
4019 		rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
4020 		goto unlock_r_lock;
4021 	}
4022 	spin_unlock(&qp->s_lock);
4023 unlock_r_lock:
4024 	spin_unlock_irqrestore(&qp->r_lock, flags);
4025 }
4026 
4027 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
4028 {
4029 	/* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4030 
4031 	/*
4032 	 * 1. Find matching SWQE
4033 	 * 2. Check that TIDENTRY array has enough space for a complete
4034 	 *    segment. If not, put QP in error state.
4035 	 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4036 	 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4037 	 * 5. Set qp->s_state
4038 	 * 6. Kick the send engine (hfi1_schedule_send())
4039 	 */
4040 	struct ib_other_headers *ohdr = packet->ohdr;
4041 	struct rvt_qp *qp = packet->qp;
4042 	struct hfi1_qp_priv *qpriv = qp->priv;
4043 	struct hfi1_ctxtdata *rcd = packet->rcd;
4044 	struct rvt_swqe *wqe;
4045 	struct tid_rdma_request *req;
4046 	struct tid_rdma_flow *flow;
4047 	enum ib_wc_status status;
4048 	u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4049 	bool fecn;
4050 	unsigned long flags;
4051 
4052 	fecn = process_ecn(qp, packet);
4053 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4054 	aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4055 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4056 
4057 	spin_lock_irqsave(&qp->s_lock, flags);
4058 
4059 	/* Ignore invalid responses */
4060 	if (cmp_psn(psn, qp->s_next_psn) >= 0)
4061 		goto ack_done;
4062 
4063 	/* Ignore duplicate responses. */
4064 	if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4065 		goto ack_done;
4066 
4067 	if (unlikely(qp->s_acked == qp->s_tail))
4068 		goto ack_done;
4069 
4070 	/*
4071 	 * If we are waiting for a particular packet sequence number
4072 	 * due to a request being resent, check for it. Otherwise,
4073 	 * ensure that we haven't missed anything.
4074 	 */
4075 	if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4076 		if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4077 			goto ack_done;
4078 		qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4079 	}
4080 
4081 	wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4082 	if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4083 		goto ack_op_err;
4084 
4085 	req = wqe_to_tid_req(wqe);
4086 	/*
4087 	 * If we've lost ACKs and our acked_tail pointer is too far
4088 	 * behind, don't overwrite segments. Just drop the packet and
4089 	 * let the reliability protocol take care of it.
4090 	 */
4091 	if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4092 		goto ack_done;
4093 
4094 	/*
4095 	 * The call to do_rc_ack() should be last in the chain of
4096 	 * packet checks because it will end up updating the QP state.
4097 	 * Therefore, anything that would prevent the packet from
4098 	 * being accepted as a successful response should be prior
4099 	 * to it.
4100 	 */
4101 	if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4102 		goto ack_done;
4103 
4104 	trace_hfi1_ack(qp, psn);
4105 
4106 	flow = &req->flows[req->setup_head];
4107 	flow->pkt = 0;
4108 	flow->tid_idx = 0;
4109 	flow->tid_offset = 0;
4110 	flow->sent = 0;
4111 	flow->resync_npkts = 0;
4112 	flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4113 	flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4114 		TID_RDMA_DESTQP_FLOW_MASK;
4115 	flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4116 	flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4117 	flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4118 	flow->flow_state.resp_ib_psn = psn;
4119 	flow->length = min_t(u32, req->seg_len,
4120 			     (wqe->length - (req->comp_seg * req->seg_len)));
4121 
4122 	flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4123 	flow->flow_state.lpsn = flow->flow_state.spsn +
4124 		flow->npkts - 1;
4125 	/* payload length = packet length - (header length + ICRC length) */
4126 	pktlen = packet->tlen - (packet->hlen + 4);
4127 	if (pktlen > sizeof(flow->tid_entry)) {
4128 		status = IB_WC_LOC_LEN_ERR;
4129 		goto ack_err;
4130 	}
4131 	memcpy(flow->tid_entry, packet->ebuf, pktlen);
4132 	flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4133 	trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4134 
4135 	req->comp_seg++;
4136 	trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4137 	/*
4138 	 * Walk the TID_ENTRY list to make sure we have enough space for a
4139 	 * complete segment.
4140 	 */
4141 	for (i = 0; i < flow->tidcnt; i++) {
4142 		trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4143 			qp, i, flow->tid_entry[i]);
4144 		if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4145 			status = IB_WC_LOC_LEN_ERR;
4146 			goto ack_err;
4147 		}
4148 		tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4149 	}
4150 	if (tidlen * PAGE_SIZE < flow->length) {
4151 		status = IB_WC_LOC_LEN_ERR;
4152 		goto ack_err;
4153 	}
4154 
4155 	trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4156 					  wqe->lpsn, req);
4157 	/*
4158 	 * If this is the first response for this request, set the initial
4159 	 * flow index to the current flow.
4160 	 */
4161 	if (!cmp_psn(psn, wqe->psn)) {
4162 		req->r_last_acked = mask_psn(wqe->psn - 1);
4163 		/* Set acked flow index to head index */
4164 		req->acked_tail = req->setup_head;
4165 	}
4166 
4167 	/* advance circular buffer head */
4168 	req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4169 	req->state = TID_REQUEST_ACTIVE;
4170 
4171 	/*
4172 	 * If all responses for this TID RDMA WRITE request have been received
4173 	 * advance the pointer to the next one.
4174 	 * Since TID RDMA requests could be mixed in with regular IB requests,
4175 	 * they might not appear sequentially in the queue. Therefore, the
4176 	 * next request needs to be "found".
4177 	 */
4178 	if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4179 	    req->comp_seg == req->total_segs) {
4180 		for (i = qpriv->s_tid_cur + 1; ; i++) {
4181 			if (i == qp->s_size)
4182 				i = 0;
4183 			wqe = rvt_get_swqe_ptr(qp, i);
4184 			if (i == qpriv->s_tid_head)
4185 				break;
4186 			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4187 				break;
4188 		}
4189 		qpriv->s_tid_cur = i;
4190 	}
4191 	qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4192 	hfi1_schedule_tid_send(qp);
4193 	goto ack_done;
4194 
4195 ack_op_err:
4196 	status = IB_WC_LOC_QP_OP_ERR;
4197 ack_err:
4198 	rvt_error_qp(qp, status);
4199 ack_done:
4200 	if (fecn)
4201 		qp->s_flags |= RVT_S_ECN;
4202 	spin_unlock_irqrestore(&qp->s_lock, flags);
4203 }
4204 
4205 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4206 				struct ib_other_headers *ohdr,
4207 				u32 *bth1, u32 *bth2, u32 *len)
4208 {
4209 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4210 	struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4211 	struct tid_rdma_params *remote;
4212 	struct rvt_qp *qp = req->qp;
4213 	struct hfi1_qp_priv *qpriv = qp->priv;
4214 	u32 tidentry = flow->tid_entry[flow->tid_idx];
4215 	u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4216 	struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4217 	u32 next_offset, om = KDETH_OM_LARGE;
4218 	bool last_pkt;
4219 
4220 	if (!tidlen) {
4221 		hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4222 		rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4223 	}
4224 
4225 	*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4226 	flow->sent += *len;
4227 	next_offset = flow->tid_offset + *len;
4228 	last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4229 		    next_offset >= tidlen) || (flow->sent >= flow->length);
4230 	trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4231 	trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4232 
4233 	rcu_read_lock();
4234 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4235 	KDETH_RESET(wd->kdeth0, KVER, 0x1);
4236 	KDETH_SET(wd->kdeth0, SH, !last_pkt);
4237 	KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4238 	KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4239 	KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4240 	KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4241 	KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4242 	KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4243 	wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4244 	rcu_read_unlock();
4245 
4246 	*bth1 = flow->tid_qpn;
4247 	*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4248 			 HFI1_KDETH_BTH_SEQ_MASK) |
4249 			 (flow->flow_state.generation <<
4250 			  HFI1_KDETH_BTH_SEQ_SHIFT));
4251 	if (last_pkt) {
4252 		/* PSNs are zero-based, so +1 to count number of packets */
4253 		if (flow->flow_state.lpsn + 1 +
4254 		    rvt_div_round_up_mtu(qp, req->seg_len) >
4255 		    MAX_TID_FLOW_PSN)
4256 			req->state = TID_REQUEST_SYNC;
4257 		*bth2 |= IB_BTH_REQ_ACK;
4258 	}
4259 
4260 	if (next_offset >= tidlen) {
4261 		flow->tid_offset = 0;
4262 		flow->tid_idx++;
4263 	} else {
4264 		flow->tid_offset = next_offset;
4265 	}
4266 	return last_pkt;
4267 }
4268 
4269 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4270 {
4271 	struct rvt_qp *qp = packet->qp;
4272 	struct hfi1_qp_priv *priv = qp->priv;
4273 	struct hfi1_ctxtdata *rcd = priv->rcd;
4274 	struct ib_other_headers *ohdr = packet->ohdr;
4275 	struct rvt_ack_entry *e;
4276 	struct tid_rdma_request *req;
4277 	struct tid_rdma_flow *flow;
4278 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4279 	unsigned long flags;
4280 	u32 psn, next;
4281 	u8 opcode;
4282 	bool fecn;
4283 
4284 	fecn = process_ecn(qp, packet);
4285 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4286 	opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4287 
4288 	/*
4289 	 * All error handling should be done by now. If we are here, the packet
4290 	 * is either good or been accepted by the error handler.
4291 	 */
4292 	spin_lock_irqsave(&qp->s_lock, flags);
4293 	e = &qp->s_ack_queue[priv->r_tid_tail];
4294 	req = ack_to_tid_req(e);
4295 	flow = &req->flows[req->clear_tail];
4296 	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4297 		update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4298 
4299 		if (cmp_psn(psn, flow->flow_state.r_next_psn))
4300 			goto send_nak;
4301 
4302 		flow->flow_state.r_next_psn = mask_psn(psn + 1);
4303 		/*
4304 		 * Copy the payload to destination buffer if this packet is
4305 		 * delivered as an eager packet due to RSM rule and FECN.
4306 		 * The RSM rule selects FECN bit in BTH and SH bit in
4307 		 * KDETH header and therefore will not match the last
4308 		 * packet of each segment that has SH bit cleared.
4309 		 */
4310 		if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4311 			struct rvt_sge_state ss;
4312 			u32 len;
4313 			u32 tlen = packet->tlen;
4314 			u16 hdrsize = packet->hlen;
4315 			u8 pad = packet->pad;
4316 			u8 extra_bytes = pad + packet->extra_byte +
4317 				(SIZE_OF_CRC << 2);
4318 			u32 pmtu = qp->pmtu;
4319 
4320 			if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4321 				goto send_nak;
4322 			len = req->comp_seg * req->seg_len;
4323 			len += delta_psn(psn,
4324 				full_flow_psn(flow, flow->flow_state.spsn)) *
4325 				pmtu;
4326 			if (unlikely(req->total_len - len < pmtu))
4327 				goto send_nak;
4328 
4329 			/*
4330 			 * The e->rdma_sge field is set when TID RDMA WRITE REQ
4331 			 * is first received and is never modified thereafter.
4332 			 */
4333 			ss.sge = e->rdma_sge;
4334 			ss.sg_list = NULL;
4335 			ss.num_sge = 1;
4336 			ss.total_len = req->total_len;
4337 			rvt_skip_sge(&ss, len, false);
4338 			rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4339 				     false);
4340 			/* Raise the sw sequence check flag for next packet */
4341 			priv->r_next_psn_kdeth = mask_psn(psn + 1);
4342 			priv->s_flags |= HFI1_R_TID_SW_PSN;
4343 		}
4344 		goto exit;
4345 	}
4346 	flow->flow_state.r_next_psn = mask_psn(psn + 1);
4347 	hfi1_kern_exp_rcv_clear(req);
4348 	priv->alloc_w_segs--;
4349 	rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4350 	req->comp_seg++;
4351 	priv->s_nak_state = 0;
4352 
4353 	/*
4354 	 * Release the flow if one of the following conditions has been met:
4355 	 *  - The request has reached a sync point AND all outstanding
4356 	 *    segments have been completed, or
4357 	 *  - The entire request is complete and there are no more requests
4358 	 *    (of any kind) in the queue.
4359 	 */
4360 	trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4361 	trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4362 					  req);
4363 	trace_hfi1_tid_write_rsp_rcv_data(qp);
4364 	validate_r_tid_ack(priv);
4365 
4366 	if (opcode == TID_OP(WRITE_DATA_LAST)) {
4367 		release_rdma_sge_mr(e);
4368 		for (next = priv->r_tid_tail + 1; ; next++) {
4369 			if (next > rvt_size_atomic(&dev->rdi))
4370 				next = 0;
4371 			if (next == priv->r_tid_head)
4372 				break;
4373 			e = &qp->s_ack_queue[next];
4374 			if (e->opcode == TID_OP(WRITE_REQ))
4375 				break;
4376 		}
4377 		priv->r_tid_tail = next;
4378 		if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4379 			qp->s_acked_ack_queue = 0;
4380 	}
4381 
4382 	hfi1_tid_write_alloc_resources(qp, true);
4383 
4384 	/*
4385 	 * If we need to generate more responses, schedule the
4386 	 * send engine.
4387 	 */
4388 	if (req->cur_seg < req->total_segs ||
4389 	    qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4390 		qp->s_flags |= RVT_S_RESP_PENDING;
4391 		hfi1_schedule_send(qp);
4392 	}
4393 
4394 	priv->pending_tid_w_segs--;
4395 	if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4396 		if (priv->pending_tid_w_segs)
4397 			hfi1_mod_tid_reap_timer(req->qp);
4398 		else
4399 			hfi1_stop_tid_reap_timer(req->qp);
4400 	}
4401 
4402 done:
4403 	tid_rdma_schedule_ack(qp);
4404 exit:
4405 	priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4406 	if (fecn)
4407 		qp->s_flags |= RVT_S_ECN;
4408 	spin_unlock_irqrestore(&qp->s_lock, flags);
4409 	return;
4410 
4411 send_nak:
4412 	if (!priv->s_nak_state) {
4413 		priv->s_nak_state = IB_NAK_PSN_ERROR;
4414 		priv->s_nak_psn = flow->flow_state.r_next_psn;
4415 		tid_rdma_trigger_ack(qp);
4416 	}
4417 	goto done;
4418 }
4419 
4420 static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4421 {
4422 	return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4423 		      HFI1_KDETH_BTH_SEQ_MASK);
4424 }
4425 
4426 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4427 				  struct ib_other_headers *ohdr, u16 iflow,
4428 				  u32 *bth1, u32 *bth2)
4429 {
4430 	struct hfi1_qp_priv *qpriv = qp->priv;
4431 	struct tid_flow_state *fs = &qpriv->flow_state;
4432 	struct tid_rdma_request *req = ack_to_tid_req(e);
4433 	struct tid_rdma_flow *flow = &req->flows[iflow];
4434 	struct tid_rdma_params *remote;
4435 
4436 	rcu_read_lock();
4437 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4438 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4439 	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4440 	*bth1 = remote->qp;
4441 	rcu_read_unlock();
4442 
4443 	if (qpriv->resync) {
4444 		*bth2 = mask_psn((fs->generation <<
4445 				  HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4446 		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4447 	} else if (qpriv->s_nak_state) {
4448 		*bth2 = mask_psn(qpriv->s_nak_psn);
4449 		ohdr->u.tid_rdma.ack.aeth =
4450 			cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4451 				    (qpriv->s_nak_state <<
4452 				     IB_AETH_CREDIT_SHIFT));
4453 	} else {
4454 		*bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4455 		ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4456 	}
4457 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4458 	ohdr->u.tid_rdma.ack.tid_flow_qp =
4459 		cpu_to_be32(qpriv->tid_rdma.local.qp |
4460 			    ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4461 			     TID_RDMA_DESTQP_FLOW_SHIFT) |
4462 			    qpriv->rcd->ctxt);
4463 
4464 	ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4465 	ohdr->u.tid_rdma.ack.verbs_psn =
4466 		cpu_to_be32(flow->flow_state.resp_ib_psn);
4467 
4468 	if (qpriv->resync) {
4469 		/*
4470 		 * If the PSN before the current expect KDETH PSN is the
4471 		 * RESYNC PSN, then we never received a good TID RDMA WRITE
4472 		 * DATA packet after a previous RESYNC.
4473 		 * In this case, the next expected KDETH PSN stays the same.
4474 		 */
4475 		if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4476 			ohdr->u.tid_rdma.ack.tid_flow_psn =
4477 				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4478 		} else {
4479 			/*
4480 			 * Because the KDETH PSNs jump during a RESYNC, it's
4481 			 * not possible to infer (or compute) the previous value
4482 			 * of r_next_psn_kdeth in the case of back-to-back
4483 			 * RESYNC packets. Therefore, we save it.
4484 			 */
4485 			qpriv->r_next_psn_kdeth_save =
4486 				qpriv->r_next_psn_kdeth - 1;
4487 			ohdr->u.tid_rdma.ack.tid_flow_psn =
4488 				cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4489 			qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4490 		}
4491 		qpriv->resync = false;
4492 	}
4493 
4494 	return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4495 }
4496 
4497 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4498 {
4499 	struct ib_other_headers *ohdr = packet->ohdr;
4500 	struct rvt_qp *qp = packet->qp;
4501 	struct hfi1_qp_priv *qpriv = qp->priv;
4502 	struct rvt_swqe *wqe;
4503 	struct tid_rdma_request *req;
4504 	struct tid_rdma_flow *flow;
4505 	u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn;
4506 	unsigned long flags;
4507 	u16 fidx;
4508 
4509 	trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4510 	process_ecn(qp, packet);
4511 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4512 	aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4513 	req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4514 	resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4515 
4516 	spin_lock_irqsave(&qp->s_lock, flags);
4517 	trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4518 
4519 	/* If we are waiting for an ACK to RESYNC, drop any other packets */
4520 	if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4521 	    cmp_psn(psn, qpriv->s_resync_psn))
4522 		goto ack_op_err;
4523 
4524 	ack_psn = req_psn;
4525 	if (hfi1_tid_rdma_is_resync_psn(psn))
4526 		ack_kpsn = resync_psn;
4527 	else
4528 		ack_kpsn = psn;
4529 	if (aeth >> 29) {
4530 		ack_psn--;
4531 		ack_kpsn--;
4532 	}
4533 
4534 	if (unlikely(qp->s_acked == qp->s_tail))
4535 		goto ack_op_err;
4536 
4537 	wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4538 
4539 	if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4540 		goto ack_op_err;
4541 
4542 	req = wqe_to_tid_req(wqe);
4543 	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4544 				       wqe->lpsn, req);
4545 	flow = &req->flows[req->acked_tail];
4546 	trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4547 
4548 	/* Drop stale ACK/NAK */
4549 	if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 ||
4550 	    cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0)
4551 		goto ack_op_err;
4552 
4553 	while (cmp_psn(ack_kpsn,
4554 		       full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4555 	       req->ack_seg < req->cur_seg) {
4556 		req->ack_seg++;
4557 		/* advance acked segment pointer */
4558 		req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4559 		req->r_last_acked = flow->flow_state.resp_ib_psn;
4560 		trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4561 					       wqe->lpsn, req);
4562 		if (req->ack_seg == req->total_segs) {
4563 			req->state = TID_REQUEST_COMPLETE;
4564 			wqe = do_rc_completion(qp, wqe,
4565 					       to_iport(qp->ibqp.device,
4566 							qp->port_num));
4567 			trace_hfi1_sender_rcv_tid_ack(qp);
4568 			atomic_dec(&qpriv->n_tid_requests);
4569 			if (qp->s_acked == qp->s_tail)
4570 				break;
4571 			if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4572 				break;
4573 			req = wqe_to_tid_req(wqe);
4574 		}
4575 		flow = &req->flows[req->acked_tail];
4576 		trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4577 	}
4578 
4579 	trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4580 				       wqe->lpsn, req);
4581 	switch (aeth >> 29) {
4582 	case 0:         /* ACK */
4583 		if (qpriv->s_flags & RVT_S_WAIT_ACK)
4584 			qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4585 		if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4586 			/* Check if there is any pending TID ACK */
4587 			if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4588 			    req->ack_seg < req->cur_seg)
4589 				hfi1_mod_tid_retry_timer(qp);
4590 			else
4591 				hfi1_stop_tid_retry_timer(qp);
4592 			hfi1_schedule_send(qp);
4593 		} else {
4594 			u32 spsn, fpsn, last_acked, generation;
4595 			struct tid_rdma_request *rptr;
4596 
4597 			/* ACK(RESYNC) */
4598 			hfi1_stop_tid_retry_timer(qp);
4599 			/* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4600 			qp->s_flags &= ~HFI1_S_WAIT_HALT;
4601 			/*
4602 			 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4603 			 * ACK is received after the TID retry timer is fired
4604 			 * again. In this case, do not send any more TID
4605 			 * RESYNC request or wait for any more TID ACK packet.
4606 			 */
4607 			qpriv->s_flags &= ~RVT_S_SEND_ONE;
4608 			hfi1_schedule_send(qp);
4609 
4610 			if ((qp->s_acked == qpriv->s_tid_tail &&
4611 			     req->ack_seg == req->total_segs) ||
4612 			    qp->s_acked == qp->s_tail) {
4613 				qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4614 				goto done;
4615 			}
4616 
4617 			if (req->ack_seg == req->comp_seg) {
4618 				qpriv->s_state = TID_OP(WRITE_DATA);
4619 				goto done;
4620 			}
4621 
4622 			/*
4623 			 * The PSN to start with is the next PSN after the
4624 			 * RESYNC PSN.
4625 			 */
4626 			psn = mask_psn(psn + 1);
4627 			generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4628 			spsn = 0;
4629 
4630 			/*
4631 			 * Update to the correct WQE when we get an ACK(RESYNC)
4632 			 * in the middle of a request.
4633 			 */
4634 			if (delta_psn(ack_psn, wqe->lpsn))
4635 				wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4636 			req = wqe_to_tid_req(wqe);
4637 			flow = &req->flows[req->acked_tail];
4638 			/*
4639 			 * RESYNC re-numbers the PSN ranges of all remaining
4640 			 * segments. Also, PSN's start from 0 in the middle of a
4641 			 * segment and the first segment size is less than the
4642 			 * default number of packets. flow->resync_npkts is used
4643 			 * to track the number of packets from the start of the
4644 			 * real segment to the point of 0 PSN after the RESYNC
4645 			 * in order to later correctly rewind the SGE.
4646 			 */
4647 			fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4648 			req->r_ack_psn = psn;
4649 			/*
4650 			 * If resync_psn points to the last flow PSN for a
4651 			 * segment and the new segment (likely from a new
4652 			 * request) starts with a new generation number, we
4653 			 * need to adjust resync_psn accordingly.
4654 			 */
4655 			if (flow->flow_state.generation !=
4656 			    (resync_psn >> HFI1_KDETH_BTH_SEQ_SHIFT))
4657 				resync_psn = mask_psn(fpsn - 1);
4658 			flow->resync_npkts +=
4659 				delta_psn(mask_psn(resync_psn + 1), fpsn);
4660 			/*
4661 			 * Renumber all packet sequence number ranges
4662 			 * based on the new generation.
4663 			 */
4664 			last_acked = qp->s_acked;
4665 			rptr = req;
4666 			while (1) {
4667 				/* start from last acked segment */
4668 				for (fidx = rptr->acked_tail;
4669 				     CIRC_CNT(rptr->setup_head, fidx,
4670 					      MAX_FLOWS);
4671 				     fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4672 					u32 lpsn;
4673 					u32 gen;
4674 
4675 					flow = &rptr->flows[fidx];
4676 					gen = flow->flow_state.generation;
4677 					if (WARN_ON(gen == generation &&
4678 						    flow->flow_state.spsn !=
4679 						     spsn))
4680 						continue;
4681 					lpsn = flow->flow_state.lpsn;
4682 					lpsn = full_flow_psn(flow, lpsn);
4683 					flow->npkts =
4684 						delta_psn(lpsn,
4685 							  mask_psn(resync_psn)
4686 							  );
4687 					flow->flow_state.generation =
4688 						generation;
4689 					flow->flow_state.spsn = spsn;
4690 					flow->flow_state.lpsn =
4691 						flow->flow_state.spsn +
4692 						flow->npkts - 1;
4693 					flow->pkt = 0;
4694 					spsn += flow->npkts;
4695 					resync_psn += flow->npkts;
4696 					trace_hfi1_tid_flow_rcv_tid_ack(qp,
4697 									fidx,
4698 									flow);
4699 				}
4700 				if (++last_acked == qpriv->s_tid_cur + 1)
4701 					break;
4702 				if (last_acked == qp->s_size)
4703 					last_acked = 0;
4704 				wqe = rvt_get_swqe_ptr(qp, last_acked);
4705 				rptr = wqe_to_tid_req(wqe);
4706 			}
4707 			req->cur_seg = req->ack_seg;
4708 			qpriv->s_tid_tail = qp->s_acked;
4709 			qpriv->s_state = TID_OP(WRITE_REQ);
4710 			hfi1_schedule_tid_send(qp);
4711 		}
4712 done:
4713 		qpriv->s_retry = qp->s_retry_cnt;
4714 		break;
4715 
4716 	case 3:         /* NAK */
4717 		hfi1_stop_tid_retry_timer(qp);
4718 		switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4719 			IB_AETH_CREDIT_MASK) {
4720 		case 0: /* PSN sequence error */
4721 			if (!req->flows)
4722 				break;
4723 			flow = &req->flows[req->acked_tail];
4724 			flpsn = full_flow_psn(flow, flow->flow_state.lpsn);
4725 			if (cmp_psn(psn, flpsn) > 0)
4726 				break;
4727 			trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4728 							flow);
4729 			req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4730 			req->cur_seg = req->ack_seg;
4731 			qpriv->s_tid_tail = qp->s_acked;
4732 			qpriv->s_state = TID_OP(WRITE_REQ);
4733 			qpriv->s_retry = qp->s_retry_cnt;
4734 			hfi1_schedule_tid_send(qp);
4735 			break;
4736 
4737 		default:
4738 			break;
4739 		}
4740 		break;
4741 
4742 	default:
4743 		break;
4744 	}
4745 
4746 ack_op_err:
4747 	spin_unlock_irqrestore(&qp->s_lock, flags);
4748 }
4749 
4750 void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4751 {
4752 	struct hfi1_qp_priv *priv = qp->priv;
4753 	struct ib_qp *ibqp = &qp->ibqp;
4754 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4755 
4756 	lockdep_assert_held(&qp->s_lock);
4757 	if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4758 		priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4759 		priv->s_tid_retry_timer.expires = jiffies +
4760 			priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4761 		add_timer(&priv->s_tid_retry_timer);
4762 	}
4763 }
4764 
4765 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4766 {
4767 	struct hfi1_qp_priv *priv = qp->priv;
4768 	struct ib_qp *ibqp = &qp->ibqp;
4769 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4770 
4771 	lockdep_assert_held(&qp->s_lock);
4772 	priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4773 	mod_timer(&priv->s_tid_retry_timer, jiffies +
4774 		  priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4775 }
4776 
4777 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4778 {
4779 	struct hfi1_qp_priv *priv = qp->priv;
4780 	int rval = 0;
4781 
4782 	lockdep_assert_held(&qp->s_lock);
4783 	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4784 		rval = del_timer(&priv->s_tid_retry_timer);
4785 		priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4786 	}
4787 	return rval;
4788 }
4789 
4790 void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4791 {
4792 	struct hfi1_qp_priv *priv = qp->priv;
4793 
4794 	del_timer_sync(&priv->s_tid_retry_timer);
4795 	priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4796 }
4797 
4798 static void hfi1_tid_retry_timeout(struct timer_list *t)
4799 {
4800 	struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4801 	struct rvt_qp *qp = priv->owner;
4802 	struct rvt_swqe *wqe;
4803 	unsigned long flags;
4804 	struct tid_rdma_request *req;
4805 
4806 	spin_lock_irqsave(&qp->r_lock, flags);
4807 	spin_lock(&qp->s_lock);
4808 	trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4809 	if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4810 		hfi1_stop_tid_retry_timer(qp);
4811 		if (!priv->s_retry) {
4812 			trace_hfi1_msg_tid_retry_timeout(/* msg */
4813 				qp,
4814 				"Exhausted retries. Tid retry timeout = ",
4815 				(u64)priv->tid_retry_timeout_jiffies);
4816 
4817 			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4818 			hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4819 			rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4820 		} else {
4821 			wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4822 			req = wqe_to_tid_req(wqe);
4823 			trace_hfi1_tid_req_tid_retry_timeout(/* req */
4824 			   qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4825 
4826 			priv->s_flags &= ~RVT_S_WAIT_ACK;
4827 			/* Only send one packet (the RESYNC) */
4828 			priv->s_flags |= RVT_S_SEND_ONE;
4829 			/*
4830 			 * No additional request shall be made by this QP until
4831 			 * the RESYNC has been complete.
4832 			 */
4833 			qp->s_flags |= HFI1_S_WAIT_HALT;
4834 			priv->s_state = TID_OP(RESYNC);
4835 			priv->s_retry--;
4836 			hfi1_schedule_tid_send(qp);
4837 		}
4838 	}
4839 	spin_unlock(&qp->s_lock);
4840 	spin_unlock_irqrestore(&qp->r_lock, flags);
4841 }
4842 
4843 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4844 			       struct ib_other_headers *ohdr, u32 *bth1,
4845 			       u32 *bth2, u16 fidx)
4846 {
4847 	struct hfi1_qp_priv *qpriv = qp->priv;
4848 	struct tid_rdma_params *remote;
4849 	struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4850 	struct tid_rdma_flow *flow = &req->flows[fidx];
4851 	u32 generation;
4852 
4853 	rcu_read_lock();
4854 	remote = rcu_dereference(qpriv->tid_rdma.remote);
4855 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4856 	ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4857 	*bth1 = remote->qp;
4858 	rcu_read_unlock();
4859 
4860 	generation = kern_flow_generation_next(flow->flow_state.generation);
4861 	*bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4862 	qpriv->s_resync_psn = *bth2;
4863 	*bth2 |= IB_BTH_REQ_ACK;
4864 	KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4865 
4866 	return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4867 }
4868 
4869 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4870 {
4871 	struct ib_other_headers *ohdr = packet->ohdr;
4872 	struct rvt_qp *qp = packet->qp;
4873 	struct hfi1_qp_priv *qpriv = qp->priv;
4874 	struct hfi1_ctxtdata *rcd = qpriv->rcd;
4875 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4876 	struct rvt_ack_entry *e;
4877 	struct tid_rdma_request *req;
4878 	struct tid_rdma_flow *flow;
4879 	struct tid_flow_state *fs = &qpriv->flow_state;
4880 	u32 psn, generation, idx, gen_next;
4881 	bool fecn;
4882 	unsigned long flags;
4883 
4884 	fecn = process_ecn(qp, packet);
4885 	psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4886 
4887 	generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4888 	spin_lock_irqsave(&qp->s_lock, flags);
4889 
4890 	gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4891 		generation : kern_flow_generation_next(fs->generation);
4892 	/*
4893 	 * RESYNC packet contains the "next" generation and can only be
4894 	 * from the current or previous generations
4895 	 */
4896 	if (generation != mask_generation(gen_next - 1) &&
4897 	    generation != gen_next)
4898 		goto bail;
4899 	/* Already processing a resync */
4900 	if (qpriv->resync)
4901 		goto bail;
4902 
4903 	spin_lock(&rcd->exp_lock);
4904 	if (fs->index >= RXE_NUM_TID_FLOWS) {
4905 		/*
4906 		 * If we don't have a flow, save the generation so it can be
4907 		 * applied when a new flow is allocated
4908 		 */
4909 		fs->generation = generation;
4910 	} else {
4911 		/* Reprogram the QP flow with new generation */
4912 		rcd->flows[fs->index].generation = generation;
4913 		fs->generation = kern_setup_hw_flow(rcd, fs->index);
4914 	}
4915 	fs->psn = 0;
4916 	/*
4917 	 * Disable SW PSN checking since a RESYNC is equivalent to a
4918 	 * sync point and the flow has/will be reprogrammed
4919 	 */
4920 	qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4921 	trace_hfi1_tid_write_rsp_rcv_resync(qp);
4922 
4923 	/*
4924 	 * Reset all TID flow information with the new generation.
4925 	 * This is done for all requests and segments after the
4926 	 * last received segment
4927 	 */
4928 	for (idx = qpriv->r_tid_tail; ; idx++) {
4929 		u16 flow_idx;
4930 
4931 		if (idx > rvt_size_atomic(&dev->rdi))
4932 			idx = 0;
4933 		e = &qp->s_ack_queue[idx];
4934 		if (e->opcode == TID_OP(WRITE_REQ)) {
4935 			req = ack_to_tid_req(e);
4936 			trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4937 						      e->lpsn, req);
4938 
4939 			/* start from last unacked segment */
4940 			for (flow_idx = req->clear_tail;
4941 			     CIRC_CNT(req->setup_head, flow_idx,
4942 				      MAX_FLOWS);
4943 			     flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4944 				u32 lpsn;
4945 				u32 next;
4946 
4947 				flow = &req->flows[flow_idx];
4948 				lpsn = full_flow_psn(flow,
4949 						     flow->flow_state.lpsn);
4950 				next = flow->flow_state.r_next_psn;
4951 				flow->npkts = delta_psn(lpsn, next - 1);
4952 				flow->flow_state.generation = fs->generation;
4953 				flow->flow_state.spsn = fs->psn;
4954 				flow->flow_state.lpsn =
4955 					flow->flow_state.spsn + flow->npkts - 1;
4956 				flow->flow_state.r_next_psn =
4957 					full_flow_psn(flow,
4958 						      flow->flow_state.spsn);
4959 				fs->psn += flow->npkts;
4960 				trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4961 							       flow);
4962 			}
4963 		}
4964 		if (idx == qp->s_tail_ack_queue)
4965 			break;
4966 	}
4967 
4968 	spin_unlock(&rcd->exp_lock);
4969 	qpriv->resync = true;
4970 	/* RESYNC request always gets a TID RDMA ACK. */
4971 	qpriv->s_nak_state = 0;
4972 	tid_rdma_trigger_ack(qp);
4973 bail:
4974 	if (fecn)
4975 		qp->s_flags |= RVT_S_ECN;
4976 	spin_unlock_irqrestore(&qp->s_lock, flags);
4977 }
4978 
4979 /*
4980  * Call this function when the last TID RDMA WRITE DATA packet for a request
4981  * is built.
4982  */
4983 static void update_tid_tail(struct rvt_qp *qp)
4984 	__must_hold(&qp->s_lock)
4985 {
4986 	struct hfi1_qp_priv *priv = qp->priv;
4987 	u32 i;
4988 	struct rvt_swqe *wqe;
4989 
4990 	lockdep_assert_held(&qp->s_lock);
4991 	/* Can't move beyond s_tid_cur */
4992 	if (priv->s_tid_tail == priv->s_tid_cur)
4993 		return;
4994 	for (i = priv->s_tid_tail + 1; ; i++) {
4995 		if (i == qp->s_size)
4996 			i = 0;
4997 
4998 		if (i == priv->s_tid_cur)
4999 			break;
5000 		wqe = rvt_get_swqe_ptr(qp, i);
5001 		if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
5002 			break;
5003 	}
5004 	priv->s_tid_tail = i;
5005 	priv->s_state = TID_OP(WRITE_RESP);
5006 }
5007 
5008 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
5009 	__must_hold(&qp->s_lock)
5010 {
5011 	struct hfi1_qp_priv *priv = qp->priv;
5012 	struct rvt_swqe *wqe;
5013 	u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
5014 	struct ib_other_headers *ohdr;
5015 	struct rvt_sge_state *ss = &qp->s_sge;
5016 	struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
5017 	struct tid_rdma_request *req = ack_to_tid_req(e);
5018 	bool last = false;
5019 	u8 opcode = TID_OP(WRITE_DATA);
5020 
5021 	lockdep_assert_held(&qp->s_lock);
5022 	trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5023 	/*
5024 	 * Prioritize the sending of the requests and responses over the
5025 	 * sending of the TID RDMA data packets.
5026 	 */
5027 	if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
5028 	     atomic_read(&priv->n_requests) &&
5029 	     !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
5030 			     HFI1_S_ANY_WAIT_IO))) ||
5031 	    (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5032 	     !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5033 		struct iowait_work *iowork;
5034 
5035 		iowork = iowait_get_ib_work(&priv->s_iowait);
5036 		ps->s_txreq = get_waiting_verbs_txreq(iowork);
5037 		if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5038 			priv->s_flags |= HFI1_S_TID_BUSY_SET;
5039 			return 1;
5040 		}
5041 	}
5042 
5043 	ps->s_txreq = get_txreq(ps->dev, qp);
5044 	if (!ps->s_txreq)
5045 		goto bail_no_tx;
5046 
5047 	ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5048 
5049 	if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5050 	    make_tid_rdma_ack(qp, ohdr, ps))
5051 		return 1;
5052 
5053 	/*
5054 	 * Bail out if we can't send data.
5055 	 * Be reminded that this check must been done after the call to
5056 	 * make_tid_rdma_ack() because the responding QP could be in
5057 	 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5058 	 */
5059 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5060 		goto bail;
5061 
5062 	if (priv->s_flags & RVT_S_WAIT_ACK)
5063 		goto bail;
5064 
5065 	/* Check whether there is anything to do. */
5066 	if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5067 		goto bail;
5068 	wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5069 	req = wqe_to_tid_req(wqe);
5070 	trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5071 					wqe->lpsn, req);
5072 	switch (priv->s_state) {
5073 	case TID_OP(WRITE_REQ):
5074 	case TID_OP(WRITE_RESP):
5075 		priv->tid_ss.sge = wqe->sg_list[0];
5076 		priv->tid_ss.sg_list = wqe->sg_list + 1;
5077 		priv->tid_ss.num_sge = wqe->wr.num_sge;
5078 		priv->tid_ss.total_len = wqe->length;
5079 
5080 		if (priv->s_state == TID_OP(WRITE_REQ))
5081 			hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5082 		priv->s_state = TID_OP(WRITE_DATA);
5083 		fallthrough;
5084 
5085 	case TID_OP(WRITE_DATA):
5086 		/*
5087 		 * 1. Check whether TID RDMA WRITE RESP available.
5088 		 * 2. If no:
5089 		 *    2.1 If have more segments and no TID RDMA WRITE RESP,
5090 		 *        set HFI1_S_WAIT_TID_RESP
5091 		 *    2.2 Return indicating no progress made.
5092 		 * 3. If yes:
5093 		 *    3.1 Build TID RDMA WRITE DATA packet.
5094 		 *    3.2 If last packet in segment:
5095 		 *        3.2.1 Change KDETH header bits
5096 		 *        3.2.2 Advance RESP pointers.
5097 		 *    3.3 Return indicating progress made.
5098 		 */
5099 		trace_hfi1_sender_make_tid_pkt(qp);
5100 		trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5101 		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5102 		req = wqe_to_tid_req(wqe);
5103 		len = wqe->length;
5104 
5105 		if (!req->comp_seg || req->cur_seg == req->comp_seg)
5106 			goto bail;
5107 
5108 		trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5109 						wqe->psn, wqe->lpsn, req);
5110 		last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5111 						  &len);
5112 
5113 		if (last) {
5114 			/* move pointer to next flow */
5115 			req->clear_tail = CIRC_NEXT(req->clear_tail,
5116 						    MAX_FLOWS);
5117 			if (++req->cur_seg < req->total_segs) {
5118 				if (!CIRC_CNT(req->setup_head, req->clear_tail,
5119 					      MAX_FLOWS))
5120 					qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5121 			} else {
5122 				priv->s_state = TID_OP(WRITE_DATA_LAST);
5123 				opcode = TID_OP(WRITE_DATA_LAST);
5124 
5125 				/* Advance the s_tid_tail now */
5126 				update_tid_tail(qp);
5127 			}
5128 		}
5129 		hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5130 		ss = &priv->tid_ss;
5131 		break;
5132 
5133 	case TID_OP(RESYNC):
5134 		trace_hfi1_sender_make_tid_pkt(qp);
5135 		/* Use generation from the most recently received response */
5136 		wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5137 		req = wqe_to_tid_req(wqe);
5138 		/* If no responses for this WQE look at the previous one */
5139 		if (!req->comp_seg) {
5140 			wqe = rvt_get_swqe_ptr(qp,
5141 					       (!priv->s_tid_cur ? qp->s_size :
5142 						priv->s_tid_cur) - 1);
5143 			req = wqe_to_tid_req(wqe);
5144 		}
5145 		hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5146 						     &bth2,
5147 						     CIRC_PREV(req->setup_head,
5148 							       MAX_FLOWS));
5149 		ss = NULL;
5150 		len = 0;
5151 		opcode = TID_OP(RESYNC);
5152 		break;
5153 
5154 	default:
5155 		goto bail;
5156 	}
5157 	if (priv->s_flags & RVT_S_SEND_ONE) {
5158 		priv->s_flags &= ~RVT_S_SEND_ONE;
5159 		priv->s_flags |= RVT_S_WAIT_ACK;
5160 		bth2 |= IB_BTH_REQ_ACK;
5161 	}
5162 	qp->s_len -= len;
5163 	ps->s_txreq->hdr_dwords = hwords;
5164 	ps->s_txreq->sde = priv->s_sde;
5165 	ps->s_txreq->ss = ss;
5166 	ps->s_txreq->s_cur_size = len;
5167 	hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5168 			     middle, ps);
5169 	return 1;
5170 bail:
5171 	hfi1_put_txreq(ps->s_txreq);
5172 bail_no_tx:
5173 	ps->s_txreq = NULL;
5174 	priv->s_flags &= ~RVT_S_BUSY;
5175 	/*
5176 	 * If we didn't get a txreq, the QP will be woken up later to try
5177 	 * again, set the flags to the wake up which work item to wake
5178 	 * up.
5179 	 * (A better algorithm should be found to do this and generalize the
5180 	 * sleep/wakeup flags.)
5181 	 */
5182 	iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5183 	return 0;
5184 }
5185 
5186 static int make_tid_rdma_ack(struct rvt_qp *qp,
5187 			     struct ib_other_headers *ohdr,
5188 			     struct hfi1_pkt_state *ps)
5189 {
5190 	struct rvt_ack_entry *e;
5191 	struct hfi1_qp_priv *qpriv = qp->priv;
5192 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5193 	u32 hwords, next;
5194 	u32 len = 0;
5195 	u32 bth1 = 0, bth2 = 0;
5196 	int middle = 0;
5197 	u16 flow;
5198 	struct tid_rdma_request *req, *nreq;
5199 
5200 	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5201 	/* Don't send an ACK if we aren't supposed to. */
5202 	if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5203 		goto bail;
5204 
5205 	/* header size in 32-bit words LRH+BTH = (8+12)/4. */
5206 	hwords = 5;
5207 
5208 	e = &qp->s_ack_queue[qpriv->r_tid_ack];
5209 	req = ack_to_tid_req(e);
5210 	/*
5211 	 * In the RESYNC case, we are exactly one segment past the
5212 	 * previously sent ack or at the previously sent NAK. So to send
5213 	 * the resync ack, we go back one segment (which might be part of
5214 	 * the previous request) and let the do-while loop execute again.
5215 	 * The advantage of executing the do-while loop is that any data
5216 	 * received after the previous ack is automatically acked in the
5217 	 * RESYNC ack. It turns out that for the do-while loop we only need
5218 	 * to pull back qpriv->r_tid_ack, not the segment
5219 	 * indices/counters. The scheme works even if the previous request
5220 	 * was not a TID WRITE request.
5221 	 */
5222 	if (qpriv->resync) {
5223 		if (!req->ack_seg || req->ack_seg == req->total_segs)
5224 			qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5225 				rvt_size_atomic(&dev->rdi) :
5226 				qpriv->r_tid_ack - 1;
5227 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5228 		req = ack_to_tid_req(e);
5229 	}
5230 
5231 	trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5232 	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5233 					req);
5234 	/*
5235 	 * If we've sent all the ACKs that we can, we are done
5236 	 * until we get more segments...
5237 	 */
5238 	if (!qpriv->s_nak_state && !qpriv->resync &&
5239 	    req->ack_seg == req->comp_seg)
5240 		goto bail;
5241 
5242 	do {
5243 		/*
5244 		 * To deal with coalesced ACKs, the acked_tail pointer
5245 		 * into the flow array is used. The distance between it
5246 		 * and the clear_tail is the number of flows that are
5247 		 * being ACK'ed.
5248 		 */
5249 		req->ack_seg +=
5250 			/* Get up-to-date value */
5251 			CIRC_CNT(req->clear_tail, req->acked_tail,
5252 				 MAX_FLOWS);
5253 		/* Advance acked index */
5254 		req->acked_tail = req->clear_tail;
5255 
5256 		/*
5257 		 * req->clear_tail points to the segment currently being
5258 		 * received. So, when sending an ACK, the previous
5259 		 * segment is being ACK'ed.
5260 		 */
5261 		flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5262 		if (req->ack_seg != req->total_segs)
5263 			break;
5264 		req->state = TID_REQUEST_COMPLETE;
5265 
5266 		next = qpriv->r_tid_ack + 1;
5267 		if (next > rvt_size_atomic(&dev->rdi))
5268 			next = 0;
5269 		qpriv->r_tid_ack = next;
5270 		if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5271 			break;
5272 		nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5273 		if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5274 			break;
5275 
5276 		/* Move to the next ack entry now */
5277 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5278 		req = ack_to_tid_req(e);
5279 	} while (1);
5280 
5281 	/*
5282 	 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5283 	 * req could be pointing at the previous ack queue entry
5284 	 */
5285 	if (qpriv->s_nak_state ||
5286 	    (qpriv->resync &&
5287 	     !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5288 	     (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5289 		      full_flow_psn(&req->flows[flow],
5290 				    req->flows[flow].flow_state.lpsn)) > 0))) {
5291 		/*
5292 		 * A NAK will implicitly acknowledge all previous TID RDMA
5293 		 * requests. Therefore, we NAK with the req->acked_tail
5294 		 * segment for the request at qpriv->r_tid_ack (same at
5295 		 * this point as the req->clear_tail segment for the
5296 		 * qpriv->r_tid_tail request)
5297 		 */
5298 		e = &qp->s_ack_queue[qpriv->r_tid_ack];
5299 		req = ack_to_tid_req(e);
5300 		flow = req->acked_tail;
5301 	} else if (req->ack_seg == req->total_segs &&
5302 		   qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5303 		qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5304 
5305 	trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5306 	trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5307 					req);
5308 	hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5309 						&bth2);
5310 	len = 0;
5311 	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5312 	ps->s_txreq->hdr_dwords = hwords;
5313 	ps->s_txreq->sde = qpriv->s_sde;
5314 	ps->s_txreq->s_cur_size = len;
5315 	ps->s_txreq->ss = NULL;
5316 	hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5317 			     ps);
5318 	ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5319 	return 1;
5320 bail:
5321 	/*
5322 	 * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5323 	 * RVT_S_RESP_PENDING
5324 	 */
5325 	smp_wmb();
5326 	qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5327 	return 0;
5328 }
5329 
5330 static int hfi1_send_tid_ok(struct rvt_qp *qp)
5331 {
5332 	struct hfi1_qp_priv *priv = qp->priv;
5333 
5334 	return !(priv->s_flags & RVT_S_BUSY ||
5335 		 qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5336 		(verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5337 		 (priv->s_flags & RVT_S_RESP_PENDING) ||
5338 		 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5339 }
5340 
5341 void _hfi1_do_tid_send(struct work_struct *work)
5342 {
5343 	struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5344 	struct rvt_qp *qp = iowait_to_qp(w->iow);
5345 
5346 	hfi1_do_tid_send(qp);
5347 }
5348 
5349 static void hfi1_do_tid_send(struct rvt_qp *qp)
5350 {
5351 	struct hfi1_pkt_state ps;
5352 	struct hfi1_qp_priv *priv = qp->priv;
5353 
5354 	ps.dev = to_idev(qp->ibqp.device);
5355 	ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5356 	ps.ppd = ppd_from_ibp(ps.ibp);
5357 	ps.wait = iowait_get_tid_work(&priv->s_iowait);
5358 	ps.in_thread = false;
5359 	ps.timeout_int = qp->timeout_jiffies / 8;
5360 
5361 	trace_hfi1_rc_do_tid_send(qp, false);
5362 	spin_lock_irqsave(&qp->s_lock, ps.flags);
5363 
5364 	/* Return if we are already busy processing a work request. */
5365 	if (!hfi1_send_tid_ok(qp)) {
5366 		if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5367 			iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5368 		spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5369 		return;
5370 	}
5371 
5372 	priv->s_flags |= RVT_S_BUSY;
5373 
5374 	ps.timeout = jiffies + ps.timeout_int;
5375 	ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5376 		cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5377 	ps.pkts_sent = false;
5378 
5379 	/* insure a pre-built packet is handled  */
5380 	ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5381 	do {
5382 		/* Check for a constructed packet to be sent. */
5383 		if (ps.s_txreq) {
5384 			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5385 				qp->s_flags |= RVT_S_BUSY;
5386 				ps.wait = iowait_get_ib_work(&priv->s_iowait);
5387 			}
5388 			spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5389 
5390 			/*
5391 			 * If the packet cannot be sent now, return and
5392 			 * the send tasklet will be woken up later.
5393 			 */
5394 			if (hfi1_verbs_send(qp, &ps))
5395 				return;
5396 
5397 			/* allow other tasks to run */
5398 			if (hfi1_schedule_send_yield(qp, &ps, true))
5399 				return;
5400 
5401 			spin_lock_irqsave(&qp->s_lock, ps.flags);
5402 			if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5403 				qp->s_flags &= ~RVT_S_BUSY;
5404 				priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5405 				ps.wait = iowait_get_tid_work(&priv->s_iowait);
5406 				if (iowait_flag_set(&priv->s_iowait,
5407 						    IOWAIT_PENDING_IB))
5408 					hfi1_schedule_send(qp);
5409 			}
5410 		}
5411 	} while (hfi1_make_tid_rdma_pkt(qp, &ps));
5412 	iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5413 	spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5414 }
5415 
5416 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5417 {
5418 	struct hfi1_qp_priv *priv = qp->priv;
5419 	struct hfi1_ibport *ibp =
5420 		to_iport(qp->ibqp.device, qp->port_num);
5421 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5422 	struct hfi1_devdata *dd = ppd->dd;
5423 
5424 	if ((dd->flags & HFI1_SHUTDOWN))
5425 		return true;
5426 
5427 	return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5428 				   priv->s_sde ?
5429 				   priv->s_sde->cpu :
5430 				   cpumask_first(cpumask_of_node(dd->node)));
5431 }
5432 
5433 /**
5434  * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5435  * @qp: the QP
5436  *
5437  * This schedules qp progress on the TID RDMA state machine. Caller
5438  * should hold the s_lock.
5439  * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5440  * the two state machines can step on each other with respect to the
5441  * RVT_S_BUSY flag.
5442  * Therefore, a modified test is used.
5443  * @return true if the second leg is scheduled;
5444  *  false if the second leg is not scheduled.
5445  */
5446 bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5447 {
5448 	lockdep_assert_held(&qp->s_lock);
5449 	if (hfi1_send_tid_ok(qp)) {
5450 		/*
5451 		 * The following call returns true if the qp is not on the
5452 		 * queue and false if the qp is already on the queue before
5453 		 * this call. Either way, the qp will be on the queue when the
5454 		 * call returns.
5455 		 */
5456 		_hfi1_schedule_tid_send(qp);
5457 		return true;
5458 	}
5459 	if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5460 		iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5461 				IOWAIT_PENDING_TID);
5462 	return false;
5463 }
5464 
5465 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5466 {
5467 	struct rvt_ack_entry *prev;
5468 	struct tid_rdma_request *req;
5469 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5470 	struct hfi1_qp_priv *priv = qp->priv;
5471 	u32 s_prev;
5472 
5473 	s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5474 		(qp->s_tail_ack_queue - 1);
5475 	prev = &qp->s_ack_queue[s_prev];
5476 
5477 	if ((e->opcode == TID_OP(READ_REQ) ||
5478 	     e->opcode == OP(RDMA_READ_REQUEST)) &&
5479 	    prev->opcode == TID_OP(WRITE_REQ)) {
5480 		req = ack_to_tid_req(prev);
5481 		if (req->ack_seg != req->total_segs) {
5482 			priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5483 			return true;
5484 		}
5485 	}
5486 	return false;
5487 }
5488 
5489 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5490 {
5491 	u64 reg;
5492 
5493 	/*
5494 	 * The only sane way to get the amount of
5495 	 * progress is to read the HW flow state.
5496 	 */
5497 	reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5498 	return mask_psn(reg);
5499 }
5500 
5501 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5502 			     struct ib_other_headers *ohdr,
5503 			     struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5504 {
5505 	unsigned long flags;
5506 
5507 	tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5508 	if (fecn) {
5509 		spin_lock_irqsave(&qp->s_lock, flags);
5510 		qp->s_flags |= RVT_S_ECN;
5511 		spin_unlock_irqrestore(&qp->s_lock, flags);
5512 	}
5513 }
5514 
5515 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5516 				   struct hfi1_qp_priv *priv,
5517 				   struct hfi1_ctxtdata *rcd,
5518 				   struct tid_rdma_flow *flow,
5519 				   bool fecn)
5520 {
5521 	/*
5522 	 * If a start/middle packet is delivered here due to
5523 	 * RSM rule and FECN, we need to update the r_next_psn.
5524 	 */
5525 	if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5526 	    !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5527 		struct hfi1_devdata *dd = rcd->dd;
5528 
5529 		flow->flow_state.r_next_psn =
5530 			read_r_next_psn(dd, rcd->ctxt, flow->idx);
5531 	}
5532 }
5533