xref: /linux/drivers/infiniband/hw/hfi1/sdma.h (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 #ifndef _HFI1_SDMA_H
2 #define _HFI1_SDMA_H
3 /*
4  * Copyright(c) 2015, 2016 Intel Corporation.
5  *
6  * This file is provided under a dual BSD/GPLv2 license.  When using or
7  * redistributing this file, you may do so under either license.
8  *
9  * GPL LICENSE SUMMARY
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * BSD LICENSE
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  *
26  *  - Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  *  - Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in
30  *    the documentation and/or other materials provided with the
31  *    distribution.
32  *  - Neither the name of Intel Corporation nor the names of its
33  *    contributors may be used to endorse or promote products derived
34  *    from this software without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
37  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
38  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
39  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
40  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
42  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
43  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
45  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
46  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47  *
48  */
49 
50 #include <linux/types.h>
51 #include <linux/list.h>
52 #include <asm/byteorder.h>
53 #include <linux/workqueue.h>
54 #include <linux/rculist.h>
55 
56 #include "hfi.h"
57 #include "verbs.h"
58 #include "sdma_txreq.h"
59 
60 /* Hardware limit */
61 #define MAX_DESC 64
62 /* Hardware limit for SDMA packet size */
63 #define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
64 
65 #define SDMA_TXREQ_S_OK        0
66 #define SDMA_TXREQ_S_SENDERROR 1
67 #define SDMA_TXREQ_S_ABORTED   2
68 #define SDMA_TXREQ_S_SHUTDOWN  3
69 
70 /* flags bits */
71 #define SDMA_TXREQ_F_URGENT       0x0001
72 #define SDMA_TXREQ_F_AHG_COPY     0x0002
73 #define SDMA_TXREQ_F_USE_AHG      0x0004
74 
75 #define SDMA_MAP_NONE          0
76 #define SDMA_MAP_SINGLE        1
77 #define SDMA_MAP_PAGE          2
78 
79 #define SDMA_AHG_VALUE_MASK          0xffff
80 #define SDMA_AHG_VALUE_SHIFT         0
81 #define SDMA_AHG_INDEX_MASK          0xf
82 #define SDMA_AHG_INDEX_SHIFT         16
83 #define SDMA_AHG_FIELD_LEN_MASK      0xf
84 #define SDMA_AHG_FIELD_LEN_SHIFT     20
85 #define SDMA_AHG_FIELD_START_MASK    0x1f
86 #define SDMA_AHG_FIELD_START_SHIFT   24
87 #define SDMA_AHG_UPDATE_ENABLE_MASK  0x1
88 #define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
89 
90 /* AHG modes */
91 
92 /*
93  * Be aware the ordering and values
94  * for SDMA_AHG_APPLY_UPDATE[123]
95  * are assumed in generating a skip
96  * count in submit_tx() in sdma.c
97  */
98 #define SDMA_AHG_NO_AHG              0
99 #define SDMA_AHG_COPY                1
100 #define SDMA_AHG_APPLY_UPDATE1       2
101 #define SDMA_AHG_APPLY_UPDATE2       3
102 #define SDMA_AHG_APPLY_UPDATE3       4
103 
104 /*
105  * Bits defined in the send DMA descriptor.
106  */
107 #define SDMA_DESC0_FIRST_DESC_FLAG      BIT_ULL(63)
108 #define SDMA_DESC0_LAST_DESC_FLAG       BIT_ULL(62)
109 #define SDMA_DESC0_BYTE_COUNT_SHIFT     48
110 #define SDMA_DESC0_BYTE_COUNT_WIDTH     14
111 #define SDMA_DESC0_BYTE_COUNT_MASK \
112 	((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
113 #define SDMA_DESC0_BYTE_COUNT_SMASK \
114 	(SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
115 #define SDMA_DESC0_PHY_ADDR_SHIFT       0
116 #define SDMA_DESC0_PHY_ADDR_WIDTH       48
117 #define SDMA_DESC0_PHY_ADDR_MASK \
118 	((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
119 #define SDMA_DESC0_PHY_ADDR_SMASK \
120 	(SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
121 
122 #define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
123 #define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
124 #define SDMA_DESC1_HEADER_UPDATE1_MASK \
125 	((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
126 #define SDMA_DESC1_HEADER_UPDATE1_SMASK \
127 	(SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
128 #define SDMA_DESC1_HEADER_MODE_SHIFT    13
129 #define SDMA_DESC1_HEADER_MODE_WIDTH    3
130 #define SDMA_DESC1_HEADER_MODE_MASK \
131 	((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
132 #define SDMA_DESC1_HEADER_MODE_SMASK \
133 	(SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
134 #define SDMA_DESC1_HEADER_INDEX_SHIFT   8
135 #define SDMA_DESC1_HEADER_INDEX_WIDTH   5
136 #define SDMA_DESC1_HEADER_INDEX_MASK \
137 	((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
138 #define SDMA_DESC1_HEADER_INDEX_SMASK \
139 	(SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
140 #define SDMA_DESC1_HEADER_DWS_SHIFT     4
141 #define SDMA_DESC1_HEADER_DWS_WIDTH     4
142 #define SDMA_DESC1_HEADER_DWS_MASK \
143 	((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
144 #define SDMA_DESC1_HEADER_DWS_SMASK \
145 	(SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
146 #define SDMA_DESC1_GENERATION_SHIFT     2
147 #define SDMA_DESC1_GENERATION_WIDTH     2
148 #define SDMA_DESC1_GENERATION_MASK \
149 	((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
150 #define SDMA_DESC1_GENERATION_SMASK \
151 	(SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
152 #define SDMA_DESC1_INT_REQ_FLAG         BIT_ULL(1)
153 #define SDMA_DESC1_HEAD_TO_HOST_FLAG    BIT_ULL(0)
154 
155 enum sdma_states {
156 	sdma_state_s00_hw_down,
157 	sdma_state_s10_hw_start_up_halt_wait,
158 	sdma_state_s15_hw_start_up_clean_wait,
159 	sdma_state_s20_idle,
160 	sdma_state_s30_sw_clean_up_wait,
161 	sdma_state_s40_hw_clean_up_wait,
162 	sdma_state_s50_hw_halt_wait,
163 	sdma_state_s60_idle_halt_wait,
164 	sdma_state_s80_hw_freeze,
165 	sdma_state_s82_freeze_sw_clean,
166 	sdma_state_s99_running,
167 };
168 
169 enum sdma_events {
170 	sdma_event_e00_go_hw_down,
171 	sdma_event_e10_go_hw_start,
172 	sdma_event_e15_hw_halt_done,
173 	sdma_event_e25_hw_clean_up_done,
174 	sdma_event_e30_go_running,
175 	sdma_event_e40_sw_cleaned,
176 	sdma_event_e50_hw_cleaned,
177 	sdma_event_e60_hw_halted,
178 	sdma_event_e70_go_idle,
179 	sdma_event_e80_hw_freeze,
180 	sdma_event_e81_hw_frozen,
181 	sdma_event_e82_hw_unfreeze,
182 	sdma_event_e85_link_down,
183 	sdma_event_e90_sw_halted,
184 };
185 
186 struct sdma_set_state_action {
187 	unsigned op_enable:1;
188 	unsigned op_intenable:1;
189 	unsigned op_halt:1;
190 	unsigned op_cleanup:1;
191 	unsigned go_s99_running_tofalse:1;
192 	unsigned go_s99_running_totrue:1;
193 };
194 
195 struct sdma_state {
196 	struct kref          kref;
197 	struct completion    comp;
198 	enum sdma_states current_state;
199 	unsigned             current_op;
200 	unsigned             go_s99_running;
201 	/* debugging/development */
202 	enum sdma_states previous_state;
203 	unsigned             previous_op;
204 	enum sdma_events last_event;
205 };
206 
207 /**
208  * DOC: sdma exported routines
209  *
210  * These sdma routines fit into three categories:
211  * - The SDMA API for building and submitting packets
212  *   to the ring
213  *
214  * - Initialization and tear down routines to buildup
215  *   and tear down SDMA
216  *
217  * - ISR entrances to handle interrupts, state changes
218  *   and errors
219  */
220 
221 /**
222  * DOC: sdma PSM/verbs API
223  *
224  * The sdma API is designed to be used by both PSM
225  * and verbs to supply packets to the SDMA ring.
226  *
227  * The usage of the API is as follows:
228  *
229  * Embed a struct iowait in the QP or
230  * PQ.  The iowait should be initialized with a
231  * call to iowait_init().
232  *
233  * The user of the API should create an allocation method
234  * for their version of the txreq. slabs, pre-allocated lists,
235  * and dma pools can be used.  Once the user's overload of
236  * the sdma_txreq has been allocated, the sdma_txreq member
237  * must be initialized with sdma_txinit() or sdma_txinit_ahg().
238  *
239  * The txreq must be declared with the sdma_txreq first.
240  *
241  * The tx request, once initialized,  is manipulated with calls to
242  * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
243  * for each disjoint memory location.  It is the user's responsibility
244  * to understand the packet boundaries and page boundaries to do the
245  * appropriate number of sdma_txadd_* calls..  The user
246  * must be prepared to deal with failures from these routines due to
247  * either memory allocation or dma_mapping failures.
248  *
249  * The mapping specifics for each memory location are recorded
250  * in the tx. Memory locations added with sdma_txadd_page()
251  * and sdma_txadd_kvaddr() are automatically mapped when added
252  * to the tx and nmapped as part of the progress processing in the
253  * SDMA interrupt handling.
254  *
255  * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
256  * tx.   An example of a use case would be a pre-allocated
257  * set of headers allocated via dma_pool_alloc() or
258  * dma_alloc_coherent().  For these memory locations, it
259  * is the responsibility of the user to handle that unmapping.
260  * (This would usually be at an unload or job termination.)
261  *
262  * The routine sdma_send_txreq() is used to submit
263  * a tx to the ring after the appropriate number of
264  * sdma_txadd_* have been done.
265  *
266  * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
267  * can be used to submit a list of packets.
268  *
269  * The user is free to use the link overhead in the struct sdma_txreq as
270  * long as the tx isn't in flight.
271  *
272  * The extreme degenerate case of the number of descriptors
273  * exceeding the ring size is automatically handled as
274  * memory locations are added.  An overflow of the descriptor
275  * array that is part of the sdma_txreq is also automatically
276  * handled.
277  *
278  */
279 
280 /**
281  * DOC: Infrastructure calls
282  *
283  * sdma_init() is used to initialize data structures and
284  * CSRs for the desired number of SDMA engines.
285  *
286  * sdma_start() is used to kick the SDMA engines initialized
287  * with sdma_init().   Interrupts must be enabled at this
288  * point since aspects of the state machine are interrupt
289  * driven.
290  *
291  * sdma_engine_error() and sdma_engine_interrupt() are
292  * entrances for interrupts.
293  *
294  * sdma_map_init() is for the management of the mapping
295  * table when the number of vls is changed.
296  *
297  */
298 
299 /*
300  * struct hw_sdma_desc - raw 128 bit SDMA descriptor
301  *
302  * This is the raw descriptor in the SDMA ring
303  */
304 struct hw_sdma_desc {
305 	/* private:  don't use directly */
306 	__le64 qw[2];
307 };
308 
309 /**
310  * struct sdma_engine - Data pertaining to each SDMA engine.
311  * @dd: a back-pointer to the device data
312  * @ppd: per port back-pointer
313  * @imask: mask for irq manipulation
314  * @idle_mask: mask for determining if an interrupt is due to sdma_idle
315  *
316  * This structure has the state for each sdma_engine.
317  *
318  * Accessing to non public fields are not supported
319  * since the private members are subject to change.
320  */
321 struct sdma_engine {
322 	/* read mostly */
323 	struct hfi1_devdata *dd;
324 	struct hfi1_pportdata *ppd;
325 	/* private: */
326 	void __iomem *tail_csr;
327 	u64 imask;			/* clear interrupt mask */
328 	u64 idle_mask;
329 	u64 progress_mask;
330 	u64 int_mask;
331 	/* private: */
332 	volatile __le64      *head_dma; /* DMA'ed by chip */
333 	/* private: */
334 	dma_addr_t            head_phys;
335 	/* private: */
336 	struct hw_sdma_desc *descq;
337 	/* private: */
338 	unsigned descq_full_count;
339 	struct sdma_txreq **tx_ring;
340 	/* private: */
341 	dma_addr_t            descq_phys;
342 	/* private */
343 	u32 sdma_mask;
344 	/* private */
345 	struct sdma_state state;
346 	/* private */
347 	int cpu;
348 	/* private: */
349 	u8 sdma_shift;
350 	/* private: */
351 	u8 this_idx; /* zero relative engine */
352 	/* protect changes to senddmactrl shadow */
353 	spinlock_t senddmactrl_lock;
354 	/* private: */
355 	u64 p_senddmactrl;		/* shadow per-engine SendDmaCtrl */
356 
357 	/* read/write using tail_lock */
358 	spinlock_t            tail_lock ____cacheline_aligned_in_smp;
359 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
360 	/* private: */
361 	u64                   tail_sn;
362 #endif
363 	/* private: */
364 	u32                   descq_tail;
365 	/* private: */
366 	unsigned long         ahg_bits;
367 	/* private: */
368 	u16                   desc_avail;
369 	/* private: */
370 	u16                   tx_tail;
371 	/* private: */
372 	u16 descq_cnt;
373 
374 	/* read/write using head_lock */
375 	/* private: */
376 	seqlock_t            head_lock ____cacheline_aligned_in_smp;
377 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
378 	/* private: */
379 	u64                   head_sn;
380 #endif
381 	/* private: */
382 	u32                   descq_head;
383 	/* private: */
384 	u16                   tx_head;
385 	/* private: */
386 	u64                   last_status;
387 	/* private */
388 	u64                     err_cnt;
389 	/* private */
390 	u64                     sdma_int_cnt;
391 	u64                     idle_int_cnt;
392 	u64                     progress_int_cnt;
393 
394 	/* private: */
395 	struct list_head      dmawait;
396 
397 	/* CONFIG SDMA for now, just blindly duplicate */
398 	/* private: */
399 	struct tasklet_struct sdma_hw_clean_up_task
400 		____cacheline_aligned_in_smp;
401 
402 	/* private: */
403 	struct tasklet_struct sdma_sw_clean_up_task
404 		____cacheline_aligned_in_smp;
405 	/* private: */
406 	struct work_struct err_halt_worker;
407 	/* private */
408 	struct timer_list     err_progress_check_timer;
409 	u32                   progress_check_head;
410 	/* private: */
411 	struct work_struct flush_worker;
412 	/* protect flush list */
413 	spinlock_t flushlist_lock;
414 	/* private: */
415 	struct list_head flushlist;
416 	struct cpumask cpu_mask;
417 	struct kobject kobj;
418 };
419 
420 int sdma_init(struct hfi1_devdata *dd, u8 port);
421 void sdma_start(struct hfi1_devdata *dd);
422 void sdma_exit(struct hfi1_devdata *dd);
423 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines);
424 void sdma_all_running(struct hfi1_devdata *dd);
425 void sdma_all_idle(struct hfi1_devdata *dd);
426 void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
427 void sdma_freeze(struct hfi1_devdata *dd);
428 void sdma_unfreeze(struct hfi1_devdata *dd);
429 void sdma_wait(struct hfi1_devdata *dd);
430 
431 /**
432  * sdma_empty() - idle engine test
433  * @engine: sdma engine
434  *
435  * Currently used by verbs as a latency optimization.
436  *
437  * Return:
438  * 1 - empty, 0 - non-empty
439  */
440 static inline int sdma_empty(struct sdma_engine *sde)
441 {
442 	return sde->descq_tail == sde->descq_head;
443 }
444 
445 static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
446 {
447 	return sde->descq_cnt -
448 		(sde->descq_tail -
449 		 READ_ONCE(sde->descq_head)) - 1;
450 }
451 
452 static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
453 {
454 	return sde->descq_cnt - sdma_descq_freecnt(sde);
455 }
456 
457 /*
458  * Either head_lock or tail lock required to see
459  * a steady state.
460  */
461 static inline int __sdma_running(struct sdma_engine *engine)
462 {
463 	return engine->state.current_state == sdma_state_s99_running;
464 }
465 
466 /**
467  * sdma_running() - state suitability test
468  * @engine: sdma engine
469  *
470  * sdma_running probes the internal state to determine if it is suitable
471  * for submitting packets.
472  *
473  * Return:
474  * 1 - ok to submit, 0 - not ok to submit
475  *
476  */
477 static inline int sdma_running(struct sdma_engine *engine)
478 {
479 	unsigned long flags;
480 	int ret;
481 
482 	spin_lock_irqsave(&engine->tail_lock, flags);
483 	ret = __sdma_running(engine);
484 	spin_unlock_irqrestore(&engine->tail_lock, flags);
485 	return ret;
486 }
487 
488 void _sdma_txreq_ahgadd(
489 	struct sdma_txreq *tx,
490 	u8 num_ahg,
491 	u8 ahg_entry,
492 	u32 *ahg,
493 	u8 ahg_hlen);
494 
495 /**
496  * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
497  * @tx: tx request to initialize
498  * @flags: flags to key last descriptor additions
499  * @tlen: total packet length (pbc + headers + data)
500  * @ahg_entry: ahg entry to use  (0 - 31)
501  * @num_ahg: ahg descriptor for first descriptor (0 - 9)
502  * @ahg: array of AHG descriptors (up to 9 entries)
503  * @ahg_hlen: number of bytes from ASIC entry to use
504  * @cb: callback
505  *
506  * The allocation of the sdma_txreq and it enclosing structure is user
507  * dependent.  This routine must be called to initialize the user independent
508  * fields.
509  *
510  * The currently supported flags are SDMA_TXREQ_F_URGENT,
511  * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
512  *
513  * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
514  * completion is desired as soon as possible.
515  *
516  * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
517  * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
518  * the AHG descriptors into the first 1 to 3 descriptors.
519  *
520  * Completions of submitted requests can be gotten on selected
521  * txreqs by giving a completion routine callback to sdma_txinit() or
522  * sdma_txinit_ahg().  The environment in which the callback runs
523  * can be from an ISR, a tasklet, or a thread, so no sleeping
524  * kernel routines can be used.   Aspects of the sdma ring may
525  * be locked so care should be taken with locking.
526  *
527  * The callback pointer can be NULL to avoid any callback for the packet
528  * being submitted. The callback will be provided this tx, a status, and a flag.
529  *
530  * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
531  * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
532  *
533  * The flag, if the is the iowait had been used, indicates the iowait
534  * sdma_busy count has reached zero.
535  *
536  * user data portion of tlen should be precise.   The sdma_txadd_* entrances
537  * will pad with a descriptor references 1 - 3 bytes when the number of bytes
538  * specified in tlen have been supplied to the sdma_txreq.
539  *
540  * ahg_hlen is used to determine the number of on-chip entry bytes to
541  * use as the header.   This is for cases where the stored header is
542  * larger than the header to be used in a packet.  This is typical
543  * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
544  * and RDMA_WRITE_MIDDLE.
545  *
546  */
547 static inline int sdma_txinit_ahg(
548 	struct sdma_txreq *tx,
549 	u16 flags,
550 	u16 tlen,
551 	u8 ahg_entry,
552 	u8 num_ahg,
553 	u32 *ahg,
554 	u8 ahg_hlen,
555 	void (*cb)(struct sdma_txreq *, int))
556 {
557 	if (tlen == 0)
558 		return -ENODATA;
559 	if (tlen > MAX_SDMA_PKT_SIZE)
560 		return -EMSGSIZE;
561 	tx->desc_limit = ARRAY_SIZE(tx->descs);
562 	tx->descp = &tx->descs[0];
563 	INIT_LIST_HEAD(&tx->list);
564 	tx->num_desc = 0;
565 	tx->flags = flags;
566 	tx->complete = cb;
567 	tx->coalesce_buf = NULL;
568 	tx->wait = NULL;
569 	tx->packet_len = tlen;
570 	tx->tlen = tx->packet_len;
571 	tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
572 	tx->descs[0].qw[1] = 0;
573 	if (flags & SDMA_TXREQ_F_AHG_COPY)
574 		tx->descs[0].qw[1] |=
575 			(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
576 				<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
577 			(((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
578 				<< SDMA_DESC1_HEADER_MODE_SHIFT);
579 	else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
580 		_sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
581 	return 0;
582 }
583 
584 /**
585  * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
586  * @tx: tx request to initialize
587  * @flags: flags to key last descriptor additions
588  * @tlen: total packet length (pbc + headers + data)
589  * @cb: callback pointer
590  *
591  * The allocation of the sdma_txreq and it enclosing structure is user
592  * dependent.  This routine must be called to initialize the user
593  * independent fields.
594  *
595  * The currently supported flags is SDMA_TXREQ_F_URGENT.
596  *
597  * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
598  * completion is desired as soon as possible.
599  *
600  * Completions of submitted requests can be gotten on selected
601  * txreqs by giving a completion routine callback to sdma_txinit() or
602  * sdma_txinit_ahg().  The environment in which the callback runs
603  * can be from an ISR, a tasklet, or a thread, so no sleeping
604  * kernel routines can be used.   The head size of the sdma ring may
605  * be locked so care should be taken with locking.
606  *
607  * The callback pointer can be NULL to avoid any callback for the packet
608  * being submitted.
609  *
610  * The callback, if non-NULL,  will be provided this tx and a status.  The
611  * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
612  * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
613  *
614  */
615 static inline int sdma_txinit(
616 	struct sdma_txreq *tx,
617 	u16 flags,
618 	u16 tlen,
619 	void (*cb)(struct sdma_txreq *, int))
620 {
621 	return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
622 }
623 
624 /* helpers - don't use */
625 static inline int sdma_mapping_type(struct sdma_desc *d)
626 {
627 	return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
628 		>> SDMA_DESC1_GENERATION_SHIFT;
629 }
630 
631 static inline size_t sdma_mapping_len(struct sdma_desc *d)
632 {
633 	return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
634 		>> SDMA_DESC0_BYTE_COUNT_SHIFT;
635 }
636 
637 static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
638 {
639 	return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
640 		>> SDMA_DESC0_PHY_ADDR_SHIFT;
641 }
642 
643 static inline void make_tx_sdma_desc(
644 	struct sdma_txreq *tx,
645 	int type,
646 	dma_addr_t addr,
647 	size_t len)
648 {
649 	struct sdma_desc *desc = &tx->descp[tx->num_desc];
650 
651 	if (!tx->num_desc) {
652 		/* qw[0] zero; qw[1] first, ahg mode already in from init */
653 		desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
654 				<< SDMA_DESC1_GENERATION_SHIFT;
655 	} else {
656 		desc->qw[0] = 0;
657 		desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
658 				<< SDMA_DESC1_GENERATION_SHIFT;
659 	}
660 	desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
661 				<< SDMA_DESC0_PHY_ADDR_SHIFT) |
662 			(((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
663 				<< SDMA_DESC0_BYTE_COUNT_SHIFT);
664 }
665 
666 /* helper to extend txreq */
667 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
668 			   int type, void *kvaddr, struct page *page,
669 			   unsigned long offset, u16 len);
670 int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
671 void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
672 
673 static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
674 {
675 	if (tx->num_desc)
676 		__sdma_txclean(dd, tx);
677 }
678 
679 /* helpers used by public routines */
680 static inline void _sdma_close_tx(struct hfi1_devdata *dd,
681 				  struct sdma_txreq *tx)
682 {
683 	tx->descp[tx->num_desc].qw[0] |=
684 		SDMA_DESC0_LAST_DESC_FLAG;
685 	tx->descp[tx->num_desc].qw[1] |=
686 		dd->default_desc1;
687 	if (tx->flags & SDMA_TXREQ_F_URGENT)
688 		tx->descp[tx->num_desc].qw[1] |=
689 			(SDMA_DESC1_HEAD_TO_HOST_FLAG |
690 			 SDMA_DESC1_INT_REQ_FLAG);
691 }
692 
693 static inline int _sdma_txadd_daddr(
694 	struct hfi1_devdata *dd,
695 	int type,
696 	struct sdma_txreq *tx,
697 	dma_addr_t addr,
698 	u16 len)
699 {
700 	int rval = 0;
701 
702 	make_tx_sdma_desc(
703 		tx,
704 		type,
705 		addr, len);
706 	WARN_ON(len > tx->tlen);
707 	tx->tlen -= len;
708 	/* special cases for last */
709 	if (!tx->tlen) {
710 		if (tx->packet_len & (sizeof(u32) - 1)) {
711 			rval = _pad_sdma_tx_descs(dd, tx);
712 			if (rval)
713 				return rval;
714 		} else {
715 			_sdma_close_tx(dd, tx);
716 		}
717 	}
718 	tx->num_desc++;
719 	return rval;
720 }
721 
722 /**
723  * sdma_txadd_page() - add a page to the sdma_txreq
724  * @dd: the device to use for mapping
725  * @tx: tx request to which the page is added
726  * @page: page to map
727  * @offset: offset within the page
728  * @len: length in bytes
729  *
730  * This is used to add a page/offset/length descriptor.
731  *
732  * The mapping/unmapping of the page/offset/len is automatically handled.
733  *
734  * Return:
735  * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
736  * extend/coalesce descriptor array
737  */
738 static inline int sdma_txadd_page(
739 	struct hfi1_devdata *dd,
740 	struct sdma_txreq *tx,
741 	struct page *page,
742 	unsigned long offset,
743 	u16 len)
744 {
745 	dma_addr_t addr;
746 	int rval;
747 
748 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
749 		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
750 					      NULL, page, offset, len);
751 		if (rval <= 0)
752 			return rval;
753 	}
754 
755 	addr = dma_map_page(
756 		       &dd->pcidev->dev,
757 		       page,
758 		       offset,
759 		       len,
760 		       DMA_TO_DEVICE);
761 
762 	if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
763 		__sdma_txclean(dd, tx);
764 		return -ENOSPC;
765 	}
766 
767 	return _sdma_txadd_daddr(
768 			dd, SDMA_MAP_PAGE, tx, addr, len);
769 }
770 
771 /**
772  * sdma_txadd_daddr() - add a dma address to the sdma_txreq
773  * @dd: the device to use for mapping
774  * @tx: sdma_txreq to which the page is added
775  * @addr: dma address mapped by caller
776  * @len: length in bytes
777  *
778  * This is used to add a descriptor for memory that is already dma mapped.
779  *
780  * In this case, there is no unmapping as part of the progress processing for
781  * this memory location.
782  *
783  * Return:
784  * 0 - success, -ENOMEM - couldn't extend descriptor array
785  */
786 
787 static inline int sdma_txadd_daddr(
788 	struct hfi1_devdata *dd,
789 	struct sdma_txreq *tx,
790 	dma_addr_t addr,
791 	u16 len)
792 {
793 	int rval;
794 
795 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
796 		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
797 					      NULL, NULL, 0, 0);
798 		if (rval <= 0)
799 			return rval;
800 	}
801 
802 	return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len);
803 }
804 
805 /**
806  * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
807  * @dd: the device to use for mapping
808  * @tx: sdma_txreq to which the page is added
809  * @kvaddr: the kernel virtual address
810  * @len: length in bytes
811  *
812  * This is used to add a descriptor referenced by the indicated kvaddr and
813  * len.
814  *
815  * The mapping/unmapping of the kvaddr and len is automatically handled.
816  *
817  * Return:
818  * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
819  * descriptor array
820  */
821 static inline int sdma_txadd_kvaddr(
822 	struct hfi1_devdata *dd,
823 	struct sdma_txreq *tx,
824 	void *kvaddr,
825 	u16 len)
826 {
827 	dma_addr_t addr;
828 	int rval;
829 
830 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
831 		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
832 					      kvaddr, NULL, 0, len);
833 		if (rval <= 0)
834 			return rval;
835 	}
836 
837 	addr = dma_map_single(
838 		       &dd->pcidev->dev,
839 		       kvaddr,
840 		       len,
841 		       DMA_TO_DEVICE);
842 
843 	if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
844 		__sdma_txclean(dd, tx);
845 		return -ENOSPC;
846 	}
847 
848 	return _sdma_txadd_daddr(
849 			dd, SDMA_MAP_SINGLE, tx, addr, len);
850 }
851 
852 struct iowait;
853 
854 int sdma_send_txreq(struct sdma_engine *sde,
855 		    struct iowait *wait,
856 		    struct sdma_txreq *tx,
857 		    bool pkts_sent);
858 int sdma_send_txlist(struct sdma_engine *sde,
859 		     struct iowait *wait,
860 		     struct list_head *tx_list,
861 		     u32 *count);
862 
863 int sdma_ahg_alloc(struct sdma_engine *sde);
864 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
865 
866 /**
867  * sdma_build_ahg - build ahg descriptor
868  * @data
869  * @dwindex
870  * @startbit
871  * @bits
872  *
873  * Build and return a 32 bit descriptor.
874  */
875 static inline u32 sdma_build_ahg_descriptor(
876 	u16 data,
877 	u8 dwindex,
878 	u8 startbit,
879 	u8 bits)
880 {
881 	return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
882 		((startbit & SDMA_AHG_FIELD_START_MASK) <<
883 		SDMA_AHG_FIELD_START_SHIFT) |
884 		((bits & SDMA_AHG_FIELD_LEN_MASK) <<
885 		SDMA_AHG_FIELD_LEN_SHIFT) |
886 		((dwindex & SDMA_AHG_INDEX_MASK) <<
887 		SDMA_AHG_INDEX_SHIFT) |
888 		((data & SDMA_AHG_VALUE_MASK) <<
889 		SDMA_AHG_VALUE_SHIFT));
890 }
891 
892 /**
893  * sdma_progress - use seq number of detect head progress
894  * @sde: sdma_engine to check
895  * @seq: base seq count
896  * @tx: txreq for which we need to check descriptor availability
897  *
898  * This is used in the appropriate spot in the sleep routine
899  * to check for potential ring progress.  This routine gets the
900  * seqcount before queuing the iowait structure for progress.
901  *
902  * If the seqcount indicates that progress needs to be checked,
903  * re-submission is detected by checking whether the descriptor
904  * queue has enough descriptor for the txreq.
905  */
906 static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
907 				     struct sdma_txreq *tx)
908 {
909 	if (read_seqretry(&sde->head_lock, seq)) {
910 		sde->desc_avail = sdma_descq_freecnt(sde);
911 		if (tx->num_desc > sde->desc_avail)
912 			return 0;
913 		return 1;
914 	}
915 	return 0;
916 }
917 
918 /**
919  * sdma_iowait_schedule() - initialize wait structure
920  * @sde: sdma_engine to schedule
921  * @wait: wait struct to schedule
922  *
923  * This function initializes the iowait
924  * structure embedded in the QP or PQ.
925  *
926  */
927 static inline void sdma_iowait_schedule(
928 	struct sdma_engine *sde,
929 	struct iowait *wait)
930 {
931 	struct hfi1_pportdata *ppd = sde->dd->pport;
932 
933 	iowait_schedule(wait, ppd->hfi1_wq, sde->cpu);
934 }
935 
936 /* for use by interrupt handling */
937 void sdma_engine_error(struct sdma_engine *sde, u64 status);
938 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
939 
940 /*
941  *
942  * The diagram below details the relationship of the mapping structures
943  *
944  * Since the mapping now allows for non-uniform engines per vl, the
945  * number of engines for a vl is either the vl_engines[vl] or
946  * a computation based on num_sdma/num_vls:
947  *
948  * For example:
949  * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
950  *
951  * n = roundup to next highest power of 2 using nactual
952  *
953  * In the case where there are num_sdma/num_vls doesn't divide
954  * evenly, the extras are added from the last vl downward.
955  *
956  * For the case where n > nactual, the engines are assigned
957  * in a round robin fashion wrapping back to the first engine
958  * for a particular vl.
959  *
960  *               dd->sdma_map
961  *                    |                                   sdma_map_elem[0]
962  *                    |                                +--------------------+
963  *                    v                                |       mask         |
964  *               sdma_vl_map                           |--------------------|
965  *      +--------------------------+                   | sde[0] -> eng 1    |
966  *      |    list (RCU)            |                   |--------------------|
967  *      |--------------------------|                 ->| sde[1] -> eng 2    |
968  *      |    mask                  |              --/  |--------------------|
969  *      |--------------------------|            -/     |        *           |
970  *      |    actual_vls (max 8)    |          -/       |--------------------|
971  *      |--------------------------|       --/         | sde[n-1] -> eng n  |
972  *      |    vls (max 8)           |     -/            +--------------------+
973  *      |--------------------------|  --/
974  *      |    map[0]                |-/
975  *      |--------------------------|                   +---------------------+
976  *      |    map[1]                |---                |       mask          |
977  *      |--------------------------|   \----           |---------------------|
978  *      |           *              |        \--        | sde[0] -> eng 1+n   |
979  *      |           *              |           \----   |---------------------|
980  *      |           *              |                \->| sde[1] -> eng 2+n   |
981  *      |--------------------------|                   |---------------------|
982  *      |   map[vls - 1]           |-                  |         *           |
983  *      +--------------------------+ \-                |---------------------|
984  *                                     \-              | sde[m-1] -> eng m+n |
985  *                                       \             +---------------------+
986  *                                        \-
987  *                                          \
988  *                                           \-        +----------------------+
989  *                                             \-      |       mask           |
990  *                                               \     |----------------------|
991  *                                                \-   | sde[0] -> eng 1+m+n  |
992  *                                                  \- |----------------------|
993  *                                                    >| sde[1] -> eng 2+m+n  |
994  *                                                     |----------------------|
995  *                                                     |         *            |
996  *                                                     |----------------------|
997  *                                                     | sde[o-1] -> eng o+m+n|
998  *                                                     +----------------------+
999  *
1000  */
1001 
1002 /**
1003  * struct sdma_map_elem - mapping for a vl
1004  * @mask - selector mask
1005  * @sde - array of engines for this vl
1006  *
1007  * The mask is used to "mod" the selector
1008  * to produce index into the trailing
1009  * array of sdes.
1010  */
1011 struct sdma_map_elem {
1012 	u32 mask;
1013 	struct sdma_engine *sde[0];
1014 };
1015 
1016 /**
1017  * struct sdma_map_el - mapping for a vl
1018  * @engine_to_vl - map of an engine to a vl
1019  * @list - rcu head for free callback
1020  * @mask - vl mask to "mod" the vl to produce an index to map array
1021  * @actual_vls - number of vls
1022  * @vls - number of vls rounded to next power of 2
1023  * @map - array of sdma_map_elem entries
1024  *
1025  * This is the parent mapping structure.  The trailing
1026  * members of the struct point to sdma_map_elem entries, which
1027  * in turn point to an array of sde's for that vl.
1028  */
1029 struct sdma_vl_map {
1030 	s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
1031 	struct rcu_head list;
1032 	u32 mask;
1033 	u8 actual_vls;
1034 	u8 vls;
1035 	struct sdma_map_elem *map[0];
1036 };
1037 
1038 int sdma_map_init(
1039 	struct hfi1_devdata *dd,
1040 	u8 port,
1041 	u8 num_vls,
1042 	u8 *vl_engines);
1043 
1044 /* slow path */
1045 void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1046 
1047 /**
1048  * sdma_engine_progress_schedule() - schedule progress on engine
1049  * @sde: sdma_engine to schedule progress
1050  *
1051  * This is the fast path.
1052  *
1053  */
1054 static inline void sdma_engine_progress_schedule(
1055 	struct sdma_engine *sde)
1056 {
1057 	if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1058 		return;
1059 	_sdma_engine_progress_schedule(sde);
1060 }
1061 
1062 struct sdma_engine *sdma_select_engine_sc(
1063 	struct hfi1_devdata *dd,
1064 	u32 selector,
1065 	u8 sc5);
1066 
1067 struct sdma_engine *sdma_select_engine_vl(
1068 	struct hfi1_devdata *dd,
1069 	u32 selector,
1070 	u8 vl);
1071 
1072 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1073 					    u32 selector, u8 vl);
1074 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1075 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1076 				size_t count);
1077 int sdma_engine_get_vl(struct sdma_engine *sde);
1078 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1079 void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1080 				unsigned long cpuid);
1081 
1082 #ifdef CONFIG_SDMA_VERBOSITY
1083 void sdma_dumpstate(struct sdma_engine *);
1084 #endif
1085 static inline char *slashstrip(char *s)
1086 {
1087 	char *r = s;
1088 
1089 	while (*s)
1090 		if (*s++ == '/')
1091 			r = s;
1092 	return r;
1093 }
1094 
1095 u16 sdma_get_descq_cnt(void);
1096 
1097 extern uint mod_num_sdma;
1098 
1099 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1100 
1101 #endif
1102