xref: /linux/drivers/infiniband/hw/hfi1/sdma.h (revision 0c874100108f03401cb3154801d2671bbad40ad4)
1 #ifndef _HFI1_SDMA_H
2 #define _HFI1_SDMA_H
3 /*
4  * Copyright(c) 2015 - 2018 Intel Corporation.
5  *
6  * This file is provided under a dual BSD/GPLv2 license.  When using or
7  * redistributing this file, you may do so under either license.
8  *
9  * GPL LICENSE SUMMARY
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * BSD LICENSE
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  *
26  *  - Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  *  - Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in
30  *    the documentation and/or other materials provided with the
31  *    distribution.
32  *  - Neither the name of Intel Corporation nor the names of its
33  *    contributors may be used to endorse or promote products derived
34  *    from this software without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
37  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
38  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
39  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
40  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
42  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
43  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
45  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
46  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47  *
48  */
49 
50 #include <linux/types.h>
51 #include <linux/list.h>
52 #include <asm/byteorder.h>
53 #include <linux/workqueue.h>
54 #include <linux/rculist.h>
55 
56 #include "hfi.h"
57 #include "verbs.h"
58 #include "sdma_txreq.h"
59 
60 /* Hardware limit */
61 #define MAX_DESC 64
62 /* Hardware limit for SDMA packet size */
63 #define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
64 
65 #define SDMA_MAP_NONE          0
66 #define SDMA_MAP_SINGLE        1
67 #define SDMA_MAP_PAGE          2
68 
69 #define SDMA_AHG_VALUE_MASK          0xffff
70 #define SDMA_AHG_VALUE_SHIFT         0
71 #define SDMA_AHG_INDEX_MASK          0xf
72 #define SDMA_AHG_INDEX_SHIFT         16
73 #define SDMA_AHG_FIELD_LEN_MASK      0xf
74 #define SDMA_AHG_FIELD_LEN_SHIFT     20
75 #define SDMA_AHG_FIELD_START_MASK    0x1f
76 #define SDMA_AHG_FIELD_START_SHIFT   24
77 #define SDMA_AHG_UPDATE_ENABLE_MASK  0x1
78 #define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
79 
80 /* AHG modes */
81 
82 /*
83  * Be aware the ordering and values
84  * for SDMA_AHG_APPLY_UPDATE[123]
85  * are assumed in generating a skip
86  * count in submit_tx() in sdma.c
87  */
88 #define SDMA_AHG_NO_AHG              0
89 #define SDMA_AHG_COPY                1
90 #define SDMA_AHG_APPLY_UPDATE1       2
91 #define SDMA_AHG_APPLY_UPDATE2       3
92 #define SDMA_AHG_APPLY_UPDATE3       4
93 
94 /*
95  * Bits defined in the send DMA descriptor.
96  */
97 #define SDMA_DESC0_FIRST_DESC_FLAG      BIT_ULL(63)
98 #define SDMA_DESC0_LAST_DESC_FLAG       BIT_ULL(62)
99 #define SDMA_DESC0_BYTE_COUNT_SHIFT     48
100 #define SDMA_DESC0_BYTE_COUNT_WIDTH     14
101 #define SDMA_DESC0_BYTE_COUNT_MASK \
102 	((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
103 #define SDMA_DESC0_BYTE_COUNT_SMASK \
104 	(SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
105 #define SDMA_DESC0_PHY_ADDR_SHIFT       0
106 #define SDMA_DESC0_PHY_ADDR_WIDTH       48
107 #define SDMA_DESC0_PHY_ADDR_MASK \
108 	((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
109 #define SDMA_DESC0_PHY_ADDR_SMASK \
110 	(SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
111 
112 #define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
113 #define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
114 #define SDMA_DESC1_HEADER_UPDATE1_MASK \
115 	((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
116 #define SDMA_DESC1_HEADER_UPDATE1_SMASK \
117 	(SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
118 #define SDMA_DESC1_HEADER_MODE_SHIFT    13
119 #define SDMA_DESC1_HEADER_MODE_WIDTH    3
120 #define SDMA_DESC1_HEADER_MODE_MASK \
121 	((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
122 #define SDMA_DESC1_HEADER_MODE_SMASK \
123 	(SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
124 #define SDMA_DESC1_HEADER_INDEX_SHIFT   8
125 #define SDMA_DESC1_HEADER_INDEX_WIDTH   5
126 #define SDMA_DESC1_HEADER_INDEX_MASK \
127 	((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
128 #define SDMA_DESC1_HEADER_INDEX_SMASK \
129 	(SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
130 #define SDMA_DESC1_HEADER_DWS_SHIFT     4
131 #define SDMA_DESC1_HEADER_DWS_WIDTH     4
132 #define SDMA_DESC1_HEADER_DWS_MASK \
133 	((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
134 #define SDMA_DESC1_HEADER_DWS_SMASK \
135 	(SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
136 #define SDMA_DESC1_GENERATION_SHIFT     2
137 #define SDMA_DESC1_GENERATION_WIDTH     2
138 #define SDMA_DESC1_GENERATION_MASK \
139 	((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
140 #define SDMA_DESC1_GENERATION_SMASK \
141 	(SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
142 #define SDMA_DESC1_INT_REQ_FLAG         BIT_ULL(1)
143 #define SDMA_DESC1_HEAD_TO_HOST_FLAG    BIT_ULL(0)
144 
145 enum sdma_states {
146 	sdma_state_s00_hw_down,
147 	sdma_state_s10_hw_start_up_halt_wait,
148 	sdma_state_s15_hw_start_up_clean_wait,
149 	sdma_state_s20_idle,
150 	sdma_state_s30_sw_clean_up_wait,
151 	sdma_state_s40_hw_clean_up_wait,
152 	sdma_state_s50_hw_halt_wait,
153 	sdma_state_s60_idle_halt_wait,
154 	sdma_state_s80_hw_freeze,
155 	sdma_state_s82_freeze_sw_clean,
156 	sdma_state_s99_running,
157 };
158 
159 enum sdma_events {
160 	sdma_event_e00_go_hw_down,
161 	sdma_event_e10_go_hw_start,
162 	sdma_event_e15_hw_halt_done,
163 	sdma_event_e25_hw_clean_up_done,
164 	sdma_event_e30_go_running,
165 	sdma_event_e40_sw_cleaned,
166 	sdma_event_e50_hw_cleaned,
167 	sdma_event_e60_hw_halted,
168 	sdma_event_e70_go_idle,
169 	sdma_event_e80_hw_freeze,
170 	sdma_event_e81_hw_frozen,
171 	sdma_event_e82_hw_unfreeze,
172 	sdma_event_e85_link_down,
173 	sdma_event_e90_sw_halted,
174 };
175 
176 struct sdma_set_state_action {
177 	unsigned op_enable:1;
178 	unsigned op_intenable:1;
179 	unsigned op_halt:1;
180 	unsigned op_cleanup:1;
181 	unsigned go_s99_running_tofalse:1;
182 	unsigned go_s99_running_totrue:1;
183 };
184 
185 struct sdma_state {
186 	struct kref          kref;
187 	struct completion    comp;
188 	enum sdma_states current_state;
189 	unsigned             current_op;
190 	unsigned             go_s99_running;
191 	/* debugging/development */
192 	enum sdma_states previous_state;
193 	unsigned             previous_op;
194 	enum sdma_events last_event;
195 };
196 
197 /**
198  * DOC: sdma exported routines
199  *
200  * These sdma routines fit into three categories:
201  * - The SDMA API for building and submitting packets
202  *   to the ring
203  *
204  * - Initialization and tear down routines to buildup
205  *   and tear down SDMA
206  *
207  * - ISR entrances to handle interrupts, state changes
208  *   and errors
209  */
210 
211 /**
212  * DOC: sdma PSM/verbs API
213  *
214  * The sdma API is designed to be used by both PSM
215  * and verbs to supply packets to the SDMA ring.
216  *
217  * The usage of the API is as follows:
218  *
219  * Embed a struct iowait in the QP or
220  * PQ.  The iowait should be initialized with a
221  * call to iowait_init().
222  *
223  * The user of the API should create an allocation method
224  * for their version of the txreq. slabs, pre-allocated lists,
225  * and dma pools can be used.  Once the user's overload of
226  * the sdma_txreq has been allocated, the sdma_txreq member
227  * must be initialized with sdma_txinit() or sdma_txinit_ahg().
228  *
229  * The txreq must be declared with the sdma_txreq first.
230  *
231  * The tx request, once initialized,  is manipulated with calls to
232  * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
233  * for each disjoint memory location.  It is the user's responsibility
234  * to understand the packet boundaries and page boundaries to do the
235  * appropriate number of sdma_txadd_* calls..  The user
236  * must be prepared to deal with failures from these routines due to
237  * either memory allocation or dma_mapping failures.
238  *
239  * The mapping specifics for each memory location are recorded
240  * in the tx. Memory locations added with sdma_txadd_page()
241  * and sdma_txadd_kvaddr() are automatically mapped when added
242  * to the tx and nmapped as part of the progress processing in the
243  * SDMA interrupt handling.
244  *
245  * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
246  * tx.   An example of a use case would be a pre-allocated
247  * set of headers allocated via dma_pool_alloc() or
248  * dma_alloc_coherent().  For these memory locations, it
249  * is the responsibility of the user to handle that unmapping.
250  * (This would usually be at an unload or job termination.)
251  *
252  * The routine sdma_send_txreq() is used to submit
253  * a tx to the ring after the appropriate number of
254  * sdma_txadd_* have been done.
255  *
256  * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
257  * can be used to submit a list of packets.
258  *
259  * The user is free to use the link overhead in the struct sdma_txreq as
260  * long as the tx isn't in flight.
261  *
262  * The extreme degenerate case of the number of descriptors
263  * exceeding the ring size is automatically handled as
264  * memory locations are added.  An overflow of the descriptor
265  * array that is part of the sdma_txreq is also automatically
266  * handled.
267  *
268  */
269 
270 /**
271  * DOC: Infrastructure calls
272  *
273  * sdma_init() is used to initialize data structures and
274  * CSRs for the desired number of SDMA engines.
275  *
276  * sdma_start() is used to kick the SDMA engines initialized
277  * with sdma_init().   Interrupts must be enabled at this
278  * point since aspects of the state machine are interrupt
279  * driven.
280  *
281  * sdma_engine_error() and sdma_engine_interrupt() are
282  * entrances for interrupts.
283  *
284  * sdma_map_init() is for the management of the mapping
285  * table when the number of vls is changed.
286  *
287  */
288 
289 /*
290  * struct hw_sdma_desc - raw 128 bit SDMA descriptor
291  *
292  * This is the raw descriptor in the SDMA ring
293  */
294 struct hw_sdma_desc {
295 	/* private:  don't use directly */
296 	__le64 qw[2];
297 };
298 
299 /**
300  * struct sdma_engine - Data pertaining to each SDMA engine.
301  * @dd: a back-pointer to the device data
302  * @ppd: per port back-pointer
303  * @imask: mask for irq manipulation
304  * @idle_mask: mask for determining if an interrupt is due to sdma_idle
305  *
306  * This structure has the state for each sdma_engine.
307  *
308  * Accessing to non public fields are not supported
309  * since the private members are subject to change.
310  */
311 struct sdma_engine {
312 	/* read mostly */
313 	struct hfi1_devdata *dd;
314 	struct hfi1_pportdata *ppd;
315 	/* private: */
316 	void __iomem *tail_csr;
317 	u64 imask;			/* clear interrupt mask */
318 	u64 idle_mask;
319 	u64 progress_mask;
320 	u64 int_mask;
321 	/* private: */
322 	volatile __le64      *head_dma; /* DMA'ed by chip */
323 	/* private: */
324 	dma_addr_t            head_phys;
325 	/* private: */
326 	struct hw_sdma_desc *descq;
327 	/* private: */
328 	unsigned descq_full_count;
329 	struct sdma_txreq **tx_ring;
330 	/* private: */
331 	dma_addr_t            descq_phys;
332 	/* private */
333 	u32 sdma_mask;
334 	/* private */
335 	struct sdma_state state;
336 	/* private */
337 	int cpu;
338 	/* private: */
339 	u8 sdma_shift;
340 	/* private: */
341 	u8 this_idx; /* zero relative engine */
342 	/* protect changes to senddmactrl shadow */
343 	spinlock_t senddmactrl_lock;
344 	/* private: */
345 	u64 p_senddmactrl;		/* shadow per-engine SendDmaCtrl */
346 
347 	/* read/write using tail_lock */
348 	spinlock_t            tail_lock ____cacheline_aligned_in_smp;
349 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
350 	/* private: */
351 	u64                   tail_sn;
352 #endif
353 	/* private: */
354 	u32                   descq_tail;
355 	/* private: */
356 	unsigned long         ahg_bits;
357 	/* private: */
358 	u16                   desc_avail;
359 	/* private: */
360 	u16                   tx_tail;
361 	/* private: */
362 	u16 descq_cnt;
363 
364 	/* read/write using head_lock */
365 	/* private: */
366 	seqlock_t            head_lock ____cacheline_aligned_in_smp;
367 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
368 	/* private: */
369 	u64                   head_sn;
370 #endif
371 	/* private: */
372 	u32                   descq_head;
373 	/* private: */
374 	u16                   tx_head;
375 	/* private: */
376 	u64                   last_status;
377 	/* private */
378 	u64                     err_cnt;
379 	/* private */
380 	u64                     sdma_int_cnt;
381 	u64                     idle_int_cnt;
382 	u64                     progress_int_cnt;
383 
384 	/* private: */
385 	struct list_head      dmawait;
386 
387 	/* CONFIG SDMA for now, just blindly duplicate */
388 	/* private: */
389 	struct tasklet_struct sdma_hw_clean_up_task
390 		____cacheline_aligned_in_smp;
391 
392 	/* private: */
393 	struct tasklet_struct sdma_sw_clean_up_task
394 		____cacheline_aligned_in_smp;
395 	/* private: */
396 	struct work_struct err_halt_worker;
397 	/* private */
398 	struct timer_list     err_progress_check_timer;
399 	u32                   progress_check_head;
400 	/* private: */
401 	struct work_struct flush_worker;
402 	/* protect flush list */
403 	spinlock_t flushlist_lock;
404 	/* private: */
405 	struct list_head flushlist;
406 	struct cpumask cpu_mask;
407 	struct kobject kobj;
408 	u32 msix_intr;
409 };
410 
411 int sdma_init(struct hfi1_devdata *dd, u8 port);
412 void sdma_start(struct hfi1_devdata *dd);
413 void sdma_exit(struct hfi1_devdata *dd);
414 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines);
415 void sdma_all_running(struct hfi1_devdata *dd);
416 void sdma_all_idle(struct hfi1_devdata *dd);
417 void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
418 void sdma_freeze(struct hfi1_devdata *dd);
419 void sdma_unfreeze(struct hfi1_devdata *dd);
420 void sdma_wait(struct hfi1_devdata *dd);
421 
422 /**
423  * sdma_empty() - idle engine test
424  * @engine: sdma engine
425  *
426  * Currently used by verbs as a latency optimization.
427  *
428  * Return:
429  * 1 - empty, 0 - non-empty
430  */
431 static inline int sdma_empty(struct sdma_engine *sde)
432 {
433 	return sde->descq_tail == sde->descq_head;
434 }
435 
436 static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
437 {
438 	return sde->descq_cnt -
439 		(sde->descq_tail -
440 		 READ_ONCE(sde->descq_head)) - 1;
441 }
442 
443 static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
444 {
445 	return sde->descq_cnt - sdma_descq_freecnt(sde);
446 }
447 
448 /*
449  * Either head_lock or tail lock required to see
450  * a steady state.
451  */
452 static inline int __sdma_running(struct sdma_engine *engine)
453 {
454 	return engine->state.current_state == sdma_state_s99_running;
455 }
456 
457 /**
458  * sdma_running() - state suitability test
459  * @engine: sdma engine
460  *
461  * sdma_running probes the internal state to determine if it is suitable
462  * for submitting packets.
463  *
464  * Return:
465  * 1 - ok to submit, 0 - not ok to submit
466  *
467  */
468 static inline int sdma_running(struct sdma_engine *engine)
469 {
470 	unsigned long flags;
471 	int ret;
472 
473 	spin_lock_irqsave(&engine->tail_lock, flags);
474 	ret = __sdma_running(engine);
475 	spin_unlock_irqrestore(&engine->tail_lock, flags);
476 	return ret;
477 }
478 
479 void _sdma_txreq_ahgadd(
480 	struct sdma_txreq *tx,
481 	u8 num_ahg,
482 	u8 ahg_entry,
483 	u32 *ahg,
484 	u8 ahg_hlen);
485 
486 /**
487  * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
488  * @tx: tx request to initialize
489  * @flags: flags to key last descriptor additions
490  * @tlen: total packet length (pbc + headers + data)
491  * @ahg_entry: ahg entry to use  (0 - 31)
492  * @num_ahg: ahg descriptor for first descriptor (0 - 9)
493  * @ahg: array of AHG descriptors (up to 9 entries)
494  * @ahg_hlen: number of bytes from ASIC entry to use
495  * @cb: callback
496  *
497  * The allocation of the sdma_txreq and it enclosing structure is user
498  * dependent.  This routine must be called to initialize the user independent
499  * fields.
500  *
501  * The currently supported flags are SDMA_TXREQ_F_URGENT,
502  * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
503  *
504  * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
505  * completion is desired as soon as possible.
506  *
507  * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
508  * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
509  * the AHG descriptors into the first 1 to 3 descriptors.
510  *
511  * Completions of submitted requests can be gotten on selected
512  * txreqs by giving a completion routine callback to sdma_txinit() or
513  * sdma_txinit_ahg().  The environment in which the callback runs
514  * can be from an ISR, a tasklet, or a thread, so no sleeping
515  * kernel routines can be used.   Aspects of the sdma ring may
516  * be locked so care should be taken with locking.
517  *
518  * The callback pointer can be NULL to avoid any callback for the packet
519  * being submitted. The callback will be provided this tx, a status, and a flag.
520  *
521  * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
522  * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
523  *
524  * The flag, if the is the iowait had been used, indicates the iowait
525  * sdma_busy count has reached zero.
526  *
527  * user data portion of tlen should be precise.   The sdma_txadd_* entrances
528  * will pad with a descriptor references 1 - 3 bytes when the number of bytes
529  * specified in tlen have been supplied to the sdma_txreq.
530  *
531  * ahg_hlen is used to determine the number of on-chip entry bytes to
532  * use as the header.   This is for cases where the stored header is
533  * larger than the header to be used in a packet.  This is typical
534  * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
535  * and RDMA_WRITE_MIDDLE.
536  *
537  */
538 static inline int sdma_txinit_ahg(
539 	struct sdma_txreq *tx,
540 	u16 flags,
541 	u16 tlen,
542 	u8 ahg_entry,
543 	u8 num_ahg,
544 	u32 *ahg,
545 	u8 ahg_hlen,
546 	void (*cb)(struct sdma_txreq *, int))
547 {
548 	if (tlen == 0)
549 		return -ENODATA;
550 	if (tlen > MAX_SDMA_PKT_SIZE)
551 		return -EMSGSIZE;
552 	tx->desc_limit = ARRAY_SIZE(tx->descs);
553 	tx->descp = &tx->descs[0];
554 	INIT_LIST_HEAD(&tx->list);
555 	tx->num_desc = 0;
556 	tx->flags = flags;
557 	tx->complete = cb;
558 	tx->coalesce_buf = NULL;
559 	tx->wait = NULL;
560 	tx->packet_len = tlen;
561 	tx->tlen = tx->packet_len;
562 	tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
563 	tx->descs[0].qw[1] = 0;
564 	if (flags & SDMA_TXREQ_F_AHG_COPY)
565 		tx->descs[0].qw[1] |=
566 			(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
567 				<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
568 			(((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
569 				<< SDMA_DESC1_HEADER_MODE_SHIFT);
570 	else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
571 		_sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
572 	return 0;
573 }
574 
575 /**
576  * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
577  * @tx: tx request to initialize
578  * @flags: flags to key last descriptor additions
579  * @tlen: total packet length (pbc + headers + data)
580  * @cb: callback pointer
581  *
582  * The allocation of the sdma_txreq and it enclosing structure is user
583  * dependent.  This routine must be called to initialize the user
584  * independent fields.
585  *
586  * The currently supported flags is SDMA_TXREQ_F_URGENT.
587  *
588  * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
589  * completion is desired as soon as possible.
590  *
591  * Completions of submitted requests can be gotten on selected
592  * txreqs by giving a completion routine callback to sdma_txinit() or
593  * sdma_txinit_ahg().  The environment in which the callback runs
594  * can be from an ISR, a tasklet, or a thread, so no sleeping
595  * kernel routines can be used.   The head size of the sdma ring may
596  * be locked so care should be taken with locking.
597  *
598  * The callback pointer can be NULL to avoid any callback for the packet
599  * being submitted.
600  *
601  * The callback, if non-NULL,  will be provided this tx and a status.  The
602  * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
603  * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
604  *
605  */
606 static inline int sdma_txinit(
607 	struct sdma_txreq *tx,
608 	u16 flags,
609 	u16 tlen,
610 	void (*cb)(struct sdma_txreq *, int))
611 {
612 	return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
613 }
614 
615 /* helpers - don't use */
616 static inline int sdma_mapping_type(struct sdma_desc *d)
617 {
618 	return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
619 		>> SDMA_DESC1_GENERATION_SHIFT;
620 }
621 
622 static inline size_t sdma_mapping_len(struct sdma_desc *d)
623 {
624 	return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
625 		>> SDMA_DESC0_BYTE_COUNT_SHIFT;
626 }
627 
628 static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
629 {
630 	return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
631 		>> SDMA_DESC0_PHY_ADDR_SHIFT;
632 }
633 
634 static inline void make_tx_sdma_desc(
635 	struct sdma_txreq *tx,
636 	int type,
637 	dma_addr_t addr,
638 	size_t len)
639 {
640 	struct sdma_desc *desc = &tx->descp[tx->num_desc];
641 
642 	if (!tx->num_desc) {
643 		/* qw[0] zero; qw[1] first, ahg mode already in from init */
644 		desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
645 				<< SDMA_DESC1_GENERATION_SHIFT;
646 	} else {
647 		desc->qw[0] = 0;
648 		desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
649 				<< SDMA_DESC1_GENERATION_SHIFT;
650 	}
651 	desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
652 				<< SDMA_DESC0_PHY_ADDR_SHIFT) |
653 			(((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
654 				<< SDMA_DESC0_BYTE_COUNT_SHIFT);
655 }
656 
657 /* helper to extend txreq */
658 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
659 			   int type, void *kvaddr, struct page *page,
660 			   unsigned long offset, u16 len);
661 int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
662 void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
663 
664 static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
665 {
666 	if (tx->num_desc)
667 		__sdma_txclean(dd, tx);
668 }
669 
670 /* helpers used by public routines */
671 static inline void _sdma_close_tx(struct hfi1_devdata *dd,
672 				  struct sdma_txreq *tx)
673 {
674 	tx->descp[tx->num_desc].qw[0] |=
675 		SDMA_DESC0_LAST_DESC_FLAG;
676 	tx->descp[tx->num_desc].qw[1] |=
677 		dd->default_desc1;
678 	if (tx->flags & SDMA_TXREQ_F_URGENT)
679 		tx->descp[tx->num_desc].qw[1] |=
680 			(SDMA_DESC1_HEAD_TO_HOST_FLAG |
681 			 SDMA_DESC1_INT_REQ_FLAG);
682 }
683 
684 static inline int _sdma_txadd_daddr(
685 	struct hfi1_devdata *dd,
686 	int type,
687 	struct sdma_txreq *tx,
688 	dma_addr_t addr,
689 	u16 len)
690 {
691 	int rval = 0;
692 
693 	make_tx_sdma_desc(
694 		tx,
695 		type,
696 		addr, len);
697 	WARN_ON(len > tx->tlen);
698 	tx->tlen -= len;
699 	/* special cases for last */
700 	if (!tx->tlen) {
701 		if (tx->packet_len & (sizeof(u32) - 1)) {
702 			rval = _pad_sdma_tx_descs(dd, tx);
703 			if (rval)
704 				return rval;
705 		} else {
706 			_sdma_close_tx(dd, tx);
707 		}
708 	}
709 	tx->num_desc++;
710 	return rval;
711 }
712 
713 /**
714  * sdma_txadd_page() - add a page to the sdma_txreq
715  * @dd: the device to use for mapping
716  * @tx: tx request to which the page is added
717  * @page: page to map
718  * @offset: offset within the page
719  * @len: length in bytes
720  *
721  * This is used to add a page/offset/length descriptor.
722  *
723  * The mapping/unmapping of the page/offset/len is automatically handled.
724  *
725  * Return:
726  * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
727  * extend/coalesce descriptor array
728  */
729 static inline int sdma_txadd_page(
730 	struct hfi1_devdata *dd,
731 	struct sdma_txreq *tx,
732 	struct page *page,
733 	unsigned long offset,
734 	u16 len)
735 {
736 	dma_addr_t addr;
737 	int rval;
738 
739 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
740 		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
741 					      NULL, page, offset, len);
742 		if (rval <= 0)
743 			return rval;
744 	}
745 
746 	addr = dma_map_page(
747 		       &dd->pcidev->dev,
748 		       page,
749 		       offset,
750 		       len,
751 		       DMA_TO_DEVICE);
752 
753 	if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
754 		__sdma_txclean(dd, tx);
755 		return -ENOSPC;
756 	}
757 
758 	return _sdma_txadd_daddr(
759 			dd, SDMA_MAP_PAGE, tx, addr, len);
760 }
761 
762 /**
763  * sdma_txadd_daddr() - add a dma address to the sdma_txreq
764  * @dd: the device to use for mapping
765  * @tx: sdma_txreq to which the page is added
766  * @addr: dma address mapped by caller
767  * @len: length in bytes
768  *
769  * This is used to add a descriptor for memory that is already dma mapped.
770  *
771  * In this case, there is no unmapping as part of the progress processing for
772  * this memory location.
773  *
774  * Return:
775  * 0 - success, -ENOMEM - couldn't extend descriptor array
776  */
777 
778 static inline int sdma_txadd_daddr(
779 	struct hfi1_devdata *dd,
780 	struct sdma_txreq *tx,
781 	dma_addr_t addr,
782 	u16 len)
783 {
784 	int rval;
785 
786 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
787 		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
788 					      NULL, NULL, 0, 0);
789 		if (rval <= 0)
790 			return rval;
791 	}
792 
793 	return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len);
794 }
795 
796 /**
797  * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
798  * @dd: the device to use for mapping
799  * @tx: sdma_txreq to which the page is added
800  * @kvaddr: the kernel virtual address
801  * @len: length in bytes
802  *
803  * This is used to add a descriptor referenced by the indicated kvaddr and
804  * len.
805  *
806  * The mapping/unmapping of the kvaddr and len is automatically handled.
807  *
808  * Return:
809  * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
810  * descriptor array
811  */
812 static inline int sdma_txadd_kvaddr(
813 	struct hfi1_devdata *dd,
814 	struct sdma_txreq *tx,
815 	void *kvaddr,
816 	u16 len)
817 {
818 	dma_addr_t addr;
819 	int rval;
820 
821 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
822 		rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
823 					      kvaddr, NULL, 0, len);
824 		if (rval <= 0)
825 			return rval;
826 	}
827 
828 	addr = dma_map_single(
829 		       &dd->pcidev->dev,
830 		       kvaddr,
831 		       len,
832 		       DMA_TO_DEVICE);
833 
834 	if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
835 		__sdma_txclean(dd, tx);
836 		return -ENOSPC;
837 	}
838 
839 	return _sdma_txadd_daddr(
840 			dd, SDMA_MAP_SINGLE, tx, addr, len);
841 }
842 
843 struct iowait_work;
844 
845 int sdma_send_txreq(struct sdma_engine *sde,
846 		    struct iowait_work *wait,
847 		    struct sdma_txreq *tx,
848 		    bool pkts_sent);
849 int sdma_send_txlist(struct sdma_engine *sde,
850 		     struct iowait_work *wait,
851 		     struct list_head *tx_list,
852 		     u16 *count_out);
853 
854 int sdma_ahg_alloc(struct sdma_engine *sde);
855 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
856 
857 /**
858  * sdma_build_ahg - build ahg descriptor
859  * @data
860  * @dwindex
861  * @startbit
862  * @bits
863  *
864  * Build and return a 32 bit descriptor.
865  */
866 static inline u32 sdma_build_ahg_descriptor(
867 	u16 data,
868 	u8 dwindex,
869 	u8 startbit,
870 	u8 bits)
871 {
872 	return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
873 		((startbit & SDMA_AHG_FIELD_START_MASK) <<
874 		SDMA_AHG_FIELD_START_SHIFT) |
875 		((bits & SDMA_AHG_FIELD_LEN_MASK) <<
876 		SDMA_AHG_FIELD_LEN_SHIFT) |
877 		((dwindex & SDMA_AHG_INDEX_MASK) <<
878 		SDMA_AHG_INDEX_SHIFT) |
879 		((data & SDMA_AHG_VALUE_MASK) <<
880 		SDMA_AHG_VALUE_SHIFT));
881 }
882 
883 /**
884  * sdma_progress - use seq number of detect head progress
885  * @sde: sdma_engine to check
886  * @seq: base seq count
887  * @tx: txreq for which we need to check descriptor availability
888  *
889  * This is used in the appropriate spot in the sleep routine
890  * to check for potential ring progress.  This routine gets the
891  * seqcount before queuing the iowait structure for progress.
892  *
893  * If the seqcount indicates that progress needs to be checked,
894  * re-submission is detected by checking whether the descriptor
895  * queue has enough descriptor for the txreq.
896  */
897 static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
898 				     struct sdma_txreq *tx)
899 {
900 	if (read_seqretry(&sde->head_lock, seq)) {
901 		sde->desc_avail = sdma_descq_freecnt(sde);
902 		if (tx->num_desc > sde->desc_avail)
903 			return 0;
904 		return 1;
905 	}
906 	return 0;
907 }
908 
909 /**
910  * sdma_iowait_schedule() - initialize wait structure
911  * @sde: sdma_engine to schedule
912  * @wait: wait struct to schedule
913  *
914  * This function initializes the iowait
915  * structure embedded in the QP or PQ.
916  *
917  */
918 static inline void sdma_iowait_schedule(
919 	struct sdma_engine *sde,
920 	struct iowait *wait)
921 {
922 	struct hfi1_pportdata *ppd = sde->dd->pport;
923 
924 	iowait_schedule(wait, ppd->hfi1_wq, sde->cpu);
925 }
926 
927 /* for use by interrupt handling */
928 void sdma_engine_error(struct sdma_engine *sde, u64 status);
929 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
930 
931 /*
932  *
933  * The diagram below details the relationship of the mapping structures
934  *
935  * Since the mapping now allows for non-uniform engines per vl, the
936  * number of engines for a vl is either the vl_engines[vl] or
937  * a computation based on num_sdma/num_vls:
938  *
939  * For example:
940  * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
941  *
942  * n = roundup to next highest power of 2 using nactual
943  *
944  * In the case where there are num_sdma/num_vls doesn't divide
945  * evenly, the extras are added from the last vl downward.
946  *
947  * For the case where n > nactual, the engines are assigned
948  * in a round robin fashion wrapping back to the first engine
949  * for a particular vl.
950  *
951  *               dd->sdma_map
952  *                    |                                   sdma_map_elem[0]
953  *                    |                                +--------------------+
954  *                    v                                |       mask         |
955  *               sdma_vl_map                           |--------------------|
956  *      +--------------------------+                   | sde[0] -> eng 1    |
957  *      |    list (RCU)            |                   |--------------------|
958  *      |--------------------------|                 ->| sde[1] -> eng 2    |
959  *      |    mask                  |              --/  |--------------------|
960  *      |--------------------------|            -/     |        *           |
961  *      |    actual_vls (max 8)    |          -/       |--------------------|
962  *      |--------------------------|       --/         | sde[n-1] -> eng n  |
963  *      |    vls (max 8)           |     -/            +--------------------+
964  *      |--------------------------|  --/
965  *      |    map[0]                |-/
966  *      |--------------------------|                   +---------------------+
967  *      |    map[1]                |---                |       mask          |
968  *      |--------------------------|   \----           |---------------------|
969  *      |           *              |        \--        | sde[0] -> eng 1+n   |
970  *      |           *              |           \----   |---------------------|
971  *      |           *              |                \->| sde[1] -> eng 2+n   |
972  *      |--------------------------|                   |---------------------|
973  *      |   map[vls - 1]           |-                  |         *           |
974  *      +--------------------------+ \-                |---------------------|
975  *                                     \-              | sde[m-1] -> eng m+n |
976  *                                       \             +---------------------+
977  *                                        \-
978  *                                          \
979  *                                           \-        +----------------------+
980  *                                             \-      |       mask           |
981  *                                               \     |----------------------|
982  *                                                \-   | sde[0] -> eng 1+m+n  |
983  *                                                  \- |----------------------|
984  *                                                    >| sde[1] -> eng 2+m+n  |
985  *                                                     |----------------------|
986  *                                                     |         *            |
987  *                                                     |----------------------|
988  *                                                     | sde[o-1] -> eng o+m+n|
989  *                                                     +----------------------+
990  *
991  */
992 
993 /**
994  * struct sdma_map_elem - mapping for a vl
995  * @mask - selector mask
996  * @sde - array of engines for this vl
997  *
998  * The mask is used to "mod" the selector
999  * to produce index into the trailing
1000  * array of sdes.
1001  */
1002 struct sdma_map_elem {
1003 	u32 mask;
1004 	struct sdma_engine *sde[0];
1005 };
1006 
1007 /**
1008  * struct sdma_map_el - mapping for a vl
1009  * @engine_to_vl - map of an engine to a vl
1010  * @list - rcu head for free callback
1011  * @mask - vl mask to "mod" the vl to produce an index to map array
1012  * @actual_vls - number of vls
1013  * @vls - number of vls rounded to next power of 2
1014  * @map - array of sdma_map_elem entries
1015  *
1016  * This is the parent mapping structure.  The trailing
1017  * members of the struct point to sdma_map_elem entries, which
1018  * in turn point to an array of sde's for that vl.
1019  */
1020 struct sdma_vl_map {
1021 	s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
1022 	struct rcu_head list;
1023 	u32 mask;
1024 	u8 actual_vls;
1025 	u8 vls;
1026 	struct sdma_map_elem *map[0];
1027 };
1028 
1029 int sdma_map_init(
1030 	struct hfi1_devdata *dd,
1031 	u8 port,
1032 	u8 num_vls,
1033 	u8 *vl_engines);
1034 
1035 /* slow path */
1036 void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1037 
1038 /**
1039  * sdma_engine_progress_schedule() - schedule progress on engine
1040  * @sde: sdma_engine to schedule progress
1041  *
1042  * This is the fast path.
1043  *
1044  */
1045 static inline void sdma_engine_progress_schedule(
1046 	struct sdma_engine *sde)
1047 {
1048 	if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1049 		return;
1050 	_sdma_engine_progress_schedule(sde);
1051 }
1052 
1053 struct sdma_engine *sdma_select_engine_sc(
1054 	struct hfi1_devdata *dd,
1055 	u32 selector,
1056 	u8 sc5);
1057 
1058 struct sdma_engine *sdma_select_engine_vl(
1059 	struct hfi1_devdata *dd,
1060 	u32 selector,
1061 	u8 vl);
1062 
1063 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1064 					    u32 selector, u8 vl);
1065 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1066 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1067 				size_t count);
1068 int sdma_engine_get_vl(struct sdma_engine *sde);
1069 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1070 void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1071 				unsigned long cpuid);
1072 
1073 #ifdef CONFIG_SDMA_VERBOSITY
1074 void sdma_dumpstate(struct sdma_engine *);
1075 #endif
1076 static inline char *slashstrip(char *s)
1077 {
1078 	char *r = s;
1079 
1080 	while (*s)
1081 		if (*s++ == '/')
1082 			r = s;
1083 	return r;
1084 }
1085 
1086 u16 sdma_get_descq_cnt(void);
1087 
1088 extern uint mod_num_sdma;
1089 
1090 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1091 
1092 #endif
1093