xref: /linux/drivers/infiniband/hw/hfi1/sdma.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56 
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63 
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68 #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
69 
70 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
71 module_param(sdma_descq_cnt, uint, S_IRUGO);
72 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
73 
74 static uint sdma_idle_cnt = 250;
75 module_param(sdma_idle_cnt, uint, S_IRUGO);
76 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
77 
78 uint mod_num_sdma;
79 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
80 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
81 
82 static uint sdma_desct_intr = SDMA_DESC_INTR;
83 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
85 
86 #define SDMA_WAIT_BATCH_SIZE 20
87 /* max wait time for a SDMA engine to indicate it has halted */
88 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
89 /* all SDMA engine errors that cause a halt */
90 
91 #define SD(name) SEND_DMA_##name
92 #define ALL_SDMA_ENG_HALT_ERRS \
93 	(SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
94 	| SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
95 	| SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
96 	| SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
97 	| SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
98 	| SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
99 	| SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
100 	| SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
101 	| SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
102 	| SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
103 	| SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
104 	| SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
105 	| SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
106 	| SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
107 	| SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
108 	| SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
109 	| SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
110 	| SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
111 
112 /* sdma_sendctrl operations */
113 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
114 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
115 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
116 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
117 
118 /* handle long defines */
119 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
120 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
121 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
122 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
123 
124 static const char * const sdma_state_names[] = {
125 	[sdma_state_s00_hw_down]                = "s00_HwDown",
126 	[sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
127 	[sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
128 	[sdma_state_s20_idle]                   = "s20_Idle",
129 	[sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
130 	[sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
131 	[sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
132 	[sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
133 	[sdma_state_s80_hw_freeze]		= "s80_HwFreeze",
134 	[sdma_state_s82_freeze_sw_clean]	= "s82_FreezeSwClean",
135 	[sdma_state_s99_running]                = "s99_Running",
136 };
137 
138 #ifdef CONFIG_SDMA_VERBOSITY
139 static const char * const sdma_event_names[] = {
140 	[sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
141 	[sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
142 	[sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
143 	[sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
144 	[sdma_event_e30_go_running]   = "e30_GoRunning",
145 	[sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
146 	[sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
147 	[sdma_event_e60_hw_halted]    = "e60_HwHalted",
148 	[sdma_event_e70_go_idle]      = "e70_GoIdle",
149 	[sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
150 	[sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
151 	[sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
152 	[sdma_event_e85_link_down]    = "e85_LinkDown",
153 	[sdma_event_e90_sw_halted]    = "e90_SwHalted",
154 };
155 #endif
156 
157 static const struct sdma_set_state_action sdma_action_table[] = {
158 	[sdma_state_s00_hw_down] = {
159 		.go_s99_running_tofalse = 1,
160 		.op_enable = 0,
161 		.op_intenable = 0,
162 		.op_halt = 0,
163 		.op_cleanup = 0,
164 	},
165 	[sdma_state_s10_hw_start_up_halt_wait] = {
166 		.op_enable = 0,
167 		.op_intenable = 0,
168 		.op_halt = 1,
169 		.op_cleanup = 0,
170 	},
171 	[sdma_state_s15_hw_start_up_clean_wait] = {
172 		.op_enable = 0,
173 		.op_intenable = 1,
174 		.op_halt = 0,
175 		.op_cleanup = 1,
176 	},
177 	[sdma_state_s20_idle] = {
178 		.op_enable = 0,
179 		.op_intenable = 1,
180 		.op_halt = 0,
181 		.op_cleanup = 0,
182 	},
183 	[sdma_state_s30_sw_clean_up_wait] = {
184 		.op_enable = 0,
185 		.op_intenable = 0,
186 		.op_halt = 0,
187 		.op_cleanup = 0,
188 	},
189 	[sdma_state_s40_hw_clean_up_wait] = {
190 		.op_enable = 0,
191 		.op_intenable = 0,
192 		.op_halt = 0,
193 		.op_cleanup = 1,
194 	},
195 	[sdma_state_s50_hw_halt_wait] = {
196 		.op_enable = 0,
197 		.op_intenable = 0,
198 		.op_halt = 0,
199 		.op_cleanup = 0,
200 	},
201 	[sdma_state_s60_idle_halt_wait] = {
202 		.go_s99_running_tofalse = 1,
203 		.op_enable = 0,
204 		.op_intenable = 0,
205 		.op_halt = 1,
206 		.op_cleanup = 0,
207 	},
208 	[sdma_state_s80_hw_freeze] = {
209 		.op_enable = 0,
210 		.op_intenable = 0,
211 		.op_halt = 0,
212 		.op_cleanup = 0,
213 	},
214 	[sdma_state_s82_freeze_sw_clean] = {
215 		.op_enable = 0,
216 		.op_intenable = 0,
217 		.op_halt = 0,
218 		.op_cleanup = 0,
219 	},
220 	[sdma_state_s99_running] = {
221 		.op_enable = 1,
222 		.op_intenable = 1,
223 		.op_halt = 0,
224 		.op_cleanup = 0,
225 		.go_s99_running_totrue = 1,
226 	},
227 };
228 
229 #define SDMA_TAIL_UPDATE_THRESH 0x1F
230 
231 /* declare all statics here rather than keep sorting */
232 static void sdma_complete(struct kref *);
233 static void sdma_finalput(struct sdma_state *);
234 static void sdma_get(struct sdma_state *);
235 static void sdma_hw_clean_up_task(struct tasklet_struct *);
236 static void sdma_put(struct sdma_state *);
237 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
238 static void sdma_start_hw_clean_up(struct sdma_engine *);
239 static void sdma_sw_clean_up_task(struct tasklet_struct *);
240 static void sdma_sendctrl(struct sdma_engine *, unsigned);
241 static void init_sdma_regs(struct sdma_engine *, u32, uint);
242 static void sdma_process_event(
243 	struct sdma_engine *sde,
244 	enum sdma_events event);
245 static void __sdma_process_event(
246 	struct sdma_engine *sde,
247 	enum sdma_events event);
248 static void dump_sdma_state(struct sdma_engine *sde);
249 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
250 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
251 static void sdma_flush_descq(struct sdma_engine *sde);
252 
253 /**
254  * sdma_state_name() - return state string from enum
255  * @state: state
256  */
257 static const char *sdma_state_name(enum sdma_states state)
258 {
259 	return sdma_state_names[state];
260 }
261 
262 static void sdma_get(struct sdma_state *ss)
263 {
264 	kref_get(&ss->kref);
265 }
266 
267 static void sdma_complete(struct kref *kref)
268 {
269 	struct sdma_state *ss =
270 		container_of(kref, struct sdma_state, kref);
271 
272 	complete(&ss->comp);
273 }
274 
275 static void sdma_put(struct sdma_state *ss)
276 {
277 	kref_put(&ss->kref, sdma_complete);
278 }
279 
280 static void sdma_finalput(struct sdma_state *ss)
281 {
282 	sdma_put(ss);
283 	wait_for_completion(&ss->comp);
284 }
285 
286 static inline void write_sde_csr(
287 	struct sdma_engine *sde,
288 	u32 offset0,
289 	u64 value)
290 {
291 	write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
292 }
293 
294 static inline u64 read_sde_csr(
295 	struct sdma_engine *sde,
296 	u32 offset0)
297 {
298 	return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
299 }
300 
301 /*
302  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
303  * sdma engine 'sde' to drop to 0.
304  */
305 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
306 					int pause)
307 {
308 	u64 off = 8 * sde->this_idx;
309 	struct hfi1_devdata *dd = sde->dd;
310 	int lcnt = 0;
311 	u64 reg_prev;
312 	u64 reg = 0;
313 
314 	while (1) {
315 		reg_prev = reg;
316 		reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
317 
318 		reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
319 		reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
320 		if (reg == 0)
321 			break;
322 		/* counter is reest if accupancy count changes */
323 		if (reg != reg_prev)
324 			lcnt = 0;
325 		if (lcnt++ > 500) {
326 			/* timed out - bounce the link */
327 			dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
328 				   __func__, sde->this_idx, (u32)reg);
329 			queue_work(dd->pport->link_wq,
330 				   &dd->pport->link_bounce_work);
331 			break;
332 		}
333 		udelay(1);
334 	}
335 }
336 
337 /*
338  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
339  * and pause for credit return.
340  */
341 void sdma_wait(struct hfi1_devdata *dd)
342 {
343 	int i;
344 
345 	for (i = 0; i < dd->num_sdma; i++) {
346 		struct sdma_engine *sde = &dd->per_sdma[i];
347 
348 		sdma_wait_for_packet_egress(sde, 0);
349 	}
350 }
351 
352 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
353 {
354 	u64 reg;
355 
356 	if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
357 		return;
358 	reg = cnt;
359 	reg &= SD(DESC_CNT_CNT_MASK);
360 	reg <<= SD(DESC_CNT_CNT_SHIFT);
361 	write_sde_csr(sde, SD(DESC_CNT), reg);
362 }
363 
364 static inline void complete_tx(struct sdma_engine *sde,
365 			       struct sdma_txreq *tx,
366 			       int res)
367 {
368 	/* protect against complete modifying */
369 	struct iowait *wait = tx->wait;
370 	callback_t complete = tx->complete;
371 
372 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
373 	trace_hfi1_sdma_out_sn(sde, tx->sn);
374 	if (WARN_ON_ONCE(sde->head_sn != tx->sn))
375 		dd_dev_err(sde->dd, "expected %llu got %llu\n",
376 			   sde->head_sn, tx->sn);
377 	sde->head_sn++;
378 #endif
379 	__sdma_txclean(sde->dd, tx);
380 	if (complete)
381 		(*complete)(tx, res);
382 	if (iowait_sdma_dec(wait))
383 		iowait_drain_wakeup(wait);
384 }
385 
386 /*
387  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
388  *
389  * Depending on timing there can be txreqs in two places:
390  * - in the descq ring
391  * - in the flush list
392  *
393  * To avoid ordering issues the descq ring needs to be flushed
394  * first followed by the flush list.
395  *
396  * This routine is called from two places
397  * - From a work queue item
398  * - Directly from the state machine just before setting the
399  *   state to running
400  *
401  * Must be called with head_lock held
402  *
403  */
404 static void sdma_flush(struct sdma_engine *sde)
405 {
406 	struct sdma_txreq *txp, *txp_next;
407 	LIST_HEAD(flushlist);
408 	unsigned long flags;
409 	uint seq;
410 
411 	/* flush from head to tail */
412 	sdma_flush_descq(sde);
413 	spin_lock_irqsave(&sde->flushlist_lock, flags);
414 	/* copy flush list */
415 	list_splice_init(&sde->flushlist, &flushlist);
416 	spin_unlock_irqrestore(&sde->flushlist_lock, flags);
417 	/* flush from flush list */
418 	list_for_each_entry_safe(txp, txp_next, &flushlist, list)
419 		complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
420 	/* wakeup QPs orphaned on the dmawait list */
421 	do {
422 		struct iowait *w, *nw;
423 
424 		seq = read_seqbegin(&sde->waitlock);
425 		if (!list_empty(&sde->dmawait)) {
426 			write_seqlock(&sde->waitlock);
427 			list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
428 				if (w->wakeup) {
429 					w->wakeup(w, SDMA_AVAIL_REASON);
430 					list_del_init(&w->list);
431 				}
432 			}
433 			write_sequnlock(&sde->waitlock);
434 		}
435 	} while (read_seqretry(&sde->waitlock, seq));
436 }
437 
438 /*
439  * Fields a work request for flushing the descq ring
440  * and the flush list
441  *
442  * If the engine has been brought to running during
443  * the scheduling delay, the flush is ignored, assuming
444  * that the process of bringing the engine to running
445  * would have done this flush prior to going to running.
446  *
447  */
448 static void sdma_field_flush(struct work_struct *work)
449 {
450 	unsigned long flags;
451 	struct sdma_engine *sde =
452 		container_of(work, struct sdma_engine, flush_worker);
453 
454 	write_seqlock_irqsave(&sde->head_lock, flags);
455 	if (!__sdma_running(sde))
456 		sdma_flush(sde);
457 	write_sequnlock_irqrestore(&sde->head_lock, flags);
458 }
459 
460 static void sdma_err_halt_wait(struct work_struct *work)
461 {
462 	struct sdma_engine *sde = container_of(work, struct sdma_engine,
463 						err_halt_worker);
464 	u64 statuscsr;
465 	unsigned long timeout;
466 
467 	timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
468 	while (1) {
469 		statuscsr = read_sde_csr(sde, SD(STATUS));
470 		statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
471 		if (statuscsr)
472 			break;
473 		if (time_after(jiffies, timeout)) {
474 			dd_dev_err(sde->dd,
475 				   "SDMA engine %d - timeout waiting for engine to halt\n",
476 				   sde->this_idx);
477 			/*
478 			 * Continue anyway.  This could happen if there was
479 			 * an uncorrectable error in the wrong spot.
480 			 */
481 			break;
482 		}
483 		usleep_range(80, 120);
484 	}
485 
486 	sdma_process_event(sde, sdma_event_e15_hw_halt_done);
487 }
488 
489 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
490 {
491 	if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
492 		unsigned index;
493 		struct hfi1_devdata *dd = sde->dd;
494 
495 		for (index = 0; index < dd->num_sdma; index++) {
496 			struct sdma_engine *curr_sdma = &dd->per_sdma[index];
497 
498 			if (curr_sdma != sde)
499 				curr_sdma->progress_check_head =
500 							curr_sdma->descq_head;
501 		}
502 		dd_dev_err(sde->dd,
503 			   "SDMA engine %d - check scheduled\n",
504 				sde->this_idx);
505 		mod_timer(&sde->err_progress_check_timer, jiffies + 10);
506 	}
507 }
508 
509 static void sdma_err_progress_check(struct timer_list *t)
510 {
511 	unsigned index;
512 	struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
513 
514 	dd_dev_err(sde->dd, "SDE progress check event\n");
515 	for (index = 0; index < sde->dd->num_sdma; index++) {
516 		struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
517 		unsigned long flags;
518 
519 		/* check progress on each engine except the current one */
520 		if (curr_sde == sde)
521 			continue;
522 		/*
523 		 * We must lock interrupts when acquiring sde->lock,
524 		 * to avoid a deadlock if interrupt triggers and spins on
525 		 * the same lock on same CPU
526 		 */
527 		spin_lock_irqsave(&curr_sde->tail_lock, flags);
528 		write_seqlock(&curr_sde->head_lock);
529 
530 		/* skip non-running queues */
531 		if (curr_sde->state.current_state != sdma_state_s99_running) {
532 			write_sequnlock(&curr_sde->head_lock);
533 			spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
534 			continue;
535 		}
536 
537 		if ((curr_sde->descq_head != curr_sde->descq_tail) &&
538 		    (curr_sde->descq_head ==
539 				curr_sde->progress_check_head))
540 			__sdma_process_event(curr_sde,
541 					     sdma_event_e90_sw_halted);
542 		write_sequnlock(&curr_sde->head_lock);
543 		spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
544 	}
545 	schedule_work(&sde->err_halt_worker);
546 }
547 
548 static void sdma_hw_clean_up_task(struct tasklet_struct *t)
549 {
550 	struct sdma_engine *sde = from_tasklet(sde, t,
551 					       sdma_hw_clean_up_task);
552 	u64 statuscsr;
553 
554 	while (1) {
555 #ifdef CONFIG_SDMA_VERBOSITY
556 		dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
557 			   sde->this_idx, slashstrip(__FILE__), __LINE__,
558 			__func__);
559 #endif
560 		statuscsr = read_sde_csr(sde, SD(STATUS));
561 		statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
562 		if (statuscsr)
563 			break;
564 		udelay(10);
565 	}
566 
567 	sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
568 }
569 
570 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
571 {
572 	return sde->tx_ring[sde->tx_head & sde->sdma_mask];
573 }
574 
575 /*
576  * flush ring for recovery
577  */
578 static void sdma_flush_descq(struct sdma_engine *sde)
579 {
580 	u16 head, tail;
581 	int progress = 0;
582 	struct sdma_txreq *txp = get_txhead(sde);
583 
584 	/* The reason for some of the complexity of this code is that
585 	 * not all descriptors have corresponding txps.  So, we have to
586 	 * be able to skip over descs until we wander into the range of
587 	 * the next txp on the list.
588 	 */
589 	head = sde->descq_head & sde->sdma_mask;
590 	tail = sde->descq_tail & sde->sdma_mask;
591 	while (head != tail) {
592 		/* advance head, wrap if needed */
593 		head = ++sde->descq_head & sde->sdma_mask;
594 		/* if now past this txp's descs, do the callback */
595 		if (txp && txp->next_descq_idx == head) {
596 			/* remove from list */
597 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
598 			complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
599 			trace_hfi1_sdma_progress(sde, head, tail, txp);
600 			txp = get_txhead(sde);
601 		}
602 		progress++;
603 	}
604 	if (progress)
605 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
606 }
607 
608 static void sdma_sw_clean_up_task(struct tasklet_struct *t)
609 {
610 	struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
611 	unsigned long flags;
612 
613 	spin_lock_irqsave(&sde->tail_lock, flags);
614 	write_seqlock(&sde->head_lock);
615 
616 	/*
617 	 * At this point, the following should always be true:
618 	 * - We are halted, so no more descriptors are getting retired.
619 	 * - We are not running, so no one is submitting new work.
620 	 * - Only we can send the e40_sw_cleaned, so we can't start
621 	 *   running again until we say so.  So, the active list and
622 	 *   descq are ours to play with.
623 	 */
624 
625 	/*
626 	 * In the error clean up sequence, software clean must be called
627 	 * before the hardware clean so we can use the hardware head in
628 	 * the progress routine.  A hardware clean or SPC unfreeze will
629 	 * reset the hardware head.
630 	 *
631 	 * Process all retired requests. The progress routine will use the
632 	 * latest physical hardware head - we are not running so speed does
633 	 * not matter.
634 	 */
635 	sdma_make_progress(sde, 0);
636 
637 	sdma_flush(sde);
638 
639 	/*
640 	 * Reset our notion of head and tail.
641 	 * Note that the HW registers have been reset via an earlier
642 	 * clean up.
643 	 */
644 	sde->descq_tail = 0;
645 	sde->descq_head = 0;
646 	sde->desc_avail = sdma_descq_freecnt(sde);
647 	*sde->head_dma = 0;
648 
649 	__sdma_process_event(sde, sdma_event_e40_sw_cleaned);
650 
651 	write_sequnlock(&sde->head_lock);
652 	spin_unlock_irqrestore(&sde->tail_lock, flags);
653 }
654 
655 static void sdma_sw_tear_down(struct sdma_engine *sde)
656 {
657 	struct sdma_state *ss = &sde->state;
658 
659 	/* Releasing this reference means the state machine has stopped. */
660 	sdma_put(ss);
661 
662 	/* stop waiting for all unfreeze events to complete */
663 	atomic_set(&sde->dd->sdma_unfreeze_count, -1);
664 	wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
665 }
666 
667 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
668 {
669 	tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
670 }
671 
672 static void sdma_set_state(struct sdma_engine *sde,
673 			   enum sdma_states next_state)
674 {
675 	struct sdma_state *ss = &sde->state;
676 	const struct sdma_set_state_action *action = sdma_action_table;
677 	unsigned op = 0;
678 
679 	trace_hfi1_sdma_state(
680 		sde,
681 		sdma_state_names[ss->current_state],
682 		sdma_state_names[next_state]);
683 
684 	/* debugging bookkeeping */
685 	ss->previous_state = ss->current_state;
686 	ss->previous_op = ss->current_op;
687 	ss->current_state = next_state;
688 
689 	if (ss->previous_state != sdma_state_s99_running &&
690 	    next_state == sdma_state_s99_running)
691 		sdma_flush(sde);
692 
693 	if (action[next_state].op_enable)
694 		op |= SDMA_SENDCTRL_OP_ENABLE;
695 
696 	if (action[next_state].op_intenable)
697 		op |= SDMA_SENDCTRL_OP_INTENABLE;
698 
699 	if (action[next_state].op_halt)
700 		op |= SDMA_SENDCTRL_OP_HALT;
701 
702 	if (action[next_state].op_cleanup)
703 		op |= SDMA_SENDCTRL_OP_CLEANUP;
704 
705 	if (action[next_state].go_s99_running_tofalse)
706 		ss->go_s99_running = 0;
707 
708 	if (action[next_state].go_s99_running_totrue)
709 		ss->go_s99_running = 1;
710 
711 	ss->current_op = op;
712 	sdma_sendctrl(sde, ss->current_op);
713 }
714 
715 /**
716  * sdma_get_descq_cnt() - called when device probed
717  *
718  * Return a validated descq count.
719  *
720  * This is currently only used in the verbs initialization to build the tx
721  * list.
722  *
723  * This will probably be deleted in favor of a more scalable approach to
724  * alloc tx's.
725  *
726  */
727 u16 sdma_get_descq_cnt(void)
728 {
729 	u16 count = sdma_descq_cnt;
730 
731 	if (!count)
732 		return SDMA_DESCQ_CNT;
733 	/* count must be a power of 2 greater than 64 and less than
734 	 * 32768.   Otherwise return default.
735 	 */
736 	if (!is_power_of_2(count))
737 		return SDMA_DESCQ_CNT;
738 	if (count < 64 || count > 32768)
739 		return SDMA_DESCQ_CNT;
740 	return count;
741 }
742 
743 /**
744  * sdma_engine_get_vl() - return vl for a given sdma engine
745  * @sde: sdma engine
746  *
747  * This function returns the vl mapped to a given engine, or an error if
748  * the mapping can't be found. The mapping fields are protected by RCU.
749  */
750 int sdma_engine_get_vl(struct sdma_engine *sde)
751 {
752 	struct hfi1_devdata *dd = sde->dd;
753 	struct sdma_vl_map *m;
754 	u8 vl;
755 
756 	if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
757 		return -EINVAL;
758 
759 	rcu_read_lock();
760 	m = rcu_dereference(dd->sdma_map);
761 	if (unlikely(!m)) {
762 		rcu_read_unlock();
763 		return -EINVAL;
764 	}
765 	vl = m->engine_to_vl[sde->this_idx];
766 	rcu_read_unlock();
767 
768 	return vl;
769 }
770 
771 /**
772  * sdma_select_engine_vl() - select sdma engine
773  * @dd: devdata
774  * @selector: a spreading factor
775  * @vl: this vl
776  *
777  *
778  * This function returns an engine based on the selector and a vl.  The
779  * mapping fields are protected by RCU.
780  */
781 struct sdma_engine *sdma_select_engine_vl(
782 	struct hfi1_devdata *dd,
783 	u32 selector,
784 	u8 vl)
785 {
786 	struct sdma_vl_map *m;
787 	struct sdma_map_elem *e;
788 	struct sdma_engine *rval;
789 
790 	/* NOTE This should only happen if SC->VL changed after the initial
791 	 *      checks on the QP/AH
792 	 *      Default will return engine 0 below
793 	 */
794 	if (vl >= num_vls) {
795 		rval = NULL;
796 		goto done;
797 	}
798 
799 	rcu_read_lock();
800 	m = rcu_dereference(dd->sdma_map);
801 	if (unlikely(!m)) {
802 		rcu_read_unlock();
803 		return &dd->per_sdma[0];
804 	}
805 	e = m->map[vl & m->mask];
806 	rval = e->sde[selector & e->mask];
807 	rcu_read_unlock();
808 
809 done:
810 	rval =  !rval ? &dd->per_sdma[0] : rval;
811 	trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
812 	return rval;
813 }
814 
815 /**
816  * sdma_select_engine_sc() - select sdma engine
817  * @dd: devdata
818  * @selector: a spreading factor
819  * @sc5: the 5 bit sc
820  *
821  *
822  * This function returns an engine based on the selector and an sc.
823  */
824 struct sdma_engine *sdma_select_engine_sc(
825 	struct hfi1_devdata *dd,
826 	u32 selector,
827 	u8 sc5)
828 {
829 	u8 vl = sc_to_vlt(dd, sc5);
830 
831 	return sdma_select_engine_vl(dd, selector, vl);
832 }
833 
834 struct sdma_rht_map_elem {
835 	u32 mask;
836 	u8 ctr;
837 	struct sdma_engine *sde[];
838 };
839 
840 struct sdma_rht_node {
841 	unsigned long cpu_id;
842 	struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
843 	struct rhash_head node;
844 };
845 
846 #define NR_CPUS_HINT 192
847 
848 static const struct rhashtable_params sdma_rht_params = {
849 	.nelem_hint = NR_CPUS_HINT,
850 	.head_offset = offsetof(struct sdma_rht_node, node),
851 	.key_offset = offsetof(struct sdma_rht_node, cpu_id),
852 	.key_len = sizeof_field(struct sdma_rht_node, cpu_id),
853 	.max_size = NR_CPUS,
854 	.min_size = 8,
855 	.automatic_shrinking = true,
856 };
857 
858 /*
859  * sdma_select_user_engine() - select sdma engine based on user setup
860  * @dd: devdata
861  * @selector: a spreading factor
862  * @vl: this vl
863  *
864  * This function returns an sdma engine for a user sdma request.
865  * User defined sdma engine affinity setting is honored when applicable,
866  * otherwise system default sdma engine mapping is used. To ensure correct
867  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
868  */
869 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
870 					    u32 selector, u8 vl)
871 {
872 	struct sdma_rht_node *rht_node;
873 	struct sdma_engine *sde = NULL;
874 	unsigned long cpu_id;
875 
876 	/*
877 	 * To ensure that always the same sdma engine(s) will be
878 	 * selected make sure the process is pinned to this CPU only.
879 	 */
880 	if (current->nr_cpus_allowed != 1)
881 		goto out;
882 
883 	cpu_id = smp_processor_id();
884 	rcu_read_lock();
885 	rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
886 				     sdma_rht_params);
887 
888 	if (rht_node && rht_node->map[vl]) {
889 		struct sdma_rht_map_elem *map = rht_node->map[vl];
890 
891 		sde = map->sde[selector & map->mask];
892 	}
893 	rcu_read_unlock();
894 
895 	if (sde)
896 		return sde;
897 
898 out:
899 	return sdma_select_engine_vl(dd, selector, vl);
900 }
901 
902 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
903 {
904 	int i;
905 
906 	for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
907 		map->sde[map->ctr + i] = map->sde[i];
908 }
909 
910 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
911 				 struct sdma_engine *sde)
912 {
913 	unsigned int i, pow;
914 
915 	/* only need to check the first ctr entries for a match */
916 	for (i = 0; i < map->ctr; i++) {
917 		if (map->sde[i] == sde) {
918 			memmove(&map->sde[i], &map->sde[i + 1],
919 				(map->ctr - i - 1) * sizeof(map->sde[0]));
920 			map->ctr--;
921 			pow = roundup_pow_of_two(map->ctr ? : 1);
922 			map->mask = pow - 1;
923 			sdma_populate_sde_map(map);
924 			break;
925 		}
926 	}
927 }
928 
929 /*
930  * Prevents concurrent reads and writes of the sdma engine cpu_mask
931  */
932 static DEFINE_MUTEX(process_to_sde_mutex);
933 
934 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
935 				size_t count)
936 {
937 	struct hfi1_devdata *dd = sde->dd;
938 	cpumask_var_t mask, new_mask;
939 	unsigned long cpu;
940 	int ret, vl, sz;
941 	struct sdma_rht_node *rht_node;
942 
943 	vl = sdma_engine_get_vl(sde);
944 	if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
945 		return -EINVAL;
946 
947 	ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
948 	if (!ret)
949 		return -ENOMEM;
950 
951 	ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
952 	if (!ret) {
953 		free_cpumask_var(mask);
954 		return -ENOMEM;
955 	}
956 	ret = cpulist_parse(buf, mask);
957 	if (ret)
958 		goto out_free;
959 
960 	if (!cpumask_subset(mask, cpu_online_mask)) {
961 		dd_dev_warn(sde->dd, "Invalid CPU mask\n");
962 		ret = -EINVAL;
963 		goto out_free;
964 	}
965 
966 	sz = sizeof(struct sdma_rht_map_elem) +
967 			(TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
968 
969 	mutex_lock(&process_to_sde_mutex);
970 
971 	for_each_cpu(cpu, mask) {
972 		/* Check if we have this already mapped */
973 		if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
974 			cpumask_set_cpu(cpu, new_mask);
975 			continue;
976 		}
977 
978 		rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
979 						  sdma_rht_params);
980 		if (!rht_node) {
981 			rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
982 			if (!rht_node) {
983 				ret = -ENOMEM;
984 				goto out;
985 			}
986 
987 			rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
988 			if (!rht_node->map[vl]) {
989 				kfree(rht_node);
990 				ret = -ENOMEM;
991 				goto out;
992 			}
993 			rht_node->cpu_id = cpu;
994 			rht_node->map[vl]->mask = 0;
995 			rht_node->map[vl]->ctr = 1;
996 			rht_node->map[vl]->sde[0] = sde;
997 
998 			ret = rhashtable_insert_fast(dd->sdma_rht,
999 						     &rht_node->node,
1000 						     sdma_rht_params);
1001 			if (ret) {
1002 				kfree(rht_node->map[vl]);
1003 				kfree(rht_node);
1004 				dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
1005 					   cpu);
1006 				goto out;
1007 			}
1008 
1009 		} else {
1010 			int ctr, pow;
1011 
1012 			/* Add new user mappings */
1013 			if (!rht_node->map[vl])
1014 				rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1015 
1016 			if (!rht_node->map[vl]) {
1017 				ret = -ENOMEM;
1018 				goto out;
1019 			}
1020 
1021 			rht_node->map[vl]->ctr++;
1022 			ctr = rht_node->map[vl]->ctr;
1023 			rht_node->map[vl]->sde[ctr - 1] = sde;
1024 			pow = roundup_pow_of_two(ctr);
1025 			rht_node->map[vl]->mask = pow - 1;
1026 
1027 			/* Populate the sde map table */
1028 			sdma_populate_sde_map(rht_node->map[vl]);
1029 		}
1030 		cpumask_set_cpu(cpu, new_mask);
1031 	}
1032 
1033 	/* Clean up old mappings */
1034 	for_each_cpu(cpu, cpu_online_mask) {
1035 		struct sdma_rht_node *rht_node;
1036 
1037 		/* Don't cleanup sdes that are set in the new mask */
1038 		if (cpumask_test_cpu(cpu, mask))
1039 			continue;
1040 
1041 		rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1042 						  sdma_rht_params);
1043 		if (rht_node) {
1044 			bool empty = true;
1045 			int i;
1046 
1047 			/* Remove mappings for old sde */
1048 			for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1049 				if (rht_node->map[i])
1050 					sdma_cleanup_sde_map(rht_node->map[i],
1051 							     sde);
1052 
1053 			/* Free empty hash table entries */
1054 			for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1055 				if (!rht_node->map[i])
1056 					continue;
1057 
1058 				if (rht_node->map[i]->ctr) {
1059 					empty = false;
1060 					break;
1061 				}
1062 			}
1063 
1064 			if (empty) {
1065 				ret = rhashtable_remove_fast(dd->sdma_rht,
1066 							     &rht_node->node,
1067 							     sdma_rht_params);
1068 				WARN_ON(ret);
1069 
1070 				for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1071 					kfree(rht_node->map[i]);
1072 
1073 				kfree(rht_node);
1074 			}
1075 		}
1076 	}
1077 
1078 	cpumask_copy(&sde->cpu_mask, new_mask);
1079 out:
1080 	mutex_unlock(&process_to_sde_mutex);
1081 out_free:
1082 	free_cpumask_var(mask);
1083 	free_cpumask_var(new_mask);
1084 	return ret ? : strnlen(buf, PAGE_SIZE);
1085 }
1086 
1087 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1088 {
1089 	mutex_lock(&process_to_sde_mutex);
1090 	if (cpumask_empty(&sde->cpu_mask))
1091 		snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1092 	else
1093 		cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1094 	mutex_unlock(&process_to_sde_mutex);
1095 	return strnlen(buf, PAGE_SIZE);
1096 }
1097 
1098 static void sdma_rht_free(void *ptr, void *arg)
1099 {
1100 	struct sdma_rht_node *rht_node = ptr;
1101 	int i;
1102 
1103 	for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1104 		kfree(rht_node->map[i]);
1105 
1106 	kfree(rht_node);
1107 }
1108 
1109 /**
1110  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1111  * @s: seq file
1112  * @dd: hfi1_devdata
1113  * @cpuid: cpu id
1114  *
1115  * This routine dumps the process to sde mappings per cpu
1116  */
1117 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1118 				struct hfi1_devdata *dd,
1119 				unsigned long cpuid)
1120 {
1121 	struct sdma_rht_node *rht_node;
1122 	int i, j;
1123 
1124 	rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1125 					  sdma_rht_params);
1126 	if (!rht_node)
1127 		return;
1128 
1129 	seq_printf(s, "cpu%3lu: ", cpuid);
1130 	for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1131 		if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1132 			continue;
1133 
1134 		seq_printf(s, " vl%d: [", i);
1135 
1136 		for (j = 0; j < rht_node->map[i]->ctr; j++) {
1137 			if (!rht_node->map[i]->sde[j])
1138 				continue;
1139 
1140 			if (j > 0)
1141 				seq_puts(s, ",");
1142 
1143 			seq_printf(s, " sdma%2d",
1144 				   rht_node->map[i]->sde[j]->this_idx);
1145 		}
1146 		seq_puts(s, " ]");
1147 	}
1148 
1149 	seq_puts(s, "\n");
1150 }
1151 
1152 /*
1153  * Free the indicated map struct
1154  */
1155 static void sdma_map_free(struct sdma_vl_map *m)
1156 {
1157 	int i;
1158 
1159 	for (i = 0; m && i < m->actual_vls; i++)
1160 		kfree(m->map[i]);
1161 	kfree(m);
1162 }
1163 
1164 /*
1165  * Handle RCU callback
1166  */
1167 static void sdma_map_rcu_callback(struct rcu_head *list)
1168 {
1169 	struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1170 
1171 	sdma_map_free(m);
1172 }
1173 
1174 /**
1175  * sdma_map_init - called when # vls change
1176  * @dd: hfi1_devdata
1177  * @port: port number
1178  * @num_vls: number of vls
1179  * @vl_engines: per vl engine mapping (optional)
1180  *
1181  * This routine changes the mapping based on the number of vls.
1182  *
1183  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1184  * implies auto computing the loading and giving each VLs a uniform
1185  * distribution of engines per VL.
1186  *
1187  * The auto algorithm computes the sde_per_vl and the number of extra
1188  * engines.  Any extra engines are added from the last VL on down.
1189  *
1190  * rcu locking is used here to control access to the mapping fields.
1191  *
1192  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1193  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1194  * up to the next highest power of 2 and the first entry is reused
1195  * in a round robin fashion.
1196  *
1197  * If an error occurs the map change is not done and the mapping is
1198  * not changed.
1199  *
1200  */
1201 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1202 {
1203 	int i, j;
1204 	int extra, sde_per_vl;
1205 	int engine = 0;
1206 	u8 lvl_engines[OPA_MAX_VLS];
1207 	struct sdma_vl_map *oldmap, *newmap;
1208 
1209 	if (!(dd->flags & HFI1_HAS_SEND_DMA))
1210 		return 0;
1211 
1212 	if (!vl_engines) {
1213 		/* truncate divide */
1214 		sde_per_vl = dd->num_sdma / num_vls;
1215 		/* extras */
1216 		extra = dd->num_sdma % num_vls;
1217 		vl_engines = lvl_engines;
1218 		/* add extras from last vl down */
1219 		for (i = num_vls - 1; i >= 0; i--, extra--)
1220 			vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1221 	}
1222 	/* build new map */
1223 	newmap = kzalloc(
1224 		sizeof(struct sdma_vl_map) +
1225 			roundup_pow_of_two(num_vls) *
1226 			sizeof(struct sdma_map_elem *),
1227 		GFP_KERNEL);
1228 	if (!newmap)
1229 		goto bail;
1230 	newmap->actual_vls = num_vls;
1231 	newmap->vls = roundup_pow_of_two(num_vls);
1232 	newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1233 	/* initialize back-map */
1234 	for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1235 		newmap->engine_to_vl[i] = -1;
1236 	for (i = 0; i < newmap->vls; i++) {
1237 		/* save for wrap around */
1238 		int first_engine = engine;
1239 
1240 		if (i < newmap->actual_vls) {
1241 			int sz = roundup_pow_of_two(vl_engines[i]);
1242 
1243 			/* only allocate once */
1244 			newmap->map[i] = kzalloc(
1245 				sizeof(struct sdma_map_elem) +
1246 					sz * sizeof(struct sdma_engine *),
1247 				GFP_KERNEL);
1248 			if (!newmap->map[i])
1249 				goto bail;
1250 			newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1251 			/* assign engines */
1252 			for (j = 0; j < sz; j++) {
1253 				newmap->map[i]->sde[j] =
1254 					&dd->per_sdma[engine];
1255 				if (++engine >= first_engine + vl_engines[i])
1256 					/* wrap back to first engine */
1257 					engine = first_engine;
1258 			}
1259 			/* assign back-map */
1260 			for (j = 0; j < vl_engines[i]; j++)
1261 				newmap->engine_to_vl[first_engine + j] = i;
1262 		} else {
1263 			/* just re-use entry without allocating */
1264 			newmap->map[i] = newmap->map[i % num_vls];
1265 		}
1266 		engine = first_engine + vl_engines[i];
1267 	}
1268 	/* newmap in hand, save old map */
1269 	spin_lock_irq(&dd->sde_map_lock);
1270 	oldmap = rcu_dereference_protected(dd->sdma_map,
1271 					   lockdep_is_held(&dd->sde_map_lock));
1272 
1273 	/* publish newmap */
1274 	rcu_assign_pointer(dd->sdma_map, newmap);
1275 
1276 	spin_unlock_irq(&dd->sde_map_lock);
1277 	/* success, free any old map after grace period */
1278 	if (oldmap)
1279 		call_rcu(&oldmap->list, sdma_map_rcu_callback);
1280 	return 0;
1281 bail:
1282 	/* free any partial allocation */
1283 	sdma_map_free(newmap);
1284 	return -ENOMEM;
1285 }
1286 
1287 /**
1288  * sdma_clean()  Clean up allocated memory
1289  * @dd:          struct hfi1_devdata
1290  * @num_engines: num sdma engines
1291  *
1292  * This routine can be called regardless of the success of
1293  * sdma_init()
1294  */
1295 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1296 {
1297 	size_t i;
1298 	struct sdma_engine *sde;
1299 
1300 	if (dd->sdma_pad_dma) {
1301 		dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1302 				  (void *)dd->sdma_pad_dma,
1303 				  dd->sdma_pad_phys);
1304 		dd->sdma_pad_dma = NULL;
1305 		dd->sdma_pad_phys = 0;
1306 	}
1307 	if (dd->sdma_heads_dma) {
1308 		dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1309 				  (void *)dd->sdma_heads_dma,
1310 				  dd->sdma_heads_phys);
1311 		dd->sdma_heads_dma = NULL;
1312 		dd->sdma_heads_phys = 0;
1313 	}
1314 	for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1315 		sde = &dd->per_sdma[i];
1316 
1317 		sde->head_dma = NULL;
1318 		sde->head_phys = 0;
1319 
1320 		if (sde->descq) {
1321 			dma_free_coherent(
1322 				&dd->pcidev->dev,
1323 				sde->descq_cnt * sizeof(u64[2]),
1324 				sde->descq,
1325 				sde->descq_phys
1326 			);
1327 			sde->descq = NULL;
1328 			sde->descq_phys = 0;
1329 		}
1330 		kvfree(sde->tx_ring);
1331 		sde->tx_ring = NULL;
1332 	}
1333 	spin_lock_irq(&dd->sde_map_lock);
1334 	sdma_map_free(rcu_access_pointer(dd->sdma_map));
1335 	RCU_INIT_POINTER(dd->sdma_map, NULL);
1336 	spin_unlock_irq(&dd->sde_map_lock);
1337 	synchronize_rcu();
1338 	kfree(dd->per_sdma);
1339 	dd->per_sdma = NULL;
1340 
1341 	if (dd->sdma_rht) {
1342 		rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1343 		kfree(dd->sdma_rht);
1344 		dd->sdma_rht = NULL;
1345 	}
1346 }
1347 
1348 /**
1349  * sdma_init() - called when device probed
1350  * @dd: hfi1_devdata
1351  * @port: port number (currently only zero)
1352  *
1353  * Initializes each sde and its csrs.
1354  * Interrupts are not required to be enabled.
1355  *
1356  * Returns:
1357  * 0 - success, -errno on failure
1358  */
1359 int sdma_init(struct hfi1_devdata *dd, u8 port)
1360 {
1361 	unsigned this_idx;
1362 	struct sdma_engine *sde;
1363 	struct rhashtable *tmp_sdma_rht;
1364 	u16 descq_cnt;
1365 	void *curr_head;
1366 	struct hfi1_pportdata *ppd = dd->pport + port;
1367 	u32 per_sdma_credits;
1368 	uint idle_cnt = sdma_idle_cnt;
1369 	size_t num_engines = chip_sdma_engines(dd);
1370 	int ret = -ENOMEM;
1371 
1372 	if (!HFI1_CAP_IS_KSET(SDMA)) {
1373 		HFI1_CAP_CLEAR(SDMA_AHG);
1374 		return 0;
1375 	}
1376 	if (mod_num_sdma &&
1377 	    /* can't exceed chip support */
1378 	    mod_num_sdma <= chip_sdma_engines(dd) &&
1379 	    /* count must be >= vls */
1380 	    mod_num_sdma >= num_vls)
1381 		num_engines = mod_num_sdma;
1382 
1383 	dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1384 	dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1385 	dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1386 		    chip_sdma_mem_size(dd));
1387 
1388 	per_sdma_credits =
1389 		chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1390 
1391 	/* set up freeze waitqueue */
1392 	init_waitqueue_head(&dd->sdma_unfreeze_wq);
1393 	atomic_set(&dd->sdma_unfreeze_count, 0);
1394 
1395 	descq_cnt = sdma_get_descq_cnt();
1396 	dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1397 		    num_engines, descq_cnt);
1398 
1399 	/* alloc memory for array of send engines */
1400 	dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1401 				    GFP_KERNEL, dd->node);
1402 	if (!dd->per_sdma)
1403 		return ret;
1404 
1405 	idle_cnt = ns_to_cclock(dd, idle_cnt);
1406 	if (idle_cnt)
1407 		dd->default_desc1 =
1408 			SDMA_DESC1_HEAD_TO_HOST_FLAG;
1409 	else
1410 		dd->default_desc1 =
1411 			SDMA_DESC1_INT_REQ_FLAG;
1412 
1413 	if (!sdma_desct_intr)
1414 		sdma_desct_intr = SDMA_DESC_INTR;
1415 
1416 	/* Allocate memory for SendDMA descriptor FIFOs */
1417 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1418 		sde = &dd->per_sdma[this_idx];
1419 		sde->dd = dd;
1420 		sde->ppd = ppd;
1421 		sde->this_idx = this_idx;
1422 		sde->descq_cnt = descq_cnt;
1423 		sde->desc_avail = sdma_descq_freecnt(sde);
1424 		sde->sdma_shift = ilog2(descq_cnt);
1425 		sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1426 
1427 		/* Create a mask specifically for each interrupt source */
1428 		sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1429 					   this_idx);
1430 		sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1431 						this_idx);
1432 		sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1433 					    this_idx);
1434 		/* Create a combined mask to cover all 3 interrupt sources */
1435 		sde->imask = sde->int_mask | sde->progress_mask |
1436 			     sde->idle_mask;
1437 
1438 		spin_lock_init(&sde->tail_lock);
1439 		seqlock_init(&sde->head_lock);
1440 		spin_lock_init(&sde->senddmactrl_lock);
1441 		spin_lock_init(&sde->flushlist_lock);
1442 		seqlock_init(&sde->waitlock);
1443 		/* insure there is always a zero bit */
1444 		sde->ahg_bits = 0xfffffffe00000000ULL;
1445 
1446 		sdma_set_state(sde, sdma_state_s00_hw_down);
1447 
1448 		/* set up reference counting */
1449 		kref_init(&sde->state.kref);
1450 		init_completion(&sde->state.comp);
1451 
1452 		INIT_LIST_HEAD(&sde->flushlist);
1453 		INIT_LIST_HEAD(&sde->dmawait);
1454 
1455 		sde->tail_csr =
1456 			get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1457 
1458 		tasklet_setup(&sde->sdma_hw_clean_up_task,
1459 			      sdma_hw_clean_up_task);
1460 		tasklet_setup(&sde->sdma_sw_clean_up_task,
1461 			      sdma_sw_clean_up_task);
1462 		INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1463 		INIT_WORK(&sde->flush_worker, sdma_field_flush);
1464 
1465 		sde->progress_check_head = 0;
1466 
1467 		timer_setup(&sde->err_progress_check_timer,
1468 			    sdma_err_progress_check, 0);
1469 
1470 		sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1471 						descq_cnt * sizeof(u64[2]),
1472 						&sde->descq_phys, GFP_KERNEL);
1473 		if (!sde->descq)
1474 			goto bail;
1475 		sde->tx_ring =
1476 			kvzalloc_node(array_size(descq_cnt,
1477 						 sizeof(struct sdma_txreq *)),
1478 				      GFP_KERNEL, dd->node);
1479 		if (!sde->tx_ring)
1480 			goto bail;
1481 	}
1482 
1483 	dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1484 	/* Allocate memory for DMA of head registers to memory */
1485 	dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1486 						dd->sdma_heads_size,
1487 						&dd->sdma_heads_phys,
1488 						GFP_KERNEL);
1489 	if (!dd->sdma_heads_dma) {
1490 		dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1491 		goto bail;
1492 	}
1493 
1494 	/* Allocate memory for pad */
1495 	dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1496 					      &dd->sdma_pad_phys, GFP_KERNEL);
1497 	if (!dd->sdma_pad_dma) {
1498 		dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1499 		goto bail;
1500 	}
1501 
1502 	/* assign each engine to different cacheline and init registers */
1503 	curr_head = (void *)dd->sdma_heads_dma;
1504 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1505 		unsigned long phys_offset;
1506 
1507 		sde = &dd->per_sdma[this_idx];
1508 
1509 		sde->head_dma = curr_head;
1510 		curr_head += L1_CACHE_BYTES;
1511 		phys_offset = (unsigned long)sde->head_dma -
1512 			      (unsigned long)dd->sdma_heads_dma;
1513 		sde->head_phys = dd->sdma_heads_phys + phys_offset;
1514 		init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1515 	}
1516 	dd->flags |= HFI1_HAS_SEND_DMA;
1517 	dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1518 	dd->num_sdma = num_engines;
1519 	ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1520 	if (ret < 0)
1521 		goto bail;
1522 
1523 	tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1524 	if (!tmp_sdma_rht) {
1525 		ret = -ENOMEM;
1526 		goto bail;
1527 	}
1528 
1529 	ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1530 	if (ret < 0) {
1531 		kfree(tmp_sdma_rht);
1532 		goto bail;
1533 	}
1534 
1535 	dd->sdma_rht = tmp_sdma_rht;
1536 
1537 	dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1538 	return 0;
1539 
1540 bail:
1541 	sdma_clean(dd, num_engines);
1542 	return ret;
1543 }
1544 
1545 /**
1546  * sdma_all_running() - called when the link goes up
1547  * @dd: hfi1_devdata
1548  *
1549  * This routine moves all engines to the running state.
1550  */
1551 void sdma_all_running(struct hfi1_devdata *dd)
1552 {
1553 	struct sdma_engine *sde;
1554 	unsigned int i;
1555 
1556 	/* move all engines to running */
1557 	for (i = 0; i < dd->num_sdma; ++i) {
1558 		sde = &dd->per_sdma[i];
1559 		sdma_process_event(sde, sdma_event_e30_go_running);
1560 	}
1561 }
1562 
1563 /**
1564  * sdma_all_idle() - called when the link goes down
1565  * @dd: hfi1_devdata
1566  *
1567  * This routine moves all engines to the idle state.
1568  */
1569 void sdma_all_idle(struct hfi1_devdata *dd)
1570 {
1571 	struct sdma_engine *sde;
1572 	unsigned int i;
1573 
1574 	/* idle all engines */
1575 	for (i = 0; i < dd->num_sdma; ++i) {
1576 		sde = &dd->per_sdma[i];
1577 		sdma_process_event(sde, sdma_event_e70_go_idle);
1578 	}
1579 }
1580 
1581 /**
1582  * sdma_start() - called to kick off state processing for all engines
1583  * @dd: hfi1_devdata
1584  *
1585  * This routine is for kicking off the state processing for all required
1586  * sdma engines.  Interrupts need to be working at this point.
1587  *
1588  */
1589 void sdma_start(struct hfi1_devdata *dd)
1590 {
1591 	unsigned i;
1592 	struct sdma_engine *sde;
1593 
1594 	/* kick off the engines state processing */
1595 	for (i = 0; i < dd->num_sdma; ++i) {
1596 		sde = &dd->per_sdma[i];
1597 		sdma_process_event(sde, sdma_event_e10_go_hw_start);
1598 	}
1599 }
1600 
1601 /**
1602  * sdma_exit() - used when module is removed
1603  * @dd: hfi1_devdata
1604  */
1605 void sdma_exit(struct hfi1_devdata *dd)
1606 {
1607 	unsigned this_idx;
1608 	struct sdma_engine *sde;
1609 
1610 	for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1611 			++this_idx) {
1612 		sde = &dd->per_sdma[this_idx];
1613 		if (!list_empty(&sde->dmawait))
1614 			dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1615 				   sde->this_idx);
1616 		sdma_process_event(sde, sdma_event_e00_go_hw_down);
1617 
1618 		del_timer_sync(&sde->err_progress_check_timer);
1619 
1620 		/*
1621 		 * This waits for the state machine to exit so it is not
1622 		 * necessary to kill the sdma_sw_clean_up_task to make sure
1623 		 * it is not running.
1624 		 */
1625 		sdma_finalput(&sde->state);
1626 	}
1627 }
1628 
1629 /*
1630  * unmap the indicated descriptor
1631  */
1632 static inline void sdma_unmap_desc(
1633 	struct hfi1_devdata *dd,
1634 	struct sdma_desc *descp)
1635 {
1636 	switch (sdma_mapping_type(descp)) {
1637 	case SDMA_MAP_SINGLE:
1638 		dma_unmap_single(
1639 			&dd->pcidev->dev,
1640 			sdma_mapping_addr(descp),
1641 			sdma_mapping_len(descp),
1642 			DMA_TO_DEVICE);
1643 		break;
1644 	case SDMA_MAP_PAGE:
1645 		dma_unmap_page(
1646 			&dd->pcidev->dev,
1647 			sdma_mapping_addr(descp),
1648 			sdma_mapping_len(descp),
1649 			DMA_TO_DEVICE);
1650 		break;
1651 	}
1652 }
1653 
1654 /*
1655  * return the mode as indicated by the first
1656  * descriptor in the tx.
1657  */
1658 static inline u8 ahg_mode(struct sdma_txreq *tx)
1659 {
1660 	return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1661 		>> SDMA_DESC1_HEADER_MODE_SHIFT;
1662 }
1663 
1664 /**
1665  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1666  * @dd: hfi1_devdata for unmapping
1667  * @tx: tx request to clean
1668  *
1669  * This is used in the progress routine to clean the tx or
1670  * by the ULP to toss an in-process tx build.
1671  *
1672  * The code can be called multiple times without issue.
1673  *
1674  */
1675 void __sdma_txclean(
1676 	struct hfi1_devdata *dd,
1677 	struct sdma_txreq *tx)
1678 {
1679 	u16 i;
1680 
1681 	if (tx->num_desc) {
1682 		u8 skip = 0, mode = ahg_mode(tx);
1683 
1684 		/* unmap first */
1685 		sdma_unmap_desc(dd, &tx->descp[0]);
1686 		/* determine number of AHG descriptors to skip */
1687 		if (mode > SDMA_AHG_APPLY_UPDATE1)
1688 			skip = mode >> 1;
1689 		for (i = 1 + skip; i < tx->num_desc; i++)
1690 			sdma_unmap_desc(dd, &tx->descp[i]);
1691 		tx->num_desc = 0;
1692 	}
1693 	kfree(tx->coalesce_buf);
1694 	tx->coalesce_buf = NULL;
1695 	/* kmalloc'ed descp */
1696 	if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1697 		tx->desc_limit = ARRAY_SIZE(tx->descs);
1698 		kfree(tx->descp);
1699 	}
1700 }
1701 
1702 static inline u16 sdma_gethead(struct sdma_engine *sde)
1703 {
1704 	struct hfi1_devdata *dd = sde->dd;
1705 	int use_dmahead;
1706 	u16 hwhead;
1707 
1708 #ifdef CONFIG_SDMA_VERBOSITY
1709 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1710 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1711 #endif
1712 
1713 retry:
1714 	use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1715 					(dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1716 	hwhead = use_dmahead ?
1717 		(u16)le64_to_cpu(*sde->head_dma) :
1718 		(u16)read_sde_csr(sde, SD(HEAD));
1719 
1720 	if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1721 		u16 cnt;
1722 		u16 swtail;
1723 		u16 swhead;
1724 		int sane;
1725 
1726 		swhead = sde->descq_head & sde->sdma_mask;
1727 		/* this code is really bad for cache line trading */
1728 		swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1729 		cnt = sde->descq_cnt;
1730 
1731 		if (swhead < swtail)
1732 			/* not wrapped */
1733 			sane = (hwhead >= swhead) & (hwhead <= swtail);
1734 		else if (swhead > swtail)
1735 			/* wrapped around */
1736 			sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1737 				(hwhead <= swtail);
1738 		else
1739 			/* empty */
1740 			sane = (hwhead == swhead);
1741 
1742 		if (unlikely(!sane)) {
1743 			dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1744 				   sde->this_idx,
1745 				   use_dmahead ? "dma" : "kreg",
1746 				   hwhead, swhead, swtail, cnt);
1747 			if (use_dmahead) {
1748 				/* try one more time, using csr */
1749 				use_dmahead = 0;
1750 				goto retry;
1751 			}
1752 			/* proceed as if no progress */
1753 			hwhead = swhead;
1754 		}
1755 	}
1756 	return hwhead;
1757 }
1758 
1759 /*
1760  * This is called when there are send DMA descriptors that might be
1761  * available.
1762  *
1763  * This is called with head_lock held.
1764  */
1765 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1766 {
1767 	struct iowait *wait, *nw, *twait;
1768 	struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1769 	uint i, n = 0, seq, tidx = 0;
1770 
1771 #ifdef CONFIG_SDMA_VERBOSITY
1772 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1773 		   slashstrip(__FILE__), __LINE__, __func__);
1774 	dd_dev_err(sde->dd, "avail: %u\n", avail);
1775 #endif
1776 
1777 	do {
1778 		seq = read_seqbegin(&sde->waitlock);
1779 		if (!list_empty(&sde->dmawait)) {
1780 			/* at least one item */
1781 			write_seqlock(&sde->waitlock);
1782 			/* Harvest waiters wanting DMA descriptors */
1783 			list_for_each_entry_safe(
1784 					wait,
1785 					nw,
1786 					&sde->dmawait,
1787 					list) {
1788 				u32 num_desc;
1789 
1790 				if (!wait->wakeup)
1791 					continue;
1792 				if (n == ARRAY_SIZE(waits))
1793 					break;
1794 				iowait_init_priority(wait);
1795 				num_desc = iowait_get_all_desc(wait);
1796 				if (num_desc > avail)
1797 					break;
1798 				avail -= num_desc;
1799 				/* Find the top-priority wait memeber */
1800 				if (n) {
1801 					twait = waits[tidx];
1802 					tidx =
1803 					    iowait_priority_update_top(wait,
1804 								       twait,
1805 								       n,
1806 								       tidx);
1807 				}
1808 				list_del_init(&wait->list);
1809 				waits[n++] = wait;
1810 			}
1811 			write_sequnlock(&sde->waitlock);
1812 			break;
1813 		}
1814 	} while (read_seqretry(&sde->waitlock, seq));
1815 
1816 	/* Schedule the top-priority entry first */
1817 	if (n)
1818 		waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1819 
1820 	for (i = 0; i < n; i++)
1821 		if (i != tidx)
1822 			waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1823 }
1824 
1825 /* head_lock must be held */
1826 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1827 {
1828 	struct sdma_txreq *txp = NULL;
1829 	int progress = 0;
1830 	u16 hwhead, swhead;
1831 	int idle_check_done = 0;
1832 
1833 	hwhead = sdma_gethead(sde);
1834 
1835 	/* The reason for some of the complexity of this code is that
1836 	 * not all descriptors have corresponding txps.  So, we have to
1837 	 * be able to skip over descs until we wander into the range of
1838 	 * the next txp on the list.
1839 	 */
1840 
1841 retry:
1842 	txp = get_txhead(sde);
1843 	swhead = sde->descq_head & sde->sdma_mask;
1844 	trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1845 	while (swhead != hwhead) {
1846 		/* advance head, wrap if needed */
1847 		swhead = ++sde->descq_head & sde->sdma_mask;
1848 
1849 		/* if now past this txp's descs, do the callback */
1850 		if (txp && txp->next_descq_idx == swhead) {
1851 			/* remove from list */
1852 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1853 			complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1854 			/* see if there is another txp */
1855 			txp = get_txhead(sde);
1856 		}
1857 		trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1858 		progress++;
1859 	}
1860 
1861 	/*
1862 	 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1863 	 * to updates to the the dma_head location in host memory. The head
1864 	 * value read might not be fully up to date. If there are pending
1865 	 * descriptors and the SDMA idle interrupt fired then read from the
1866 	 * CSR SDMA head instead to get the latest value from the hardware.
1867 	 * The hardware SDMA head should be read at most once in this invocation
1868 	 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1869 	 */
1870 	if ((status & sde->idle_mask) && !idle_check_done) {
1871 		u16 swtail;
1872 
1873 		swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1874 		if (swtail != hwhead) {
1875 			hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1876 			idle_check_done = 1;
1877 			goto retry;
1878 		}
1879 	}
1880 
1881 	sde->last_status = status;
1882 	if (progress)
1883 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1884 }
1885 
1886 /*
1887  * sdma_engine_interrupt() - interrupt handler for engine
1888  * @sde: sdma engine
1889  * @status: sdma interrupt reason
1890  *
1891  * Status is a mask of the 3 possible interrupts for this engine.  It will
1892  * contain bits _only_ for this SDMA engine.  It will contain at least one
1893  * bit, it may contain more.
1894  */
1895 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1896 {
1897 	trace_hfi1_sdma_engine_interrupt(sde, status);
1898 	write_seqlock(&sde->head_lock);
1899 	sdma_set_desc_cnt(sde, sdma_desct_intr);
1900 	if (status & sde->idle_mask)
1901 		sde->idle_int_cnt++;
1902 	else if (status & sde->progress_mask)
1903 		sde->progress_int_cnt++;
1904 	else if (status & sde->int_mask)
1905 		sde->sdma_int_cnt++;
1906 	sdma_make_progress(sde, status);
1907 	write_sequnlock(&sde->head_lock);
1908 }
1909 
1910 /**
1911  * sdma_engine_error() - error handler for engine
1912  * @sde: sdma engine
1913  * @status: sdma interrupt reason
1914  */
1915 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1916 {
1917 	unsigned long flags;
1918 
1919 #ifdef CONFIG_SDMA_VERBOSITY
1920 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1921 		   sde->this_idx,
1922 		   (unsigned long long)status,
1923 		   sdma_state_names[sde->state.current_state]);
1924 #endif
1925 	spin_lock_irqsave(&sde->tail_lock, flags);
1926 	write_seqlock(&sde->head_lock);
1927 	if (status & ALL_SDMA_ENG_HALT_ERRS)
1928 		__sdma_process_event(sde, sdma_event_e60_hw_halted);
1929 	if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1930 		dd_dev_err(sde->dd,
1931 			   "SDMA (%u) engine error: 0x%llx state %s\n",
1932 			   sde->this_idx,
1933 			   (unsigned long long)status,
1934 			   sdma_state_names[sde->state.current_state]);
1935 		dump_sdma_state(sde);
1936 	}
1937 	write_sequnlock(&sde->head_lock);
1938 	spin_unlock_irqrestore(&sde->tail_lock, flags);
1939 }
1940 
1941 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1942 {
1943 	u64 set_senddmactrl = 0;
1944 	u64 clr_senddmactrl = 0;
1945 	unsigned long flags;
1946 
1947 #ifdef CONFIG_SDMA_VERBOSITY
1948 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1949 		   sde->this_idx,
1950 		   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1951 		   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1952 		   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1953 		   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1954 #endif
1955 
1956 	if (op & SDMA_SENDCTRL_OP_ENABLE)
1957 		set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1958 	else
1959 		clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1960 
1961 	if (op & SDMA_SENDCTRL_OP_INTENABLE)
1962 		set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1963 	else
1964 		clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1965 
1966 	if (op & SDMA_SENDCTRL_OP_HALT)
1967 		set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1968 	else
1969 		clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1970 
1971 	spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1972 
1973 	sde->p_senddmactrl |= set_senddmactrl;
1974 	sde->p_senddmactrl &= ~clr_senddmactrl;
1975 
1976 	if (op & SDMA_SENDCTRL_OP_CLEANUP)
1977 		write_sde_csr(sde, SD(CTRL),
1978 			      sde->p_senddmactrl |
1979 			      SD(CTRL_SDMA_CLEANUP_SMASK));
1980 	else
1981 		write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1982 
1983 	spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1984 
1985 #ifdef CONFIG_SDMA_VERBOSITY
1986 	sdma_dumpstate(sde);
1987 #endif
1988 }
1989 
1990 static void sdma_setlengen(struct sdma_engine *sde)
1991 {
1992 #ifdef CONFIG_SDMA_VERBOSITY
1993 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1994 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1995 #endif
1996 
1997 	/*
1998 	 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1999 	 * count to enable generation checking and load the internal
2000 	 * generation counter.
2001 	 */
2002 	write_sde_csr(sde, SD(LEN_GEN),
2003 		      (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2004 	write_sde_csr(sde, SD(LEN_GEN),
2005 		      ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2006 		      (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2007 }
2008 
2009 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2010 {
2011 	/* Commit writes to memory and advance the tail on the chip */
2012 	smp_wmb(); /* see get_txhead() */
2013 	writeq(tail, sde->tail_csr);
2014 }
2015 
2016 /*
2017  * This is called when changing to state s10_hw_start_up_halt_wait as
2018  * a result of send buffer errors or send DMA descriptor errors.
2019  */
2020 static void sdma_hw_start_up(struct sdma_engine *sde)
2021 {
2022 	u64 reg;
2023 
2024 #ifdef CONFIG_SDMA_VERBOSITY
2025 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2026 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2027 #endif
2028 
2029 	sdma_setlengen(sde);
2030 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
2031 	*sde->head_dma = 0;
2032 
2033 	reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2034 	      SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2035 	write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2036 }
2037 
2038 /*
2039  * set_sdma_integrity
2040  *
2041  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2042  */
2043 static void set_sdma_integrity(struct sdma_engine *sde)
2044 {
2045 	struct hfi1_devdata *dd = sde->dd;
2046 
2047 	write_sde_csr(sde, SD(CHECK_ENABLE),
2048 		      hfi1_pkt_base_sdma_integrity(dd));
2049 }
2050 
2051 static void init_sdma_regs(
2052 	struct sdma_engine *sde,
2053 	u32 credits,
2054 	uint idle_cnt)
2055 {
2056 	u8 opval, opmask;
2057 #ifdef CONFIG_SDMA_VERBOSITY
2058 	struct hfi1_devdata *dd = sde->dd;
2059 
2060 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2061 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2062 #endif
2063 
2064 	write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2065 	sdma_setlengen(sde);
2066 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
2067 	write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2068 	write_sde_csr(sde, SD(DESC_CNT), 0);
2069 	write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2070 	write_sde_csr(sde, SD(MEMORY),
2071 		      ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2072 		      ((u64)(credits * sde->this_idx) <<
2073 		       SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2074 	write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2075 	set_sdma_integrity(sde);
2076 	opmask = OPCODE_CHECK_MASK_DISABLED;
2077 	opval = OPCODE_CHECK_VAL_DISABLED;
2078 	write_sde_csr(sde, SD(CHECK_OPCODE),
2079 		      (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2080 		      (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2081 }
2082 
2083 #ifdef CONFIG_SDMA_VERBOSITY
2084 
2085 #define sdma_dumpstate_helper0(reg) do { \
2086 		csr = read_csr(sde->dd, reg); \
2087 		dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2088 	} while (0)
2089 
2090 #define sdma_dumpstate_helper(reg) do { \
2091 		csr = read_sde_csr(sde, reg); \
2092 		dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2093 			#reg, sde->this_idx, csr); \
2094 	} while (0)
2095 
2096 #define sdma_dumpstate_helper2(reg) do { \
2097 		csr = read_csr(sde->dd, reg + (8 * i)); \
2098 		dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2099 				#reg, i, csr); \
2100 	} while (0)
2101 
2102 void sdma_dumpstate(struct sdma_engine *sde)
2103 {
2104 	u64 csr;
2105 	unsigned i;
2106 
2107 	sdma_dumpstate_helper(SD(CTRL));
2108 	sdma_dumpstate_helper(SD(STATUS));
2109 	sdma_dumpstate_helper0(SD(ERR_STATUS));
2110 	sdma_dumpstate_helper0(SD(ERR_MASK));
2111 	sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2112 	sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2113 
2114 	for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2115 		sdma_dumpstate_helper2(CCE_INT_STATUS);
2116 		sdma_dumpstate_helper2(CCE_INT_MASK);
2117 		sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2118 	}
2119 
2120 	sdma_dumpstate_helper(SD(TAIL));
2121 	sdma_dumpstate_helper(SD(HEAD));
2122 	sdma_dumpstate_helper(SD(PRIORITY_THLD));
2123 	sdma_dumpstate_helper(SD(IDLE_CNT));
2124 	sdma_dumpstate_helper(SD(RELOAD_CNT));
2125 	sdma_dumpstate_helper(SD(DESC_CNT));
2126 	sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2127 	sdma_dumpstate_helper(SD(MEMORY));
2128 	sdma_dumpstate_helper0(SD(ENGINES));
2129 	sdma_dumpstate_helper0(SD(MEM_SIZE));
2130 	/* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2131 	sdma_dumpstate_helper(SD(BASE_ADDR));
2132 	sdma_dumpstate_helper(SD(LEN_GEN));
2133 	sdma_dumpstate_helper(SD(HEAD_ADDR));
2134 	sdma_dumpstate_helper(SD(CHECK_ENABLE));
2135 	sdma_dumpstate_helper(SD(CHECK_VL));
2136 	sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2137 	sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2138 	sdma_dumpstate_helper(SD(CHECK_SLID));
2139 	sdma_dumpstate_helper(SD(CHECK_OPCODE));
2140 }
2141 #endif
2142 
2143 static void dump_sdma_state(struct sdma_engine *sde)
2144 {
2145 	struct hw_sdma_desc *descqp;
2146 	u64 desc[2];
2147 	u64 addr;
2148 	u8 gen;
2149 	u16 len;
2150 	u16 head, tail, cnt;
2151 
2152 	head = sde->descq_head & sde->sdma_mask;
2153 	tail = sde->descq_tail & sde->sdma_mask;
2154 	cnt = sdma_descq_freecnt(sde);
2155 
2156 	dd_dev_err(sde->dd,
2157 		   "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2158 		   sde->this_idx, head, tail, cnt,
2159 		   !list_empty(&sde->flushlist));
2160 
2161 	/* print info for each entry in the descriptor queue */
2162 	while (head != tail) {
2163 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2164 
2165 		descqp = &sde->descq[head];
2166 		desc[0] = le64_to_cpu(descqp->qw[0]);
2167 		desc[1] = le64_to_cpu(descqp->qw[1]);
2168 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2169 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2170 				'H' : '-';
2171 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2172 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2173 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2174 			& SDMA_DESC0_PHY_ADDR_MASK;
2175 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2176 			& SDMA_DESC1_GENERATION_MASK;
2177 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2178 			& SDMA_DESC0_BYTE_COUNT_MASK;
2179 		dd_dev_err(sde->dd,
2180 			   "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2181 			   head, flags, addr, gen, len);
2182 		dd_dev_err(sde->dd,
2183 			   "\tdesc0:0x%016llx desc1 0x%016llx\n",
2184 			   desc[0], desc[1]);
2185 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2186 			dd_dev_err(sde->dd,
2187 				   "\taidx: %u amode: %u alen: %u\n",
2188 				   (u8)((desc[1] &
2189 					 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2190 					SDMA_DESC1_HEADER_INDEX_SHIFT),
2191 				   (u8)((desc[1] &
2192 					 SDMA_DESC1_HEADER_MODE_SMASK) >>
2193 					SDMA_DESC1_HEADER_MODE_SHIFT),
2194 				   (u8)((desc[1] &
2195 					 SDMA_DESC1_HEADER_DWS_SMASK) >>
2196 					SDMA_DESC1_HEADER_DWS_SHIFT));
2197 		head++;
2198 		head &= sde->sdma_mask;
2199 	}
2200 }
2201 
2202 #define SDE_FMT \
2203 	"SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2204 /**
2205  * sdma_seqfile_dump_sde() - debugfs dump of sde
2206  * @s: seq file
2207  * @sde: send dma engine to dump
2208  *
2209  * This routine dumps the sde to the indicated seq file.
2210  */
2211 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2212 {
2213 	u16 head, tail;
2214 	struct hw_sdma_desc *descqp;
2215 	u64 desc[2];
2216 	u64 addr;
2217 	u8 gen;
2218 	u16 len;
2219 
2220 	head = sde->descq_head & sde->sdma_mask;
2221 	tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2222 	seq_printf(s, SDE_FMT, sde->this_idx,
2223 		   sde->cpu,
2224 		   sdma_state_name(sde->state.current_state),
2225 		   (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2226 		   (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2227 		   (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2228 		   (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2229 		   (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2230 		   (unsigned long long)le64_to_cpu(*sde->head_dma),
2231 		   (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2232 		   (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2233 		   (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2234 		   (unsigned long long)sde->last_status,
2235 		   (unsigned long long)sde->ahg_bits,
2236 		   sde->tx_tail,
2237 		   sde->tx_head,
2238 		   sde->descq_tail,
2239 		   sde->descq_head,
2240 		   !list_empty(&sde->flushlist),
2241 		   sde->descq_full_count,
2242 		   (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2243 
2244 	/* print info for each entry in the descriptor queue */
2245 	while (head != tail) {
2246 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2247 
2248 		descqp = &sde->descq[head];
2249 		desc[0] = le64_to_cpu(descqp->qw[0]);
2250 		desc[1] = le64_to_cpu(descqp->qw[1]);
2251 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2252 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2253 				'H' : '-';
2254 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2255 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2256 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2257 			& SDMA_DESC0_PHY_ADDR_MASK;
2258 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2259 			& SDMA_DESC1_GENERATION_MASK;
2260 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2261 			& SDMA_DESC0_BYTE_COUNT_MASK;
2262 		seq_printf(s,
2263 			   "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2264 			   head, flags, addr, gen, len);
2265 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2266 			seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2267 				   (u8)((desc[1] &
2268 					 SDMA_DESC1_HEADER_INDEX_SMASK) >>
2269 					SDMA_DESC1_HEADER_INDEX_SHIFT),
2270 				   (u8)((desc[1] &
2271 					 SDMA_DESC1_HEADER_MODE_SMASK) >>
2272 					SDMA_DESC1_HEADER_MODE_SHIFT));
2273 		head = (head + 1) & sde->sdma_mask;
2274 	}
2275 }
2276 
2277 /*
2278  * add the generation number into
2279  * the qw1 and return
2280  */
2281 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2282 {
2283 	u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2284 
2285 	qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2286 	qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2287 			<< SDMA_DESC1_GENERATION_SHIFT;
2288 	return qw1;
2289 }
2290 
2291 /*
2292  * This routine submits the indicated tx
2293  *
2294  * Space has already been guaranteed and
2295  * tail side of ring is locked.
2296  *
2297  * The hardware tail update is done
2298  * in the caller and that is facilitated
2299  * by returning the new tail.
2300  *
2301  * There is special case logic for ahg
2302  * to not add the generation number for
2303  * up to 2 descriptors that follow the
2304  * first descriptor.
2305  *
2306  */
2307 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2308 {
2309 	int i;
2310 	u16 tail;
2311 	struct sdma_desc *descp = tx->descp;
2312 	u8 skip = 0, mode = ahg_mode(tx);
2313 
2314 	tail = sde->descq_tail & sde->sdma_mask;
2315 	sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2316 	sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2317 	trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2318 				   tail, &sde->descq[tail]);
2319 	tail = ++sde->descq_tail & sde->sdma_mask;
2320 	descp++;
2321 	if (mode > SDMA_AHG_APPLY_UPDATE1)
2322 		skip = mode >> 1;
2323 	for (i = 1; i < tx->num_desc; i++, descp++) {
2324 		u64 qw1;
2325 
2326 		sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2327 		if (skip) {
2328 			/* edits don't have generation */
2329 			qw1 = descp->qw[1];
2330 			skip--;
2331 		} else {
2332 			/* replace generation with real one for non-edits */
2333 			qw1 = add_gen(sde, descp->qw[1]);
2334 		}
2335 		sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2336 		trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2337 					   tail, &sde->descq[tail]);
2338 		tail = ++sde->descq_tail & sde->sdma_mask;
2339 	}
2340 	tx->next_descq_idx = tail;
2341 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2342 	tx->sn = sde->tail_sn++;
2343 	trace_hfi1_sdma_in_sn(sde, tx->sn);
2344 	WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2345 #endif
2346 	sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2347 	sde->desc_avail -= tx->num_desc;
2348 	return tail;
2349 }
2350 
2351 /*
2352  * Check for progress
2353  */
2354 static int sdma_check_progress(
2355 	struct sdma_engine *sde,
2356 	struct iowait_work *wait,
2357 	struct sdma_txreq *tx,
2358 	bool pkts_sent)
2359 {
2360 	int ret;
2361 
2362 	sde->desc_avail = sdma_descq_freecnt(sde);
2363 	if (tx->num_desc <= sde->desc_avail)
2364 		return -EAGAIN;
2365 	/* pulse the head_lock */
2366 	if (wait && iowait_ioww_to_iow(wait)->sleep) {
2367 		unsigned seq;
2368 
2369 		seq = raw_seqcount_begin(
2370 			(const seqcount_t *)&sde->head_lock.seqcount);
2371 		ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2372 		if (ret == -EAGAIN)
2373 			sde->desc_avail = sdma_descq_freecnt(sde);
2374 	} else {
2375 		ret = -EBUSY;
2376 	}
2377 	return ret;
2378 }
2379 
2380 /**
2381  * sdma_send_txreq() - submit a tx req to ring
2382  * @sde: sdma engine to use
2383  * @wait: SE wait structure to use when full (may be NULL)
2384  * @tx: sdma_txreq to submit
2385  * @pkts_sent: has any packet been sent yet?
2386  *
2387  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2388  * the packet will be queued to the list in wait.
2389  *
2390  * Return:
2391  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2392  * ring (wait == NULL)
2393  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2394  */
2395 int sdma_send_txreq(struct sdma_engine *sde,
2396 		    struct iowait_work *wait,
2397 		    struct sdma_txreq *tx,
2398 		    bool pkts_sent)
2399 {
2400 	int ret = 0;
2401 	u16 tail;
2402 	unsigned long flags;
2403 
2404 	/* user should have supplied entire packet */
2405 	if (unlikely(tx->tlen))
2406 		return -EINVAL;
2407 	tx->wait = iowait_ioww_to_iow(wait);
2408 	spin_lock_irqsave(&sde->tail_lock, flags);
2409 retry:
2410 	if (unlikely(!__sdma_running(sde)))
2411 		goto unlock_noconn;
2412 	if (unlikely(tx->num_desc > sde->desc_avail))
2413 		goto nodesc;
2414 	tail = submit_tx(sde, tx);
2415 	if (wait)
2416 		iowait_sdma_inc(iowait_ioww_to_iow(wait));
2417 	sdma_update_tail(sde, tail);
2418 unlock:
2419 	spin_unlock_irqrestore(&sde->tail_lock, flags);
2420 	return ret;
2421 unlock_noconn:
2422 	if (wait)
2423 		iowait_sdma_inc(iowait_ioww_to_iow(wait));
2424 	tx->next_descq_idx = 0;
2425 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2426 	tx->sn = sde->tail_sn++;
2427 	trace_hfi1_sdma_in_sn(sde, tx->sn);
2428 #endif
2429 	spin_lock(&sde->flushlist_lock);
2430 	list_add_tail(&tx->list, &sde->flushlist);
2431 	spin_unlock(&sde->flushlist_lock);
2432 	iowait_inc_wait_count(wait, tx->num_desc);
2433 	queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2434 	ret = -ECOMM;
2435 	goto unlock;
2436 nodesc:
2437 	ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2438 	if (ret == -EAGAIN) {
2439 		ret = 0;
2440 		goto retry;
2441 	}
2442 	sde->descq_full_count++;
2443 	goto unlock;
2444 }
2445 
2446 /**
2447  * sdma_send_txlist() - submit a list of tx req to ring
2448  * @sde: sdma engine to use
2449  * @wait: SE wait structure to use when full (may be NULL)
2450  * @tx_list: list of sdma_txreqs to submit
2451  * @count: pointer to a u16 which, after return will contain the total number of
2452  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2453  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2454  *         which are added to SDMA engine flush list if the SDMA engine state is
2455  *         not running.
2456  *
2457  * The call submits the list into the ring.
2458  *
2459  * If the iowait structure is non-NULL and not equal to the iowait list
2460  * the unprocessed part of the list  will be appended to the list in wait.
2461  *
2462  * In all cases, the tx_list will be updated so the head of the tx_list is
2463  * the list of descriptors that have yet to be transmitted.
2464  *
2465  * The intent of this call is to provide a more efficient
2466  * way of submitting multiple packets to SDMA while holding the tail
2467  * side locking.
2468  *
2469  * Return:
2470  * 0 - Success,
2471  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2472  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2473  */
2474 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2475 		     struct list_head *tx_list, u16 *count_out)
2476 {
2477 	struct sdma_txreq *tx, *tx_next;
2478 	int ret = 0;
2479 	unsigned long flags;
2480 	u16 tail = INVALID_TAIL;
2481 	u32 submit_count = 0, flush_count = 0, total_count;
2482 
2483 	spin_lock_irqsave(&sde->tail_lock, flags);
2484 retry:
2485 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2486 		tx->wait = iowait_ioww_to_iow(wait);
2487 		if (unlikely(!__sdma_running(sde)))
2488 			goto unlock_noconn;
2489 		if (unlikely(tx->num_desc > sde->desc_avail))
2490 			goto nodesc;
2491 		if (unlikely(tx->tlen)) {
2492 			ret = -EINVAL;
2493 			goto update_tail;
2494 		}
2495 		list_del_init(&tx->list);
2496 		tail = submit_tx(sde, tx);
2497 		submit_count++;
2498 		if (tail != INVALID_TAIL &&
2499 		    (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2500 			sdma_update_tail(sde, tail);
2501 			tail = INVALID_TAIL;
2502 		}
2503 	}
2504 update_tail:
2505 	total_count = submit_count + flush_count;
2506 	if (wait) {
2507 		iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2508 		iowait_starve_clear(submit_count > 0,
2509 				    iowait_ioww_to_iow(wait));
2510 	}
2511 	if (tail != INVALID_TAIL)
2512 		sdma_update_tail(sde, tail);
2513 	spin_unlock_irqrestore(&sde->tail_lock, flags);
2514 	*count_out = total_count;
2515 	return ret;
2516 unlock_noconn:
2517 	spin_lock(&sde->flushlist_lock);
2518 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2519 		tx->wait = iowait_ioww_to_iow(wait);
2520 		list_del_init(&tx->list);
2521 		tx->next_descq_idx = 0;
2522 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2523 		tx->sn = sde->tail_sn++;
2524 		trace_hfi1_sdma_in_sn(sde, tx->sn);
2525 #endif
2526 		list_add_tail(&tx->list, &sde->flushlist);
2527 		flush_count++;
2528 		iowait_inc_wait_count(wait, tx->num_desc);
2529 	}
2530 	spin_unlock(&sde->flushlist_lock);
2531 	queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2532 	ret = -ECOMM;
2533 	goto update_tail;
2534 nodesc:
2535 	ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2536 	if (ret == -EAGAIN) {
2537 		ret = 0;
2538 		goto retry;
2539 	}
2540 	sde->descq_full_count++;
2541 	goto update_tail;
2542 }
2543 
2544 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2545 {
2546 	unsigned long flags;
2547 
2548 	spin_lock_irqsave(&sde->tail_lock, flags);
2549 	write_seqlock(&sde->head_lock);
2550 
2551 	__sdma_process_event(sde, event);
2552 
2553 	if (sde->state.current_state == sdma_state_s99_running)
2554 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2555 
2556 	write_sequnlock(&sde->head_lock);
2557 	spin_unlock_irqrestore(&sde->tail_lock, flags);
2558 }
2559 
2560 static void __sdma_process_event(struct sdma_engine *sde,
2561 				 enum sdma_events event)
2562 {
2563 	struct sdma_state *ss = &sde->state;
2564 	int need_progress = 0;
2565 
2566 	/* CONFIG SDMA temporary */
2567 #ifdef CONFIG_SDMA_VERBOSITY
2568 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2569 		   sdma_state_names[ss->current_state],
2570 		   sdma_event_names[event]);
2571 #endif
2572 
2573 	switch (ss->current_state) {
2574 	case sdma_state_s00_hw_down:
2575 		switch (event) {
2576 		case sdma_event_e00_go_hw_down:
2577 			break;
2578 		case sdma_event_e30_go_running:
2579 			/*
2580 			 * If down, but running requested (usually result
2581 			 * of link up, then we need to start up.
2582 			 * This can happen when hw down is requested while
2583 			 * bringing the link up with traffic active on
2584 			 * 7220, e.g.
2585 			 */
2586 			ss->go_s99_running = 1;
2587 			fallthrough;	/* and start dma engine */
2588 		case sdma_event_e10_go_hw_start:
2589 			/* This reference means the state machine is started */
2590 			sdma_get(&sde->state);
2591 			sdma_set_state(sde,
2592 				       sdma_state_s10_hw_start_up_halt_wait);
2593 			break;
2594 		case sdma_event_e15_hw_halt_done:
2595 			break;
2596 		case sdma_event_e25_hw_clean_up_done:
2597 			break;
2598 		case sdma_event_e40_sw_cleaned:
2599 			sdma_sw_tear_down(sde);
2600 			break;
2601 		case sdma_event_e50_hw_cleaned:
2602 			break;
2603 		case sdma_event_e60_hw_halted:
2604 			break;
2605 		case sdma_event_e70_go_idle:
2606 			break;
2607 		case sdma_event_e80_hw_freeze:
2608 			break;
2609 		case sdma_event_e81_hw_frozen:
2610 			break;
2611 		case sdma_event_e82_hw_unfreeze:
2612 			break;
2613 		case sdma_event_e85_link_down:
2614 			break;
2615 		case sdma_event_e90_sw_halted:
2616 			break;
2617 		}
2618 		break;
2619 
2620 	case sdma_state_s10_hw_start_up_halt_wait:
2621 		switch (event) {
2622 		case sdma_event_e00_go_hw_down:
2623 			sdma_set_state(sde, sdma_state_s00_hw_down);
2624 			sdma_sw_tear_down(sde);
2625 			break;
2626 		case sdma_event_e10_go_hw_start:
2627 			break;
2628 		case sdma_event_e15_hw_halt_done:
2629 			sdma_set_state(sde,
2630 				       sdma_state_s15_hw_start_up_clean_wait);
2631 			sdma_start_hw_clean_up(sde);
2632 			break;
2633 		case sdma_event_e25_hw_clean_up_done:
2634 			break;
2635 		case sdma_event_e30_go_running:
2636 			ss->go_s99_running = 1;
2637 			break;
2638 		case sdma_event_e40_sw_cleaned:
2639 			break;
2640 		case sdma_event_e50_hw_cleaned:
2641 			break;
2642 		case sdma_event_e60_hw_halted:
2643 			schedule_work(&sde->err_halt_worker);
2644 			break;
2645 		case sdma_event_e70_go_idle:
2646 			ss->go_s99_running = 0;
2647 			break;
2648 		case sdma_event_e80_hw_freeze:
2649 			break;
2650 		case sdma_event_e81_hw_frozen:
2651 			break;
2652 		case sdma_event_e82_hw_unfreeze:
2653 			break;
2654 		case sdma_event_e85_link_down:
2655 			break;
2656 		case sdma_event_e90_sw_halted:
2657 			break;
2658 		}
2659 		break;
2660 
2661 	case sdma_state_s15_hw_start_up_clean_wait:
2662 		switch (event) {
2663 		case sdma_event_e00_go_hw_down:
2664 			sdma_set_state(sde, sdma_state_s00_hw_down);
2665 			sdma_sw_tear_down(sde);
2666 			break;
2667 		case sdma_event_e10_go_hw_start:
2668 			break;
2669 		case sdma_event_e15_hw_halt_done:
2670 			break;
2671 		case sdma_event_e25_hw_clean_up_done:
2672 			sdma_hw_start_up(sde);
2673 			sdma_set_state(sde, ss->go_s99_running ?
2674 				       sdma_state_s99_running :
2675 				       sdma_state_s20_idle);
2676 			break;
2677 		case sdma_event_e30_go_running:
2678 			ss->go_s99_running = 1;
2679 			break;
2680 		case sdma_event_e40_sw_cleaned:
2681 			break;
2682 		case sdma_event_e50_hw_cleaned:
2683 			break;
2684 		case sdma_event_e60_hw_halted:
2685 			break;
2686 		case sdma_event_e70_go_idle:
2687 			ss->go_s99_running = 0;
2688 			break;
2689 		case sdma_event_e80_hw_freeze:
2690 			break;
2691 		case sdma_event_e81_hw_frozen:
2692 			break;
2693 		case sdma_event_e82_hw_unfreeze:
2694 			break;
2695 		case sdma_event_e85_link_down:
2696 			break;
2697 		case sdma_event_e90_sw_halted:
2698 			break;
2699 		}
2700 		break;
2701 
2702 	case sdma_state_s20_idle:
2703 		switch (event) {
2704 		case sdma_event_e00_go_hw_down:
2705 			sdma_set_state(sde, sdma_state_s00_hw_down);
2706 			sdma_sw_tear_down(sde);
2707 			break;
2708 		case sdma_event_e10_go_hw_start:
2709 			break;
2710 		case sdma_event_e15_hw_halt_done:
2711 			break;
2712 		case sdma_event_e25_hw_clean_up_done:
2713 			break;
2714 		case sdma_event_e30_go_running:
2715 			sdma_set_state(sde, sdma_state_s99_running);
2716 			ss->go_s99_running = 1;
2717 			break;
2718 		case sdma_event_e40_sw_cleaned:
2719 			break;
2720 		case sdma_event_e50_hw_cleaned:
2721 			break;
2722 		case sdma_event_e60_hw_halted:
2723 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2724 			schedule_work(&sde->err_halt_worker);
2725 			break;
2726 		case sdma_event_e70_go_idle:
2727 			break;
2728 		case sdma_event_e85_link_down:
2729 		case sdma_event_e80_hw_freeze:
2730 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
2731 			atomic_dec(&sde->dd->sdma_unfreeze_count);
2732 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2733 			break;
2734 		case sdma_event_e81_hw_frozen:
2735 			break;
2736 		case sdma_event_e82_hw_unfreeze:
2737 			break;
2738 		case sdma_event_e90_sw_halted:
2739 			break;
2740 		}
2741 		break;
2742 
2743 	case sdma_state_s30_sw_clean_up_wait:
2744 		switch (event) {
2745 		case sdma_event_e00_go_hw_down:
2746 			sdma_set_state(sde, sdma_state_s00_hw_down);
2747 			break;
2748 		case sdma_event_e10_go_hw_start:
2749 			break;
2750 		case sdma_event_e15_hw_halt_done:
2751 			break;
2752 		case sdma_event_e25_hw_clean_up_done:
2753 			break;
2754 		case sdma_event_e30_go_running:
2755 			ss->go_s99_running = 1;
2756 			break;
2757 		case sdma_event_e40_sw_cleaned:
2758 			sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2759 			sdma_start_hw_clean_up(sde);
2760 			break;
2761 		case sdma_event_e50_hw_cleaned:
2762 			break;
2763 		case sdma_event_e60_hw_halted:
2764 			break;
2765 		case sdma_event_e70_go_idle:
2766 			ss->go_s99_running = 0;
2767 			break;
2768 		case sdma_event_e80_hw_freeze:
2769 			break;
2770 		case sdma_event_e81_hw_frozen:
2771 			break;
2772 		case sdma_event_e82_hw_unfreeze:
2773 			break;
2774 		case sdma_event_e85_link_down:
2775 			ss->go_s99_running = 0;
2776 			break;
2777 		case sdma_event_e90_sw_halted:
2778 			break;
2779 		}
2780 		break;
2781 
2782 	case sdma_state_s40_hw_clean_up_wait:
2783 		switch (event) {
2784 		case sdma_event_e00_go_hw_down:
2785 			sdma_set_state(sde, sdma_state_s00_hw_down);
2786 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2787 			break;
2788 		case sdma_event_e10_go_hw_start:
2789 			break;
2790 		case sdma_event_e15_hw_halt_done:
2791 			break;
2792 		case sdma_event_e25_hw_clean_up_done:
2793 			sdma_hw_start_up(sde);
2794 			sdma_set_state(sde, ss->go_s99_running ?
2795 				       sdma_state_s99_running :
2796 				       sdma_state_s20_idle);
2797 			break;
2798 		case sdma_event_e30_go_running:
2799 			ss->go_s99_running = 1;
2800 			break;
2801 		case sdma_event_e40_sw_cleaned:
2802 			break;
2803 		case sdma_event_e50_hw_cleaned:
2804 			break;
2805 		case sdma_event_e60_hw_halted:
2806 			break;
2807 		case sdma_event_e70_go_idle:
2808 			ss->go_s99_running = 0;
2809 			break;
2810 		case sdma_event_e80_hw_freeze:
2811 			break;
2812 		case sdma_event_e81_hw_frozen:
2813 			break;
2814 		case sdma_event_e82_hw_unfreeze:
2815 			break;
2816 		case sdma_event_e85_link_down:
2817 			ss->go_s99_running = 0;
2818 			break;
2819 		case sdma_event_e90_sw_halted:
2820 			break;
2821 		}
2822 		break;
2823 
2824 	case sdma_state_s50_hw_halt_wait:
2825 		switch (event) {
2826 		case sdma_event_e00_go_hw_down:
2827 			sdma_set_state(sde, sdma_state_s00_hw_down);
2828 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2829 			break;
2830 		case sdma_event_e10_go_hw_start:
2831 			break;
2832 		case sdma_event_e15_hw_halt_done:
2833 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2834 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2835 			break;
2836 		case sdma_event_e25_hw_clean_up_done:
2837 			break;
2838 		case sdma_event_e30_go_running:
2839 			ss->go_s99_running = 1;
2840 			break;
2841 		case sdma_event_e40_sw_cleaned:
2842 			break;
2843 		case sdma_event_e50_hw_cleaned:
2844 			break;
2845 		case sdma_event_e60_hw_halted:
2846 			schedule_work(&sde->err_halt_worker);
2847 			break;
2848 		case sdma_event_e70_go_idle:
2849 			ss->go_s99_running = 0;
2850 			break;
2851 		case sdma_event_e80_hw_freeze:
2852 			break;
2853 		case sdma_event_e81_hw_frozen:
2854 			break;
2855 		case sdma_event_e82_hw_unfreeze:
2856 			break;
2857 		case sdma_event_e85_link_down:
2858 			ss->go_s99_running = 0;
2859 			break;
2860 		case sdma_event_e90_sw_halted:
2861 			break;
2862 		}
2863 		break;
2864 
2865 	case sdma_state_s60_idle_halt_wait:
2866 		switch (event) {
2867 		case sdma_event_e00_go_hw_down:
2868 			sdma_set_state(sde, sdma_state_s00_hw_down);
2869 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2870 			break;
2871 		case sdma_event_e10_go_hw_start:
2872 			break;
2873 		case sdma_event_e15_hw_halt_done:
2874 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2875 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2876 			break;
2877 		case sdma_event_e25_hw_clean_up_done:
2878 			break;
2879 		case sdma_event_e30_go_running:
2880 			ss->go_s99_running = 1;
2881 			break;
2882 		case sdma_event_e40_sw_cleaned:
2883 			break;
2884 		case sdma_event_e50_hw_cleaned:
2885 			break;
2886 		case sdma_event_e60_hw_halted:
2887 			schedule_work(&sde->err_halt_worker);
2888 			break;
2889 		case sdma_event_e70_go_idle:
2890 			ss->go_s99_running = 0;
2891 			break;
2892 		case sdma_event_e80_hw_freeze:
2893 			break;
2894 		case sdma_event_e81_hw_frozen:
2895 			break;
2896 		case sdma_event_e82_hw_unfreeze:
2897 			break;
2898 		case sdma_event_e85_link_down:
2899 			break;
2900 		case sdma_event_e90_sw_halted:
2901 			break;
2902 		}
2903 		break;
2904 
2905 	case sdma_state_s80_hw_freeze:
2906 		switch (event) {
2907 		case sdma_event_e00_go_hw_down:
2908 			sdma_set_state(sde, sdma_state_s00_hw_down);
2909 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2910 			break;
2911 		case sdma_event_e10_go_hw_start:
2912 			break;
2913 		case sdma_event_e15_hw_halt_done:
2914 			break;
2915 		case sdma_event_e25_hw_clean_up_done:
2916 			break;
2917 		case sdma_event_e30_go_running:
2918 			ss->go_s99_running = 1;
2919 			break;
2920 		case sdma_event_e40_sw_cleaned:
2921 			break;
2922 		case sdma_event_e50_hw_cleaned:
2923 			break;
2924 		case sdma_event_e60_hw_halted:
2925 			break;
2926 		case sdma_event_e70_go_idle:
2927 			ss->go_s99_running = 0;
2928 			break;
2929 		case sdma_event_e80_hw_freeze:
2930 			break;
2931 		case sdma_event_e81_hw_frozen:
2932 			sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2933 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2934 			break;
2935 		case sdma_event_e82_hw_unfreeze:
2936 			break;
2937 		case sdma_event_e85_link_down:
2938 			break;
2939 		case sdma_event_e90_sw_halted:
2940 			break;
2941 		}
2942 		break;
2943 
2944 	case sdma_state_s82_freeze_sw_clean:
2945 		switch (event) {
2946 		case sdma_event_e00_go_hw_down:
2947 			sdma_set_state(sde, sdma_state_s00_hw_down);
2948 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2949 			break;
2950 		case sdma_event_e10_go_hw_start:
2951 			break;
2952 		case sdma_event_e15_hw_halt_done:
2953 			break;
2954 		case sdma_event_e25_hw_clean_up_done:
2955 			break;
2956 		case sdma_event_e30_go_running:
2957 			ss->go_s99_running = 1;
2958 			break;
2959 		case sdma_event_e40_sw_cleaned:
2960 			/* notify caller this engine is done cleaning */
2961 			atomic_dec(&sde->dd->sdma_unfreeze_count);
2962 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2963 			break;
2964 		case sdma_event_e50_hw_cleaned:
2965 			break;
2966 		case sdma_event_e60_hw_halted:
2967 			break;
2968 		case sdma_event_e70_go_idle:
2969 			ss->go_s99_running = 0;
2970 			break;
2971 		case sdma_event_e80_hw_freeze:
2972 			break;
2973 		case sdma_event_e81_hw_frozen:
2974 			break;
2975 		case sdma_event_e82_hw_unfreeze:
2976 			sdma_hw_start_up(sde);
2977 			sdma_set_state(sde, ss->go_s99_running ?
2978 				       sdma_state_s99_running :
2979 				       sdma_state_s20_idle);
2980 			break;
2981 		case sdma_event_e85_link_down:
2982 			break;
2983 		case sdma_event_e90_sw_halted:
2984 			break;
2985 		}
2986 		break;
2987 
2988 	case sdma_state_s99_running:
2989 		switch (event) {
2990 		case sdma_event_e00_go_hw_down:
2991 			sdma_set_state(sde, sdma_state_s00_hw_down);
2992 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2993 			break;
2994 		case sdma_event_e10_go_hw_start:
2995 			break;
2996 		case sdma_event_e15_hw_halt_done:
2997 			break;
2998 		case sdma_event_e25_hw_clean_up_done:
2999 			break;
3000 		case sdma_event_e30_go_running:
3001 			break;
3002 		case sdma_event_e40_sw_cleaned:
3003 			break;
3004 		case sdma_event_e50_hw_cleaned:
3005 			break;
3006 		case sdma_event_e60_hw_halted:
3007 			need_progress = 1;
3008 			sdma_err_progress_check_schedule(sde);
3009 			fallthrough;
3010 		case sdma_event_e90_sw_halted:
3011 			/*
3012 			* SW initiated halt does not perform engines
3013 			* progress check
3014 			*/
3015 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3016 			schedule_work(&sde->err_halt_worker);
3017 			break;
3018 		case sdma_event_e70_go_idle:
3019 			sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3020 			break;
3021 		case sdma_event_e85_link_down:
3022 			ss->go_s99_running = 0;
3023 			fallthrough;
3024 		case sdma_event_e80_hw_freeze:
3025 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
3026 			atomic_dec(&sde->dd->sdma_unfreeze_count);
3027 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3028 			break;
3029 		case sdma_event_e81_hw_frozen:
3030 			break;
3031 		case sdma_event_e82_hw_unfreeze:
3032 			break;
3033 		}
3034 		break;
3035 	}
3036 
3037 	ss->last_event = event;
3038 	if (need_progress)
3039 		sdma_make_progress(sde, 0);
3040 }
3041 
3042 /*
3043  * _extend_sdma_tx_descs() - helper to extend txreq
3044  *
3045  * This is called once the initial nominal allocation
3046  * of descriptors in the sdma_txreq is exhausted.
3047  *
3048  * The code will bump the allocation up to the max
3049  * of MAX_DESC (64) descriptors. There doesn't seem
3050  * much point in an interim step. The last descriptor
3051  * is reserved for coalesce buffer in order to support
3052  * cases where input packet has >MAX_DESC iovecs.
3053  *
3054  */
3055 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3056 {
3057 	int i;
3058 
3059 	/* Handle last descriptor */
3060 	if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3061 		/* if tlen is 0, it is for padding, release last descriptor */
3062 		if (!tx->tlen) {
3063 			tx->desc_limit = MAX_DESC;
3064 		} else if (!tx->coalesce_buf) {
3065 			/* allocate coalesce buffer with space for padding */
3066 			tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3067 						   GFP_ATOMIC);
3068 			if (!tx->coalesce_buf)
3069 				goto enomem;
3070 			tx->coalesce_idx = 0;
3071 		}
3072 		return 0;
3073 	}
3074 
3075 	if (unlikely(tx->num_desc == MAX_DESC))
3076 		goto enomem;
3077 
3078 	tx->descp = kmalloc_array(
3079 			MAX_DESC,
3080 			sizeof(struct sdma_desc),
3081 			GFP_ATOMIC);
3082 	if (!tx->descp)
3083 		goto enomem;
3084 
3085 	/* reserve last descriptor for coalescing */
3086 	tx->desc_limit = MAX_DESC - 1;
3087 	/* copy ones already built */
3088 	for (i = 0; i < tx->num_desc; i++)
3089 		tx->descp[i] = tx->descs[i];
3090 	return 0;
3091 enomem:
3092 	__sdma_txclean(dd, tx);
3093 	return -ENOMEM;
3094 }
3095 
3096 /*
3097  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3098  *
3099  * This is called once the initial nominal allocation of descriptors
3100  * in the sdma_txreq is exhausted.
3101  *
3102  * This function calls _extend_sdma_tx_descs to extend or allocate
3103  * coalesce buffer. If there is a allocated coalesce buffer, it will
3104  * copy the input packet data into the coalesce buffer. It also adds
3105  * coalesce buffer descriptor once when whole packet is received.
3106  *
3107  * Return:
3108  * <0 - error
3109  * 0 - coalescing, don't populate descriptor
3110  * 1 - continue with populating descriptor
3111  */
3112 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3113 			   int type, void *kvaddr, struct page *page,
3114 			   unsigned long offset, u16 len)
3115 {
3116 	int pad_len, rval;
3117 	dma_addr_t addr;
3118 
3119 	rval = _extend_sdma_tx_descs(dd, tx);
3120 	if (rval) {
3121 		__sdma_txclean(dd, tx);
3122 		return rval;
3123 	}
3124 
3125 	/* If coalesce buffer is allocated, copy data into it */
3126 	if (tx->coalesce_buf) {
3127 		if (type == SDMA_MAP_NONE) {
3128 			__sdma_txclean(dd, tx);
3129 			return -EINVAL;
3130 		}
3131 
3132 		if (type == SDMA_MAP_PAGE) {
3133 			kvaddr = kmap(page);
3134 			kvaddr += offset;
3135 		} else if (WARN_ON(!kvaddr)) {
3136 			__sdma_txclean(dd, tx);
3137 			return -EINVAL;
3138 		}
3139 
3140 		memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3141 		tx->coalesce_idx += len;
3142 		if (type == SDMA_MAP_PAGE)
3143 			kunmap(page);
3144 
3145 		/* If there is more data, return */
3146 		if (tx->tlen - tx->coalesce_idx)
3147 			return 0;
3148 
3149 		/* Whole packet is received; add any padding */
3150 		pad_len = tx->packet_len & (sizeof(u32) - 1);
3151 		if (pad_len) {
3152 			pad_len = sizeof(u32) - pad_len;
3153 			memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3154 			/* padding is taken care of for coalescing case */
3155 			tx->packet_len += pad_len;
3156 			tx->tlen += pad_len;
3157 		}
3158 
3159 		/* dma map the coalesce buffer */
3160 		addr = dma_map_single(&dd->pcidev->dev,
3161 				      tx->coalesce_buf,
3162 				      tx->tlen,
3163 				      DMA_TO_DEVICE);
3164 
3165 		if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3166 			__sdma_txclean(dd, tx);
3167 			return -ENOSPC;
3168 		}
3169 
3170 		/* Add descriptor for coalesce buffer */
3171 		tx->desc_limit = MAX_DESC;
3172 		return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3173 					 addr, tx->tlen);
3174 	}
3175 
3176 	return 1;
3177 }
3178 
3179 /* Update sdes when the lmc changes */
3180 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3181 {
3182 	struct sdma_engine *sde;
3183 	int i;
3184 	u64 sreg;
3185 
3186 	sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3187 		SD(CHECK_SLID_MASK_SHIFT)) |
3188 		(((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3189 		SD(CHECK_SLID_VALUE_SHIFT));
3190 
3191 	for (i = 0; i < dd->num_sdma; i++) {
3192 		hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3193 			  i, (u32)sreg);
3194 		sde = &dd->per_sdma[i];
3195 		write_sde_csr(sde, SD(CHECK_SLID), sreg);
3196 	}
3197 }
3198 
3199 /* tx not dword sized - pad */
3200 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3201 {
3202 	int rval = 0;
3203 
3204 	tx->num_desc++;
3205 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
3206 		rval = _extend_sdma_tx_descs(dd, tx);
3207 		if (rval) {
3208 			__sdma_txclean(dd, tx);
3209 			return rval;
3210 		}
3211 	}
3212 	/* finish the one just added */
3213 	make_tx_sdma_desc(
3214 		tx,
3215 		SDMA_MAP_NONE,
3216 		dd->sdma_pad_phys,
3217 		sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3218 	_sdma_close_tx(dd, tx);
3219 	return rval;
3220 }
3221 
3222 /*
3223  * Add ahg to the sdma_txreq
3224  *
3225  * The logic will consume up to 3
3226  * descriptors at the beginning of
3227  * sdma_txreq.
3228  */
3229 void _sdma_txreq_ahgadd(
3230 	struct sdma_txreq *tx,
3231 	u8 num_ahg,
3232 	u8 ahg_entry,
3233 	u32 *ahg,
3234 	u8 ahg_hlen)
3235 {
3236 	u32 i, shift = 0, desc = 0;
3237 	u8 mode;
3238 
3239 	WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3240 	/* compute mode */
3241 	if (num_ahg == 1)
3242 		mode = SDMA_AHG_APPLY_UPDATE1;
3243 	else if (num_ahg <= 5)
3244 		mode = SDMA_AHG_APPLY_UPDATE2;
3245 	else
3246 		mode = SDMA_AHG_APPLY_UPDATE3;
3247 	tx->num_desc++;
3248 	/* initialize to consumed descriptors to zero */
3249 	switch (mode) {
3250 	case SDMA_AHG_APPLY_UPDATE3:
3251 		tx->num_desc++;
3252 		tx->descs[2].qw[0] = 0;
3253 		tx->descs[2].qw[1] = 0;
3254 		fallthrough;
3255 	case SDMA_AHG_APPLY_UPDATE2:
3256 		tx->num_desc++;
3257 		tx->descs[1].qw[0] = 0;
3258 		tx->descs[1].qw[1] = 0;
3259 		break;
3260 	}
3261 	ahg_hlen >>= 2;
3262 	tx->descs[0].qw[1] |=
3263 		(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3264 			<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
3265 		(((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3266 			<< SDMA_DESC1_HEADER_DWS_SHIFT) |
3267 		(((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3268 			<< SDMA_DESC1_HEADER_MODE_SHIFT) |
3269 		(((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3270 			<< SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3271 	for (i = 0; i < (num_ahg - 1); i++) {
3272 		if (!shift && !(i & 2))
3273 			desc++;
3274 		tx->descs[desc].qw[!!(i & 2)] |=
3275 			(((u64)ahg[i + 1])
3276 				<< shift);
3277 		shift = (shift + 32) & 63;
3278 	}
3279 }
3280 
3281 /**
3282  * sdma_ahg_alloc - allocate an AHG entry
3283  * @sde: engine to allocate from
3284  *
3285  * Return:
3286  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3287  * -ENOSPC if an entry is not available
3288  */
3289 int sdma_ahg_alloc(struct sdma_engine *sde)
3290 {
3291 	int nr;
3292 	int oldbit;
3293 
3294 	if (!sde) {
3295 		trace_hfi1_ahg_allocate(sde, -EINVAL);
3296 		return -EINVAL;
3297 	}
3298 	while (1) {
3299 		nr = ffz(READ_ONCE(sde->ahg_bits));
3300 		if (nr > 31) {
3301 			trace_hfi1_ahg_allocate(sde, -ENOSPC);
3302 			return -ENOSPC;
3303 		}
3304 		oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3305 		if (!oldbit)
3306 			break;
3307 		cpu_relax();
3308 	}
3309 	trace_hfi1_ahg_allocate(sde, nr);
3310 	return nr;
3311 }
3312 
3313 /**
3314  * sdma_ahg_free - free an AHG entry
3315  * @sde: engine to return AHG entry
3316  * @ahg_index: index to free
3317  *
3318  * This routine frees the indicate AHG entry.
3319  */
3320 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3321 {
3322 	if (!sde)
3323 		return;
3324 	trace_hfi1_ahg_deallocate(sde, ahg_index);
3325 	if (ahg_index < 0 || ahg_index > 31)
3326 		return;
3327 	clear_bit(ahg_index, &sde->ahg_bits);
3328 }
3329 
3330 /*
3331  * SPC freeze handling for SDMA engines.  Called when the driver knows
3332  * the SPC is going into a freeze but before the freeze is fully
3333  * settled.  Generally an error interrupt.
3334  *
3335  * This event will pull the engine out of running so no more entries can be
3336  * added to the engine's queue.
3337  */
3338 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3339 {
3340 	int i;
3341 	enum sdma_events event = link_down ? sdma_event_e85_link_down :
3342 					     sdma_event_e80_hw_freeze;
3343 
3344 	/* set up the wait but do not wait here */
3345 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3346 
3347 	/* tell all engines to stop running and wait */
3348 	for (i = 0; i < dd->num_sdma; i++)
3349 		sdma_process_event(&dd->per_sdma[i], event);
3350 
3351 	/* sdma_freeze() will wait for all engines to have stopped */
3352 }
3353 
3354 /*
3355  * SPC freeze handling for SDMA engines.  Called when the driver knows
3356  * the SPC is fully frozen.
3357  */
3358 void sdma_freeze(struct hfi1_devdata *dd)
3359 {
3360 	int i;
3361 	int ret;
3362 
3363 	/*
3364 	 * Make sure all engines have moved out of the running state before
3365 	 * continuing.
3366 	 */
3367 	ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3368 				       atomic_read(&dd->sdma_unfreeze_count) <=
3369 				       0);
3370 	/* interrupted or count is negative, then unloading - just exit */
3371 	if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3372 		return;
3373 
3374 	/* set up the count for the next wait */
3375 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3376 
3377 	/* tell all engines that the SPC is frozen, they can start cleaning */
3378 	for (i = 0; i < dd->num_sdma; i++)
3379 		sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3380 
3381 	/*
3382 	 * Wait for everyone to finish software clean before exiting.  The
3383 	 * software clean will read engine CSRs, so must be completed before
3384 	 * the next step, which will clear the engine CSRs.
3385 	 */
3386 	(void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3387 				atomic_read(&dd->sdma_unfreeze_count) <= 0);
3388 	/* no need to check results - done no matter what */
3389 }
3390 
3391 /*
3392  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3393  *
3394  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3395  * that is left is a software clean.  We could do it after the SPC is fully
3396  * frozen, but then we'd have to add another state to wait for the unfreeze.
3397  * Instead, just defer the software clean until the unfreeze step.
3398  */
3399 void sdma_unfreeze(struct hfi1_devdata *dd)
3400 {
3401 	int i;
3402 
3403 	/* tell all engines start freeze clean up */
3404 	for (i = 0; i < dd->num_sdma; i++)
3405 		sdma_process_event(&dd->per_sdma[i],
3406 				   sdma_event_e82_hw_unfreeze);
3407 }
3408 
3409 /**
3410  * _sdma_engine_progress_schedule() - schedule progress on engine
3411  * @sde: sdma_engine to schedule progress
3412  *
3413  */
3414 void _sdma_engine_progress_schedule(
3415 	struct sdma_engine *sde)
3416 {
3417 	trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3418 	/* assume we have selected a good cpu */
3419 	write_csr(sde->dd,
3420 		  CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3421 		  sde->progress_mask);
3422 }
3423