1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/delay.h> 49 #include "hfi.h" 50 #include "qp.h" 51 #include "trace.h" 52 53 #define SC_CTXT_PACKET_EGRESS_TIMEOUT 350 /* in chip cycles */ 54 55 #define SC(name) SEND_CTXT_##name 56 /* 57 * Send Context functions 58 */ 59 static void sc_wait_for_packet_egress(struct send_context *sc, int pause); 60 61 /* 62 * Set the CM reset bit and wait for it to clear. Use the provided 63 * sendctrl register. This routine has no locking. 64 */ 65 void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl) 66 { 67 write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK); 68 while (1) { 69 udelay(1); 70 sendctrl = read_csr(dd, SEND_CTRL); 71 if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0) 72 break; 73 } 74 } 75 76 /* defined in header release 48 and higher */ 77 #ifndef SEND_CTRL_UNSUPPORTED_VL_SHIFT 78 #define SEND_CTRL_UNSUPPORTED_VL_SHIFT 3 79 #define SEND_CTRL_UNSUPPORTED_VL_MASK 0xffull 80 #define SEND_CTRL_UNSUPPORTED_VL_SMASK (SEND_CTRL_UNSUPPORTED_VL_MASK \ 81 << SEND_CTRL_UNSUPPORTED_VL_SHIFT) 82 #endif 83 84 /* global control of PIO send */ 85 void pio_send_control(struct hfi1_devdata *dd, int op) 86 { 87 u64 reg, mask; 88 unsigned long flags; 89 int write = 1; /* write sendctrl back */ 90 int flush = 0; /* re-read sendctrl to make sure it is flushed */ 91 92 spin_lock_irqsave(&dd->sendctrl_lock, flags); 93 94 reg = read_csr(dd, SEND_CTRL); 95 switch (op) { 96 case PSC_GLOBAL_ENABLE: 97 reg |= SEND_CTRL_SEND_ENABLE_SMASK; 98 /* Fall through */ 99 case PSC_DATA_VL_ENABLE: 100 /* Disallow sending on VLs not enabled */ 101 mask = (((~0ull) << num_vls) & SEND_CTRL_UNSUPPORTED_VL_MASK) << 102 SEND_CTRL_UNSUPPORTED_VL_SHIFT; 103 reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask; 104 break; 105 case PSC_GLOBAL_DISABLE: 106 reg &= ~SEND_CTRL_SEND_ENABLE_SMASK; 107 break; 108 case PSC_GLOBAL_VLARB_ENABLE: 109 reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK; 110 break; 111 case PSC_GLOBAL_VLARB_DISABLE: 112 reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK; 113 break; 114 case PSC_CM_RESET: 115 __cm_reset(dd, reg); 116 write = 0; /* CSR already written (and flushed) */ 117 break; 118 case PSC_DATA_VL_DISABLE: 119 reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK; 120 flush = 1; 121 break; 122 default: 123 dd_dev_err(dd, "%s: invalid control %d\n", __func__, op); 124 break; 125 } 126 127 if (write) { 128 write_csr(dd, SEND_CTRL, reg); 129 if (flush) 130 (void)read_csr(dd, SEND_CTRL); /* flush write */ 131 } 132 133 spin_unlock_irqrestore(&dd->sendctrl_lock, flags); 134 } 135 136 /* number of send context memory pools */ 137 #define NUM_SC_POOLS 2 138 139 /* Send Context Size (SCS) wildcards */ 140 #define SCS_POOL_0 -1 141 #define SCS_POOL_1 -2 142 143 /* Send Context Count (SCC) wildcards */ 144 #define SCC_PER_VL -1 145 #define SCC_PER_CPU -2 146 #define SCC_PER_KRCVQ -3 147 148 /* Send Context Size (SCS) constants */ 149 #define SCS_ACK_CREDITS 32 150 #define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */ 151 152 #define PIO_THRESHOLD_CEILING 4096 153 154 #define PIO_WAIT_BATCH_SIZE 5 155 156 /* default send context sizes */ 157 static struct sc_config_sizes sc_config_sizes[SC_MAX] = { 158 [SC_KERNEL] = { .size = SCS_POOL_0, /* even divide, pool 0 */ 159 .count = SCC_PER_VL }, /* one per NUMA */ 160 [SC_ACK] = { .size = SCS_ACK_CREDITS, 161 .count = SCC_PER_KRCVQ }, 162 [SC_USER] = { .size = SCS_POOL_0, /* even divide, pool 0 */ 163 .count = SCC_PER_CPU }, /* one per CPU */ 164 [SC_VL15] = { .size = SCS_VL15_CREDITS, 165 .count = 1 }, 166 167 }; 168 169 /* send context memory pool configuration */ 170 struct mem_pool_config { 171 int centipercent; /* % of memory, in 100ths of 1% */ 172 int absolute_blocks; /* absolute block count */ 173 }; 174 175 /* default memory pool configuration: 100% in pool 0 */ 176 static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = { 177 /* centi%, abs blocks */ 178 { 10000, -1 }, /* pool 0 */ 179 { 0, -1 }, /* pool 1 */ 180 }; 181 182 /* memory pool information, used when calculating final sizes */ 183 struct mem_pool_info { 184 int centipercent; /* 185 * 100th of 1% of memory to use, -1 if blocks 186 * already set 187 */ 188 int count; /* count of contexts in the pool */ 189 int blocks; /* block size of the pool */ 190 int size; /* context size, in blocks */ 191 }; 192 193 /* 194 * Convert a pool wildcard to a valid pool index. The wildcards 195 * start at -1 and increase negatively. Map them as: 196 * -1 => 0 197 * -2 => 1 198 * etc. 199 * 200 * Return -1 on non-wildcard input, otherwise convert to a pool number. 201 */ 202 static int wildcard_to_pool(int wc) 203 { 204 if (wc >= 0) 205 return -1; /* non-wildcard */ 206 return -wc - 1; 207 } 208 209 static const char *sc_type_names[SC_MAX] = { 210 "kernel", 211 "ack", 212 "user", 213 "vl15" 214 }; 215 216 static const char *sc_type_name(int index) 217 { 218 if (index < 0 || index >= SC_MAX) 219 return "unknown"; 220 return sc_type_names[index]; 221 } 222 223 /* 224 * Read the send context memory pool configuration and send context 225 * size configuration. Replace any wildcards and come up with final 226 * counts and sizes for the send context types. 227 */ 228 int init_sc_pools_and_sizes(struct hfi1_devdata *dd) 229 { 230 struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } }; 231 int total_blocks = (dd->chip_pio_mem_size / PIO_BLOCK_SIZE) - 1; 232 int total_contexts = 0; 233 int fixed_blocks; 234 int pool_blocks; 235 int used_blocks; 236 int cp_total; /* centipercent total */ 237 int ab_total; /* absolute block total */ 238 int extra; 239 int i; 240 241 /* 242 * When SDMA is enabled, kernel context pio packet size is capped by 243 * "piothreshold". Reduce pio buffer allocation for kernel context by 244 * setting it to a fixed size. The allocation allows 3-deep buffering 245 * of the largest pio packets plus up to 128 bytes header, sufficient 246 * to maintain verbs performance. 247 * 248 * When SDMA is disabled, keep the default pooling allocation. 249 */ 250 if (HFI1_CAP_IS_KSET(SDMA)) { 251 u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ? 252 piothreshold : PIO_THRESHOLD_CEILING; 253 sc_config_sizes[SC_KERNEL].size = 254 3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE; 255 } 256 257 /* 258 * Step 0: 259 * - copy the centipercents/absolute sizes from the pool config 260 * - sanity check these values 261 * - add up centipercents, then later check for full value 262 * - add up absolute blocks, then later check for over-commit 263 */ 264 cp_total = 0; 265 ab_total = 0; 266 for (i = 0; i < NUM_SC_POOLS; i++) { 267 int cp = sc_mem_pool_config[i].centipercent; 268 int ab = sc_mem_pool_config[i].absolute_blocks; 269 270 /* 271 * A negative value is "unused" or "invalid". Both *can* 272 * be valid, but centipercent wins, so check that first 273 */ 274 if (cp >= 0) { /* centipercent valid */ 275 cp_total += cp; 276 } else if (ab >= 0) { /* absolute blocks valid */ 277 ab_total += ab; 278 } else { /* neither valid */ 279 dd_dev_err( 280 dd, 281 "Send context memory pool %d: both the block count and centipercent are invalid\n", 282 i); 283 return -EINVAL; 284 } 285 286 mem_pool_info[i].centipercent = cp; 287 mem_pool_info[i].blocks = ab; 288 } 289 290 /* do not use both % and absolute blocks for different pools */ 291 if (cp_total != 0 && ab_total != 0) { 292 dd_dev_err( 293 dd, 294 "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n"); 295 return -EINVAL; 296 } 297 298 /* if any percentages are present, they must add up to 100% x 100 */ 299 if (cp_total != 0 && cp_total != 10000) { 300 dd_dev_err( 301 dd, 302 "Send context memory pool centipercent is %d, expecting 10000\n", 303 cp_total); 304 return -EINVAL; 305 } 306 307 /* the absolute pool total cannot be more than the mem total */ 308 if (ab_total > total_blocks) { 309 dd_dev_err( 310 dd, 311 "Send context memory pool absolute block count %d is larger than the memory size %d\n", 312 ab_total, total_blocks); 313 return -EINVAL; 314 } 315 316 /* 317 * Step 2: 318 * - copy from the context size config 319 * - replace context type wildcard counts with real values 320 * - add up non-memory pool block sizes 321 * - add up memory pool user counts 322 */ 323 fixed_blocks = 0; 324 for (i = 0; i < SC_MAX; i++) { 325 int count = sc_config_sizes[i].count; 326 int size = sc_config_sizes[i].size; 327 int pool; 328 329 /* 330 * Sanity check count: Either a positive value or 331 * one of the expected wildcards is valid. The positive 332 * value is checked later when we compare against total 333 * memory available. 334 */ 335 if (i == SC_ACK) { 336 count = dd->n_krcv_queues; 337 } else if (i == SC_KERNEL) { 338 count = INIT_SC_PER_VL * num_vls; 339 } else if (count == SCC_PER_CPU) { 340 count = dd->num_rcv_contexts - dd->n_krcv_queues; 341 } else if (count < 0) { 342 dd_dev_err( 343 dd, 344 "%s send context invalid count wildcard %d\n", 345 sc_type_name(i), count); 346 return -EINVAL; 347 } 348 if (total_contexts + count > dd->chip_send_contexts) 349 count = dd->chip_send_contexts - total_contexts; 350 351 total_contexts += count; 352 353 /* 354 * Sanity check pool: The conversion will return a pool 355 * number or -1 if a fixed (non-negative) value. The fixed 356 * value is checked later when we compare against 357 * total memory available. 358 */ 359 pool = wildcard_to_pool(size); 360 if (pool == -1) { /* non-wildcard */ 361 fixed_blocks += size * count; 362 } else if (pool < NUM_SC_POOLS) { /* valid wildcard */ 363 mem_pool_info[pool].count += count; 364 } else { /* invalid wildcard */ 365 dd_dev_err( 366 dd, 367 "%s send context invalid pool wildcard %d\n", 368 sc_type_name(i), size); 369 return -EINVAL; 370 } 371 372 dd->sc_sizes[i].count = count; 373 dd->sc_sizes[i].size = size; 374 } 375 if (fixed_blocks > total_blocks) { 376 dd_dev_err( 377 dd, 378 "Send context fixed block count, %u, larger than total block count %u\n", 379 fixed_blocks, total_blocks); 380 return -EINVAL; 381 } 382 383 /* step 3: calculate the blocks in the pools, and pool context sizes */ 384 pool_blocks = total_blocks - fixed_blocks; 385 if (ab_total > pool_blocks) { 386 dd_dev_err( 387 dd, 388 "Send context fixed pool sizes, %u, larger than pool block count %u\n", 389 ab_total, pool_blocks); 390 return -EINVAL; 391 } 392 /* subtract off the fixed pool blocks */ 393 pool_blocks -= ab_total; 394 395 for (i = 0; i < NUM_SC_POOLS; i++) { 396 struct mem_pool_info *pi = &mem_pool_info[i]; 397 398 /* % beats absolute blocks */ 399 if (pi->centipercent >= 0) 400 pi->blocks = (pool_blocks * pi->centipercent) / 10000; 401 402 if (pi->blocks == 0 && pi->count != 0) { 403 dd_dev_err( 404 dd, 405 "Send context memory pool %d has %u contexts, but no blocks\n", 406 i, pi->count); 407 return -EINVAL; 408 } 409 if (pi->count == 0) { 410 /* warn about wasted blocks */ 411 if (pi->blocks != 0) 412 dd_dev_err( 413 dd, 414 "Send context memory pool %d has %u blocks, but zero contexts\n", 415 i, pi->blocks); 416 pi->size = 0; 417 } else { 418 pi->size = pi->blocks / pi->count; 419 } 420 } 421 422 /* step 4: fill in the context type sizes from the pool sizes */ 423 used_blocks = 0; 424 for (i = 0; i < SC_MAX; i++) { 425 if (dd->sc_sizes[i].size < 0) { 426 unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size); 427 428 WARN_ON_ONCE(pool >= NUM_SC_POOLS); 429 dd->sc_sizes[i].size = mem_pool_info[pool].size; 430 } 431 /* make sure we are not larger than what is allowed by the HW */ 432 #define PIO_MAX_BLOCKS 1024 433 if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS) 434 dd->sc_sizes[i].size = PIO_MAX_BLOCKS; 435 436 /* calculate our total usage */ 437 used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count; 438 } 439 extra = total_blocks - used_blocks; 440 if (extra != 0) 441 dd_dev_info(dd, "unused send context blocks: %d\n", extra); 442 443 return total_contexts; 444 } 445 446 int init_send_contexts(struct hfi1_devdata *dd) 447 { 448 u16 base; 449 int ret, i, j, context; 450 451 ret = init_credit_return(dd); 452 if (ret) 453 return ret; 454 455 dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8), 456 GFP_KERNEL); 457 dd->send_contexts = kcalloc(dd->num_send_contexts, 458 sizeof(struct send_context_info), 459 GFP_KERNEL); 460 if (!dd->send_contexts || !dd->hw_to_sw) { 461 kfree(dd->hw_to_sw); 462 kfree(dd->send_contexts); 463 free_credit_return(dd); 464 return -ENOMEM; 465 } 466 467 /* hardware context map starts with invalid send context indices */ 468 for (i = 0; i < TXE_NUM_CONTEXTS; i++) 469 dd->hw_to_sw[i] = INVALID_SCI; 470 471 /* 472 * All send contexts have their credit sizes. Allocate credits 473 * for each context one after another from the global space. 474 */ 475 context = 0; 476 base = 1; 477 for (i = 0; i < SC_MAX; i++) { 478 struct sc_config_sizes *scs = &dd->sc_sizes[i]; 479 480 for (j = 0; j < scs->count; j++) { 481 struct send_context_info *sci = 482 &dd->send_contexts[context]; 483 sci->type = i; 484 sci->base = base; 485 sci->credits = scs->size; 486 487 context++; 488 base += scs->size; 489 } 490 } 491 492 return 0; 493 } 494 495 /* 496 * Allocate a software index and hardware context of the given type. 497 * 498 * Must be called with dd->sc_lock held. 499 */ 500 static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index, 501 u32 *hw_context) 502 { 503 struct send_context_info *sci; 504 u32 index; 505 u32 context; 506 507 for (index = 0, sci = &dd->send_contexts[0]; 508 index < dd->num_send_contexts; index++, sci++) { 509 if (sci->type == type && sci->allocated == 0) { 510 sci->allocated = 1; 511 /* use a 1:1 mapping, but make them non-equal */ 512 context = dd->chip_send_contexts - index - 1; 513 dd->hw_to_sw[context] = index; 514 *sw_index = index; 515 *hw_context = context; 516 return 0; /* success */ 517 } 518 } 519 dd_dev_err(dd, "Unable to locate a free type %d send context\n", type); 520 return -ENOSPC; 521 } 522 523 /* 524 * Free the send context given by its software index. 525 * 526 * Must be called with dd->sc_lock held. 527 */ 528 static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context) 529 { 530 struct send_context_info *sci; 531 532 sci = &dd->send_contexts[sw_index]; 533 if (!sci->allocated) { 534 dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n", 535 __func__, sw_index, hw_context); 536 } 537 sci->allocated = 0; 538 dd->hw_to_sw[hw_context] = INVALID_SCI; 539 } 540 541 /* return the base context of a context in a group */ 542 static inline u32 group_context(u32 context, u32 group) 543 { 544 return (context >> group) << group; 545 } 546 547 /* return the size of a group */ 548 static inline u32 group_size(u32 group) 549 { 550 return 1 << group; 551 } 552 553 /* 554 * Obtain the credit return addresses, kernel virtual and physical, for the 555 * given sc. 556 * 557 * To understand this routine: 558 * o va and pa are arrays of struct credit_return. One for each physical 559 * send context, per NUMA. 560 * o Each send context always looks in its relative location in a struct 561 * credit_return for its credit return. 562 * o Each send context in a group must have its return address CSR programmed 563 * with the same value. Use the address of the first send context in the 564 * group. 565 */ 566 static void cr_group_addresses(struct send_context *sc, dma_addr_t *pa) 567 { 568 u32 gc = group_context(sc->hw_context, sc->group); 569 u32 index = sc->hw_context & 0x7; 570 571 sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index]; 572 *pa = (unsigned long) 573 &((struct credit_return *)sc->dd->cr_base[sc->node].pa)[gc]; 574 } 575 576 /* 577 * Work queue function triggered in error interrupt routine for 578 * kernel contexts. 579 */ 580 static void sc_halted(struct work_struct *work) 581 { 582 struct send_context *sc; 583 584 sc = container_of(work, struct send_context, halt_work); 585 sc_restart(sc); 586 } 587 588 /* 589 * Calculate PIO block threshold for this send context using the given MTU. 590 * Trigger a return when one MTU plus optional header of credits remain. 591 * 592 * Parameter mtu is in bytes. 593 * Parameter hdrqentsize is in DWORDs. 594 * 595 * Return value is what to write into the CSR: trigger return when 596 * unreturned credits pass this count. 597 */ 598 u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize) 599 { 600 u32 release_credits; 601 u32 threshold; 602 603 /* add in the header size, then divide by the PIO block size */ 604 mtu += hdrqentsize << 2; 605 release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE); 606 607 /* check against this context's credits */ 608 if (sc->credits <= release_credits) 609 threshold = 1; 610 else 611 threshold = sc->credits - release_credits; 612 613 return threshold; 614 } 615 616 /* 617 * Calculate credit threshold in terms of percent of the allocated credits. 618 * Trigger when unreturned credits equal or exceed the percentage of the whole. 619 * 620 * Return value is what to write into the CSR: trigger return when 621 * unreturned credits pass this count. 622 */ 623 u32 sc_percent_to_threshold(struct send_context *sc, u32 percent) 624 { 625 return (sc->credits * percent) / 100; 626 } 627 628 /* 629 * Set the credit return threshold. 630 */ 631 void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold) 632 { 633 unsigned long flags; 634 u32 old_threshold; 635 int force_return = 0; 636 637 spin_lock_irqsave(&sc->credit_ctrl_lock, flags); 638 639 old_threshold = (sc->credit_ctrl >> 640 SC(CREDIT_CTRL_THRESHOLD_SHIFT)) 641 & SC(CREDIT_CTRL_THRESHOLD_MASK); 642 643 if (new_threshold != old_threshold) { 644 sc->credit_ctrl = 645 (sc->credit_ctrl 646 & ~SC(CREDIT_CTRL_THRESHOLD_SMASK)) 647 | ((new_threshold 648 & SC(CREDIT_CTRL_THRESHOLD_MASK)) 649 << SC(CREDIT_CTRL_THRESHOLD_SHIFT)); 650 write_kctxt_csr(sc->dd, sc->hw_context, 651 SC(CREDIT_CTRL), sc->credit_ctrl); 652 653 /* force a credit return on change to avoid a possible stall */ 654 force_return = 1; 655 } 656 657 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); 658 659 if (force_return) 660 sc_return_credits(sc); 661 } 662 663 /* 664 * set_pio_integrity 665 * 666 * Set the CHECK_ENABLE register for the send context 'sc'. 667 */ 668 void set_pio_integrity(struct send_context *sc) 669 { 670 struct hfi1_devdata *dd = sc->dd; 671 u64 reg = 0; 672 u32 hw_context = sc->hw_context; 673 int type = sc->type; 674 675 /* 676 * No integrity checks if HFI1_CAP_NO_INTEGRITY is set, or if 677 * we're snooping. 678 */ 679 if (likely(!HFI1_CAP_IS_KSET(NO_INTEGRITY)) && 680 dd->hfi1_snoop.mode_flag != HFI1_PORT_SNOOP_MODE) 681 reg = hfi1_pkt_default_send_ctxt_mask(dd, type); 682 683 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), reg); 684 } 685 686 static u32 get_buffers_allocated(struct send_context *sc) 687 { 688 int cpu; 689 u32 ret = 0; 690 691 for_each_possible_cpu(cpu) 692 ret += *per_cpu_ptr(sc->buffers_allocated, cpu); 693 return ret; 694 } 695 696 static void reset_buffers_allocated(struct send_context *sc) 697 { 698 int cpu; 699 700 for_each_possible_cpu(cpu) 701 (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0; 702 } 703 704 /* 705 * Allocate a NUMA relative send context structure of the given type along 706 * with a HW context. 707 */ 708 struct send_context *sc_alloc(struct hfi1_devdata *dd, int type, 709 uint hdrqentsize, int numa) 710 { 711 struct send_context_info *sci; 712 struct send_context *sc = NULL; 713 dma_addr_t pa; 714 unsigned long flags; 715 u64 reg; 716 u32 thresh; 717 u32 sw_index; 718 u32 hw_context; 719 int ret; 720 u8 opval, opmask; 721 722 /* do not allocate while frozen */ 723 if (dd->flags & HFI1_FROZEN) 724 return NULL; 725 726 sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa); 727 if (!sc) 728 return NULL; 729 730 sc->buffers_allocated = alloc_percpu(u32); 731 if (!sc->buffers_allocated) { 732 kfree(sc); 733 dd_dev_err(dd, 734 "Cannot allocate buffers_allocated per cpu counters\n" 735 ); 736 return NULL; 737 } 738 739 spin_lock_irqsave(&dd->sc_lock, flags); 740 ret = sc_hw_alloc(dd, type, &sw_index, &hw_context); 741 if (ret) { 742 spin_unlock_irqrestore(&dd->sc_lock, flags); 743 free_percpu(sc->buffers_allocated); 744 kfree(sc); 745 return NULL; 746 } 747 748 sci = &dd->send_contexts[sw_index]; 749 sci->sc = sc; 750 751 sc->dd = dd; 752 sc->node = numa; 753 sc->type = type; 754 spin_lock_init(&sc->alloc_lock); 755 spin_lock_init(&sc->release_lock); 756 spin_lock_init(&sc->credit_ctrl_lock); 757 INIT_LIST_HEAD(&sc->piowait); 758 INIT_WORK(&sc->halt_work, sc_halted); 759 init_waitqueue_head(&sc->halt_wait); 760 761 /* grouping is always single context for now */ 762 sc->group = 0; 763 764 sc->sw_index = sw_index; 765 sc->hw_context = hw_context; 766 cr_group_addresses(sc, &pa); 767 sc->credits = sci->credits; 768 769 /* PIO Send Memory Address details */ 770 #define PIO_ADDR_CONTEXT_MASK 0xfful 771 #define PIO_ADDR_CONTEXT_SHIFT 16 772 sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK) 773 << PIO_ADDR_CONTEXT_SHIFT); 774 775 /* set base and credits */ 776 reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK)) 777 << SC(CTRL_CTXT_DEPTH_SHIFT)) 778 | ((sci->base & SC(CTRL_CTXT_BASE_MASK)) 779 << SC(CTRL_CTXT_BASE_SHIFT)); 780 write_kctxt_csr(dd, hw_context, SC(CTRL), reg); 781 782 set_pio_integrity(sc); 783 784 /* unmask all errors */ 785 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1); 786 787 /* set the default partition key */ 788 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 789 (SC(CHECK_PARTITION_KEY_VALUE_MASK) & 790 DEFAULT_PKEY) << 791 SC(CHECK_PARTITION_KEY_VALUE_SHIFT)); 792 793 /* per context type checks */ 794 if (type == SC_USER) { 795 opval = USER_OPCODE_CHECK_VAL; 796 opmask = USER_OPCODE_CHECK_MASK; 797 } else { 798 opval = OPCODE_CHECK_VAL_DISABLED; 799 opmask = OPCODE_CHECK_MASK_DISABLED; 800 } 801 802 /* set the send context check opcode mask and value */ 803 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 804 ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) | 805 ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT))); 806 807 /* set up credit return */ 808 reg = pa & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK); 809 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg); 810 811 /* 812 * Calculate the initial credit return threshold. 813 * 814 * For Ack contexts, set a threshold for half the credits. 815 * For User contexts use the given percentage. This has been 816 * sanitized on driver start-up. 817 * For Kernel contexts, use the default MTU plus a header 818 * or half the credits, whichever is smaller. This should 819 * work for both the 3-deep buffering allocation and the 820 * pooling allocation. 821 */ 822 if (type == SC_ACK) { 823 thresh = sc_percent_to_threshold(sc, 50); 824 } else if (type == SC_USER) { 825 thresh = sc_percent_to_threshold(sc, 826 user_credit_return_threshold); 827 } else { /* kernel */ 828 thresh = min(sc_percent_to_threshold(sc, 50), 829 sc_mtu_to_threshold(sc, hfi1_max_mtu, 830 hdrqentsize)); 831 } 832 reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT); 833 /* add in early return */ 834 if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN)) 835 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK); 836 else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */ 837 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK); 838 839 /* set up write-through credit_ctrl */ 840 sc->credit_ctrl = reg; 841 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg); 842 843 /* User send contexts should not allow sending on VL15 */ 844 if (type == SC_USER) { 845 reg = 1ULL << 15; 846 write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg); 847 } 848 849 spin_unlock_irqrestore(&dd->sc_lock, flags); 850 851 /* 852 * Allocate shadow ring to track outstanding PIO buffers _after_ 853 * unlocking. We don't know the size until the lock is held and 854 * we can't allocate while the lock is held. No one is using 855 * the context yet, so allocate it now. 856 * 857 * User contexts do not get a shadow ring. 858 */ 859 if (type != SC_USER) { 860 /* 861 * Size the shadow ring 1 larger than the number of credits 862 * so head == tail can mean empty. 863 */ 864 sc->sr_size = sci->credits + 1; 865 sc->sr = kzalloc_node(sizeof(union pio_shadow_ring) * 866 sc->sr_size, GFP_KERNEL, numa); 867 if (!sc->sr) { 868 sc_free(sc); 869 return NULL; 870 } 871 } 872 873 hfi1_cdbg(PIO, 874 "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n", 875 sw_index, 876 hw_context, 877 sc_type_name(type), 878 sc->group, 879 sc->credits, 880 sc->credit_ctrl, 881 thresh); 882 883 return sc; 884 } 885 886 /* free a per-NUMA send context structure */ 887 void sc_free(struct send_context *sc) 888 { 889 struct hfi1_devdata *dd; 890 unsigned long flags; 891 u32 sw_index; 892 u32 hw_context; 893 894 if (!sc) 895 return; 896 897 sc->flags |= SCF_IN_FREE; /* ensure no restarts */ 898 dd = sc->dd; 899 if (!list_empty(&sc->piowait)) 900 dd_dev_err(dd, "piowait list not empty!\n"); 901 sw_index = sc->sw_index; 902 hw_context = sc->hw_context; 903 sc_disable(sc); /* make sure the HW is disabled */ 904 flush_work(&sc->halt_work); 905 906 spin_lock_irqsave(&dd->sc_lock, flags); 907 dd->send_contexts[sw_index].sc = NULL; 908 909 /* clear/disable all registers set in sc_alloc */ 910 write_kctxt_csr(dd, hw_context, SC(CTRL), 0); 911 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0); 912 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0); 913 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0); 914 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0); 915 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0); 916 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0); 917 918 /* release the index and context for re-use */ 919 sc_hw_free(dd, sw_index, hw_context); 920 spin_unlock_irqrestore(&dd->sc_lock, flags); 921 922 kfree(sc->sr); 923 free_percpu(sc->buffers_allocated); 924 kfree(sc); 925 } 926 927 /* disable the context */ 928 void sc_disable(struct send_context *sc) 929 { 930 u64 reg; 931 unsigned long flags; 932 struct pio_buf *pbuf; 933 934 if (!sc) 935 return; 936 937 /* do all steps, even if already disabled */ 938 spin_lock_irqsave(&sc->alloc_lock, flags); 939 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL)); 940 reg &= ~SC(CTRL_CTXT_ENABLE_SMASK); 941 sc->flags &= ~SCF_ENABLED; 942 sc_wait_for_packet_egress(sc, 1); 943 write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg); 944 spin_unlock_irqrestore(&sc->alloc_lock, flags); 945 946 /* 947 * Flush any waiters. Once the context is disabled, 948 * credit return interrupts are stopped (although there 949 * could be one in-process when the context is disabled). 950 * Wait one microsecond for any lingering interrupts, then 951 * proceed with the flush. 952 */ 953 udelay(1); 954 spin_lock_irqsave(&sc->release_lock, flags); 955 if (sc->sr) { /* this context has a shadow ring */ 956 while (sc->sr_tail != sc->sr_head) { 957 pbuf = &sc->sr[sc->sr_tail].pbuf; 958 if (pbuf->cb) 959 (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE); 960 sc->sr_tail++; 961 if (sc->sr_tail >= sc->sr_size) 962 sc->sr_tail = 0; 963 } 964 } 965 spin_unlock_irqrestore(&sc->release_lock, flags); 966 } 967 968 /* return SendEgressCtxtStatus.PacketOccupancy */ 969 #define packet_occupancy(r) \ 970 (((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)\ 971 >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT) 972 973 /* is egress halted on the context? */ 974 #define egress_halted(r) \ 975 ((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK) 976 977 /* wait for packet egress, optionally pause for credit return */ 978 static void sc_wait_for_packet_egress(struct send_context *sc, int pause) 979 { 980 struct hfi1_devdata *dd = sc->dd; 981 u64 reg = 0; 982 u64 reg_prev; 983 u32 loop = 0; 984 985 while (1) { 986 reg_prev = reg; 987 reg = read_csr(dd, sc->hw_context * 8 + 988 SEND_EGRESS_CTXT_STATUS); 989 /* done if egress is stopped */ 990 if (egress_halted(reg)) 991 break; 992 reg = packet_occupancy(reg); 993 if (reg == 0) 994 break; 995 /* counter is reset if occupancy count changes */ 996 if (reg != reg_prev) 997 loop = 0; 998 if (loop > 500) { 999 /* timed out - bounce the link */ 1000 dd_dev_err(dd, 1001 "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n", 1002 __func__, sc->sw_index, 1003 sc->hw_context, (u32)reg); 1004 queue_work(dd->pport->hfi1_wq, 1005 &dd->pport->link_bounce_work); 1006 break; 1007 } 1008 loop++; 1009 udelay(1); 1010 } 1011 1012 if (pause) 1013 /* Add additional delay to ensure chip returns all credits */ 1014 pause_for_credit_return(dd); 1015 } 1016 1017 void sc_wait(struct hfi1_devdata *dd) 1018 { 1019 int i; 1020 1021 for (i = 0; i < dd->num_send_contexts; i++) { 1022 struct send_context *sc = dd->send_contexts[i].sc; 1023 1024 if (!sc) 1025 continue; 1026 sc_wait_for_packet_egress(sc, 0); 1027 } 1028 } 1029 1030 /* 1031 * Restart a context after it has been halted due to error. 1032 * 1033 * If the first step fails - wait for the halt to be asserted, return early. 1034 * Otherwise complain about timeouts but keep going. 1035 * 1036 * It is expected that allocations (enabled flag bit) have been shut off 1037 * already (only applies to kernel contexts). 1038 */ 1039 int sc_restart(struct send_context *sc) 1040 { 1041 struct hfi1_devdata *dd = sc->dd; 1042 u64 reg; 1043 u32 loop; 1044 int count; 1045 1046 /* bounce off if not halted, or being free'd */ 1047 if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE)) 1048 return -EINVAL; 1049 1050 dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index, 1051 sc->hw_context); 1052 1053 /* 1054 * Step 1: Wait for the context to actually halt. 1055 * 1056 * The error interrupt is asynchronous to actually setting halt 1057 * on the context. 1058 */ 1059 loop = 0; 1060 while (1) { 1061 reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS)); 1062 if (reg & SC(STATUS_CTXT_HALTED_SMASK)) 1063 break; 1064 if (loop > 100) { 1065 dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n", 1066 __func__, sc->sw_index, sc->hw_context); 1067 return -ETIME; 1068 } 1069 loop++; 1070 udelay(1); 1071 } 1072 1073 /* 1074 * Step 2: Ensure no users are still trying to write to PIO. 1075 * 1076 * For kernel contexts, we have already turned off buffer allocation. 1077 * Now wait for the buffer count to go to zero. 1078 * 1079 * For user contexts, the user handling code has cut off write access 1080 * to the context's PIO pages before calling this routine and will 1081 * restore write access after this routine returns. 1082 */ 1083 if (sc->type != SC_USER) { 1084 /* kernel context */ 1085 loop = 0; 1086 while (1) { 1087 count = get_buffers_allocated(sc); 1088 if (count == 0) 1089 break; 1090 if (loop > 100) { 1091 dd_dev_err(dd, 1092 "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n", 1093 __func__, sc->sw_index, 1094 sc->hw_context, count); 1095 } 1096 loop++; 1097 udelay(1); 1098 } 1099 } 1100 1101 /* 1102 * Step 3: Wait for all packets to egress. 1103 * This is done while disabling the send context 1104 * 1105 * Step 4: Disable the context 1106 * 1107 * This is a superset of the halt. After the disable, the 1108 * errors can be cleared. 1109 */ 1110 sc_disable(sc); 1111 1112 /* 1113 * Step 5: Enable the context 1114 * 1115 * This enable will clear the halted flag and per-send context 1116 * error flags. 1117 */ 1118 return sc_enable(sc); 1119 } 1120 1121 /* 1122 * PIO freeze processing. To be called after the TXE block is fully frozen. 1123 * Go through all frozen send contexts and disable them. The contexts are 1124 * already stopped by the freeze. 1125 */ 1126 void pio_freeze(struct hfi1_devdata *dd) 1127 { 1128 struct send_context *sc; 1129 int i; 1130 1131 for (i = 0; i < dd->num_send_contexts; i++) { 1132 sc = dd->send_contexts[i].sc; 1133 /* 1134 * Don't disable unallocated, unfrozen, or user send contexts. 1135 * User send contexts will be disabled when the process 1136 * calls into the driver to reset its context. 1137 */ 1138 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER) 1139 continue; 1140 1141 /* only need to disable, the context is already stopped */ 1142 sc_disable(sc); 1143 } 1144 } 1145 1146 /* 1147 * Unfreeze PIO for kernel send contexts. The precondition for calling this 1148 * is that all PIO send contexts have been disabled and the SPC freeze has 1149 * been cleared. Now perform the last step and re-enable each kernel context. 1150 * User (PSM) processing will occur when PSM calls into the kernel to 1151 * acknowledge the freeze. 1152 */ 1153 void pio_kernel_unfreeze(struct hfi1_devdata *dd) 1154 { 1155 struct send_context *sc; 1156 int i; 1157 1158 for (i = 0; i < dd->num_send_contexts; i++) { 1159 sc = dd->send_contexts[i].sc; 1160 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER) 1161 continue; 1162 1163 sc_enable(sc); /* will clear the sc frozen flag */ 1164 } 1165 } 1166 1167 /* 1168 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear. 1169 * Returns: 1170 * -ETIMEDOUT - if we wait too long 1171 * -EIO - if there was an error 1172 */ 1173 static int pio_init_wait_progress(struct hfi1_devdata *dd) 1174 { 1175 u64 reg; 1176 int max, count = 0; 1177 1178 /* max is the longest possible HW init time / delay */ 1179 max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5; 1180 while (1) { 1181 reg = read_csr(dd, SEND_PIO_INIT_CTXT); 1182 if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK)) 1183 break; 1184 if (count >= max) 1185 return -ETIMEDOUT; 1186 udelay(5); 1187 count++; 1188 } 1189 1190 return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0; 1191 } 1192 1193 /* 1194 * Reset all of the send contexts to their power-on state. Used 1195 * only during manual init - no lock against sc_enable needed. 1196 */ 1197 void pio_reset_all(struct hfi1_devdata *dd) 1198 { 1199 int ret; 1200 1201 /* make sure the init engine is not busy */ 1202 ret = pio_init_wait_progress(dd); 1203 /* ignore any timeout */ 1204 if (ret == -EIO) { 1205 /* clear the error */ 1206 write_csr(dd, SEND_PIO_ERR_CLEAR, 1207 SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK); 1208 } 1209 1210 /* reset init all */ 1211 write_csr(dd, SEND_PIO_INIT_CTXT, 1212 SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK); 1213 udelay(2); 1214 ret = pio_init_wait_progress(dd); 1215 if (ret < 0) { 1216 dd_dev_err(dd, 1217 "PIO send context init %s while initializing all PIO blocks\n", 1218 ret == -ETIMEDOUT ? "is stuck" : "had an error"); 1219 } 1220 } 1221 1222 /* enable the context */ 1223 int sc_enable(struct send_context *sc) 1224 { 1225 u64 sc_ctrl, reg, pio; 1226 struct hfi1_devdata *dd; 1227 unsigned long flags; 1228 int ret = 0; 1229 1230 if (!sc) 1231 return -EINVAL; 1232 dd = sc->dd; 1233 1234 /* 1235 * Obtain the allocator lock to guard against any allocation 1236 * attempts (which should not happen prior to context being 1237 * enabled). On the release/disable side we don't need to 1238 * worry about locking since the releaser will not do anything 1239 * if the context accounting values have not changed. 1240 */ 1241 spin_lock_irqsave(&sc->alloc_lock, flags); 1242 sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL)); 1243 if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK))) 1244 goto unlock; /* already enabled */ 1245 1246 /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */ 1247 1248 *sc->hw_free = 0; 1249 sc->free = 0; 1250 sc->alloc_free = 0; 1251 sc->fill = 0; 1252 sc->sr_head = 0; 1253 sc->sr_tail = 0; 1254 sc->flags = 0; 1255 /* the alloc lock insures no fast path allocation */ 1256 reset_buffers_allocated(sc); 1257 1258 /* 1259 * Clear all per-context errors. Some of these will be set when 1260 * we are re-enabling after a context halt. Now that the context 1261 * is disabled, the halt will not clear until after the PIO init 1262 * engine runs below. 1263 */ 1264 reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS)); 1265 if (reg) 1266 write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg); 1267 1268 /* 1269 * The HW PIO initialization engine can handle only one init 1270 * request at a time. Serialize access to each device's engine. 1271 */ 1272 spin_lock(&dd->sc_init_lock); 1273 /* 1274 * Since access to this code block is serialized and 1275 * each access waits for the initialization to complete 1276 * before releasing the lock, the PIO initialization engine 1277 * should not be in use, so we don't have to wait for the 1278 * InProgress bit to go down. 1279 */ 1280 pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) << 1281 SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) | 1282 SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK; 1283 write_csr(dd, SEND_PIO_INIT_CTXT, pio); 1284 /* 1285 * Wait until the engine is done. Give the chip the required time 1286 * so, hopefully, we read the register just once. 1287 */ 1288 udelay(2); 1289 ret = pio_init_wait_progress(dd); 1290 spin_unlock(&dd->sc_init_lock); 1291 if (ret) { 1292 dd_dev_err(dd, 1293 "sctxt%u(%u): Context not enabled due to init failure %d\n", 1294 sc->sw_index, sc->hw_context, ret); 1295 goto unlock; 1296 } 1297 1298 /* 1299 * All is well. Enable the context. 1300 */ 1301 sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK); 1302 write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl); 1303 /* 1304 * Read SendCtxtCtrl to force the write out and prevent a timing 1305 * hazard where a PIO write may reach the context before the enable. 1306 */ 1307 read_kctxt_csr(dd, sc->hw_context, SC(CTRL)); 1308 sc->flags |= SCF_ENABLED; 1309 1310 unlock: 1311 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1312 1313 return ret; 1314 } 1315 1316 /* force a credit return on the context */ 1317 void sc_return_credits(struct send_context *sc) 1318 { 1319 if (!sc) 1320 return; 1321 1322 /* a 0->1 transition schedules a credit return */ 1323 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 1324 SC(CREDIT_FORCE_FORCE_RETURN_SMASK)); 1325 /* 1326 * Ensure that the write is flushed and the credit return is 1327 * scheduled. We care more about the 0 -> 1 transition. 1328 */ 1329 read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE)); 1330 /* set back to 0 for next time */ 1331 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0); 1332 } 1333 1334 /* allow all in-flight packets to drain on the context */ 1335 void sc_flush(struct send_context *sc) 1336 { 1337 if (!sc) 1338 return; 1339 1340 sc_wait_for_packet_egress(sc, 1); 1341 } 1342 1343 /* drop all packets on the context, no waiting until they are sent */ 1344 void sc_drop(struct send_context *sc) 1345 { 1346 if (!sc) 1347 return; 1348 1349 dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n", 1350 __func__, sc->sw_index, sc->hw_context); 1351 } 1352 1353 /* 1354 * Start the software reaction to a context halt or SPC freeze: 1355 * - mark the context as halted or frozen 1356 * - stop buffer allocations 1357 * 1358 * Called from the error interrupt. Other work is deferred until 1359 * out of the interrupt. 1360 */ 1361 void sc_stop(struct send_context *sc, int flag) 1362 { 1363 unsigned long flags; 1364 1365 /* mark the context */ 1366 sc->flags |= flag; 1367 1368 /* stop buffer allocations */ 1369 spin_lock_irqsave(&sc->alloc_lock, flags); 1370 sc->flags &= ~SCF_ENABLED; 1371 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1372 wake_up(&sc->halt_wait); 1373 } 1374 1375 #define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32)) 1376 #define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS) 1377 1378 /* 1379 * The send context buffer "allocator". 1380 * 1381 * @sc: the PIO send context we are allocating from 1382 * @len: length of whole packet - including PBC - in dwords 1383 * @cb: optional callback to call when the buffer is finished sending 1384 * @arg: argument for cb 1385 * 1386 * Return a pointer to a PIO buffer if successful, NULL if not enough room. 1387 */ 1388 struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len, 1389 pio_release_cb cb, void *arg) 1390 { 1391 struct pio_buf *pbuf = NULL; 1392 unsigned long flags; 1393 unsigned long avail; 1394 unsigned long blocks = dwords_to_blocks(dw_len); 1395 unsigned long start_fill; 1396 int trycount = 0; 1397 u32 head, next; 1398 1399 spin_lock_irqsave(&sc->alloc_lock, flags); 1400 if (!(sc->flags & SCF_ENABLED)) { 1401 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1402 goto done; 1403 } 1404 1405 retry: 1406 avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free); 1407 if (blocks > avail) { 1408 /* not enough room */ 1409 if (unlikely(trycount)) { /* already tried to get more room */ 1410 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1411 goto done; 1412 } 1413 /* copy from receiver cache line and recalculate */ 1414 sc->alloc_free = ACCESS_ONCE(sc->free); 1415 avail = 1416 (unsigned long)sc->credits - 1417 (sc->fill - sc->alloc_free); 1418 if (blocks > avail) { 1419 /* still no room, actively update */ 1420 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1421 sc_release_update(sc); 1422 spin_lock_irqsave(&sc->alloc_lock, flags); 1423 sc->alloc_free = ACCESS_ONCE(sc->free); 1424 trycount++; 1425 goto retry; 1426 } 1427 } 1428 1429 /* there is enough room */ 1430 1431 preempt_disable(); 1432 this_cpu_inc(*sc->buffers_allocated); 1433 1434 /* read this once */ 1435 head = sc->sr_head; 1436 1437 /* "allocate" the buffer */ 1438 start_fill = sc->fill; 1439 sc->fill += blocks; 1440 1441 /* 1442 * Fill the parts that the releaser looks at before moving the head. 1443 * The only necessary piece is the sent_at field. The credits 1444 * we have just allocated cannot have been returned yet, so the 1445 * cb and arg will not be looked at for a "while". Put them 1446 * on this side of the memory barrier anyway. 1447 */ 1448 pbuf = &sc->sr[head].pbuf; 1449 pbuf->sent_at = sc->fill; 1450 pbuf->cb = cb; 1451 pbuf->arg = arg; 1452 pbuf->sc = sc; /* could be filled in at sc->sr init time */ 1453 /* make sure this is in memory before updating the head */ 1454 1455 /* calculate next head index, do not store */ 1456 next = head + 1; 1457 if (next >= sc->sr_size) 1458 next = 0; 1459 /* 1460 * update the head - must be last! - the releaser can look at fields 1461 * in pbuf once we move the head 1462 */ 1463 smp_wmb(); 1464 sc->sr_head = next; 1465 spin_unlock_irqrestore(&sc->alloc_lock, flags); 1466 1467 /* finish filling in the buffer outside the lock */ 1468 pbuf->start = sc->base_addr + ((start_fill % sc->credits) 1469 * PIO_BLOCK_SIZE); 1470 pbuf->size = sc->credits * PIO_BLOCK_SIZE; 1471 pbuf->end = sc->base_addr + pbuf->size; 1472 pbuf->block_count = blocks; 1473 pbuf->qw_written = 0; 1474 pbuf->carry_bytes = 0; 1475 pbuf->carry.val64 = 0; 1476 done: 1477 return pbuf; 1478 } 1479 1480 /* 1481 * There are at least two entities that can turn on credit return 1482 * interrupts and they can overlap. Avoid problems by implementing 1483 * a count scheme that is enforced by a lock. The lock is needed because 1484 * the count and CSR write must be paired. 1485 */ 1486 1487 /* 1488 * Start credit return interrupts. This is managed by a count. If already 1489 * on, just increment the count. 1490 */ 1491 void sc_add_credit_return_intr(struct send_context *sc) 1492 { 1493 unsigned long flags; 1494 1495 /* lock must surround both the count change and the CSR update */ 1496 spin_lock_irqsave(&sc->credit_ctrl_lock, flags); 1497 if (sc->credit_intr_count == 0) { 1498 sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK); 1499 write_kctxt_csr(sc->dd, sc->hw_context, 1500 SC(CREDIT_CTRL), sc->credit_ctrl); 1501 } 1502 sc->credit_intr_count++; 1503 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); 1504 } 1505 1506 /* 1507 * Stop credit return interrupts. This is managed by a count. Decrement the 1508 * count, if the last user, then turn the credit interrupts off. 1509 */ 1510 void sc_del_credit_return_intr(struct send_context *sc) 1511 { 1512 unsigned long flags; 1513 1514 WARN_ON(sc->credit_intr_count == 0); 1515 1516 /* lock must surround both the count change and the CSR update */ 1517 spin_lock_irqsave(&sc->credit_ctrl_lock, flags); 1518 sc->credit_intr_count--; 1519 if (sc->credit_intr_count == 0) { 1520 sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK); 1521 write_kctxt_csr(sc->dd, sc->hw_context, 1522 SC(CREDIT_CTRL), sc->credit_ctrl); 1523 } 1524 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags); 1525 } 1526 1527 /* 1528 * The caller must be careful when calling this. All needint calls 1529 * must be paired with !needint. 1530 */ 1531 void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint) 1532 { 1533 if (needint) 1534 sc_add_credit_return_intr(sc); 1535 else 1536 sc_del_credit_return_intr(sc); 1537 trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl); 1538 if (needint) { 1539 mmiowb(); 1540 sc_return_credits(sc); 1541 } 1542 } 1543 1544 /** 1545 * sc_piobufavail - callback when a PIO buffer is available 1546 * @sc: the send context 1547 * 1548 * This is called from the interrupt handler when a PIO buffer is 1549 * available after hfi1_verbs_send() returned an error that no buffers were 1550 * available. Disable the interrupt if there are no more QPs waiting. 1551 */ 1552 static void sc_piobufavail(struct send_context *sc) 1553 { 1554 struct hfi1_devdata *dd = sc->dd; 1555 struct hfi1_ibdev *dev = &dd->verbs_dev; 1556 struct list_head *list; 1557 struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE]; 1558 struct rvt_qp *qp; 1559 struct hfi1_qp_priv *priv; 1560 unsigned long flags; 1561 unsigned i, n = 0; 1562 1563 if (dd->send_contexts[sc->sw_index].type != SC_KERNEL && 1564 dd->send_contexts[sc->sw_index].type != SC_VL15) 1565 return; 1566 list = &sc->piowait; 1567 /* 1568 * Note: checking that the piowait list is empty and clearing 1569 * the buffer available interrupt needs to be atomic or we 1570 * could end up with QPs on the wait list with the interrupt 1571 * disabled. 1572 */ 1573 write_seqlock_irqsave(&dev->iowait_lock, flags); 1574 while (!list_empty(list)) { 1575 struct iowait *wait; 1576 1577 if (n == ARRAY_SIZE(qps)) 1578 break; 1579 wait = list_first_entry(list, struct iowait, list); 1580 qp = iowait_to_qp(wait); 1581 priv = qp->priv; 1582 list_del_init(&priv->s_iowait.list); 1583 /* refcount held until actual wake up */ 1584 qps[n++] = qp; 1585 } 1586 /* 1587 * If there had been waiters and there are more 1588 * insure that we redo the force to avoid a potential hang. 1589 */ 1590 if (n) { 1591 hfi1_sc_wantpiobuf_intr(sc, 0); 1592 if (!list_empty(list)) 1593 hfi1_sc_wantpiobuf_intr(sc, 1); 1594 } 1595 write_sequnlock_irqrestore(&dev->iowait_lock, flags); 1596 1597 for (i = 0; i < n; i++) 1598 hfi1_qp_wakeup(qps[i], 1599 RVT_S_WAIT_PIO | RVT_S_WAIT_PIO_DRAIN); 1600 } 1601 1602 /* translate a send credit update to a bit code of reasons */ 1603 static inline int fill_code(u64 hw_free) 1604 { 1605 int code = 0; 1606 1607 if (hw_free & CR_STATUS_SMASK) 1608 code |= PRC_STATUS_ERR; 1609 if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK) 1610 code |= PRC_PBC; 1611 if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK) 1612 code |= PRC_THRESHOLD; 1613 if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK) 1614 code |= PRC_FILL_ERR; 1615 if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK) 1616 code |= PRC_SC_DISABLE; 1617 return code; 1618 } 1619 1620 /* use the jiffies compare to get the wrap right */ 1621 #define sent_before(a, b) time_before(a, b) /* a < b */ 1622 1623 /* 1624 * The send context buffer "releaser". 1625 */ 1626 void sc_release_update(struct send_context *sc) 1627 { 1628 struct pio_buf *pbuf; 1629 u64 hw_free; 1630 u32 head, tail; 1631 unsigned long old_free; 1632 unsigned long free; 1633 unsigned long extra; 1634 unsigned long flags; 1635 int code; 1636 1637 if (!sc) 1638 return; 1639 1640 spin_lock_irqsave(&sc->release_lock, flags); 1641 /* update free */ 1642 hw_free = le64_to_cpu(*sc->hw_free); /* volatile read */ 1643 old_free = sc->free; 1644 extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT) 1645 - (old_free & CR_COUNTER_MASK)) 1646 & CR_COUNTER_MASK; 1647 free = old_free + extra; 1648 trace_hfi1_piofree(sc, extra); 1649 1650 /* call sent buffer callbacks */ 1651 code = -1; /* code not yet set */ 1652 head = ACCESS_ONCE(sc->sr_head); /* snapshot the head */ 1653 tail = sc->sr_tail; 1654 while (head != tail) { 1655 pbuf = &sc->sr[tail].pbuf; 1656 1657 if (sent_before(free, pbuf->sent_at)) { 1658 /* not sent yet */ 1659 break; 1660 } 1661 if (pbuf->cb) { 1662 if (code < 0) /* fill in code on first user */ 1663 code = fill_code(hw_free); 1664 (*pbuf->cb)(pbuf->arg, code); 1665 } 1666 1667 tail++; 1668 if (tail >= sc->sr_size) 1669 tail = 0; 1670 } 1671 sc->sr_tail = tail; 1672 /* make sure tail is updated before free */ 1673 smp_wmb(); 1674 sc->free = free; 1675 spin_unlock_irqrestore(&sc->release_lock, flags); 1676 sc_piobufavail(sc); 1677 } 1678 1679 /* 1680 * Send context group releaser. Argument is the send context that caused 1681 * the interrupt. Called from the send context interrupt handler. 1682 * 1683 * Call release on all contexts in the group. 1684 * 1685 * This routine takes the sc_lock without an irqsave because it is only 1686 * called from an interrupt handler. Adjust if that changes. 1687 */ 1688 void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context) 1689 { 1690 struct send_context *sc; 1691 u32 sw_index; 1692 u32 gc, gc_end; 1693 1694 spin_lock(&dd->sc_lock); 1695 sw_index = dd->hw_to_sw[hw_context]; 1696 if (unlikely(sw_index >= dd->num_send_contexts)) { 1697 dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n", 1698 __func__, hw_context, sw_index); 1699 goto done; 1700 } 1701 sc = dd->send_contexts[sw_index].sc; 1702 if (unlikely(!sc)) 1703 goto done; 1704 1705 gc = group_context(hw_context, sc->group); 1706 gc_end = gc + group_size(sc->group); 1707 for (; gc < gc_end; gc++) { 1708 sw_index = dd->hw_to_sw[gc]; 1709 if (unlikely(sw_index >= dd->num_send_contexts)) { 1710 dd_dev_err(dd, 1711 "%s: invalid hw (%u) to sw (%u) mapping\n", 1712 __func__, hw_context, sw_index); 1713 continue; 1714 } 1715 sc_release_update(dd->send_contexts[sw_index].sc); 1716 } 1717 done: 1718 spin_unlock(&dd->sc_lock); 1719 } 1720 1721 /* 1722 * pio_select_send_context_vl() - select send context 1723 * @dd: devdata 1724 * @selector: a spreading factor 1725 * @vl: this vl 1726 * 1727 * This function returns a send context based on the selector and a vl. 1728 * The mapping fields are protected by RCU 1729 */ 1730 struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd, 1731 u32 selector, u8 vl) 1732 { 1733 struct pio_vl_map *m; 1734 struct pio_map_elem *e; 1735 struct send_context *rval; 1736 1737 /* 1738 * NOTE This should only happen if SC->VL changed after the initial 1739 * checks on the QP/AH 1740 * Default will return VL0's send context below 1741 */ 1742 if (unlikely(vl >= num_vls)) { 1743 rval = NULL; 1744 goto done; 1745 } 1746 1747 rcu_read_lock(); 1748 m = rcu_dereference(dd->pio_map); 1749 if (unlikely(!m)) { 1750 rcu_read_unlock(); 1751 return dd->vld[0].sc; 1752 } 1753 e = m->map[vl & m->mask]; 1754 rval = e->ksc[selector & e->mask]; 1755 rcu_read_unlock(); 1756 1757 done: 1758 rval = !rval ? dd->vld[0].sc : rval; 1759 return rval; 1760 } 1761 1762 /* 1763 * pio_select_send_context_sc() - select send context 1764 * @dd: devdata 1765 * @selector: a spreading factor 1766 * @sc5: the 5 bit sc 1767 * 1768 * This function returns an send context based on the selector and an sc 1769 */ 1770 struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd, 1771 u32 selector, u8 sc5) 1772 { 1773 u8 vl = sc_to_vlt(dd, sc5); 1774 1775 return pio_select_send_context_vl(dd, selector, vl); 1776 } 1777 1778 /* 1779 * Free the indicated map struct 1780 */ 1781 static void pio_map_free(struct pio_vl_map *m) 1782 { 1783 int i; 1784 1785 for (i = 0; m && i < m->actual_vls; i++) 1786 kfree(m->map[i]); 1787 kfree(m); 1788 } 1789 1790 /* 1791 * Handle RCU callback 1792 */ 1793 static void pio_map_rcu_callback(struct rcu_head *list) 1794 { 1795 struct pio_vl_map *m = container_of(list, struct pio_vl_map, list); 1796 1797 pio_map_free(m); 1798 } 1799 1800 /* 1801 * pio_map_init - called when #vls change 1802 * @dd: hfi1_devdata 1803 * @port: port number 1804 * @num_vls: number of vls 1805 * @vl_scontexts: per vl send context mapping (optional) 1806 * 1807 * This routine changes the mapping based on the number of vls. 1808 * 1809 * vl_scontexts is used to specify a non-uniform vl/send context 1810 * loading. NULL implies auto computing the loading and giving each 1811 * VL an uniform distribution of send contexts per VL. 1812 * 1813 * The auto algorithm computers the sc_per_vl and the number of extra 1814 * send contexts. Any extra send contexts are added from the last VL 1815 * on down 1816 * 1817 * rcu locking is used here to control access to the mapping fields. 1818 * 1819 * If either the num_vls or num_send_contexts are non-power of 2, the 1820 * array sizes in the struct pio_vl_map and the struct pio_map_elem are 1821 * rounded up to the next highest power of 2 and the first entry is 1822 * reused in a round robin fashion. 1823 * 1824 * If an error occurs the map change is not done and the mapping is not 1825 * chaged. 1826 * 1827 */ 1828 int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts) 1829 { 1830 int i, j; 1831 int extra, sc_per_vl; 1832 int scontext = 1; 1833 int num_kernel_send_contexts = 0; 1834 u8 lvl_scontexts[OPA_MAX_VLS]; 1835 struct pio_vl_map *oldmap, *newmap; 1836 1837 if (!vl_scontexts) { 1838 for (i = 0; i < dd->num_send_contexts; i++) 1839 if (dd->send_contexts[i].type == SC_KERNEL) 1840 num_kernel_send_contexts++; 1841 /* truncate divide */ 1842 sc_per_vl = num_kernel_send_contexts / num_vls; 1843 /* extras */ 1844 extra = num_kernel_send_contexts % num_vls; 1845 vl_scontexts = lvl_scontexts; 1846 /* add extras from last vl down */ 1847 for (i = num_vls - 1; i >= 0; i--, extra--) 1848 vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0); 1849 } 1850 /* build new map */ 1851 newmap = kzalloc(sizeof(*newmap) + 1852 roundup_pow_of_two(num_vls) * 1853 sizeof(struct pio_map_elem *), 1854 GFP_KERNEL); 1855 if (!newmap) 1856 goto bail; 1857 newmap->actual_vls = num_vls; 1858 newmap->vls = roundup_pow_of_two(num_vls); 1859 newmap->mask = (1 << ilog2(newmap->vls)) - 1; 1860 for (i = 0; i < newmap->vls; i++) { 1861 /* save for wrap around */ 1862 int first_scontext = scontext; 1863 1864 if (i < newmap->actual_vls) { 1865 int sz = roundup_pow_of_two(vl_scontexts[i]); 1866 1867 /* only allocate once */ 1868 newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) + 1869 sz * sizeof(struct 1870 send_context *), 1871 GFP_KERNEL); 1872 if (!newmap->map[i]) 1873 goto bail; 1874 newmap->map[i]->mask = (1 << ilog2(sz)) - 1; 1875 /* assign send contexts */ 1876 for (j = 0; j < sz; j++) { 1877 if (dd->kernel_send_context[scontext]) 1878 newmap->map[i]->ksc[j] = 1879 dd->kernel_send_context[scontext]; 1880 if (++scontext >= first_scontext + 1881 vl_scontexts[i]) 1882 /* wrap back to first send context */ 1883 scontext = first_scontext; 1884 } 1885 } else { 1886 /* just re-use entry without allocating */ 1887 newmap->map[i] = newmap->map[i % num_vls]; 1888 } 1889 scontext = first_scontext + vl_scontexts[i]; 1890 } 1891 /* newmap in hand, save old map */ 1892 spin_lock_irq(&dd->pio_map_lock); 1893 oldmap = rcu_dereference_protected(dd->pio_map, 1894 lockdep_is_held(&dd->pio_map_lock)); 1895 1896 /* publish newmap */ 1897 rcu_assign_pointer(dd->pio_map, newmap); 1898 1899 spin_unlock_irq(&dd->pio_map_lock); 1900 /* success, free any old map after grace period */ 1901 if (oldmap) 1902 call_rcu(&oldmap->list, pio_map_rcu_callback); 1903 return 0; 1904 bail: 1905 /* free any partial allocation */ 1906 pio_map_free(newmap); 1907 return -ENOMEM; 1908 } 1909 1910 void free_pio_map(struct hfi1_devdata *dd) 1911 { 1912 /* Free PIO map if allocated */ 1913 if (rcu_access_pointer(dd->pio_map)) { 1914 spin_lock_irq(&dd->pio_map_lock); 1915 pio_map_free(rcu_access_pointer(dd->pio_map)); 1916 RCU_INIT_POINTER(dd->pio_map, NULL); 1917 spin_unlock_irq(&dd->pio_map_lock); 1918 synchronize_rcu(); 1919 } 1920 kfree(dd->kernel_send_context); 1921 dd->kernel_send_context = NULL; 1922 } 1923 1924 int init_pervl_scs(struct hfi1_devdata *dd) 1925 { 1926 int i; 1927 u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */ 1928 u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */ 1929 u32 ctxt; 1930 struct hfi1_pportdata *ppd = dd->pport; 1931 1932 dd->vld[15].sc = sc_alloc(dd, SC_VL15, 1933 dd->rcd[0]->rcvhdrqentsize, dd->node); 1934 if (!dd->vld[15].sc) 1935 goto nomem; 1936 hfi1_init_ctxt(dd->vld[15].sc); 1937 dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048); 1938 1939 dd->kernel_send_context = kmalloc_node(dd->num_send_contexts * 1940 sizeof(struct send_context *), 1941 GFP_KERNEL, dd->node); 1942 dd->kernel_send_context[0] = dd->vld[15].sc; 1943 1944 for (i = 0; i < num_vls; i++) { 1945 /* 1946 * Since this function does not deal with a specific 1947 * receive context but we need the RcvHdrQ entry size, 1948 * use the size from rcd[0]. It is guaranteed to be 1949 * valid at this point and will remain the same for all 1950 * receive contexts. 1951 */ 1952 dd->vld[i].sc = sc_alloc(dd, SC_KERNEL, 1953 dd->rcd[0]->rcvhdrqentsize, dd->node); 1954 if (!dd->vld[i].sc) 1955 goto nomem; 1956 dd->kernel_send_context[i + 1] = dd->vld[i].sc; 1957 hfi1_init_ctxt(dd->vld[i].sc); 1958 /* non VL15 start with the max MTU */ 1959 dd->vld[i].mtu = hfi1_max_mtu; 1960 } 1961 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) { 1962 dd->kernel_send_context[i + 1] = 1963 sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node); 1964 if (!dd->kernel_send_context[i + 1]) 1965 goto nomem; 1966 hfi1_init_ctxt(dd->kernel_send_context[i + 1]); 1967 } 1968 1969 sc_enable(dd->vld[15].sc); 1970 ctxt = dd->vld[15].sc->hw_context; 1971 mask = all_vl_mask & ~(1LL << 15); 1972 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); 1973 dd_dev_info(dd, 1974 "Using send context %u(%u) for VL15\n", 1975 dd->vld[15].sc->sw_index, ctxt); 1976 1977 for (i = 0; i < num_vls; i++) { 1978 sc_enable(dd->vld[i].sc); 1979 ctxt = dd->vld[i].sc->hw_context; 1980 mask = all_vl_mask & ~(data_vls_mask); 1981 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); 1982 } 1983 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) { 1984 sc_enable(dd->kernel_send_context[i + 1]); 1985 ctxt = dd->kernel_send_context[i + 1]->hw_context; 1986 mask = all_vl_mask & ~(data_vls_mask); 1987 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask); 1988 } 1989 1990 if (pio_map_init(dd, ppd->port - 1, num_vls, NULL)) 1991 goto nomem; 1992 return 0; 1993 nomem: 1994 sc_free(dd->vld[15].sc); 1995 for (i = 0; i < num_vls; i++) 1996 sc_free(dd->vld[i].sc); 1997 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) 1998 sc_free(dd->kernel_send_context[i + 1]); 1999 return -ENOMEM; 2000 } 2001 2002 int init_credit_return(struct hfi1_devdata *dd) 2003 { 2004 int ret; 2005 int num_numa; 2006 int i; 2007 2008 num_numa = num_online_nodes(); 2009 /* enforce the expectation that the numas are compact */ 2010 for (i = 0; i < num_numa; i++) { 2011 if (!node_online(i)) { 2012 dd_dev_err(dd, "NUMA nodes are not compact\n"); 2013 ret = -EINVAL; 2014 goto done; 2015 } 2016 } 2017 2018 dd->cr_base = kcalloc( 2019 num_numa, 2020 sizeof(struct credit_return_base), 2021 GFP_KERNEL); 2022 if (!dd->cr_base) { 2023 dd_dev_err(dd, "Unable to allocate credit return base\n"); 2024 ret = -ENOMEM; 2025 goto done; 2026 } 2027 for (i = 0; i < num_numa; i++) { 2028 int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return); 2029 2030 set_dev_node(&dd->pcidev->dev, i); 2031 dd->cr_base[i].va = dma_zalloc_coherent( 2032 &dd->pcidev->dev, 2033 bytes, 2034 &dd->cr_base[i].pa, 2035 GFP_KERNEL); 2036 if (!dd->cr_base[i].va) { 2037 set_dev_node(&dd->pcidev->dev, dd->node); 2038 dd_dev_err(dd, 2039 "Unable to allocate credit return DMA range for NUMA %d\n", 2040 i); 2041 ret = -ENOMEM; 2042 goto done; 2043 } 2044 } 2045 set_dev_node(&dd->pcidev->dev, dd->node); 2046 2047 ret = 0; 2048 done: 2049 return ret; 2050 } 2051 2052 void free_credit_return(struct hfi1_devdata *dd) 2053 { 2054 int num_numa; 2055 int i; 2056 2057 if (!dd->cr_base) 2058 return; 2059 2060 num_numa = num_online_nodes(); 2061 for (i = 0; i < num_numa; i++) { 2062 if (dd->cr_base[i].va) { 2063 dma_free_coherent(&dd->pcidev->dev, 2064 TXE_NUM_CONTEXTS * 2065 sizeof(struct credit_return), 2066 dd->cr_base[i].va, 2067 dd->cr_base[i].pa); 2068 } 2069 } 2070 kfree(dd->cr_base); 2071 dd->cr_base = NULL; 2072 } 2073