xref: /linux/drivers/infiniband/hw/hfi1/init.c (revision b2d0f5d5dc53532e6f07bc546a476a55ebdfe0f3)
1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <rdma/rdma_vt.h>
58 
59 #include "hfi.h"
60 #include "device.h"
61 #include "common.h"
62 #include "trace.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 #include "aspm.h"
68 #include "affinity.h"
69 #include "vnic.h"
70 #include "exp_rcv.h"
71 
72 #undef pr_fmt
73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
74 
75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80 
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85 
86 /*
87  * Number of user receive contexts we are configured to use (to allow for more
88  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
89  */
90 int num_user_contexts = -1;
91 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
92 MODULE_PARM_DESC(
93 	num_user_contexts, "Set max number of user contexts to use");
94 
95 uint krcvqs[RXE_NUM_DATA_VL];
96 int krcvqsset;
97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
99 
100 /* computed based on above array */
101 unsigned long n_krcvqs;
102 
103 static unsigned hfi1_rcvarr_split = 25;
104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
106 
107 static uint eager_buffer_size = (8 << 20); /* 8MB */
108 module_param(eager_buffer_size, uint, S_IRUGO);
109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
110 
111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
114 
115 static uint hfi1_hdrq_entsize = 32;
116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
118 
119 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
120 module_param(user_credit_return_threshold, uint, S_IRUGO);
121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
122 
123 static inline u64 encode_rcv_header_entry_size(u16 size);
124 
125 static struct idr hfi1_unit_table;
126 u32 hfi1_cpulist_count;
127 unsigned long *hfi1_cpulist;
128 
129 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
130 			     struct hfi1_pportdata *ppd)
131 {
132 	struct hfi1_ctxtdata *rcd;
133 	int ret;
134 
135 	/* Control context has to be always 0 */
136 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
137 
138 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
139 	if (ret < 0) {
140 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
141 		return ret;
142 	}
143 
144 	/*
145 	 * Set up the kernel context flags here and now because they use
146 	 * default values for all receive side memories.  User contexts will
147 	 * be handled as they are created.
148 	 */
149 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
150 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
151 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
152 		HFI1_CAP_KGET(DMA_RTAIL);
153 
154 	/* Control context must use DMA_RTAIL */
155 	if (rcd->ctxt == HFI1_CTRL_CTXT)
156 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
157 	rcd->seq_cnt = 1;
158 
159 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
160 	if (!rcd->sc) {
161 		dd_dev_err(dd, "Kernel send context allocation failed\n");
162 		return -ENOMEM;
163 	}
164 	hfi1_init_ctxt(rcd->sc);
165 
166 	return 0;
167 }
168 
169 /*
170  * Create the receive context array and one or more kernel contexts
171  */
172 int hfi1_create_kctxts(struct hfi1_devdata *dd)
173 {
174 	u16 i;
175 	int ret;
176 
177 	dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
178 			       GFP_KERNEL, dd->node);
179 	if (!dd->rcd)
180 		return -ENOMEM;
181 
182 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
183 		ret = hfi1_create_kctxt(dd, dd->pport);
184 		if (ret)
185 			goto bail;
186 	}
187 
188 	return 0;
189 bail:
190 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
191 		hfi1_free_ctxt(dd->rcd[i]);
192 
193 	/* All the contexts should be freed, free the array */
194 	kfree(dd->rcd);
195 	dd->rcd = NULL;
196 	return ret;
197 }
198 
199 /*
200  * Helper routines for the receive context reference count (rcd and uctxt).
201  */
202 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
203 {
204 	kref_init(&rcd->kref);
205 }
206 
207 /**
208  * hfi1_rcd_free - When reference is zero clean up.
209  * @kref: pointer to an initialized rcd data structure
210  *
211  */
212 static void hfi1_rcd_free(struct kref *kref)
213 {
214 	unsigned long flags;
215 	struct hfi1_ctxtdata *rcd =
216 		container_of(kref, struct hfi1_ctxtdata, kref);
217 
218 	hfi1_free_ctxtdata(rcd->dd, rcd);
219 
220 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
221 	rcd->dd->rcd[rcd->ctxt] = NULL;
222 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
223 
224 	kfree(rcd);
225 }
226 
227 /**
228  * hfi1_rcd_put - decrement reference for rcd
229  * @rcd: pointer to an initialized rcd data structure
230  *
231  * Use this to put a reference after the init.
232  */
233 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
234 {
235 	if (rcd)
236 		return kref_put(&rcd->kref, hfi1_rcd_free);
237 
238 	return 0;
239 }
240 
241 /**
242  * hfi1_rcd_get - increment reference for rcd
243  * @rcd: pointer to an initialized rcd data structure
244  *
245  * Use this to get a reference after the init.
246  */
247 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
248 {
249 	kref_get(&rcd->kref);
250 }
251 
252 /**
253  * allocate_rcd_index - allocate an rcd index from the rcd array
254  * @dd: pointer to a valid devdata structure
255  * @rcd: rcd data structure to assign
256  * @index: pointer to index that is allocated
257  *
258  * Find an empty index in the rcd array, and assign the given rcd to it.
259  * If the array is full, we are EBUSY.
260  *
261  */
262 static int allocate_rcd_index(struct hfi1_devdata *dd,
263 			      struct hfi1_ctxtdata *rcd, u16 *index)
264 {
265 	unsigned long flags;
266 	u16 ctxt;
267 
268 	spin_lock_irqsave(&dd->uctxt_lock, flags);
269 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
270 		if (!dd->rcd[ctxt])
271 			break;
272 
273 	if (ctxt < dd->num_rcv_contexts) {
274 		rcd->ctxt = ctxt;
275 		dd->rcd[ctxt] = rcd;
276 		hfi1_rcd_init(rcd);
277 	}
278 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
279 
280 	if (ctxt >= dd->num_rcv_contexts)
281 		return -EBUSY;
282 
283 	*index = ctxt;
284 
285 	return 0;
286 }
287 
288 /**
289  * hfi1_rcd_get_by_index
290  * @dd: pointer to a valid devdata structure
291  * @ctxt: the index of an possilbe rcd
292  *
293  * We need to protect access to the rcd array.  If access is needed to
294  * one or more index, get the protecting spinlock and then increment the
295  * kref.
296  *
297  * The caller is responsible for making the _put().
298  *
299  */
300 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
301 {
302 	unsigned long flags;
303 	struct hfi1_ctxtdata *rcd = NULL;
304 
305 	spin_lock_irqsave(&dd->uctxt_lock, flags);
306 	if (dd->rcd[ctxt]) {
307 		rcd = dd->rcd[ctxt];
308 		hfi1_rcd_get(rcd);
309 	}
310 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
311 
312 	return rcd;
313 }
314 
315 /*
316  * Common code for user and kernel context create and setup.
317  * NOTE: the initial kref is done here (hf1_rcd_init()).
318  */
319 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
320 			 struct hfi1_ctxtdata **context)
321 {
322 	struct hfi1_devdata *dd = ppd->dd;
323 	struct hfi1_ctxtdata *rcd;
324 	unsigned kctxt_ngroups = 0;
325 	u32 base;
326 
327 	if (dd->rcv_entries.nctxt_extra >
328 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
329 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
330 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
331 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
332 	if (rcd) {
333 		u32 rcvtids, max_entries;
334 		u16 ctxt;
335 		int ret;
336 
337 		ret = allocate_rcd_index(dd, rcd, &ctxt);
338 		if (ret) {
339 			*context = NULL;
340 			kfree(rcd);
341 			return ret;
342 		}
343 
344 		INIT_LIST_HEAD(&rcd->qp_wait_list);
345 		hfi1_exp_tid_group_init(&rcd->tid_group_list);
346 		hfi1_exp_tid_group_init(&rcd->tid_used_list);
347 		hfi1_exp_tid_group_init(&rcd->tid_full_list);
348 		rcd->ppd = ppd;
349 		rcd->dd = dd;
350 		__set_bit(0, rcd->in_use_ctxts);
351 		rcd->numa_id = numa;
352 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
353 
354 		mutex_init(&rcd->exp_lock);
355 
356 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
357 
358 		/*
359 		 * Calculate the context's RcvArray entry starting point.
360 		 * We do this here because we have to take into account all
361 		 * the RcvArray entries that previous context would have
362 		 * taken and we have to account for any extra groups assigned
363 		 * to the static (kernel) or dynamic (vnic/user) contexts.
364 		 */
365 		if (ctxt < dd->first_dyn_alloc_ctxt) {
366 			if (ctxt < kctxt_ngroups) {
367 				base = ctxt * (dd->rcv_entries.ngroups + 1);
368 				rcd->rcv_array_groups++;
369 			} else {
370 				base = kctxt_ngroups +
371 					(ctxt * dd->rcv_entries.ngroups);
372 			}
373 		} else {
374 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
375 
376 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
377 				kctxt_ngroups);
378 			if (ct < dd->rcv_entries.nctxt_extra) {
379 				base += ct * (dd->rcv_entries.ngroups + 1);
380 				rcd->rcv_array_groups++;
381 			} else {
382 				base += dd->rcv_entries.nctxt_extra +
383 					(ct * dd->rcv_entries.ngroups);
384 			}
385 		}
386 		rcd->eager_base = base * dd->rcv_entries.group_size;
387 
388 		rcd->rcvhdrq_cnt = rcvhdrcnt;
389 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
390 		/*
391 		 * Simple Eager buffer allocation: we have already pre-allocated
392 		 * the number of RcvArray entry groups. Each ctxtdata structure
393 		 * holds the number of groups for that context.
394 		 *
395 		 * To follow CSR requirements and maintain cacheline alignment,
396 		 * make sure all sizes and bases are multiples of group_size.
397 		 *
398 		 * The expected entry count is what is left after assigning
399 		 * eager.
400 		 */
401 		max_entries = rcd->rcv_array_groups *
402 			dd->rcv_entries.group_size;
403 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
404 		rcd->egrbufs.count = round_down(rcvtids,
405 						dd->rcv_entries.group_size);
406 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
407 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
408 				   rcd->ctxt);
409 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
410 		}
411 		hfi1_cdbg(PROC,
412 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
413 			  rcd->ctxt, rcd->egrbufs.count);
414 
415 		/*
416 		 * Allocate array that will hold the eager buffer accounting
417 		 * data.
418 		 * This will allocate the maximum possible buffer count based
419 		 * on the value of the RcvArray split parameter.
420 		 * The resulting value will be rounded down to the closest
421 		 * multiple of dd->rcv_entries.group_size.
422 		 */
423 		rcd->egrbufs.buffers = kzalloc_node(
424 			rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers),
425 			GFP_KERNEL, numa);
426 		if (!rcd->egrbufs.buffers)
427 			goto bail;
428 		rcd->egrbufs.rcvtids = kzalloc_node(
429 				rcd->egrbufs.count *
430 				sizeof(*rcd->egrbufs.rcvtids),
431 				GFP_KERNEL, numa);
432 		if (!rcd->egrbufs.rcvtids)
433 			goto bail;
434 		rcd->egrbufs.size = eager_buffer_size;
435 		/*
436 		 * The size of the buffers programmed into the RcvArray
437 		 * entries needs to be big enough to handle the highest
438 		 * MTU supported.
439 		 */
440 		if (rcd->egrbufs.size < hfi1_max_mtu) {
441 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
442 			hfi1_cdbg(PROC,
443 				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
444 				    rcd->ctxt, rcd->egrbufs.size);
445 		}
446 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
447 
448 		/* Applicable only for statically created kernel contexts */
449 		if (ctxt < dd->first_dyn_alloc_ctxt) {
450 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
451 						    GFP_KERNEL, numa);
452 			if (!rcd->opstats)
453 				goto bail;
454 		}
455 
456 		*context = rcd;
457 		return 0;
458 	}
459 
460 bail:
461 	*context = NULL;
462 	hfi1_free_ctxt(rcd);
463 	return -ENOMEM;
464 }
465 
466 /**
467  * hfi1_free_ctxt
468  * @rcd: pointer to an initialized rcd data structure
469  *
470  * This wrapper is the free function that matches hfi1_create_ctxtdata().
471  * When a context is done being used (kernel or user), this function is called
472  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
473  * Other users of the context do a get/put sequence to make sure that the
474  * structure isn't removed while in use.
475  */
476 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
477 {
478 	hfi1_rcd_put(rcd);
479 }
480 
481 /*
482  * Convert a receive header entry size that to the encoding used in the CSR.
483  *
484  * Return a zero if the given size is invalid.
485  */
486 static inline u64 encode_rcv_header_entry_size(u16 size)
487 {
488 	/* there are only 3 valid receive header entry sizes */
489 	if (size == 2)
490 		return 1;
491 	if (size == 16)
492 		return 2;
493 	else if (size == 32)
494 		return 4;
495 	return 0; /* invalid */
496 }
497 
498 /*
499  * Select the largest ccti value over all SLs to determine the intra-
500  * packet gap for the link.
501  *
502  * called with cca_timer_lock held (to protect access to cca_timer
503  * array), and rcu_read_lock() (to protect access to cc_state).
504  */
505 void set_link_ipg(struct hfi1_pportdata *ppd)
506 {
507 	struct hfi1_devdata *dd = ppd->dd;
508 	struct cc_state *cc_state;
509 	int i;
510 	u16 cce, ccti_limit, max_ccti = 0;
511 	u16 shift, mult;
512 	u64 src;
513 	u32 current_egress_rate; /* Mbits /sec */
514 	u32 max_pkt_time;
515 	/*
516 	 * max_pkt_time is the maximum packet egress time in units
517 	 * of the fabric clock period 1/(805 MHz).
518 	 */
519 
520 	cc_state = get_cc_state(ppd);
521 
522 	if (!cc_state)
523 		/*
524 		 * This should _never_ happen - rcu_read_lock() is held,
525 		 * and set_link_ipg() should not be called if cc_state
526 		 * is NULL.
527 		 */
528 		return;
529 
530 	for (i = 0; i < OPA_MAX_SLS; i++) {
531 		u16 ccti = ppd->cca_timer[i].ccti;
532 
533 		if (ccti > max_ccti)
534 			max_ccti = ccti;
535 	}
536 
537 	ccti_limit = cc_state->cct.ccti_limit;
538 	if (max_ccti > ccti_limit)
539 		max_ccti = ccti_limit;
540 
541 	cce = cc_state->cct.entries[max_ccti].entry;
542 	shift = (cce & 0xc000) >> 14;
543 	mult = (cce & 0x3fff);
544 
545 	current_egress_rate = active_egress_rate(ppd);
546 
547 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
548 
549 	src = (max_pkt_time >> shift) * mult;
550 
551 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
552 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
553 
554 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
555 }
556 
557 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
558 {
559 	struct cca_timer *cca_timer;
560 	struct hfi1_pportdata *ppd;
561 	int sl;
562 	u16 ccti_timer, ccti_min;
563 	struct cc_state *cc_state;
564 	unsigned long flags;
565 	enum hrtimer_restart ret = HRTIMER_NORESTART;
566 
567 	cca_timer = container_of(t, struct cca_timer, hrtimer);
568 	ppd = cca_timer->ppd;
569 	sl = cca_timer->sl;
570 
571 	rcu_read_lock();
572 
573 	cc_state = get_cc_state(ppd);
574 
575 	if (!cc_state) {
576 		rcu_read_unlock();
577 		return HRTIMER_NORESTART;
578 	}
579 
580 	/*
581 	 * 1) decrement ccti for SL
582 	 * 2) calculate IPG for link (set_link_ipg())
583 	 * 3) restart timer, unless ccti is at min value
584 	 */
585 
586 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
587 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
588 
589 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
590 
591 	if (cca_timer->ccti > ccti_min) {
592 		cca_timer->ccti--;
593 		set_link_ipg(ppd);
594 	}
595 
596 	if (cca_timer->ccti > ccti_min) {
597 		unsigned long nsec = 1024 * ccti_timer;
598 		/* ccti_timer is in units of 1.024 usec */
599 		hrtimer_forward_now(t, ns_to_ktime(nsec));
600 		ret = HRTIMER_RESTART;
601 	}
602 
603 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
604 	rcu_read_unlock();
605 	return ret;
606 }
607 
608 /*
609  * Common code for initializing the physical port structure.
610  */
611 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
612 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
613 {
614 	int i;
615 	uint default_pkey_idx;
616 	struct cc_state *cc_state;
617 
618 	ppd->dd = dd;
619 	ppd->hw_pidx = hw_pidx;
620 	ppd->port = port; /* IB port number, not index */
621 
622 	default_pkey_idx = 1;
623 
624 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
625 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
626 
627 	if (loopback) {
628 		hfi1_early_err(&pdev->dev,
629 			       "Faking data partition 0x8001 in idx %u\n",
630 			       !default_pkey_idx);
631 		ppd->pkeys[!default_pkey_idx] = 0x8001;
632 	}
633 
634 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
635 	INIT_WORK(&ppd->link_up_work, handle_link_up);
636 	INIT_WORK(&ppd->link_down_work, handle_link_down);
637 	INIT_WORK(&ppd->freeze_work, handle_freeze);
638 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
639 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
640 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
641 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
642 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
643 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
644 
645 	mutex_init(&ppd->hls_lock);
646 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
647 
648 	ppd->qsfp_info.ppd = ppd;
649 	ppd->sm_trap_qp = 0x0;
650 	ppd->sa_qp = 0x1;
651 
652 	ppd->hfi1_wq = NULL;
653 
654 	spin_lock_init(&ppd->cca_timer_lock);
655 
656 	for (i = 0; i < OPA_MAX_SLS; i++) {
657 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
658 			     HRTIMER_MODE_REL);
659 		ppd->cca_timer[i].ppd = ppd;
660 		ppd->cca_timer[i].sl = i;
661 		ppd->cca_timer[i].ccti = 0;
662 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
663 	}
664 
665 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
666 
667 	spin_lock_init(&ppd->cc_state_lock);
668 	spin_lock_init(&ppd->cc_log_lock);
669 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
670 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
671 	if (!cc_state)
672 		goto bail;
673 	return;
674 
675 bail:
676 
677 	hfi1_early_err(&pdev->dev,
678 		       "Congestion Control Agent disabled for port %d\n", port);
679 }
680 
681 /*
682  * Do initialization for device that is only needed on
683  * first detect, not on resets.
684  */
685 static int loadtime_init(struct hfi1_devdata *dd)
686 {
687 	return 0;
688 }
689 
690 /**
691  * init_after_reset - re-initialize after a reset
692  * @dd: the hfi1_ib device
693  *
694  * sanity check at least some of the values after reset, and
695  * ensure no receive or transmit (explicitly, in case reset
696  * failed
697  */
698 static int init_after_reset(struct hfi1_devdata *dd)
699 {
700 	int i;
701 	struct hfi1_ctxtdata *rcd;
702 	/*
703 	 * Ensure chip does no sends or receives, tail updates, or
704 	 * pioavail updates while we re-initialize.  This is mostly
705 	 * for the driver data structures, not chip registers.
706 	 */
707 	for (i = 0; i < dd->num_rcv_contexts; i++) {
708 		rcd = hfi1_rcd_get_by_index(dd, i);
709 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
710 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
711 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
712 		hfi1_rcd_put(rcd);
713 	}
714 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
715 	for (i = 0; i < dd->num_send_contexts; i++)
716 		sc_disable(dd->send_contexts[i].sc);
717 
718 	return 0;
719 }
720 
721 static void enable_chip(struct hfi1_devdata *dd)
722 {
723 	struct hfi1_ctxtdata *rcd;
724 	u32 rcvmask;
725 	u16 i;
726 
727 	/* enable PIO send */
728 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
729 
730 	/*
731 	 * Enable kernel ctxts' receive and receive interrupt.
732 	 * Other ctxts done as user opens and initializes them.
733 	 */
734 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
735 		rcd = hfi1_rcd_get_by_index(dd, i);
736 		if (!rcd)
737 			continue;
738 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
739 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
740 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
741 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
742 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
743 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
744 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
745 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
746 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
747 		hfi1_rcvctrl(dd, rcvmask, rcd);
748 		sc_enable(rcd->sc);
749 		hfi1_rcd_put(rcd);
750 	}
751 }
752 
753 /**
754  * create_workqueues - create per port workqueues
755  * @dd: the hfi1_ib device
756  */
757 static int create_workqueues(struct hfi1_devdata *dd)
758 {
759 	int pidx;
760 	struct hfi1_pportdata *ppd;
761 
762 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
763 		ppd = dd->pport + pidx;
764 		if (!ppd->hfi1_wq) {
765 			ppd->hfi1_wq =
766 				alloc_workqueue(
767 				    "hfi%d_%d",
768 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
769 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
770 				    dd->unit, pidx);
771 			if (!ppd->hfi1_wq)
772 				goto wq_error;
773 		}
774 		if (!ppd->link_wq) {
775 			/*
776 			 * Make the link workqueue single-threaded to enforce
777 			 * serialization.
778 			 */
779 			ppd->link_wq =
780 				alloc_workqueue(
781 				    "hfi_link_%d_%d",
782 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
783 				    1, /* max_active */
784 				    dd->unit, pidx);
785 			if (!ppd->link_wq)
786 				goto wq_error;
787 		}
788 	}
789 	return 0;
790 wq_error:
791 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
792 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
793 		ppd = dd->pport + pidx;
794 		if (ppd->hfi1_wq) {
795 			destroy_workqueue(ppd->hfi1_wq);
796 			ppd->hfi1_wq = NULL;
797 		}
798 		if (ppd->link_wq) {
799 			destroy_workqueue(ppd->link_wq);
800 			ppd->link_wq = NULL;
801 		}
802 	}
803 	return -ENOMEM;
804 }
805 
806 /**
807  * hfi1_init - do the actual initialization sequence on the chip
808  * @dd: the hfi1_ib device
809  * @reinit: re-initializing, so don't allocate new memory
810  *
811  * Do the actual initialization sequence on the chip.  This is done
812  * both from the init routine called from the PCI infrastructure, and
813  * when we reset the chip, or detect that it was reset internally,
814  * or it's administratively re-enabled.
815  *
816  * Memory allocation here and in called routines is only done in
817  * the first case (reinit == 0).  We have to be careful, because even
818  * without memory allocation, we need to re-write all the chip registers
819  * TIDs, etc. after the reset or enable has completed.
820  */
821 int hfi1_init(struct hfi1_devdata *dd, int reinit)
822 {
823 	int ret = 0, pidx, lastfail = 0;
824 	unsigned long len;
825 	u16 i;
826 	struct hfi1_ctxtdata *rcd;
827 	struct hfi1_pportdata *ppd;
828 
829 	/* Set up recv low level handlers */
830 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
831 						kdeth_process_expected;
832 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
833 						kdeth_process_eager;
834 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
835 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
836 						process_receive_error;
837 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
838 						process_receive_bypass;
839 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
840 						process_receive_invalid;
841 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
842 						process_receive_invalid;
843 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
844 						process_receive_invalid;
845 	dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
846 
847 	/* Set up send low level handlers */
848 	dd->process_pio_send = hfi1_verbs_send_pio;
849 	dd->process_dma_send = hfi1_verbs_send_dma;
850 	dd->pio_inline_send = pio_copy;
851 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
852 
853 	if (is_ax(dd)) {
854 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
855 		dd->do_drop = 1;
856 	} else {
857 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
858 		dd->do_drop = 0;
859 	}
860 
861 	/* make sure the link is not "up" */
862 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
863 		ppd = dd->pport + pidx;
864 		ppd->linkup = 0;
865 	}
866 
867 	if (reinit)
868 		ret = init_after_reset(dd);
869 	else
870 		ret = loadtime_init(dd);
871 	if (ret)
872 		goto done;
873 
874 	/* allocate dummy tail memory for all receive contexts */
875 	dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
876 		&dd->pcidev->dev, sizeof(u64),
877 		&dd->rcvhdrtail_dummy_dma,
878 		GFP_KERNEL);
879 
880 	if (!dd->rcvhdrtail_dummy_kvaddr) {
881 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
882 		ret = -ENOMEM;
883 		goto done;
884 	}
885 
886 	/* dd->rcd can be NULL if early initialization failed */
887 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
888 		/*
889 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
890 		 * re-init, the simplest way to handle this is to free
891 		 * existing, and re-allocate.
892 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
893 		 */
894 		rcd = hfi1_rcd_get_by_index(dd, i);
895 		if (!rcd)
896 			continue;
897 
898 		rcd->do_interrupt = &handle_receive_interrupt;
899 
900 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
901 		if (!lastfail)
902 			lastfail = hfi1_setup_eagerbufs(rcd);
903 		if (lastfail) {
904 			dd_dev_err(dd,
905 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
906 			ret = lastfail;
907 		}
908 		hfi1_rcd_put(rcd);
909 	}
910 
911 	/* Allocate enough memory for user event notification. */
912 	len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
913 			 sizeof(*dd->events));
914 	dd->events = vmalloc_user(len);
915 	if (!dd->events)
916 		dd_dev_err(dd, "Failed to allocate user events page\n");
917 	/*
918 	 * Allocate a page for device and port status.
919 	 * Page will be shared amongst all user processes.
920 	 */
921 	dd->status = vmalloc_user(PAGE_SIZE);
922 	if (!dd->status)
923 		dd_dev_err(dd, "Failed to allocate dev status page\n");
924 	else
925 		dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
926 					     sizeof(dd->status->freezemsg));
927 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
928 		ppd = dd->pport + pidx;
929 		if (dd->status)
930 			/* Currently, we only have one port */
931 			ppd->statusp = &dd->status->port;
932 
933 		set_mtu(ppd);
934 	}
935 
936 	/* enable chip even if we have an error, so we can debug cause */
937 	enable_chip(dd);
938 
939 done:
940 	/*
941 	 * Set status even if port serdes is not initialized
942 	 * so that diags will work.
943 	 */
944 	if (dd->status)
945 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
946 			HFI1_STATUS_INITTED;
947 	if (!ret) {
948 		/* enable all interrupts from the chip */
949 		set_intr_state(dd, 1);
950 
951 		/* chip is OK for user apps; mark it as initialized */
952 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
953 			ppd = dd->pport + pidx;
954 
955 			/*
956 			 * start the serdes - must be after interrupts are
957 			 * enabled so we are notified when the link goes up
958 			 */
959 			lastfail = bringup_serdes(ppd);
960 			if (lastfail)
961 				dd_dev_info(dd,
962 					    "Failed to bring up port %u\n",
963 					    ppd->port);
964 
965 			/*
966 			 * Set status even if port serdes is not initialized
967 			 * so that diags will work.
968 			 */
969 			if (ppd->statusp)
970 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
971 							HFI1_STATUS_INITTED;
972 			if (!ppd->link_speed_enabled)
973 				continue;
974 		}
975 	}
976 
977 	/* if ret is non-zero, we probably should do some cleanup here... */
978 	return ret;
979 }
980 
981 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
982 {
983 	return idr_find(&hfi1_unit_table, unit);
984 }
985 
986 struct hfi1_devdata *hfi1_lookup(int unit)
987 {
988 	struct hfi1_devdata *dd;
989 	unsigned long flags;
990 
991 	spin_lock_irqsave(&hfi1_devs_lock, flags);
992 	dd = __hfi1_lookup(unit);
993 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
994 
995 	return dd;
996 }
997 
998 /*
999  * Stop the timers during unit shutdown, or after an error late
1000  * in initialization.
1001  */
1002 static void stop_timers(struct hfi1_devdata *dd)
1003 {
1004 	struct hfi1_pportdata *ppd;
1005 	int pidx;
1006 
1007 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1008 		ppd = dd->pport + pidx;
1009 		if (ppd->led_override_timer.data) {
1010 			del_timer_sync(&ppd->led_override_timer);
1011 			atomic_set(&ppd->led_override_timer_active, 0);
1012 		}
1013 	}
1014 }
1015 
1016 /**
1017  * shutdown_device - shut down a device
1018  * @dd: the hfi1_ib device
1019  *
1020  * This is called to make the device quiet when we are about to
1021  * unload the driver, and also when the device is administratively
1022  * disabled.   It does not free any data structures.
1023  * Everything it does has to be setup again by hfi1_init(dd, 1)
1024  */
1025 static void shutdown_device(struct hfi1_devdata *dd)
1026 {
1027 	struct hfi1_pportdata *ppd;
1028 	struct hfi1_ctxtdata *rcd;
1029 	unsigned pidx;
1030 	int i;
1031 
1032 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1033 		ppd = dd->pport + pidx;
1034 
1035 		ppd->linkup = 0;
1036 		if (ppd->statusp)
1037 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1038 					   HFI1_STATUS_IB_READY);
1039 	}
1040 	dd->flags &= ~HFI1_INITTED;
1041 
1042 	/* mask interrupts, but not errors */
1043 	set_intr_state(dd, 0);
1044 
1045 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1046 		ppd = dd->pport + pidx;
1047 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1048 			rcd = hfi1_rcd_get_by_index(dd, i);
1049 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1050 				     HFI1_RCVCTRL_CTXT_DIS |
1051 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1052 				     HFI1_RCVCTRL_PKEY_DIS |
1053 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1054 			hfi1_rcd_put(rcd);
1055 		}
1056 		/*
1057 		 * Gracefully stop all sends allowing any in progress to
1058 		 * trickle out first.
1059 		 */
1060 		for (i = 0; i < dd->num_send_contexts; i++)
1061 			sc_flush(dd->send_contexts[i].sc);
1062 	}
1063 
1064 	/*
1065 	 * Enough for anything that's going to trickle out to have actually
1066 	 * done so.
1067 	 */
1068 	udelay(20);
1069 
1070 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1071 		ppd = dd->pport + pidx;
1072 
1073 		/* disable all contexts */
1074 		for (i = 0; i < dd->num_send_contexts; i++)
1075 			sc_disable(dd->send_contexts[i].sc);
1076 		/* disable the send device */
1077 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1078 
1079 		shutdown_led_override(ppd);
1080 
1081 		/*
1082 		 * Clear SerdesEnable.
1083 		 * We can't count on interrupts since we are stopping.
1084 		 */
1085 		hfi1_quiet_serdes(ppd);
1086 
1087 		if (ppd->hfi1_wq) {
1088 			destroy_workqueue(ppd->hfi1_wq);
1089 			ppd->hfi1_wq = NULL;
1090 		}
1091 		if (ppd->link_wq) {
1092 			destroy_workqueue(ppd->link_wq);
1093 			ppd->link_wq = NULL;
1094 		}
1095 	}
1096 	sdma_exit(dd);
1097 }
1098 
1099 /**
1100  * hfi1_free_ctxtdata - free a context's allocated data
1101  * @dd: the hfi1_ib device
1102  * @rcd: the ctxtdata structure
1103  *
1104  * free up any allocated data for a context
1105  * It should never change any chip state, or global driver state.
1106  */
1107 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1108 {
1109 	u32 e;
1110 
1111 	if (!rcd)
1112 		return;
1113 
1114 	if (rcd->rcvhdrq) {
1115 		dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
1116 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1117 		rcd->rcvhdrq = NULL;
1118 		if (rcd->rcvhdrtail_kvaddr) {
1119 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1120 					  (void *)rcd->rcvhdrtail_kvaddr,
1121 					  rcd->rcvhdrqtailaddr_dma);
1122 			rcd->rcvhdrtail_kvaddr = NULL;
1123 		}
1124 	}
1125 
1126 	/* all the RcvArray entries should have been cleared by now */
1127 	kfree(rcd->egrbufs.rcvtids);
1128 	rcd->egrbufs.rcvtids = NULL;
1129 
1130 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1131 		if (rcd->egrbufs.buffers[e].dma)
1132 			dma_free_coherent(&dd->pcidev->dev,
1133 					  rcd->egrbufs.buffers[e].len,
1134 					  rcd->egrbufs.buffers[e].addr,
1135 					  rcd->egrbufs.buffers[e].dma);
1136 	}
1137 	kfree(rcd->egrbufs.buffers);
1138 	rcd->egrbufs.alloced = 0;
1139 	rcd->egrbufs.buffers = NULL;
1140 
1141 	sc_free(rcd->sc);
1142 	rcd->sc = NULL;
1143 
1144 	vfree(rcd->subctxt_uregbase);
1145 	vfree(rcd->subctxt_rcvegrbuf);
1146 	vfree(rcd->subctxt_rcvhdr_base);
1147 	kfree(rcd->opstats);
1148 
1149 	rcd->subctxt_uregbase = NULL;
1150 	rcd->subctxt_rcvegrbuf = NULL;
1151 	rcd->subctxt_rcvhdr_base = NULL;
1152 	rcd->opstats = NULL;
1153 }
1154 
1155 /*
1156  * Release our hold on the shared asic data.  If we are the last one,
1157  * return the structure to be finalized outside the lock.  Must be
1158  * holding hfi1_devs_lock.
1159  */
1160 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1161 {
1162 	struct hfi1_asic_data *ad;
1163 	int other;
1164 
1165 	if (!dd->asic_data)
1166 		return NULL;
1167 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1168 	other = dd->hfi1_id ? 0 : 1;
1169 	ad = dd->asic_data;
1170 	dd->asic_data = NULL;
1171 	/* return NULL if the other dd still has a link */
1172 	return ad->dds[other] ? NULL : ad;
1173 }
1174 
1175 static void finalize_asic_data(struct hfi1_devdata *dd,
1176 			       struct hfi1_asic_data *ad)
1177 {
1178 	clean_up_i2c(dd, ad);
1179 	kfree(ad);
1180 }
1181 
1182 static void __hfi1_free_devdata(struct kobject *kobj)
1183 {
1184 	struct hfi1_devdata *dd =
1185 		container_of(kobj, struct hfi1_devdata, kobj);
1186 	struct hfi1_asic_data *ad;
1187 	unsigned long flags;
1188 
1189 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1190 	idr_remove(&hfi1_unit_table, dd->unit);
1191 	list_del(&dd->list);
1192 	ad = release_asic_data(dd);
1193 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1194 	if (ad)
1195 		finalize_asic_data(dd, ad);
1196 	free_platform_config(dd);
1197 	rcu_barrier(); /* wait for rcu callbacks to complete */
1198 	free_percpu(dd->int_counter);
1199 	free_percpu(dd->rcv_limit);
1200 	free_percpu(dd->send_schedule);
1201 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1202 }
1203 
1204 static struct kobj_type hfi1_devdata_type = {
1205 	.release = __hfi1_free_devdata,
1206 };
1207 
1208 void hfi1_free_devdata(struct hfi1_devdata *dd)
1209 {
1210 	kobject_put(&dd->kobj);
1211 }
1212 
1213 /*
1214  * Allocate our primary per-unit data structure.  Must be done via verbs
1215  * allocator, because the verbs cleanup process both does cleanup and
1216  * free of the data structure.
1217  * "extra" is for chip-specific data.
1218  *
1219  * Use the idr mechanism to get a unit number for this unit.
1220  */
1221 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1222 {
1223 	unsigned long flags;
1224 	struct hfi1_devdata *dd;
1225 	int ret, nports;
1226 
1227 	/* extra is * number of ports */
1228 	nports = extra / sizeof(struct hfi1_pportdata);
1229 
1230 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1231 						     nports);
1232 	if (!dd)
1233 		return ERR_PTR(-ENOMEM);
1234 	dd->num_pports = nports;
1235 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1236 
1237 	INIT_LIST_HEAD(&dd->list);
1238 	idr_preload(GFP_KERNEL);
1239 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1240 
1241 	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1242 	if (ret >= 0) {
1243 		dd->unit = ret;
1244 		list_add(&dd->list, &hfi1_dev_list);
1245 	}
1246 
1247 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1248 	idr_preload_end();
1249 
1250 	if (ret < 0) {
1251 		hfi1_early_err(&pdev->dev,
1252 			       "Could not allocate unit ID: error %d\n", -ret);
1253 		goto bail;
1254 	}
1255 	/*
1256 	 * Initialize all locks for the device. This needs to be as early as
1257 	 * possible so locks are usable.
1258 	 */
1259 	spin_lock_init(&dd->sc_lock);
1260 	spin_lock_init(&dd->sendctrl_lock);
1261 	spin_lock_init(&dd->rcvctrl_lock);
1262 	spin_lock_init(&dd->uctxt_lock);
1263 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1264 	spin_lock_init(&dd->sc_init_lock);
1265 	spin_lock_init(&dd->dc8051_memlock);
1266 	seqlock_init(&dd->sc2vl_lock);
1267 	spin_lock_init(&dd->sde_map_lock);
1268 	spin_lock_init(&dd->pio_map_lock);
1269 	mutex_init(&dd->dc8051_lock);
1270 	init_waitqueue_head(&dd->event_queue);
1271 
1272 	dd->int_counter = alloc_percpu(u64);
1273 	if (!dd->int_counter) {
1274 		ret = -ENOMEM;
1275 		hfi1_early_err(&pdev->dev,
1276 			       "Could not allocate per-cpu int_counter\n");
1277 		goto bail;
1278 	}
1279 
1280 	dd->rcv_limit = alloc_percpu(u64);
1281 	if (!dd->rcv_limit) {
1282 		ret = -ENOMEM;
1283 		hfi1_early_err(&pdev->dev,
1284 			       "Could not allocate per-cpu rcv_limit\n");
1285 		goto bail;
1286 	}
1287 
1288 	dd->send_schedule = alloc_percpu(u64);
1289 	if (!dd->send_schedule) {
1290 		ret = -ENOMEM;
1291 		hfi1_early_err(&pdev->dev,
1292 			       "Could not allocate per-cpu int_counter\n");
1293 		goto bail;
1294 	}
1295 
1296 	if (!hfi1_cpulist_count) {
1297 		u32 count = num_online_cpus();
1298 
1299 		hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1300 				       GFP_KERNEL);
1301 		if (hfi1_cpulist)
1302 			hfi1_cpulist_count = count;
1303 		else
1304 			hfi1_early_err(
1305 			&pdev->dev,
1306 			"Could not alloc cpulist info, cpu affinity might be wrong\n");
1307 	}
1308 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1309 	return dd;
1310 
1311 bail:
1312 	if (!list_empty(&dd->list))
1313 		list_del_init(&dd->list);
1314 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1315 	return ERR_PTR(ret);
1316 }
1317 
1318 /*
1319  * Called from freeze mode handlers, and from PCI error
1320  * reporting code.  Should be paranoid about state of
1321  * system and data structures.
1322  */
1323 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1324 {
1325 	if (dd->flags & HFI1_INITTED) {
1326 		u32 pidx;
1327 
1328 		dd->flags &= ~HFI1_INITTED;
1329 		if (dd->pport)
1330 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1331 				struct hfi1_pportdata *ppd;
1332 
1333 				ppd = dd->pport + pidx;
1334 				if (dd->flags & HFI1_PRESENT)
1335 					set_link_state(ppd, HLS_DN_DISABLE);
1336 
1337 				if (ppd->statusp)
1338 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1339 			}
1340 	}
1341 
1342 	/*
1343 	 * Mark as having had an error for driver, and also
1344 	 * for /sys and status word mapped to user programs.
1345 	 * This marks unit as not usable, until reset.
1346 	 */
1347 	if (dd->status)
1348 		dd->status->dev |= HFI1_STATUS_HWERROR;
1349 }
1350 
1351 static void remove_one(struct pci_dev *);
1352 static int init_one(struct pci_dev *, const struct pci_device_id *);
1353 
1354 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1355 #define PFX DRIVER_NAME ": "
1356 
1357 const struct pci_device_id hfi1_pci_tbl[] = {
1358 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1359 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1360 	{ 0, }
1361 };
1362 
1363 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1364 
1365 static struct pci_driver hfi1_pci_driver = {
1366 	.name = DRIVER_NAME,
1367 	.probe = init_one,
1368 	.remove = remove_one,
1369 	.id_table = hfi1_pci_tbl,
1370 	.err_handler = &hfi1_pci_err_handler,
1371 };
1372 
1373 static void __init compute_krcvqs(void)
1374 {
1375 	int i;
1376 
1377 	for (i = 0; i < krcvqsset; i++)
1378 		n_krcvqs += krcvqs[i];
1379 }
1380 
1381 /*
1382  * Do all the generic driver unit- and chip-independent memory
1383  * allocation and initialization.
1384  */
1385 static int __init hfi1_mod_init(void)
1386 {
1387 	int ret;
1388 
1389 	ret = dev_init();
1390 	if (ret)
1391 		goto bail;
1392 
1393 	ret = node_affinity_init();
1394 	if (ret)
1395 		goto bail;
1396 
1397 	/* validate max MTU before any devices start */
1398 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1399 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1400 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1401 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1402 	}
1403 	/* valid CUs run from 1-128 in powers of 2 */
1404 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1405 		hfi1_cu = 1;
1406 	/* valid credit return threshold is 0-100, variable is unsigned */
1407 	if (user_credit_return_threshold > 100)
1408 		user_credit_return_threshold = 100;
1409 
1410 	compute_krcvqs();
1411 	/*
1412 	 * sanitize receive interrupt count, time must wait until after
1413 	 * the hardware type is known
1414 	 */
1415 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1416 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1417 	/* reject invalid combinations */
1418 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1419 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1420 		rcv_intr_count = 1;
1421 	}
1422 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1423 		/*
1424 		 * Avoid indefinite packet delivery by requiring a timeout
1425 		 * if count is > 1.
1426 		 */
1427 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1428 		rcv_intr_timeout = 1;
1429 	}
1430 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1431 		/*
1432 		 * The dynamic algorithm expects a non-zero timeout
1433 		 * and a count > 1.
1434 		 */
1435 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1436 		rcv_intr_dynamic = 0;
1437 	}
1438 
1439 	/* sanitize link CRC options */
1440 	link_crc_mask &= SUPPORTED_CRCS;
1441 
1442 	/*
1443 	 * These must be called before the driver is registered with
1444 	 * the PCI subsystem.
1445 	 */
1446 	idr_init(&hfi1_unit_table);
1447 
1448 	hfi1_dbg_init();
1449 	ret = hfi1_wss_init();
1450 	if (ret < 0)
1451 		goto bail_wss;
1452 	ret = pci_register_driver(&hfi1_pci_driver);
1453 	if (ret < 0) {
1454 		pr_err("Unable to register driver: error %d\n", -ret);
1455 		goto bail_dev;
1456 	}
1457 	goto bail; /* all OK */
1458 
1459 bail_dev:
1460 	hfi1_wss_exit();
1461 bail_wss:
1462 	hfi1_dbg_exit();
1463 	idr_destroy(&hfi1_unit_table);
1464 	dev_cleanup();
1465 bail:
1466 	return ret;
1467 }
1468 
1469 module_init(hfi1_mod_init);
1470 
1471 /*
1472  * Do the non-unit driver cleanup, memory free, etc. at unload.
1473  */
1474 static void __exit hfi1_mod_cleanup(void)
1475 {
1476 	pci_unregister_driver(&hfi1_pci_driver);
1477 	node_affinity_destroy();
1478 	hfi1_wss_exit();
1479 	hfi1_dbg_exit();
1480 	hfi1_cpulist_count = 0;
1481 	kfree(hfi1_cpulist);
1482 
1483 	idr_destroy(&hfi1_unit_table);
1484 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1485 	dev_cleanup();
1486 }
1487 
1488 module_exit(hfi1_mod_cleanup);
1489 
1490 /* this can only be called after a successful initialization */
1491 static void cleanup_device_data(struct hfi1_devdata *dd)
1492 {
1493 	int ctxt;
1494 	int pidx;
1495 
1496 	/* users can't do anything more with chip */
1497 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1498 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1499 		struct cc_state *cc_state;
1500 		int i;
1501 
1502 		if (ppd->statusp)
1503 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1504 
1505 		for (i = 0; i < OPA_MAX_SLS; i++)
1506 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1507 
1508 		spin_lock(&ppd->cc_state_lock);
1509 		cc_state = get_cc_state_protected(ppd);
1510 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1511 		spin_unlock(&ppd->cc_state_lock);
1512 
1513 		if (cc_state)
1514 			kfree_rcu(cc_state, rcu);
1515 	}
1516 
1517 	free_credit_return(dd);
1518 
1519 	if (dd->rcvhdrtail_dummy_kvaddr) {
1520 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1521 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1522 				  dd->rcvhdrtail_dummy_dma);
1523 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1524 	}
1525 
1526 	/*
1527 	 * Free any resources still in use (usually just kernel contexts)
1528 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1529 	 */
1530 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1531 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1532 
1533 		if (rcd) {
1534 			hfi1_clear_tids(rcd);
1535 			hfi1_free_ctxt(rcd);
1536 		}
1537 	}
1538 
1539 	kfree(dd->rcd);
1540 	dd->rcd = NULL;
1541 
1542 	free_pio_map(dd);
1543 	/* must follow rcv context free - need to remove rcv's hooks */
1544 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1545 		sc_free(dd->send_contexts[ctxt].sc);
1546 	dd->num_send_contexts = 0;
1547 	kfree(dd->send_contexts);
1548 	dd->send_contexts = NULL;
1549 	kfree(dd->hw_to_sw);
1550 	dd->hw_to_sw = NULL;
1551 	kfree(dd->boardname);
1552 	vfree(dd->events);
1553 	vfree(dd->status);
1554 }
1555 
1556 /*
1557  * Clean up on unit shutdown, or error during unit load after
1558  * successful initialization.
1559  */
1560 static void postinit_cleanup(struct hfi1_devdata *dd)
1561 {
1562 	hfi1_start_cleanup(dd);
1563 
1564 	hfi1_pcie_ddcleanup(dd);
1565 	hfi1_pcie_cleanup(dd->pcidev);
1566 
1567 	cleanup_device_data(dd);
1568 
1569 	hfi1_free_devdata(dd);
1570 }
1571 
1572 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1573 {
1574 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1575 		hfi1_early_err(dev, "Receive header queue count too small\n");
1576 		return -EINVAL;
1577 	}
1578 
1579 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1580 		hfi1_early_err(dev,
1581 			       "Receive header queue count cannot be greater than %u\n",
1582 			       HFI1_MAX_HDRQ_EGRBUF_CNT);
1583 		return -EINVAL;
1584 	}
1585 
1586 	if (thecnt % HDRQ_INCREMENT) {
1587 		hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1588 			       thecnt, HDRQ_INCREMENT);
1589 		return -EINVAL;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1596 {
1597 	int ret = 0, j, pidx, initfail;
1598 	struct hfi1_devdata *dd;
1599 	struct hfi1_pportdata *ppd;
1600 
1601 	/* First, lock the non-writable module parameters */
1602 	HFI1_CAP_LOCK();
1603 
1604 	/* Validate dev ids */
1605 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1606 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1607 		hfi1_early_err(&pdev->dev,
1608 			       "Failing on unknown Intel deviceid 0x%x\n",
1609 			       ent->device);
1610 		ret = -ENODEV;
1611 		goto bail;
1612 	}
1613 
1614 	/* Validate some global module parameters */
1615 	ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1616 	if (ret)
1617 		goto bail;
1618 
1619 	/* use the encoding function as a sanitization check */
1620 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1621 		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1622 			       hfi1_hdrq_entsize);
1623 		ret = -EINVAL;
1624 		goto bail;
1625 	}
1626 
1627 	/* The receive eager buffer size must be set before the receive
1628 	 * contexts are created.
1629 	 *
1630 	 * Set the eager buffer size.  Validate that it falls in a range
1631 	 * allowed by the hardware - all powers of 2 between the min and
1632 	 * max.  The maximum valid MTU is within the eager buffer range
1633 	 * so we do not need to cap the max_mtu by an eager buffer size
1634 	 * setting.
1635 	 */
1636 	if (eager_buffer_size) {
1637 		if (!is_power_of_2(eager_buffer_size))
1638 			eager_buffer_size =
1639 				roundup_pow_of_two(eager_buffer_size);
1640 		eager_buffer_size =
1641 			clamp_val(eager_buffer_size,
1642 				  MIN_EAGER_BUFFER * 8,
1643 				  MAX_EAGER_BUFFER_TOTAL);
1644 		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1645 				eager_buffer_size);
1646 	} else {
1647 		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1648 		ret = -EINVAL;
1649 		goto bail;
1650 	}
1651 
1652 	/* restrict value of hfi1_rcvarr_split */
1653 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1654 
1655 	ret = hfi1_pcie_init(pdev, ent);
1656 	if (ret)
1657 		goto bail;
1658 
1659 	/*
1660 	 * Do device-specific initialization, function table setup, dd
1661 	 * allocation, etc.
1662 	 */
1663 	dd = hfi1_init_dd(pdev, ent);
1664 
1665 	if (IS_ERR(dd)) {
1666 		ret = PTR_ERR(dd);
1667 		goto clean_bail; /* error already printed */
1668 	}
1669 
1670 	ret = create_workqueues(dd);
1671 	if (ret)
1672 		goto clean_bail;
1673 
1674 	/* do the generic initialization */
1675 	initfail = hfi1_init(dd, 0);
1676 
1677 	/* setup vnic */
1678 	hfi1_vnic_setup(dd);
1679 
1680 	ret = hfi1_register_ib_device(dd);
1681 
1682 	/*
1683 	 * Now ready for use.  this should be cleared whenever we
1684 	 * detect a reset, or initiate one.  If earlier failure,
1685 	 * we still create devices, so diags, etc. can be used
1686 	 * to determine cause of problem.
1687 	 */
1688 	if (!initfail && !ret) {
1689 		dd->flags |= HFI1_INITTED;
1690 		/* create debufs files after init and ib register */
1691 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1692 	}
1693 
1694 	j = hfi1_device_create(dd);
1695 	if (j)
1696 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1697 
1698 	if (initfail || ret) {
1699 		stop_timers(dd);
1700 		flush_workqueue(ib_wq);
1701 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1702 			hfi1_quiet_serdes(dd->pport + pidx);
1703 			ppd = dd->pport + pidx;
1704 			if (ppd->hfi1_wq) {
1705 				destroy_workqueue(ppd->hfi1_wq);
1706 				ppd->hfi1_wq = NULL;
1707 			}
1708 			if (ppd->link_wq) {
1709 				destroy_workqueue(ppd->link_wq);
1710 				ppd->link_wq = NULL;
1711 			}
1712 		}
1713 		if (!j)
1714 			hfi1_device_remove(dd);
1715 		if (!ret)
1716 			hfi1_unregister_ib_device(dd);
1717 		hfi1_vnic_cleanup(dd);
1718 		postinit_cleanup(dd);
1719 		if (initfail)
1720 			ret = initfail;
1721 		goto bail;	/* everything already cleaned */
1722 	}
1723 
1724 	sdma_start(dd);
1725 
1726 	return 0;
1727 
1728 clean_bail:
1729 	hfi1_pcie_cleanup(pdev);
1730 bail:
1731 	return ret;
1732 }
1733 
1734 static void wait_for_clients(struct hfi1_devdata *dd)
1735 {
1736 	/*
1737 	 * Remove the device init value and complete the device if there is
1738 	 * no clients or wait for active clients to finish.
1739 	 */
1740 	if (atomic_dec_and_test(&dd->user_refcount))
1741 		complete(&dd->user_comp);
1742 
1743 	wait_for_completion(&dd->user_comp);
1744 }
1745 
1746 static void remove_one(struct pci_dev *pdev)
1747 {
1748 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1749 
1750 	/* close debugfs files before ib unregister */
1751 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1752 
1753 	/* remove the /dev hfi1 interface */
1754 	hfi1_device_remove(dd);
1755 
1756 	/* wait for existing user space clients to finish */
1757 	wait_for_clients(dd);
1758 
1759 	/* unregister from IB core */
1760 	hfi1_unregister_ib_device(dd);
1761 
1762 	/* cleanup vnic */
1763 	hfi1_vnic_cleanup(dd);
1764 
1765 	/*
1766 	 * Disable the IB link, disable interrupts on the device,
1767 	 * clear dma engines, etc.
1768 	 */
1769 	shutdown_device(dd);
1770 
1771 	stop_timers(dd);
1772 
1773 	/* wait until all of our (qsfp) queue_work() calls complete */
1774 	flush_workqueue(ib_wq);
1775 
1776 	postinit_cleanup(dd);
1777 }
1778 
1779 /**
1780  * hfi1_create_rcvhdrq - create a receive header queue
1781  * @dd: the hfi1_ib device
1782  * @rcd: the context data
1783  *
1784  * This must be contiguous memory (from an i/o perspective), and must be
1785  * DMA'able (which means for some systems, it will go through an IOMMU,
1786  * or be forced into a low address range).
1787  */
1788 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1789 {
1790 	unsigned amt;
1791 	u64 reg;
1792 
1793 	if (!rcd->rcvhdrq) {
1794 		dma_addr_t dma_hdrqtail;
1795 		gfp_t gfp_flags;
1796 
1797 		/*
1798 		 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1799 		 * (* sizeof(u32)).
1800 		 */
1801 		amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1802 				 sizeof(u32));
1803 
1804 		if ((rcd->ctxt < dd->first_dyn_alloc_ctxt) ||
1805 		    (rcd->sc && (rcd->sc->type == SC_KERNEL)))
1806 			gfp_flags = GFP_KERNEL;
1807 		else
1808 			gfp_flags = GFP_USER;
1809 		rcd->rcvhdrq = dma_zalloc_coherent(
1810 			&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1811 			gfp_flags | __GFP_COMP);
1812 
1813 		if (!rcd->rcvhdrq) {
1814 			dd_dev_err(dd,
1815 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1816 				   amt, rcd->ctxt);
1817 			goto bail;
1818 		}
1819 
1820 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1821 			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1822 				&dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail,
1823 				gfp_flags);
1824 			if (!rcd->rcvhdrtail_kvaddr)
1825 				goto bail_free;
1826 			rcd->rcvhdrqtailaddr_dma = dma_hdrqtail;
1827 		}
1828 
1829 		rcd->rcvhdrq_size = amt;
1830 	}
1831 	/*
1832 	 * These values are per-context:
1833 	 *	RcvHdrCnt
1834 	 *	RcvHdrEntSize
1835 	 *	RcvHdrSize
1836 	 */
1837 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1838 			& RCV_HDR_CNT_CNT_MASK)
1839 		<< RCV_HDR_CNT_CNT_SHIFT;
1840 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1841 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1842 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1843 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1844 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1845 	reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1846 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1847 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1848 
1849 	/*
1850 	 * Program dummy tail address for every receive context
1851 	 * before enabling any receive context
1852 	 */
1853 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1854 			dd->rcvhdrtail_dummy_dma);
1855 
1856 	return 0;
1857 
1858 bail_free:
1859 	dd_dev_err(dd,
1860 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1861 		   rcd->ctxt);
1862 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1863 			  rcd->rcvhdrq_dma);
1864 	rcd->rcvhdrq = NULL;
1865 bail:
1866 	return -ENOMEM;
1867 }
1868 
1869 /**
1870  * allocate eager buffers, both kernel and user contexts.
1871  * @rcd: the context we are setting up.
1872  *
1873  * Allocate the eager TID buffers and program them into hip.
1874  * They are no longer completely contiguous, we do multiple allocation
1875  * calls.  Otherwise we get the OOM code involved, by asking for too
1876  * much per call, with disastrous results on some kernels.
1877  */
1878 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1879 {
1880 	struct hfi1_devdata *dd = rcd->dd;
1881 	u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1882 	gfp_t gfp_flags;
1883 	u16 order;
1884 	int ret = 0;
1885 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1886 
1887 	/*
1888 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1889 	 * coalesced (we hope); otherwise, even at order 4,
1890 	 * heavy filesystem activity makes these fail, and we can
1891 	 * use compound pages.
1892 	 */
1893 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1894 
1895 	/*
1896 	 * The minimum size of the eager buffers is a groups of MTU-sized
1897 	 * buffers.
1898 	 * The global eager_buffer_size parameter is checked against the
1899 	 * theoretical lower limit of the value. Here, we check against the
1900 	 * MTU.
1901 	 */
1902 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1903 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1904 	/*
1905 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1906 	 * size to the max MTU (page-aligned).
1907 	 */
1908 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1909 		rcd->egrbufs.rcvtid_size = round_mtu;
1910 
1911 	/*
1912 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1913 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1914 	 */
1915 	if (rcd->egrbufs.size <= (1 << 20))
1916 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1917 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1918 
1919 	while (alloced_bytes < rcd->egrbufs.size &&
1920 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1921 		rcd->egrbufs.buffers[idx].addr =
1922 			dma_zalloc_coherent(&dd->pcidev->dev,
1923 					    rcd->egrbufs.rcvtid_size,
1924 					    &rcd->egrbufs.buffers[idx].dma,
1925 					    gfp_flags);
1926 		if (rcd->egrbufs.buffers[idx].addr) {
1927 			rcd->egrbufs.buffers[idx].len =
1928 				rcd->egrbufs.rcvtid_size;
1929 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1930 				rcd->egrbufs.buffers[idx].addr;
1931 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1932 				rcd->egrbufs.buffers[idx].dma;
1933 			rcd->egrbufs.alloced++;
1934 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1935 			idx++;
1936 		} else {
1937 			u32 new_size, i, j;
1938 			u64 offset = 0;
1939 
1940 			/*
1941 			 * Fail the eager buffer allocation if:
1942 			 *   - we are already using the lowest acceptable size
1943 			 *   - we are using one-pkt-per-egr-buffer (this implies
1944 			 *     that we are accepting only one size)
1945 			 */
1946 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1947 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1948 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1949 					   rcd->ctxt);
1950 				ret = -ENOMEM;
1951 				goto bail_rcvegrbuf_phys;
1952 			}
1953 
1954 			new_size = rcd->egrbufs.rcvtid_size / 2;
1955 
1956 			/*
1957 			 * If the first attempt to allocate memory failed, don't
1958 			 * fail everything but continue with the next lower
1959 			 * size.
1960 			 */
1961 			if (idx == 0) {
1962 				rcd->egrbufs.rcvtid_size = new_size;
1963 				continue;
1964 			}
1965 
1966 			/*
1967 			 * Re-partition already allocated buffers to a smaller
1968 			 * size.
1969 			 */
1970 			rcd->egrbufs.alloced = 0;
1971 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1972 				if (i >= rcd->egrbufs.count)
1973 					break;
1974 				rcd->egrbufs.rcvtids[i].dma =
1975 					rcd->egrbufs.buffers[j].dma + offset;
1976 				rcd->egrbufs.rcvtids[i].addr =
1977 					rcd->egrbufs.buffers[j].addr + offset;
1978 				rcd->egrbufs.alloced++;
1979 				if ((rcd->egrbufs.buffers[j].dma + offset +
1980 				     new_size) ==
1981 				    (rcd->egrbufs.buffers[j].dma +
1982 				     rcd->egrbufs.buffers[j].len)) {
1983 					j++;
1984 					offset = 0;
1985 				} else {
1986 					offset += new_size;
1987 				}
1988 			}
1989 			rcd->egrbufs.rcvtid_size = new_size;
1990 		}
1991 	}
1992 	rcd->egrbufs.numbufs = idx;
1993 	rcd->egrbufs.size = alloced_bytes;
1994 
1995 	hfi1_cdbg(PROC,
1996 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1997 		  rcd->ctxt, rcd->egrbufs.alloced,
1998 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1999 
2000 	/*
2001 	 * Set the contexts rcv array head update threshold to the closest
2002 	 * power of 2 (so we can use a mask instead of modulo) below half
2003 	 * the allocated entries.
2004 	 */
2005 	rcd->egrbufs.threshold =
2006 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2007 	/*
2008 	 * Compute the expected RcvArray entry base. This is done after
2009 	 * allocating the eager buffers in order to maximize the
2010 	 * expected RcvArray entries for the context.
2011 	 */
2012 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2013 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2014 	rcd->expected_count = max_entries - egrtop;
2015 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2016 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2017 
2018 	rcd->expected_base = rcd->eager_base + egrtop;
2019 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2020 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2021 		  rcd->eager_base, rcd->expected_base);
2022 
2023 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2024 		hfi1_cdbg(PROC,
2025 			  "ctxt%u: current Eager buffer size is invalid %u\n",
2026 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
2027 		ret = -EINVAL;
2028 		goto bail_rcvegrbuf_phys;
2029 	}
2030 
2031 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2032 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2033 			     rcd->egrbufs.rcvtids[idx].dma, order);
2034 		cond_resched();
2035 	}
2036 
2037 	return 0;
2038 
2039 bail_rcvegrbuf_phys:
2040 	for (idx = 0; idx < rcd->egrbufs.alloced &&
2041 	     rcd->egrbufs.buffers[idx].addr;
2042 	     idx++) {
2043 		dma_free_coherent(&dd->pcidev->dev,
2044 				  rcd->egrbufs.buffers[idx].len,
2045 				  rcd->egrbufs.buffers[idx].addr,
2046 				  rcd->egrbufs.buffers[idx].dma);
2047 		rcd->egrbufs.buffers[idx].addr = NULL;
2048 		rcd->egrbufs.buffers[idx].dma = 0;
2049 		rcd->egrbufs.buffers[idx].len = 0;
2050 	}
2051 
2052 	return ret;
2053 }
2054