xref: /linux/drivers/infiniband/hw/hfi1/init.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <rdma/rdma_vt.h>
58 
59 #include "hfi.h"
60 #include "device.h"
61 #include "common.h"
62 #include "trace.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 #include "aspm.h"
68 #include "affinity.h"
69 #include "vnic.h"
70 
71 #undef pr_fmt
72 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
73 
74 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
75 /*
76  * min buffers we want to have per context, after driver
77  */
78 #define HFI1_MIN_USER_CTXT_BUFCNT 7
79 
80 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
81 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
82 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
83 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
84 
85 /*
86  * Number of user receive contexts we are configured to use (to allow for more
87  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
88  */
89 int num_user_contexts = -1;
90 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO);
91 MODULE_PARM_DESC(
92 	num_user_contexts, "Set max number of user contexts to use");
93 
94 uint krcvqs[RXE_NUM_DATA_VL];
95 int krcvqsset;
96 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
97 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
98 
99 /* computed based on above array */
100 unsigned long n_krcvqs;
101 
102 static unsigned hfi1_rcvarr_split = 25;
103 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
104 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
105 
106 static uint eager_buffer_size = (8 << 20); /* 8MB */
107 module_param(eager_buffer_size, uint, S_IRUGO);
108 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
109 
110 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
111 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
112 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
113 
114 static uint hfi1_hdrq_entsize = 32;
115 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
116 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
117 
118 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
119 module_param(user_credit_return_threshold, uint, S_IRUGO);
120 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
121 
122 static inline u64 encode_rcv_header_entry_size(u16 size);
123 
124 static struct idr hfi1_unit_table;
125 u32 hfi1_cpulist_count;
126 unsigned long *hfi1_cpulist;
127 
128 /*
129  * Common code for creating the receive context array.
130  */
131 int hfi1_create_ctxts(struct hfi1_devdata *dd)
132 {
133 	unsigned i;
134 	int ret;
135 
136 	/* Control context has to be always 0 */
137 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
138 
139 	dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd),
140 			       GFP_KERNEL, dd->node);
141 	if (!dd->rcd)
142 		goto nomem;
143 
144 	/* create one or more kernel contexts */
145 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
146 		struct hfi1_pportdata *ppd;
147 		struct hfi1_ctxtdata *rcd;
148 
149 		ppd = dd->pport + (i % dd->num_pports);
150 
151 		/* dd->rcd[i] gets assigned inside the callee */
152 		rcd = hfi1_create_ctxtdata(ppd, i, dd->node);
153 		if (!rcd) {
154 			dd_dev_err(dd,
155 				   "Unable to allocate kernel receive context, failing\n");
156 			goto nomem;
157 		}
158 		/*
159 		 * Set up the kernel context flags here and now because they
160 		 * use default values for all receive side memories.  User
161 		 * contexts will be handled as they are created.
162 		 */
163 		rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
164 			HFI1_CAP_KGET(NODROP_RHQ_FULL) |
165 			HFI1_CAP_KGET(NODROP_EGR_FULL) |
166 			HFI1_CAP_KGET(DMA_RTAIL);
167 
168 		/* Control context must use DMA_RTAIL */
169 		if (rcd->ctxt == HFI1_CTRL_CTXT)
170 			rcd->flags |= HFI1_CAP_DMA_RTAIL;
171 		rcd->seq_cnt = 1;
172 
173 		rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
174 		if (!rcd->sc) {
175 			dd_dev_err(dd,
176 				   "Unable to allocate kernel send context, failing\n");
177 			goto nomem;
178 		}
179 
180 		hfi1_init_ctxt(rcd->sc);
181 	}
182 
183 	/*
184 	 * Initialize aspm, to be done after gen3 transition and setting up
185 	 * contexts and before enabling interrupts
186 	 */
187 	aspm_init(dd);
188 
189 	return 0;
190 nomem:
191 	ret = -ENOMEM;
192 
193 	if (dd->rcd) {
194 		for (i = 0; i < dd->num_rcv_contexts; ++i)
195 			hfi1_free_ctxtdata(dd, dd->rcd[i]);
196 	}
197 	kfree(dd->rcd);
198 	dd->rcd = NULL;
199 	return ret;
200 }
201 
202 /*
203  * Common code for user and kernel context setup.
204  */
205 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt,
206 					   int numa)
207 {
208 	struct hfi1_devdata *dd = ppd->dd;
209 	struct hfi1_ctxtdata *rcd;
210 	unsigned kctxt_ngroups = 0;
211 	u32 base;
212 
213 	if (dd->rcv_entries.nctxt_extra >
214 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
215 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
216 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
217 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
218 	if (rcd) {
219 		u32 rcvtids, max_entries;
220 
221 		hfi1_cdbg(PROC, "setting up context %u\n", ctxt);
222 
223 		INIT_LIST_HEAD(&rcd->qp_wait_list);
224 		rcd->ppd = ppd;
225 		rcd->dd = dd;
226 		__set_bit(0, rcd->in_use_ctxts);
227 		rcd->ctxt = ctxt;
228 		dd->rcd[ctxt] = rcd;
229 		rcd->numa_id = numa;
230 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
231 
232 		mutex_init(&rcd->exp_lock);
233 
234 		/*
235 		 * Calculate the context's RcvArray entry starting point.
236 		 * We do this here because we have to take into account all
237 		 * the RcvArray entries that previous context would have
238 		 * taken and we have to account for any extra groups assigned
239 		 * to the static (kernel) or dynamic (vnic/user) contexts.
240 		 */
241 		if (ctxt < dd->first_dyn_alloc_ctxt) {
242 			if (ctxt < kctxt_ngroups) {
243 				base = ctxt * (dd->rcv_entries.ngroups + 1);
244 				rcd->rcv_array_groups++;
245 			} else {
246 				base = kctxt_ngroups +
247 					(ctxt * dd->rcv_entries.ngroups);
248 			}
249 		} else {
250 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
251 
252 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
253 				kctxt_ngroups);
254 			if (ct < dd->rcv_entries.nctxt_extra) {
255 				base += ct * (dd->rcv_entries.ngroups + 1);
256 				rcd->rcv_array_groups++;
257 			} else {
258 				base += dd->rcv_entries.nctxt_extra +
259 					(ct * dd->rcv_entries.ngroups);
260 			}
261 		}
262 		rcd->eager_base = base * dd->rcv_entries.group_size;
263 
264 		rcd->rcvhdrq_cnt = rcvhdrcnt;
265 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
266 		/*
267 		 * Simple Eager buffer allocation: we have already pre-allocated
268 		 * the number of RcvArray entry groups. Each ctxtdata structure
269 		 * holds the number of groups for that context.
270 		 *
271 		 * To follow CSR requirements and maintain cacheline alignment,
272 		 * make sure all sizes and bases are multiples of group_size.
273 		 *
274 		 * The expected entry count is what is left after assigning
275 		 * eager.
276 		 */
277 		max_entries = rcd->rcv_array_groups *
278 			dd->rcv_entries.group_size;
279 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
280 		rcd->egrbufs.count = round_down(rcvtids,
281 						dd->rcv_entries.group_size);
282 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
283 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
284 				   rcd->ctxt);
285 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
286 		}
287 		hfi1_cdbg(PROC,
288 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
289 			  rcd->ctxt, rcd->egrbufs.count);
290 
291 		/*
292 		 * Allocate array that will hold the eager buffer accounting
293 		 * data.
294 		 * This will allocate the maximum possible buffer count based
295 		 * on the value of the RcvArray split parameter.
296 		 * The resulting value will be rounded down to the closest
297 		 * multiple of dd->rcv_entries.group_size.
298 		 */
299 		rcd->egrbufs.buffers = kzalloc_node(
300 			rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers),
301 			GFP_KERNEL, numa);
302 		if (!rcd->egrbufs.buffers)
303 			goto bail;
304 		rcd->egrbufs.rcvtids = kzalloc_node(
305 				rcd->egrbufs.count *
306 				sizeof(*rcd->egrbufs.rcvtids),
307 				GFP_KERNEL, numa);
308 		if (!rcd->egrbufs.rcvtids)
309 			goto bail;
310 		rcd->egrbufs.size = eager_buffer_size;
311 		/*
312 		 * The size of the buffers programmed into the RcvArray
313 		 * entries needs to be big enough to handle the highest
314 		 * MTU supported.
315 		 */
316 		if (rcd->egrbufs.size < hfi1_max_mtu) {
317 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
318 			hfi1_cdbg(PROC,
319 				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
320 				    rcd->ctxt, rcd->egrbufs.size);
321 		}
322 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
323 
324 		/* Applicable only for statically created kernel contexts */
325 		if (ctxt < dd->first_dyn_alloc_ctxt) {
326 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
327 						    GFP_KERNEL, numa);
328 			if (!rcd->opstats)
329 				goto bail;
330 		}
331 	}
332 	return rcd;
333 bail:
334 	dd->rcd[ctxt] = NULL;
335 	kfree(rcd->egrbufs.rcvtids);
336 	kfree(rcd->egrbufs.buffers);
337 	kfree(rcd);
338 	return NULL;
339 }
340 
341 /*
342  * Convert a receive header entry size that to the encoding used in the CSR.
343  *
344  * Return a zero if the given size is invalid.
345  */
346 static inline u64 encode_rcv_header_entry_size(u16 size)
347 {
348 	/* there are only 3 valid receive header entry sizes */
349 	if (size == 2)
350 		return 1;
351 	if (size == 16)
352 		return 2;
353 	else if (size == 32)
354 		return 4;
355 	return 0; /* invalid */
356 }
357 
358 /*
359  * Select the largest ccti value over all SLs to determine the intra-
360  * packet gap for the link.
361  *
362  * called with cca_timer_lock held (to protect access to cca_timer
363  * array), and rcu_read_lock() (to protect access to cc_state).
364  */
365 void set_link_ipg(struct hfi1_pportdata *ppd)
366 {
367 	struct hfi1_devdata *dd = ppd->dd;
368 	struct cc_state *cc_state;
369 	int i;
370 	u16 cce, ccti_limit, max_ccti = 0;
371 	u16 shift, mult;
372 	u64 src;
373 	u32 current_egress_rate; /* Mbits /sec */
374 	u32 max_pkt_time;
375 	/*
376 	 * max_pkt_time is the maximum packet egress time in units
377 	 * of the fabric clock period 1/(805 MHz).
378 	 */
379 
380 	cc_state = get_cc_state(ppd);
381 
382 	if (!cc_state)
383 		/*
384 		 * This should _never_ happen - rcu_read_lock() is held,
385 		 * and set_link_ipg() should not be called if cc_state
386 		 * is NULL.
387 		 */
388 		return;
389 
390 	for (i = 0; i < OPA_MAX_SLS; i++) {
391 		u16 ccti = ppd->cca_timer[i].ccti;
392 
393 		if (ccti > max_ccti)
394 			max_ccti = ccti;
395 	}
396 
397 	ccti_limit = cc_state->cct.ccti_limit;
398 	if (max_ccti > ccti_limit)
399 		max_ccti = ccti_limit;
400 
401 	cce = cc_state->cct.entries[max_ccti].entry;
402 	shift = (cce & 0xc000) >> 14;
403 	mult = (cce & 0x3fff);
404 
405 	current_egress_rate = active_egress_rate(ppd);
406 
407 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
408 
409 	src = (max_pkt_time >> shift) * mult;
410 
411 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
412 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
413 
414 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
415 }
416 
417 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
418 {
419 	struct cca_timer *cca_timer;
420 	struct hfi1_pportdata *ppd;
421 	int sl;
422 	u16 ccti_timer, ccti_min;
423 	struct cc_state *cc_state;
424 	unsigned long flags;
425 	enum hrtimer_restart ret = HRTIMER_NORESTART;
426 
427 	cca_timer = container_of(t, struct cca_timer, hrtimer);
428 	ppd = cca_timer->ppd;
429 	sl = cca_timer->sl;
430 
431 	rcu_read_lock();
432 
433 	cc_state = get_cc_state(ppd);
434 
435 	if (!cc_state) {
436 		rcu_read_unlock();
437 		return HRTIMER_NORESTART;
438 	}
439 
440 	/*
441 	 * 1) decrement ccti for SL
442 	 * 2) calculate IPG for link (set_link_ipg())
443 	 * 3) restart timer, unless ccti is at min value
444 	 */
445 
446 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
447 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
448 
449 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
450 
451 	if (cca_timer->ccti > ccti_min) {
452 		cca_timer->ccti--;
453 		set_link_ipg(ppd);
454 	}
455 
456 	if (cca_timer->ccti > ccti_min) {
457 		unsigned long nsec = 1024 * ccti_timer;
458 		/* ccti_timer is in units of 1.024 usec */
459 		hrtimer_forward_now(t, ns_to_ktime(nsec));
460 		ret = HRTIMER_RESTART;
461 	}
462 
463 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
464 	rcu_read_unlock();
465 	return ret;
466 }
467 
468 /*
469  * Common code for initializing the physical port structure.
470  */
471 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
472 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
473 {
474 	int i;
475 	uint default_pkey_idx;
476 	struct cc_state *cc_state;
477 
478 	ppd->dd = dd;
479 	ppd->hw_pidx = hw_pidx;
480 	ppd->port = port; /* IB port number, not index */
481 
482 	default_pkey_idx = 1;
483 
484 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
485 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
486 	ppd->part_enforce |= HFI1_PART_ENFORCE_OUT;
487 
488 	if (loopback) {
489 		hfi1_early_err(&pdev->dev,
490 			       "Faking data partition 0x8001 in idx %u\n",
491 			       !default_pkey_idx);
492 		ppd->pkeys[!default_pkey_idx] = 0x8001;
493 	}
494 
495 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
496 	INIT_WORK(&ppd->link_up_work, handle_link_up);
497 	INIT_WORK(&ppd->link_down_work, handle_link_down);
498 	INIT_WORK(&ppd->freeze_work, handle_freeze);
499 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
500 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
501 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
502 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
503 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
504 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
505 
506 	mutex_init(&ppd->hls_lock);
507 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
508 
509 	ppd->qsfp_info.ppd = ppd;
510 	ppd->sm_trap_qp = 0x0;
511 	ppd->sa_qp = 0x1;
512 
513 	ppd->hfi1_wq = NULL;
514 
515 	spin_lock_init(&ppd->cca_timer_lock);
516 
517 	for (i = 0; i < OPA_MAX_SLS; i++) {
518 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
519 			     HRTIMER_MODE_REL);
520 		ppd->cca_timer[i].ppd = ppd;
521 		ppd->cca_timer[i].sl = i;
522 		ppd->cca_timer[i].ccti = 0;
523 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
524 	}
525 
526 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
527 
528 	spin_lock_init(&ppd->cc_state_lock);
529 	spin_lock_init(&ppd->cc_log_lock);
530 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
531 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
532 	if (!cc_state)
533 		goto bail;
534 	return;
535 
536 bail:
537 
538 	hfi1_early_err(&pdev->dev,
539 		       "Congestion Control Agent disabled for port %d\n", port);
540 }
541 
542 /*
543  * Do initialization for device that is only needed on
544  * first detect, not on resets.
545  */
546 static int loadtime_init(struct hfi1_devdata *dd)
547 {
548 	return 0;
549 }
550 
551 /**
552  * init_after_reset - re-initialize after a reset
553  * @dd: the hfi1_ib device
554  *
555  * sanity check at least some of the values after reset, and
556  * ensure no receive or transmit (explicitly, in case reset
557  * failed
558  */
559 static int init_after_reset(struct hfi1_devdata *dd)
560 {
561 	int i;
562 
563 	/*
564 	 * Ensure chip does no sends or receives, tail updates, or
565 	 * pioavail updates while we re-initialize.  This is mostly
566 	 * for the driver data structures, not chip registers.
567 	 */
568 	for (i = 0; i < dd->num_rcv_contexts; i++)
569 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
570 				  HFI1_RCVCTRL_INTRAVAIL_DIS |
571 				  HFI1_RCVCTRL_TAILUPD_DIS, i);
572 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
573 	for (i = 0; i < dd->num_send_contexts; i++)
574 		sc_disable(dd->send_contexts[i].sc);
575 
576 	return 0;
577 }
578 
579 static void enable_chip(struct hfi1_devdata *dd)
580 {
581 	u32 rcvmask;
582 	u32 i;
583 
584 	/* enable PIO send */
585 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
586 
587 	/*
588 	 * Enable kernel ctxts' receive and receive interrupt.
589 	 * Other ctxts done as user opens and initializes them.
590 	 */
591 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
592 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
593 		rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
594 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
595 		if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
596 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
597 		if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
598 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
599 		if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
600 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
601 		hfi1_rcvctrl(dd, rcvmask, i);
602 		sc_enable(dd->rcd[i]->sc);
603 	}
604 }
605 
606 /**
607  * create_workqueues - create per port workqueues
608  * @dd: the hfi1_ib device
609  */
610 static int create_workqueues(struct hfi1_devdata *dd)
611 {
612 	int pidx;
613 	struct hfi1_pportdata *ppd;
614 
615 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
616 		ppd = dd->pport + pidx;
617 		if (!ppd->hfi1_wq) {
618 			ppd->hfi1_wq =
619 				alloc_workqueue(
620 				    "hfi%d_%d",
621 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
622 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
623 				    dd->unit, pidx);
624 			if (!ppd->hfi1_wq)
625 				goto wq_error;
626 		}
627 	}
628 	return 0;
629 wq_error:
630 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
631 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
632 		ppd = dd->pport + pidx;
633 		if (ppd->hfi1_wq) {
634 			destroy_workqueue(ppd->hfi1_wq);
635 			ppd->hfi1_wq = NULL;
636 		}
637 	}
638 	return -ENOMEM;
639 }
640 
641 /**
642  * hfi1_init - do the actual initialization sequence on the chip
643  * @dd: the hfi1_ib device
644  * @reinit: re-initializing, so don't allocate new memory
645  *
646  * Do the actual initialization sequence on the chip.  This is done
647  * both from the init routine called from the PCI infrastructure, and
648  * when we reset the chip, or detect that it was reset internally,
649  * or it's administratively re-enabled.
650  *
651  * Memory allocation here and in called routines is only done in
652  * the first case (reinit == 0).  We have to be careful, because even
653  * without memory allocation, we need to re-write all the chip registers
654  * TIDs, etc. after the reset or enable has completed.
655  */
656 int hfi1_init(struct hfi1_devdata *dd, int reinit)
657 {
658 	int ret = 0, pidx, lastfail = 0;
659 	unsigned i, len;
660 	struct hfi1_ctxtdata *rcd;
661 	struct hfi1_pportdata *ppd;
662 
663 	/* Set up recv low level handlers */
664 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
665 						kdeth_process_expected;
666 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
667 						kdeth_process_eager;
668 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
669 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
670 						process_receive_error;
671 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
672 						process_receive_bypass;
673 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
674 						process_receive_invalid;
675 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
676 						process_receive_invalid;
677 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
678 						process_receive_invalid;
679 	dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
680 
681 	/* Set up send low level handlers */
682 	dd->process_pio_send = hfi1_verbs_send_pio;
683 	dd->process_dma_send = hfi1_verbs_send_dma;
684 	dd->pio_inline_send = pio_copy;
685 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
686 
687 	if (is_ax(dd)) {
688 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
689 		dd->do_drop = 1;
690 	} else {
691 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
692 		dd->do_drop = 0;
693 	}
694 
695 	/* make sure the link is not "up" */
696 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
697 		ppd = dd->pport + pidx;
698 		ppd->linkup = 0;
699 	}
700 
701 	if (reinit)
702 		ret = init_after_reset(dd);
703 	else
704 		ret = loadtime_init(dd);
705 	if (ret)
706 		goto done;
707 
708 	/* allocate dummy tail memory for all receive contexts */
709 	dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
710 		&dd->pcidev->dev, sizeof(u64),
711 		&dd->rcvhdrtail_dummy_dma,
712 		GFP_KERNEL);
713 
714 	if (!dd->rcvhdrtail_dummy_kvaddr) {
715 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
716 		ret = -ENOMEM;
717 		goto done;
718 	}
719 
720 	/* dd->rcd can be NULL if early initialization failed */
721 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
722 		/*
723 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
724 		 * re-init, the simplest way to handle this is to free
725 		 * existing, and re-allocate.
726 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
727 		 */
728 		rcd = dd->rcd[i];
729 		if (!rcd)
730 			continue;
731 
732 		rcd->do_interrupt = &handle_receive_interrupt;
733 
734 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
735 		if (!lastfail)
736 			lastfail = hfi1_setup_eagerbufs(rcd);
737 		if (lastfail) {
738 			dd_dev_err(dd,
739 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
740 			ret = lastfail;
741 		}
742 	}
743 
744 	/* Allocate enough memory for user event notification. */
745 	len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
746 			 sizeof(*dd->events));
747 	dd->events = vmalloc_user(len);
748 	if (!dd->events)
749 		dd_dev_err(dd, "Failed to allocate user events page\n");
750 	/*
751 	 * Allocate a page for device and port status.
752 	 * Page will be shared amongst all user processes.
753 	 */
754 	dd->status = vmalloc_user(PAGE_SIZE);
755 	if (!dd->status)
756 		dd_dev_err(dd, "Failed to allocate dev status page\n");
757 	else
758 		dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
759 					     sizeof(dd->status->freezemsg));
760 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
761 		ppd = dd->pport + pidx;
762 		if (dd->status)
763 			/* Currently, we only have one port */
764 			ppd->statusp = &dd->status->port;
765 
766 		set_mtu(ppd);
767 	}
768 
769 	/* enable chip even if we have an error, so we can debug cause */
770 	enable_chip(dd);
771 
772 done:
773 	/*
774 	 * Set status even if port serdes is not initialized
775 	 * so that diags will work.
776 	 */
777 	if (dd->status)
778 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
779 			HFI1_STATUS_INITTED;
780 	if (!ret) {
781 		/* enable all interrupts from the chip */
782 		set_intr_state(dd, 1);
783 
784 		/* chip is OK for user apps; mark it as initialized */
785 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
786 			ppd = dd->pport + pidx;
787 
788 			/*
789 			 * start the serdes - must be after interrupts are
790 			 * enabled so we are notified when the link goes up
791 			 */
792 			lastfail = bringup_serdes(ppd);
793 			if (lastfail)
794 				dd_dev_info(dd,
795 					    "Failed to bring up port %u\n",
796 					    ppd->port);
797 
798 			/*
799 			 * Set status even if port serdes is not initialized
800 			 * so that diags will work.
801 			 */
802 			if (ppd->statusp)
803 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
804 							HFI1_STATUS_INITTED;
805 			if (!ppd->link_speed_enabled)
806 				continue;
807 		}
808 	}
809 
810 	/* if ret is non-zero, we probably should do some cleanup here... */
811 	return ret;
812 }
813 
814 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
815 {
816 	return idr_find(&hfi1_unit_table, unit);
817 }
818 
819 struct hfi1_devdata *hfi1_lookup(int unit)
820 {
821 	struct hfi1_devdata *dd;
822 	unsigned long flags;
823 
824 	spin_lock_irqsave(&hfi1_devs_lock, flags);
825 	dd = __hfi1_lookup(unit);
826 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
827 
828 	return dd;
829 }
830 
831 /*
832  * Stop the timers during unit shutdown, or after an error late
833  * in initialization.
834  */
835 static void stop_timers(struct hfi1_devdata *dd)
836 {
837 	struct hfi1_pportdata *ppd;
838 	int pidx;
839 
840 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
841 		ppd = dd->pport + pidx;
842 		if (ppd->led_override_timer.data) {
843 			del_timer_sync(&ppd->led_override_timer);
844 			atomic_set(&ppd->led_override_timer_active, 0);
845 		}
846 	}
847 }
848 
849 /**
850  * shutdown_device - shut down a device
851  * @dd: the hfi1_ib device
852  *
853  * This is called to make the device quiet when we are about to
854  * unload the driver, and also when the device is administratively
855  * disabled.   It does not free any data structures.
856  * Everything it does has to be setup again by hfi1_init(dd, 1)
857  */
858 static void shutdown_device(struct hfi1_devdata *dd)
859 {
860 	struct hfi1_pportdata *ppd;
861 	unsigned pidx;
862 	int i;
863 
864 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
865 		ppd = dd->pport + pidx;
866 
867 		ppd->linkup = 0;
868 		if (ppd->statusp)
869 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
870 					   HFI1_STATUS_IB_READY);
871 	}
872 	dd->flags &= ~HFI1_INITTED;
873 
874 	/* mask interrupts, but not errors */
875 	set_intr_state(dd, 0);
876 
877 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
878 		ppd = dd->pport + pidx;
879 		for (i = 0; i < dd->num_rcv_contexts; i++)
880 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
881 					  HFI1_RCVCTRL_CTXT_DIS |
882 					  HFI1_RCVCTRL_INTRAVAIL_DIS |
883 					  HFI1_RCVCTRL_PKEY_DIS |
884 					  HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
885 		/*
886 		 * Gracefully stop all sends allowing any in progress to
887 		 * trickle out first.
888 		 */
889 		for (i = 0; i < dd->num_send_contexts; i++)
890 			sc_flush(dd->send_contexts[i].sc);
891 	}
892 
893 	/*
894 	 * Enough for anything that's going to trickle out to have actually
895 	 * done so.
896 	 */
897 	udelay(20);
898 
899 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
900 		ppd = dd->pport + pidx;
901 
902 		/* disable all contexts */
903 		for (i = 0; i < dd->num_send_contexts; i++)
904 			sc_disable(dd->send_contexts[i].sc);
905 		/* disable the send device */
906 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
907 
908 		shutdown_led_override(ppd);
909 
910 		/*
911 		 * Clear SerdesEnable.
912 		 * We can't count on interrupts since we are stopping.
913 		 */
914 		hfi1_quiet_serdes(ppd);
915 
916 		if (ppd->hfi1_wq) {
917 			destroy_workqueue(ppd->hfi1_wq);
918 			ppd->hfi1_wq = NULL;
919 		}
920 	}
921 	sdma_exit(dd);
922 }
923 
924 /**
925  * hfi1_free_ctxtdata - free a context's allocated data
926  * @dd: the hfi1_ib device
927  * @rcd: the ctxtdata structure
928  *
929  * free up any allocated data for a context
930  * This should not touch anything that would affect a simultaneous
931  * re-allocation of context data, because it is called after hfi1_mutex
932  * is released (and can be called from reinit as well).
933  * It should never change any chip state, or global driver state.
934  */
935 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
936 {
937 	unsigned e;
938 
939 	if (!rcd)
940 		return;
941 
942 	if (rcd->rcvhdrq) {
943 		dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
944 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
945 		rcd->rcvhdrq = NULL;
946 		if (rcd->rcvhdrtail_kvaddr) {
947 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
948 					  (void *)rcd->rcvhdrtail_kvaddr,
949 					  rcd->rcvhdrqtailaddr_dma);
950 			rcd->rcvhdrtail_kvaddr = NULL;
951 		}
952 	}
953 
954 	/* all the RcvArray entries should have been cleared by now */
955 	kfree(rcd->egrbufs.rcvtids);
956 
957 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
958 		if (rcd->egrbufs.buffers[e].dma)
959 			dma_free_coherent(&dd->pcidev->dev,
960 					  rcd->egrbufs.buffers[e].len,
961 					  rcd->egrbufs.buffers[e].addr,
962 					  rcd->egrbufs.buffers[e].dma);
963 	}
964 	kfree(rcd->egrbufs.buffers);
965 
966 	sc_free(rcd->sc);
967 	vfree(rcd->subctxt_uregbase);
968 	vfree(rcd->subctxt_rcvegrbuf);
969 	vfree(rcd->subctxt_rcvhdr_base);
970 	kfree(rcd->opstats);
971 	kfree(rcd);
972 }
973 
974 /*
975  * Release our hold on the shared asic data.  If we are the last one,
976  * return the structure to be finalized outside the lock.  Must be
977  * holding hfi1_devs_lock.
978  */
979 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
980 {
981 	struct hfi1_asic_data *ad;
982 	int other;
983 
984 	if (!dd->asic_data)
985 		return NULL;
986 	dd->asic_data->dds[dd->hfi1_id] = NULL;
987 	other = dd->hfi1_id ? 0 : 1;
988 	ad = dd->asic_data;
989 	dd->asic_data = NULL;
990 	/* return NULL if the other dd still has a link */
991 	return ad->dds[other] ? NULL : ad;
992 }
993 
994 static void finalize_asic_data(struct hfi1_devdata *dd,
995 			       struct hfi1_asic_data *ad)
996 {
997 	clean_up_i2c(dd, ad);
998 	kfree(ad);
999 }
1000 
1001 static void __hfi1_free_devdata(struct kobject *kobj)
1002 {
1003 	struct hfi1_devdata *dd =
1004 		container_of(kobj, struct hfi1_devdata, kobj);
1005 	struct hfi1_asic_data *ad;
1006 	unsigned long flags;
1007 
1008 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1009 	idr_remove(&hfi1_unit_table, dd->unit);
1010 	list_del(&dd->list);
1011 	ad = release_asic_data(dd);
1012 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1013 	if (ad)
1014 		finalize_asic_data(dd, ad);
1015 	free_platform_config(dd);
1016 	rcu_barrier(); /* wait for rcu callbacks to complete */
1017 	free_percpu(dd->int_counter);
1018 	free_percpu(dd->rcv_limit);
1019 	free_percpu(dd->send_schedule);
1020 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1021 }
1022 
1023 static struct kobj_type hfi1_devdata_type = {
1024 	.release = __hfi1_free_devdata,
1025 };
1026 
1027 void hfi1_free_devdata(struct hfi1_devdata *dd)
1028 {
1029 	kobject_put(&dd->kobj);
1030 }
1031 
1032 /*
1033  * Allocate our primary per-unit data structure.  Must be done via verbs
1034  * allocator, because the verbs cleanup process both does cleanup and
1035  * free of the data structure.
1036  * "extra" is for chip-specific data.
1037  *
1038  * Use the idr mechanism to get a unit number for this unit.
1039  */
1040 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1041 {
1042 	unsigned long flags;
1043 	struct hfi1_devdata *dd;
1044 	int ret, nports;
1045 
1046 	/* extra is * number of ports */
1047 	nports = extra / sizeof(struct hfi1_pportdata);
1048 
1049 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1050 						     nports);
1051 	if (!dd)
1052 		return ERR_PTR(-ENOMEM);
1053 	dd->num_pports = nports;
1054 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1055 
1056 	INIT_LIST_HEAD(&dd->list);
1057 	idr_preload(GFP_KERNEL);
1058 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1059 
1060 	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1061 	if (ret >= 0) {
1062 		dd->unit = ret;
1063 		list_add(&dd->list, &hfi1_dev_list);
1064 	}
1065 
1066 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1067 	idr_preload_end();
1068 
1069 	if (ret < 0) {
1070 		hfi1_early_err(&pdev->dev,
1071 			       "Could not allocate unit ID: error %d\n", -ret);
1072 		goto bail;
1073 	}
1074 	/*
1075 	 * Initialize all locks for the device. This needs to be as early as
1076 	 * possible so locks are usable.
1077 	 */
1078 	spin_lock_init(&dd->sc_lock);
1079 	spin_lock_init(&dd->sendctrl_lock);
1080 	spin_lock_init(&dd->rcvctrl_lock);
1081 	spin_lock_init(&dd->uctxt_lock);
1082 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1083 	spin_lock_init(&dd->sc_init_lock);
1084 	spin_lock_init(&dd->dc8051_memlock);
1085 	seqlock_init(&dd->sc2vl_lock);
1086 	spin_lock_init(&dd->sde_map_lock);
1087 	spin_lock_init(&dd->pio_map_lock);
1088 	mutex_init(&dd->dc8051_lock);
1089 	init_waitqueue_head(&dd->event_queue);
1090 
1091 	dd->int_counter = alloc_percpu(u64);
1092 	if (!dd->int_counter) {
1093 		ret = -ENOMEM;
1094 		hfi1_early_err(&pdev->dev,
1095 			       "Could not allocate per-cpu int_counter\n");
1096 		goto bail;
1097 	}
1098 
1099 	dd->rcv_limit = alloc_percpu(u64);
1100 	if (!dd->rcv_limit) {
1101 		ret = -ENOMEM;
1102 		hfi1_early_err(&pdev->dev,
1103 			       "Could not allocate per-cpu rcv_limit\n");
1104 		goto bail;
1105 	}
1106 
1107 	dd->send_schedule = alloc_percpu(u64);
1108 	if (!dd->send_schedule) {
1109 		ret = -ENOMEM;
1110 		hfi1_early_err(&pdev->dev,
1111 			       "Could not allocate per-cpu int_counter\n");
1112 		goto bail;
1113 	}
1114 
1115 	if (!hfi1_cpulist_count) {
1116 		u32 count = num_online_cpus();
1117 
1118 		hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1119 				       GFP_KERNEL);
1120 		if (hfi1_cpulist)
1121 			hfi1_cpulist_count = count;
1122 		else
1123 			hfi1_early_err(
1124 			&pdev->dev,
1125 			"Could not alloc cpulist info, cpu affinity might be wrong\n");
1126 	}
1127 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1128 	return dd;
1129 
1130 bail:
1131 	if (!list_empty(&dd->list))
1132 		list_del_init(&dd->list);
1133 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1134 	return ERR_PTR(ret);
1135 }
1136 
1137 /*
1138  * Called from freeze mode handlers, and from PCI error
1139  * reporting code.  Should be paranoid about state of
1140  * system and data structures.
1141  */
1142 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1143 {
1144 	if (dd->flags & HFI1_INITTED) {
1145 		u32 pidx;
1146 
1147 		dd->flags &= ~HFI1_INITTED;
1148 		if (dd->pport)
1149 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1150 				struct hfi1_pportdata *ppd;
1151 
1152 				ppd = dd->pport + pidx;
1153 				if (dd->flags & HFI1_PRESENT)
1154 					set_link_state(ppd, HLS_DN_DISABLE);
1155 
1156 				if (ppd->statusp)
1157 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1158 			}
1159 	}
1160 
1161 	/*
1162 	 * Mark as having had an error for driver, and also
1163 	 * for /sys and status word mapped to user programs.
1164 	 * This marks unit as not usable, until reset.
1165 	 */
1166 	if (dd->status)
1167 		dd->status->dev |= HFI1_STATUS_HWERROR;
1168 }
1169 
1170 static void remove_one(struct pci_dev *);
1171 static int init_one(struct pci_dev *, const struct pci_device_id *);
1172 
1173 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1174 #define PFX DRIVER_NAME ": "
1175 
1176 const struct pci_device_id hfi1_pci_tbl[] = {
1177 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1178 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1179 	{ 0, }
1180 };
1181 
1182 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1183 
1184 static struct pci_driver hfi1_pci_driver = {
1185 	.name = DRIVER_NAME,
1186 	.probe = init_one,
1187 	.remove = remove_one,
1188 	.id_table = hfi1_pci_tbl,
1189 	.err_handler = &hfi1_pci_err_handler,
1190 };
1191 
1192 static void __init compute_krcvqs(void)
1193 {
1194 	int i;
1195 
1196 	for (i = 0; i < krcvqsset; i++)
1197 		n_krcvqs += krcvqs[i];
1198 }
1199 
1200 /*
1201  * Do all the generic driver unit- and chip-independent memory
1202  * allocation and initialization.
1203  */
1204 static int __init hfi1_mod_init(void)
1205 {
1206 	int ret;
1207 
1208 	ret = dev_init();
1209 	if (ret)
1210 		goto bail;
1211 
1212 	ret = node_affinity_init();
1213 	if (ret)
1214 		goto bail;
1215 
1216 	/* validate max MTU before any devices start */
1217 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1218 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1219 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1220 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1221 	}
1222 	/* valid CUs run from 1-128 in powers of 2 */
1223 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1224 		hfi1_cu = 1;
1225 	/* valid credit return threshold is 0-100, variable is unsigned */
1226 	if (user_credit_return_threshold > 100)
1227 		user_credit_return_threshold = 100;
1228 
1229 	compute_krcvqs();
1230 	/*
1231 	 * sanitize receive interrupt count, time must wait until after
1232 	 * the hardware type is known
1233 	 */
1234 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1235 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1236 	/* reject invalid combinations */
1237 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1238 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1239 		rcv_intr_count = 1;
1240 	}
1241 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1242 		/*
1243 		 * Avoid indefinite packet delivery by requiring a timeout
1244 		 * if count is > 1.
1245 		 */
1246 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1247 		rcv_intr_timeout = 1;
1248 	}
1249 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1250 		/*
1251 		 * The dynamic algorithm expects a non-zero timeout
1252 		 * and a count > 1.
1253 		 */
1254 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1255 		rcv_intr_dynamic = 0;
1256 	}
1257 
1258 	/* sanitize link CRC options */
1259 	link_crc_mask &= SUPPORTED_CRCS;
1260 
1261 	/*
1262 	 * These must be called before the driver is registered with
1263 	 * the PCI subsystem.
1264 	 */
1265 	idr_init(&hfi1_unit_table);
1266 
1267 	hfi1_dbg_init();
1268 	ret = hfi1_wss_init();
1269 	if (ret < 0)
1270 		goto bail_wss;
1271 	ret = pci_register_driver(&hfi1_pci_driver);
1272 	if (ret < 0) {
1273 		pr_err("Unable to register driver: error %d\n", -ret);
1274 		goto bail_dev;
1275 	}
1276 	goto bail; /* all OK */
1277 
1278 bail_dev:
1279 	hfi1_wss_exit();
1280 bail_wss:
1281 	hfi1_dbg_exit();
1282 	idr_destroy(&hfi1_unit_table);
1283 	dev_cleanup();
1284 bail:
1285 	return ret;
1286 }
1287 
1288 module_init(hfi1_mod_init);
1289 
1290 /*
1291  * Do the non-unit driver cleanup, memory free, etc. at unload.
1292  */
1293 static void __exit hfi1_mod_cleanup(void)
1294 {
1295 	pci_unregister_driver(&hfi1_pci_driver);
1296 	node_affinity_destroy();
1297 	hfi1_wss_exit();
1298 	hfi1_dbg_exit();
1299 	hfi1_cpulist_count = 0;
1300 	kfree(hfi1_cpulist);
1301 
1302 	idr_destroy(&hfi1_unit_table);
1303 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1304 	dev_cleanup();
1305 }
1306 
1307 module_exit(hfi1_mod_cleanup);
1308 
1309 /* this can only be called after a successful initialization */
1310 static void cleanup_device_data(struct hfi1_devdata *dd)
1311 {
1312 	int ctxt;
1313 	int pidx;
1314 	struct hfi1_ctxtdata **tmp;
1315 	unsigned long flags;
1316 
1317 	/* users can't do anything more with chip */
1318 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1319 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1320 		struct cc_state *cc_state;
1321 		int i;
1322 
1323 		if (ppd->statusp)
1324 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1325 
1326 		for (i = 0; i < OPA_MAX_SLS; i++)
1327 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1328 
1329 		spin_lock(&ppd->cc_state_lock);
1330 		cc_state = get_cc_state_protected(ppd);
1331 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1332 		spin_unlock(&ppd->cc_state_lock);
1333 
1334 		if (cc_state)
1335 			kfree_rcu(cc_state, rcu);
1336 	}
1337 
1338 	free_credit_return(dd);
1339 
1340 	/*
1341 	 * Free any resources still in use (usually just kernel contexts)
1342 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1343 	 * We acquire lock to be really paranoid that rcd isn't being
1344 	 * accessed from some interrupt-related code (that should not happen,
1345 	 * but best to be sure).
1346 	 */
1347 	spin_lock_irqsave(&dd->uctxt_lock, flags);
1348 	tmp = dd->rcd;
1349 	dd->rcd = NULL;
1350 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1351 
1352 	if (dd->rcvhdrtail_dummy_kvaddr) {
1353 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1354 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1355 				  dd->rcvhdrtail_dummy_dma);
1356 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1357 	}
1358 
1359 	for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1360 		struct hfi1_ctxtdata *rcd = tmp[ctxt];
1361 
1362 		tmp[ctxt] = NULL; /* debugging paranoia */
1363 		if (rcd) {
1364 			hfi1_clear_tids(rcd);
1365 			hfi1_free_ctxtdata(dd, rcd);
1366 		}
1367 	}
1368 	kfree(tmp);
1369 	free_pio_map(dd);
1370 	/* must follow rcv context free - need to remove rcv's hooks */
1371 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1372 		sc_free(dd->send_contexts[ctxt].sc);
1373 	dd->num_send_contexts = 0;
1374 	kfree(dd->send_contexts);
1375 	dd->send_contexts = NULL;
1376 	kfree(dd->hw_to_sw);
1377 	dd->hw_to_sw = NULL;
1378 	kfree(dd->boardname);
1379 	vfree(dd->events);
1380 	vfree(dd->status);
1381 }
1382 
1383 /*
1384  * Clean up on unit shutdown, or error during unit load after
1385  * successful initialization.
1386  */
1387 static void postinit_cleanup(struct hfi1_devdata *dd)
1388 {
1389 	hfi1_start_cleanup(dd);
1390 
1391 	hfi1_pcie_ddcleanup(dd);
1392 	hfi1_pcie_cleanup(dd->pcidev);
1393 
1394 	cleanup_device_data(dd);
1395 
1396 	hfi1_free_devdata(dd);
1397 }
1398 
1399 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1400 {
1401 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1402 		hfi1_early_err(dev, "Receive header queue count too small\n");
1403 		return -EINVAL;
1404 	}
1405 
1406 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1407 		hfi1_early_err(dev,
1408 			       "Receive header queue count cannot be greater than %u\n",
1409 			       HFI1_MAX_HDRQ_EGRBUF_CNT);
1410 		return -EINVAL;
1411 	}
1412 
1413 	if (thecnt % HDRQ_INCREMENT) {
1414 		hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1415 			       thecnt, HDRQ_INCREMENT);
1416 		return -EINVAL;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1423 {
1424 	int ret = 0, j, pidx, initfail;
1425 	struct hfi1_devdata *dd;
1426 	struct hfi1_pportdata *ppd;
1427 
1428 	/* First, lock the non-writable module parameters */
1429 	HFI1_CAP_LOCK();
1430 
1431 	/* Validate dev ids */
1432 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1433 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1434 		hfi1_early_err(&pdev->dev,
1435 			       "Failing on unknown Intel deviceid 0x%x\n",
1436 			       ent->device);
1437 		ret = -ENODEV;
1438 		goto bail;
1439 	}
1440 
1441 	/* Validate some global module parameters */
1442 	ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1443 	if (ret)
1444 		goto bail;
1445 
1446 	/* use the encoding function as a sanitization check */
1447 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1448 		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1449 			       hfi1_hdrq_entsize);
1450 		ret = -EINVAL;
1451 		goto bail;
1452 	}
1453 
1454 	/* The receive eager buffer size must be set before the receive
1455 	 * contexts are created.
1456 	 *
1457 	 * Set the eager buffer size.  Validate that it falls in a range
1458 	 * allowed by the hardware - all powers of 2 between the min and
1459 	 * max.  The maximum valid MTU is within the eager buffer range
1460 	 * so we do not need to cap the max_mtu by an eager buffer size
1461 	 * setting.
1462 	 */
1463 	if (eager_buffer_size) {
1464 		if (!is_power_of_2(eager_buffer_size))
1465 			eager_buffer_size =
1466 				roundup_pow_of_two(eager_buffer_size);
1467 		eager_buffer_size =
1468 			clamp_val(eager_buffer_size,
1469 				  MIN_EAGER_BUFFER * 8,
1470 				  MAX_EAGER_BUFFER_TOTAL);
1471 		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1472 				eager_buffer_size);
1473 	} else {
1474 		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1475 		ret = -EINVAL;
1476 		goto bail;
1477 	}
1478 
1479 	/* restrict value of hfi1_rcvarr_split */
1480 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1481 
1482 	ret = hfi1_pcie_init(pdev, ent);
1483 	if (ret)
1484 		goto bail;
1485 
1486 	/*
1487 	 * Do device-specific initialization, function table setup, dd
1488 	 * allocation, etc.
1489 	 */
1490 	dd = hfi1_init_dd(pdev, ent);
1491 
1492 	if (IS_ERR(dd)) {
1493 		ret = PTR_ERR(dd);
1494 		goto clean_bail; /* error already printed */
1495 	}
1496 
1497 	ret = create_workqueues(dd);
1498 	if (ret)
1499 		goto clean_bail;
1500 
1501 	/* do the generic initialization */
1502 	initfail = hfi1_init(dd, 0);
1503 
1504 	/* setup vnic */
1505 	hfi1_vnic_setup(dd);
1506 
1507 	ret = hfi1_register_ib_device(dd);
1508 
1509 	/*
1510 	 * Now ready for use.  this should be cleared whenever we
1511 	 * detect a reset, or initiate one.  If earlier failure,
1512 	 * we still create devices, so diags, etc. can be used
1513 	 * to determine cause of problem.
1514 	 */
1515 	if (!initfail && !ret) {
1516 		dd->flags |= HFI1_INITTED;
1517 		/* create debufs files after init and ib register */
1518 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1519 	}
1520 
1521 	j = hfi1_device_create(dd);
1522 	if (j)
1523 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1524 
1525 	if (initfail || ret) {
1526 		stop_timers(dd);
1527 		flush_workqueue(ib_wq);
1528 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1529 			hfi1_quiet_serdes(dd->pport + pidx);
1530 			ppd = dd->pport + pidx;
1531 			if (ppd->hfi1_wq) {
1532 				destroy_workqueue(ppd->hfi1_wq);
1533 				ppd->hfi1_wq = NULL;
1534 			}
1535 		}
1536 		if (!j)
1537 			hfi1_device_remove(dd);
1538 		if (!ret)
1539 			hfi1_unregister_ib_device(dd);
1540 		hfi1_vnic_cleanup(dd);
1541 		postinit_cleanup(dd);
1542 		if (initfail)
1543 			ret = initfail;
1544 		goto bail;	/* everything already cleaned */
1545 	}
1546 
1547 	sdma_start(dd);
1548 
1549 	return 0;
1550 
1551 clean_bail:
1552 	hfi1_pcie_cleanup(pdev);
1553 bail:
1554 	return ret;
1555 }
1556 
1557 static void wait_for_clients(struct hfi1_devdata *dd)
1558 {
1559 	/*
1560 	 * Remove the device init value and complete the device if there is
1561 	 * no clients or wait for active clients to finish.
1562 	 */
1563 	if (atomic_dec_and_test(&dd->user_refcount))
1564 		complete(&dd->user_comp);
1565 
1566 	wait_for_completion(&dd->user_comp);
1567 }
1568 
1569 static void remove_one(struct pci_dev *pdev)
1570 {
1571 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1572 
1573 	/* close debugfs files before ib unregister */
1574 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1575 
1576 	/* remove the /dev hfi1 interface */
1577 	hfi1_device_remove(dd);
1578 
1579 	/* wait for existing user space clients to finish */
1580 	wait_for_clients(dd);
1581 
1582 	/* unregister from IB core */
1583 	hfi1_unregister_ib_device(dd);
1584 
1585 	/* cleanup vnic */
1586 	hfi1_vnic_cleanup(dd);
1587 
1588 	/*
1589 	 * Disable the IB link, disable interrupts on the device,
1590 	 * clear dma engines, etc.
1591 	 */
1592 	shutdown_device(dd);
1593 
1594 	stop_timers(dd);
1595 
1596 	/* wait until all of our (qsfp) queue_work() calls complete */
1597 	flush_workqueue(ib_wq);
1598 
1599 	postinit_cleanup(dd);
1600 }
1601 
1602 /**
1603  * hfi1_create_rcvhdrq - create a receive header queue
1604  * @dd: the hfi1_ib device
1605  * @rcd: the context data
1606  *
1607  * This must be contiguous memory (from an i/o perspective), and must be
1608  * DMA'able (which means for some systems, it will go through an IOMMU,
1609  * or be forced into a low address range).
1610  */
1611 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1612 {
1613 	unsigned amt;
1614 	u64 reg;
1615 
1616 	if (!rcd->rcvhdrq) {
1617 		dma_addr_t dma_hdrqtail;
1618 		gfp_t gfp_flags;
1619 
1620 		/*
1621 		 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1622 		 * (* sizeof(u32)).
1623 		 */
1624 		amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1625 				 sizeof(u32));
1626 
1627 		if ((rcd->ctxt < dd->first_dyn_alloc_ctxt) ||
1628 		    (rcd->sc && (rcd->sc->type == SC_KERNEL)))
1629 			gfp_flags = GFP_KERNEL;
1630 		else
1631 			gfp_flags = GFP_USER;
1632 		rcd->rcvhdrq = dma_zalloc_coherent(
1633 			&dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1634 			gfp_flags | __GFP_COMP);
1635 
1636 		if (!rcd->rcvhdrq) {
1637 			dd_dev_err(dd,
1638 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1639 				   amt, rcd->ctxt);
1640 			goto bail;
1641 		}
1642 
1643 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1644 			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1645 				&dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail,
1646 				gfp_flags);
1647 			if (!rcd->rcvhdrtail_kvaddr)
1648 				goto bail_free;
1649 			rcd->rcvhdrqtailaddr_dma = dma_hdrqtail;
1650 		}
1651 
1652 		rcd->rcvhdrq_size = amt;
1653 	}
1654 	/*
1655 	 * These values are per-context:
1656 	 *	RcvHdrCnt
1657 	 *	RcvHdrEntSize
1658 	 *	RcvHdrSize
1659 	 */
1660 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1661 			& RCV_HDR_CNT_CNT_MASK)
1662 		<< RCV_HDR_CNT_CNT_SHIFT;
1663 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1664 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1665 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1666 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1667 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1668 	reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1669 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1670 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1671 
1672 	/*
1673 	 * Program dummy tail address for every receive context
1674 	 * before enabling any receive context
1675 	 */
1676 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1677 			dd->rcvhdrtail_dummy_dma);
1678 
1679 	return 0;
1680 
1681 bail_free:
1682 	dd_dev_err(dd,
1683 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1684 		   rcd->ctxt);
1685 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1686 			  rcd->rcvhdrq_dma);
1687 	rcd->rcvhdrq = NULL;
1688 bail:
1689 	return -ENOMEM;
1690 }
1691 
1692 /**
1693  * allocate eager buffers, both kernel and user contexts.
1694  * @rcd: the context we are setting up.
1695  *
1696  * Allocate the eager TID buffers and program them into hip.
1697  * They are no longer completely contiguous, we do multiple allocation
1698  * calls.  Otherwise we get the OOM code involved, by asking for too
1699  * much per call, with disastrous results on some kernels.
1700  */
1701 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1702 {
1703 	struct hfi1_devdata *dd = rcd->dd;
1704 	u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1705 	gfp_t gfp_flags;
1706 	u16 order;
1707 	int ret = 0;
1708 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1709 
1710 	/*
1711 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1712 	 * coalesced (we hope); otherwise, even at order 4,
1713 	 * heavy filesystem activity makes these fail, and we can
1714 	 * use compound pages.
1715 	 */
1716 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1717 
1718 	/*
1719 	 * The minimum size of the eager buffers is a groups of MTU-sized
1720 	 * buffers.
1721 	 * The global eager_buffer_size parameter is checked against the
1722 	 * theoretical lower limit of the value. Here, we check against the
1723 	 * MTU.
1724 	 */
1725 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1726 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1727 	/*
1728 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1729 	 * size to the max MTU (page-aligned).
1730 	 */
1731 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1732 		rcd->egrbufs.rcvtid_size = round_mtu;
1733 
1734 	/*
1735 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1736 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1737 	 */
1738 	if (rcd->egrbufs.size <= (1 << 20))
1739 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1740 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1741 
1742 	while (alloced_bytes < rcd->egrbufs.size &&
1743 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1744 		rcd->egrbufs.buffers[idx].addr =
1745 			dma_zalloc_coherent(&dd->pcidev->dev,
1746 					    rcd->egrbufs.rcvtid_size,
1747 					    &rcd->egrbufs.buffers[idx].dma,
1748 					    gfp_flags);
1749 		if (rcd->egrbufs.buffers[idx].addr) {
1750 			rcd->egrbufs.buffers[idx].len =
1751 				rcd->egrbufs.rcvtid_size;
1752 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1753 				rcd->egrbufs.buffers[idx].addr;
1754 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1755 				rcd->egrbufs.buffers[idx].dma;
1756 			rcd->egrbufs.alloced++;
1757 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1758 			idx++;
1759 		} else {
1760 			u32 new_size, i, j;
1761 			u64 offset = 0;
1762 
1763 			/*
1764 			 * Fail the eager buffer allocation if:
1765 			 *   - we are already using the lowest acceptable size
1766 			 *   - we are using one-pkt-per-egr-buffer (this implies
1767 			 *     that we are accepting only one size)
1768 			 */
1769 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1770 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1771 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1772 					   rcd->ctxt);
1773 				ret = -ENOMEM;
1774 				goto bail_rcvegrbuf_phys;
1775 			}
1776 
1777 			new_size = rcd->egrbufs.rcvtid_size / 2;
1778 
1779 			/*
1780 			 * If the first attempt to allocate memory failed, don't
1781 			 * fail everything but continue with the next lower
1782 			 * size.
1783 			 */
1784 			if (idx == 0) {
1785 				rcd->egrbufs.rcvtid_size = new_size;
1786 				continue;
1787 			}
1788 
1789 			/*
1790 			 * Re-partition already allocated buffers to a smaller
1791 			 * size.
1792 			 */
1793 			rcd->egrbufs.alloced = 0;
1794 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1795 				if (i >= rcd->egrbufs.count)
1796 					break;
1797 				rcd->egrbufs.rcvtids[i].dma =
1798 					rcd->egrbufs.buffers[j].dma + offset;
1799 				rcd->egrbufs.rcvtids[i].addr =
1800 					rcd->egrbufs.buffers[j].addr + offset;
1801 				rcd->egrbufs.alloced++;
1802 				if ((rcd->egrbufs.buffers[j].dma + offset +
1803 				     new_size) ==
1804 				    (rcd->egrbufs.buffers[j].dma +
1805 				     rcd->egrbufs.buffers[j].len)) {
1806 					j++;
1807 					offset = 0;
1808 				} else {
1809 					offset += new_size;
1810 				}
1811 			}
1812 			rcd->egrbufs.rcvtid_size = new_size;
1813 		}
1814 	}
1815 	rcd->egrbufs.numbufs = idx;
1816 	rcd->egrbufs.size = alloced_bytes;
1817 
1818 	hfi1_cdbg(PROC,
1819 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1820 		  rcd->ctxt, rcd->egrbufs.alloced,
1821 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1822 
1823 	/*
1824 	 * Set the contexts rcv array head update threshold to the closest
1825 	 * power of 2 (so we can use a mask instead of modulo) below half
1826 	 * the allocated entries.
1827 	 */
1828 	rcd->egrbufs.threshold =
1829 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1830 	/*
1831 	 * Compute the expected RcvArray entry base. This is done after
1832 	 * allocating the eager buffers in order to maximize the
1833 	 * expected RcvArray entries for the context.
1834 	 */
1835 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1836 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1837 	rcd->expected_count = max_entries - egrtop;
1838 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1839 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1840 
1841 	rcd->expected_base = rcd->eager_base + egrtop;
1842 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1843 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1844 		  rcd->eager_base, rcd->expected_base);
1845 
1846 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1847 		hfi1_cdbg(PROC,
1848 			  "ctxt%u: current Eager buffer size is invalid %u\n",
1849 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
1850 		ret = -EINVAL;
1851 		goto bail_rcvegrbuf_phys;
1852 	}
1853 
1854 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1855 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1856 			     rcd->egrbufs.rcvtids[idx].dma, order);
1857 		cond_resched();
1858 	}
1859 
1860 	return 0;
1861 
1862 bail_rcvegrbuf_phys:
1863 	for (idx = 0; idx < rcd->egrbufs.alloced &&
1864 	     rcd->egrbufs.buffers[idx].addr;
1865 	     idx++) {
1866 		dma_free_coherent(&dd->pcidev->dev,
1867 				  rcd->egrbufs.buffers[idx].len,
1868 				  rcd->egrbufs.buffers[idx].addr,
1869 				  rcd->egrbufs.buffers[idx].dma);
1870 		rcd->egrbufs.buffers[idx].addr = NULL;
1871 		rcd->egrbufs.buffers[idx].dma = 0;
1872 		rcd->egrbufs.buffers[idx].len = 0;
1873 	}
1874 
1875 	return ret;
1876 }
1877