1 /* 2 * Copyright(c) 2015-2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/pci.h> 49 #include <linux/netdevice.h> 50 #include <linux/vmalloc.h> 51 #include <linux/delay.h> 52 #include <linux/idr.h> 53 #include <linux/module.h> 54 #include <linux/printk.h> 55 #include <linux/hrtimer.h> 56 #include <linux/bitmap.h> 57 #include <rdma/rdma_vt.h> 58 59 #include "hfi.h" 60 #include "device.h" 61 #include "common.h" 62 #include "trace.h" 63 #include "mad.h" 64 #include "sdma.h" 65 #include "debugfs.h" 66 #include "verbs.h" 67 #include "aspm.h" 68 #include "affinity.h" 69 #include "vnic.h" 70 71 #undef pr_fmt 72 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 73 74 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5 75 /* 76 * min buffers we want to have per context, after driver 77 */ 78 #define HFI1_MIN_USER_CTXT_BUFCNT 7 79 80 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2 81 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352 82 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 83 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 84 85 /* 86 * Number of user receive contexts we are configured to use (to allow for more 87 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 88 */ 89 int num_user_contexts = -1; 90 module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO); 91 MODULE_PARM_DESC( 92 num_user_contexts, "Set max number of user contexts to use"); 93 94 uint krcvqs[RXE_NUM_DATA_VL]; 95 int krcvqsset; 96 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 97 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 98 99 /* computed based on above array */ 100 unsigned long n_krcvqs; 101 102 static unsigned hfi1_rcvarr_split = 25; 103 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 104 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 105 106 static uint eager_buffer_size = (8 << 20); /* 8MB */ 107 module_param(eager_buffer_size, uint, S_IRUGO); 108 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); 109 110 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 111 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 112 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 113 114 static uint hfi1_hdrq_entsize = 32; 115 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO); 116 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B"); 117 118 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 119 module_param(user_credit_return_threshold, uint, S_IRUGO); 120 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 121 122 static inline u64 encode_rcv_header_entry_size(u16 size); 123 124 static struct idr hfi1_unit_table; 125 u32 hfi1_cpulist_count; 126 unsigned long *hfi1_cpulist; 127 128 /* 129 * Common code for creating the receive context array. 130 */ 131 int hfi1_create_ctxts(struct hfi1_devdata *dd) 132 { 133 unsigned i; 134 int ret; 135 136 /* Control context has to be always 0 */ 137 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 138 139 dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd), 140 GFP_KERNEL, dd->node); 141 if (!dd->rcd) 142 goto nomem; 143 144 /* create one or more kernel contexts */ 145 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 146 struct hfi1_pportdata *ppd; 147 struct hfi1_ctxtdata *rcd; 148 149 ppd = dd->pport + (i % dd->num_pports); 150 151 /* dd->rcd[i] gets assigned inside the callee */ 152 rcd = hfi1_create_ctxtdata(ppd, i, dd->node); 153 if (!rcd) { 154 dd_dev_err(dd, 155 "Unable to allocate kernel receive context, failing\n"); 156 goto nomem; 157 } 158 /* 159 * Set up the kernel context flags here and now because they 160 * use default values for all receive side memories. User 161 * contexts will be handled as they are created. 162 */ 163 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 164 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 165 HFI1_CAP_KGET(NODROP_EGR_FULL) | 166 HFI1_CAP_KGET(DMA_RTAIL); 167 168 /* Control context must use DMA_RTAIL */ 169 if (rcd->ctxt == HFI1_CTRL_CTXT) 170 rcd->flags |= HFI1_CAP_DMA_RTAIL; 171 rcd->seq_cnt = 1; 172 173 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 174 if (!rcd->sc) { 175 dd_dev_err(dd, 176 "Unable to allocate kernel send context, failing\n"); 177 goto nomem; 178 } 179 180 hfi1_init_ctxt(rcd->sc); 181 } 182 183 /* 184 * Initialize aspm, to be done after gen3 transition and setting up 185 * contexts and before enabling interrupts 186 */ 187 aspm_init(dd); 188 189 return 0; 190 nomem: 191 ret = -ENOMEM; 192 193 if (dd->rcd) { 194 for (i = 0; i < dd->num_rcv_contexts; ++i) 195 hfi1_free_ctxtdata(dd, dd->rcd[i]); 196 } 197 kfree(dd->rcd); 198 dd->rcd = NULL; 199 return ret; 200 } 201 202 /* 203 * Common code for user and kernel context setup. 204 */ 205 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt, 206 int numa) 207 { 208 struct hfi1_devdata *dd = ppd->dd; 209 struct hfi1_ctxtdata *rcd; 210 unsigned kctxt_ngroups = 0; 211 u32 base; 212 213 if (dd->rcv_entries.nctxt_extra > 214 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) 215 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 216 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); 217 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); 218 if (rcd) { 219 u32 rcvtids, max_entries; 220 221 hfi1_cdbg(PROC, "setting up context %u\n", ctxt); 222 223 INIT_LIST_HEAD(&rcd->qp_wait_list); 224 rcd->ppd = ppd; 225 rcd->dd = dd; 226 __set_bit(0, rcd->in_use_ctxts); 227 rcd->ctxt = ctxt; 228 dd->rcd[ctxt] = rcd; 229 rcd->numa_id = numa; 230 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 231 232 mutex_init(&rcd->exp_lock); 233 234 /* 235 * Calculate the context's RcvArray entry starting point. 236 * We do this here because we have to take into account all 237 * the RcvArray entries that previous context would have 238 * taken and we have to account for any extra groups assigned 239 * to the static (kernel) or dynamic (vnic/user) contexts. 240 */ 241 if (ctxt < dd->first_dyn_alloc_ctxt) { 242 if (ctxt < kctxt_ngroups) { 243 base = ctxt * (dd->rcv_entries.ngroups + 1); 244 rcd->rcv_array_groups++; 245 } else { 246 base = kctxt_ngroups + 247 (ctxt * dd->rcv_entries.ngroups); 248 } 249 } else { 250 u16 ct = ctxt - dd->first_dyn_alloc_ctxt; 251 252 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 253 kctxt_ngroups); 254 if (ct < dd->rcv_entries.nctxt_extra) { 255 base += ct * (dd->rcv_entries.ngroups + 1); 256 rcd->rcv_array_groups++; 257 } else { 258 base += dd->rcv_entries.nctxt_extra + 259 (ct * dd->rcv_entries.ngroups); 260 } 261 } 262 rcd->eager_base = base * dd->rcv_entries.group_size; 263 264 rcd->rcvhdrq_cnt = rcvhdrcnt; 265 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 266 /* 267 * Simple Eager buffer allocation: we have already pre-allocated 268 * the number of RcvArray entry groups. Each ctxtdata structure 269 * holds the number of groups for that context. 270 * 271 * To follow CSR requirements and maintain cacheline alignment, 272 * make sure all sizes and bases are multiples of group_size. 273 * 274 * The expected entry count is what is left after assigning 275 * eager. 276 */ 277 max_entries = rcd->rcv_array_groups * 278 dd->rcv_entries.group_size; 279 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 280 rcd->egrbufs.count = round_down(rcvtids, 281 dd->rcv_entries.group_size); 282 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 283 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 284 rcd->ctxt); 285 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 286 } 287 hfi1_cdbg(PROC, 288 "ctxt%u: max Eager buffer RcvArray entries: %u\n", 289 rcd->ctxt, rcd->egrbufs.count); 290 291 /* 292 * Allocate array that will hold the eager buffer accounting 293 * data. 294 * This will allocate the maximum possible buffer count based 295 * on the value of the RcvArray split parameter. 296 * The resulting value will be rounded down to the closest 297 * multiple of dd->rcv_entries.group_size. 298 */ 299 rcd->egrbufs.buffers = kzalloc_node( 300 rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers), 301 GFP_KERNEL, numa); 302 if (!rcd->egrbufs.buffers) 303 goto bail; 304 rcd->egrbufs.rcvtids = kzalloc_node( 305 rcd->egrbufs.count * 306 sizeof(*rcd->egrbufs.rcvtids), 307 GFP_KERNEL, numa); 308 if (!rcd->egrbufs.rcvtids) 309 goto bail; 310 rcd->egrbufs.size = eager_buffer_size; 311 /* 312 * The size of the buffers programmed into the RcvArray 313 * entries needs to be big enough to handle the highest 314 * MTU supported. 315 */ 316 if (rcd->egrbufs.size < hfi1_max_mtu) { 317 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 318 hfi1_cdbg(PROC, 319 "ctxt%u: eager bufs size too small. Adjusting to %zu\n", 320 rcd->ctxt, rcd->egrbufs.size); 321 } 322 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 323 324 /* Applicable only for statically created kernel contexts */ 325 if (ctxt < dd->first_dyn_alloc_ctxt) { 326 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), 327 GFP_KERNEL, numa); 328 if (!rcd->opstats) 329 goto bail; 330 } 331 } 332 return rcd; 333 bail: 334 dd->rcd[ctxt] = NULL; 335 kfree(rcd->egrbufs.rcvtids); 336 kfree(rcd->egrbufs.buffers); 337 kfree(rcd); 338 return NULL; 339 } 340 341 /* 342 * Convert a receive header entry size that to the encoding used in the CSR. 343 * 344 * Return a zero if the given size is invalid. 345 */ 346 static inline u64 encode_rcv_header_entry_size(u16 size) 347 { 348 /* there are only 3 valid receive header entry sizes */ 349 if (size == 2) 350 return 1; 351 if (size == 16) 352 return 2; 353 else if (size == 32) 354 return 4; 355 return 0; /* invalid */ 356 } 357 358 /* 359 * Select the largest ccti value over all SLs to determine the intra- 360 * packet gap for the link. 361 * 362 * called with cca_timer_lock held (to protect access to cca_timer 363 * array), and rcu_read_lock() (to protect access to cc_state). 364 */ 365 void set_link_ipg(struct hfi1_pportdata *ppd) 366 { 367 struct hfi1_devdata *dd = ppd->dd; 368 struct cc_state *cc_state; 369 int i; 370 u16 cce, ccti_limit, max_ccti = 0; 371 u16 shift, mult; 372 u64 src; 373 u32 current_egress_rate; /* Mbits /sec */ 374 u32 max_pkt_time; 375 /* 376 * max_pkt_time is the maximum packet egress time in units 377 * of the fabric clock period 1/(805 MHz). 378 */ 379 380 cc_state = get_cc_state(ppd); 381 382 if (!cc_state) 383 /* 384 * This should _never_ happen - rcu_read_lock() is held, 385 * and set_link_ipg() should not be called if cc_state 386 * is NULL. 387 */ 388 return; 389 390 for (i = 0; i < OPA_MAX_SLS; i++) { 391 u16 ccti = ppd->cca_timer[i].ccti; 392 393 if (ccti > max_ccti) 394 max_ccti = ccti; 395 } 396 397 ccti_limit = cc_state->cct.ccti_limit; 398 if (max_ccti > ccti_limit) 399 max_ccti = ccti_limit; 400 401 cce = cc_state->cct.entries[max_ccti].entry; 402 shift = (cce & 0xc000) >> 14; 403 mult = (cce & 0x3fff); 404 405 current_egress_rate = active_egress_rate(ppd); 406 407 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 408 409 src = (max_pkt_time >> shift) * mult; 410 411 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 412 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 413 414 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 415 } 416 417 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 418 { 419 struct cca_timer *cca_timer; 420 struct hfi1_pportdata *ppd; 421 int sl; 422 u16 ccti_timer, ccti_min; 423 struct cc_state *cc_state; 424 unsigned long flags; 425 enum hrtimer_restart ret = HRTIMER_NORESTART; 426 427 cca_timer = container_of(t, struct cca_timer, hrtimer); 428 ppd = cca_timer->ppd; 429 sl = cca_timer->sl; 430 431 rcu_read_lock(); 432 433 cc_state = get_cc_state(ppd); 434 435 if (!cc_state) { 436 rcu_read_unlock(); 437 return HRTIMER_NORESTART; 438 } 439 440 /* 441 * 1) decrement ccti for SL 442 * 2) calculate IPG for link (set_link_ipg()) 443 * 3) restart timer, unless ccti is at min value 444 */ 445 446 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 447 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 448 449 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 450 451 if (cca_timer->ccti > ccti_min) { 452 cca_timer->ccti--; 453 set_link_ipg(ppd); 454 } 455 456 if (cca_timer->ccti > ccti_min) { 457 unsigned long nsec = 1024 * ccti_timer; 458 /* ccti_timer is in units of 1.024 usec */ 459 hrtimer_forward_now(t, ns_to_ktime(nsec)); 460 ret = HRTIMER_RESTART; 461 } 462 463 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 464 rcu_read_unlock(); 465 return ret; 466 } 467 468 /* 469 * Common code for initializing the physical port structure. 470 */ 471 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 472 struct hfi1_devdata *dd, u8 hw_pidx, u8 port) 473 { 474 int i; 475 uint default_pkey_idx; 476 struct cc_state *cc_state; 477 478 ppd->dd = dd; 479 ppd->hw_pidx = hw_pidx; 480 ppd->port = port; /* IB port number, not index */ 481 482 default_pkey_idx = 1; 483 484 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 485 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 486 ppd->part_enforce |= HFI1_PART_ENFORCE_OUT; 487 488 if (loopback) { 489 hfi1_early_err(&pdev->dev, 490 "Faking data partition 0x8001 in idx %u\n", 491 !default_pkey_idx); 492 ppd->pkeys[!default_pkey_idx] = 0x8001; 493 } 494 495 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 496 INIT_WORK(&ppd->link_up_work, handle_link_up); 497 INIT_WORK(&ppd->link_down_work, handle_link_down); 498 INIT_WORK(&ppd->freeze_work, handle_freeze); 499 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 500 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 501 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 502 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 503 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 504 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 505 506 mutex_init(&ppd->hls_lock); 507 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 508 509 ppd->qsfp_info.ppd = ppd; 510 ppd->sm_trap_qp = 0x0; 511 ppd->sa_qp = 0x1; 512 513 ppd->hfi1_wq = NULL; 514 515 spin_lock_init(&ppd->cca_timer_lock); 516 517 for (i = 0; i < OPA_MAX_SLS; i++) { 518 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 519 HRTIMER_MODE_REL); 520 ppd->cca_timer[i].ppd = ppd; 521 ppd->cca_timer[i].sl = i; 522 ppd->cca_timer[i].ccti = 0; 523 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 524 } 525 526 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 527 528 spin_lock_init(&ppd->cc_state_lock); 529 spin_lock_init(&ppd->cc_log_lock); 530 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 531 RCU_INIT_POINTER(ppd->cc_state, cc_state); 532 if (!cc_state) 533 goto bail; 534 return; 535 536 bail: 537 538 hfi1_early_err(&pdev->dev, 539 "Congestion Control Agent disabled for port %d\n", port); 540 } 541 542 /* 543 * Do initialization for device that is only needed on 544 * first detect, not on resets. 545 */ 546 static int loadtime_init(struct hfi1_devdata *dd) 547 { 548 return 0; 549 } 550 551 /** 552 * init_after_reset - re-initialize after a reset 553 * @dd: the hfi1_ib device 554 * 555 * sanity check at least some of the values after reset, and 556 * ensure no receive or transmit (explicitly, in case reset 557 * failed 558 */ 559 static int init_after_reset(struct hfi1_devdata *dd) 560 { 561 int i; 562 563 /* 564 * Ensure chip does no sends or receives, tail updates, or 565 * pioavail updates while we re-initialize. This is mostly 566 * for the driver data structures, not chip registers. 567 */ 568 for (i = 0; i < dd->num_rcv_contexts; i++) 569 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 570 HFI1_RCVCTRL_INTRAVAIL_DIS | 571 HFI1_RCVCTRL_TAILUPD_DIS, i); 572 pio_send_control(dd, PSC_GLOBAL_DISABLE); 573 for (i = 0; i < dd->num_send_contexts; i++) 574 sc_disable(dd->send_contexts[i].sc); 575 576 return 0; 577 } 578 579 static void enable_chip(struct hfi1_devdata *dd) 580 { 581 u32 rcvmask; 582 u32 i; 583 584 /* enable PIO send */ 585 pio_send_control(dd, PSC_GLOBAL_ENABLE); 586 587 /* 588 * Enable kernel ctxts' receive and receive interrupt. 589 * Other ctxts done as user opens and initializes them. 590 */ 591 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 592 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 593 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ? 594 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 595 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR)) 596 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 597 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL)) 598 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 599 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL)) 600 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 601 hfi1_rcvctrl(dd, rcvmask, i); 602 sc_enable(dd->rcd[i]->sc); 603 } 604 } 605 606 /** 607 * create_workqueues - create per port workqueues 608 * @dd: the hfi1_ib device 609 */ 610 static int create_workqueues(struct hfi1_devdata *dd) 611 { 612 int pidx; 613 struct hfi1_pportdata *ppd; 614 615 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 616 ppd = dd->pport + pidx; 617 if (!ppd->hfi1_wq) { 618 ppd->hfi1_wq = 619 alloc_workqueue( 620 "hfi%d_%d", 621 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE, 622 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, 623 dd->unit, pidx); 624 if (!ppd->hfi1_wq) 625 goto wq_error; 626 } 627 } 628 return 0; 629 wq_error: 630 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 631 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 632 ppd = dd->pport + pidx; 633 if (ppd->hfi1_wq) { 634 destroy_workqueue(ppd->hfi1_wq); 635 ppd->hfi1_wq = NULL; 636 } 637 } 638 return -ENOMEM; 639 } 640 641 /** 642 * hfi1_init - do the actual initialization sequence on the chip 643 * @dd: the hfi1_ib device 644 * @reinit: re-initializing, so don't allocate new memory 645 * 646 * Do the actual initialization sequence on the chip. This is done 647 * both from the init routine called from the PCI infrastructure, and 648 * when we reset the chip, or detect that it was reset internally, 649 * or it's administratively re-enabled. 650 * 651 * Memory allocation here and in called routines is only done in 652 * the first case (reinit == 0). We have to be careful, because even 653 * without memory allocation, we need to re-write all the chip registers 654 * TIDs, etc. after the reset or enable has completed. 655 */ 656 int hfi1_init(struct hfi1_devdata *dd, int reinit) 657 { 658 int ret = 0, pidx, lastfail = 0; 659 unsigned i, len; 660 struct hfi1_ctxtdata *rcd; 661 struct hfi1_pportdata *ppd; 662 663 /* Set up recv low level handlers */ 664 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] = 665 kdeth_process_expected; 666 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] = 667 kdeth_process_eager; 668 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib; 669 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] = 670 process_receive_error; 671 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] = 672 process_receive_bypass; 673 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] = 674 process_receive_invalid; 675 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] = 676 process_receive_invalid; 677 dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] = 678 process_receive_invalid; 679 dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions; 680 681 /* Set up send low level handlers */ 682 dd->process_pio_send = hfi1_verbs_send_pio; 683 dd->process_dma_send = hfi1_verbs_send_dma; 684 dd->pio_inline_send = pio_copy; 685 dd->process_vnic_dma_send = hfi1_vnic_send_dma; 686 687 if (is_ax(dd)) { 688 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 689 dd->do_drop = 1; 690 } else { 691 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 692 dd->do_drop = 0; 693 } 694 695 /* make sure the link is not "up" */ 696 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 697 ppd = dd->pport + pidx; 698 ppd->linkup = 0; 699 } 700 701 if (reinit) 702 ret = init_after_reset(dd); 703 else 704 ret = loadtime_init(dd); 705 if (ret) 706 goto done; 707 708 /* allocate dummy tail memory for all receive contexts */ 709 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent( 710 &dd->pcidev->dev, sizeof(u64), 711 &dd->rcvhdrtail_dummy_dma, 712 GFP_KERNEL); 713 714 if (!dd->rcvhdrtail_dummy_kvaddr) { 715 dd_dev_err(dd, "cannot allocate dummy tail memory\n"); 716 ret = -ENOMEM; 717 goto done; 718 } 719 720 /* dd->rcd can be NULL if early initialization failed */ 721 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { 722 /* 723 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 724 * re-init, the simplest way to handle this is to free 725 * existing, and re-allocate. 726 * Need to re-create rest of ctxt 0 ctxtdata as well. 727 */ 728 rcd = dd->rcd[i]; 729 if (!rcd) 730 continue; 731 732 rcd->do_interrupt = &handle_receive_interrupt; 733 734 lastfail = hfi1_create_rcvhdrq(dd, rcd); 735 if (!lastfail) 736 lastfail = hfi1_setup_eagerbufs(rcd); 737 if (lastfail) { 738 dd_dev_err(dd, 739 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 740 ret = lastfail; 741 } 742 } 743 744 /* Allocate enough memory for user event notification. */ 745 len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS * 746 sizeof(*dd->events)); 747 dd->events = vmalloc_user(len); 748 if (!dd->events) 749 dd_dev_err(dd, "Failed to allocate user events page\n"); 750 /* 751 * Allocate a page for device and port status. 752 * Page will be shared amongst all user processes. 753 */ 754 dd->status = vmalloc_user(PAGE_SIZE); 755 if (!dd->status) 756 dd_dev_err(dd, "Failed to allocate dev status page\n"); 757 else 758 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) - 759 sizeof(dd->status->freezemsg)); 760 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 761 ppd = dd->pport + pidx; 762 if (dd->status) 763 /* Currently, we only have one port */ 764 ppd->statusp = &dd->status->port; 765 766 set_mtu(ppd); 767 } 768 769 /* enable chip even if we have an error, so we can debug cause */ 770 enable_chip(dd); 771 772 done: 773 /* 774 * Set status even if port serdes is not initialized 775 * so that diags will work. 776 */ 777 if (dd->status) 778 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 779 HFI1_STATUS_INITTED; 780 if (!ret) { 781 /* enable all interrupts from the chip */ 782 set_intr_state(dd, 1); 783 784 /* chip is OK for user apps; mark it as initialized */ 785 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 786 ppd = dd->pport + pidx; 787 788 /* 789 * start the serdes - must be after interrupts are 790 * enabled so we are notified when the link goes up 791 */ 792 lastfail = bringup_serdes(ppd); 793 if (lastfail) 794 dd_dev_info(dd, 795 "Failed to bring up port %u\n", 796 ppd->port); 797 798 /* 799 * Set status even if port serdes is not initialized 800 * so that diags will work. 801 */ 802 if (ppd->statusp) 803 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 804 HFI1_STATUS_INITTED; 805 if (!ppd->link_speed_enabled) 806 continue; 807 } 808 } 809 810 /* if ret is non-zero, we probably should do some cleanup here... */ 811 return ret; 812 } 813 814 static inline struct hfi1_devdata *__hfi1_lookup(int unit) 815 { 816 return idr_find(&hfi1_unit_table, unit); 817 } 818 819 struct hfi1_devdata *hfi1_lookup(int unit) 820 { 821 struct hfi1_devdata *dd; 822 unsigned long flags; 823 824 spin_lock_irqsave(&hfi1_devs_lock, flags); 825 dd = __hfi1_lookup(unit); 826 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 827 828 return dd; 829 } 830 831 /* 832 * Stop the timers during unit shutdown, or after an error late 833 * in initialization. 834 */ 835 static void stop_timers(struct hfi1_devdata *dd) 836 { 837 struct hfi1_pportdata *ppd; 838 int pidx; 839 840 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 841 ppd = dd->pport + pidx; 842 if (ppd->led_override_timer.data) { 843 del_timer_sync(&ppd->led_override_timer); 844 atomic_set(&ppd->led_override_timer_active, 0); 845 } 846 } 847 } 848 849 /** 850 * shutdown_device - shut down a device 851 * @dd: the hfi1_ib device 852 * 853 * This is called to make the device quiet when we are about to 854 * unload the driver, and also when the device is administratively 855 * disabled. It does not free any data structures. 856 * Everything it does has to be setup again by hfi1_init(dd, 1) 857 */ 858 static void shutdown_device(struct hfi1_devdata *dd) 859 { 860 struct hfi1_pportdata *ppd; 861 unsigned pidx; 862 int i; 863 864 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 865 ppd = dd->pport + pidx; 866 867 ppd->linkup = 0; 868 if (ppd->statusp) 869 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 870 HFI1_STATUS_IB_READY); 871 } 872 dd->flags &= ~HFI1_INITTED; 873 874 /* mask interrupts, but not errors */ 875 set_intr_state(dd, 0); 876 877 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 878 ppd = dd->pport + pidx; 879 for (i = 0; i < dd->num_rcv_contexts; i++) 880 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 881 HFI1_RCVCTRL_CTXT_DIS | 882 HFI1_RCVCTRL_INTRAVAIL_DIS | 883 HFI1_RCVCTRL_PKEY_DIS | 884 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i); 885 /* 886 * Gracefully stop all sends allowing any in progress to 887 * trickle out first. 888 */ 889 for (i = 0; i < dd->num_send_contexts; i++) 890 sc_flush(dd->send_contexts[i].sc); 891 } 892 893 /* 894 * Enough for anything that's going to trickle out to have actually 895 * done so. 896 */ 897 udelay(20); 898 899 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 900 ppd = dd->pport + pidx; 901 902 /* disable all contexts */ 903 for (i = 0; i < dd->num_send_contexts; i++) 904 sc_disable(dd->send_contexts[i].sc); 905 /* disable the send device */ 906 pio_send_control(dd, PSC_GLOBAL_DISABLE); 907 908 shutdown_led_override(ppd); 909 910 /* 911 * Clear SerdesEnable. 912 * We can't count on interrupts since we are stopping. 913 */ 914 hfi1_quiet_serdes(ppd); 915 916 if (ppd->hfi1_wq) { 917 destroy_workqueue(ppd->hfi1_wq); 918 ppd->hfi1_wq = NULL; 919 } 920 } 921 sdma_exit(dd); 922 } 923 924 /** 925 * hfi1_free_ctxtdata - free a context's allocated data 926 * @dd: the hfi1_ib device 927 * @rcd: the ctxtdata structure 928 * 929 * free up any allocated data for a context 930 * This should not touch anything that would affect a simultaneous 931 * re-allocation of context data, because it is called after hfi1_mutex 932 * is released (and can be called from reinit as well). 933 * It should never change any chip state, or global driver state. 934 */ 935 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 936 { 937 unsigned e; 938 939 if (!rcd) 940 return; 941 942 if (rcd->rcvhdrq) { 943 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size, 944 rcd->rcvhdrq, rcd->rcvhdrq_dma); 945 rcd->rcvhdrq = NULL; 946 if (rcd->rcvhdrtail_kvaddr) { 947 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 948 (void *)rcd->rcvhdrtail_kvaddr, 949 rcd->rcvhdrqtailaddr_dma); 950 rcd->rcvhdrtail_kvaddr = NULL; 951 } 952 } 953 954 /* all the RcvArray entries should have been cleared by now */ 955 kfree(rcd->egrbufs.rcvtids); 956 957 for (e = 0; e < rcd->egrbufs.alloced; e++) { 958 if (rcd->egrbufs.buffers[e].dma) 959 dma_free_coherent(&dd->pcidev->dev, 960 rcd->egrbufs.buffers[e].len, 961 rcd->egrbufs.buffers[e].addr, 962 rcd->egrbufs.buffers[e].dma); 963 } 964 kfree(rcd->egrbufs.buffers); 965 966 sc_free(rcd->sc); 967 vfree(rcd->subctxt_uregbase); 968 vfree(rcd->subctxt_rcvegrbuf); 969 vfree(rcd->subctxt_rcvhdr_base); 970 kfree(rcd->opstats); 971 kfree(rcd); 972 } 973 974 /* 975 * Release our hold on the shared asic data. If we are the last one, 976 * return the structure to be finalized outside the lock. Must be 977 * holding hfi1_devs_lock. 978 */ 979 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 980 { 981 struct hfi1_asic_data *ad; 982 int other; 983 984 if (!dd->asic_data) 985 return NULL; 986 dd->asic_data->dds[dd->hfi1_id] = NULL; 987 other = dd->hfi1_id ? 0 : 1; 988 ad = dd->asic_data; 989 dd->asic_data = NULL; 990 /* return NULL if the other dd still has a link */ 991 return ad->dds[other] ? NULL : ad; 992 } 993 994 static void finalize_asic_data(struct hfi1_devdata *dd, 995 struct hfi1_asic_data *ad) 996 { 997 clean_up_i2c(dd, ad); 998 kfree(ad); 999 } 1000 1001 static void __hfi1_free_devdata(struct kobject *kobj) 1002 { 1003 struct hfi1_devdata *dd = 1004 container_of(kobj, struct hfi1_devdata, kobj); 1005 struct hfi1_asic_data *ad; 1006 unsigned long flags; 1007 1008 spin_lock_irqsave(&hfi1_devs_lock, flags); 1009 idr_remove(&hfi1_unit_table, dd->unit); 1010 list_del(&dd->list); 1011 ad = release_asic_data(dd); 1012 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1013 if (ad) 1014 finalize_asic_data(dd, ad); 1015 free_platform_config(dd); 1016 rcu_barrier(); /* wait for rcu callbacks to complete */ 1017 free_percpu(dd->int_counter); 1018 free_percpu(dd->rcv_limit); 1019 free_percpu(dd->send_schedule); 1020 rvt_dealloc_device(&dd->verbs_dev.rdi); 1021 } 1022 1023 static struct kobj_type hfi1_devdata_type = { 1024 .release = __hfi1_free_devdata, 1025 }; 1026 1027 void hfi1_free_devdata(struct hfi1_devdata *dd) 1028 { 1029 kobject_put(&dd->kobj); 1030 } 1031 1032 /* 1033 * Allocate our primary per-unit data structure. Must be done via verbs 1034 * allocator, because the verbs cleanup process both does cleanup and 1035 * free of the data structure. 1036 * "extra" is for chip-specific data. 1037 * 1038 * Use the idr mechanism to get a unit number for this unit. 1039 */ 1040 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra) 1041 { 1042 unsigned long flags; 1043 struct hfi1_devdata *dd; 1044 int ret, nports; 1045 1046 /* extra is * number of ports */ 1047 nports = extra / sizeof(struct hfi1_pportdata); 1048 1049 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1050 nports); 1051 if (!dd) 1052 return ERR_PTR(-ENOMEM); 1053 dd->num_pports = nports; 1054 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1055 1056 INIT_LIST_HEAD(&dd->list); 1057 idr_preload(GFP_KERNEL); 1058 spin_lock_irqsave(&hfi1_devs_lock, flags); 1059 1060 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT); 1061 if (ret >= 0) { 1062 dd->unit = ret; 1063 list_add(&dd->list, &hfi1_dev_list); 1064 } 1065 1066 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 1067 idr_preload_end(); 1068 1069 if (ret < 0) { 1070 hfi1_early_err(&pdev->dev, 1071 "Could not allocate unit ID: error %d\n", -ret); 1072 goto bail; 1073 } 1074 /* 1075 * Initialize all locks for the device. This needs to be as early as 1076 * possible so locks are usable. 1077 */ 1078 spin_lock_init(&dd->sc_lock); 1079 spin_lock_init(&dd->sendctrl_lock); 1080 spin_lock_init(&dd->rcvctrl_lock); 1081 spin_lock_init(&dd->uctxt_lock); 1082 spin_lock_init(&dd->hfi1_diag_trans_lock); 1083 spin_lock_init(&dd->sc_init_lock); 1084 spin_lock_init(&dd->dc8051_memlock); 1085 seqlock_init(&dd->sc2vl_lock); 1086 spin_lock_init(&dd->sde_map_lock); 1087 spin_lock_init(&dd->pio_map_lock); 1088 mutex_init(&dd->dc8051_lock); 1089 init_waitqueue_head(&dd->event_queue); 1090 1091 dd->int_counter = alloc_percpu(u64); 1092 if (!dd->int_counter) { 1093 ret = -ENOMEM; 1094 hfi1_early_err(&pdev->dev, 1095 "Could not allocate per-cpu int_counter\n"); 1096 goto bail; 1097 } 1098 1099 dd->rcv_limit = alloc_percpu(u64); 1100 if (!dd->rcv_limit) { 1101 ret = -ENOMEM; 1102 hfi1_early_err(&pdev->dev, 1103 "Could not allocate per-cpu rcv_limit\n"); 1104 goto bail; 1105 } 1106 1107 dd->send_schedule = alloc_percpu(u64); 1108 if (!dd->send_schedule) { 1109 ret = -ENOMEM; 1110 hfi1_early_err(&pdev->dev, 1111 "Could not allocate per-cpu int_counter\n"); 1112 goto bail; 1113 } 1114 1115 if (!hfi1_cpulist_count) { 1116 u32 count = num_online_cpus(); 1117 1118 hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long), 1119 GFP_KERNEL); 1120 if (hfi1_cpulist) 1121 hfi1_cpulist_count = count; 1122 else 1123 hfi1_early_err( 1124 &pdev->dev, 1125 "Could not alloc cpulist info, cpu affinity might be wrong\n"); 1126 } 1127 kobject_init(&dd->kobj, &hfi1_devdata_type); 1128 return dd; 1129 1130 bail: 1131 if (!list_empty(&dd->list)) 1132 list_del_init(&dd->list); 1133 rvt_dealloc_device(&dd->verbs_dev.rdi); 1134 return ERR_PTR(ret); 1135 } 1136 1137 /* 1138 * Called from freeze mode handlers, and from PCI error 1139 * reporting code. Should be paranoid about state of 1140 * system and data structures. 1141 */ 1142 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1143 { 1144 if (dd->flags & HFI1_INITTED) { 1145 u32 pidx; 1146 1147 dd->flags &= ~HFI1_INITTED; 1148 if (dd->pport) 1149 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1150 struct hfi1_pportdata *ppd; 1151 1152 ppd = dd->pport + pidx; 1153 if (dd->flags & HFI1_PRESENT) 1154 set_link_state(ppd, HLS_DN_DISABLE); 1155 1156 if (ppd->statusp) 1157 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1158 } 1159 } 1160 1161 /* 1162 * Mark as having had an error for driver, and also 1163 * for /sys and status word mapped to user programs. 1164 * This marks unit as not usable, until reset. 1165 */ 1166 if (dd->status) 1167 dd->status->dev |= HFI1_STATUS_HWERROR; 1168 } 1169 1170 static void remove_one(struct pci_dev *); 1171 static int init_one(struct pci_dev *, const struct pci_device_id *); 1172 1173 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " 1174 #define PFX DRIVER_NAME ": " 1175 1176 const struct pci_device_id hfi1_pci_tbl[] = { 1177 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1178 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1179 { 0, } 1180 }; 1181 1182 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1183 1184 static struct pci_driver hfi1_pci_driver = { 1185 .name = DRIVER_NAME, 1186 .probe = init_one, 1187 .remove = remove_one, 1188 .id_table = hfi1_pci_tbl, 1189 .err_handler = &hfi1_pci_err_handler, 1190 }; 1191 1192 static void __init compute_krcvqs(void) 1193 { 1194 int i; 1195 1196 for (i = 0; i < krcvqsset; i++) 1197 n_krcvqs += krcvqs[i]; 1198 } 1199 1200 /* 1201 * Do all the generic driver unit- and chip-independent memory 1202 * allocation and initialization. 1203 */ 1204 static int __init hfi1_mod_init(void) 1205 { 1206 int ret; 1207 1208 ret = dev_init(); 1209 if (ret) 1210 goto bail; 1211 1212 ret = node_affinity_init(); 1213 if (ret) 1214 goto bail; 1215 1216 /* validate max MTU before any devices start */ 1217 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1218 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1219 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1220 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1221 } 1222 /* valid CUs run from 1-128 in powers of 2 */ 1223 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1224 hfi1_cu = 1; 1225 /* valid credit return threshold is 0-100, variable is unsigned */ 1226 if (user_credit_return_threshold > 100) 1227 user_credit_return_threshold = 100; 1228 1229 compute_krcvqs(); 1230 /* 1231 * sanitize receive interrupt count, time must wait until after 1232 * the hardware type is known 1233 */ 1234 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1235 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1236 /* reject invalid combinations */ 1237 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1238 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1239 rcv_intr_count = 1; 1240 } 1241 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1242 /* 1243 * Avoid indefinite packet delivery by requiring a timeout 1244 * if count is > 1. 1245 */ 1246 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1247 rcv_intr_timeout = 1; 1248 } 1249 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1250 /* 1251 * The dynamic algorithm expects a non-zero timeout 1252 * and a count > 1. 1253 */ 1254 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1255 rcv_intr_dynamic = 0; 1256 } 1257 1258 /* sanitize link CRC options */ 1259 link_crc_mask &= SUPPORTED_CRCS; 1260 1261 /* 1262 * These must be called before the driver is registered with 1263 * the PCI subsystem. 1264 */ 1265 idr_init(&hfi1_unit_table); 1266 1267 hfi1_dbg_init(); 1268 ret = hfi1_wss_init(); 1269 if (ret < 0) 1270 goto bail_wss; 1271 ret = pci_register_driver(&hfi1_pci_driver); 1272 if (ret < 0) { 1273 pr_err("Unable to register driver: error %d\n", -ret); 1274 goto bail_dev; 1275 } 1276 goto bail; /* all OK */ 1277 1278 bail_dev: 1279 hfi1_wss_exit(); 1280 bail_wss: 1281 hfi1_dbg_exit(); 1282 idr_destroy(&hfi1_unit_table); 1283 dev_cleanup(); 1284 bail: 1285 return ret; 1286 } 1287 1288 module_init(hfi1_mod_init); 1289 1290 /* 1291 * Do the non-unit driver cleanup, memory free, etc. at unload. 1292 */ 1293 static void __exit hfi1_mod_cleanup(void) 1294 { 1295 pci_unregister_driver(&hfi1_pci_driver); 1296 node_affinity_destroy(); 1297 hfi1_wss_exit(); 1298 hfi1_dbg_exit(); 1299 hfi1_cpulist_count = 0; 1300 kfree(hfi1_cpulist); 1301 1302 idr_destroy(&hfi1_unit_table); 1303 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1304 dev_cleanup(); 1305 } 1306 1307 module_exit(hfi1_mod_cleanup); 1308 1309 /* this can only be called after a successful initialization */ 1310 static void cleanup_device_data(struct hfi1_devdata *dd) 1311 { 1312 int ctxt; 1313 int pidx; 1314 struct hfi1_ctxtdata **tmp; 1315 unsigned long flags; 1316 1317 /* users can't do anything more with chip */ 1318 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1319 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1320 struct cc_state *cc_state; 1321 int i; 1322 1323 if (ppd->statusp) 1324 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1325 1326 for (i = 0; i < OPA_MAX_SLS; i++) 1327 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1328 1329 spin_lock(&ppd->cc_state_lock); 1330 cc_state = get_cc_state_protected(ppd); 1331 RCU_INIT_POINTER(ppd->cc_state, NULL); 1332 spin_unlock(&ppd->cc_state_lock); 1333 1334 if (cc_state) 1335 kfree_rcu(cc_state, rcu); 1336 } 1337 1338 free_credit_return(dd); 1339 1340 /* 1341 * Free any resources still in use (usually just kernel contexts) 1342 * at unload; we do for ctxtcnt, because that's what we allocate. 1343 * We acquire lock to be really paranoid that rcd isn't being 1344 * accessed from some interrupt-related code (that should not happen, 1345 * but best to be sure). 1346 */ 1347 spin_lock_irqsave(&dd->uctxt_lock, flags); 1348 tmp = dd->rcd; 1349 dd->rcd = NULL; 1350 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1351 1352 if (dd->rcvhdrtail_dummy_kvaddr) { 1353 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1354 (void *)dd->rcvhdrtail_dummy_kvaddr, 1355 dd->rcvhdrtail_dummy_dma); 1356 dd->rcvhdrtail_dummy_kvaddr = NULL; 1357 } 1358 1359 for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) { 1360 struct hfi1_ctxtdata *rcd = tmp[ctxt]; 1361 1362 tmp[ctxt] = NULL; /* debugging paranoia */ 1363 if (rcd) { 1364 hfi1_clear_tids(rcd); 1365 hfi1_free_ctxtdata(dd, rcd); 1366 } 1367 } 1368 kfree(tmp); 1369 free_pio_map(dd); 1370 /* must follow rcv context free - need to remove rcv's hooks */ 1371 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1372 sc_free(dd->send_contexts[ctxt].sc); 1373 dd->num_send_contexts = 0; 1374 kfree(dd->send_contexts); 1375 dd->send_contexts = NULL; 1376 kfree(dd->hw_to_sw); 1377 dd->hw_to_sw = NULL; 1378 kfree(dd->boardname); 1379 vfree(dd->events); 1380 vfree(dd->status); 1381 } 1382 1383 /* 1384 * Clean up on unit shutdown, or error during unit load after 1385 * successful initialization. 1386 */ 1387 static void postinit_cleanup(struct hfi1_devdata *dd) 1388 { 1389 hfi1_start_cleanup(dd); 1390 1391 hfi1_pcie_ddcleanup(dd); 1392 hfi1_pcie_cleanup(dd->pcidev); 1393 1394 cleanup_device_data(dd); 1395 1396 hfi1_free_devdata(dd); 1397 } 1398 1399 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt) 1400 { 1401 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { 1402 hfi1_early_err(dev, "Receive header queue count too small\n"); 1403 return -EINVAL; 1404 } 1405 1406 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { 1407 hfi1_early_err(dev, 1408 "Receive header queue count cannot be greater than %u\n", 1409 HFI1_MAX_HDRQ_EGRBUF_CNT); 1410 return -EINVAL; 1411 } 1412 1413 if (thecnt % HDRQ_INCREMENT) { 1414 hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n", 1415 thecnt, HDRQ_INCREMENT); 1416 return -EINVAL; 1417 } 1418 1419 return 0; 1420 } 1421 1422 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1423 { 1424 int ret = 0, j, pidx, initfail; 1425 struct hfi1_devdata *dd; 1426 struct hfi1_pportdata *ppd; 1427 1428 /* First, lock the non-writable module parameters */ 1429 HFI1_CAP_LOCK(); 1430 1431 /* Validate dev ids */ 1432 if (!(ent->device == PCI_DEVICE_ID_INTEL0 || 1433 ent->device == PCI_DEVICE_ID_INTEL1)) { 1434 hfi1_early_err(&pdev->dev, 1435 "Failing on unknown Intel deviceid 0x%x\n", 1436 ent->device); 1437 ret = -ENODEV; 1438 goto bail; 1439 } 1440 1441 /* Validate some global module parameters */ 1442 ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt); 1443 if (ret) 1444 goto bail; 1445 1446 /* use the encoding function as a sanitization check */ 1447 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1448 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n", 1449 hfi1_hdrq_entsize); 1450 ret = -EINVAL; 1451 goto bail; 1452 } 1453 1454 /* The receive eager buffer size must be set before the receive 1455 * contexts are created. 1456 * 1457 * Set the eager buffer size. Validate that it falls in a range 1458 * allowed by the hardware - all powers of 2 between the min and 1459 * max. The maximum valid MTU is within the eager buffer range 1460 * so we do not need to cap the max_mtu by an eager buffer size 1461 * setting. 1462 */ 1463 if (eager_buffer_size) { 1464 if (!is_power_of_2(eager_buffer_size)) 1465 eager_buffer_size = 1466 roundup_pow_of_two(eager_buffer_size); 1467 eager_buffer_size = 1468 clamp_val(eager_buffer_size, 1469 MIN_EAGER_BUFFER * 8, 1470 MAX_EAGER_BUFFER_TOTAL); 1471 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n", 1472 eager_buffer_size); 1473 } else { 1474 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n"); 1475 ret = -EINVAL; 1476 goto bail; 1477 } 1478 1479 /* restrict value of hfi1_rcvarr_split */ 1480 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1481 1482 ret = hfi1_pcie_init(pdev, ent); 1483 if (ret) 1484 goto bail; 1485 1486 /* 1487 * Do device-specific initialization, function table setup, dd 1488 * allocation, etc. 1489 */ 1490 dd = hfi1_init_dd(pdev, ent); 1491 1492 if (IS_ERR(dd)) { 1493 ret = PTR_ERR(dd); 1494 goto clean_bail; /* error already printed */ 1495 } 1496 1497 ret = create_workqueues(dd); 1498 if (ret) 1499 goto clean_bail; 1500 1501 /* do the generic initialization */ 1502 initfail = hfi1_init(dd, 0); 1503 1504 /* setup vnic */ 1505 hfi1_vnic_setup(dd); 1506 1507 ret = hfi1_register_ib_device(dd); 1508 1509 /* 1510 * Now ready for use. this should be cleared whenever we 1511 * detect a reset, or initiate one. If earlier failure, 1512 * we still create devices, so diags, etc. can be used 1513 * to determine cause of problem. 1514 */ 1515 if (!initfail && !ret) { 1516 dd->flags |= HFI1_INITTED; 1517 /* create debufs files after init and ib register */ 1518 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1519 } 1520 1521 j = hfi1_device_create(dd); 1522 if (j) 1523 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1524 1525 if (initfail || ret) { 1526 stop_timers(dd); 1527 flush_workqueue(ib_wq); 1528 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1529 hfi1_quiet_serdes(dd->pport + pidx); 1530 ppd = dd->pport + pidx; 1531 if (ppd->hfi1_wq) { 1532 destroy_workqueue(ppd->hfi1_wq); 1533 ppd->hfi1_wq = NULL; 1534 } 1535 } 1536 if (!j) 1537 hfi1_device_remove(dd); 1538 if (!ret) 1539 hfi1_unregister_ib_device(dd); 1540 hfi1_vnic_cleanup(dd); 1541 postinit_cleanup(dd); 1542 if (initfail) 1543 ret = initfail; 1544 goto bail; /* everything already cleaned */ 1545 } 1546 1547 sdma_start(dd); 1548 1549 return 0; 1550 1551 clean_bail: 1552 hfi1_pcie_cleanup(pdev); 1553 bail: 1554 return ret; 1555 } 1556 1557 static void wait_for_clients(struct hfi1_devdata *dd) 1558 { 1559 /* 1560 * Remove the device init value and complete the device if there is 1561 * no clients or wait for active clients to finish. 1562 */ 1563 if (atomic_dec_and_test(&dd->user_refcount)) 1564 complete(&dd->user_comp); 1565 1566 wait_for_completion(&dd->user_comp); 1567 } 1568 1569 static void remove_one(struct pci_dev *pdev) 1570 { 1571 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1572 1573 /* close debugfs files before ib unregister */ 1574 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1575 1576 /* remove the /dev hfi1 interface */ 1577 hfi1_device_remove(dd); 1578 1579 /* wait for existing user space clients to finish */ 1580 wait_for_clients(dd); 1581 1582 /* unregister from IB core */ 1583 hfi1_unregister_ib_device(dd); 1584 1585 /* cleanup vnic */ 1586 hfi1_vnic_cleanup(dd); 1587 1588 /* 1589 * Disable the IB link, disable interrupts on the device, 1590 * clear dma engines, etc. 1591 */ 1592 shutdown_device(dd); 1593 1594 stop_timers(dd); 1595 1596 /* wait until all of our (qsfp) queue_work() calls complete */ 1597 flush_workqueue(ib_wq); 1598 1599 postinit_cleanup(dd); 1600 } 1601 1602 /** 1603 * hfi1_create_rcvhdrq - create a receive header queue 1604 * @dd: the hfi1_ib device 1605 * @rcd: the context data 1606 * 1607 * This must be contiguous memory (from an i/o perspective), and must be 1608 * DMA'able (which means for some systems, it will go through an IOMMU, 1609 * or be forced into a low address range). 1610 */ 1611 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1612 { 1613 unsigned amt; 1614 u64 reg; 1615 1616 if (!rcd->rcvhdrq) { 1617 dma_addr_t dma_hdrqtail; 1618 gfp_t gfp_flags; 1619 1620 /* 1621 * rcvhdrqentsize is in DWs, so we have to convert to bytes 1622 * (* sizeof(u32)). 1623 */ 1624 amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize * 1625 sizeof(u32)); 1626 1627 if ((rcd->ctxt < dd->first_dyn_alloc_ctxt) || 1628 (rcd->sc && (rcd->sc->type == SC_KERNEL))) 1629 gfp_flags = GFP_KERNEL; 1630 else 1631 gfp_flags = GFP_USER; 1632 rcd->rcvhdrq = dma_zalloc_coherent( 1633 &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma, 1634 gfp_flags | __GFP_COMP); 1635 1636 if (!rcd->rcvhdrq) { 1637 dd_dev_err(dd, 1638 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1639 amt, rcd->ctxt); 1640 goto bail; 1641 } 1642 1643 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1644 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent( 1645 &dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail, 1646 gfp_flags); 1647 if (!rcd->rcvhdrtail_kvaddr) 1648 goto bail_free; 1649 rcd->rcvhdrqtailaddr_dma = dma_hdrqtail; 1650 } 1651 1652 rcd->rcvhdrq_size = amt; 1653 } 1654 /* 1655 * These values are per-context: 1656 * RcvHdrCnt 1657 * RcvHdrEntSize 1658 * RcvHdrSize 1659 */ 1660 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT) 1661 & RCV_HDR_CNT_CNT_MASK) 1662 << RCV_HDR_CNT_CNT_SHIFT; 1663 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg); 1664 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize) 1665 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) 1666 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; 1667 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg); 1668 reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK) 1669 << RCV_HDR_SIZE_HDR_SIZE_SHIFT; 1670 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg); 1671 1672 /* 1673 * Program dummy tail address for every receive context 1674 * before enabling any receive context 1675 */ 1676 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR, 1677 dd->rcvhdrtail_dummy_dma); 1678 1679 return 0; 1680 1681 bail_free: 1682 dd_dev_err(dd, 1683 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1684 rcd->ctxt); 1685 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1686 rcd->rcvhdrq_dma); 1687 rcd->rcvhdrq = NULL; 1688 bail: 1689 return -ENOMEM; 1690 } 1691 1692 /** 1693 * allocate eager buffers, both kernel and user contexts. 1694 * @rcd: the context we are setting up. 1695 * 1696 * Allocate the eager TID buffers and program them into hip. 1697 * They are no longer completely contiguous, we do multiple allocation 1698 * calls. Otherwise we get the OOM code involved, by asking for too 1699 * much per call, with disastrous results on some kernels. 1700 */ 1701 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1702 { 1703 struct hfi1_devdata *dd = rcd->dd; 1704 u32 max_entries, egrtop, alloced_bytes = 0, idx = 0; 1705 gfp_t gfp_flags; 1706 u16 order; 1707 int ret = 0; 1708 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1709 1710 /* 1711 * GFP_USER, but without GFP_FS, so buffer cache can be 1712 * coalesced (we hope); otherwise, even at order 4, 1713 * heavy filesystem activity makes these fail, and we can 1714 * use compound pages. 1715 */ 1716 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; 1717 1718 /* 1719 * The minimum size of the eager buffers is a groups of MTU-sized 1720 * buffers. 1721 * The global eager_buffer_size parameter is checked against the 1722 * theoretical lower limit of the value. Here, we check against the 1723 * MTU. 1724 */ 1725 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1726 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1727 /* 1728 * If using one-pkt-per-egr-buffer, lower the eager buffer 1729 * size to the max MTU (page-aligned). 1730 */ 1731 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1732 rcd->egrbufs.rcvtid_size = round_mtu; 1733 1734 /* 1735 * Eager buffers sizes of 1MB or less require smaller TID sizes 1736 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1737 */ 1738 if (rcd->egrbufs.size <= (1 << 20)) 1739 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1740 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1741 1742 while (alloced_bytes < rcd->egrbufs.size && 1743 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1744 rcd->egrbufs.buffers[idx].addr = 1745 dma_zalloc_coherent(&dd->pcidev->dev, 1746 rcd->egrbufs.rcvtid_size, 1747 &rcd->egrbufs.buffers[idx].dma, 1748 gfp_flags); 1749 if (rcd->egrbufs.buffers[idx].addr) { 1750 rcd->egrbufs.buffers[idx].len = 1751 rcd->egrbufs.rcvtid_size; 1752 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1753 rcd->egrbufs.buffers[idx].addr; 1754 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1755 rcd->egrbufs.buffers[idx].dma; 1756 rcd->egrbufs.alloced++; 1757 alloced_bytes += rcd->egrbufs.rcvtid_size; 1758 idx++; 1759 } else { 1760 u32 new_size, i, j; 1761 u64 offset = 0; 1762 1763 /* 1764 * Fail the eager buffer allocation if: 1765 * - we are already using the lowest acceptable size 1766 * - we are using one-pkt-per-egr-buffer (this implies 1767 * that we are accepting only one size) 1768 */ 1769 if (rcd->egrbufs.rcvtid_size == round_mtu || 1770 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 1771 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 1772 rcd->ctxt); 1773 ret = -ENOMEM; 1774 goto bail_rcvegrbuf_phys; 1775 } 1776 1777 new_size = rcd->egrbufs.rcvtid_size / 2; 1778 1779 /* 1780 * If the first attempt to allocate memory failed, don't 1781 * fail everything but continue with the next lower 1782 * size. 1783 */ 1784 if (idx == 0) { 1785 rcd->egrbufs.rcvtid_size = new_size; 1786 continue; 1787 } 1788 1789 /* 1790 * Re-partition already allocated buffers to a smaller 1791 * size. 1792 */ 1793 rcd->egrbufs.alloced = 0; 1794 for (i = 0, j = 0, offset = 0; j < idx; i++) { 1795 if (i >= rcd->egrbufs.count) 1796 break; 1797 rcd->egrbufs.rcvtids[i].dma = 1798 rcd->egrbufs.buffers[j].dma + offset; 1799 rcd->egrbufs.rcvtids[i].addr = 1800 rcd->egrbufs.buffers[j].addr + offset; 1801 rcd->egrbufs.alloced++; 1802 if ((rcd->egrbufs.buffers[j].dma + offset + 1803 new_size) == 1804 (rcd->egrbufs.buffers[j].dma + 1805 rcd->egrbufs.buffers[j].len)) { 1806 j++; 1807 offset = 0; 1808 } else { 1809 offset += new_size; 1810 } 1811 } 1812 rcd->egrbufs.rcvtid_size = new_size; 1813 } 1814 } 1815 rcd->egrbufs.numbufs = idx; 1816 rcd->egrbufs.size = alloced_bytes; 1817 1818 hfi1_cdbg(PROC, 1819 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n", 1820 rcd->ctxt, rcd->egrbufs.alloced, 1821 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 1822 1823 /* 1824 * Set the contexts rcv array head update threshold to the closest 1825 * power of 2 (so we can use a mask instead of modulo) below half 1826 * the allocated entries. 1827 */ 1828 rcd->egrbufs.threshold = 1829 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 1830 /* 1831 * Compute the expected RcvArray entry base. This is done after 1832 * allocating the eager buffers in order to maximize the 1833 * expected RcvArray entries for the context. 1834 */ 1835 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 1836 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 1837 rcd->expected_count = max_entries - egrtop; 1838 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 1839 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 1840 1841 rcd->expected_base = rcd->eager_base + egrtop; 1842 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", 1843 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 1844 rcd->eager_base, rcd->expected_base); 1845 1846 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 1847 hfi1_cdbg(PROC, 1848 "ctxt%u: current Eager buffer size is invalid %u\n", 1849 rcd->ctxt, rcd->egrbufs.rcvtid_size); 1850 ret = -EINVAL; 1851 goto bail_rcvegrbuf_phys; 1852 } 1853 1854 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 1855 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 1856 rcd->egrbufs.rcvtids[idx].dma, order); 1857 cond_resched(); 1858 } 1859 1860 return 0; 1861 1862 bail_rcvegrbuf_phys: 1863 for (idx = 0; idx < rcd->egrbufs.alloced && 1864 rcd->egrbufs.buffers[idx].addr; 1865 idx++) { 1866 dma_free_coherent(&dd->pcidev->dev, 1867 rcd->egrbufs.buffers[idx].len, 1868 rcd->egrbufs.buffers[idx].addr, 1869 rcd->egrbufs.buffers[idx].dma); 1870 rcd->egrbufs.buffers[idx].addr = NULL; 1871 rcd->egrbufs.buffers[idx].dma = 0; 1872 rcd->egrbufs.buffers[idx].len = 0; 1873 } 1874 1875 return ret; 1876 } 1877