xref: /linux/drivers/infiniband/hw/hfi1/init.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <linux/numa.h>
58 #include <rdma/rdma_vt.h>
59 
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "trace.h"
64 #include "mad.h"
65 #include "sdma.h"
66 #include "debugfs.h"
67 #include "verbs.h"
68 #include "aspm.h"
69 #include "affinity.h"
70 #include "vnic.h"
71 #include "exp_rcv.h"
72 
73 #undef pr_fmt
74 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
75 
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80 
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85 
86 #define NUM_IB_PORTS 1
87 
88 /*
89  * Number of user receive contexts we are configured to use (to allow for more
90  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
91  */
92 int num_user_contexts = -1;
93 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
94 MODULE_PARM_DESC(
95 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
96 
97 uint krcvqs[RXE_NUM_DATA_VL];
98 int krcvqsset;
99 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
100 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
101 
102 /* computed based on above array */
103 unsigned long n_krcvqs;
104 
105 static unsigned hfi1_rcvarr_split = 25;
106 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
107 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
108 
109 static uint eager_buffer_size = (8 << 20); /* 8MB */
110 module_param(eager_buffer_size, uint, S_IRUGO);
111 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
112 
113 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
114 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
115 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
116 
117 static uint hfi1_hdrq_entsize = 32;
118 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
119 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
120 
121 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
122 module_param(user_credit_return_threshold, uint, S_IRUGO);
123 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
124 
125 static inline u64 encode_rcv_header_entry_size(u16 size);
126 
127 static struct idr hfi1_unit_table;
128 
129 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
130 			     struct hfi1_pportdata *ppd)
131 {
132 	struct hfi1_ctxtdata *rcd;
133 	int ret;
134 
135 	/* Control context has to be always 0 */
136 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
137 
138 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
139 	if (ret < 0) {
140 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
141 		return ret;
142 	}
143 
144 	/*
145 	 * Set up the kernel context flags here and now because they use
146 	 * default values for all receive side memories.  User contexts will
147 	 * be handled as they are created.
148 	 */
149 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
150 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
151 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
152 		HFI1_CAP_KGET(DMA_RTAIL);
153 
154 	/* Control context must use DMA_RTAIL */
155 	if (rcd->ctxt == HFI1_CTRL_CTXT)
156 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
157 	rcd->seq_cnt = 1;
158 
159 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
160 	if (!rcd->sc) {
161 		dd_dev_err(dd, "Kernel send context allocation failed\n");
162 		return -ENOMEM;
163 	}
164 	hfi1_init_ctxt(rcd->sc);
165 
166 	return 0;
167 }
168 
169 /*
170  * Create the receive context array and one or more kernel contexts
171  */
172 int hfi1_create_kctxts(struct hfi1_devdata *dd)
173 {
174 	u16 i;
175 	int ret;
176 
177 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
178 			       GFP_KERNEL, dd->node);
179 	if (!dd->rcd)
180 		return -ENOMEM;
181 
182 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
183 		ret = hfi1_create_kctxt(dd, dd->pport);
184 		if (ret)
185 			goto bail;
186 	}
187 
188 	return 0;
189 bail:
190 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
191 		hfi1_free_ctxt(dd->rcd[i]);
192 
193 	/* All the contexts should be freed, free the array */
194 	kfree(dd->rcd);
195 	dd->rcd = NULL;
196 	return ret;
197 }
198 
199 /*
200  * Helper routines for the receive context reference count (rcd and uctxt).
201  */
202 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
203 {
204 	kref_init(&rcd->kref);
205 }
206 
207 /**
208  * hfi1_rcd_free - When reference is zero clean up.
209  * @kref: pointer to an initialized rcd data structure
210  *
211  */
212 static void hfi1_rcd_free(struct kref *kref)
213 {
214 	unsigned long flags;
215 	struct hfi1_ctxtdata *rcd =
216 		container_of(kref, struct hfi1_ctxtdata, kref);
217 
218 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
219 	rcd->dd->rcd[rcd->ctxt] = NULL;
220 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
221 
222 	hfi1_free_ctxtdata(rcd->dd, rcd);
223 
224 	kfree(rcd);
225 }
226 
227 /**
228  * hfi1_rcd_put - decrement reference for rcd
229  * @rcd: pointer to an initialized rcd data structure
230  *
231  * Use this to put a reference after the init.
232  */
233 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
234 {
235 	if (rcd)
236 		return kref_put(&rcd->kref, hfi1_rcd_free);
237 
238 	return 0;
239 }
240 
241 /**
242  * hfi1_rcd_get - increment reference for rcd
243  * @rcd: pointer to an initialized rcd data structure
244  *
245  * Use this to get a reference after the init.
246  *
247  * Return : reflect kref_get_unless_zero(), which returns non-zero on
248  * increment, otherwise 0.
249  */
250 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
251 {
252 	return kref_get_unless_zero(&rcd->kref);
253 }
254 
255 /**
256  * allocate_rcd_index - allocate an rcd index from the rcd array
257  * @dd: pointer to a valid devdata structure
258  * @rcd: rcd data structure to assign
259  * @index: pointer to index that is allocated
260  *
261  * Find an empty index in the rcd array, and assign the given rcd to it.
262  * If the array is full, we are EBUSY.
263  *
264  */
265 static int allocate_rcd_index(struct hfi1_devdata *dd,
266 			      struct hfi1_ctxtdata *rcd, u16 *index)
267 {
268 	unsigned long flags;
269 	u16 ctxt;
270 
271 	spin_lock_irqsave(&dd->uctxt_lock, flags);
272 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
273 		if (!dd->rcd[ctxt])
274 			break;
275 
276 	if (ctxt < dd->num_rcv_contexts) {
277 		rcd->ctxt = ctxt;
278 		dd->rcd[ctxt] = rcd;
279 		hfi1_rcd_init(rcd);
280 	}
281 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
282 
283 	if (ctxt >= dd->num_rcv_contexts)
284 		return -EBUSY;
285 
286 	*index = ctxt;
287 
288 	return 0;
289 }
290 
291 /**
292  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
293  * array
294  * @dd: pointer to a valid devdata structure
295  * @ctxt: the index of an possilbe rcd
296  *
297  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
298  * ctxt index is valid.
299  *
300  * The caller is responsible for making the _put().
301  *
302  */
303 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
304 						 u16 ctxt)
305 {
306 	if (ctxt < dd->num_rcv_contexts)
307 		return hfi1_rcd_get_by_index(dd, ctxt);
308 
309 	return NULL;
310 }
311 
312 /**
313  * hfi1_rcd_get_by_index
314  * @dd: pointer to a valid devdata structure
315  * @ctxt: the index of an possilbe rcd
316  *
317  * We need to protect access to the rcd array.  If access is needed to
318  * one or more index, get the protecting spinlock and then increment the
319  * kref.
320  *
321  * The caller is responsible for making the _put().
322  *
323  */
324 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
325 {
326 	unsigned long flags;
327 	struct hfi1_ctxtdata *rcd = NULL;
328 
329 	spin_lock_irqsave(&dd->uctxt_lock, flags);
330 	if (dd->rcd[ctxt]) {
331 		rcd = dd->rcd[ctxt];
332 		if (!hfi1_rcd_get(rcd))
333 			rcd = NULL;
334 	}
335 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
336 
337 	return rcd;
338 }
339 
340 /*
341  * Common code for user and kernel context create and setup.
342  * NOTE: the initial kref is done here (hf1_rcd_init()).
343  */
344 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
345 			 struct hfi1_ctxtdata **context)
346 {
347 	struct hfi1_devdata *dd = ppd->dd;
348 	struct hfi1_ctxtdata *rcd;
349 	unsigned kctxt_ngroups = 0;
350 	u32 base;
351 
352 	if (dd->rcv_entries.nctxt_extra >
353 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
354 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
355 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
356 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
357 	if (rcd) {
358 		u32 rcvtids, max_entries;
359 		u16 ctxt;
360 		int ret;
361 
362 		ret = allocate_rcd_index(dd, rcd, &ctxt);
363 		if (ret) {
364 			*context = NULL;
365 			kfree(rcd);
366 			return ret;
367 		}
368 
369 		INIT_LIST_HEAD(&rcd->qp_wait_list);
370 		hfi1_exp_tid_group_init(rcd);
371 		rcd->ppd = ppd;
372 		rcd->dd = dd;
373 		rcd->numa_id = numa;
374 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
375 		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
376 
377 		mutex_init(&rcd->exp_mutex);
378 		spin_lock_init(&rcd->exp_lock);
379 		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
380 		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
381 
382 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
383 
384 		/*
385 		 * Calculate the context's RcvArray entry starting point.
386 		 * We do this here because we have to take into account all
387 		 * the RcvArray entries that previous context would have
388 		 * taken and we have to account for any extra groups assigned
389 		 * to the static (kernel) or dynamic (vnic/user) contexts.
390 		 */
391 		if (ctxt < dd->first_dyn_alloc_ctxt) {
392 			if (ctxt < kctxt_ngroups) {
393 				base = ctxt * (dd->rcv_entries.ngroups + 1);
394 				rcd->rcv_array_groups++;
395 			} else {
396 				base = kctxt_ngroups +
397 					(ctxt * dd->rcv_entries.ngroups);
398 			}
399 		} else {
400 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
401 
402 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
403 				kctxt_ngroups);
404 			if (ct < dd->rcv_entries.nctxt_extra) {
405 				base += ct * (dd->rcv_entries.ngroups + 1);
406 				rcd->rcv_array_groups++;
407 			} else {
408 				base += dd->rcv_entries.nctxt_extra +
409 					(ct * dd->rcv_entries.ngroups);
410 			}
411 		}
412 		rcd->eager_base = base * dd->rcv_entries.group_size;
413 
414 		rcd->rcvhdrq_cnt = rcvhdrcnt;
415 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
416 		rcd->rhf_offset =
417 			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
418 		/*
419 		 * Simple Eager buffer allocation: we have already pre-allocated
420 		 * the number of RcvArray entry groups. Each ctxtdata structure
421 		 * holds the number of groups for that context.
422 		 *
423 		 * To follow CSR requirements and maintain cacheline alignment,
424 		 * make sure all sizes and bases are multiples of group_size.
425 		 *
426 		 * The expected entry count is what is left after assigning
427 		 * eager.
428 		 */
429 		max_entries = rcd->rcv_array_groups *
430 			dd->rcv_entries.group_size;
431 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
432 		rcd->egrbufs.count = round_down(rcvtids,
433 						dd->rcv_entries.group_size);
434 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
435 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
436 				   rcd->ctxt);
437 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
438 		}
439 		hfi1_cdbg(PROC,
440 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
441 			  rcd->ctxt, rcd->egrbufs.count);
442 
443 		/*
444 		 * Allocate array that will hold the eager buffer accounting
445 		 * data.
446 		 * This will allocate the maximum possible buffer count based
447 		 * on the value of the RcvArray split parameter.
448 		 * The resulting value will be rounded down to the closest
449 		 * multiple of dd->rcv_entries.group_size.
450 		 */
451 		rcd->egrbufs.buffers =
452 			kcalloc_node(rcd->egrbufs.count,
453 				     sizeof(*rcd->egrbufs.buffers),
454 				     GFP_KERNEL, numa);
455 		if (!rcd->egrbufs.buffers)
456 			goto bail;
457 		rcd->egrbufs.rcvtids =
458 			kcalloc_node(rcd->egrbufs.count,
459 				     sizeof(*rcd->egrbufs.rcvtids),
460 				     GFP_KERNEL, numa);
461 		if (!rcd->egrbufs.rcvtids)
462 			goto bail;
463 		rcd->egrbufs.size = eager_buffer_size;
464 		/*
465 		 * The size of the buffers programmed into the RcvArray
466 		 * entries needs to be big enough to handle the highest
467 		 * MTU supported.
468 		 */
469 		if (rcd->egrbufs.size < hfi1_max_mtu) {
470 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
471 			hfi1_cdbg(PROC,
472 				  "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
473 				    rcd->ctxt, rcd->egrbufs.size);
474 		}
475 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
476 
477 		/* Applicable only for statically created kernel contexts */
478 		if (ctxt < dd->first_dyn_alloc_ctxt) {
479 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
480 						    GFP_KERNEL, numa);
481 			if (!rcd->opstats)
482 				goto bail;
483 
484 			/* Initialize TID flow generations for the context */
485 			hfi1_kern_init_ctxt_generations(rcd);
486 		}
487 
488 		*context = rcd;
489 		return 0;
490 	}
491 
492 bail:
493 	*context = NULL;
494 	hfi1_free_ctxt(rcd);
495 	return -ENOMEM;
496 }
497 
498 /**
499  * hfi1_free_ctxt
500  * @rcd: pointer to an initialized rcd data structure
501  *
502  * This wrapper is the free function that matches hfi1_create_ctxtdata().
503  * When a context is done being used (kernel or user), this function is called
504  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
505  * Other users of the context do a get/put sequence to make sure that the
506  * structure isn't removed while in use.
507  */
508 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
509 {
510 	hfi1_rcd_put(rcd);
511 }
512 
513 /*
514  * Convert a receive header entry size that to the encoding used in the CSR.
515  *
516  * Return a zero if the given size is invalid.
517  */
518 static inline u64 encode_rcv_header_entry_size(u16 size)
519 {
520 	/* there are only 3 valid receive header entry sizes */
521 	if (size == 2)
522 		return 1;
523 	if (size == 16)
524 		return 2;
525 	else if (size == 32)
526 		return 4;
527 	return 0; /* invalid */
528 }
529 
530 /*
531  * Select the largest ccti value over all SLs to determine the intra-
532  * packet gap for the link.
533  *
534  * called with cca_timer_lock held (to protect access to cca_timer
535  * array), and rcu_read_lock() (to protect access to cc_state).
536  */
537 void set_link_ipg(struct hfi1_pportdata *ppd)
538 {
539 	struct hfi1_devdata *dd = ppd->dd;
540 	struct cc_state *cc_state;
541 	int i;
542 	u16 cce, ccti_limit, max_ccti = 0;
543 	u16 shift, mult;
544 	u64 src;
545 	u32 current_egress_rate; /* Mbits /sec */
546 	u32 max_pkt_time;
547 	/*
548 	 * max_pkt_time is the maximum packet egress time in units
549 	 * of the fabric clock period 1/(805 MHz).
550 	 */
551 
552 	cc_state = get_cc_state(ppd);
553 
554 	if (!cc_state)
555 		/*
556 		 * This should _never_ happen - rcu_read_lock() is held,
557 		 * and set_link_ipg() should not be called if cc_state
558 		 * is NULL.
559 		 */
560 		return;
561 
562 	for (i = 0; i < OPA_MAX_SLS; i++) {
563 		u16 ccti = ppd->cca_timer[i].ccti;
564 
565 		if (ccti > max_ccti)
566 			max_ccti = ccti;
567 	}
568 
569 	ccti_limit = cc_state->cct.ccti_limit;
570 	if (max_ccti > ccti_limit)
571 		max_ccti = ccti_limit;
572 
573 	cce = cc_state->cct.entries[max_ccti].entry;
574 	shift = (cce & 0xc000) >> 14;
575 	mult = (cce & 0x3fff);
576 
577 	current_egress_rate = active_egress_rate(ppd);
578 
579 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
580 
581 	src = (max_pkt_time >> shift) * mult;
582 
583 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
584 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
585 
586 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
587 }
588 
589 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
590 {
591 	struct cca_timer *cca_timer;
592 	struct hfi1_pportdata *ppd;
593 	int sl;
594 	u16 ccti_timer, ccti_min;
595 	struct cc_state *cc_state;
596 	unsigned long flags;
597 	enum hrtimer_restart ret = HRTIMER_NORESTART;
598 
599 	cca_timer = container_of(t, struct cca_timer, hrtimer);
600 	ppd = cca_timer->ppd;
601 	sl = cca_timer->sl;
602 
603 	rcu_read_lock();
604 
605 	cc_state = get_cc_state(ppd);
606 
607 	if (!cc_state) {
608 		rcu_read_unlock();
609 		return HRTIMER_NORESTART;
610 	}
611 
612 	/*
613 	 * 1) decrement ccti for SL
614 	 * 2) calculate IPG for link (set_link_ipg())
615 	 * 3) restart timer, unless ccti is at min value
616 	 */
617 
618 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
619 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
620 
621 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
622 
623 	if (cca_timer->ccti > ccti_min) {
624 		cca_timer->ccti--;
625 		set_link_ipg(ppd);
626 	}
627 
628 	if (cca_timer->ccti > ccti_min) {
629 		unsigned long nsec = 1024 * ccti_timer;
630 		/* ccti_timer is in units of 1.024 usec */
631 		hrtimer_forward_now(t, ns_to_ktime(nsec));
632 		ret = HRTIMER_RESTART;
633 	}
634 
635 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
636 	rcu_read_unlock();
637 	return ret;
638 }
639 
640 /*
641  * Common code for initializing the physical port structure.
642  */
643 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
644 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
645 {
646 	int i;
647 	uint default_pkey_idx;
648 	struct cc_state *cc_state;
649 
650 	ppd->dd = dd;
651 	ppd->hw_pidx = hw_pidx;
652 	ppd->port = port; /* IB port number, not index */
653 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
654 	/*
655 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
656 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
657 	 */
658 	for (i = 0; i < C_VL_COUNT + 1; i++) {
659 		ppd->port_vl_xmit_wait_last[i] = 0;
660 		ppd->vl_xmit_flit_cnt[i] = 0;
661 	}
662 
663 	default_pkey_idx = 1;
664 
665 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
666 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
667 
668 	if (loopback) {
669 		dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
670 			   !default_pkey_idx);
671 		ppd->pkeys[!default_pkey_idx] = 0x8001;
672 	}
673 
674 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
675 	INIT_WORK(&ppd->link_up_work, handle_link_up);
676 	INIT_WORK(&ppd->link_down_work, handle_link_down);
677 	INIT_WORK(&ppd->freeze_work, handle_freeze);
678 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
679 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
680 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
681 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
682 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
683 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
684 
685 	mutex_init(&ppd->hls_lock);
686 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
687 
688 	ppd->qsfp_info.ppd = ppd;
689 	ppd->sm_trap_qp = 0x0;
690 	ppd->sa_qp = 0x1;
691 
692 	ppd->hfi1_wq = NULL;
693 
694 	spin_lock_init(&ppd->cca_timer_lock);
695 
696 	for (i = 0; i < OPA_MAX_SLS; i++) {
697 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
698 			     HRTIMER_MODE_REL);
699 		ppd->cca_timer[i].ppd = ppd;
700 		ppd->cca_timer[i].sl = i;
701 		ppd->cca_timer[i].ccti = 0;
702 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
703 	}
704 
705 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
706 
707 	spin_lock_init(&ppd->cc_state_lock);
708 	spin_lock_init(&ppd->cc_log_lock);
709 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
710 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
711 	if (!cc_state)
712 		goto bail;
713 	return;
714 
715 bail:
716 	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
717 }
718 
719 /*
720  * Do initialization for device that is only needed on
721  * first detect, not on resets.
722  */
723 static int loadtime_init(struct hfi1_devdata *dd)
724 {
725 	return 0;
726 }
727 
728 /**
729  * init_after_reset - re-initialize after a reset
730  * @dd: the hfi1_ib device
731  *
732  * sanity check at least some of the values after reset, and
733  * ensure no receive or transmit (explicitly, in case reset
734  * failed
735  */
736 static int init_after_reset(struct hfi1_devdata *dd)
737 {
738 	int i;
739 	struct hfi1_ctxtdata *rcd;
740 	/*
741 	 * Ensure chip does no sends or receives, tail updates, or
742 	 * pioavail updates while we re-initialize.  This is mostly
743 	 * for the driver data structures, not chip registers.
744 	 */
745 	for (i = 0; i < dd->num_rcv_contexts; i++) {
746 		rcd = hfi1_rcd_get_by_index(dd, i);
747 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
748 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
749 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
750 		hfi1_rcd_put(rcd);
751 	}
752 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
753 	for (i = 0; i < dd->num_send_contexts; i++)
754 		sc_disable(dd->send_contexts[i].sc);
755 
756 	return 0;
757 }
758 
759 static void enable_chip(struct hfi1_devdata *dd)
760 {
761 	struct hfi1_ctxtdata *rcd;
762 	u32 rcvmask;
763 	u16 i;
764 
765 	/* enable PIO send */
766 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
767 
768 	/*
769 	 * Enable kernel ctxts' receive and receive interrupt.
770 	 * Other ctxts done as user opens and initializes them.
771 	 */
772 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
773 		rcd = hfi1_rcd_get_by_index(dd, i);
774 		if (!rcd)
775 			continue;
776 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
777 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
778 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
779 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
780 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
781 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
782 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
783 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
784 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
785 		if (HFI1_CAP_IS_KSET(TID_RDMA))
786 			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
787 		hfi1_rcvctrl(dd, rcvmask, rcd);
788 		sc_enable(rcd->sc);
789 		hfi1_rcd_put(rcd);
790 	}
791 }
792 
793 /**
794  * create_workqueues - create per port workqueues
795  * @dd: the hfi1_ib device
796  */
797 static int create_workqueues(struct hfi1_devdata *dd)
798 {
799 	int pidx;
800 	struct hfi1_pportdata *ppd;
801 
802 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
803 		ppd = dd->pport + pidx;
804 		if (!ppd->hfi1_wq) {
805 			ppd->hfi1_wq =
806 				alloc_workqueue(
807 				    "hfi%d_%d",
808 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
809 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
810 				    dd->unit, pidx);
811 			if (!ppd->hfi1_wq)
812 				goto wq_error;
813 		}
814 		if (!ppd->link_wq) {
815 			/*
816 			 * Make the link workqueue single-threaded to enforce
817 			 * serialization.
818 			 */
819 			ppd->link_wq =
820 				alloc_workqueue(
821 				    "hfi_link_%d_%d",
822 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
823 				    1, /* max_active */
824 				    dd->unit, pidx);
825 			if (!ppd->link_wq)
826 				goto wq_error;
827 		}
828 	}
829 	return 0;
830 wq_error:
831 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
832 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
833 		ppd = dd->pport + pidx;
834 		if (ppd->hfi1_wq) {
835 			destroy_workqueue(ppd->hfi1_wq);
836 			ppd->hfi1_wq = NULL;
837 		}
838 		if (ppd->link_wq) {
839 			destroy_workqueue(ppd->link_wq);
840 			ppd->link_wq = NULL;
841 		}
842 	}
843 	return -ENOMEM;
844 }
845 
846 /**
847  * enable_general_intr() - Enable the IRQs that will be handled by the
848  * general interrupt handler.
849  * @dd: valid devdata
850  *
851  */
852 static void enable_general_intr(struct hfi1_devdata *dd)
853 {
854 	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
855 	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
856 	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
857 	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
858 	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
859 	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
860 	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
861 }
862 
863 /**
864  * hfi1_init - do the actual initialization sequence on the chip
865  * @dd: the hfi1_ib device
866  * @reinit: re-initializing, so don't allocate new memory
867  *
868  * Do the actual initialization sequence on the chip.  This is done
869  * both from the init routine called from the PCI infrastructure, and
870  * when we reset the chip, or detect that it was reset internally,
871  * or it's administratively re-enabled.
872  *
873  * Memory allocation here and in called routines is only done in
874  * the first case (reinit == 0).  We have to be careful, because even
875  * without memory allocation, we need to re-write all the chip registers
876  * TIDs, etc. after the reset or enable has completed.
877  */
878 int hfi1_init(struct hfi1_devdata *dd, int reinit)
879 {
880 	int ret = 0, pidx, lastfail = 0;
881 	unsigned long len;
882 	u16 i;
883 	struct hfi1_ctxtdata *rcd;
884 	struct hfi1_pportdata *ppd;
885 
886 	/* Set up send low level handlers */
887 	dd->process_pio_send = hfi1_verbs_send_pio;
888 	dd->process_dma_send = hfi1_verbs_send_dma;
889 	dd->pio_inline_send = pio_copy;
890 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
891 
892 	if (is_ax(dd)) {
893 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
894 		dd->do_drop = 1;
895 	} else {
896 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
897 		dd->do_drop = 0;
898 	}
899 
900 	/* make sure the link is not "up" */
901 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
902 		ppd = dd->pport + pidx;
903 		ppd->linkup = 0;
904 	}
905 
906 	if (reinit)
907 		ret = init_after_reset(dd);
908 	else
909 		ret = loadtime_init(dd);
910 	if (ret)
911 		goto done;
912 
913 	/* allocate dummy tail memory for all receive contexts */
914 	dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
915 							 sizeof(u64),
916 							 &dd->rcvhdrtail_dummy_dma,
917 							 GFP_KERNEL);
918 
919 	if (!dd->rcvhdrtail_dummy_kvaddr) {
920 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
921 		ret = -ENOMEM;
922 		goto done;
923 	}
924 
925 	/* dd->rcd can be NULL if early initialization failed */
926 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
927 		/*
928 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
929 		 * re-init, the simplest way to handle this is to free
930 		 * existing, and re-allocate.
931 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
932 		 */
933 		rcd = hfi1_rcd_get_by_index(dd, i);
934 		if (!rcd)
935 			continue;
936 
937 		rcd->do_interrupt = &handle_receive_interrupt;
938 
939 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
940 		if (!lastfail)
941 			lastfail = hfi1_setup_eagerbufs(rcd);
942 		if (!lastfail)
943 			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
944 		if (lastfail) {
945 			dd_dev_err(dd,
946 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
947 			ret = lastfail;
948 		}
949 		/* enable IRQ */
950 		hfi1_rcd_put(rcd);
951 	}
952 
953 	/* Allocate enough memory for user event notification. */
954 	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
955 			 sizeof(*dd->events));
956 	dd->events = vmalloc_user(len);
957 	if (!dd->events)
958 		dd_dev_err(dd, "Failed to allocate user events page\n");
959 	/*
960 	 * Allocate a page for device and port status.
961 	 * Page will be shared amongst all user processes.
962 	 */
963 	dd->status = vmalloc_user(PAGE_SIZE);
964 	if (!dd->status)
965 		dd_dev_err(dd, "Failed to allocate dev status page\n");
966 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
967 		ppd = dd->pport + pidx;
968 		if (dd->status)
969 			/* Currently, we only have one port */
970 			ppd->statusp = &dd->status->port;
971 
972 		set_mtu(ppd);
973 	}
974 
975 	/* enable chip even if we have an error, so we can debug cause */
976 	enable_chip(dd);
977 
978 done:
979 	/*
980 	 * Set status even if port serdes is not initialized
981 	 * so that diags will work.
982 	 */
983 	if (dd->status)
984 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
985 			HFI1_STATUS_INITTED;
986 	if (!ret) {
987 		/* enable all interrupts from the chip */
988 		enable_general_intr(dd);
989 		init_qsfp_int(dd);
990 
991 		/* chip is OK for user apps; mark it as initialized */
992 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
993 			ppd = dd->pport + pidx;
994 
995 			/*
996 			 * start the serdes - must be after interrupts are
997 			 * enabled so we are notified when the link goes up
998 			 */
999 			lastfail = bringup_serdes(ppd);
1000 			if (lastfail)
1001 				dd_dev_info(dd,
1002 					    "Failed to bring up port %u\n",
1003 					    ppd->port);
1004 
1005 			/*
1006 			 * Set status even if port serdes is not initialized
1007 			 * so that diags will work.
1008 			 */
1009 			if (ppd->statusp)
1010 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
1011 							HFI1_STATUS_INITTED;
1012 			if (!ppd->link_speed_enabled)
1013 				continue;
1014 		}
1015 	}
1016 
1017 	/* if ret is non-zero, we probably should do some cleanup here... */
1018 	return ret;
1019 }
1020 
1021 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
1022 {
1023 	return idr_find(&hfi1_unit_table, unit);
1024 }
1025 
1026 struct hfi1_devdata *hfi1_lookup(int unit)
1027 {
1028 	struct hfi1_devdata *dd;
1029 	unsigned long flags;
1030 
1031 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1032 	dd = __hfi1_lookup(unit);
1033 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1034 
1035 	return dd;
1036 }
1037 
1038 /*
1039  * Stop the timers during unit shutdown, or after an error late
1040  * in initialization.
1041  */
1042 static void stop_timers(struct hfi1_devdata *dd)
1043 {
1044 	struct hfi1_pportdata *ppd;
1045 	int pidx;
1046 
1047 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1048 		ppd = dd->pport + pidx;
1049 		if (ppd->led_override_timer.function) {
1050 			del_timer_sync(&ppd->led_override_timer);
1051 			atomic_set(&ppd->led_override_timer_active, 0);
1052 		}
1053 	}
1054 }
1055 
1056 /**
1057  * shutdown_device - shut down a device
1058  * @dd: the hfi1_ib device
1059  *
1060  * This is called to make the device quiet when we are about to
1061  * unload the driver, and also when the device is administratively
1062  * disabled.   It does not free any data structures.
1063  * Everything it does has to be setup again by hfi1_init(dd, 1)
1064  */
1065 static void shutdown_device(struct hfi1_devdata *dd)
1066 {
1067 	struct hfi1_pportdata *ppd;
1068 	struct hfi1_ctxtdata *rcd;
1069 	unsigned pidx;
1070 	int i;
1071 
1072 	if (dd->flags & HFI1_SHUTDOWN)
1073 		return;
1074 	dd->flags |= HFI1_SHUTDOWN;
1075 
1076 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1077 		ppd = dd->pport + pidx;
1078 
1079 		ppd->linkup = 0;
1080 		if (ppd->statusp)
1081 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1082 					   HFI1_STATUS_IB_READY);
1083 	}
1084 	dd->flags &= ~HFI1_INITTED;
1085 
1086 	/* mask and clean up interrupts */
1087 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1088 	msix_clean_up_interrupts(dd);
1089 
1090 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1091 		ppd = dd->pport + pidx;
1092 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1093 			rcd = hfi1_rcd_get_by_index(dd, i);
1094 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1095 				     HFI1_RCVCTRL_CTXT_DIS |
1096 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1097 				     HFI1_RCVCTRL_PKEY_DIS |
1098 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1099 			hfi1_rcd_put(rcd);
1100 		}
1101 		/*
1102 		 * Gracefully stop all sends allowing any in progress to
1103 		 * trickle out first.
1104 		 */
1105 		for (i = 0; i < dd->num_send_contexts; i++)
1106 			sc_flush(dd->send_contexts[i].sc);
1107 	}
1108 
1109 	/*
1110 	 * Enough for anything that's going to trickle out to have actually
1111 	 * done so.
1112 	 */
1113 	udelay(20);
1114 
1115 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1116 		ppd = dd->pport + pidx;
1117 
1118 		/* disable all contexts */
1119 		for (i = 0; i < dd->num_send_contexts; i++)
1120 			sc_disable(dd->send_contexts[i].sc);
1121 		/* disable the send device */
1122 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1123 
1124 		shutdown_led_override(ppd);
1125 
1126 		/*
1127 		 * Clear SerdesEnable.
1128 		 * We can't count on interrupts since we are stopping.
1129 		 */
1130 		hfi1_quiet_serdes(ppd);
1131 
1132 		if (ppd->hfi1_wq) {
1133 			destroy_workqueue(ppd->hfi1_wq);
1134 			ppd->hfi1_wq = NULL;
1135 		}
1136 		if (ppd->link_wq) {
1137 			destroy_workqueue(ppd->link_wq);
1138 			ppd->link_wq = NULL;
1139 		}
1140 	}
1141 	sdma_exit(dd);
1142 }
1143 
1144 /**
1145  * hfi1_free_ctxtdata - free a context's allocated data
1146  * @dd: the hfi1_ib device
1147  * @rcd: the ctxtdata structure
1148  *
1149  * free up any allocated data for a context
1150  * It should never change any chip state, or global driver state.
1151  */
1152 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1153 {
1154 	u32 e;
1155 
1156 	if (!rcd)
1157 		return;
1158 
1159 	if (rcd->rcvhdrq) {
1160 		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1161 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1162 		rcd->rcvhdrq = NULL;
1163 		if (rcd->rcvhdrtail_kvaddr) {
1164 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1165 					  (void *)rcd->rcvhdrtail_kvaddr,
1166 					  rcd->rcvhdrqtailaddr_dma);
1167 			rcd->rcvhdrtail_kvaddr = NULL;
1168 		}
1169 	}
1170 
1171 	/* all the RcvArray entries should have been cleared by now */
1172 	kfree(rcd->egrbufs.rcvtids);
1173 	rcd->egrbufs.rcvtids = NULL;
1174 
1175 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1176 		if (rcd->egrbufs.buffers[e].dma)
1177 			dma_free_coherent(&dd->pcidev->dev,
1178 					  rcd->egrbufs.buffers[e].len,
1179 					  rcd->egrbufs.buffers[e].addr,
1180 					  rcd->egrbufs.buffers[e].dma);
1181 	}
1182 	kfree(rcd->egrbufs.buffers);
1183 	rcd->egrbufs.alloced = 0;
1184 	rcd->egrbufs.buffers = NULL;
1185 
1186 	sc_free(rcd->sc);
1187 	rcd->sc = NULL;
1188 
1189 	vfree(rcd->subctxt_uregbase);
1190 	vfree(rcd->subctxt_rcvegrbuf);
1191 	vfree(rcd->subctxt_rcvhdr_base);
1192 	kfree(rcd->opstats);
1193 
1194 	rcd->subctxt_uregbase = NULL;
1195 	rcd->subctxt_rcvegrbuf = NULL;
1196 	rcd->subctxt_rcvhdr_base = NULL;
1197 	rcd->opstats = NULL;
1198 }
1199 
1200 /*
1201  * Release our hold on the shared asic data.  If we are the last one,
1202  * return the structure to be finalized outside the lock.  Must be
1203  * holding hfi1_devs_lock.
1204  */
1205 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1206 {
1207 	struct hfi1_asic_data *ad;
1208 	int other;
1209 
1210 	if (!dd->asic_data)
1211 		return NULL;
1212 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1213 	other = dd->hfi1_id ? 0 : 1;
1214 	ad = dd->asic_data;
1215 	dd->asic_data = NULL;
1216 	/* return NULL if the other dd still has a link */
1217 	return ad->dds[other] ? NULL : ad;
1218 }
1219 
1220 static void finalize_asic_data(struct hfi1_devdata *dd,
1221 			       struct hfi1_asic_data *ad)
1222 {
1223 	clean_up_i2c(dd, ad);
1224 	kfree(ad);
1225 }
1226 
1227 /**
1228  * hfi1_clean_devdata - cleans up per-unit data structure
1229  * @dd: pointer to a valid devdata structure
1230  *
1231  * It cleans up all data structures set up by
1232  * by hfi1_alloc_devdata().
1233  */
1234 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1235 {
1236 	struct hfi1_asic_data *ad;
1237 	unsigned long flags;
1238 
1239 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1240 	if (!list_empty(&dd->list)) {
1241 		idr_remove(&hfi1_unit_table, dd->unit);
1242 		list_del_init(&dd->list);
1243 	}
1244 	ad = release_asic_data(dd);
1245 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1246 
1247 	finalize_asic_data(dd, ad);
1248 	free_platform_config(dd);
1249 	rcu_barrier(); /* wait for rcu callbacks to complete */
1250 	free_percpu(dd->int_counter);
1251 	free_percpu(dd->rcv_limit);
1252 	free_percpu(dd->send_schedule);
1253 	free_percpu(dd->tx_opstats);
1254 	dd->int_counter   = NULL;
1255 	dd->rcv_limit     = NULL;
1256 	dd->send_schedule = NULL;
1257 	dd->tx_opstats    = NULL;
1258 	kfree(dd->comp_vect);
1259 	dd->comp_vect = NULL;
1260 	sdma_clean(dd, dd->num_sdma);
1261 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1262 }
1263 
1264 static void __hfi1_free_devdata(struct kobject *kobj)
1265 {
1266 	struct hfi1_devdata *dd =
1267 		container_of(kobj, struct hfi1_devdata, kobj);
1268 
1269 	hfi1_clean_devdata(dd);
1270 }
1271 
1272 static struct kobj_type hfi1_devdata_type = {
1273 	.release = __hfi1_free_devdata,
1274 };
1275 
1276 void hfi1_free_devdata(struct hfi1_devdata *dd)
1277 {
1278 	kobject_put(&dd->kobj);
1279 }
1280 
1281 /**
1282  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1283  * @pdev: Valid PCI device
1284  * @extra: How many bytes to alloc past the default
1285  *
1286  * Must be done via verbs allocator, because the verbs cleanup process
1287  * both does cleanup and free of the data structure.
1288  * "extra" is for chip-specific data.
1289  *
1290  * Use the idr mechanism to get a unit number for this unit.
1291  */
1292 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1293 					       size_t extra)
1294 {
1295 	unsigned long flags;
1296 	struct hfi1_devdata *dd;
1297 	int ret, nports;
1298 
1299 	/* extra is * number of ports */
1300 	nports = extra / sizeof(struct hfi1_pportdata);
1301 
1302 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1303 						     nports);
1304 	if (!dd)
1305 		return ERR_PTR(-ENOMEM);
1306 	dd->num_pports = nports;
1307 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1308 	dd->pcidev = pdev;
1309 	pci_set_drvdata(pdev, dd);
1310 
1311 	INIT_LIST_HEAD(&dd->list);
1312 	idr_preload(GFP_KERNEL);
1313 	spin_lock_irqsave(&hfi1_devs_lock, flags);
1314 
1315 	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1316 	if (ret >= 0) {
1317 		dd->unit = ret;
1318 		list_add(&dd->list, &hfi1_dev_list);
1319 	}
1320 	dd->node = NUMA_NO_NODE;
1321 
1322 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1323 	idr_preload_end();
1324 
1325 	if (ret < 0) {
1326 		dev_err(&pdev->dev,
1327 			"Could not allocate unit ID: error %d\n", -ret);
1328 		goto bail;
1329 	}
1330 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1331 
1332 	/*
1333 	 * Initialize all locks for the device. This needs to be as early as
1334 	 * possible so locks are usable.
1335 	 */
1336 	spin_lock_init(&dd->sc_lock);
1337 	spin_lock_init(&dd->sendctrl_lock);
1338 	spin_lock_init(&dd->rcvctrl_lock);
1339 	spin_lock_init(&dd->uctxt_lock);
1340 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1341 	spin_lock_init(&dd->sc_init_lock);
1342 	spin_lock_init(&dd->dc8051_memlock);
1343 	seqlock_init(&dd->sc2vl_lock);
1344 	spin_lock_init(&dd->sde_map_lock);
1345 	spin_lock_init(&dd->pio_map_lock);
1346 	mutex_init(&dd->dc8051_lock);
1347 	init_waitqueue_head(&dd->event_queue);
1348 	spin_lock_init(&dd->irq_src_lock);
1349 
1350 	dd->int_counter = alloc_percpu(u64);
1351 	if (!dd->int_counter) {
1352 		ret = -ENOMEM;
1353 		goto bail;
1354 	}
1355 
1356 	dd->rcv_limit = alloc_percpu(u64);
1357 	if (!dd->rcv_limit) {
1358 		ret = -ENOMEM;
1359 		goto bail;
1360 	}
1361 
1362 	dd->send_schedule = alloc_percpu(u64);
1363 	if (!dd->send_schedule) {
1364 		ret = -ENOMEM;
1365 		goto bail;
1366 	}
1367 
1368 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1369 	if (!dd->tx_opstats) {
1370 		ret = -ENOMEM;
1371 		goto bail;
1372 	}
1373 
1374 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1375 	if (!dd->comp_vect) {
1376 		ret = -ENOMEM;
1377 		goto bail;
1378 	}
1379 
1380 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1381 	return dd;
1382 
1383 bail:
1384 	hfi1_clean_devdata(dd);
1385 	return ERR_PTR(ret);
1386 }
1387 
1388 /*
1389  * Called from freeze mode handlers, and from PCI error
1390  * reporting code.  Should be paranoid about state of
1391  * system and data structures.
1392  */
1393 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1394 {
1395 	if (dd->flags & HFI1_INITTED) {
1396 		u32 pidx;
1397 
1398 		dd->flags &= ~HFI1_INITTED;
1399 		if (dd->pport)
1400 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1401 				struct hfi1_pportdata *ppd;
1402 
1403 				ppd = dd->pport + pidx;
1404 				if (dd->flags & HFI1_PRESENT)
1405 					set_link_state(ppd, HLS_DN_DISABLE);
1406 
1407 				if (ppd->statusp)
1408 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1409 			}
1410 	}
1411 
1412 	/*
1413 	 * Mark as having had an error for driver, and also
1414 	 * for /sys and status word mapped to user programs.
1415 	 * This marks unit as not usable, until reset.
1416 	 */
1417 	if (dd->status)
1418 		dd->status->dev |= HFI1_STATUS_HWERROR;
1419 }
1420 
1421 static void remove_one(struct pci_dev *);
1422 static int init_one(struct pci_dev *, const struct pci_device_id *);
1423 static void shutdown_one(struct pci_dev *);
1424 
1425 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1426 #define PFX DRIVER_NAME ": "
1427 
1428 const struct pci_device_id hfi1_pci_tbl[] = {
1429 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1430 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1431 	{ 0, }
1432 };
1433 
1434 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1435 
1436 static struct pci_driver hfi1_pci_driver = {
1437 	.name = DRIVER_NAME,
1438 	.probe = init_one,
1439 	.remove = remove_one,
1440 	.shutdown = shutdown_one,
1441 	.id_table = hfi1_pci_tbl,
1442 	.err_handler = &hfi1_pci_err_handler,
1443 };
1444 
1445 static void __init compute_krcvqs(void)
1446 {
1447 	int i;
1448 
1449 	for (i = 0; i < krcvqsset; i++)
1450 		n_krcvqs += krcvqs[i];
1451 }
1452 
1453 /*
1454  * Do all the generic driver unit- and chip-independent memory
1455  * allocation and initialization.
1456  */
1457 static int __init hfi1_mod_init(void)
1458 {
1459 	int ret;
1460 
1461 	ret = dev_init();
1462 	if (ret)
1463 		goto bail;
1464 
1465 	ret = node_affinity_init();
1466 	if (ret)
1467 		goto bail;
1468 
1469 	/* validate max MTU before any devices start */
1470 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1471 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1472 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1473 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1474 	}
1475 	/* valid CUs run from 1-128 in powers of 2 */
1476 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1477 		hfi1_cu = 1;
1478 	/* valid credit return threshold is 0-100, variable is unsigned */
1479 	if (user_credit_return_threshold > 100)
1480 		user_credit_return_threshold = 100;
1481 
1482 	compute_krcvqs();
1483 	/*
1484 	 * sanitize receive interrupt count, time must wait until after
1485 	 * the hardware type is known
1486 	 */
1487 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1488 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1489 	/* reject invalid combinations */
1490 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1491 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1492 		rcv_intr_count = 1;
1493 	}
1494 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1495 		/*
1496 		 * Avoid indefinite packet delivery by requiring a timeout
1497 		 * if count is > 1.
1498 		 */
1499 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1500 		rcv_intr_timeout = 1;
1501 	}
1502 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1503 		/*
1504 		 * The dynamic algorithm expects a non-zero timeout
1505 		 * and a count > 1.
1506 		 */
1507 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1508 		rcv_intr_dynamic = 0;
1509 	}
1510 
1511 	/* sanitize link CRC options */
1512 	link_crc_mask &= SUPPORTED_CRCS;
1513 
1514 	ret = opfn_init();
1515 	if (ret < 0) {
1516 		pr_err("Failed to allocate opfn_wq");
1517 		goto bail_dev;
1518 	}
1519 
1520 	hfi1_compute_tid_rdma_flow_wt();
1521 	/*
1522 	 * These must be called before the driver is registered with
1523 	 * the PCI subsystem.
1524 	 */
1525 	idr_init(&hfi1_unit_table);
1526 
1527 	hfi1_dbg_init();
1528 	ret = pci_register_driver(&hfi1_pci_driver);
1529 	if (ret < 0) {
1530 		pr_err("Unable to register driver: error %d\n", -ret);
1531 		goto bail_dev;
1532 	}
1533 	goto bail; /* all OK */
1534 
1535 bail_dev:
1536 	hfi1_dbg_exit();
1537 	idr_destroy(&hfi1_unit_table);
1538 	dev_cleanup();
1539 bail:
1540 	return ret;
1541 }
1542 
1543 module_init(hfi1_mod_init);
1544 
1545 /*
1546  * Do the non-unit driver cleanup, memory free, etc. at unload.
1547  */
1548 static void __exit hfi1_mod_cleanup(void)
1549 {
1550 	pci_unregister_driver(&hfi1_pci_driver);
1551 	opfn_exit();
1552 	node_affinity_destroy_all();
1553 	hfi1_dbg_exit();
1554 
1555 	idr_destroy(&hfi1_unit_table);
1556 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1557 	dev_cleanup();
1558 }
1559 
1560 module_exit(hfi1_mod_cleanup);
1561 
1562 /* this can only be called after a successful initialization */
1563 static void cleanup_device_data(struct hfi1_devdata *dd)
1564 {
1565 	int ctxt;
1566 	int pidx;
1567 
1568 	/* users can't do anything more with chip */
1569 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1570 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1571 		struct cc_state *cc_state;
1572 		int i;
1573 
1574 		if (ppd->statusp)
1575 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1576 
1577 		for (i = 0; i < OPA_MAX_SLS; i++)
1578 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1579 
1580 		spin_lock(&ppd->cc_state_lock);
1581 		cc_state = get_cc_state_protected(ppd);
1582 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1583 		spin_unlock(&ppd->cc_state_lock);
1584 
1585 		if (cc_state)
1586 			kfree_rcu(cc_state, rcu);
1587 	}
1588 
1589 	free_credit_return(dd);
1590 
1591 	if (dd->rcvhdrtail_dummy_kvaddr) {
1592 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1593 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1594 				  dd->rcvhdrtail_dummy_dma);
1595 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1596 	}
1597 
1598 	/*
1599 	 * Free any resources still in use (usually just kernel contexts)
1600 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1601 	 */
1602 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1603 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1604 
1605 		if (rcd) {
1606 			hfi1_free_ctxt_rcv_groups(rcd);
1607 			hfi1_free_ctxt(rcd);
1608 		}
1609 	}
1610 
1611 	kfree(dd->rcd);
1612 	dd->rcd = NULL;
1613 
1614 	free_pio_map(dd);
1615 	/* must follow rcv context free - need to remove rcv's hooks */
1616 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1617 		sc_free(dd->send_contexts[ctxt].sc);
1618 	dd->num_send_contexts = 0;
1619 	kfree(dd->send_contexts);
1620 	dd->send_contexts = NULL;
1621 	kfree(dd->hw_to_sw);
1622 	dd->hw_to_sw = NULL;
1623 	kfree(dd->boardname);
1624 	vfree(dd->events);
1625 	vfree(dd->status);
1626 }
1627 
1628 /*
1629  * Clean up on unit shutdown, or error during unit load after
1630  * successful initialization.
1631  */
1632 static void postinit_cleanup(struct hfi1_devdata *dd)
1633 {
1634 	hfi1_start_cleanup(dd);
1635 	hfi1_comp_vectors_clean_up(dd);
1636 	hfi1_dev_affinity_clean_up(dd);
1637 
1638 	hfi1_pcie_ddcleanup(dd);
1639 	hfi1_pcie_cleanup(dd->pcidev);
1640 
1641 	cleanup_device_data(dd);
1642 
1643 	hfi1_free_devdata(dd);
1644 }
1645 
1646 static int init_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
1647 {
1648 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1649 		dd_dev_err(dd, "Receive header queue count too small\n");
1650 		return -EINVAL;
1651 	}
1652 
1653 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1654 		dd_dev_err(dd,
1655 			   "Receive header queue count cannot be greater than %u\n",
1656 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
1657 		return -EINVAL;
1658 	}
1659 
1660 	if (thecnt % HDRQ_INCREMENT) {
1661 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
1662 			   thecnt, HDRQ_INCREMENT);
1663 		return -EINVAL;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1670 {
1671 	int ret = 0, j, pidx, initfail;
1672 	struct hfi1_devdata *dd;
1673 	struct hfi1_pportdata *ppd;
1674 
1675 	/* First, lock the non-writable module parameters */
1676 	HFI1_CAP_LOCK();
1677 
1678 	/* Validate dev ids */
1679 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1680 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1681 		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1682 			ent->device);
1683 		ret = -ENODEV;
1684 		goto bail;
1685 	}
1686 
1687 	/* Allocate the dd so we can get to work */
1688 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1689 				sizeof(struct hfi1_pportdata));
1690 	if (IS_ERR(dd)) {
1691 		ret = PTR_ERR(dd);
1692 		goto bail;
1693 	}
1694 
1695 	/* Validate some global module parameters */
1696 	ret = init_validate_rcvhdrcnt(dd, rcvhdrcnt);
1697 	if (ret)
1698 		goto bail;
1699 
1700 	/* use the encoding function as a sanitization check */
1701 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1702 		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1703 			   hfi1_hdrq_entsize);
1704 		ret = -EINVAL;
1705 		goto bail;
1706 	}
1707 
1708 	/* The receive eager buffer size must be set before the receive
1709 	 * contexts are created.
1710 	 *
1711 	 * Set the eager buffer size.  Validate that it falls in a range
1712 	 * allowed by the hardware - all powers of 2 between the min and
1713 	 * max.  The maximum valid MTU is within the eager buffer range
1714 	 * so we do not need to cap the max_mtu by an eager buffer size
1715 	 * setting.
1716 	 */
1717 	if (eager_buffer_size) {
1718 		if (!is_power_of_2(eager_buffer_size))
1719 			eager_buffer_size =
1720 				roundup_pow_of_two(eager_buffer_size);
1721 		eager_buffer_size =
1722 			clamp_val(eager_buffer_size,
1723 				  MIN_EAGER_BUFFER * 8,
1724 				  MAX_EAGER_BUFFER_TOTAL);
1725 		dd_dev_info(dd, "Eager buffer size %u\n",
1726 			    eager_buffer_size);
1727 	} else {
1728 		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1729 		ret = -EINVAL;
1730 		goto bail;
1731 	}
1732 
1733 	/* restrict value of hfi1_rcvarr_split */
1734 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1735 
1736 	ret = hfi1_pcie_init(dd);
1737 	if (ret)
1738 		goto bail;
1739 
1740 	/*
1741 	 * Do device-specific initialization, function table setup, dd
1742 	 * allocation, etc.
1743 	 */
1744 	ret = hfi1_init_dd(dd);
1745 	if (ret)
1746 		goto clean_bail; /* error already printed */
1747 
1748 	ret = create_workqueues(dd);
1749 	if (ret)
1750 		goto clean_bail;
1751 
1752 	/* do the generic initialization */
1753 	initfail = hfi1_init(dd, 0);
1754 
1755 	/* setup vnic */
1756 	hfi1_vnic_setup(dd);
1757 
1758 	ret = hfi1_register_ib_device(dd);
1759 
1760 	/*
1761 	 * Now ready for use.  this should be cleared whenever we
1762 	 * detect a reset, or initiate one.  If earlier failure,
1763 	 * we still create devices, so diags, etc. can be used
1764 	 * to determine cause of problem.
1765 	 */
1766 	if (!initfail && !ret) {
1767 		dd->flags |= HFI1_INITTED;
1768 		/* create debufs files after init and ib register */
1769 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1770 	}
1771 
1772 	j = hfi1_device_create(dd);
1773 	if (j)
1774 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1775 
1776 	if (initfail || ret) {
1777 		msix_clean_up_interrupts(dd);
1778 		stop_timers(dd);
1779 		flush_workqueue(ib_wq);
1780 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1781 			hfi1_quiet_serdes(dd->pport + pidx);
1782 			ppd = dd->pport + pidx;
1783 			if (ppd->hfi1_wq) {
1784 				destroy_workqueue(ppd->hfi1_wq);
1785 				ppd->hfi1_wq = NULL;
1786 			}
1787 			if (ppd->link_wq) {
1788 				destroy_workqueue(ppd->link_wq);
1789 				ppd->link_wq = NULL;
1790 			}
1791 		}
1792 		if (!j)
1793 			hfi1_device_remove(dd);
1794 		if (!ret)
1795 			hfi1_unregister_ib_device(dd);
1796 		hfi1_vnic_cleanup(dd);
1797 		postinit_cleanup(dd);
1798 		if (initfail)
1799 			ret = initfail;
1800 		goto bail;	/* everything already cleaned */
1801 	}
1802 
1803 	sdma_start(dd);
1804 
1805 	return 0;
1806 
1807 clean_bail:
1808 	hfi1_pcie_cleanup(pdev);
1809 bail:
1810 	return ret;
1811 }
1812 
1813 static void wait_for_clients(struct hfi1_devdata *dd)
1814 {
1815 	/*
1816 	 * Remove the device init value and complete the device if there is
1817 	 * no clients or wait for active clients to finish.
1818 	 */
1819 	if (atomic_dec_and_test(&dd->user_refcount))
1820 		complete(&dd->user_comp);
1821 
1822 	wait_for_completion(&dd->user_comp);
1823 }
1824 
1825 static void remove_one(struct pci_dev *pdev)
1826 {
1827 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1828 
1829 	/* close debugfs files before ib unregister */
1830 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1831 
1832 	/* remove the /dev hfi1 interface */
1833 	hfi1_device_remove(dd);
1834 
1835 	/* wait for existing user space clients to finish */
1836 	wait_for_clients(dd);
1837 
1838 	/* unregister from IB core */
1839 	hfi1_unregister_ib_device(dd);
1840 
1841 	/* cleanup vnic */
1842 	hfi1_vnic_cleanup(dd);
1843 
1844 	/*
1845 	 * Disable the IB link, disable interrupts on the device,
1846 	 * clear dma engines, etc.
1847 	 */
1848 	shutdown_device(dd);
1849 
1850 	stop_timers(dd);
1851 
1852 	/* wait until all of our (qsfp) queue_work() calls complete */
1853 	flush_workqueue(ib_wq);
1854 
1855 	postinit_cleanup(dd);
1856 }
1857 
1858 static void shutdown_one(struct pci_dev *pdev)
1859 {
1860 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1861 
1862 	shutdown_device(dd);
1863 }
1864 
1865 /**
1866  * hfi1_create_rcvhdrq - create a receive header queue
1867  * @dd: the hfi1_ib device
1868  * @rcd: the context data
1869  *
1870  * This must be contiguous memory (from an i/o perspective), and must be
1871  * DMA'able (which means for some systems, it will go through an IOMMU,
1872  * or be forced into a low address range).
1873  */
1874 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1875 {
1876 	unsigned amt;
1877 	u64 reg;
1878 
1879 	if (!rcd->rcvhdrq) {
1880 		gfp_t gfp_flags;
1881 
1882 		amt = rcvhdrq_size(rcd);
1883 
1884 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1885 			gfp_flags = GFP_KERNEL;
1886 		else
1887 			gfp_flags = GFP_USER;
1888 		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1889 						  &rcd->rcvhdrq_dma,
1890 						  gfp_flags | __GFP_COMP);
1891 
1892 		if (!rcd->rcvhdrq) {
1893 			dd_dev_err(dd,
1894 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1895 				   amt, rcd->ctxt);
1896 			goto bail;
1897 		}
1898 
1899 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1900 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1901 			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1902 								    PAGE_SIZE,
1903 								    &rcd->rcvhdrqtailaddr_dma,
1904 								    gfp_flags);
1905 			if (!rcd->rcvhdrtail_kvaddr)
1906 				goto bail_free;
1907 		}
1908 	}
1909 	/*
1910 	 * These values are per-context:
1911 	 *	RcvHdrCnt
1912 	 *	RcvHdrEntSize
1913 	 *	RcvHdrSize
1914 	 */
1915 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1916 			& RCV_HDR_CNT_CNT_MASK)
1917 		<< RCV_HDR_CNT_CNT_SHIFT;
1918 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1919 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1920 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1921 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1922 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1923 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
1924 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1925 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1926 
1927 	/*
1928 	 * Program dummy tail address for every receive context
1929 	 * before enabling any receive context
1930 	 */
1931 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1932 			dd->rcvhdrtail_dummy_dma);
1933 
1934 	return 0;
1935 
1936 bail_free:
1937 	dd_dev_err(dd,
1938 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1939 		   rcd->ctxt);
1940 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1941 			  rcd->rcvhdrq_dma);
1942 	rcd->rcvhdrq = NULL;
1943 bail:
1944 	return -ENOMEM;
1945 }
1946 
1947 /**
1948  * allocate eager buffers, both kernel and user contexts.
1949  * @rcd: the context we are setting up.
1950  *
1951  * Allocate the eager TID buffers and program them into hip.
1952  * They are no longer completely contiguous, we do multiple allocation
1953  * calls.  Otherwise we get the OOM code involved, by asking for too
1954  * much per call, with disastrous results on some kernels.
1955  */
1956 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1957 {
1958 	struct hfi1_devdata *dd = rcd->dd;
1959 	u32 max_entries, egrtop, alloced_bytes = 0;
1960 	gfp_t gfp_flags;
1961 	u16 order, idx = 0;
1962 	int ret = 0;
1963 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1964 
1965 	/*
1966 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1967 	 * coalesced (we hope); otherwise, even at order 4,
1968 	 * heavy filesystem activity makes these fail, and we can
1969 	 * use compound pages.
1970 	 */
1971 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1972 
1973 	/*
1974 	 * The minimum size of the eager buffers is a groups of MTU-sized
1975 	 * buffers.
1976 	 * The global eager_buffer_size parameter is checked against the
1977 	 * theoretical lower limit of the value. Here, we check against the
1978 	 * MTU.
1979 	 */
1980 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1981 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1982 	/*
1983 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1984 	 * size to the max MTU (page-aligned).
1985 	 */
1986 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1987 		rcd->egrbufs.rcvtid_size = round_mtu;
1988 
1989 	/*
1990 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1991 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1992 	 */
1993 	if (rcd->egrbufs.size <= (1 << 20))
1994 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1995 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1996 
1997 	while (alloced_bytes < rcd->egrbufs.size &&
1998 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1999 		rcd->egrbufs.buffers[idx].addr =
2000 			dma_alloc_coherent(&dd->pcidev->dev,
2001 					   rcd->egrbufs.rcvtid_size,
2002 					   &rcd->egrbufs.buffers[idx].dma,
2003 					   gfp_flags);
2004 		if (rcd->egrbufs.buffers[idx].addr) {
2005 			rcd->egrbufs.buffers[idx].len =
2006 				rcd->egrbufs.rcvtid_size;
2007 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
2008 				rcd->egrbufs.buffers[idx].addr;
2009 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
2010 				rcd->egrbufs.buffers[idx].dma;
2011 			rcd->egrbufs.alloced++;
2012 			alloced_bytes += rcd->egrbufs.rcvtid_size;
2013 			idx++;
2014 		} else {
2015 			u32 new_size, i, j;
2016 			u64 offset = 0;
2017 
2018 			/*
2019 			 * Fail the eager buffer allocation if:
2020 			 *   - we are already using the lowest acceptable size
2021 			 *   - we are using one-pkt-per-egr-buffer (this implies
2022 			 *     that we are accepting only one size)
2023 			 */
2024 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
2025 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
2026 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
2027 					   rcd->ctxt);
2028 				ret = -ENOMEM;
2029 				goto bail_rcvegrbuf_phys;
2030 			}
2031 
2032 			new_size = rcd->egrbufs.rcvtid_size / 2;
2033 
2034 			/*
2035 			 * If the first attempt to allocate memory failed, don't
2036 			 * fail everything but continue with the next lower
2037 			 * size.
2038 			 */
2039 			if (idx == 0) {
2040 				rcd->egrbufs.rcvtid_size = new_size;
2041 				continue;
2042 			}
2043 
2044 			/*
2045 			 * Re-partition already allocated buffers to a smaller
2046 			 * size.
2047 			 */
2048 			rcd->egrbufs.alloced = 0;
2049 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
2050 				if (i >= rcd->egrbufs.count)
2051 					break;
2052 				rcd->egrbufs.rcvtids[i].dma =
2053 					rcd->egrbufs.buffers[j].dma + offset;
2054 				rcd->egrbufs.rcvtids[i].addr =
2055 					rcd->egrbufs.buffers[j].addr + offset;
2056 				rcd->egrbufs.alloced++;
2057 				if ((rcd->egrbufs.buffers[j].dma + offset +
2058 				     new_size) ==
2059 				    (rcd->egrbufs.buffers[j].dma +
2060 				     rcd->egrbufs.buffers[j].len)) {
2061 					j++;
2062 					offset = 0;
2063 				} else {
2064 					offset += new_size;
2065 				}
2066 			}
2067 			rcd->egrbufs.rcvtid_size = new_size;
2068 		}
2069 	}
2070 	rcd->egrbufs.numbufs = idx;
2071 	rcd->egrbufs.size = alloced_bytes;
2072 
2073 	hfi1_cdbg(PROC,
2074 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
2075 		  rcd->ctxt, rcd->egrbufs.alloced,
2076 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2077 
2078 	/*
2079 	 * Set the contexts rcv array head update threshold to the closest
2080 	 * power of 2 (so we can use a mask instead of modulo) below half
2081 	 * the allocated entries.
2082 	 */
2083 	rcd->egrbufs.threshold =
2084 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2085 	/*
2086 	 * Compute the expected RcvArray entry base. This is done after
2087 	 * allocating the eager buffers in order to maximize the
2088 	 * expected RcvArray entries for the context.
2089 	 */
2090 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2091 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2092 	rcd->expected_count = max_entries - egrtop;
2093 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2094 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2095 
2096 	rcd->expected_base = rcd->eager_base + egrtop;
2097 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2098 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2099 		  rcd->eager_base, rcd->expected_base);
2100 
2101 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2102 		hfi1_cdbg(PROC,
2103 			  "ctxt%u: current Eager buffer size is invalid %u\n",
2104 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
2105 		ret = -EINVAL;
2106 		goto bail_rcvegrbuf_phys;
2107 	}
2108 
2109 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2110 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2111 			     rcd->egrbufs.rcvtids[idx].dma, order);
2112 		cond_resched();
2113 	}
2114 
2115 	return 0;
2116 
2117 bail_rcvegrbuf_phys:
2118 	for (idx = 0; idx < rcd->egrbufs.alloced &&
2119 	     rcd->egrbufs.buffers[idx].addr;
2120 	     idx++) {
2121 		dma_free_coherent(&dd->pcidev->dev,
2122 				  rcd->egrbufs.buffers[idx].len,
2123 				  rcd->egrbufs.buffers[idx].addr,
2124 				  rcd->egrbufs.buffers[idx].dma);
2125 		rcd->egrbufs.buffers[idx].addr = NULL;
2126 		rcd->egrbufs.buffers[idx].dma = 0;
2127 		rcd->egrbufs.buffers[idx].len = 0;
2128 	}
2129 
2130 	return ret;
2131 }
2132