1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright(c) 2015 - 2020 Intel Corporation. 4 * Copyright(c) 2021 Cornelis Networks. 5 */ 6 7 #include <linux/pci.h> 8 #include <linux/netdevice.h> 9 #include <linux/vmalloc.h> 10 #include <linux/delay.h> 11 #include <linux/xarray.h> 12 #include <linux/module.h> 13 #include <linux/printk.h> 14 #include <linux/hrtimer.h> 15 #include <linux/bitmap.h> 16 #include <linux/numa.h> 17 #include <rdma/rdma_vt.h> 18 19 #include "hfi.h" 20 #include "device.h" 21 #include "common.h" 22 #include "trace.h" 23 #include "mad.h" 24 #include "sdma.h" 25 #include "debugfs.h" 26 #include "verbs.h" 27 #include "aspm.h" 28 #include "affinity.h" 29 #include "vnic.h" 30 #include "exp_rcv.h" 31 #include "netdev.h" 32 33 #undef pr_fmt 34 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 35 36 /* 37 * min buffers we want to have per context, after driver 38 */ 39 #define HFI1_MIN_USER_CTXT_BUFCNT 7 40 41 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ 42 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ 43 44 #define NUM_IB_PORTS 1 45 46 /* 47 * Number of user receive contexts we are configured to use (to allow for more 48 * pio buffers per ctxt, etc.) Zero means use one user context per CPU. 49 */ 50 int num_user_contexts = -1; 51 module_param_named(num_user_contexts, num_user_contexts, int, 0444); 52 MODULE_PARM_DESC( 53 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)"); 54 55 uint krcvqs[RXE_NUM_DATA_VL]; 56 int krcvqsset; 57 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); 58 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); 59 60 /* computed based on above array */ 61 unsigned long n_krcvqs; 62 63 static unsigned hfi1_rcvarr_split = 25; 64 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); 65 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); 66 67 static uint eager_buffer_size = (8 << 20); /* 8MB */ 68 module_param(eager_buffer_size, uint, S_IRUGO); 69 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); 70 71 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ 72 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); 73 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); 74 75 static uint hfi1_hdrq_entsize = 32; 76 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444); 77 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)"); 78 79 unsigned int user_credit_return_threshold = 33; /* default is 33% */ 80 module_param(user_credit_return_threshold, uint, S_IRUGO); 81 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); 82 83 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ); 84 85 static int hfi1_create_kctxt(struct hfi1_devdata *dd, 86 struct hfi1_pportdata *ppd) 87 { 88 struct hfi1_ctxtdata *rcd; 89 int ret; 90 91 /* Control context has to be always 0 */ 92 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); 93 94 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd); 95 if (ret < 0) { 96 dd_dev_err(dd, "Kernel receive context allocation failed\n"); 97 return ret; 98 } 99 100 /* 101 * Set up the kernel context flags here and now because they use 102 * default values for all receive side memories. User contexts will 103 * be handled as they are created. 104 */ 105 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | 106 HFI1_CAP_KGET(NODROP_RHQ_FULL) | 107 HFI1_CAP_KGET(NODROP_EGR_FULL) | 108 HFI1_CAP_KGET(DMA_RTAIL); 109 110 /* Control context must use DMA_RTAIL */ 111 if (rcd->ctxt == HFI1_CTRL_CTXT) 112 rcd->flags |= HFI1_CAP_DMA_RTAIL; 113 rcd->fast_handler = get_dma_rtail_setting(rcd) ? 114 handle_receive_interrupt_dma_rtail : 115 handle_receive_interrupt_nodma_rtail; 116 117 hfi1_set_seq_cnt(rcd, 1); 118 119 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); 120 if (!rcd->sc) { 121 dd_dev_err(dd, "Kernel send context allocation failed\n"); 122 return -ENOMEM; 123 } 124 hfi1_init_ctxt(rcd->sc); 125 126 return 0; 127 } 128 129 /* 130 * Create the receive context array and one or more kernel contexts 131 */ 132 int hfi1_create_kctxts(struct hfi1_devdata *dd) 133 { 134 u16 i; 135 int ret; 136 137 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd), 138 GFP_KERNEL, dd->node); 139 if (!dd->rcd) 140 return -ENOMEM; 141 142 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 143 ret = hfi1_create_kctxt(dd, dd->pport); 144 if (ret) 145 goto bail; 146 } 147 148 return 0; 149 bail: 150 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) 151 hfi1_free_ctxt(dd->rcd[i]); 152 153 /* All the contexts should be freed, free the array */ 154 kfree(dd->rcd); 155 dd->rcd = NULL; 156 return ret; 157 } 158 159 /* 160 * Helper routines for the receive context reference count (rcd and uctxt). 161 */ 162 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd) 163 { 164 kref_init(&rcd->kref); 165 } 166 167 /** 168 * hfi1_rcd_free - When reference is zero clean up. 169 * @kref: pointer to an initialized rcd data structure 170 * 171 */ 172 static void hfi1_rcd_free(struct kref *kref) 173 { 174 unsigned long flags; 175 struct hfi1_ctxtdata *rcd = 176 container_of(kref, struct hfi1_ctxtdata, kref); 177 178 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags); 179 rcd->dd->rcd[rcd->ctxt] = NULL; 180 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags); 181 182 hfi1_free_ctxtdata(rcd->dd, rcd); 183 184 kfree(rcd); 185 } 186 187 /** 188 * hfi1_rcd_put - decrement reference for rcd 189 * @rcd: pointer to an initialized rcd data structure 190 * 191 * Use this to put a reference after the init. 192 */ 193 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd) 194 { 195 if (rcd) 196 return kref_put(&rcd->kref, hfi1_rcd_free); 197 198 return 0; 199 } 200 201 /** 202 * hfi1_rcd_get - increment reference for rcd 203 * @rcd: pointer to an initialized rcd data structure 204 * 205 * Use this to get a reference after the init. 206 * 207 * Return : reflect kref_get_unless_zero(), which returns non-zero on 208 * increment, otherwise 0. 209 */ 210 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd) 211 { 212 return kref_get_unless_zero(&rcd->kref); 213 } 214 215 /** 216 * allocate_rcd_index - allocate an rcd index from the rcd array 217 * @dd: pointer to a valid devdata structure 218 * @rcd: rcd data structure to assign 219 * @index: pointer to index that is allocated 220 * 221 * Find an empty index in the rcd array, and assign the given rcd to it. 222 * If the array is full, we are EBUSY. 223 * 224 */ 225 static int allocate_rcd_index(struct hfi1_devdata *dd, 226 struct hfi1_ctxtdata *rcd, u16 *index) 227 { 228 unsigned long flags; 229 u16 ctxt; 230 231 spin_lock_irqsave(&dd->uctxt_lock, flags); 232 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++) 233 if (!dd->rcd[ctxt]) 234 break; 235 236 if (ctxt < dd->num_rcv_contexts) { 237 rcd->ctxt = ctxt; 238 dd->rcd[ctxt] = rcd; 239 hfi1_rcd_init(rcd); 240 } 241 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 242 243 if (ctxt >= dd->num_rcv_contexts) 244 return -EBUSY; 245 246 *index = ctxt; 247 248 return 0; 249 } 250 251 /** 252 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the 253 * array 254 * @dd: pointer to a valid devdata structure 255 * @ctxt: the index of an possilbe rcd 256 * 257 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given 258 * ctxt index is valid. 259 * 260 * The caller is responsible for making the _put(). 261 * 262 */ 263 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 264 u16 ctxt) 265 { 266 if (ctxt < dd->num_rcv_contexts) 267 return hfi1_rcd_get_by_index(dd, ctxt); 268 269 return NULL; 270 } 271 272 /** 273 * hfi1_rcd_get_by_index - get by index 274 * @dd: pointer to a valid devdata structure 275 * @ctxt: the index of an possilbe rcd 276 * 277 * We need to protect access to the rcd array. If access is needed to 278 * one or more index, get the protecting spinlock and then increment the 279 * kref. 280 * 281 * The caller is responsible for making the _put(). 282 * 283 */ 284 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt) 285 { 286 unsigned long flags; 287 struct hfi1_ctxtdata *rcd = NULL; 288 289 spin_lock_irqsave(&dd->uctxt_lock, flags); 290 if (dd->rcd[ctxt]) { 291 rcd = dd->rcd[ctxt]; 292 if (!hfi1_rcd_get(rcd)) 293 rcd = NULL; 294 } 295 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 296 297 return rcd; 298 } 299 300 /* 301 * Common code for user and kernel context create and setup. 302 * NOTE: the initial kref is done here (hf1_rcd_init()). 303 */ 304 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 305 struct hfi1_ctxtdata **context) 306 { 307 struct hfi1_devdata *dd = ppd->dd; 308 struct hfi1_ctxtdata *rcd; 309 unsigned kctxt_ngroups = 0; 310 u32 base; 311 312 if (dd->rcv_entries.nctxt_extra > 313 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) 314 kctxt_ngroups = (dd->rcv_entries.nctxt_extra - 315 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); 316 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); 317 if (rcd) { 318 u32 rcvtids, max_entries; 319 u16 ctxt; 320 int ret; 321 322 ret = allocate_rcd_index(dd, rcd, &ctxt); 323 if (ret) { 324 *context = NULL; 325 kfree(rcd); 326 return ret; 327 } 328 329 INIT_LIST_HEAD(&rcd->qp_wait_list); 330 hfi1_exp_tid_group_init(rcd); 331 rcd->ppd = ppd; 332 rcd->dd = dd; 333 rcd->numa_id = numa; 334 rcd->rcv_array_groups = dd->rcv_entries.ngroups; 335 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions; 336 rcd->slow_handler = handle_receive_interrupt; 337 rcd->do_interrupt = rcd->slow_handler; 338 rcd->msix_intr = CCE_NUM_MSIX_VECTORS; 339 340 mutex_init(&rcd->exp_mutex); 341 spin_lock_init(&rcd->exp_lock); 342 INIT_LIST_HEAD(&rcd->flow_queue.queue_head); 343 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head); 344 345 hfi1_cdbg(PROC, "setting up context %u", rcd->ctxt); 346 347 /* 348 * Calculate the context's RcvArray entry starting point. 349 * We do this here because we have to take into account all 350 * the RcvArray entries that previous context would have 351 * taken and we have to account for any extra groups assigned 352 * to the static (kernel) or dynamic (vnic/user) contexts. 353 */ 354 if (ctxt < dd->first_dyn_alloc_ctxt) { 355 if (ctxt < kctxt_ngroups) { 356 base = ctxt * (dd->rcv_entries.ngroups + 1); 357 rcd->rcv_array_groups++; 358 } else { 359 base = kctxt_ngroups + 360 (ctxt * dd->rcv_entries.ngroups); 361 } 362 } else { 363 u16 ct = ctxt - dd->first_dyn_alloc_ctxt; 364 365 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + 366 kctxt_ngroups); 367 if (ct < dd->rcv_entries.nctxt_extra) { 368 base += ct * (dd->rcv_entries.ngroups + 1); 369 rcd->rcv_array_groups++; 370 } else { 371 base += dd->rcv_entries.nctxt_extra + 372 (ct * dd->rcv_entries.ngroups); 373 } 374 } 375 rcd->eager_base = base * dd->rcv_entries.group_size; 376 377 rcd->rcvhdrq_cnt = rcvhdrcnt; 378 rcd->rcvhdrqentsize = hfi1_hdrq_entsize; 379 rcd->rhf_offset = 380 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 381 /* 382 * Simple Eager buffer allocation: we have already pre-allocated 383 * the number of RcvArray entry groups. Each ctxtdata structure 384 * holds the number of groups for that context. 385 * 386 * To follow CSR requirements and maintain cacheline alignment, 387 * make sure all sizes and bases are multiples of group_size. 388 * 389 * The expected entry count is what is left after assigning 390 * eager. 391 */ 392 max_entries = rcd->rcv_array_groups * 393 dd->rcv_entries.group_size; 394 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); 395 rcd->egrbufs.count = round_down(rcvtids, 396 dd->rcv_entries.group_size); 397 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { 398 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", 399 rcd->ctxt); 400 rcd->egrbufs.count = MAX_EAGER_ENTRIES; 401 } 402 hfi1_cdbg(PROC, 403 "ctxt%u: max Eager buffer RcvArray entries: %u", 404 rcd->ctxt, rcd->egrbufs.count); 405 406 /* 407 * Allocate array that will hold the eager buffer accounting 408 * data. 409 * This will allocate the maximum possible buffer count based 410 * on the value of the RcvArray split parameter. 411 * The resulting value will be rounded down to the closest 412 * multiple of dd->rcv_entries.group_size. 413 */ 414 rcd->egrbufs.buffers = 415 kcalloc_node(rcd->egrbufs.count, 416 sizeof(*rcd->egrbufs.buffers), 417 GFP_KERNEL, numa); 418 if (!rcd->egrbufs.buffers) 419 goto bail; 420 rcd->egrbufs.rcvtids = 421 kcalloc_node(rcd->egrbufs.count, 422 sizeof(*rcd->egrbufs.rcvtids), 423 GFP_KERNEL, numa); 424 if (!rcd->egrbufs.rcvtids) 425 goto bail; 426 rcd->egrbufs.size = eager_buffer_size; 427 /* 428 * The size of the buffers programmed into the RcvArray 429 * entries needs to be big enough to handle the highest 430 * MTU supported. 431 */ 432 if (rcd->egrbufs.size < hfi1_max_mtu) { 433 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); 434 hfi1_cdbg(PROC, 435 "ctxt%u: eager bufs size too small. Adjusting to %u", 436 rcd->ctxt, rcd->egrbufs.size); 437 } 438 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; 439 440 /* Applicable only for statically created kernel contexts */ 441 if (ctxt < dd->first_dyn_alloc_ctxt) { 442 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), 443 GFP_KERNEL, numa); 444 if (!rcd->opstats) 445 goto bail; 446 447 /* Initialize TID flow generations for the context */ 448 hfi1_kern_init_ctxt_generations(rcd); 449 } 450 451 *context = rcd; 452 return 0; 453 } 454 455 bail: 456 *context = NULL; 457 hfi1_free_ctxt(rcd); 458 return -ENOMEM; 459 } 460 461 /** 462 * hfi1_free_ctxt - free context 463 * @rcd: pointer to an initialized rcd data structure 464 * 465 * This wrapper is the free function that matches hfi1_create_ctxtdata(). 466 * When a context is done being used (kernel or user), this function is called 467 * for the "final" put to match the kref init from hfi1_create_ctxtdata(). 468 * Other users of the context do a get/put sequence to make sure that the 469 * structure isn't removed while in use. 470 */ 471 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd) 472 { 473 hfi1_rcd_put(rcd); 474 } 475 476 /* 477 * Select the largest ccti value over all SLs to determine the intra- 478 * packet gap for the link. 479 * 480 * called with cca_timer_lock held (to protect access to cca_timer 481 * array), and rcu_read_lock() (to protect access to cc_state). 482 */ 483 void set_link_ipg(struct hfi1_pportdata *ppd) 484 { 485 struct hfi1_devdata *dd = ppd->dd; 486 struct cc_state *cc_state; 487 int i; 488 u16 cce, ccti_limit, max_ccti = 0; 489 u16 shift, mult; 490 u64 src; 491 u32 current_egress_rate; /* Mbits /sec */ 492 u64 max_pkt_time; 493 /* 494 * max_pkt_time is the maximum packet egress time in units 495 * of the fabric clock period 1/(805 MHz). 496 */ 497 498 cc_state = get_cc_state(ppd); 499 500 if (!cc_state) 501 /* 502 * This should _never_ happen - rcu_read_lock() is held, 503 * and set_link_ipg() should not be called if cc_state 504 * is NULL. 505 */ 506 return; 507 508 for (i = 0; i < OPA_MAX_SLS; i++) { 509 u16 ccti = ppd->cca_timer[i].ccti; 510 511 if (ccti > max_ccti) 512 max_ccti = ccti; 513 } 514 515 ccti_limit = cc_state->cct.ccti_limit; 516 if (max_ccti > ccti_limit) 517 max_ccti = ccti_limit; 518 519 cce = cc_state->cct.entries[max_ccti].entry; 520 shift = (cce & 0xc000) >> 14; 521 mult = (cce & 0x3fff); 522 523 current_egress_rate = active_egress_rate(ppd); 524 525 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); 526 527 src = (max_pkt_time >> shift) * mult; 528 529 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; 530 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; 531 532 write_csr(dd, SEND_STATIC_RATE_CONTROL, src); 533 } 534 535 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) 536 { 537 struct cca_timer *cca_timer; 538 struct hfi1_pportdata *ppd; 539 int sl; 540 u16 ccti_timer, ccti_min; 541 struct cc_state *cc_state; 542 unsigned long flags; 543 enum hrtimer_restart ret = HRTIMER_NORESTART; 544 545 cca_timer = container_of(t, struct cca_timer, hrtimer); 546 ppd = cca_timer->ppd; 547 sl = cca_timer->sl; 548 549 rcu_read_lock(); 550 551 cc_state = get_cc_state(ppd); 552 553 if (!cc_state) { 554 rcu_read_unlock(); 555 return HRTIMER_NORESTART; 556 } 557 558 /* 559 * 1) decrement ccti for SL 560 * 2) calculate IPG for link (set_link_ipg()) 561 * 3) restart timer, unless ccti is at min value 562 */ 563 564 ccti_min = cc_state->cong_setting.entries[sl].ccti_min; 565 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; 566 567 spin_lock_irqsave(&ppd->cca_timer_lock, flags); 568 569 if (cca_timer->ccti > ccti_min) { 570 cca_timer->ccti--; 571 set_link_ipg(ppd); 572 } 573 574 if (cca_timer->ccti > ccti_min) { 575 unsigned long nsec = 1024 * ccti_timer; 576 /* ccti_timer is in units of 1.024 usec */ 577 hrtimer_forward_now(t, ns_to_ktime(nsec)); 578 ret = HRTIMER_RESTART; 579 } 580 581 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); 582 rcu_read_unlock(); 583 return ret; 584 } 585 586 /* 587 * Common code for initializing the physical port structure. 588 */ 589 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 590 struct hfi1_devdata *dd, u8 hw_pidx, u32 port) 591 { 592 int i; 593 uint default_pkey_idx; 594 struct cc_state *cc_state; 595 596 ppd->dd = dd; 597 ppd->hw_pidx = hw_pidx; 598 ppd->port = port; /* IB port number, not index */ 599 ppd->prev_link_width = LINK_WIDTH_DEFAULT; 600 /* 601 * There are C_VL_COUNT number of PortVLXmitWait counters. 602 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. 603 */ 604 for (i = 0; i < C_VL_COUNT + 1; i++) { 605 ppd->port_vl_xmit_wait_last[i] = 0; 606 ppd->vl_xmit_flit_cnt[i] = 0; 607 } 608 609 default_pkey_idx = 1; 610 611 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; 612 ppd->part_enforce |= HFI1_PART_ENFORCE_IN; 613 ppd->pkeys[0] = 0x8001; 614 615 INIT_WORK(&ppd->link_vc_work, handle_verify_cap); 616 INIT_WORK(&ppd->link_up_work, handle_link_up); 617 INIT_WORK(&ppd->link_down_work, handle_link_down); 618 INIT_WORK(&ppd->freeze_work, handle_freeze); 619 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); 620 INIT_WORK(&ppd->sma_message_work, handle_sma_message); 621 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); 622 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); 623 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); 624 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); 625 626 mutex_init(&ppd->hls_lock); 627 spin_lock_init(&ppd->qsfp_info.qsfp_lock); 628 629 ppd->qsfp_info.ppd = ppd; 630 ppd->sm_trap_qp = 0x0; 631 ppd->sa_qp = 0x1; 632 633 ppd->hfi1_wq = NULL; 634 635 spin_lock_init(&ppd->cca_timer_lock); 636 637 for (i = 0; i < OPA_MAX_SLS; i++) { 638 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, 639 HRTIMER_MODE_REL); 640 ppd->cca_timer[i].ppd = ppd; 641 ppd->cca_timer[i].sl = i; 642 ppd->cca_timer[i].ccti = 0; 643 ppd->cca_timer[i].hrtimer.function = cca_timer_fn; 644 } 645 646 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; 647 648 spin_lock_init(&ppd->cc_state_lock); 649 spin_lock_init(&ppd->cc_log_lock); 650 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); 651 RCU_INIT_POINTER(ppd->cc_state, cc_state); 652 if (!cc_state) 653 goto bail; 654 return; 655 656 bail: 657 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port); 658 } 659 660 /* 661 * Do initialization for device that is only needed on 662 * first detect, not on resets. 663 */ 664 static int loadtime_init(struct hfi1_devdata *dd) 665 { 666 return 0; 667 } 668 669 /** 670 * init_after_reset - re-initialize after a reset 671 * @dd: the hfi1_ib device 672 * 673 * sanity check at least some of the values after reset, and 674 * ensure no receive or transmit (explicitly, in case reset 675 * failed 676 */ 677 static int init_after_reset(struct hfi1_devdata *dd) 678 { 679 int i; 680 struct hfi1_ctxtdata *rcd; 681 /* 682 * Ensure chip does no sends or receives, tail updates, or 683 * pioavail updates while we re-initialize. This is mostly 684 * for the driver data structures, not chip registers. 685 */ 686 for (i = 0; i < dd->num_rcv_contexts; i++) { 687 rcd = hfi1_rcd_get_by_index(dd, i); 688 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 689 HFI1_RCVCTRL_INTRAVAIL_DIS | 690 HFI1_RCVCTRL_TAILUPD_DIS, rcd); 691 hfi1_rcd_put(rcd); 692 } 693 pio_send_control(dd, PSC_GLOBAL_DISABLE); 694 for (i = 0; i < dd->num_send_contexts; i++) 695 sc_disable(dd->send_contexts[i].sc); 696 697 return 0; 698 } 699 700 static void enable_chip(struct hfi1_devdata *dd) 701 { 702 struct hfi1_ctxtdata *rcd; 703 u32 rcvmask; 704 u16 i; 705 706 /* enable PIO send */ 707 pio_send_control(dd, PSC_GLOBAL_ENABLE); 708 709 /* 710 * Enable kernel ctxts' receive and receive interrupt. 711 * Other ctxts done as user opens and initializes them. 712 */ 713 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { 714 rcd = hfi1_rcd_get_by_index(dd, i); 715 if (!rcd) 716 continue; 717 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; 718 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 719 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 720 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 721 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 722 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL)) 723 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 724 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL)) 725 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 726 if (HFI1_CAP_IS_KSET(TID_RDMA)) 727 rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB; 728 hfi1_rcvctrl(dd, rcvmask, rcd); 729 sc_enable(rcd->sc); 730 hfi1_rcd_put(rcd); 731 } 732 } 733 734 /** 735 * create_workqueues - create per port workqueues 736 * @dd: the hfi1_ib device 737 */ 738 static int create_workqueues(struct hfi1_devdata *dd) 739 { 740 int pidx; 741 struct hfi1_pportdata *ppd; 742 743 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 744 ppd = dd->pport + pidx; 745 if (!ppd->hfi1_wq) { 746 ppd->hfi1_wq = 747 alloc_workqueue( 748 "hfi%d_%d", 749 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE | 750 WQ_MEM_RECLAIM, 751 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, 752 dd->unit, pidx); 753 if (!ppd->hfi1_wq) 754 goto wq_error; 755 } 756 if (!ppd->link_wq) { 757 /* 758 * Make the link workqueue single-threaded to enforce 759 * serialization. 760 */ 761 ppd->link_wq = 762 alloc_workqueue( 763 "hfi_link_%d_%d", 764 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND, 765 1, /* max_active */ 766 dd->unit, pidx); 767 if (!ppd->link_wq) 768 goto wq_error; 769 } 770 } 771 return 0; 772 wq_error: 773 pr_err("alloc_workqueue failed for port %d\n", pidx + 1); 774 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 775 ppd = dd->pport + pidx; 776 if (ppd->hfi1_wq) { 777 destroy_workqueue(ppd->hfi1_wq); 778 ppd->hfi1_wq = NULL; 779 } 780 if (ppd->link_wq) { 781 destroy_workqueue(ppd->link_wq); 782 ppd->link_wq = NULL; 783 } 784 } 785 return -ENOMEM; 786 } 787 788 /** 789 * destroy_workqueues - destroy per port workqueues 790 * @dd: the hfi1_ib device 791 */ 792 static void destroy_workqueues(struct hfi1_devdata *dd) 793 { 794 int pidx; 795 struct hfi1_pportdata *ppd; 796 797 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 798 ppd = dd->pport + pidx; 799 800 if (ppd->hfi1_wq) { 801 destroy_workqueue(ppd->hfi1_wq); 802 ppd->hfi1_wq = NULL; 803 } 804 if (ppd->link_wq) { 805 destroy_workqueue(ppd->link_wq); 806 ppd->link_wq = NULL; 807 } 808 } 809 } 810 811 /** 812 * enable_general_intr() - Enable the IRQs that will be handled by the 813 * general interrupt handler. 814 * @dd: valid devdata 815 * 816 */ 817 static void enable_general_intr(struct hfi1_devdata *dd) 818 { 819 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true); 820 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true); 821 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true); 822 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true); 823 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true); 824 set_intr_bits(dd, IS_DC_START, IS_DC_END, true); 825 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true); 826 } 827 828 /** 829 * hfi1_init - do the actual initialization sequence on the chip 830 * @dd: the hfi1_ib device 831 * @reinit: re-initializing, so don't allocate new memory 832 * 833 * Do the actual initialization sequence on the chip. This is done 834 * both from the init routine called from the PCI infrastructure, and 835 * when we reset the chip, or detect that it was reset internally, 836 * or it's administratively re-enabled. 837 * 838 * Memory allocation here and in called routines is only done in 839 * the first case (reinit == 0). We have to be careful, because even 840 * without memory allocation, we need to re-write all the chip registers 841 * TIDs, etc. after the reset or enable has completed. 842 */ 843 int hfi1_init(struct hfi1_devdata *dd, int reinit) 844 { 845 int ret = 0, pidx, lastfail = 0; 846 unsigned long len; 847 u16 i; 848 struct hfi1_ctxtdata *rcd; 849 struct hfi1_pportdata *ppd; 850 851 /* Set up send low level handlers */ 852 dd->process_pio_send = hfi1_verbs_send_pio; 853 dd->process_dma_send = hfi1_verbs_send_dma; 854 dd->pio_inline_send = pio_copy; 855 dd->process_vnic_dma_send = hfi1_vnic_send_dma; 856 857 if (is_ax(dd)) { 858 atomic_set(&dd->drop_packet, DROP_PACKET_ON); 859 dd->do_drop = true; 860 } else { 861 atomic_set(&dd->drop_packet, DROP_PACKET_OFF); 862 dd->do_drop = false; 863 } 864 865 /* make sure the link is not "up" */ 866 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 867 ppd = dd->pport + pidx; 868 ppd->linkup = 0; 869 } 870 871 if (reinit) 872 ret = init_after_reset(dd); 873 else 874 ret = loadtime_init(dd); 875 if (ret) 876 goto done; 877 878 /* dd->rcd can be NULL if early initialization failed */ 879 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { 880 /* 881 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing 882 * re-init, the simplest way to handle this is to free 883 * existing, and re-allocate. 884 * Need to re-create rest of ctxt 0 ctxtdata as well. 885 */ 886 rcd = hfi1_rcd_get_by_index(dd, i); 887 if (!rcd) 888 continue; 889 890 lastfail = hfi1_create_rcvhdrq(dd, rcd); 891 if (!lastfail) 892 lastfail = hfi1_setup_eagerbufs(rcd); 893 if (!lastfail) 894 lastfail = hfi1_kern_exp_rcv_init(rcd, reinit); 895 if (lastfail) { 896 dd_dev_err(dd, 897 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); 898 ret = lastfail; 899 } 900 /* enable IRQ */ 901 hfi1_rcd_put(rcd); 902 } 903 904 /* Allocate enough memory for user event notification. */ 905 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS * 906 sizeof(*dd->events)); 907 dd->events = vmalloc_user(len); 908 if (!dd->events) 909 dd_dev_err(dd, "Failed to allocate user events page\n"); 910 /* 911 * Allocate a page for device and port status. 912 * Page will be shared amongst all user processes. 913 */ 914 dd->status = vmalloc_user(PAGE_SIZE); 915 if (!dd->status) 916 dd_dev_err(dd, "Failed to allocate dev status page\n"); 917 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 918 ppd = dd->pport + pidx; 919 if (dd->status) 920 /* Currently, we only have one port */ 921 ppd->statusp = &dd->status->port; 922 923 set_mtu(ppd); 924 } 925 926 /* enable chip even if we have an error, so we can debug cause */ 927 enable_chip(dd); 928 929 done: 930 /* 931 * Set status even if port serdes is not initialized 932 * so that diags will work. 933 */ 934 if (dd->status) 935 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | 936 HFI1_STATUS_INITTED; 937 if (!ret) { 938 /* enable all interrupts from the chip */ 939 enable_general_intr(dd); 940 init_qsfp_int(dd); 941 942 /* chip is OK for user apps; mark it as initialized */ 943 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 944 ppd = dd->pport + pidx; 945 946 /* 947 * start the serdes - must be after interrupts are 948 * enabled so we are notified when the link goes up 949 */ 950 lastfail = bringup_serdes(ppd); 951 if (lastfail) 952 dd_dev_info(dd, 953 "Failed to bring up port %u\n", 954 ppd->port); 955 956 /* 957 * Set status even if port serdes is not initialized 958 * so that diags will work. 959 */ 960 if (ppd->statusp) 961 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | 962 HFI1_STATUS_INITTED; 963 if (!ppd->link_speed_enabled) 964 continue; 965 } 966 } 967 968 /* if ret is non-zero, we probably should do some cleanup here... */ 969 return ret; 970 } 971 972 struct hfi1_devdata *hfi1_lookup(int unit) 973 { 974 return xa_load(&hfi1_dev_table, unit); 975 } 976 977 /* 978 * Stop the timers during unit shutdown, or after an error late 979 * in initialization. 980 */ 981 static void stop_timers(struct hfi1_devdata *dd) 982 { 983 struct hfi1_pportdata *ppd; 984 int pidx; 985 986 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 987 ppd = dd->pport + pidx; 988 if (ppd->led_override_timer.function) { 989 del_timer_sync(&ppd->led_override_timer); 990 atomic_set(&ppd->led_override_timer_active, 0); 991 } 992 } 993 } 994 995 /** 996 * shutdown_device - shut down a device 997 * @dd: the hfi1_ib device 998 * 999 * This is called to make the device quiet when we are about to 1000 * unload the driver, and also when the device is administratively 1001 * disabled. It does not free any data structures. 1002 * Everything it does has to be setup again by hfi1_init(dd, 1) 1003 */ 1004 static void shutdown_device(struct hfi1_devdata *dd) 1005 { 1006 struct hfi1_pportdata *ppd; 1007 struct hfi1_ctxtdata *rcd; 1008 unsigned pidx; 1009 int i; 1010 1011 if (dd->flags & HFI1_SHUTDOWN) 1012 return; 1013 dd->flags |= HFI1_SHUTDOWN; 1014 1015 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1016 ppd = dd->pport + pidx; 1017 1018 ppd->linkup = 0; 1019 if (ppd->statusp) 1020 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 1021 HFI1_STATUS_IB_READY); 1022 } 1023 dd->flags &= ~HFI1_INITTED; 1024 1025 /* mask and clean up interrupts */ 1026 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false); 1027 msix_clean_up_interrupts(dd); 1028 1029 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1030 for (i = 0; i < dd->num_rcv_contexts; i++) { 1031 rcd = hfi1_rcd_get_by_index(dd, i); 1032 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | 1033 HFI1_RCVCTRL_CTXT_DIS | 1034 HFI1_RCVCTRL_INTRAVAIL_DIS | 1035 HFI1_RCVCTRL_PKEY_DIS | 1036 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd); 1037 hfi1_rcd_put(rcd); 1038 } 1039 /* 1040 * Gracefully stop all sends allowing any in progress to 1041 * trickle out first. 1042 */ 1043 for (i = 0; i < dd->num_send_contexts; i++) 1044 sc_flush(dd->send_contexts[i].sc); 1045 } 1046 1047 /* 1048 * Enough for anything that's going to trickle out to have actually 1049 * done so. 1050 */ 1051 udelay(20); 1052 1053 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1054 ppd = dd->pport + pidx; 1055 1056 /* disable all contexts */ 1057 for (i = 0; i < dd->num_send_contexts; i++) 1058 sc_disable(dd->send_contexts[i].sc); 1059 /* disable the send device */ 1060 pio_send_control(dd, PSC_GLOBAL_DISABLE); 1061 1062 shutdown_led_override(ppd); 1063 1064 /* 1065 * Clear SerdesEnable. 1066 * We can't count on interrupts since we are stopping. 1067 */ 1068 hfi1_quiet_serdes(ppd); 1069 if (ppd->hfi1_wq) 1070 flush_workqueue(ppd->hfi1_wq); 1071 if (ppd->link_wq) 1072 flush_workqueue(ppd->link_wq); 1073 } 1074 sdma_exit(dd); 1075 } 1076 1077 /** 1078 * hfi1_free_ctxtdata - free a context's allocated data 1079 * @dd: the hfi1_ib device 1080 * @rcd: the ctxtdata structure 1081 * 1082 * free up any allocated data for a context 1083 * It should never change any chip state, or global driver state. 1084 */ 1085 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1086 { 1087 u32 e; 1088 1089 if (!rcd) 1090 return; 1091 1092 if (rcd->rcvhdrq) { 1093 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd), 1094 rcd->rcvhdrq, rcd->rcvhdrq_dma); 1095 rcd->rcvhdrq = NULL; 1096 if (hfi1_rcvhdrtail_kvaddr(rcd)) { 1097 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, 1098 (void *)hfi1_rcvhdrtail_kvaddr(rcd), 1099 rcd->rcvhdrqtailaddr_dma); 1100 rcd->rcvhdrtail_kvaddr = NULL; 1101 } 1102 } 1103 1104 /* all the RcvArray entries should have been cleared by now */ 1105 kfree(rcd->egrbufs.rcvtids); 1106 rcd->egrbufs.rcvtids = NULL; 1107 1108 for (e = 0; e < rcd->egrbufs.alloced; e++) { 1109 if (rcd->egrbufs.buffers[e].addr) 1110 dma_free_coherent(&dd->pcidev->dev, 1111 rcd->egrbufs.buffers[e].len, 1112 rcd->egrbufs.buffers[e].addr, 1113 rcd->egrbufs.buffers[e].dma); 1114 } 1115 kfree(rcd->egrbufs.buffers); 1116 rcd->egrbufs.alloced = 0; 1117 rcd->egrbufs.buffers = NULL; 1118 1119 sc_free(rcd->sc); 1120 rcd->sc = NULL; 1121 1122 vfree(rcd->subctxt_uregbase); 1123 vfree(rcd->subctxt_rcvegrbuf); 1124 vfree(rcd->subctxt_rcvhdr_base); 1125 kfree(rcd->opstats); 1126 1127 rcd->subctxt_uregbase = NULL; 1128 rcd->subctxt_rcvegrbuf = NULL; 1129 rcd->subctxt_rcvhdr_base = NULL; 1130 rcd->opstats = NULL; 1131 } 1132 1133 /* 1134 * Release our hold on the shared asic data. If we are the last one, 1135 * return the structure to be finalized outside the lock. Must be 1136 * holding hfi1_dev_table lock. 1137 */ 1138 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) 1139 { 1140 struct hfi1_asic_data *ad; 1141 int other; 1142 1143 if (!dd->asic_data) 1144 return NULL; 1145 dd->asic_data->dds[dd->hfi1_id] = NULL; 1146 other = dd->hfi1_id ? 0 : 1; 1147 ad = dd->asic_data; 1148 dd->asic_data = NULL; 1149 /* return NULL if the other dd still has a link */ 1150 return ad->dds[other] ? NULL : ad; 1151 } 1152 1153 static void finalize_asic_data(struct hfi1_devdata *dd, 1154 struct hfi1_asic_data *ad) 1155 { 1156 clean_up_i2c(dd, ad); 1157 kfree(ad); 1158 } 1159 1160 /** 1161 * hfi1_free_devdata - cleans up and frees per-unit data structure 1162 * @dd: pointer to a valid devdata structure 1163 * 1164 * It cleans up and frees all data structures set up by 1165 * by hfi1_alloc_devdata(). 1166 */ 1167 void hfi1_free_devdata(struct hfi1_devdata *dd) 1168 { 1169 struct hfi1_asic_data *ad; 1170 unsigned long flags; 1171 1172 xa_lock_irqsave(&hfi1_dev_table, flags); 1173 __xa_erase(&hfi1_dev_table, dd->unit); 1174 ad = release_asic_data(dd); 1175 xa_unlock_irqrestore(&hfi1_dev_table, flags); 1176 1177 finalize_asic_data(dd, ad); 1178 free_platform_config(dd); 1179 rcu_barrier(); /* wait for rcu callbacks to complete */ 1180 free_percpu(dd->int_counter); 1181 free_percpu(dd->rcv_limit); 1182 free_percpu(dd->send_schedule); 1183 free_percpu(dd->tx_opstats); 1184 dd->int_counter = NULL; 1185 dd->rcv_limit = NULL; 1186 dd->send_schedule = NULL; 1187 dd->tx_opstats = NULL; 1188 kfree(dd->comp_vect); 1189 dd->comp_vect = NULL; 1190 if (dd->rcvhdrtail_dummy_kvaddr) 1191 dma_free_coherent(&dd->pcidev->dev, sizeof(u64), 1192 (void *)dd->rcvhdrtail_dummy_kvaddr, 1193 dd->rcvhdrtail_dummy_dma); 1194 dd->rcvhdrtail_dummy_kvaddr = NULL; 1195 sdma_clean(dd, dd->num_sdma); 1196 rvt_dealloc_device(&dd->verbs_dev.rdi); 1197 } 1198 1199 /** 1200 * hfi1_alloc_devdata - Allocate our primary per-unit data structure. 1201 * @pdev: Valid PCI device 1202 * @extra: How many bytes to alloc past the default 1203 * 1204 * Must be done via verbs allocator, because the verbs cleanup process 1205 * both does cleanup and free of the data structure. 1206 * "extra" is for chip-specific data. 1207 */ 1208 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, 1209 size_t extra) 1210 { 1211 struct hfi1_devdata *dd; 1212 int ret, nports; 1213 1214 /* extra is * number of ports */ 1215 nports = extra / sizeof(struct hfi1_pportdata); 1216 1217 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, 1218 nports); 1219 if (!dd) 1220 return ERR_PTR(-ENOMEM); 1221 dd->num_pports = nports; 1222 dd->pport = (struct hfi1_pportdata *)(dd + 1); 1223 dd->pcidev = pdev; 1224 pci_set_drvdata(pdev, dd); 1225 1226 ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b, 1227 GFP_KERNEL); 1228 if (ret < 0) { 1229 dev_err(&pdev->dev, 1230 "Could not allocate unit ID: error %d\n", -ret); 1231 goto bail; 1232 } 1233 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit); 1234 /* 1235 * If the BIOS does not have the NUMA node information set, select 1236 * NUMA 0 so we get consistent performance. 1237 */ 1238 dd->node = pcibus_to_node(pdev->bus); 1239 if (dd->node == NUMA_NO_NODE) { 1240 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n"); 1241 dd->node = 0; 1242 } 1243 1244 /* 1245 * Initialize all locks for the device. This needs to be as early as 1246 * possible so locks are usable. 1247 */ 1248 spin_lock_init(&dd->sc_lock); 1249 spin_lock_init(&dd->sendctrl_lock); 1250 spin_lock_init(&dd->rcvctrl_lock); 1251 spin_lock_init(&dd->uctxt_lock); 1252 spin_lock_init(&dd->hfi1_diag_trans_lock); 1253 spin_lock_init(&dd->sc_init_lock); 1254 spin_lock_init(&dd->dc8051_memlock); 1255 seqlock_init(&dd->sc2vl_lock); 1256 spin_lock_init(&dd->sde_map_lock); 1257 spin_lock_init(&dd->pio_map_lock); 1258 mutex_init(&dd->dc8051_lock); 1259 init_waitqueue_head(&dd->event_queue); 1260 spin_lock_init(&dd->irq_src_lock); 1261 1262 dd->int_counter = alloc_percpu(u64); 1263 if (!dd->int_counter) { 1264 ret = -ENOMEM; 1265 goto bail; 1266 } 1267 1268 dd->rcv_limit = alloc_percpu(u64); 1269 if (!dd->rcv_limit) { 1270 ret = -ENOMEM; 1271 goto bail; 1272 } 1273 1274 dd->send_schedule = alloc_percpu(u64); 1275 if (!dd->send_schedule) { 1276 ret = -ENOMEM; 1277 goto bail; 1278 } 1279 1280 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx); 1281 if (!dd->tx_opstats) { 1282 ret = -ENOMEM; 1283 goto bail; 1284 } 1285 1286 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL); 1287 if (!dd->comp_vect) { 1288 ret = -ENOMEM; 1289 goto bail; 1290 } 1291 1292 /* allocate dummy tail memory for all receive contexts */ 1293 dd->rcvhdrtail_dummy_kvaddr = 1294 dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64), 1295 &dd->rcvhdrtail_dummy_dma, GFP_KERNEL); 1296 if (!dd->rcvhdrtail_dummy_kvaddr) { 1297 ret = -ENOMEM; 1298 goto bail; 1299 } 1300 1301 atomic_set(&dd->ipoib_rsm_usr_num, 0); 1302 return dd; 1303 1304 bail: 1305 hfi1_free_devdata(dd); 1306 return ERR_PTR(ret); 1307 } 1308 1309 /* 1310 * Called from freeze mode handlers, and from PCI error 1311 * reporting code. Should be paranoid about state of 1312 * system and data structures. 1313 */ 1314 void hfi1_disable_after_error(struct hfi1_devdata *dd) 1315 { 1316 if (dd->flags & HFI1_INITTED) { 1317 u32 pidx; 1318 1319 dd->flags &= ~HFI1_INITTED; 1320 if (dd->pport) 1321 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1322 struct hfi1_pportdata *ppd; 1323 1324 ppd = dd->pport + pidx; 1325 if (dd->flags & HFI1_PRESENT) 1326 set_link_state(ppd, HLS_DN_DISABLE); 1327 1328 if (ppd->statusp) 1329 *ppd->statusp &= ~HFI1_STATUS_IB_READY; 1330 } 1331 } 1332 1333 /* 1334 * Mark as having had an error for driver, and also 1335 * for /sys and status word mapped to user programs. 1336 * This marks unit as not usable, until reset. 1337 */ 1338 if (dd->status) 1339 dd->status->dev |= HFI1_STATUS_HWERROR; 1340 } 1341 1342 static void remove_one(struct pci_dev *); 1343 static int init_one(struct pci_dev *, const struct pci_device_id *); 1344 static void shutdown_one(struct pci_dev *); 1345 1346 #define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: " 1347 #define PFX DRIVER_NAME ": " 1348 1349 const struct pci_device_id hfi1_pci_tbl[] = { 1350 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, 1351 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, 1352 { 0, } 1353 }; 1354 1355 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); 1356 1357 static struct pci_driver hfi1_pci_driver = { 1358 .name = DRIVER_NAME, 1359 .probe = init_one, 1360 .remove = remove_one, 1361 .shutdown = shutdown_one, 1362 .id_table = hfi1_pci_tbl, 1363 .err_handler = &hfi1_pci_err_handler, 1364 }; 1365 1366 static void __init compute_krcvqs(void) 1367 { 1368 int i; 1369 1370 for (i = 0; i < krcvqsset; i++) 1371 n_krcvqs += krcvqs[i]; 1372 } 1373 1374 /* 1375 * Do all the generic driver unit- and chip-independent memory 1376 * allocation and initialization. 1377 */ 1378 static int __init hfi1_mod_init(void) 1379 { 1380 int ret; 1381 1382 ret = dev_init(); 1383 if (ret) 1384 goto bail; 1385 1386 ret = node_affinity_init(); 1387 if (ret) 1388 goto bail; 1389 1390 /* validate max MTU before any devices start */ 1391 if (!valid_opa_max_mtu(hfi1_max_mtu)) { 1392 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", 1393 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); 1394 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 1395 } 1396 /* valid CUs run from 1-128 in powers of 2 */ 1397 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) 1398 hfi1_cu = 1; 1399 /* valid credit return threshold is 0-100, variable is unsigned */ 1400 if (user_credit_return_threshold > 100) 1401 user_credit_return_threshold = 100; 1402 1403 compute_krcvqs(); 1404 /* 1405 * sanitize receive interrupt count, time must wait until after 1406 * the hardware type is known 1407 */ 1408 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) 1409 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; 1410 /* reject invalid combinations */ 1411 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { 1412 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); 1413 rcv_intr_count = 1; 1414 } 1415 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { 1416 /* 1417 * Avoid indefinite packet delivery by requiring a timeout 1418 * if count is > 1. 1419 */ 1420 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); 1421 rcv_intr_timeout = 1; 1422 } 1423 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { 1424 /* 1425 * The dynamic algorithm expects a non-zero timeout 1426 * and a count > 1. 1427 */ 1428 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); 1429 rcv_intr_dynamic = 0; 1430 } 1431 1432 /* sanitize link CRC options */ 1433 link_crc_mask &= SUPPORTED_CRCS; 1434 1435 ret = opfn_init(); 1436 if (ret < 0) { 1437 pr_err("Failed to allocate opfn_wq"); 1438 goto bail_dev; 1439 } 1440 1441 /* 1442 * These must be called before the driver is registered with 1443 * the PCI subsystem. 1444 */ 1445 hfi1_dbg_init(); 1446 ret = pci_register_driver(&hfi1_pci_driver); 1447 if (ret < 0) { 1448 pr_err("Unable to register driver: error %d\n", -ret); 1449 goto bail_dev; 1450 } 1451 goto bail; /* all OK */ 1452 1453 bail_dev: 1454 hfi1_dbg_exit(); 1455 dev_cleanup(); 1456 bail: 1457 return ret; 1458 } 1459 1460 module_init(hfi1_mod_init); 1461 1462 /* 1463 * Do the non-unit driver cleanup, memory free, etc. at unload. 1464 */ 1465 static void __exit hfi1_mod_cleanup(void) 1466 { 1467 pci_unregister_driver(&hfi1_pci_driver); 1468 opfn_exit(); 1469 node_affinity_destroy_all(); 1470 hfi1_dbg_exit(); 1471 1472 WARN_ON(!xa_empty(&hfi1_dev_table)); 1473 dispose_firmware(); /* asymmetric with obtain_firmware() */ 1474 dev_cleanup(); 1475 } 1476 1477 module_exit(hfi1_mod_cleanup); 1478 1479 /* this can only be called after a successful initialization */ 1480 static void cleanup_device_data(struct hfi1_devdata *dd) 1481 { 1482 int ctxt; 1483 int pidx; 1484 1485 /* users can't do anything more with chip */ 1486 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1487 struct hfi1_pportdata *ppd = &dd->pport[pidx]; 1488 struct cc_state *cc_state; 1489 int i; 1490 1491 if (ppd->statusp) 1492 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; 1493 1494 for (i = 0; i < OPA_MAX_SLS; i++) 1495 hrtimer_cancel(&ppd->cca_timer[i].hrtimer); 1496 1497 spin_lock(&ppd->cc_state_lock); 1498 cc_state = get_cc_state_protected(ppd); 1499 RCU_INIT_POINTER(ppd->cc_state, NULL); 1500 spin_unlock(&ppd->cc_state_lock); 1501 1502 if (cc_state) 1503 kfree_rcu(cc_state, rcu); 1504 } 1505 1506 free_credit_return(dd); 1507 1508 /* 1509 * Free any resources still in use (usually just kernel contexts) 1510 * at unload; we do for ctxtcnt, because that's what we allocate. 1511 */ 1512 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) { 1513 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; 1514 1515 if (rcd) { 1516 hfi1_free_ctxt_rcv_groups(rcd); 1517 hfi1_free_ctxt(rcd); 1518 } 1519 } 1520 1521 kfree(dd->rcd); 1522 dd->rcd = NULL; 1523 1524 free_pio_map(dd); 1525 /* must follow rcv context free - need to remove rcv's hooks */ 1526 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) 1527 sc_free(dd->send_contexts[ctxt].sc); 1528 dd->num_send_contexts = 0; 1529 kfree(dd->send_contexts); 1530 dd->send_contexts = NULL; 1531 kfree(dd->hw_to_sw); 1532 dd->hw_to_sw = NULL; 1533 kfree(dd->boardname); 1534 vfree(dd->events); 1535 vfree(dd->status); 1536 } 1537 1538 /* 1539 * Clean up on unit shutdown, or error during unit load after 1540 * successful initialization. 1541 */ 1542 static void postinit_cleanup(struct hfi1_devdata *dd) 1543 { 1544 hfi1_start_cleanup(dd); 1545 hfi1_comp_vectors_clean_up(dd); 1546 hfi1_dev_affinity_clean_up(dd); 1547 1548 hfi1_pcie_ddcleanup(dd); 1549 hfi1_pcie_cleanup(dd->pcidev); 1550 1551 cleanup_device_data(dd); 1552 1553 hfi1_free_devdata(dd); 1554 } 1555 1556 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1557 { 1558 int ret = 0, j, pidx, initfail; 1559 struct hfi1_devdata *dd; 1560 struct hfi1_pportdata *ppd; 1561 1562 /* First, lock the non-writable module parameters */ 1563 HFI1_CAP_LOCK(); 1564 1565 /* Validate dev ids */ 1566 if (!(ent->device == PCI_DEVICE_ID_INTEL0 || 1567 ent->device == PCI_DEVICE_ID_INTEL1)) { 1568 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n", 1569 ent->device); 1570 ret = -ENODEV; 1571 goto bail; 1572 } 1573 1574 /* Allocate the dd so we can get to work */ 1575 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 1576 sizeof(struct hfi1_pportdata)); 1577 if (IS_ERR(dd)) { 1578 ret = PTR_ERR(dd); 1579 goto bail; 1580 } 1581 1582 /* Validate some global module parameters */ 1583 ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt); 1584 if (ret) 1585 goto bail; 1586 1587 /* use the encoding function as a sanitization check */ 1588 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { 1589 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n", 1590 hfi1_hdrq_entsize); 1591 ret = -EINVAL; 1592 goto bail; 1593 } 1594 1595 /* The receive eager buffer size must be set before the receive 1596 * contexts are created. 1597 * 1598 * Set the eager buffer size. Validate that it falls in a range 1599 * allowed by the hardware - all powers of 2 between the min and 1600 * max. The maximum valid MTU is within the eager buffer range 1601 * so we do not need to cap the max_mtu by an eager buffer size 1602 * setting. 1603 */ 1604 if (eager_buffer_size) { 1605 if (!is_power_of_2(eager_buffer_size)) 1606 eager_buffer_size = 1607 roundup_pow_of_two(eager_buffer_size); 1608 eager_buffer_size = 1609 clamp_val(eager_buffer_size, 1610 MIN_EAGER_BUFFER * 8, 1611 MAX_EAGER_BUFFER_TOTAL); 1612 dd_dev_info(dd, "Eager buffer size %u\n", 1613 eager_buffer_size); 1614 } else { 1615 dd_dev_err(dd, "Invalid Eager buffer size of 0\n"); 1616 ret = -EINVAL; 1617 goto bail; 1618 } 1619 1620 /* restrict value of hfi1_rcvarr_split */ 1621 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); 1622 1623 ret = hfi1_pcie_init(dd); 1624 if (ret) 1625 goto bail; 1626 1627 /* 1628 * Do device-specific initialization, function table setup, dd 1629 * allocation, etc. 1630 */ 1631 ret = hfi1_init_dd(dd); 1632 if (ret) 1633 goto clean_bail; /* error already printed */ 1634 1635 ret = create_workqueues(dd); 1636 if (ret) 1637 goto clean_bail; 1638 1639 /* do the generic initialization */ 1640 initfail = hfi1_init(dd, 0); 1641 1642 ret = hfi1_register_ib_device(dd); 1643 1644 /* 1645 * Now ready for use. this should be cleared whenever we 1646 * detect a reset, or initiate one. If earlier failure, 1647 * we still create devices, so diags, etc. can be used 1648 * to determine cause of problem. 1649 */ 1650 if (!initfail && !ret) { 1651 dd->flags |= HFI1_INITTED; 1652 /* create debufs files after init and ib register */ 1653 hfi1_dbg_ibdev_init(&dd->verbs_dev); 1654 } 1655 1656 j = hfi1_device_create(dd); 1657 if (j) 1658 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); 1659 1660 if (initfail || ret) { 1661 msix_clean_up_interrupts(dd); 1662 stop_timers(dd); 1663 flush_workqueue(ib_wq); 1664 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1665 hfi1_quiet_serdes(dd->pport + pidx); 1666 ppd = dd->pport + pidx; 1667 if (ppd->hfi1_wq) { 1668 destroy_workqueue(ppd->hfi1_wq); 1669 ppd->hfi1_wq = NULL; 1670 } 1671 if (ppd->link_wq) { 1672 destroy_workqueue(ppd->link_wq); 1673 ppd->link_wq = NULL; 1674 } 1675 } 1676 if (!j) 1677 hfi1_device_remove(dd); 1678 if (!ret) 1679 hfi1_unregister_ib_device(dd); 1680 postinit_cleanup(dd); 1681 if (initfail) 1682 ret = initfail; 1683 goto bail; /* everything already cleaned */ 1684 } 1685 1686 sdma_start(dd); 1687 1688 return 0; 1689 1690 clean_bail: 1691 hfi1_pcie_cleanup(pdev); 1692 bail: 1693 return ret; 1694 } 1695 1696 static void wait_for_clients(struct hfi1_devdata *dd) 1697 { 1698 /* 1699 * Remove the device init value and complete the device if there is 1700 * no clients or wait for active clients to finish. 1701 */ 1702 if (refcount_dec_and_test(&dd->user_refcount)) 1703 complete(&dd->user_comp); 1704 1705 wait_for_completion(&dd->user_comp); 1706 } 1707 1708 static void remove_one(struct pci_dev *pdev) 1709 { 1710 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1711 1712 /* close debugfs files before ib unregister */ 1713 hfi1_dbg_ibdev_exit(&dd->verbs_dev); 1714 1715 /* remove the /dev hfi1 interface */ 1716 hfi1_device_remove(dd); 1717 1718 /* wait for existing user space clients to finish */ 1719 wait_for_clients(dd); 1720 1721 /* unregister from IB core */ 1722 hfi1_unregister_ib_device(dd); 1723 1724 /* free netdev data */ 1725 hfi1_free_rx(dd); 1726 1727 /* 1728 * Disable the IB link, disable interrupts on the device, 1729 * clear dma engines, etc. 1730 */ 1731 shutdown_device(dd); 1732 destroy_workqueues(dd); 1733 1734 stop_timers(dd); 1735 1736 /* wait until all of our (qsfp) queue_work() calls complete */ 1737 flush_workqueue(ib_wq); 1738 1739 postinit_cleanup(dd); 1740 } 1741 1742 static void shutdown_one(struct pci_dev *pdev) 1743 { 1744 struct hfi1_devdata *dd = pci_get_drvdata(pdev); 1745 1746 shutdown_device(dd); 1747 } 1748 1749 /** 1750 * hfi1_create_rcvhdrq - create a receive header queue 1751 * @dd: the hfi1_ib device 1752 * @rcd: the context data 1753 * 1754 * This must be contiguous memory (from an i/o perspective), and must be 1755 * DMA'able (which means for some systems, it will go through an IOMMU, 1756 * or be forced into a low address range). 1757 */ 1758 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 1759 { 1760 unsigned amt; 1761 1762 if (!rcd->rcvhdrq) { 1763 amt = rcvhdrq_size(rcd); 1764 1765 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt, 1766 &rcd->rcvhdrq_dma, 1767 GFP_KERNEL); 1768 1769 if (!rcd->rcvhdrq) { 1770 dd_dev_err(dd, 1771 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", 1772 amt, rcd->ctxt); 1773 goto bail; 1774 } 1775 1776 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 1777 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) { 1778 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, 1779 PAGE_SIZE, 1780 &rcd->rcvhdrqtailaddr_dma, 1781 GFP_KERNEL); 1782 if (!rcd->rcvhdrtail_kvaddr) 1783 goto bail_free; 1784 } 1785 } 1786 1787 set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize, 1788 rcd->rcvhdrq_cnt); 1789 1790 return 0; 1791 1792 bail_free: 1793 dd_dev_err(dd, 1794 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", 1795 rcd->ctxt); 1796 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, 1797 rcd->rcvhdrq_dma); 1798 rcd->rcvhdrq = NULL; 1799 bail: 1800 return -ENOMEM; 1801 } 1802 1803 /** 1804 * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user 1805 * contexts. 1806 * @rcd: the context we are setting up. 1807 * 1808 * Allocate the eager TID buffers and program them into hip. 1809 * They are no longer completely contiguous, we do multiple allocation 1810 * calls. Otherwise we get the OOM code involved, by asking for too 1811 * much per call, with disastrous results on some kernels. 1812 */ 1813 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) 1814 { 1815 struct hfi1_devdata *dd = rcd->dd; 1816 u32 max_entries, egrtop, alloced_bytes = 0; 1817 u16 order, idx = 0; 1818 int ret = 0; 1819 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); 1820 1821 /* 1822 * The minimum size of the eager buffers is a groups of MTU-sized 1823 * buffers. 1824 * The global eager_buffer_size parameter is checked against the 1825 * theoretical lower limit of the value. Here, we check against the 1826 * MTU. 1827 */ 1828 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) 1829 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; 1830 /* 1831 * If using one-pkt-per-egr-buffer, lower the eager buffer 1832 * size to the max MTU (page-aligned). 1833 */ 1834 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) 1835 rcd->egrbufs.rcvtid_size = round_mtu; 1836 1837 /* 1838 * Eager buffers sizes of 1MB or less require smaller TID sizes 1839 * to satisfy the "multiple of 8 RcvArray entries" requirement. 1840 */ 1841 if (rcd->egrbufs.size <= (1 << 20)) 1842 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, 1843 rounddown_pow_of_two(rcd->egrbufs.size / 8)); 1844 1845 while (alloced_bytes < rcd->egrbufs.size && 1846 rcd->egrbufs.alloced < rcd->egrbufs.count) { 1847 rcd->egrbufs.buffers[idx].addr = 1848 dma_alloc_coherent(&dd->pcidev->dev, 1849 rcd->egrbufs.rcvtid_size, 1850 &rcd->egrbufs.buffers[idx].dma, 1851 GFP_KERNEL); 1852 if (rcd->egrbufs.buffers[idx].addr) { 1853 rcd->egrbufs.buffers[idx].len = 1854 rcd->egrbufs.rcvtid_size; 1855 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = 1856 rcd->egrbufs.buffers[idx].addr; 1857 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = 1858 rcd->egrbufs.buffers[idx].dma; 1859 rcd->egrbufs.alloced++; 1860 alloced_bytes += rcd->egrbufs.rcvtid_size; 1861 idx++; 1862 } else { 1863 u32 new_size, i, j; 1864 u64 offset = 0; 1865 1866 /* 1867 * Fail the eager buffer allocation if: 1868 * - we are already using the lowest acceptable size 1869 * - we are using one-pkt-per-egr-buffer (this implies 1870 * that we are accepting only one size) 1871 */ 1872 if (rcd->egrbufs.rcvtid_size == round_mtu || 1873 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { 1874 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", 1875 rcd->ctxt); 1876 ret = -ENOMEM; 1877 goto bail_rcvegrbuf_phys; 1878 } 1879 1880 new_size = rcd->egrbufs.rcvtid_size / 2; 1881 1882 /* 1883 * If the first attempt to allocate memory failed, don't 1884 * fail everything but continue with the next lower 1885 * size. 1886 */ 1887 if (idx == 0) { 1888 rcd->egrbufs.rcvtid_size = new_size; 1889 continue; 1890 } 1891 1892 /* 1893 * Re-partition already allocated buffers to a smaller 1894 * size. 1895 */ 1896 rcd->egrbufs.alloced = 0; 1897 for (i = 0, j = 0, offset = 0; j < idx; i++) { 1898 if (i >= rcd->egrbufs.count) 1899 break; 1900 rcd->egrbufs.rcvtids[i].dma = 1901 rcd->egrbufs.buffers[j].dma + offset; 1902 rcd->egrbufs.rcvtids[i].addr = 1903 rcd->egrbufs.buffers[j].addr + offset; 1904 rcd->egrbufs.alloced++; 1905 if ((rcd->egrbufs.buffers[j].dma + offset + 1906 new_size) == 1907 (rcd->egrbufs.buffers[j].dma + 1908 rcd->egrbufs.buffers[j].len)) { 1909 j++; 1910 offset = 0; 1911 } else { 1912 offset += new_size; 1913 } 1914 } 1915 rcd->egrbufs.rcvtid_size = new_size; 1916 } 1917 } 1918 rcd->egrbufs.numbufs = idx; 1919 rcd->egrbufs.size = alloced_bytes; 1920 1921 hfi1_cdbg(PROC, 1922 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB", 1923 rcd->ctxt, rcd->egrbufs.alloced, 1924 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); 1925 1926 /* 1927 * Set the contexts rcv array head update threshold to the closest 1928 * power of 2 (so we can use a mask instead of modulo) below half 1929 * the allocated entries. 1930 */ 1931 rcd->egrbufs.threshold = 1932 rounddown_pow_of_two(rcd->egrbufs.alloced / 2); 1933 /* 1934 * Compute the expected RcvArray entry base. This is done after 1935 * allocating the eager buffers in order to maximize the 1936 * expected RcvArray entries for the context. 1937 */ 1938 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; 1939 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); 1940 rcd->expected_count = max_entries - egrtop; 1941 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) 1942 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; 1943 1944 rcd->expected_base = rcd->eager_base + egrtop; 1945 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u", 1946 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, 1947 rcd->eager_base, rcd->expected_base); 1948 1949 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { 1950 hfi1_cdbg(PROC, 1951 "ctxt%u: current Eager buffer size is invalid %u", 1952 rcd->ctxt, rcd->egrbufs.rcvtid_size); 1953 ret = -EINVAL; 1954 goto bail_rcvegrbuf_phys; 1955 } 1956 1957 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { 1958 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, 1959 rcd->egrbufs.rcvtids[idx].dma, order); 1960 cond_resched(); 1961 } 1962 1963 return 0; 1964 1965 bail_rcvegrbuf_phys: 1966 for (idx = 0; idx < rcd->egrbufs.alloced && 1967 rcd->egrbufs.buffers[idx].addr; 1968 idx++) { 1969 dma_free_coherent(&dd->pcidev->dev, 1970 rcd->egrbufs.buffers[idx].len, 1971 rcd->egrbufs.buffers[idx].addr, 1972 rcd->egrbufs.buffers[idx].dma); 1973 rcd->egrbufs.buffers[idx].addr = NULL; 1974 rcd->egrbufs.buffers[idx].dma = 0; 1975 rcd->egrbufs.buffers[idx].len = 0; 1976 } 1977 1978 return ret; 1979 } 1980