1 #ifndef _HFI1_KERNEL_H 2 #define _HFI1_KERNEL_H 3 /* 4 * Copyright(c) 2015-2018 Intel Corporation. 5 * 6 * This file is provided under a dual BSD/GPLv2 license. When using or 7 * redistributing this file, you may do so under either license. 8 * 9 * GPL LICENSE SUMMARY 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * BSD LICENSE 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 26 * - Redistributions of source code must retain the above copyright 27 * notice, this list of conditions and the following disclaimer. 28 * - Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in 30 * the documentation and/or other materials provided with the 31 * distribution. 32 * - Neither the name of Intel Corporation nor the names of its 33 * contributors may be used to endorse or promote products derived 34 * from this software without specific prior written permission. 35 * 36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 47 * 48 */ 49 50 #include <linux/interrupt.h> 51 #include <linux/pci.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/mutex.h> 54 #include <linux/list.h> 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/idr.h> 58 #include <linux/io.h> 59 #include <linux/fs.h> 60 #include <linux/completion.h> 61 #include <linux/kref.h> 62 #include <linux/sched.h> 63 #include <linux/cdev.h> 64 #include <linux/delay.h> 65 #include <linux/kthread.h> 66 #include <linux/i2c.h> 67 #include <linux/i2c-algo-bit.h> 68 #include <rdma/ib_hdrs.h> 69 #include <rdma/opa_addr.h> 70 #include <linux/rhashtable.h> 71 #include <linux/netdevice.h> 72 #include <rdma/rdma_vt.h> 73 74 #include "chip_registers.h" 75 #include "common.h" 76 #include "verbs.h" 77 #include "pio.h" 78 #include "chip.h" 79 #include "mad.h" 80 #include "qsfp.h" 81 #include "platform.h" 82 #include "affinity.h" 83 84 /* bumped 1 from s/w major version of TrueScale */ 85 #define HFI1_CHIP_VERS_MAJ 3U 86 87 /* don't care about this except printing */ 88 #define HFI1_CHIP_VERS_MIN 0U 89 90 /* The Organization Unique Identifier (Mfg code), and its position in GUID */ 91 #define HFI1_OUI 0x001175 92 #define HFI1_OUI_LSB 40 93 94 #define DROP_PACKET_OFF 0 95 #define DROP_PACKET_ON 1 96 97 #define NEIGHBOR_TYPE_HFI 0 98 #define NEIGHBOR_TYPE_SWITCH 1 99 100 extern unsigned long hfi1_cap_mask; 101 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap) 102 #define HFI1_CAP_UGET_MASK(mask, cap) \ 103 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap) 104 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap)) 105 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap)) 106 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap)) 107 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap)) 108 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \ 109 HFI1_CAP_MISC_MASK) 110 /* Offline Disabled Reason is 4-bits */ 111 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON) 112 113 /* 114 * Control context is always 0 and handles the error packets. 115 * It also handles the VL15 and multicast packets. 116 */ 117 #define HFI1_CTRL_CTXT 0 118 119 /* 120 * Driver context will store software counters for each of the events 121 * associated with these status registers 122 */ 123 #define NUM_CCE_ERR_STATUS_COUNTERS 41 124 #define NUM_RCV_ERR_STATUS_COUNTERS 64 125 #define NUM_MISC_ERR_STATUS_COUNTERS 13 126 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36 127 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4 128 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64 129 #define NUM_SEND_ERR_STATUS_COUNTERS 3 130 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5 131 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24 132 133 /* 134 * per driver stats, either not device nor port-specific, or 135 * summed over all of the devices and ports. 136 * They are described by name via ipathfs filesystem, so layout 137 * and number of elements can change without breaking compatibility. 138 * If members are added or deleted hfi1_statnames[] in debugfs.c must 139 * change to match. 140 */ 141 struct hfi1_ib_stats { 142 __u64 sps_ints; /* number of interrupts handled */ 143 __u64 sps_errints; /* number of error interrupts */ 144 __u64 sps_txerrs; /* tx-related packet errors */ 145 __u64 sps_rcverrs; /* non-crc rcv packet errors */ 146 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */ 147 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */ 148 __u64 sps_ctxts; /* number of contexts currently open */ 149 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */ 150 __u64 sps_buffull; 151 __u64 sps_hdrfull; 152 }; 153 154 extern struct hfi1_ib_stats hfi1_stats; 155 extern const struct pci_error_handlers hfi1_pci_err_handler; 156 157 /* 158 * First-cut criterion for "device is active" is 159 * two thousand dwords combined Tx, Rx traffic per 160 * 5-second interval. SMA packets are 64 dwords, 161 * and occur "a few per second", presumably each way. 162 */ 163 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000) 164 165 /* 166 * Below contains all data related to a single context (formerly called port). 167 */ 168 169 struct hfi1_opcode_stats_perctx; 170 171 struct ctxt_eager_bufs { 172 ssize_t size; /* total size of eager buffers */ 173 u32 count; /* size of buffers array */ 174 u32 numbufs; /* number of buffers allocated */ 175 u32 alloced; /* number of rcvarray entries used */ 176 u32 rcvtid_size; /* size of each eager rcv tid */ 177 u32 threshold; /* head update threshold */ 178 struct eager_buffer { 179 void *addr; 180 dma_addr_t dma; 181 ssize_t len; 182 } *buffers; 183 struct { 184 void *addr; 185 dma_addr_t dma; 186 } *rcvtids; 187 }; 188 189 struct exp_tid_set { 190 struct list_head list; 191 u32 count; 192 }; 193 194 struct hfi1_ctxtdata { 195 /* shadow the ctxt's RcvCtrl register */ 196 u64 rcvctrl; 197 /* rcvhdrq base, needs mmap before useful */ 198 void *rcvhdrq; 199 /* kernel virtual address where hdrqtail is updated */ 200 volatile __le64 *rcvhdrtail_kvaddr; 201 /* when waiting for rcv or pioavail */ 202 wait_queue_head_t wait; 203 /* rcvhdrq size (for freeing) */ 204 size_t rcvhdrq_size; 205 /* number of rcvhdrq entries */ 206 u16 rcvhdrq_cnt; 207 /* size of each of the rcvhdrq entries */ 208 u16 rcvhdrqentsize; 209 /* mmap of hdrq, must fit in 44 bits */ 210 dma_addr_t rcvhdrq_dma; 211 dma_addr_t rcvhdrqtailaddr_dma; 212 struct ctxt_eager_bufs egrbufs; 213 /* this receive context's assigned PIO ACK send context */ 214 struct send_context *sc; 215 216 /* dynamic receive available interrupt timeout */ 217 u32 rcvavail_timeout; 218 /* Reference count the base context usage */ 219 struct kref kref; 220 221 /* Device context index */ 222 u16 ctxt; 223 /* 224 * non-zero if ctxt can be shared, and defines the maximum number of 225 * sub-contexts for this device context. 226 */ 227 u16 subctxt_cnt; 228 /* non-zero if ctxt is being shared. */ 229 u16 subctxt_id; 230 u8 uuid[16]; 231 /* job key */ 232 u16 jkey; 233 /* number of RcvArray groups for this context. */ 234 u16 rcv_array_groups; 235 /* index of first eager TID entry. */ 236 u16 eager_base; 237 /* number of expected TID entries */ 238 u16 expected_count; 239 /* index of first expected TID entry. */ 240 u16 expected_base; 241 /* array of tid_groups */ 242 struct tid_group *groups; 243 244 struct exp_tid_set tid_group_list; 245 struct exp_tid_set tid_used_list; 246 struct exp_tid_set tid_full_list; 247 248 /* lock protecting all Expected TID data of user contexts */ 249 struct mutex exp_mutex; 250 /* per-context configuration flags */ 251 unsigned long flags; 252 /* per-context event flags for fileops/intr communication */ 253 unsigned long event_flags; 254 /* total number of polled urgent packets */ 255 u32 urgent; 256 /* saved total number of polled urgent packets for poll edge trigger */ 257 u32 urgent_poll; 258 /* same size as task_struct .comm[], command that opened context */ 259 char comm[TASK_COMM_LEN]; 260 /* so file ops can get at unit */ 261 struct hfi1_devdata *dd; 262 /* so functions that need physical port can get it easily */ 263 struct hfi1_pportdata *ppd; 264 /* associated msix interrupt */ 265 u32 msix_intr; 266 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */ 267 void *subctxt_uregbase; 268 /* An array of pages for the eager receive buffers * N */ 269 void *subctxt_rcvegrbuf; 270 /* An array of pages for the eager header queue entries * N */ 271 void *subctxt_rcvhdr_base; 272 /* Bitmask of in use context(s) */ 273 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS); 274 /* The version of the library which opened this ctxt */ 275 u32 userversion; 276 /* Type of packets or conditions we want to poll for */ 277 u16 poll_type; 278 /* receive packet sequence counter */ 279 u8 seq_cnt; 280 /* ctxt rcvhdrq head offset */ 281 u32 head; 282 /* QPs waiting for context processing */ 283 struct list_head qp_wait_list; 284 /* interrupt handling */ 285 u64 imask; /* clear interrupt mask */ 286 int ireg; /* clear interrupt register */ 287 int numa_id; /* numa node of this context */ 288 /* verbs rx_stats per rcd */ 289 struct hfi1_opcode_stats_perctx *opstats; 290 291 /* Is ASPM interrupt supported for this context */ 292 bool aspm_intr_supported; 293 /* ASPM state (enabled/disabled) for this context */ 294 bool aspm_enabled; 295 /* Timer for re-enabling ASPM if interrupt activity quietens down */ 296 struct timer_list aspm_timer; 297 /* Lock to serialize between intr, timer intr and user threads */ 298 spinlock_t aspm_lock; 299 /* Is ASPM processing enabled for this context (in intr context) */ 300 bool aspm_intr_enable; 301 /* Last interrupt timestamp */ 302 ktime_t aspm_ts_last_intr; 303 /* Last timestamp at which we scheduled a timer for this context */ 304 ktime_t aspm_ts_timer_sched; 305 306 /* 307 * The interrupt handler for a particular receive context can vary 308 * throughout it's lifetime. This is not a lock protected data member so 309 * it must be updated atomically and the prev and new value must always 310 * be valid. Worst case is we process an extra interrupt and up to 64 311 * packets with the wrong interrupt handler. 312 */ 313 int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded); 314 315 /* Indicates that this is vnic context */ 316 bool is_vnic; 317 318 /* vnic queue index this context is mapped to */ 319 u8 vnic_q_idx; 320 }; 321 322 /* 323 * Represents a single packet at a high level. Put commonly computed things in 324 * here so we do not have to keep doing them over and over. The rule of thumb is 325 * if something is used one time to derive some value, store that something in 326 * here. If it is used multiple times, then store the result of that derivation 327 * in here. 328 */ 329 struct hfi1_packet { 330 void *ebuf; 331 void *hdr; 332 void *payload; 333 struct hfi1_ctxtdata *rcd; 334 __le32 *rhf_addr; 335 struct rvt_qp *qp; 336 struct ib_other_headers *ohdr; 337 struct ib_grh *grh; 338 struct opa_16b_mgmt *mgmt; 339 u64 rhf; 340 u32 maxcnt; 341 u32 rhqoff; 342 u32 dlid; 343 u32 slid; 344 u16 tlen; 345 s16 etail; 346 u16 pkey; 347 u8 hlen; 348 u8 numpkt; 349 u8 rsize; 350 u8 updegr; 351 u8 etype; 352 u8 extra_byte; 353 u8 pad; 354 u8 sc; 355 u8 sl; 356 u8 opcode; 357 bool migrated; 358 }; 359 360 /* Packet types */ 361 #define HFI1_PKT_TYPE_9B 0 362 #define HFI1_PKT_TYPE_16B 1 363 364 /* 365 * OPA 16B Header 366 */ 367 #define OPA_16B_L4_MASK 0xFFull 368 #define OPA_16B_SC_MASK 0x1F00000ull 369 #define OPA_16B_SC_SHIFT 20 370 #define OPA_16B_LID_MASK 0xFFFFFull 371 #define OPA_16B_DLID_MASK 0xF000ull 372 #define OPA_16B_DLID_SHIFT 20 373 #define OPA_16B_DLID_HIGH_SHIFT 12 374 #define OPA_16B_SLID_MASK 0xF00ull 375 #define OPA_16B_SLID_SHIFT 20 376 #define OPA_16B_SLID_HIGH_SHIFT 8 377 #define OPA_16B_BECN_MASK 0x80000000ull 378 #define OPA_16B_BECN_SHIFT 31 379 #define OPA_16B_FECN_MASK 0x10000000ull 380 #define OPA_16B_FECN_SHIFT 28 381 #define OPA_16B_L2_MASK 0x60000000ull 382 #define OPA_16B_L2_SHIFT 29 383 #define OPA_16B_PKEY_MASK 0xFFFF0000ull 384 #define OPA_16B_PKEY_SHIFT 16 385 #define OPA_16B_LEN_MASK 0x7FF00000ull 386 #define OPA_16B_LEN_SHIFT 20 387 #define OPA_16B_RC_MASK 0xE000000ull 388 #define OPA_16B_RC_SHIFT 25 389 #define OPA_16B_AGE_MASK 0xFF0000ull 390 #define OPA_16B_AGE_SHIFT 16 391 #define OPA_16B_ENTROPY_MASK 0xFFFFull 392 393 /* 394 * OPA 16B L2/L4 Encodings 395 */ 396 #define OPA_16B_L4_9B 0x00 397 #define OPA_16B_L2_TYPE 0x02 398 #define OPA_16B_L4_FM 0x08 399 #define OPA_16B_L4_IB_LOCAL 0x09 400 #define OPA_16B_L4_IB_GLOBAL 0x0A 401 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR 402 403 /* 404 * OPA 16B Management 405 */ 406 #define OPA_16B_L4_FM_PAD 3 /* fixed 3B pad */ 407 #define OPA_16B_L4_FM_HLEN 24 /* 16B(16) + L4_FM(8) */ 408 409 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr) 410 { 411 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK); 412 } 413 414 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr) 415 { 416 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT); 417 } 418 419 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr) 420 { 421 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) | 422 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >> 423 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT)); 424 } 425 426 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr) 427 { 428 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) | 429 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >> 430 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT)); 431 } 432 433 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr) 434 { 435 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT); 436 } 437 438 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr) 439 { 440 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT); 441 } 442 443 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr) 444 { 445 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT); 446 } 447 448 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr) 449 { 450 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT); 451 } 452 453 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr) 454 { 455 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT); 456 } 457 458 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr) 459 { 460 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT); 461 } 462 463 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr) 464 { 465 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT); 466 } 467 468 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr) 469 { 470 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK); 471 } 472 473 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw)) 474 475 /* 476 * BTH 477 */ 478 #define OPA_16B_BTH_PAD_MASK 7 479 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr) 480 { 481 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) & 482 OPA_16B_BTH_PAD_MASK); 483 } 484 485 /* 486 * 16B Management 487 */ 488 #define OPA_16B_MGMT_QPN_MASK 0xFFFFFF 489 static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt) 490 { 491 return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK; 492 } 493 494 static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt) 495 { 496 return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK; 497 } 498 499 static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt, 500 u32 dest_qp, u32 src_qp) 501 { 502 mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK); 503 mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK); 504 } 505 506 struct rvt_sge_state; 507 508 /* 509 * Get/Set IB link-level config parameters for f_get/set_ib_cfg() 510 * Mostly for MADs that set or query link parameters, also ipath 511 * config interfaces 512 */ 513 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */ 514 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */ 515 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */ 516 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */ 517 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */ 518 #define HFI1_IB_CFG_SPD 5 /* current Link spd */ 519 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */ 520 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */ 521 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */ 522 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */ 523 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */ 524 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */ 525 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */ 526 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */ 527 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */ 528 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */ 529 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */ 530 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */ 531 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19 532 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */ 533 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */ 534 535 /* 536 * HFI or Host Link States 537 * 538 * These describe the states the driver thinks the logical and physical 539 * states are in. Used as an argument to set_link_state(). Implemented 540 * as bits for easy multi-state checking. The actual state can only be 541 * one. 542 */ 543 #define __HLS_UP_INIT_BP 0 544 #define __HLS_UP_ARMED_BP 1 545 #define __HLS_UP_ACTIVE_BP 2 546 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */ 547 #define __HLS_DN_POLL_BP 4 548 #define __HLS_DN_DISABLE_BP 5 549 #define __HLS_DN_OFFLINE_BP 6 550 #define __HLS_VERIFY_CAP_BP 7 551 #define __HLS_GOING_UP_BP 8 552 #define __HLS_GOING_OFFLINE_BP 9 553 #define __HLS_LINK_COOLDOWN_BP 10 554 555 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP) 556 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP) 557 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP) 558 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */ 559 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP) 560 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP) 561 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP) 562 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP) 563 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP) 564 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP) 565 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP) 566 567 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE) 568 #define HLS_DOWN ~(HLS_UP) 569 570 #define HLS_DEFAULT HLS_DN_POLL 571 572 /* use this MTU size if none other is given */ 573 #define HFI1_DEFAULT_ACTIVE_MTU 10240 574 /* use this MTU size as the default maximum */ 575 #define HFI1_DEFAULT_MAX_MTU 10240 576 /* default partition key */ 577 #define DEFAULT_PKEY 0xffff 578 579 /* 580 * Possible fabric manager config parameters for fm_{get,set}_table() 581 */ 582 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */ 583 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */ 584 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */ 585 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */ 586 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */ 587 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */ 588 589 /* 590 * Possible "operations" for f_rcvctrl(ppd, op, ctxt) 591 * these are bits so they can be combined, e.g. 592 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB 593 */ 594 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01 595 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02 596 #define HFI1_RCVCTRL_CTXT_ENB 0x04 597 #define HFI1_RCVCTRL_CTXT_DIS 0x08 598 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10 599 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20 600 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */ 601 #define HFI1_RCVCTRL_PKEY_DIS 0x80 602 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400 603 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800 604 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000 605 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000 606 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000 607 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000 608 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000 609 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000 610 611 /* partition enforcement flags */ 612 #define HFI1_PART_ENFORCE_IN 0x1 613 #define HFI1_PART_ENFORCE_OUT 0x2 614 615 /* how often we check for synthetic counter wrap around */ 616 #define SYNTH_CNT_TIME 3 617 618 /* Counter flags */ 619 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */ 620 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */ 621 #define CNTR_DISABLED 0x2 /* Disable this counter */ 622 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */ 623 #define CNTR_VL 0x8 /* Per VL counter */ 624 #define CNTR_SDMA 0x10 625 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */ 626 #define CNTR_MODE_W 0x0 627 #define CNTR_MODE_R 0x1 628 629 /* VLs Supported/Operational */ 630 #define HFI1_MIN_VLS_SUPPORTED 1 631 #define HFI1_MAX_VLS_SUPPORTED 8 632 633 #define HFI1_GUIDS_PER_PORT 5 634 #define HFI1_PORT_GUID_INDEX 0 635 636 static inline void incr_cntr64(u64 *cntr) 637 { 638 if (*cntr < (u64)-1LL) 639 (*cntr)++; 640 } 641 642 static inline void incr_cntr32(u32 *cntr) 643 { 644 if (*cntr < (u32)-1LL) 645 (*cntr)++; 646 } 647 648 #define MAX_NAME_SIZE 64 649 struct hfi1_msix_entry { 650 enum irq_type type; 651 int irq; 652 void *arg; 653 cpumask_t mask; 654 struct irq_affinity_notify notify; 655 }; 656 657 /* per-SL CCA information */ 658 struct cca_timer { 659 struct hrtimer hrtimer; 660 struct hfi1_pportdata *ppd; /* read-only */ 661 int sl; /* read-only */ 662 u16 ccti; /* read/write - current value of CCTI */ 663 }; 664 665 struct link_down_reason { 666 /* 667 * SMA-facing value. Should be set from .latest when 668 * HLS_UP_* -> HLS_DN_* transition actually occurs. 669 */ 670 u8 sma; 671 u8 latest; 672 }; 673 674 enum { 675 LO_PRIO_TABLE, 676 HI_PRIO_TABLE, 677 MAX_PRIO_TABLE 678 }; 679 680 struct vl_arb_cache { 681 /* protect vl arb cache */ 682 spinlock_t lock; 683 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE]; 684 }; 685 686 /* 687 * The structure below encapsulates data relevant to a physical IB Port. 688 * Current chips support only one such port, but the separation 689 * clarifies things a bit. Note that to conform to IB conventions, 690 * port-numbers are one-based. The first or only port is port1. 691 */ 692 struct hfi1_pportdata { 693 struct hfi1_ibport ibport_data; 694 695 struct hfi1_devdata *dd; 696 struct kobject pport_cc_kobj; 697 struct kobject sc2vl_kobj; 698 struct kobject sl2sc_kobj; 699 struct kobject vl2mtu_kobj; 700 701 /* PHY support */ 702 struct qsfp_data qsfp_info; 703 /* Values for SI tuning of SerDes */ 704 u32 port_type; 705 u32 tx_preset_eq; 706 u32 tx_preset_noeq; 707 u32 rx_preset; 708 u8 local_atten; 709 u8 remote_atten; 710 u8 default_atten; 711 u8 max_power_class; 712 713 /* did we read platform config from scratch registers? */ 714 bool config_from_scratch; 715 716 /* GUIDs for this interface, in host order, guids[0] is a port guid */ 717 u64 guids[HFI1_GUIDS_PER_PORT]; 718 719 /* GUID for peer interface, in host order */ 720 u64 neighbor_guid; 721 722 /* up or down physical link state */ 723 u32 linkup; 724 725 /* 726 * this address is mapped read-only into user processes so they can 727 * get status cheaply, whenever they want. One qword of status per port 728 */ 729 u64 *statusp; 730 731 /* SendDMA related entries */ 732 733 struct workqueue_struct *hfi1_wq; 734 struct workqueue_struct *link_wq; 735 736 /* move out of interrupt context */ 737 struct work_struct link_vc_work; 738 struct work_struct link_up_work; 739 struct work_struct link_down_work; 740 struct work_struct sma_message_work; 741 struct work_struct freeze_work; 742 struct work_struct link_downgrade_work; 743 struct work_struct link_bounce_work; 744 struct delayed_work start_link_work; 745 /* host link state variables */ 746 struct mutex hls_lock; 747 u32 host_link_state; 748 749 /* these are the "32 bit" regs */ 750 751 u32 ibmtu; /* The MTU programmed for this unit */ 752 /* 753 * Current max size IB packet (in bytes) including IB headers, that 754 * we can send. Changes when ibmtu changes. 755 */ 756 u32 ibmaxlen; 757 u32 current_egress_rate; /* units [10^6 bits/sec] */ 758 /* LID programmed for this instance */ 759 u32 lid; 760 /* list of pkeys programmed; 0 if not set */ 761 u16 pkeys[MAX_PKEY_VALUES]; 762 u16 link_width_supported; 763 u16 link_width_downgrade_supported; 764 u16 link_speed_supported; 765 u16 link_width_enabled; 766 u16 link_width_downgrade_enabled; 767 u16 link_speed_enabled; 768 u16 link_width_active; 769 u16 link_width_downgrade_tx_active; 770 u16 link_width_downgrade_rx_active; 771 u16 link_speed_active; 772 u8 vls_supported; 773 u8 vls_operational; 774 u8 actual_vls_operational; 775 /* LID mask control */ 776 u8 lmc; 777 /* Rx Polarity inversion (compensate for ~tx on partner) */ 778 u8 rx_pol_inv; 779 780 u8 hw_pidx; /* physical port index */ 781 u8 port; /* IB port number and index into dd->pports - 1 */ 782 /* type of neighbor node */ 783 u8 neighbor_type; 784 u8 neighbor_normal; 785 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */ 786 u8 neighbor_port_number; 787 u8 is_sm_config_started; 788 u8 offline_disabled_reason; 789 u8 is_active_optimize_enabled; 790 u8 driver_link_ready; /* driver ready for active link */ 791 u8 link_enabled; /* link enabled? */ 792 u8 linkinit_reason; 793 u8 local_tx_rate; /* rate given to 8051 firmware */ 794 u8 qsfp_retry_count; 795 796 /* placeholders for IB MAD packet settings */ 797 u8 overrun_threshold; 798 u8 phy_error_threshold; 799 unsigned int is_link_down_queued; 800 801 /* Used to override LED behavior for things like maintenance beaconing*/ 802 /* 803 * Alternates per phase of blink 804 * [0] holds LED off duration, [1] holds LED on duration 805 */ 806 unsigned long led_override_vals[2]; 807 u8 led_override_phase; /* LSB picks from vals[] */ 808 atomic_t led_override_timer_active; 809 /* Used to flash LEDs in override mode */ 810 struct timer_list led_override_timer; 811 812 u32 sm_trap_qp; 813 u32 sa_qp; 814 815 /* 816 * cca_timer_lock protects access to the per-SL cca_timer 817 * structures (specifically the ccti member). 818 */ 819 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp; 820 struct cca_timer cca_timer[OPA_MAX_SLS]; 821 822 /* List of congestion control table entries */ 823 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX]; 824 825 /* congestion entries, each entry corresponding to a SL */ 826 struct opa_congestion_setting_entry_shadow 827 congestion_entries[OPA_MAX_SLS]; 828 829 /* 830 * cc_state_lock protects (write) access to the per-port 831 * struct cc_state. 832 */ 833 spinlock_t cc_state_lock ____cacheline_aligned_in_smp; 834 835 struct cc_state __rcu *cc_state; 836 837 /* Total number of congestion control table entries */ 838 u16 total_cct_entry; 839 840 /* Bit map identifying service level */ 841 u32 cc_sl_control_map; 842 843 /* CA's max number of 64 entry units in the congestion control table */ 844 u8 cc_max_table_entries; 845 846 /* 847 * begin congestion log related entries 848 * cc_log_lock protects all congestion log related data 849 */ 850 spinlock_t cc_log_lock ____cacheline_aligned_in_smp; 851 u8 threshold_cong_event_map[OPA_MAX_SLS / 8]; 852 u16 threshold_event_counter; 853 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS]; 854 int cc_log_idx; /* index for logging events */ 855 int cc_mad_idx; /* index for reporting events */ 856 /* end congestion log related entries */ 857 858 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE]; 859 860 /* port relative counter buffer */ 861 u64 *cntrs; 862 /* port relative synthetic counter buffer */ 863 u64 *scntrs; 864 /* port_xmit_discards are synthesized from different egress errors */ 865 u64 port_xmit_discards; 866 u64 port_xmit_discards_vl[C_VL_COUNT]; 867 u64 port_xmit_constraint_errors; 868 u64 port_rcv_constraint_errors; 869 /* count of 'link_err' interrupts from DC */ 870 u64 link_downed; 871 /* number of times link retrained successfully */ 872 u64 link_up; 873 /* number of times a link unknown frame was reported */ 874 u64 unknown_frame_count; 875 /* port_ltp_crc_mode is returned in 'portinfo' MADs */ 876 u16 port_ltp_crc_mode; 877 /* port_crc_mode_enabled is the crc we support */ 878 u8 port_crc_mode_enabled; 879 /* mgmt_allowed is also returned in 'portinfo' MADs */ 880 u8 mgmt_allowed; 881 u8 part_enforce; /* partition enforcement flags */ 882 struct link_down_reason local_link_down_reason; 883 struct link_down_reason neigh_link_down_reason; 884 /* Value to be sent to link peer on LinkDown .*/ 885 u8 remote_link_down_reason; 886 /* Error events that will cause a port bounce. */ 887 u32 port_error_action; 888 struct work_struct linkstate_active_work; 889 /* Does this port need to prescan for FECNs */ 890 bool cc_prescan; 891 /* 892 * Sample sendWaitCnt & sendWaitVlCnt during link transition 893 * and counter request. 894 */ 895 u64 port_vl_xmit_wait_last[C_VL_COUNT + 1]; 896 u16 prev_link_width; 897 u64 vl_xmit_flit_cnt[C_VL_COUNT + 1]; 898 }; 899 900 typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet); 901 902 typedef void (*opcode_handler)(struct hfi1_packet *packet); 903 typedef void (*hfi1_make_req)(struct rvt_qp *qp, 904 struct hfi1_pkt_state *ps, 905 struct rvt_swqe *wqe); 906 907 908 /* return values for the RHF receive functions */ 909 #define RHF_RCV_CONTINUE 0 /* keep going */ 910 #define RHF_RCV_DONE 1 /* stop, this packet processed */ 911 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */ 912 913 struct rcv_array_data { 914 u16 ngroups; 915 u16 nctxt_extra; 916 u8 group_size; 917 }; 918 919 struct per_vl_data { 920 u16 mtu; 921 struct send_context *sc; 922 }; 923 924 /* 16 to directly index */ 925 #define PER_VL_SEND_CONTEXTS 16 926 927 struct err_info_rcvport { 928 u8 status_and_code; 929 u64 packet_flit1; 930 u64 packet_flit2; 931 }; 932 933 struct err_info_constraint { 934 u8 status; 935 u16 pkey; 936 u32 slid; 937 }; 938 939 struct hfi1_temp { 940 unsigned int curr; /* current temperature */ 941 unsigned int lo_lim; /* low temperature limit */ 942 unsigned int hi_lim; /* high temperature limit */ 943 unsigned int crit_lim; /* critical temperature limit */ 944 u8 triggers; /* temperature triggers */ 945 }; 946 947 struct hfi1_i2c_bus { 948 struct hfi1_devdata *controlling_dd; /* current controlling device */ 949 struct i2c_adapter adapter; /* bus details */ 950 struct i2c_algo_bit_data algo; /* bus algorithm details */ 951 int num; /* bus number, 0 or 1 */ 952 }; 953 954 /* common data between shared ASIC HFIs */ 955 struct hfi1_asic_data { 956 struct hfi1_devdata *dds[2]; /* back pointers */ 957 struct mutex asic_resource_mutex; 958 struct hfi1_i2c_bus *i2c_bus0; 959 struct hfi1_i2c_bus *i2c_bus1; 960 }; 961 962 /* sizes for both the QP and RSM map tables */ 963 #define NUM_MAP_ENTRIES 256 964 #define NUM_MAP_REGS 32 965 966 /* 967 * Number of VNIC contexts used. Ensure it is less than or equal to 968 * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE). 969 */ 970 #define HFI1_NUM_VNIC_CTXT 8 971 972 /* Number of VNIC RSM entries */ 973 #define NUM_VNIC_MAP_ENTRIES 8 974 975 /* Virtual NIC information */ 976 struct hfi1_vnic_data { 977 struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT]; 978 struct kmem_cache *txreq_cache; 979 u8 num_vports; 980 struct idr vesw_idr; 981 u8 rmt_start; 982 u8 num_ctxt; 983 u32 msix_idx; 984 }; 985 986 struct hfi1_vnic_vport_info; 987 988 /* device data struct now contains only "general per-device" info. 989 * fields related to a physical IB port are in a hfi1_pportdata struct. 990 */ 991 struct sdma_engine; 992 struct sdma_vl_map; 993 994 #define BOARD_VERS_MAX 96 /* how long the version string can be */ 995 #define SERIAL_MAX 16 /* length of the serial number */ 996 997 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64); 998 struct hfi1_devdata { 999 struct hfi1_ibdev verbs_dev; /* must be first */ 1000 struct list_head list; 1001 /* pointers to related structs for this device */ 1002 /* pci access data structure */ 1003 struct pci_dev *pcidev; 1004 struct cdev user_cdev; 1005 struct cdev diag_cdev; 1006 struct cdev ui_cdev; 1007 struct device *user_device; 1008 struct device *diag_device; 1009 struct device *ui_device; 1010 1011 /* first mapping up to RcvArray */ 1012 u8 __iomem *kregbase1; 1013 resource_size_t physaddr; 1014 1015 /* second uncached mapping from RcvArray to pio send buffers */ 1016 u8 __iomem *kregbase2; 1017 /* for detecting offset above kregbase2 address */ 1018 u32 base2_start; 1019 1020 /* Per VL data. Enough for all VLs but not all elements are set/used. */ 1021 struct per_vl_data vld[PER_VL_SEND_CONTEXTS]; 1022 /* send context data */ 1023 struct send_context_info *send_contexts; 1024 /* map hardware send contexts to software index */ 1025 u8 *hw_to_sw; 1026 /* spinlock for allocating and releasing send context resources */ 1027 spinlock_t sc_lock; 1028 /* lock for pio_map */ 1029 spinlock_t pio_map_lock; 1030 /* Send Context initialization lock. */ 1031 spinlock_t sc_init_lock; 1032 /* lock for sdma_map */ 1033 spinlock_t sde_map_lock; 1034 /* array of kernel send contexts */ 1035 struct send_context **kernel_send_context; 1036 /* array of vl maps */ 1037 struct pio_vl_map __rcu *pio_map; 1038 /* default flags to last descriptor */ 1039 u64 default_desc1; 1040 1041 /* fields common to all SDMA engines */ 1042 1043 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */ 1044 dma_addr_t sdma_heads_phys; 1045 void *sdma_pad_dma; /* DMA'ed by chip */ 1046 dma_addr_t sdma_pad_phys; 1047 /* for deallocation */ 1048 size_t sdma_heads_size; 1049 /* number from the chip */ 1050 u32 chip_sdma_engines; 1051 /* num used */ 1052 u32 num_sdma; 1053 /* array of engines sized by num_sdma */ 1054 struct sdma_engine *per_sdma; 1055 /* array of vl maps */ 1056 struct sdma_vl_map __rcu *sdma_map; 1057 /* SPC freeze waitqueue and variable */ 1058 wait_queue_head_t sdma_unfreeze_wq; 1059 atomic_t sdma_unfreeze_count; 1060 1061 u32 lcb_access_count; /* count of LCB users */ 1062 1063 /* common data between shared ASIC HFIs in this OS */ 1064 struct hfi1_asic_data *asic_data; 1065 1066 /* mem-mapped pointer to base of PIO buffers */ 1067 void __iomem *piobase; 1068 /* 1069 * write-combining mem-mapped pointer to base of RcvArray 1070 * memory. 1071 */ 1072 void __iomem *rcvarray_wc; 1073 /* 1074 * credit return base - a per-NUMA range of DMA address that 1075 * the chip will use to update the per-context free counter 1076 */ 1077 struct credit_return_base *cr_base; 1078 1079 /* send context numbers and sizes for each type */ 1080 struct sc_config_sizes sc_sizes[SC_MAX]; 1081 1082 char *boardname; /* human readable board info */ 1083 1084 /* reset value */ 1085 u64 z_int_counter; 1086 u64 z_rcv_limit; 1087 u64 z_send_schedule; 1088 1089 u64 __percpu *send_schedule; 1090 /* number of reserved contexts for VNIC usage */ 1091 u16 num_vnic_contexts; 1092 /* number of receive contexts in use by the driver */ 1093 u32 num_rcv_contexts; 1094 /* number of pio send contexts in use by the driver */ 1095 u32 num_send_contexts; 1096 /* 1097 * number of ctxts available for PSM open 1098 */ 1099 u32 freectxts; 1100 /* total number of available user/PSM contexts */ 1101 u32 num_user_contexts; 1102 /* base receive interrupt timeout, in CSR units */ 1103 u32 rcv_intr_timeout_csr; 1104 1105 u32 freezelen; /* max length of freezemsg */ 1106 u64 __iomem *egrtidbase; 1107 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */ 1108 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */ 1109 spinlock_t uctxt_lock; /* protect rcd changes */ 1110 struct mutex dc8051_lock; /* exclusive access to 8051 */ 1111 struct workqueue_struct *update_cntr_wq; 1112 struct work_struct update_cntr_work; 1113 /* exclusive access to 8051 memory */ 1114 spinlock_t dc8051_memlock; 1115 int dc8051_timed_out; /* remember if the 8051 timed out */ 1116 /* 1117 * A page that will hold event notification bitmaps for all 1118 * contexts. This page will be mapped into all processes. 1119 */ 1120 unsigned long *events; 1121 /* 1122 * per unit status, see also portdata statusp 1123 * mapped read-only into user processes so they can get unit and 1124 * IB link status cheaply 1125 */ 1126 struct hfi1_status *status; 1127 1128 /* revision register shadow */ 1129 u64 revision; 1130 /* Base GUID for device (network order) */ 1131 u64 base_guid; 1132 1133 /* these are the "32 bit" regs */ 1134 1135 /* value we put in kr_rcvhdrsize */ 1136 u32 rcvhdrsize; 1137 /* number of receive contexts the chip supports */ 1138 u32 chip_rcv_contexts; 1139 /* number of receive array entries */ 1140 u32 chip_rcv_array_count; 1141 /* number of PIO send contexts the chip supports */ 1142 u32 chip_send_contexts; 1143 /* number of bytes in the PIO memory buffer */ 1144 u32 chip_pio_mem_size; 1145 /* number of bytes in the SDMA memory buffer */ 1146 u32 chip_sdma_mem_size; 1147 1148 /* size of each rcvegrbuffer */ 1149 u32 rcvegrbufsize; 1150 /* log2 of above */ 1151 u16 rcvegrbufsize_shift; 1152 /* both sides of the PCIe link are gen3 capable */ 1153 u8 link_gen3_capable; 1154 u8 dc_shutdown; 1155 /* localbus width (1, 2,4,8,16,32) from config space */ 1156 u32 lbus_width; 1157 /* localbus speed in MHz */ 1158 u32 lbus_speed; 1159 int unit; /* unit # of this chip */ 1160 int node; /* home node of this chip */ 1161 1162 /* save these PCI fields to restore after a reset */ 1163 u32 pcibar0; 1164 u32 pcibar1; 1165 u32 pci_rom; 1166 u16 pci_command; 1167 u16 pcie_devctl; 1168 u16 pcie_lnkctl; 1169 u16 pcie_devctl2; 1170 u32 pci_msix0; 1171 u32 pci_tph2; 1172 1173 /* 1174 * ASCII serial number, from flash, large enough for original 1175 * all digit strings, and longer serial number format 1176 */ 1177 u8 serial[SERIAL_MAX]; 1178 /* human readable board version */ 1179 u8 boardversion[BOARD_VERS_MAX]; 1180 u8 lbus_info[32]; /* human readable localbus info */ 1181 /* chip major rev, from CceRevision */ 1182 u8 majrev; 1183 /* chip minor rev, from CceRevision */ 1184 u8 minrev; 1185 /* hardware ID */ 1186 u8 hfi1_id; 1187 /* implementation code */ 1188 u8 icode; 1189 /* vAU of this device */ 1190 u8 vau; 1191 /* vCU of this device */ 1192 u8 vcu; 1193 /* link credits of this device */ 1194 u16 link_credits; 1195 /* initial vl15 credits to use */ 1196 u16 vl15_init; 1197 1198 /* 1199 * Cached value for vl15buf, read during verify cap interrupt. VL15 1200 * credits are to be kept at 0 and set when handling the link-up 1201 * interrupt. This removes the possibility of receiving VL15 MAD 1202 * packets before this HFI is ready. 1203 */ 1204 u16 vl15buf_cached; 1205 1206 /* Misc small ints */ 1207 u8 n_krcv_queues; 1208 u8 qos_shift; 1209 1210 u16 irev; /* implementation revision */ 1211 u32 dc8051_ver; /* 8051 firmware version */ 1212 1213 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */ 1214 struct platform_config platform_config; 1215 struct platform_config_cache pcfg_cache; 1216 1217 struct diag_client *diag_client; 1218 1219 /* MSI-X information */ 1220 struct hfi1_msix_entry *msix_entries; 1221 u32 num_msix_entries; 1222 u32 first_dyn_msix_idx; 1223 1224 /* INTx information */ 1225 u32 requested_intx_irq; /* did we request one? */ 1226 1227 /* general interrupt: mask of handled interrupts */ 1228 u64 gi_mask[CCE_NUM_INT_CSRS]; 1229 1230 struct rcv_array_data rcv_entries; 1231 1232 /* cycle length of PS* counters in HW (in picoseconds) */ 1233 u16 psxmitwait_check_rate; 1234 1235 /* 1236 * 64 bit synthetic counters 1237 */ 1238 struct timer_list synth_stats_timer; 1239 1240 /* 1241 * device counters 1242 */ 1243 char *cntrnames; 1244 size_t cntrnameslen; 1245 size_t ndevcntrs; 1246 u64 *cntrs; 1247 u64 *scntrs; 1248 1249 /* 1250 * remembered values for synthetic counters 1251 */ 1252 u64 last_tx; 1253 u64 last_rx; 1254 1255 /* 1256 * per-port counters 1257 */ 1258 size_t nportcntrs; 1259 char *portcntrnames; 1260 size_t portcntrnameslen; 1261 1262 struct err_info_rcvport err_info_rcvport; 1263 struct err_info_constraint err_info_rcv_constraint; 1264 struct err_info_constraint err_info_xmit_constraint; 1265 1266 atomic_t drop_packet; 1267 u8 do_drop; 1268 u8 err_info_uncorrectable; 1269 u8 err_info_fmconfig; 1270 1271 /* 1272 * Software counters for the status bits defined by the 1273 * associated error status registers 1274 */ 1275 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS]; 1276 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS]; 1277 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS]; 1278 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS]; 1279 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS]; 1280 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS]; 1281 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS]; 1282 1283 /* Software counter that spans all contexts */ 1284 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS]; 1285 /* Software counter that spans all DMA engines */ 1286 u64 sw_send_dma_eng_err_status_cnt[ 1287 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS]; 1288 /* Software counter that aggregates all cce_err_status errors */ 1289 u64 sw_cce_err_status_aggregate; 1290 /* Software counter that aggregates all bypass packet rcv errors */ 1291 u64 sw_rcv_bypass_packet_errors; 1292 /* receive interrupt function */ 1293 rhf_rcv_function_ptr normal_rhf_rcv_functions[8]; 1294 1295 /* Save the enabled LCB error bits */ 1296 u64 lcb_err_en; 1297 struct cpu_mask_set *comp_vect; 1298 int *comp_vect_mappings; 1299 u32 comp_vect_possible_cpus; 1300 1301 /* 1302 * Capability to have different send engines simply by changing a 1303 * pointer value. 1304 */ 1305 send_routine process_pio_send ____cacheline_aligned_in_smp; 1306 send_routine process_dma_send; 1307 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf, 1308 u64 pbc, const void *from, size_t count); 1309 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx, 1310 struct hfi1_vnic_vport_info *vinfo, 1311 struct sk_buff *skb, u64 pbc, u8 plen); 1312 /* hfi1_pportdata, points to array of (physical) port-specific 1313 * data structs, indexed by pidx (0..n-1) 1314 */ 1315 struct hfi1_pportdata *pport; 1316 /* receive context data */ 1317 struct hfi1_ctxtdata **rcd; 1318 u64 __percpu *int_counter; 1319 /* verbs tx opcode stats */ 1320 struct hfi1_opcode_stats_perctx __percpu *tx_opstats; 1321 /* device (not port) flags, basically device capabilities */ 1322 u16 flags; 1323 /* Number of physical ports available */ 1324 u8 num_pports; 1325 /* Lowest context number which can be used by user processes or VNIC */ 1326 u8 first_dyn_alloc_ctxt; 1327 /* adding a new field here would make it part of this cacheline */ 1328 1329 /* seqlock for sc2vl */ 1330 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp; 1331 u64 sc2vl[4]; 1332 /* receive interrupt functions */ 1333 rhf_rcv_function_ptr *rhf_rcv_function_map; 1334 u64 __percpu *rcv_limit; 1335 u16 rhf_offset; /* offset of RHF within receive header entry */ 1336 /* adding a new field here would make it part of this cacheline */ 1337 1338 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */ 1339 u8 oui1; 1340 u8 oui2; 1341 u8 oui3; 1342 1343 /* Timer and counter used to detect RcvBufOvflCnt changes */ 1344 struct timer_list rcverr_timer; 1345 1346 wait_queue_head_t event_queue; 1347 1348 /* receive context tail dummy address */ 1349 __le64 *rcvhdrtail_dummy_kvaddr; 1350 dma_addr_t rcvhdrtail_dummy_dma; 1351 1352 u32 rcv_ovfl_cnt; 1353 /* Serialize ASPM enable/disable between multiple verbs contexts */ 1354 spinlock_t aspm_lock; 1355 /* Number of verbs contexts which have disabled ASPM */ 1356 atomic_t aspm_disabled_cnt; 1357 /* Keeps track of user space clients */ 1358 atomic_t user_refcount; 1359 /* Used to wait for outstanding user space clients before dev removal */ 1360 struct completion user_comp; 1361 1362 bool eprom_available; /* true if EPROM is available for this device */ 1363 bool aspm_supported; /* Does HW support ASPM */ 1364 bool aspm_enabled; /* ASPM state: enabled/disabled */ 1365 struct rhashtable *sdma_rht; 1366 1367 struct kobject kobj; 1368 1369 /* vnic data */ 1370 struct hfi1_vnic_data vnic; 1371 }; 1372 1373 static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare) 1374 { 1375 return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES; 1376 } 1377 1378 /* 8051 firmware version helper */ 1379 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c)) 1380 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16) 1381 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8) 1382 #define dc8051_ver_patch(a) ((a) & 0x0000ff) 1383 1384 /* f_put_tid types */ 1385 #define PT_EXPECTED 0 1386 #define PT_EAGER 1 1387 #define PT_INVALID_FLUSH 2 1388 #define PT_INVALID 3 1389 1390 struct tid_rb_node; 1391 struct mmu_rb_node; 1392 struct mmu_rb_handler; 1393 1394 /* Private data for file operations */ 1395 struct hfi1_filedata { 1396 struct hfi1_devdata *dd; 1397 struct hfi1_ctxtdata *uctxt; 1398 struct hfi1_user_sdma_comp_q *cq; 1399 struct hfi1_user_sdma_pkt_q *pq; 1400 u16 subctxt; 1401 /* for cpu affinity; -1 if none */ 1402 int rec_cpu_num; 1403 u32 tid_n_pinned; 1404 struct mmu_rb_handler *handler; 1405 struct tid_rb_node **entry_to_rb; 1406 spinlock_t tid_lock; /* protect tid_[limit,used] counters */ 1407 u32 tid_limit; 1408 u32 tid_used; 1409 u32 *invalid_tids; 1410 u32 invalid_tid_idx; 1411 /* protect invalid_tids array and invalid_tid_idx */ 1412 spinlock_t invalid_lock; 1413 struct mm_struct *mm; 1414 }; 1415 1416 extern struct list_head hfi1_dev_list; 1417 extern spinlock_t hfi1_devs_lock; 1418 struct hfi1_devdata *hfi1_lookup(int unit); 1419 1420 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt) 1421 { 1422 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * 1423 HFI1_MAX_SHARED_CTXTS; 1424 } 1425 1426 int hfi1_init(struct hfi1_devdata *dd, int reinit); 1427 int hfi1_count_active_units(void); 1428 1429 int hfi1_diag_add(struct hfi1_devdata *dd); 1430 void hfi1_diag_remove(struct hfi1_devdata *dd); 1431 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup); 1432 1433 void handle_user_interrupt(struct hfi1_ctxtdata *rcd); 1434 1435 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1436 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd); 1437 int hfi1_create_kctxts(struct hfi1_devdata *dd); 1438 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 1439 struct hfi1_ctxtdata **rcd); 1440 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd); 1441 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 1442 struct hfi1_devdata *dd, u8 hw_pidx, u8 port); 1443 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1444 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd); 1445 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd); 1446 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 1447 u16 ctxt); 1448 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt); 1449 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread); 1450 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1451 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1452 void set_all_slowpath(struct hfi1_devdata *dd); 1453 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd); 1454 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd); 1455 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd); 1456 1457 extern const struct pci_device_id hfi1_pci_tbl[]; 1458 void hfi1_make_ud_req_9B(struct rvt_qp *qp, 1459 struct hfi1_pkt_state *ps, 1460 struct rvt_swqe *wqe); 1461 1462 void hfi1_make_ud_req_16B(struct rvt_qp *qp, 1463 struct hfi1_pkt_state *ps, 1464 struct rvt_swqe *wqe); 1465 1466 /* receive packet handler dispositions */ 1467 #define RCV_PKT_OK 0x0 /* keep going */ 1468 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */ 1469 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */ 1470 1471 /* calculate the current RHF address */ 1472 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd) 1473 { 1474 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->dd->rhf_offset; 1475 } 1476 1477 int hfi1_reset_device(int); 1478 1479 void receive_interrupt_work(struct work_struct *work); 1480 1481 /* extract service channel from header and rhf */ 1482 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf) 1483 { 1484 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4); 1485 } 1486 1487 #define HFI1_JKEY_WIDTH 16 1488 #define HFI1_JKEY_MASK (BIT(16) - 1) 1489 #define HFI1_ADMIN_JKEY_RANGE 32 1490 1491 /* 1492 * J_KEYs are split and allocated in the following groups: 1493 * 0 - 31 - users with administrator privileges 1494 * 32 - 63 - kernel protocols using KDETH packets 1495 * 64 - 65535 - all other users using KDETH packets 1496 */ 1497 static inline u16 generate_jkey(kuid_t uid) 1498 { 1499 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK; 1500 1501 if (capable(CAP_SYS_ADMIN)) 1502 jkey &= HFI1_ADMIN_JKEY_RANGE - 1; 1503 else if (jkey < 64) 1504 jkey |= BIT(HFI1_JKEY_WIDTH - 1); 1505 1506 return jkey; 1507 } 1508 1509 /* 1510 * active_egress_rate 1511 * 1512 * returns the active egress rate in units of [10^6 bits/sec] 1513 */ 1514 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd) 1515 { 1516 u16 link_speed = ppd->link_speed_active; 1517 u16 link_width = ppd->link_width_active; 1518 u32 egress_rate; 1519 1520 if (link_speed == OPA_LINK_SPEED_25G) 1521 egress_rate = 25000; 1522 else /* assume OPA_LINK_SPEED_12_5G */ 1523 egress_rate = 12500; 1524 1525 switch (link_width) { 1526 case OPA_LINK_WIDTH_4X: 1527 egress_rate *= 4; 1528 break; 1529 case OPA_LINK_WIDTH_3X: 1530 egress_rate *= 3; 1531 break; 1532 case OPA_LINK_WIDTH_2X: 1533 egress_rate *= 2; 1534 break; 1535 default: 1536 /* assume IB_WIDTH_1X */ 1537 break; 1538 } 1539 1540 return egress_rate; 1541 } 1542 1543 /* 1544 * egress_cycles 1545 * 1546 * Returns the number of 'fabric clock cycles' to egress a packet 1547 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock 1548 * rate is (approximately) 805 MHz, the units of the returned value 1549 * are (1/805 MHz). 1550 */ 1551 static inline u32 egress_cycles(u32 len, u32 rate) 1552 { 1553 u32 cycles; 1554 1555 /* 1556 * cycles is: 1557 * 1558 * (length) [bits] / (rate) [bits/sec] 1559 * --------------------------------------------------- 1560 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec] 1561 */ 1562 1563 cycles = len * 8; /* bits */ 1564 cycles *= 805; 1565 cycles /= rate; 1566 1567 return cycles; 1568 } 1569 1570 void set_link_ipg(struct hfi1_pportdata *ppd); 1571 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, 1572 u32 rqpn, u8 svc_type); 1573 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, 1574 u16 pkey, u32 slid, u32 dlid, u8 sc5, 1575 const struct ib_grh *old_grh); 1576 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1577 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1578 u8 sc5, const struct ib_grh *old_grh); 1579 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1580 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1581 u8 sc5, const struct ib_grh *old_grh); 1582 1583 #define PKEY_CHECK_INVALID -1 1584 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1585 u8 sc5, int8_t s_pkey_index); 1586 1587 #define PACKET_EGRESS_TIMEOUT 350 1588 static inline void pause_for_credit_return(struct hfi1_devdata *dd) 1589 { 1590 /* Pause at least 1us, to ensure chip returns all credits */ 1591 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000; 1592 1593 udelay(usec ? usec : 1); 1594 } 1595 1596 /** 1597 * sc_to_vlt() reverse lookup sc to vl 1598 * @dd - devdata 1599 * @sc5 - 5 bit sc 1600 */ 1601 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5) 1602 { 1603 unsigned seq; 1604 u8 rval; 1605 1606 if (sc5 >= OPA_MAX_SCS) 1607 return (u8)(0xff); 1608 1609 do { 1610 seq = read_seqbegin(&dd->sc2vl_lock); 1611 rval = *(((u8 *)dd->sc2vl) + sc5); 1612 } while (read_seqretry(&dd->sc2vl_lock, seq)); 1613 1614 return rval; 1615 } 1616 1617 #define PKEY_MEMBER_MASK 0x8000 1618 #define PKEY_LOW_15_MASK 0x7fff 1619 1620 /* 1621 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1622 * being an entry from the ingress partition key table), return 0 1623 * otherwise. Use the matching criteria for ingress partition keys 1624 * specified in the OPAv1 spec., section 9.10.14. 1625 */ 1626 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent) 1627 { 1628 u16 mkey = pkey & PKEY_LOW_15_MASK; 1629 u16 ment = ent & PKEY_LOW_15_MASK; 1630 1631 if (mkey == ment) { 1632 /* 1633 * If pkey[15] is clear (limited partition member), 1634 * is bit 15 in the corresponding table element 1635 * clear (limited member)? 1636 */ 1637 if (!(pkey & PKEY_MEMBER_MASK)) 1638 return !!(ent & PKEY_MEMBER_MASK); 1639 return 1; 1640 } 1641 return 0; 1642 } 1643 1644 /* 1645 * ingress_pkey_table_search - search the entire pkey table for 1646 * an entry which matches 'pkey'. return 0 if a match is found, 1647 * and 1 otherwise. 1648 */ 1649 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey) 1650 { 1651 int i; 1652 1653 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1654 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1655 return 0; 1656 } 1657 return 1; 1658 } 1659 1660 /* 1661 * ingress_pkey_table_fail - record a failure of ingress pkey validation, 1662 * i.e., increment port_rcv_constraint_errors for the port, and record 1663 * the 'error info' for this failure. 1664 */ 1665 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey, 1666 u32 slid) 1667 { 1668 struct hfi1_devdata *dd = ppd->dd; 1669 1670 incr_cntr64(&ppd->port_rcv_constraint_errors); 1671 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) { 1672 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK; 1673 dd->err_info_rcv_constraint.slid = slid; 1674 dd->err_info_rcv_constraint.pkey = pkey; 1675 } 1676 } 1677 1678 /* 1679 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1 1680 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx 1681 * is a hint as to the best place in the partition key table to begin 1682 * searching. This function should not be called on the data path because 1683 * of performance reasons. On datapath pkey check is expected to be done 1684 * by HW and rcv_pkey_check function should be called instead. 1685 */ 1686 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1687 u8 sc5, u8 idx, u32 slid, bool force) 1688 { 1689 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1690 return 0; 1691 1692 /* If SC15, pkey[0:14] must be 0x7fff */ 1693 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1694 goto bad; 1695 1696 /* Is the pkey = 0x0, or 0x8000? */ 1697 if ((pkey & PKEY_LOW_15_MASK) == 0) 1698 goto bad; 1699 1700 /* The most likely matching pkey has index 'idx' */ 1701 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx])) 1702 return 0; 1703 1704 /* no match - try the whole table */ 1705 if (!ingress_pkey_table_search(ppd, pkey)) 1706 return 0; 1707 1708 bad: 1709 ingress_pkey_table_fail(ppd, pkey, slid); 1710 return 1; 1711 } 1712 1713 /* 1714 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1 1715 * otherwise. It only ensures pkey is vlid for QP0. This function 1716 * should be called on the data path instead of ingress_pkey_check 1717 * as on data path, pkey check is done by HW (except for QP0). 1718 */ 1719 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1720 u8 sc5, u16 slid) 1721 { 1722 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1723 return 0; 1724 1725 /* If SC15, pkey[0:14] must be 0x7fff */ 1726 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1727 goto bad; 1728 1729 return 0; 1730 bad: 1731 ingress_pkey_table_fail(ppd, pkey, slid); 1732 return 1; 1733 } 1734 1735 /* MTU handling */ 1736 1737 /* MTU enumeration, 256-4k match IB */ 1738 #define OPA_MTU_0 0 1739 #define OPA_MTU_256 1 1740 #define OPA_MTU_512 2 1741 #define OPA_MTU_1024 3 1742 #define OPA_MTU_2048 4 1743 #define OPA_MTU_4096 5 1744 1745 u32 lrh_max_header_bytes(struct hfi1_devdata *dd); 1746 int mtu_to_enum(u32 mtu, int default_if_bad); 1747 u16 enum_to_mtu(int mtu); 1748 static inline int valid_ib_mtu(unsigned int mtu) 1749 { 1750 return mtu == 256 || mtu == 512 || 1751 mtu == 1024 || mtu == 2048 || 1752 mtu == 4096; 1753 } 1754 1755 static inline int valid_opa_max_mtu(unsigned int mtu) 1756 { 1757 return mtu >= 2048 && 1758 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240); 1759 } 1760 1761 int set_mtu(struct hfi1_pportdata *ppd); 1762 1763 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc); 1764 void hfi1_disable_after_error(struct hfi1_devdata *dd); 1765 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit); 1766 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode); 1767 1768 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t); 1769 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t); 1770 1771 void set_up_vau(struct hfi1_devdata *dd, u8 vau); 1772 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf); 1773 void reset_link_credits(struct hfi1_devdata *dd); 1774 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu); 1775 1776 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc); 1777 1778 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd) 1779 { 1780 return ppd->dd; 1781 } 1782 1783 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev) 1784 { 1785 return container_of(dev, struct hfi1_devdata, verbs_dev); 1786 } 1787 1788 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev) 1789 { 1790 return dd_from_dev(to_idev(ibdev)); 1791 } 1792 1793 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp) 1794 { 1795 return container_of(ibp, struct hfi1_pportdata, ibport_data); 1796 } 1797 1798 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi) 1799 { 1800 return container_of(rdi, struct hfi1_ibdev, rdi); 1801 } 1802 1803 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port) 1804 { 1805 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1806 unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */ 1807 1808 WARN_ON(pidx >= dd->num_pports); 1809 return &dd->pport[pidx].ibport_data; 1810 } 1811 1812 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd) 1813 { 1814 return &rcd->ppd->ibport_data; 1815 } 1816 1817 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 1818 bool do_cnp); 1819 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt, 1820 bool do_cnp) 1821 { 1822 bool becn; 1823 bool fecn; 1824 1825 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 1826 fecn = hfi1_16B_get_fecn(pkt->hdr); 1827 becn = hfi1_16B_get_becn(pkt->hdr); 1828 } else { 1829 fecn = ib_bth_get_fecn(pkt->ohdr); 1830 becn = ib_bth_get_becn(pkt->ohdr); 1831 } 1832 if (unlikely(fecn || becn)) { 1833 hfi1_process_ecn_slowpath(qp, pkt, do_cnp); 1834 return fecn; 1835 } 1836 return false; 1837 } 1838 1839 /* 1840 * Return the indexed PKEY from the port PKEY table. 1841 */ 1842 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index) 1843 { 1844 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1845 u16 ret; 1846 1847 if (index >= ARRAY_SIZE(ppd->pkeys)) 1848 ret = 0; 1849 else 1850 ret = ppd->pkeys[index]; 1851 1852 return ret; 1853 } 1854 1855 /* 1856 * Return the indexed GUID from the port GUIDs table. 1857 */ 1858 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index) 1859 { 1860 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1861 1862 WARN_ON(index >= HFI1_GUIDS_PER_PORT); 1863 return cpu_to_be64(ppd->guids[index]); 1864 } 1865 1866 /* 1867 * Called by readers of cc_state only, must call under rcu_read_lock(). 1868 */ 1869 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd) 1870 { 1871 return rcu_dereference(ppd->cc_state); 1872 } 1873 1874 /* 1875 * Called by writers of cc_state only, must call under cc_state_lock. 1876 */ 1877 static inline 1878 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd) 1879 { 1880 return rcu_dereference_protected(ppd->cc_state, 1881 lockdep_is_held(&ppd->cc_state_lock)); 1882 } 1883 1884 /* 1885 * values for dd->flags (_device_ related flags) 1886 */ 1887 #define HFI1_INITTED 0x1 /* chip and driver up and initted */ 1888 #define HFI1_PRESENT 0x2 /* chip accesses can be done */ 1889 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */ 1890 #define HFI1_HAS_SDMA_TIMEOUT 0x8 1891 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */ 1892 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */ 1893 #define HFI1_SHUTDOWN 0x100 /* device is shutting down */ 1894 1895 /* IB dword length mask in PBC (lower 11 bits); same for all chips */ 1896 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1) 1897 1898 /* ctxt_flag bit offsets */ 1899 /* base context has not finished initializing */ 1900 #define HFI1_CTXT_BASE_UNINIT 1 1901 /* base context initaliation failed */ 1902 #define HFI1_CTXT_BASE_FAILED 2 1903 /* waiting for a packet to arrive */ 1904 #define HFI1_CTXT_WAITING_RCV 3 1905 /* waiting for an urgent packet to arrive */ 1906 #define HFI1_CTXT_WAITING_URG 4 1907 1908 /* free up any allocated data at closes */ 1909 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, 1910 const struct pci_device_id *ent); 1911 void hfi1_free_devdata(struct hfi1_devdata *dd); 1912 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra); 1913 1914 /* LED beaconing functions */ 1915 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1916 unsigned int timeoff); 1917 void shutdown_led_override(struct hfi1_pportdata *ppd); 1918 1919 #define HFI1_CREDIT_RETURN_RATE (100) 1920 1921 /* 1922 * The number of words for the KDETH protocol field. If this is 1923 * larger then the actual field used, then part of the payload 1924 * will be in the header. 1925 * 1926 * Optimally, we want this sized so that a typical case will 1927 * use full cache lines. The typical local KDETH header would 1928 * be: 1929 * 1930 * Bytes Field 1931 * 8 LRH 1932 * 12 BHT 1933 * ?? KDETH 1934 * 8 RHF 1935 * --- 1936 * 28 + KDETH 1937 * 1938 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS 1939 */ 1940 #define DEFAULT_RCVHDRSIZE 9 1941 1942 /* 1943 * Maximal header byte count: 1944 * 1945 * Bytes Field 1946 * 8 LRH 1947 * 40 GRH (optional) 1948 * 12 BTH 1949 * ?? KDETH 1950 * 8 RHF 1951 * --- 1952 * 68 + KDETH 1953 * 1954 * We also want to maintain a cache line alignment to assist DMA'ing 1955 * of the header bytes. Round up to a good size. 1956 */ 1957 #define DEFAULT_RCVHDR_ENTSIZE 32 1958 1959 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm, 1960 u32 nlocked, u32 npages); 1961 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, 1962 size_t npages, bool writable, struct page **pages); 1963 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p, 1964 size_t npages, bool dirty); 1965 1966 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 1967 { 1968 *((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL; 1969 } 1970 1971 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 1972 { 1973 /* 1974 * volatile because it's a DMA target from the chip, routine is 1975 * inlined, and don't want register caching or reordering. 1976 */ 1977 return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr); 1978 } 1979 1980 /* 1981 * sysfs interface. 1982 */ 1983 1984 extern const char ib_hfi1_version[]; 1985 1986 int hfi1_device_create(struct hfi1_devdata *dd); 1987 void hfi1_device_remove(struct hfi1_devdata *dd); 1988 1989 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num, 1990 struct kobject *kobj); 1991 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd); 1992 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd); 1993 /* Hook for sysfs read of QSFP */ 1994 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len); 1995 1996 int hfi1_pcie_init(struct pci_dev *pdev, const struct pci_device_id *ent); 1997 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd); 1998 void hfi1_pcie_cleanup(struct pci_dev *pdev); 1999 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev); 2000 void hfi1_pcie_ddcleanup(struct hfi1_devdata *); 2001 int pcie_speeds(struct hfi1_devdata *dd); 2002 int request_msix(struct hfi1_devdata *dd, u32 msireq); 2003 int restore_pci_variables(struct hfi1_devdata *dd); 2004 int save_pci_variables(struct hfi1_devdata *dd); 2005 int do_pcie_gen3_transition(struct hfi1_devdata *dd); 2006 int parse_platform_config(struct hfi1_devdata *dd); 2007 int get_platform_config_field(struct hfi1_devdata *dd, 2008 enum platform_config_table_type_encoding 2009 table_type, int table_index, int field_index, 2010 u32 *data, u32 len); 2011 2012 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi); 2013 2014 /* 2015 * Flush write combining store buffers (if present) and perform a write 2016 * barrier. 2017 */ 2018 static inline void flush_wc(void) 2019 { 2020 asm volatile("sfence" : : : "memory"); 2021 } 2022 2023 void handle_eflags(struct hfi1_packet *packet); 2024 int process_receive_ib(struct hfi1_packet *packet); 2025 int process_receive_bypass(struct hfi1_packet *packet); 2026 int process_receive_error(struct hfi1_packet *packet); 2027 int kdeth_process_expected(struct hfi1_packet *packet); 2028 int kdeth_process_eager(struct hfi1_packet *packet); 2029 int process_receive_invalid(struct hfi1_packet *packet); 2030 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd); 2031 2032 /* global module parameter variables */ 2033 extern unsigned int hfi1_max_mtu; 2034 extern unsigned int hfi1_cu; 2035 extern unsigned int user_credit_return_threshold; 2036 extern int num_user_contexts; 2037 extern unsigned long n_krcvqs; 2038 extern uint krcvqs[]; 2039 extern int krcvqsset; 2040 extern uint kdeth_qp; 2041 extern uint loopback; 2042 extern uint quick_linkup; 2043 extern uint rcv_intr_timeout; 2044 extern uint rcv_intr_count; 2045 extern uint rcv_intr_dynamic; 2046 extern ushort link_crc_mask; 2047 2048 extern struct mutex hfi1_mutex; 2049 2050 /* Number of seconds before our card status check... */ 2051 #define STATUS_TIMEOUT 60 2052 2053 #define DRIVER_NAME "hfi1" 2054 #define HFI1_USER_MINOR_BASE 0 2055 #define HFI1_TRACE_MINOR 127 2056 #define HFI1_NMINORS 255 2057 2058 #define PCI_VENDOR_ID_INTEL 0x8086 2059 #define PCI_DEVICE_ID_INTEL0 0x24f0 2060 #define PCI_DEVICE_ID_INTEL1 0x24f1 2061 2062 #define HFI1_PKT_USER_SC_INTEGRITY \ 2063 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \ 2064 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \ 2065 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \ 2066 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK) 2067 2068 #define HFI1_PKT_KERNEL_SC_INTEGRITY \ 2069 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK) 2070 2071 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd, 2072 u16 ctxt_type) 2073 { 2074 u64 base_sc_integrity; 2075 2076 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2077 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2078 return 0; 2079 2080 base_sc_integrity = 2081 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2082 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK 2083 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2084 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2085 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2086 #ifndef CONFIG_FAULT_INJECTION 2087 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK 2088 #endif 2089 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2090 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2091 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2092 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK 2093 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2094 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2095 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK 2096 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK 2097 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK 2098 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2099 2100 if (ctxt_type == SC_USER) 2101 base_sc_integrity |= 2102 #ifndef CONFIG_FAULT_INJECTION 2103 SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK | 2104 #endif 2105 HFI1_PKT_USER_SC_INTEGRITY; 2106 else 2107 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY; 2108 2109 /* turn on send-side job key checks if !A0 */ 2110 if (!is_ax(dd)) 2111 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2112 2113 return base_sc_integrity; 2114 } 2115 2116 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd) 2117 { 2118 u64 base_sdma_integrity; 2119 2120 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2121 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2122 return 0; 2123 2124 base_sdma_integrity = 2125 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2126 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2127 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2128 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2129 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2130 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2131 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2132 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK 2133 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2134 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2135 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK 2136 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK 2137 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK 2138 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2139 2140 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)) 2141 base_sdma_integrity |= 2142 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK; 2143 2144 /* turn on send-side job key checks if !A0 */ 2145 if (!is_ax(dd)) 2146 base_sdma_integrity |= 2147 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2148 2149 return base_sdma_integrity; 2150 } 2151 2152 /* 2153 * hfi1_early_err is used (only!) to print early errors before devdata is 2154 * allocated, or when dd->pcidev may not be valid, and at the tail end of 2155 * cleanup when devdata may have been freed, etc. hfi1_dev_porterr is 2156 * the same as dd_dev_err, but is used when the message really needs 2157 * the IB port# to be definitive as to what's happening.. 2158 */ 2159 #define hfi1_early_err(dev, fmt, ...) \ 2160 dev_err(dev, fmt, ##__VA_ARGS__) 2161 2162 #define hfi1_early_info(dev, fmt, ...) \ 2163 dev_info(dev, fmt, ##__VA_ARGS__) 2164 2165 #define dd_dev_emerg(dd, fmt, ...) \ 2166 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \ 2167 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2168 2169 #define dd_dev_err(dd, fmt, ...) \ 2170 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \ 2171 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2172 2173 #define dd_dev_err_ratelimited(dd, fmt, ...) \ 2174 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2175 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2176 ##__VA_ARGS__) 2177 2178 #define dd_dev_warn(dd, fmt, ...) \ 2179 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \ 2180 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2181 2182 #define dd_dev_warn_ratelimited(dd, fmt, ...) \ 2183 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2184 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2185 ##__VA_ARGS__) 2186 2187 #define dd_dev_info(dd, fmt, ...) \ 2188 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \ 2189 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2190 2191 #define dd_dev_info_ratelimited(dd, fmt, ...) \ 2192 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2193 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2194 ##__VA_ARGS__) 2195 2196 #define dd_dev_dbg(dd, fmt, ...) \ 2197 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \ 2198 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2199 2200 #define hfi1_dev_porterr(dd, port, fmt, ...) \ 2201 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \ 2202 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__) 2203 2204 /* 2205 * this is used for formatting hw error messages... 2206 */ 2207 struct hfi1_hwerror_msgs { 2208 u64 mask; 2209 const char *msg; 2210 size_t sz; 2211 }; 2212 2213 /* in intr.c... */ 2214 void hfi1_format_hwerrors(u64 hwerrs, 2215 const struct hfi1_hwerror_msgs *hwerrmsgs, 2216 size_t nhwerrmsgs, char *msg, size_t lmsg); 2217 2218 #define USER_OPCODE_CHECK_VAL 0xC0 2219 #define USER_OPCODE_CHECK_MASK 0xC0 2220 #define OPCODE_CHECK_VAL_DISABLED 0x0 2221 #define OPCODE_CHECK_MASK_DISABLED 0x0 2222 2223 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd) 2224 { 2225 struct hfi1_pportdata *ppd; 2226 int i; 2227 2228 dd->z_int_counter = get_all_cpu_total(dd->int_counter); 2229 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit); 2230 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule); 2231 2232 ppd = (struct hfi1_pportdata *)(dd + 1); 2233 for (i = 0; i < dd->num_pports; i++, ppd++) { 2234 ppd->ibport_data.rvp.z_rc_acks = 2235 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks); 2236 ppd->ibport_data.rvp.z_rc_qacks = 2237 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks); 2238 } 2239 } 2240 2241 /* Control LED state */ 2242 static inline void setextled(struct hfi1_devdata *dd, u32 on) 2243 { 2244 if (on) 2245 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F); 2246 else 2247 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10); 2248 } 2249 2250 /* return the i2c resource given the target */ 2251 static inline u32 i2c_target(u32 target) 2252 { 2253 return target ? CR_I2C2 : CR_I2C1; 2254 } 2255 2256 /* return the i2c chain chip resource that this HFI uses for QSFP */ 2257 static inline u32 qsfp_resource(struct hfi1_devdata *dd) 2258 { 2259 return i2c_target(dd->hfi1_id); 2260 } 2261 2262 /* Is this device integrated or discrete? */ 2263 static inline bool is_integrated(struct hfi1_devdata *dd) 2264 { 2265 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1; 2266 } 2267 2268 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp); 2269 2270 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev)) 2271 #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev)) 2272 2273 static inline void hfi1_update_ah_attr(struct ib_device *ibdev, 2274 struct rdma_ah_attr *attr) 2275 { 2276 struct hfi1_pportdata *ppd; 2277 struct hfi1_ibport *ibp; 2278 u32 dlid = rdma_ah_get_dlid(attr); 2279 2280 /* 2281 * Kernel clients may not have setup GRH information 2282 * Set that here. 2283 */ 2284 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr)); 2285 ppd = ppd_from_ibp(ibp); 2286 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) || 2287 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) && 2288 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) && 2289 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2290 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) || 2291 (rdma_ah_get_make_grd(attr))) { 2292 rdma_ah_set_ah_flags(attr, IB_AH_GRH); 2293 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid)); 2294 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix); 2295 } 2296 } 2297 2298 /* 2299 * hfi1_check_mcast- Check if the given lid is 2300 * in the OPA multicast range. 2301 * 2302 * The LID might either reside in ah.dlid or might be 2303 * in the GRH of the address handle as DGID if extended 2304 * addresses are in use. 2305 */ 2306 static inline bool hfi1_check_mcast(u32 lid) 2307 { 2308 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) && 2309 (lid != be32_to_cpu(OPA_LID_PERMISSIVE))); 2310 } 2311 2312 #define opa_get_lid(lid, format) \ 2313 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format) 2314 2315 /* Convert a lid to a specific lid space */ 2316 static inline u32 __opa_get_lid(u32 lid, u8 format) 2317 { 2318 bool is_mcast = hfi1_check_mcast(lid); 2319 2320 switch (format) { 2321 case OPA_PORT_PACKET_FORMAT_8B: 2322 case OPA_PORT_PACKET_FORMAT_10B: 2323 if (is_mcast) 2324 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2325 0xF0000); 2326 return lid & 0xFFFFF; 2327 case OPA_PORT_PACKET_FORMAT_16B: 2328 if (is_mcast) 2329 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2330 0xF00000); 2331 return lid & 0xFFFFFF; 2332 case OPA_PORT_PACKET_FORMAT_9B: 2333 if (is_mcast) 2334 return (lid - 2335 opa_get_mcast_base(OPA_MCAST_NR) + 2336 be16_to_cpu(IB_MULTICAST_LID_BASE)); 2337 else 2338 return lid & 0xFFFF; 2339 default: 2340 return lid; 2341 } 2342 } 2343 2344 /* Return true if the given lid is the OPA 16B multicast range */ 2345 static inline bool hfi1_is_16B_mcast(u32 lid) 2346 { 2347 return ((lid >= 2348 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) && 2349 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))); 2350 } 2351 2352 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr) 2353 { 2354 const struct ib_global_route *grh = rdma_ah_read_grh(attr); 2355 u32 dlid = rdma_ah_get_dlid(attr); 2356 2357 /* Modify ah_attr.dlid to be in the 32 bit LID space. 2358 * This is how the address will be laid out: 2359 * Assuming MCAST_NR to be 4, 2360 * 32 bit permissive LID = 0xFFFFFFFF 2361 * Multicast LID range = 0xFFFFFFFE to 0xF0000000 2362 * Unicast LID range = 0xEFFFFFFF to 1 2363 * Invalid LID = 0 2364 */ 2365 if (ib_is_opa_gid(&grh->dgid)) 2366 dlid = opa_get_lid_from_gid(&grh->dgid); 2367 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 2368 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2369 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE))) 2370 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) + 2371 opa_get_mcast_base(OPA_MCAST_NR); 2372 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE)) 2373 dlid = be32_to_cpu(OPA_LID_PERMISSIVE); 2374 2375 rdma_ah_set_dlid(attr, dlid); 2376 } 2377 2378 static inline u8 hfi1_get_packet_type(u32 lid) 2379 { 2380 /* 9B if lid > 0xF0000000 */ 2381 if (lid >= opa_get_mcast_base(OPA_MCAST_NR)) 2382 return HFI1_PKT_TYPE_9B; 2383 2384 /* 16B if lid > 0xC000 */ 2385 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B)) 2386 return HFI1_PKT_TYPE_16B; 2387 2388 return HFI1_PKT_TYPE_9B; 2389 } 2390 2391 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr) 2392 { 2393 /* 2394 * If there was an incoming 16B packet with permissive 2395 * LIDs, OPA GIDs would have been programmed when those 2396 * packets were received. A 16B packet will have to 2397 * be sent in response to that packet. Return a 16B 2398 * header type if that's the case. 2399 */ 2400 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE)) 2401 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ? 2402 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B; 2403 2404 /* 2405 * Return a 16B header type if either the the destination 2406 * or source lid is extended. 2407 */ 2408 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B) 2409 return HFI1_PKT_TYPE_16B; 2410 2411 return hfi1_get_packet_type(lid); 2412 } 2413 2414 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet, 2415 struct ib_grh *grh, u32 slid, 2416 u32 dlid) 2417 { 2418 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; 2419 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2420 2421 if (!ibp) 2422 return; 2423 2424 grh->hop_limit = 1; 2425 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2426 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)) 2427 grh->sgid.global.interface_id = 2428 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE)); 2429 else 2430 grh->sgid.global.interface_id = OPA_MAKE_ID(slid); 2431 2432 /* 2433 * Upper layers (like mad) may compare the dgid in the 2434 * wc that is obtained here with the sgid_index in 2435 * the wr. Since sgid_index in wr is always 0 for 2436 * extended lids, set the dgid here to the default 2437 * IB gid. 2438 */ 2439 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2440 grh->dgid.global.interface_id = 2441 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]); 2442 } 2443 2444 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload) 2445 { 2446 return -(hdr_size + payload + (SIZE_OF_CRC << 2) + 2447 SIZE_OF_LT) & 0x7; 2448 } 2449 2450 static inline void hfi1_make_ib_hdr(struct ib_header *hdr, 2451 u16 lrh0, u16 len, 2452 u16 dlid, u16 slid) 2453 { 2454 hdr->lrh[0] = cpu_to_be16(lrh0); 2455 hdr->lrh[1] = cpu_to_be16(dlid); 2456 hdr->lrh[2] = cpu_to_be16(len); 2457 hdr->lrh[3] = cpu_to_be16(slid); 2458 } 2459 2460 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr, 2461 u32 slid, u32 dlid, 2462 u16 len, u16 pkey, 2463 bool becn, bool fecn, u8 l4, 2464 u8 sc) 2465 { 2466 u32 lrh0 = 0; 2467 u32 lrh1 = 0x40000000; 2468 u32 lrh2 = 0; 2469 u32 lrh3 = 0; 2470 2471 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT); 2472 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT); 2473 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK); 2474 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT); 2475 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT); 2476 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK); 2477 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) | 2478 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT); 2479 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) | 2480 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT); 2481 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT); 2482 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4; 2483 2484 hdr->lrh[0] = lrh0; 2485 hdr->lrh[1] = lrh1; 2486 hdr->lrh[2] = lrh2; 2487 hdr->lrh[3] = lrh3; 2488 } 2489 #endif /* _HFI1_KERNEL_H */ 2490