1 #ifndef _HFI1_KERNEL_H 2 #define _HFI1_KERNEL_H 3 /* 4 * Copyright(c) 2020 Cornelis Networks, Inc. 5 * Copyright(c) 2015-2020 Intel Corporation. 6 * 7 * This file is provided under a dual BSD/GPLv2 license. When using or 8 * redistributing this file, you may do so under either license. 9 * 10 * GPL LICENSE SUMMARY 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * BSD LICENSE 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 27 * - Redistributions of source code must retain the above copyright 28 * notice, this list of conditions and the following disclaimer. 29 * - Redistributions in binary form must reproduce the above copyright 30 * notice, this list of conditions and the following disclaimer in 31 * the documentation and/or other materials provided with the 32 * distribution. 33 * - Neither the name of Intel Corporation nor the names of its 34 * contributors may be used to endorse or promote products derived 35 * from this software without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 48 * 49 */ 50 51 #include <linux/interrupt.h> 52 #include <linux/pci.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/mutex.h> 55 #include <linux/list.h> 56 #include <linux/scatterlist.h> 57 #include <linux/slab.h> 58 #include <linux/io.h> 59 #include <linux/fs.h> 60 #include <linux/completion.h> 61 #include <linux/kref.h> 62 #include <linux/sched.h> 63 #include <linux/cdev.h> 64 #include <linux/delay.h> 65 #include <linux/kthread.h> 66 #include <linux/i2c.h> 67 #include <linux/i2c-algo-bit.h> 68 #include <linux/xarray.h> 69 #include <rdma/ib_hdrs.h> 70 #include <rdma/opa_addr.h> 71 #include <linux/rhashtable.h> 72 #include <linux/netdevice.h> 73 #include <rdma/rdma_vt.h> 74 75 #include "chip_registers.h" 76 #include "common.h" 77 #include "opfn.h" 78 #include "verbs.h" 79 #include "pio.h" 80 #include "chip.h" 81 #include "mad.h" 82 #include "qsfp.h" 83 #include "platform.h" 84 #include "affinity.h" 85 #include "msix.h" 86 87 /* bumped 1 from s/w major version of TrueScale */ 88 #define HFI1_CHIP_VERS_MAJ 3U 89 90 /* don't care about this except printing */ 91 #define HFI1_CHIP_VERS_MIN 0U 92 93 /* The Organization Unique Identifier (Mfg code), and its position in GUID */ 94 #define HFI1_OUI 0x001175 95 #define HFI1_OUI_LSB 40 96 97 #define DROP_PACKET_OFF 0 98 #define DROP_PACKET_ON 1 99 100 #define NEIGHBOR_TYPE_HFI 0 101 #define NEIGHBOR_TYPE_SWITCH 1 102 103 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5 104 105 extern unsigned long hfi1_cap_mask; 106 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap) 107 #define HFI1_CAP_UGET_MASK(mask, cap) \ 108 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap) 109 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap)) 110 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap)) 111 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap)) 112 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap)) 113 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \ 114 HFI1_CAP_MISC_MASK) 115 /* Offline Disabled Reason is 4-bits */ 116 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON) 117 118 /* 119 * Control context is always 0 and handles the error packets. 120 * It also handles the VL15 and multicast packets. 121 */ 122 #define HFI1_CTRL_CTXT 0 123 124 /* 125 * Driver context will store software counters for each of the events 126 * associated with these status registers 127 */ 128 #define NUM_CCE_ERR_STATUS_COUNTERS 41 129 #define NUM_RCV_ERR_STATUS_COUNTERS 64 130 #define NUM_MISC_ERR_STATUS_COUNTERS 13 131 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36 132 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4 133 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64 134 #define NUM_SEND_ERR_STATUS_COUNTERS 3 135 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5 136 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24 137 138 /* 139 * per driver stats, either not device nor port-specific, or 140 * summed over all of the devices and ports. 141 * They are described by name via ipathfs filesystem, so layout 142 * and number of elements can change without breaking compatibility. 143 * If members are added or deleted hfi1_statnames[] in debugfs.c must 144 * change to match. 145 */ 146 struct hfi1_ib_stats { 147 __u64 sps_ints; /* number of interrupts handled */ 148 __u64 sps_errints; /* number of error interrupts */ 149 __u64 sps_txerrs; /* tx-related packet errors */ 150 __u64 sps_rcverrs; /* non-crc rcv packet errors */ 151 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */ 152 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */ 153 __u64 sps_ctxts; /* number of contexts currently open */ 154 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */ 155 __u64 sps_buffull; 156 __u64 sps_hdrfull; 157 }; 158 159 extern struct hfi1_ib_stats hfi1_stats; 160 extern const struct pci_error_handlers hfi1_pci_err_handler; 161 162 extern int num_driver_cntrs; 163 164 /* 165 * First-cut criterion for "device is active" is 166 * two thousand dwords combined Tx, Rx traffic per 167 * 5-second interval. SMA packets are 64 dwords, 168 * and occur "a few per second", presumably each way. 169 */ 170 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000) 171 172 /* 173 * Below contains all data related to a single context (formerly called port). 174 */ 175 176 struct hfi1_opcode_stats_perctx; 177 178 struct ctxt_eager_bufs { 179 struct eager_buffer { 180 void *addr; 181 dma_addr_t dma; 182 ssize_t len; 183 } *buffers; 184 struct { 185 void *addr; 186 dma_addr_t dma; 187 } *rcvtids; 188 u32 size; /* total size of eager buffers */ 189 u32 rcvtid_size; /* size of each eager rcv tid */ 190 u16 count; /* size of buffers array */ 191 u16 numbufs; /* number of buffers allocated */ 192 u16 alloced; /* number of rcvarray entries used */ 193 u16 threshold; /* head update threshold */ 194 }; 195 196 struct exp_tid_set { 197 struct list_head list; 198 u32 count; 199 }; 200 201 struct hfi1_ctxtdata; 202 typedef int (*intr_handler)(struct hfi1_ctxtdata *rcd, int data); 203 typedef void (*rhf_rcv_function_ptr)(struct hfi1_packet *packet); 204 205 struct tid_queue { 206 struct list_head queue_head; 207 /* queue head for QP TID resource waiters */ 208 u32 enqueue; /* count of tid enqueues */ 209 u32 dequeue; /* count of tid dequeues */ 210 }; 211 212 struct hfi1_ctxtdata { 213 /* rcvhdrq base, needs mmap before useful */ 214 void *rcvhdrq; 215 /* kernel virtual address where hdrqtail is updated */ 216 volatile __le64 *rcvhdrtail_kvaddr; 217 /* so functions that need physical port can get it easily */ 218 struct hfi1_pportdata *ppd; 219 /* so file ops can get at unit */ 220 struct hfi1_devdata *dd; 221 /* this receive context's assigned PIO ACK send context */ 222 struct send_context *sc; 223 /* per context recv functions */ 224 const rhf_rcv_function_ptr *rhf_rcv_function_map; 225 /* 226 * The interrupt handler for a particular receive context can vary 227 * throughout it's lifetime. This is not a lock protected data member so 228 * it must be updated atomically and the prev and new value must always 229 * be valid. Worst case is we process an extra interrupt and up to 64 230 * packets with the wrong interrupt handler. 231 */ 232 intr_handler do_interrupt; 233 /** fast handler after autoactive */ 234 intr_handler fast_handler; 235 /** slow handler */ 236 intr_handler slow_handler; 237 /* napi pointer assiociated with netdev */ 238 struct napi_struct *napi; 239 /* verbs rx_stats per rcd */ 240 struct hfi1_opcode_stats_perctx *opstats; 241 /* clear interrupt mask */ 242 u64 imask; 243 /* ctxt rcvhdrq head offset */ 244 u32 head; 245 /* number of rcvhdrq entries */ 246 u16 rcvhdrq_cnt; 247 u8 ireg; /* clear interrupt register */ 248 /* receive packet sequence counter */ 249 u8 seq_cnt; 250 /* size of each of the rcvhdrq entries */ 251 u8 rcvhdrqentsize; 252 /* offset of RHF within receive header entry */ 253 u8 rhf_offset; 254 /* dynamic receive available interrupt timeout */ 255 u8 rcvavail_timeout; 256 /* Indicates that this is vnic context */ 257 bool is_vnic; 258 /* vnic queue index this context is mapped to */ 259 u8 vnic_q_idx; 260 /* Is ASPM interrupt supported for this context */ 261 bool aspm_intr_supported; 262 /* ASPM state (enabled/disabled) for this context */ 263 bool aspm_enabled; 264 /* Is ASPM processing enabled for this context (in intr context) */ 265 bool aspm_intr_enable; 266 struct ctxt_eager_bufs egrbufs; 267 /* QPs waiting for context processing */ 268 struct list_head qp_wait_list; 269 /* tid allocation lists */ 270 struct exp_tid_set tid_group_list; 271 struct exp_tid_set tid_used_list; 272 struct exp_tid_set tid_full_list; 273 274 /* Timer for re-enabling ASPM if interrupt activity quiets down */ 275 struct timer_list aspm_timer; 276 /* per-context configuration flags */ 277 unsigned long flags; 278 /* array of tid_groups */ 279 struct tid_group *groups; 280 /* mmap of hdrq, must fit in 44 bits */ 281 dma_addr_t rcvhdrq_dma; 282 dma_addr_t rcvhdrqtailaddr_dma; 283 /* Last interrupt timestamp */ 284 ktime_t aspm_ts_last_intr; 285 /* Last timestamp at which we scheduled a timer for this context */ 286 ktime_t aspm_ts_timer_sched; 287 /* Lock to serialize between intr, timer intr and user threads */ 288 spinlock_t aspm_lock; 289 /* Reference count the base context usage */ 290 struct kref kref; 291 /* numa node of this context */ 292 int numa_id; 293 /* associated msix interrupt. */ 294 s16 msix_intr; 295 /* job key */ 296 u16 jkey; 297 /* number of RcvArray groups for this context. */ 298 u16 rcv_array_groups; 299 /* index of first eager TID entry. */ 300 u16 eager_base; 301 /* number of expected TID entries */ 302 u16 expected_count; 303 /* index of first expected TID entry. */ 304 u16 expected_base; 305 /* Device context index */ 306 u8 ctxt; 307 308 /* PSM Specific fields */ 309 /* lock protecting all Expected TID data */ 310 struct mutex exp_mutex; 311 /* lock protecting all Expected TID data of kernel contexts */ 312 spinlock_t exp_lock; 313 /* Queue for QP's waiting for HW TID flows */ 314 struct tid_queue flow_queue; 315 /* Queue for QP's waiting for HW receive array entries */ 316 struct tid_queue rarr_queue; 317 /* when waiting for rcv or pioavail */ 318 wait_queue_head_t wait; 319 /* uuid from PSM */ 320 u8 uuid[16]; 321 /* same size as task_struct .comm[], command that opened context */ 322 char comm[TASK_COMM_LEN]; 323 /* Bitmask of in use context(s) */ 324 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS); 325 /* per-context event flags for fileops/intr communication */ 326 unsigned long event_flags; 327 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */ 328 void *subctxt_uregbase; 329 /* An array of pages for the eager receive buffers * N */ 330 void *subctxt_rcvegrbuf; 331 /* An array of pages for the eager header queue entries * N */ 332 void *subctxt_rcvhdr_base; 333 /* total number of polled urgent packets */ 334 u32 urgent; 335 /* saved total number of polled urgent packets for poll edge trigger */ 336 u32 urgent_poll; 337 /* Type of packets or conditions we want to poll for */ 338 u16 poll_type; 339 /* non-zero if ctxt is being shared. */ 340 u16 subctxt_id; 341 /* The version of the library which opened this ctxt */ 342 u32 userversion; 343 /* 344 * non-zero if ctxt can be shared, and defines the maximum number of 345 * sub-contexts for this device context. 346 */ 347 u8 subctxt_cnt; 348 349 /* Bit mask to track free TID RDMA HW flows */ 350 unsigned long flow_mask; 351 struct tid_flow_state flows[RXE_NUM_TID_FLOWS]; 352 }; 353 354 /** 355 * rcvhdrq_size - return total size in bytes for header queue 356 * @rcd: the receive context 357 * 358 * rcvhdrqentsize is in DWs, so we have to convert to bytes 359 * 360 */ 361 static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd) 362 { 363 return PAGE_ALIGN(rcd->rcvhdrq_cnt * 364 rcd->rcvhdrqentsize * sizeof(u32)); 365 } 366 367 /* 368 * Represents a single packet at a high level. Put commonly computed things in 369 * here so we do not have to keep doing them over and over. The rule of thumb is 370 * if something is used one time to derive some value, store that something in 371 * here. If it is used multiple times, then store the result of that derivation 372 * in here. 373 */ 374 struct hfi1_packet { 375 void *ebuf; 376 void *hdr; 377 void *payload; 378 struct hfi1_ctxtdata *rcd; 379 __le32 *rhf_addr; 380 struct rvt_qp *qp; 381 struct ib_other_headers *ohdr; 382 struct ib_grh *grh; 383 struct opa_16b_mgmt *mgmt; 384 u64 rhf; 385 u32 maxcnt; 386 u32 rhqoff; 387 u32 dlid; 388 u32 slid; 389 int numpkt; 390 u16 tlen; 391 s16 etail; 392 u16 pkey; 393 u8 hlen; 394 u8 rsize; 395 u8 updegr; 396 u8 etype; 397 u8 extra_byte; 398 u8 pad; 399 u8 sc; 400 u8 sl; 401 u8 opcode; 402 bool migrated; 403 }; 404 405 /* Packet types */ 406 #define HFI1_PKT_TYPE_9B 0 407 #define HFI1_PKT_TYPE_16B 1 408 409 /* 410 * OPA 16B Header 411 */ 412 #define OPA_16B_L4_MASK 0xFFull 413 #define OPA_16B_SC_MASK 0x1F00000ull 414 #define OPA_16B_SC_SHIFT 20 415 #define OPA_16B_LID_MASK 0xFFFFFull 416 #define OPA_16B_DLID_MASK 0xF000ull 417 #define OPA_16B_DLID_SHIFT 20 418 #define OPA_16B_DLID_HIGH_SHIFT 12 419 #define OPA_16B_SLID_MASK 0xF00ull 420 #define OPA_16B_SLID_SHIFT 20 421 #define OPA_16B_SLID_HIGH_SHIFT 8 422 #define OPA_16B_BECN_MASK 0x80000000ull 423 #define OPA_16B_BECN_SHIFT 31 424 #define OPA_16B_FECN_MASK 0x10000000ull 425 #define OPA_16B_FECN_SHIFT 28 426 #define OPA_16B_L2_MASK 0x60000000ull 427 #define OPA_16B_L2_SHIFT 29 428 #define OPA_16B_PKEY_MASK 0xFFFF0000ull 429 #define OPA_16B_PKEY_SHIFT 16 430 #define OPA_16B_LEN_MASK 0x7FF00000ull 431 #define OPA_16B_LEN_SHIFT 20 432 #define OPA_16B_RC_MASK 0xE000000ull 433 #define OPA_16B_RC_SHIFT 25 434 #define OPA_16B_AGE_MASK 0xFF0000ull 435 #define OPA_16B_AGE_SHIFT 16 436 #define OPA_16B_ENTROPY_MASK 0xFFFFull 437 438 /* 439 * OPA 16B L2/L4 Encodings 440 */ 441 #define OPA_16B_L4_9B 0x00 442 #define OPA_16B_L2_TYPE 0x02 443 #define OPA_16B_L4_FM 0x08 444 #define OPA_16B_L4_IB_LOCAL 0x09 445 #define OPA_16B_L4_IB_GLOBAL 0x0A 446 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR 447 448 /* 449 * OPA 16B Management 450 */ 451 #define OPA_16B_L4_FM_PAD 3 /* fixed 3B pad */ 452 #define OPA_16B_L4_FM_HLEN 24 /* 16B(16) + L4_FM(8) */ 453 454 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr) 455 { 456 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK); 457 } 458 459 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr) 460 { 461 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT); 462 } 463 464 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr) 465 { 466 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) | 467 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >> 468 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT)); 469 } 470 471 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr) 472 { 473 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) | 474 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >> 475 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT)); 476 } 477 478 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr) 479 { 480 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT); 481 } 482 483 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr) 484 { 485 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT); 486 } 487 488 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr) 489 { 490 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT); 491 } 492 493 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr) 494 { 495 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT); 496 } 497 498 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr) 499 { 500 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT); 501 } 502 503 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr) 504 { 505 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT); 506 } 507 508 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr) 509 { 510 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT); 511 } 512 513 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr) 514 { 515 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK); 516 } 517 518 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw)) 519 520 /* 521 * BTH 522 */ 523 #define OPA_16B_BTH_PAD_MASK 7 524 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr) 525 { 526 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) & 527 OPA_16B_BTH_PAD_MASK); 528 } 529 530 /* 531 * 16B Management 532 */ 533 #define OPA_16B_MGMT_QPN_MASK 0xFFFFFF 534 static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt) 535 { 536 return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK; 537 } 538 539 static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt) 540 { 541 return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK; 542 } 543 544 static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt, 545 u32 dest_qp, u32 src_qp) 546 { 547 mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK); 548 mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK); 549 } 550 551 /** 552 * hfi1_get_rc_ohdr - get extended header 553 * @opah - the opaheader 554 */ 555 static inline struct ib_other_headers * 556 hfi1_get_rc_ohdr(struct hfi1_opa_header *opah) 557 { 558 struct ib_other_headers *ohdr; 559 struct ib_header *hdr = NULL; 560 struct hfi1_16b_header *hdr_16b = NULL; 561 562 /* Find out where the BTH is */ 563 if (opah->hdr_type == HFI1_PKT_TYPE_9B) { 564 hdr = &opah->ibh; 565 if (ib_get_lnh(hdr) == HFI1_LRH_BTH) 566 ohdr = &hdr->u.oth; 567 else 568 ohdr = &hdr->u.l.oth; 569 } else { 570 u8 l4; 571 572 hdr_16b = &opah->opah; 573 l4 = hfi1_16B_get_l4(hdr_16b); 574 if (l4 == OPA_16B_L4_IB_LOCAL) 575 ohdr = &hdr_16b->u.oth; 576 else 577 ohdr = &hdr_16b->u.l.oth; 578 } 579 return ohdr; 580 } 581 582 struct rvt_sge_state; 583 584 /* 585 * Get/Set IB link-level config parameters for f_get/set_ib_cfg() 586 * Mostly for MADs that set or query link parameters, also ipath 587 * config interfaces 588 */ 589 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */ 590 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */ 591 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */ 592 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */ 593 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */ 594 #define HFI1_IB_CFG_SPD 5 /* current Link spd */ 595 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */ 596 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */ 597 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */ 598 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */ 599 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */ 600 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */ 601 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */ 602 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */ 603 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */ 604 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */ 605 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */ 606 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */ 607 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19 608 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */ 609 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */ 610 611 /* 612 * HFI or Host Link States 613 * 614 * These describe the states the driver thinks the logical and physical 615 * states are in. Used as an argument to set_link_state(). Implemented 616 * as bits for easy multi-state checking. The actual state can only be 617 * one. 618 */ 619 #define __HLS_UP_INIT_BP 0 620 #define __HLS_UP_ARMED_BP 1 621 #define __HLS_UP_ACTIVE_BP 2 622 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */ 623 #define __HLS_DN_POLL_BP 4 624 #define __HLS_DN_DISABLE_BP 5 625 #define __HLS_DN_OFFLINE_BP 6 626 #define __HLS_VERIFY_CAP_BP 7 627 #define __HLS_GOING_UP_BP 8 628 #define __HLS_GOING_OFFLINE_BP 9 629 #define __HLS_LINK_COOLDOWN_BP 10 630 631 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP) 632 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP) 633 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP) 634 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */ 635 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP) 636 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP) 637 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP) 638 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP) 639 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP) 640 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP) 641 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP) 642 643 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE) 644 #define HLS_DOWN ~(HLS_UP) 645 646 #define HLS_DEFAULT HLS_DN_POLL 647 648 /* use this MTU size if none other is given */ 649 #define HFI1_DEFAULT_ACTIVE_MTU 10240 650 /* use this MTU size as the default maximum */ 651 #define HFI1_DEFAULT_MAX_MTU 10240 652 /* default partition key */ 653 #define DEFAULT_PKEY 0xffff 654 655 /* 656 * Possible fabric manager config parameters for fm_{get,set}_table() 657 */ 658 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */ 659 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */ 660 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */ 661 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */ 662 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */ 663 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */ 664 665 /* 666 * Possible "operations" for f_rcvctrl(ppd, op, ctxt) 667 * these are bits so they can be combined, e.g. 668 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB 669 */ 670 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01 671 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02 672 #define HFI1_RCVCTRL_CTXT_ENB 0x04 673 #define HFI1_RCVCTRL_CTXT_DIS 0x08 674 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10 675 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20 676 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */ 677 #define HFI1_RCVCTRL_PKEY_DIS 0x80 678 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400 679 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800 680 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000 681 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000 682 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000 683 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000 684 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000 685 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000 686 #define HFI1_RCVCTRL_URGENT_ENB 0x40000 687 #define HFI1_RCVCTRL_URGENT_DIS 0x80000 688 689 /* partition enforcement flags */ 690 #define HFI1_PART_ENFORCE_IN 0x1 691 #define HFI1_PART_ENFORCE_OUT 0x2 692 693 /* how often we check for synthetic counter wrap around */ 694 #define SYNTH_CNT_TIME 3 695 696 /* Counter flags */ 697 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */ 698 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */ 699 #define CNTR_DISABLED 0x2 /* Disable this counter */ 700 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */ 701 #define CNTR_VL 0x8 /* Per VL counter */ 702 #define CNTR_SDMA 0x10 703 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */ 704 #define CNTR_MODE_W 0x0 705 #define CNTR_MODE_R 0x1 706 707 /* VLs Supported/Operational */ 708 #define HFI1_MIN_VLS_SUPPORTED 1 709 #define HFI1_MAX_VLS_SUPPORTED 8 710 711 #define HFI1_GUIDS_PER_PORT 5 712 #define HFI1_PORT_GUID_INDEX 0 713 714 static inline void incr_cntr64(u64 *cntr) 715 { 716 if (*cntr < (u64)-1LL) 717 (*cntr)++; 718 } 719 720 static inline void incr_cntr32(u32 *cntr) 721 { 722 if (*cntr < (u32)-1LL) 723 (*cntr)++; 724 } 725 726 #define MAX_NAME_SIZE 64 727 struct hfi1_msix_entry { 728 enum irq_type type; 729 int irq; 730 void *arg; 731 cpumask_t mask; 732 struct irq_affinity_notify notify; 733 }; 734 735 struct hfi1_msix_info { 736 /* lock to synchronize in_use_msix access */ 737 spinlock_t msix_lock; 738 DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS); 739 struct hfi1_msix_entry *msix_entries; 740 u16 max_requested; 741 }; 742 743 /* per-SL CCA information */ 744 struct cca_timer { 745 struct hrtimer hrtimer; 746 struct hfi1_pportdata *ppd; /* read-only */ 747 int sl; /* read-only */ 748 u16 ccti; /* read/write - current value of CCTI */ 749 }; 750 751 struct link_down_reason { 752 /* 753 * SMA-facing value. Should be set from .latest when 754 * HLS_UP_* -> HLS_DN_* transition actually occurs. 755 */ 756 u8 sma; 757 u8 latest; 758 }; 759 760 enum { 761 LO_PRIO_TABLE, 762 HI_PRIO_TABLE, 763 MAX_PRIO_TABLE 764 }; 765 766 struct vl_arb_cache { 767 /* protect vl arb cache */ 768 spinlock_t lock; 769 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE]; 770 }; 771 772 /* 773 * The structure below encapsulates data relevant to a physical IB Port. 774 * Current chips support only one such port, but the separation 775 * clarifies things a bit. Note that to conform to IB conventions, 776 * port-numbers are one-based. The first or only port is port1. 777 */ 778 struct hfi1_pportdata { 779 struct hfi1_ibport ibport_data; 780 781 struct hfi1_devdata *dd; 782 struct kobject pport_cc_kobj; 783 struct kobject sc2vl_kobj; 784 struct kobject sl2sc_kobj; 785 struct kobject vl2mtu_kobj; 786 787 /* PHY support */ 788 struct qsfp_data qsfp_info; 789 /* Values for SI tuning of SerDes */ 790 u32 port_type; 791 u32 tx_preset_eq; 792 u32 tx_preset_noeq; 793 u32 rx_preset; 794 u8 local_atten; 795 u8 remote_atten; 796 u8 default_atten; 797 u8 max_power_class; 798 799 /* did we read platform config from scratch registers? */ 800 bool config_from_scratch; 801 802 /* GUIDs for this interface, in host order, guids[0] is a port guid */ 803 u64 guids[HFI1_GUIDS_PER_PORT]; 804 805 /* GUID for peer interface, in host order */ 806 u64 neighbor_guid; 807 808 /* up or down physical link state */ 809 u32 linkup; 810 811 /* 812 * this address is mapped read-only into user processes so they can 813 * get status cheaply, whenever they want. One qword of status per port 814 */ 815 u64 *statusp; 816 817 /* SendDMA related entries */ 818 819 struct workqueue_struct *hfi1_wq; 820 struct workqueue_struct *link_wq; 821 822 /* move out of interrupt context */ 823 struct work_struct link_vc_work; 824 struct work_struct link_up_work; 825 struct work_struct link_down_work; 826 struct work_struct sma_message_work; 827 struct work_struct freeze_work; 828 struct work_struct link_downgrade_work; 829 struct work_struct link_bounce_work; 830 struct delayed_work start_link_work; 831 /* host link state variables */ 832 struct mutex hls_lock; 833 u32 host_link_state; 834 835 /* these are the "32 bit" regs */ 836 837 u32 ibmtu; /* The MTU programmed for this unit */ 838 /* 839 * Current max size IB packet (in bytes) including IB headers, that 840 * we can send. Changes when ibmtu changes. 841 */ 842 u32 ibmaxlen; 843 u32 current_egress_rate; /* units [10^6 bits/sec] */ 844 /* LID programmed for this instance */ 845 u32 lid; 846 /* list of pkeys programmed; 0 if not set */ 847 u16 pkeys[MAX_PKEY_VALUES]; 848 u16 link_width_supported; 849 u16 link_width_downgrade_supported; 850 u16 link_speed_supported; 851 u16 link_width_enabled; 852 u16 link_width_downgrade_enabled; 853 u16 link_speed_enabled; 854 u16 link_width_active; 855 u16 link_width_downgrade_tx_active; 856 u16 link_width_downgrade_rx_active; 857 u16 link_speed_active; 858 u8 vls_supported; 859 u8 vls_operational; 860 u8 actual_vls_operational; 861 /* LID mask control */ 862 u8 lmc; 863 /* Rx Polarity inversion (compensate for ~tx on partner) */ 864 u8 rx_pol_inv; 865 866 u8 hw_pidx; /* physical port index */ 867 u8 port; /* IB port number and index into dd->pports - 1 */ 868 /* type of neighbor node */ 869 u8 neighbor_type; 870 u8 neighbor_normal; 871 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */ 872 u8 neighbor_port_number; 873 u8 is_sm_config_started; 874 u8 offline_disabled_reason; 875 u8 is_active_optimize_enabled; 876 u8 driver_link_ready; /* driver ready for active link */ 877 u8 link_enabled; /* link enabled? */ 878 u8 linkinit_reason; 879 u8 local_tx_rate; /* rate given to 8051 firmware */ 880 u8 qsfp_retry_count; 881 882 /* placeholders for IB MAD packet settings */ 883 u8 overrun_threshold; 884 u8 phy_error_threshold; 885 unsigned int is_link_down_queued; 886 887 /* Used to override LED behavior for things like maintenance beaconing*/ 888 /* 889 * Alternates per phase of blink 890 * [0] holds LED off duration, [1] holds LED on duration 891 */ 892 unsigned long led_override_vals[2]; 893 u8 led_override_phase; /* LSB picks from vals[] */ 894 atomic_t led_override_timer_active; 895 /* Used to flash LEDs in override mode */ 896 struct timer_list led_override_timer; 897 898 u32 sm_trap_qp; 899 u32 sa_qp; 900 901 /* 902 * cca_timer_lock protects access to the per-SL cca_timer 903 * structures (specifically the ccti member). 904 */ 905 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp; 906 struct cca_timer cca_timer[OPA_MAX_SLS]; 907 908 /* List of congestion control table entries */ 909 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX]; 910 911 /* congestion entries, each entry corresponding to a SL */ 912 struct opa_congestion_setting_entry_shadow 913 congestion_entries[OPA_MAX_SLS]; 914 915 /* 916 * cc_state_lock protects (write) access to the per-port 917 * struct cc_state. 918 */ 919 spinlock_t cc_state_lock ____cacheline_aligned_in_smp; 920 921 struct cc_state __rcu *cc_state; 922 923 /* Total number of congestion control table entries */ 924 u16 total_cct_entry; 925 926 /* Bit map identifying service level */ 927 u32 cc_sl_control_map; 928 929 /* CA's max number of 64 entry units in the congestion control table */ 930 u8 cc_max_table_entries; 931 932 /* 933 * begin congestion log related entries 934 * cc_log_lock protects all congestion log related data 935 */ 936 spinlock_t cc_log_lock ____cacheline_aligned_in_smp; 937 u8 threshold_cong_event_map[OPA_MAX_SLS / 8]; 938 u16 threshold_event_counter; 939 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS]; 940 int cc_log_idx; /* index for logging events */ 941 int cc_mad_idx; /* index for reporting events */ 942 /* end congestion log related entries */ 943 944 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE]; 945 946 /* port relative counter buffer */ 947 u64 *cntrs; 948 /* port relative synthetic counter buffer */ 949 u64 *scntrs; 950 /* port_xmit_discards are synthesized from different egress errors */ 951 u64 port_xmit_discards; 952 u64 port_xmit_discards_vl[C_VL_COUNT]; 953 u64 port_xmit_constraint_errors; 954 u64 port_rcv_constraint_errors; 955 /* count of 'link_err' interrupts from DC */ 956 u64 link_downed; 957 /* number of times link retrained successfully */ 958 u64 link_up; 959 /* number of times a link unknown frame was reported */ 960 u64 unknown_frame_count; 961 /* port_ltp_crc_mode is returned in 'portinfo' MADs */ 962 u16 port_ltp_crc_mode; 963 /* port_crc_mode_enabled is the crc we support */ 964 u8 port_crc_mode_enabled; 965 /* mgmt_allowed is also returned in 'portinfo' MADs */ 966 u8 mgmt_allowed; 967 u8 part_enforce; /* partition enforcement flags */ 968 struct link_down_reason local_link_down_reason; 969 struct link_down_reason neigh_link_down_reason; 970 /* Value to be sent to link peer on LinkDown .*/ 971 u8 remote_link_down_reason; 972 /* Error events that will cause a port bounce. */ 973 u32 port_error_action; 974 struct work_struct linkstate_active_work; 975 /* Does this port need to prescan for FECNs */ 976 bool cc_prescan; 977 /* 978 * Sample sendWaitCnt & sendWaitVlCnt during link transition 979 * and counter request. 980 */ 981 u64 port_vl_xmit_wait_last[C_VL_COUNT + 1]; 982 u16 prev_link_width; 983 u64 vl_xmit_flit_cnt[C_VL_COUNT + 1]; 984 }; 985 986 typedef void (*opcode_handler)(struct hfi1_packet *packet); 987 typedef void (*hfi1_make_req)(struct rvt_qp *qp, 988 struct hfi1_pkt_state *ps, 989 struct rvt_swqe *wqe); 990 extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[]; 991 extern const rhf_rcv_function_ptr netdev_rhf_rcv_functions[]; 992 993 /* return values for the RHF receive functions */ 994 #define RHF_RCV_CONTINUE 0 /* keep going */ 995 #define RHF_RCV_DONE 1 /* stop, this packet processed */ 996 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */ 997 998 struct rcv_array_data { 999 u16 ngroups; 1000 u16 nctxt_extra; 1001 u8 group_size; 1002 }; 1003 1004 struct per_vl_data { 1005 u16 mtu; 1006 struct send_context *sc; 1007 }; 1008 1009 /* 16 to directly index */ 1010 #define PER_VL_SEND_CONTEXTS 16 1011 1012 struct err_info_rcvport { 1013 u8 status_and_code; 1014 u64 packet_flit1; 1015 u64 packet_flit2; 1016 }; 1017 1018 struct err_info_constraint { 1019 u8 status; 1020 u16 pkey; 1021 u32 slid; 1022 }; 1023 1024 struct hfi1_temp { 1025 unsigned int curr; /* current temperature */ 1026 unsigned int lo_lim; /* low temperature limit */ 1027 unsigned int hi_lim; /* high temperature limit */ 1028 unsigned int crit_lim; /* critical temperature limit */ 1029 u8 triggers; /* temperature triggers */ 1030 }; 1031 1032 struct hfi1_i2c_bus { 1033 struct hfi1_devdata *controlling_dd; /* current controlling device */ 1034 struct i2c_adapter adapter; /* bus details */ 1035 struct i2c_algo_bit_data algo; /* bus algorithm details */ 1036 int num; /* bus number, 0 or 1 */ 1037 }; 1038 1039 /* common data between shared ASIC HFIs */ 1040 struct hfi1_asic_data { 1041 struct hfi1_devdata *dds[2]; /* back pointers */ 1042 struct mutex asic_resource_mutex; 1043 struct hfi1_i2c_bus *i2c_bus0; 1044 struct hfi1_i2c_bus *i2c_bus1; 1045 }; 1046 1047 /* sizes for both the QP and RSM map tables */ 1048 #define NUM_MAP_ENTRIES 256 1049 #define NUM_MAP_REGS 32 1050 1051 /* Virtual NIC information */ 1052 struct hfi1_vnic_data { 1053 struct kmem_cache *txreq_cache; 1054 u8 num_vports; 1055 }; 1056 1057 struct hfi1_vnic_vport_info; 1058 1059 /* device data struct now contains only "general per-device" info. 1060 * fields related to a physical IB port are in a hfi1_pportdata struct. 1061 */ 1062 struct sdma_engine; 1063 struct sdma_vl_map; 1064 1065 #define BOARD_VERS_MAX 96 /* how long the version string can be */ 1066 #define SERIAL_MAX 16 /* length of the serial number */ 1067 1068 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64); 1069 struct hfi1_devdata { 1070 struct hfi1_ibdev verbs_dev; /* must be first */ 1071 /* pointers to related structs for this device */ 1072 /* pci access data structure */ 1073 struct pci_dev *pcidev; 1074 struct cdev user_cdev; 1075 struct cdev diag_cdev; 1076 struct cdev ui_cdev; 1077 struct device *user_device; 1078 struct device *diag_device; 1079 struct device *ui_device; 1080 1081 /* first mapping up to RcvArray */ 1082 u8 __iomem *kregbase1; 1083 resource_size_t physaddr; 1084 1085 /* second uncached mapping from RcvArray to pio send buffers */ 1086 u8 __iomem *kregbase2; 1087 /* for detecting offset above kregbase2 address */ 1088 u32 base2_start; 1089 1090 /* Per VL data. Enough for all VLs but not all elements are set/used. */ 1091 struct per_vl_data vld[PER_VL_SEND_CONTEXTS]; 1092 /* send context data */ 1093 struct send_context_info *send_contexts; 1094 /* map hardware send contexts to software index */ 1095 u8 *hw_to_sw; 1096 /* spinlock for allocating and releasing send context resources */ 1097 spinlock_t sc_lock; 1098 /* lock for pio_map */ 1099 spinlock_t pio_map_lock; 1100 /* Send Context initialization lock. */ 1101 spinlock_t sc_init_lock; 1102 /* lock for sdma_map */ 1103 spinlock_t sde_map_lock; 1104 /* array of kernel send contexts */ 1105 struct send_context **kernel_send_context; 1106 /* array of vl maps */ 1107 struct pio_vl_map __rcu *pio_map; 1108 /* default flags to last descriptor */ 1109 u64 default_desc1; 1110 1111 /* fields common to all SDMA engines */ 1112 1113 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */ 1114 dma_addr_t sdma_heads_phys; 1115 void *sdma_pad_dma; /* DMA'ed by chip */ 1116 dma_addr_t sdma_pad_phys; 1117 /* for deallocation */ 1118 size_t sdma_heads_size; 1119 /* num used */ 1120 u32 num_sdma; 1121 /* array of engines sized by num_sdma */ 1122 struct sdma_engine *per_sdma; 1123 /* array of vl maps */ 1124 struct sdma_vl_map __rcu *sdma_map; 1125 /* SPC freeze waitqueue and variable */ 1126 wait_queue_head_t sdma_unfreeze_wq; 1127 atomic_t sdma_unfreeze_count; 1128 1129 u32 lcb_access_count; /* count of LCB users */ 1130 1131 /* common data between shared ASIC HFIs in this OS */ 1132 struct hfi1_asic_data *asic_data; 1133 1134 /* mem-mapped pointer to base of PIO buffers */ 1135 void __iomem *piobase; 1136 /* 1137 * write-combining mem-mapped pointer to base of RcvArray 1138 * memory. 1139 */ 1140 void __iomem *rcvarray_wc; 1141 /* 1142 * credit return base - a per-NUMA range of DMA address that 1143 * the chip will use to update the per-context free counter 1144 */ 1145 struct credit_return_base *cr_base; 1146 1147 /* send context numbers and sizes for each type */ 1148 struct sc_config_sizes sc_sizes[SC_MAX]; 1149 1150 char *boardname; /* human readable board info */ 1151 1152 u64 ctx0_seq_drop; 1153 1154 /* reset value */ 1155 u64 z_int_counter; 1156 u64 z_rcv_limit; 1157 u64 z_send_schedule; 1158 1159 u64 __percpu *send_schedule; 1160 /* number of reserved contexts for netdev usage */ 1161 u16 num_netdev_contexts; 1162 /* number of receive contexts in use by the driver */ 1163 u32 num_rcv_contexts; 1164 /* number of pio send contexts in use by the driver */ 1165 u32 num_send_contexts; 1166 /* 1167 * number of ctxts available for PSM open 1168 */ 1169 u32 freectxts; 1170 /* total number of available user/PSM contexts */ 1171 u32 num_user_contexts; 1172 /* base receive interrupt timeout, in CSR units */ 1173 u32 rcv_intr_timeout_csr; 1174 1175 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */ 1176 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */ 1177 spinlock_t uctxt_lock; /* protect rcd changes */ 1178 struct mutex dc8051_lock; /* exclusive access to 8051 */ 1179 struct workqueue_struct *update_cntr_wq; 1180 struct work_struct update_cntr_work; 1181 /* exclusive access to 8051 memory */ 1182 spinlock_t dc8051_memlock; 1183 int dc8051_timed_out; /* remember if the 8051 timed out */ 1184 /* 1185 * A page that will hold event notification bitmaps for all 1186 * contexts. This page will be mapped into all processes. 1187 */ 1188 unsigned long *events; 1189 /* 1190 * per unit status, see also portdata statusp 1191 * mapped read-only into user processes so they can get unit and 1192 * IB link status cheaply 1193 */ 1194 struct hfi1_status *status; 1195 1196 /* revision register shadow */ 1197 u64 revision; 1198 /* Base GUID for device (network order) */ 1199 u64 base_guid; 1200 1201 /* both sides of the PCIe link are gen3 capable */ 1202 u8 link_gen3_capable; 1203 u8 dc_shutdown; 1204 /* localbus width (1, 2,4,8,16,32) from config space */ 1205 u32 lbus_width; 1206 /* localbus speed in MHz */ 1207 u32 lbus_speed; 1208 int unit; /* unit # of this chip */ 1209 int node; /* home node of this chip */ 1210 1211 /* save these PCI fields to restore after a reset */ 1212 u32 pcibar0; 1213 u32 pcibar1; 1214 u32 pci_rom; 1215 u16 pci_command; 1216 u16 pcie_devctl; 1217 u16 pcie_lnkctl; 1218 u16 pcie_devctl2; 1219 u32 pci_msix0; 1220 u32 pci_tph2; 1221 1222 /* 1223 * ASCII serial number, from flash, large enough for original 1224 * all digit strings, and longer serial number format 1225 */ 1226 u8 serial[SERIAL_MAX]; 1227 /* human readable board version */ 1228 u8 boardversion[BOARD_VERS_MAX]; 1229 u8 lbus_info[32]; /* human readable localbus info */ 1230 /* chip major rev, from CceRevision */ 1231 u8 majrev; 1232 /* chip minor rev, from CceRevision */ 1233 u8 minrev; 1234 /* hardware ID */ 1235 u8 hfi1_id; 1236 /* implementation code */ 1237 u8 icode; 1238 /* vAU of this device */ 1239 u8 vau; 1240 /* vCU of this device */ 1241 u8 vcu; 1242 /* link credits of this device */ 1243 u16 link_credits; 1244 /* initial vl15 credits to use */ 1245 u16 vl15_init; 1246 1247 /* 1248 * Cached value for vl15buf, read during verify cap interrupt. VL15 1249 * credits are to be kept at 0 and set when handling the link-up 1250 * interrupt. This removes the possibility of receiving VL15 MAD 1251 * packets before this HFI is ready. 1252 */ 1253 u16 vl15buf_cached; 1254 1255 /* Misc small ints */ 1256 u8 n_krcv_queues; 1257 u8 qos_shift; 1258 1259 u16 irev; /* implementation revision */ 1260 u32 dc8051_ver; /* 8051 firmware version */ 1261 1262 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */ 1263 struct platform_config platform_config; 1264 struct platform_config_cache pcfg_cache; 1265 1266 struct diag_client *diag_client; 1267 1268 /* general interrupt: mask of handled interrupts */ 1269 u64 gi_mask[CCE_NUM_INT_CSRS]; 1270 1271 struct rcv_array_data rcv_entries; 1272 1273 /* cycle length of PS* counters in HW (in picoseconds) */ 1274 u16 psxmitwait_check_rate; 1275 1276 /* 1277 * 64 bit synthetic counters 1278 */ 1279 struct timer_list synth_stats_timer; 1280 1281 /* MSI-X information */ 1282 struct hfi1_msix_info msix_info; 1283 1284 /* 1285 * device counters 1286 */ 1287 char *cntrnames; 1288 size_t cntrnameslen; 1289 size_t ndevcntrs; 1290 u64 *cntrs; 1291 u64 *scntrs; 1292 1293 /* 1294 * remembered values for synthetic counters 1295 */ 1296 u64 last_tx; 1297 u64 last_rx; 1298 1299 /* 1300 * per-port counters 1301 */ 1302 size_t nportcntrs; 1303 char *portcntrnames; 1304 size_t portcntrnameslen; 1305 1306 struct err_info_rcvport err_info_rcvport; 1307 struct err_info_constraint err_info_rcv_constraint; 1308 struct err_info_constraint err_info_xmit_constraint; 1309 1310 atomic_t drop_packet; 1311 bool do_drop; 1312 u8 err_info_uncorrectable; 1313 u8 err_info_fmconfig; 1314 1315 /* 1316 * Software counters for the status bits defined by the 1317 * associated error status registers 1318 */ 1319 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS]; 1320 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS]; 1321 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS]; 1322 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS]; 1323 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS]; 1324 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS]; 1325 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS]; 1326 1327 /* Software counter that spans all contexts */ 1328 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS]; 1329 /* Software counter that spans all DMA engines */ 1330 u64 sw_send_dma_eng_err_status_cnt[ 1331 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS]; 1332 /* Software counter that aggregates all cce_err_status errors */ 1333 u64 sw_cce_err_status_aggregate; 1334 /* Software counter that aggregates all bypass packet rcv errors */ 1335 u64 sw_rcv_bypass_packet_errors; 1336 1337 /* Save the enabled LCB error bits */ 1338 u64 lcb_err_en; 1339 struct cpu_mask_set *comp_vect; 1340 int *comp_vect_mappings; 1341 u32 comp_vect_possible_cpus; 1342 1343 /* 1344 * Capability to have different send engines simply by changing a 1345 * pointer value. 1346 */ 1347 send_routine process_pio_send ____cacheline_aligned_in_smp; 1348 send_routine process_dma_send; 1349 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf, 1350 u64 pbc, const void *from, size_t count); 1351 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx, 1352 struct hfi1_vnic_vport_info *vinfo, 1353 struct sk_buff *skb, u64 pbc, u8 plen); 1354 /* hfi1_pportdata, points to array of (physical) port-specific 1355 * data structs, indexed by pidx (0..n-1) 1356 */ 1357 struct hfi1_pportdata *pport; 1358 /* receive context data */ 1359 struct hfi1_ctxtdata **rcd; 1360 u64 __percpu *int_counter; 1361 /* verbs tx opcode stats */ 1362 struct hfi1_opcode_stats_perctx __percpu *tx_opstats; 1363 /* device (not port) flags, basically device capabilities */ 1364 u16 flags; 1365 /* Number of physical ports available */ 1366 u8 num_pports; 1367 /* Lowest context number which can be used by user processes or VNIC */ 1368 u8 first_dyn_alloc_ctxt; 1369 /* adding a new field here would make it part of this cacheline */ 1370 1371 /* seqlock for sc2vl */ 1372 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp; 1373 u64 sc2vl[4]; 1374 u64 __percpu *rcv_limit; 1375 /* adding a new field here would make it part of this cacheline */ 1376 1377 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */ 1378 u8 oui1; 1379 u8 oui2; 1380 u8 oui3; 1381 1382 /* Timer and counter used to detect RcvBufOvflCnt changes */ 1383 struct timer_list rcverr_timer; 1384 1385 wait_queue_head_t event_queue; 1386 1387 /* receive context tail dummy address */ 1388 __le64 *rcvhdrtail_dummy_kvaddr; 1389 dma_addr_t rcvhdrtail_dummy_dma; 1390 1391 u32 rcv_ovfl_cnt; 1392 /* Serialize ASPM enable/disable between multiple verbs contexts */ 1393 spinlock_t aspm_lock; 1394 /* Number of verbs contexts which have disabled ASPM */ 1395 atomic_t aspm_disabled_cnt; 1396 /* Keeps track of user space clients */ 1397 atomic_t user_refcount; 1398 /* Used to wait for outstanding user space clients before dev removal */ 1399 struct completion user_comp; 1400 1401 bool eprom_available; /* true if EPROM is available for this device */ 1402 bool aspm_supported; /* Does HW support ASPM */ 1403 bool aspm_enabled; /* ASPM state: enabled/disabled */ 1404 struct rhashtable *sdma_rht; 1405 1406 /* vnic data */ 1407 struct hfi1_vnic_data vnic; 1408 /* Lock to protect IRQ SRC register access */ 1409 spinlock_t irq_src_lock; 1410 int vnic_num_vports; 1411 struct net_device *dummy_netdev; 1412 1413 /* Keeps track of IPoIB RSM rule users */ 1414 atomic_t ipoib_rsm_usr_num; 1415 }; 1416 1417 /* 8051 firmware version helper */ 1418 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c)) 1419 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16) 1420 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8) 1421 #define dc8051_ver_patch(a) ((a) & 0x0000ff) 1422 1423 /* f_put_tid types */ 1424 #define PT_EXPECTED 0 1425 #define PT_EAGER 1 1426 #define PT_INVALID_FLUSH 2 1427 #define PT_INVALID 3 1428 1429 struct tid_rb_node; 1430 struct mmu_rb_node; 1431 struct mmu_rb_handler; 1432 1433 /* Private data for file operations */ 1434 struct hfi1_filedata { 1435 struct srcu_struct pq_srcu; 1436 struct hfi1_devdata *dd; 1437 struct hfi1_ctxtdata *uctxt; 1438 struct hfi1_user_sdma_comp_q *cq; 1439 /* update side lock for SRCU */ 1440 spinlock_t pq_rcu_lock; 1441 struct hfi1_user_sdma_pkt_q __rcu *pq; 1442 u16 subctxt; 1443 /* for cpu affinity; -1 if none */ 1444 int rec_cpu_num; 1445 u32 tid_n_pinned; 1446 bool use_mn; 1447 struct tid_rb_node **entry_to_rb; 1448 spinlock_t tid_lock; /* protect tid_[limit,used] counters */ 1449 u32 tid_limit; 1450 u32 tid_used; 1451 u32 *invalid_tids; 1452 u32 invalid_tid_idx; 1453 /* protect invalid_tids array and invalid_tid_idx */ 1454 spinlock_t invalid_lock; 1455 }; 1456 1457 extern struct xarray hfi1_dev_table; 1458 struct hfi1_devdata *hfi1_lookup(int unit); 1459 1460 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt) 1461 { 1462 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * 1463 HFI1_MAX_SHARED_CTXTS; 1464 } 1465 1466 int hfi1_init(struct hfi1_devdata *dd, int reinit); 1467 int hfi1_count_active_units(void); 1468 1469 int hfi1_diag_add(struct hfi1_devdata *dd); 1470 void hfi1_diag_remove(struct hfi1_devdata *dd); 1471 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup); 1472 1473 void handle_user_interrupt(struct hfi1_ctxtdata *rcd); 1474 1475 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1476 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd); 1477 int hfi1_create_kctxts(struct hfi1_devdata *dd); 1478 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 1479 struct hfi1_ctxtdata **rcd); 1480 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd); 1481 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 1482 struct hfi1_devdata *dd, u8 hw_pidx, u8 port); 1483 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1484 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd); 1485 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd); 1486 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 1487 u16 ctxt); 1488 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt); 1489 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread); 1490 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1491 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1492 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget); 1493 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget); 1494 void set_all_slowpath(struct hfi1_devdata *dd); 1495 1496 extern const struct pci_device_id hfi1_pci_tbl[]; 1497 void hfi1_make_ud_req_9B(struct rvt_qp *qp, 1498 struct hfi1_pkt_state *ps, 1499 struct rvt_swqe *wqe); 1500 1501 void hfi1_make_ud_req_16B(struct rvt_qp *qp, 1502 struct hfi1_pkt_state *ps, 1503 struct rvt_swqe *wqe); 1504 1505 /* receive packet handler dispositions */ 1506 #define RCV_PKT_OK 0x0 /* keep going */ 1507 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */ 1508 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */ 1509 1510 /** 1511 * hfi1_rcd_head - add accessor for rcd head 1512 * @rcd: the context 1513 */ 1514 static inline u32 hfi1_rcd_head(struct hfi1_ctxtdata *rcd) 1515 { 1516 return rcd->head; 1517 } 1518 1519 /** 1520 * hfi1_set_rcd_head - add accessor for rcd head 1521 * @rcd: the context 1522 * @head: the new head 1523 */ 1524 static inline void hfi1_set_rcd_head(struct hfi1_ctxtdata *rcd, u32 head) 1525 { 1526 rcd->head = head; 1527 } 1528 1529 /* calculate the current RHF address */ 1530 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd) 1531 { 1532 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset; 1533 } 1534 1535 /* return DMA_RTAIL configuration */ 1536 static inline bool get_dma_rtail_setting(struct hfi1_ctxtdata *rcd) 1537 { 1538 return !!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL); 1539 } 1540 1541 /** 1542 * hfi1_seq_incr_wrap - wrapping increment for sequence 1543 * @seq: the current sequence number 1544 * 1545 * Returns: the incremented seq 1546 */ 1547 static inline u8 hfi1_seq_incr_wrap(u8 seq) 1548 { 1549 if (++seq > RHF_MAX_SEQ) 1550 seq = 1; 1551 return seq; 1552 } 1553 1554 /** 1555 * hfi1_seq_cnt - return seq_cnt member 1556 * @rcd: the receive context 1557 * 1558 * Return seq_cnt member 1559 */ 1560 static inline u8 hfi1_seq_cnt(struct hfi1_ctxtdata *rcd) 1561 { 1562 return rcd->seq_cnt; 1563 } 1564 1565 /** 1566 * hfi1_set_seq_cnt - return seq_cnt member 1567 * @rcd: the receive context 1568 * 1569 * Return seq_cnt member 1570 */ 1571 static inline void hfi1_set_seq_cnt(struct hfi1_ctxtdata *rcd, u8 cnt) 1572 { 1573 rcd->seq_cnt = cnt; 1574 } 1575 1576 /** 1577 * last_rcv_seq - is last 1578 * @rcd: the receive context 1579 * @seq: sequence 1580 * 1581 * return true if last packet 1582 */ 1583 static inline bool last_rcv_seq(struct hfi1_ctxtdata *rcd, u32 seq) 1584 { 1585 return seq != rcd->seq_cnt; 1586 } 1587 1588 /** 1589 * rcd_seq_incr - increment context sequence number 1590 * @rcd: the receive context 1591 * @seq: the current sequence number 1592 * 1593 * Returns: true if the this was the last packet 1594 */ 1595 static inline bool hfi1_seq_incr(struct hfi1_ctxtdata *rcd, u32 seq) 1596 { 1597 rcd->seq_cnt = hfi1_seq_incr_wrap(rcd->seq_cnt); 1598 return last_rcv_seq(rcd, seq); 1599 } 1600 1601 /** 1602 * get_hdrqentsize - return hdrq entry size 1603 * @rcd: the receive context 1604 */ 1605 static inline u8 get_hdrqentsize(struct hfi1_ctxtdata *rcd) 1606 { 1607 return rcd->rcvhdrqentsize; 1608 } 1609 1610 /** 1611 * get_hdrq_cnt - return hdrq count 1612 * @rcd: the receive context 1613 */ 1614 static inline u16 get_hdrq_cnt(struct hfi1_ctxtdata *rcd) 1615 { 1616 return rcd->rcvhdrq_cnt; 1617 } 1618 1619 /** 1620 * hfi1_is_slowpath - check if this context is slow path 1621 * @rcd: the receive context 1622 */ 1623 static inline bool hfi1_is_slowpath(struct hfi1_ctxtdata *rcd) 1624 { 1625 return rcd->do_interrupt == rcd->slow_handler; 1626 } 1627 1628 /** 1629 * hfi1_is_fastpath - check if this context is fast path 1630 * @rcd: the receive context 1631 */ 1632 static inline bool hfi1_is_fastpath(struct hfi1_ctxtdata *rcd) 1633 { 1634 if (rcd->ctxt == HFI1_CTRL_CTXT) 1635 return false; 1636 1637 return rcd->do_interrupt == rcd->fast_handler; 1638 } 1639 1640 /** 1641 * hfi1_set_fast - change to the fast handler 1642 * @rcd: the receive context 1643 */ 1644 static inline void hfi1_set_fast(struct hfi1_ctxtdata *rcd) 1645 { 1646 if (unlikely(!rcd)) 1647 return; 1648 if (unlikely(!hfi1_is_fastpath(rcd))) 1649 rcd->do_interrupt = rcd->fast_handler; 1650 } 1651 1652 int hfi1_reset_device(int); 1653 1654 void receive_interrupt_work(struct work_struct *work); 1655 1656 /* extract service channel from header and rhf */ 1657 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf) 1658 { 1659 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4); 1660 } 1661 1662 #define HFI1_JKEY_WIDTH 16 1663 #define HFI1_JKEY_MASK (BIT(16) - 1) 1664 #define HFI1_ADMIN_JKEY_RANGE 32 1665 1666 /* 1667 * J_KEYs are split and allocated in the following groups: 1668 * 0 - 31 - users with administrator privileges 1669 * 32 - 63 - kernel protocols using KDETH packets 1670 * 64 - 65535 - all other users using KDETH packets 1671 */ 1672 static inline u16 generate_jkey(kuid_t uid) 1673 { 1674 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK; 1675 1676 if (capable(CAP_SYS_ADMIN)) 1677 jkey &= HFI1_ADMIN_JKEY_RANGE - 1; 1678 else if (jkey < 64) 1679 jkey |= BIT(HFI1_JKEY_WIDTH - 1); 1680 1681 return jkey; 1682 } 1683 1684 /* 1685 * active_egress_rate 1686 * 1687 * returns the active egress rate in units of [10^6 bits/sec] 1688 */ 1689 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd) 1690 { 1691 u16 link_speed = ppd->link_speed_active; 1692 u16 link_width = ppd->link_width_active; 1693 u32 egress_rate; 1694 1695 if (link_speed == OPA_LINK_SPEED_25G) 1696 egress_rate = 25000; 1697 else /* assume OPA_LINK_SPEED_12_5G */ 1698 egress_rate = 12500; 1699 1700 switch (link_width) { 1701 case OPA_LINK_WIDTH_4X: 1702 egress_rate *= 4; 1703 break; 1704 case OPA_LINK_WIDTH_3X: 1705 egress_rate *= 3; 1706 break; 1707 case OPA_LINK_WIDTH_2X: 1708 egress_rate *= 2; 1709 break; 1710 default: 1711 /* assume IB_WIDTH_1X */ 1712 break; 1713 } 1714 1715 return egress_rate; 1716 } 1717 1718 /* 1719 * egress_cycles 1720 * 1721 * Returns the number of 'fabric clock cycles' to egress a packet 1722 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock 1723 * rate is (approximately) 805 MHz, the units of the returned value 1724 * are (1/805 MHz). 1725 */ 1726 static inline u32 egress_cycles(u32 len, u32 rate) 1727 { 1728 u32 cycles; 1729 1730 /* 1731 * cycles is: 1732 * 1733 * (length) [bits] / (rate) [bits/sec] 1734 * --------------------------------------------------- 1735 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec] 1736 */ 1737 1738 cycles = len * 8; /* bits */ 1739 cycles *= 805; 1740 cycles /= rate; 1741 1742 return cycles; 1743 } 1744 1745 void set_link_ipg(struct hfi1_pportdata *ppd); 1746 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, 1747 u32 rqpn, u8 svc_type); 1748 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, 1749 u16 pkey, u32 slid, u32 dlid, u8 sc5, 1750 const struct ib_grh *old_grh); 1751 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1752 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1753 u8 sc5, const struct ib_grh *old_grh); 1754 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1755 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1756 u8 sc5, const struct ib_grh *old_grh); 1757 1758 #define PKEY_CHECK_INVALID -1 1759 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1760 u8 sc5, int8_t s_pkey_index); 1761 1762 #define PACKET_EGRESS_TIMEOUT 350 1763 static inline void pause_for_credit_return(struct hfi1_devdata *dd) 1764 { 1765 /* Pause at least 1us, to ensure chip returns all credits */ 1766 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000; 1767 1768 udelay(usec ? usec : 1); 1769 } 1770 1771 /** 1772 * sc_to_vlt() reverse lookup sc to vl 1773 * @dd - devdata 1774 * @sc5 - 5 bit sc 1775 */ 1776 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5) 1777 { 1778 unsigned seq; 1779 u8 rval; 1780 1781 if (sc5 >= OPA_MAX_SCS) 1782 return (u8)(0xff); 1783 1784 do { 1785 seq = read_seqbegin(&dd->sc2vl_lock); 1786 rval = *(((u8 *)dd->sc2vl) + sc5); 1787 } while (read_seqretry(&dd->sc2vl_lock, seq)); 1788 1789 return rval; 1790 } 1791 1792 #define PKEY_MEMBER_MASK 0x8000 1793 #define PKEY_LOW_15_MASK 0x7fff 1794 1795 /* 1796 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1797 * being an entry from the ingress partition key table), return 0 1798 * otherwise. Use the matching criteria for ingress partition keys 1799 * specified in the OPAv1 spec., section 9.10.14. 1800 */ 1801 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent) 1802 { 1803 u16 mkey = pkey & PKEY_LOW_15_MASK; 1804 u16 ment = ent & PKEY_LOW_15_MASK; 1805 1806 if (mkey == ment) { 1807 /* 1808 * If pkey[15] is clear (limited partition member), 1809 * is bit 15 in the corresponding table element 1810 * clear (limited member)? 1811 */ 1812 if (!(pkey & PKEY_MEMBER_MASK)) 1813 return !!(ent & PKEY_MEMBER_MASK); 1814 return 1; 1815 } 1816 return 0; 1817 } 1818 1819 /* 1820 * ingress_pkey_table_search - search the entire pkey table for 1821 * an entry which matches 'pkey'. return 0 if a match is found, 1822 * and 1 otherwise. 1823 */ 1824 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey) 1825 { 1826 int i; 1827 1828 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1829 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1830 return 0; 1831 } 1832 return 1; 1833 } 1834 1835 /* 1836 * ingress_pkey_table_fail - record a failure of ingress pkey validation, 1837 * i.e., increment port_rcv_constraint_errors for the port, and record 1838 * the 'error info' for this failure. 1839 */ 1840 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey, 1841 u32 slid) 1842 { 1843 struct hfi1_devdata *dd = ppd->dd; 1844 1845 incr_cntr64(&ppd->port_rcv_constraint_errors); 1846 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) { 1847 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK; 1848 dd->err_info_rcv_constraint.slid = slid; 1849 dd->err_info_rcv_constraint.pkey = pkey; 1850 } 1851 } 1852 1853 /* 1854 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1 1855 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx 1856 * is a hint as to the best place in the partition key table to begin 1857 * searching. This function should not be called on the data path because 1858 * of performance reasons. On datapath pkey check is expected to be done 1859 * by HW and rcv_pkey_check function should be called instead. 1860 */ 1861 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1862 u8 sc5, u8 idx, u32 slid, bool force) 1863 { 1864 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1865 return 0; 1866 1867 /* If SC15, pkey[0:14] must be 0x7fff */ 1868 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1869 goto bad; 1870 1871 /* Is the pkey = 0x0, or 0x8000? */ 1872 if ((pkey & PKEY_LOW_15_MASK) == 0) 1873 goto bad; 1874 1875 /* The most likely matching pkey has index 'idx' */ 1876 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx])) 1877 return 0; 1878 1879 /* no match - try the whole table */ 1880 if (!ingress_pkey_table_search(ppd, pkey)) 1881 return 0; 1882 1883 bad: 1884 ingress_pkey_table_fail(ppd, pkey, slid); 1885 return 1; 1886 } 1887 1888 /* 1889 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1 1890 * otherwise. It only ensures pkey is vlid for QP0. This function 1891 * should be called on the data path instead of ingress_pkey_check 1892 * as on data path, pkey check is done by HW (except for QP0). 1893 */ 1894 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1895 u8 sc5, u16 slid) 1896 { 1897 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1898 return 0; 1899 1900 /* If SC15, pkey[0:14] must be 0x7fff */ 1901 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1902 goto bad; 1903 1904 return 0; 1905 bad: 1906 ingress_pkey_table_fail(ppd, pkey, slid); 1907 return 1; 1908 } 1909 1910 /* MTU handling */ 1911 1912 /* MTU enumeration, 256-4k match IB */ 1913 #define OPA_MTU_0 0 1914 #define OPA_MTU_256 1 1915 #define OPA_MTU_512 2 1916 #define OPA_MTU_1024 3 1917 #define OPA_MTU_2048 4 1918 #define OPA_MTU_4096 5 1919 1920 u32 lrh_max_header_bytes(struct hfi1_devdata *dd); 1921 int mtu_to_enum(u32 mtu, int default_if_bad); 1922 u16 enum_to_mtu(int mtu); 1923 static inline int valid_ib_mtu(unsigned int mtu) 1924 { 1925 return mtu == 256 || mtu == 512 || 1926 mtu == 1024 || mtu == 2048 || 1927 mtu == 4096; 1928 } 1929 1930 static inline int valid_opa_max_mtu(unsigned int mtu) 1931 { 1932 return mtu >= 2048 && 1933 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240); 1934 } 1935 1936 int set_mtu(struct hfi1_pportdata *ppd); 1937 1938 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc); 1939 void hfi1_disable_after_error(struct hfi1_devdata *dd); 1940 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit); 1941 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode); 1942 1943 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t); 1944 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t); 1945 1946 void set_up_vau(struct hfi1_devdata *dd, u8 vau); 1947 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf); 1948 void reset_link_credits(struct hfi1_devdata *dd); 1949 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu); 1950 1951 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc); 1952 1953 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd) 1954 { 1955 return ppd->dd; 1956 } 1957 1958 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev) 1959 { 1960 return container_of(dev, struct hfi1_devdata, verbs_dev); 1961 } 1962 1963 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev) 1964 { 1965 return dd_from_dev(to_idev(ibdev)); 1966 } 1967 1968 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp) 1969 { 1970 return container_of(ibp, struct hfi1_pportdata, ibport_data); 1971 } 1972 1973 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi) 1974 { 1975 return container_of(rdi, struct hfi1_ibdev, rdi); 1976 } 1977 1978 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port) 1979 { 1980 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1981 unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */ 1982 1983 WARN_ON(pidx >= dd->num_pports); 1984 return &dd->pport[pidx].ibport_data; 1985 } 1986 1987 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd) 1988 { 1989 return &rcd->ppd->ibport_data; 1990 } 1991 1992 /** 1993 * hfi1_may_ecn - Check whether FECN or BECN processing should be done 1994 * @pkt: the packet to be evaluated 1995 * 1996 * Check whether the FECN or BECN bits in the packet's header are 1997 * enabled, depending on packet type. 1998 * 1999 * This function only checks for FECN and BECN bits. Additional checks 2000 * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to 2001 * ensure correct handling. 2002 */ 2003 static inline bool hfi1_may_ecn(struct hfi1_packet *pkt) 2004 { 2005 bool fecn, becn; 2006 2007 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 2008 fecn = hfi1_16B_get_fecn(pkt->hdr); 2009 becn = hfi1_16B_get_becn(pkt->hdr); 2010 } else { 2011 fecn = ib_bth_get_fecn(pkt->ohdr); 2012 becn = ib_bth_get_becn(pkt->ohdr); 2013 } 2014 return fecn || becn; 2015 } 2016 2017 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 2018 bool prescan); 2019 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt) 2020 { 2021 bool do_work; 2022 2023 do_work = hfi1_may_ecn(pkt); 2024 if (unlikely(do_work)) 2025 return hfi1_process_ecn_slowpath(qp, pkt, false); 2026 return false; 2027 } 2028 2029 /* 2030 * Return the indexed PKEY from the port PKEY table. 2031 */ 2032 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index) 2033 { 2034 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2035 u16 ret; 2036 2037 if (index >= ARRAY_SIZE(ppd->pkeys)) 2038 ret = 0; 2039 else 2040 ret = ppd->pkeys[index]; 2041 2042 return ret; 2043 } 2044 2045 /* 2046 * Return the indexed GUID from the port GUIDs table. 2047 */ 2048 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index) 2049 { 2050 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2051 2052 WARN_ON(index >= HFI1_GUIDS_PER_PORT); 2053 return cpu_to_be64(ppd->guids[index]); 2054 } 2055 2056 /* 2057 * Called by readers of cc_state only, must call under rcu_read_lock(). 2058 */ 2059 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd) 2060 { 2061 return rcu_dereference(ppd->cc_state); 2062 } 2063 2064 /* 2065 * Called by writers of cc_state only, must call under cc_state_lock. 2066 */ 2067 static inline 2068 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd) 2069 { 2070 return rcu_dereference_protected(ppd->cc_state, 2071 lockdep_is_held(&ppd->cc_state_lock)); 2072 } 2073 2074 /* 2075 * values for dd->flags (_device_ related flags) 2076 */ 2077 #define HFI1_INITTED 0x1 /* chip and driver up and initted */ 2078 #define HFI1_PRESENT 0x2 /* chip accesses can be done */ 2079 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */ 2080 #define HFI1_HAS_SDMA_TIMEOUT 0x8 2081 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */ 2082 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */ 2083 #define HFI1_SHUTDOWN 0x100 /* device is shutting down */ 2084 2085 /* IB dword length mask in PBC (lower 11 bits); same for all chips */ 2086 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1) 2087 2088 /* ctxt_flag bit offsets */ 2089 /* base context has not finished initializing */ 2090 #define HFI1_CTXT_BASE_UNINIT 1 2091 /* base context initaliation failed */ 2092 #define HFI1_CTXT_BASE_FAILED 2 2093 /* waiting for a packet to arrive */ 2094 #define HFI1_CTXT_WAITING_RCV 3 2095 /* waiting for an urgent packet to arrive */ 2096 #define HFI1_CTXT_WAITING_URG 4 2097 2098 /* free up any allocated data at closes */ 2099 int hfi1_init_dd(struct hfi1_devdata *dd); 2100 void hfi1_free_devdata(struct hfi1_devdata *dd); 2101 2102 /* LED beaconing functions */ 2103 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 2104 unsigned int timeoff); 2105 void shutdown_led_override(struct hfi1_pportdata *ppd); 2106 2107 #define HFI1_CREDIT_RETURN_RATE (100) 2108 2109 /* 2110 * The number of words for the KDETH protocol field. If this is 2111 * larger then the actual field used, then part of the payload 2112 * will be in the header. 2113 * 2114 * Optimally, we want this sized so that a typical case will 2115 * use full cache lines. The typical local KDETH header would 2116 * be: 2117 * 2118 * Bytes Field 2119 * 8 LRH 2120 * 12 BHT 2121 * ?? KDETH 2122 * 8 RHF 2123 * --- 2124 * 28 + KDETH 2125 * 2126 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS 2127 */ 2128 #define DEFAULT_RCVHDRSIZE 9 2129 2130 /* 2131 * Maximal header byte count: 2132 * 2133 * Bytes Field 2134 * 8 LRH 2135 * 40 GRH (optional) 2136 * 12 BTH 2137 * ?? KDETH 2138 * 8 RHF 2139 * --- 2140 * 68 + KDETH 2141 * 2142 * We also want to maintain a cache line alignment to assist DMA'ing 2143 * of the header bytes. Round up to a good size. 2144 */ 2145 #define DEFAULT_RCVHDR_ENTSIZE 32 2146 2147 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm, 2148 u32 nlocked, u32 npages); 2149 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, 2150 size_t npages, bool writable, struct page **pages); 2151 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p, 2152 size_t npages, bool dirty); 2153 2154 /** 2155 * hfi1_rcvhdrtail_kvaddr - return tail kvaddr 2156 * @rcd - the receive context 2157 */ 2158 static inline __le64 *hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata *rcd) 2159 { 2160 return (__le64 *)rcd->rcvhdrtail_kvaddr; 2161 } 2162 2163 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 2164 { 2165 u64 *kv = (u64 *)hfi1_rcvhdrtail_kvaddr(rcd); 2166 2167 if (kv) 2168 *kv = 0ULL; 2169 } 2170 2171 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 2172 { 2173 /* 2174 * volatile because it's a DMA target from the chip, routine is 2175 * inlined, and don't want register caching or reordering. 2176 */ 2177 return (u32)le64_to_cpu(*hfi1_rcvhdrtail_kvaddr(rcd)); 2178 } 2179 2180 static inline bool hfi1_packet_present(struct hfi1_ctxtdata *rcd) 2181 { 2182 if (likely(!rcd->rcvhdrtail_kvaddr)) { 2183 u32 seq = rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))); 2184 2185 return !last_rcv_seq(rcd, seq); 2186 } 2187 return hfi1_rcd_head(rcd) != get_rcvhdrtail(rcd); 2188 } 2189 2190 /* 2191 * sysfs interface. 2192 */ 2193 2194 extern const char ib_hfi1_version[]; 2195 extern const struct attribute_group ib_hfi1_attr_group; 2196 2197 int hfi1_device_create(struct hfi1_devdata *dd); 2198 void hfi1_device_remove(struct hfi1_devdata *dd); 2199 2200 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num, 2201 struct kobject *kobj); 2202 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd); 2203 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd); 2204 /* Hook for sysfs read of QSFP */ 2205 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len); 2206 2207 int hfi1_pcie_init(struct hfi1_devdata *dd); 2208 void hfi1_pcie_cleanup(struct pci_dev *pdev); 2209 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev); 2210 void hfi1_pcie_ddcleanup(struct hfi1_devdata *); 2211 int pcie_speeds(struct hfi1_devdata *dd); 2212 int restore_pci_variables(struct hfi1_devdata *dd); 2213 int save_pci_variables(struct hfi1_devdata *dd); 2214 int do_pcie_gen3_transition(struct hfi1_devdata *dd); 2215 void tune_pcie_caps(struct hfi1_devdata *dd); 2216 int parse_platform_config(struct hfi1_devdata *dd); 2217 int get_platform_config_field(struct hfi1_devdata *dd, 2218 enum platform_config_table_type_encoding 2219 table_type, int table_index, int field_index, 2220 u32 *data, u32 len); 2221 2222 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi); 2223 2224 /* 2225 * Flush write combining store buffers (if present) and perform a write 2226 * barrier. 2227 */ 2228 static inline void flush_wc(void) 2229 { 2230 asm volatile("sfence" : : : "memory"); 2231 } 2232 2233 void handle_eflags(struct hfi1_packet *packet); 2234 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd); 2235 2236 /* global module parameter variables */ 2237 extern unsigned int hfi1_max_mtu; 2238 extern unsigned int hfi1_cu; 2239 extern unsigned int user_credit_return_threshold; 2240 extern int num_user_contexts; 2241 extern unsigned long n_krcvqs; 2242 extern uint krcvqs[]; 2243 extern int krcvqsset; 2244 extern uint loopback; 2245 extern uint quick_linkup; 2246 extern uint rcv_intr_timeout; 2247 extern uint rcv_intr_count; 2248 extern uint rcv_intr_dynamic; 2249 extern ushort link_crc_mask; 2250 2251 extern struct mutex hfi1_mutex; 2252 2253 /* Number of seconds before our card status check... */ 2254 #define STATUS_TIMEOUT 60 2255 2256 #define DRIVER_NAME "hfi1" 2257 #define HFI1_USER_MINOR_BASE 0 2258 #define HFI1_TRACE_MINOR 127 2259 #define HFI1_NMINORS 255 2260 2261 #define PCI_VENDOR_ID_INTEL 0x8086 2262 #define PCI_DEVICE_ID_INTEL0 0x24f0 2263 #define PCI_DEVICE_ID_INTEL1 0x24f1 2264 2265 #define HFI1_PKT_USER_SC_INTEGRITY \ 2266 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \ 2267 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \ 2268 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \ 2269 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK) 2270 2271 #define HFI1_PKT_KERNEL_SC_INTEGRITY \ 2272 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK) 2273 2274 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd, 2275 u16 ctxt_type) 2276 { 2277 u64 base_sc_integrity; 2278 2279 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2280 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2281 return 0; 2282 2283 base_sc_integrity = 2284 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2285 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK 2286 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2287 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2288 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2289 #ifndef CONFIG_FAULT_INJECTION 2290 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK 2291 #endif 2292 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2293 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2294 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2295 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK 2296 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2297 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2298 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK 2299 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK 2300 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK 2301 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2302 2303 if (ctxt_type == SC_USER) 2304 base_sc_integrity |= 2305 #ifndef CONFIG_FAULT_INJECTION 2306 SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK | 2307 #endif 2308 HFI1_PKT_USER_SC_INTEGRITY; 2309 else if (ctxt_type != SC_KERNEL) 2310 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY; 2311 2312 /* turn on send-side job key checks if !A0 */ 2313 if (!is_ax(dd)) 2314 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2315 2316 return base_sc_integrity; 2317 } 2318 2319 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd) 2320 { 2321 u64 base_sdma_integrity; 2322 2323 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2324 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2325 return 0; 2326 2327 base_sdma_integrity = 2328 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2329 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2330 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2331 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2332 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2333 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2334 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2335 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK 2336 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2337 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2338 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK 2339 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK 2340 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK 2341 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2342 2343 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)) 2344 base_sdma_integrity |= 2345 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK; 2346 2347 /* turn on send-side job key checks if !A0 */ 2348 if (!is_ax(dd)) 2349 base_sdma_integrity |= 2350 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2351 2352 return base_sdma_integrity; 2353 } 2354 2355 #define dd_dev_emerg(dd, fmt, ...) \ 2356 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \ 2357 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2358 2359 #define dd_dev_err(dd, fmt, ...) \ 2360 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \ 2361 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2362 2363 #define dd_dev_err_ratelimited(dd, fmt, ...) \ 2364 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2365 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2366 ##__VA_ARGS__) 2367 2368 #define dd_dev_warn(dd, fmt, ...) \ 2369 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \ 2370 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2371 2372 #define dd_dev_warn_ratelimited(dd, fmt, ...) \ 2373 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2374 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2375 ##__VA_ARGS__) 2376 2377 #define dd_dev_info(dd, fmt, ...) \ 2378 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \ 2379 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2380 2381 #define dd_dev_info_ratelimited(dd, fmt, ...) \ 2382 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2383 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2384 ##__VA_ARGS__) 2385 2386 #define dd_dev_dbg(dd, fmt, ...) \ 2387 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \ 2388 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2389 2390 #define hfi1_dev_porterr(dd, port, fmt, ...) \ 2391 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \ 2392 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__) 2393 2394 /* 2395 * this is used for formatting hw error messages... 2396 */ 2397 struct hfi1_hwerror_msgs { 2398 u64 mask; 2399 const char *msg; 2400 size_t sz; 2401 }; 2402 2403 /* in intr.c... */ 2404 void hfi1_format_hwerrors(u64 hwerrs, 2405 const struct hfi1_hwerror_msgs *hwerrmsgs, 2406 size_t nhwerrmsgs, char *msg, size_t lmsg); 2407 2408 #define USER_OPCODE_CHECK_VAL 0xC0 2409 #define USER_OPCODE_CHECK_MASK 0xC0 2410 #define OPCODE_CHECK_VAL_DISABLED 0x0 2411 #define OPCODE_CHECK_MASK_DISABLED 0x0 2412 2413 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd) 2414 { 2415 struct hfi1_pportdata *ppd; 2416 int i; 2417 2418 dd->z_int_counter = get_all_cpu_total(dd->int_counter); 2419 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit); 2420 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule); 2421 2422 ppd = (struct hfi1_pportdata *)(dd + 1); 2423 for (i = 0; i < dd->num_pports; i++, ppd++) { 2424 ppd->ibport_data.rvp.z_rc_acks = 2425 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks); 2426 ppd->ibport_data.rvp.z_rc_qacks = 2427 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks); 2428 } 2429 } 2430 2431 /* Control LED state */ 2432 static inline void setextled(struct hfi1_devdata *dd, u32 on) 2433 { 2434 if (on) 2435 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F); 2436 else 2437 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10); 2438 } 2439 2440 /* return the i2c resource given the target */ 2441 static inline u32 i2c_target(u32 target) 2442 { 2443 return target ? CR_I2C2 : CR_I2C1; 2444 } 2445 2446 /* return the i2c chain chip resource that this HFI uses for QSFP */ 2447 static inline u32 qsfp_resource(struct hfi1_devdata *dd) 2448 { 2449 return i2c_target(dd->hfi1_id); 2450 } 2451 2452 /* Is this device integrated or discrete? */ 2453 static inline bool is_integrated(struct hfi1_devdata *dd) 2454 { 2455 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1; 2456 } 2457 2458 /** 2459 * hfi1_need_drop - detect need for drop 2460 * @dd: - the device 2461 * 2462 * In some cases, the first packet needs to be dropped. 2463 * 2464 * Return true is the current packet needs to be dropped and false otherwise. 2465 */ 2466 static inline bool hfi1_need_drop(struct hfi1_devdata *dd) 2467 { 2468 if (unlikely(dd->do_drop && 2469 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 2470 DROP_PACKET_ON)) { 2471 dd->do_drop = false; 2472 return true; 2473 } 2474 return false; 2475 } 2476 2477 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp); 2478 2479 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev)) 2480 #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev)) 2481 2482 static inline void hfi1_update_ah_attr(struct ib_device *ibdev, 2483 struct rdma_ah_attr *attr) 2484 { 2485 struct hfi1_pportdata *ppd; 2486 struct hfi1_ibport *ibp; 2487 u32 dlid = rdma_ah_get_dlid(attr); 2488 2489 /* 2490 * Kernel clients may not have setup GRH information 2491 * Set that here. 2492 */ 2493 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr)); 2494 ppd = ppd_from_ibp(ibp); 2495 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) || 2496 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) && 2497 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) && 2498 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2499 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) || 2500 (rdma_ah_get_make_grd(attr))) { 2501 rdma_ah_set_ah_flags(attr, IB_AH_GRH); 2502 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid)); 2503 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix); 2504 } 2505 } 2506 2507 /* 2508 * hfi1_check_mcast- Check if the given lid is 2509 * in the OPA multicast range. 2510 * 2511 * The LID might either reside in ah.dlid or might be 2512 * in the GRH of the address handle as DGID if extended 2513 * addresses are in use. 2514 */ 2515 static inline bool hfi1_check_mcast(u32 lid) 2516 { 2517 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) && 2518 (lid != be32_to_cpu(OPA_LID_PERMISSIVE))); 2519 } 2520 2521 #define opa_get_lid(lid, format) \ 2522 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format) 2523 2524 /* Convert a lid to a specific lid space */ 2525 static inline u32 __opa_get_lid(u32 lid, u8 format) 2526 { 2527 bool is_mcast = hfi1_check_mcast(lid); 2528 2529 switch (format) { 2530 case OPA_PORT_PACKET_FORMAT_8B: 2531 case OPA_PORT_PACKET_FORMAT_10B: 2532 if (is_mcast) 2533 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2534 0xF0000); 2535 return lid & 0xFFFFF; 2536 case OPA_PORT_PACKET_FORMAT_16B: 2537 if (is_mcast) 2538 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2539 0xF00000); 2540 return lid & 0xFFFFFF; 2541 case OPA_PORT_PACKET_FORMAT_9B: 2542 if (is_mcast) 2543 return (lid - 2544 opa_get_mcast_base(OPA_MCAST_NR) + 2545 be16_to_cpu(IB_MULTICAST_LID_BASE)); 2546 else 2547 return lid & 0xFFFF; 2548 default: 2549 return lid; 2550 } 2551 } 2552 2553 /* Return true if the given lid is the OPA 16B multicast range */ 2554 static inline bool hfi1_is_16B_mcast(u32 lid) 2555 { 2556 return ((lid >= 2557 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) && 2558 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))); 2559 } 2560 2561 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr) 2562 { 2563 const struct ib_global_route *grh = rdma_ah_read_grh(attr); 2564 u32 dlid = rdma_ah_get_dlid(attr); 2565 2566 /* Modify ah_attr.dlid to be in the 32 bit LID space. 2567 * This is how the address will be laid out: 2568 * Assuming MCAST_NR to be 4, 2569 * 32 bit permissive LID = 0xFFFFFFFF 2570 * Multicast LID range = 0xFFFFFFFE to 0xF0000000 2571 * Unicast LID range = 0xEFFFFFFF to 1 2572 * Invalid LID = 0 2573 */ 2574 if (ib_is_opa_gid(&grh->dgid)) 2575 dlid = opa_get_lid_from_gid(&grh->dgid); 2576 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 2577 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2578 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE))) 2579 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) + 2580 opa_get_mcast_base(OPA_MCAST_NR); 2581 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE)) 2582 dlid = be32_to_cpu(OPA_LID_PERMISSIVE); 2583 2584 rdma_ah_set_dlid(attr, dlid); 2585 } 2586 2587 static inline u8 hfi1_get_packet_type(u32 lid) 2588 { 2589 /* 9B if lid > 0xF0000000 */ 2590 if (lid >= opa_get_mcast_base(OPA_MCAST_NR)) 2591 return HFI1_PKT_TYPE_9B; 2592 2593 /* 16B if lid > 0xC000 */ 2594 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B)) 2595 return HFI1_PKT_TYPE_16B; 2596 2597 return HFI1_PKT_TYPE_9B; 2598 } 2599 2600 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr) 2601 { 2602 /* 2603 * If there was an incoming 16B packet with permissive 2604 * LIDs, OPA GIDs would have been programmed when those 2605 * packets were received. A 16B packet will have to 2606 * be sent in response to that packet. Return a 16B 2607 * header type if that's the case. 2608 */ 2609 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE)) 2610 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ? 2611 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B; 2612 2613 /* 2614 * Return a 16B header type if either the the destination 2615 * or source lid is extended. 2616 */ 2617 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B) 2618 return HFI1_PKT_TYPE_16B; 2619 2620 return hfi1_get_packet_type(lid); 2621 } 2622 2623 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet, 2624 struct ib_grh *grh, u32 slid, 2625 u32 dlid) 2626 { 2627 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; 2628 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2629 2630 if (!ibp) 2631 return; 2632 2633 grh->hop_limit = 1; 2634 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2635 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)) 2636 grh->sgid.global.interface_id = 2637 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE)); 2638 else 2639 grh->sgid.global.interface_id = OPA_MAKE_ID(slid); 2640 2641 /* 2642 * Upper layers (like mad) may compare the dgid in the 2643 * wc that is obtained here with the sgid_index in 2644 * the wr. Since sgid_index in wr is always 0 for 2645 * extended lids, set the dgid here to the default 2646 * IB gid. 2647 */ 2648 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2649 grh->dgid.global.interface_id = 2650 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]); 2651 } 2652 2653 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload) 2654 { 2655 return -(hdr_size + payload + (SIZE_OF_CRC << 2) + 2656 SIZE_OF_LT) & 0x7; 2657 } 2658 2659 static inline void hfi1_make_ib_hdr(struct ib_header *hdr, 2660 u16 lrh0, u16 len, 2661 u16 dlid, u16 slid) 2662 { 2663 hdr->lrh[0] = cpu_to_be16(lrh0); 2664 hdr->lrh[1] = cpu_to_be16(dlid); 2665 hdr->lrh[2] = cpu_to_be16(len); 2666 hdr->lrh[3] = cpu_to_be16(slid); 2667 } 2668 2669 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr, 2670 u32 slid, u32 dlid, 2671 u16 len, u16 pkey, 2672 bool becn, bool fecn, u8 l4, 2673 u8 sc) 2674 { 2675 u32 lrh0 = 0; 2676 u32 lrh1 = 0x40000000; 2677 u32 lrh2 = 0; 2678 u32 lrh3 = 0; 2679 2680 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT); 2681 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT); 2682 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK); 2683 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT); 2684 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT); 2685 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK); 2686 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) | 2687 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT); 2688 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) | 2689 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT); 2690 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT); 2691 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4; 2692 2693 hdr->lrh[0] = lrh0; 2694 hdr->lrh[1] = lrh1; 2695 hdr->lrh[2] = lrh2; 2696 hdr->lrh[3] = lrh3; 2697 } 2698 #endif /* _HFI1_KERNEL_H */ 2699