1 #ifndef _HFI1_KERNEL_H 2 #define _HFI1_KERNEL_H 3 /* 4 * Copyright(c) 2015-2018 Intel Corporation. 5 * 6 * This file is provided under a dual BSD/GPLv2 license. When using or 7 * redistributing this file, you may do so under either license. 8 * 9 * GPL LICENSE SUMMARY 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * BSD LICENSE 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 26 * - Redistributions of source code must retain the above copyright 27 * notice, this list of conditions and the following disclaimer. 28 * - Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in 30 * the documentation and/or other materials provided with the 31 * distribution. 32 * - Neither the name of Intel Corporation nor the names of its 33 * contributors may be used to endorse or promote products derived 34 * from this software without specific prior written permission. 35 * 36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 47 * 48 */ 49 50 #include <linux/interrupt.h> 51 #include <linux/pci.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/mutex.h> 54 #include <linux/list.h> 55 #include <linux/scatterlist.h> 56 #include <linux/slab.h> 57 #include <linux/idr.h> 58 #include <linux/io.h> 59 #include <linux/fs.h> 60 #include <linux/completion.h> 61 #include <linux/kref.h> 62 #include <linux/sched.h> 63 #include <linux/cdev.h> 64 #include <linux/delay.h> 65 #include <linux/kthread.h> 66 #include <linux/i2c.h> 67 #include <linux/i2c-algo-bit.h> 68 #include <rdma/ib_hdrs.h> 69 #include <rdma/opa_addr.h> 70 #include <linux/rhashtable.h> 71 #include <linux/netdevice.h> 72 #include <rdma/rdma_vt.h> 73 74 #include "chip_registers.h" 75 #include "common.h" 76 #include "opfn.h" 77 #include "verbs.h" 78 #include "pio.h" 79 #include "chip.h" 80 #include "mad.h" 81 #include "qsfp.h" 82 #include "platform.h" 83 #include "affinity.h" 84 #include "msix.h" 85 86 /* bumped 1 from s/w major version of TrueScale */ 87 #define HFI1_CHIP_VERS_MAJ 3U 88 89 /* don't care about this except printing */ 90 #define HFI1_CHIP_VERS_MIN 0U 91 92 /* The Organization Unique Identifier (Mfg code), and its position in GUID */ 93 #define HFI1_OUI 0x001175 94 #define HFI1_OUI_LSB 40 95 96 #define DROP_PACKET_OFF 0 97 #define DROP_PACKET_ON 1 98 99 #define NEIGHBOR_TYPE_HFI 0 100 #define NEIGHBOR_TYPE_SWITCH 1 101 102 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5 103 104 extern unsigned long hfi1_cap_mask; 105 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap) 106 #define HFI1_CAP_UGET_MASK(mask, cap) \ 107 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap) 108 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap)) 109 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap)) 110 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap)) 111 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap)) 112 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \ 113 HFI1_CAP_MISC_MASK) 114 /* Offline Disabled Reason is 4-bits */ 115 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON) 116 117 /* 118 * Control context is always 0 and handles the error packets. 119 * It also handles the VL15 and multicast packets. 120 */ 121 #define HFI1_CTRL_CTXT 0 122 123 /* 124 * Driver context will store software counters for each of the events 125 * associated with these status registers 126 */ 127 #define NUM_CCE_ERR_STATUS_COUNTERS 41 128 #define NUM_RCV_ERR_STATUS_COUNTERS 64 129 #define NUM_MISC_ERR_STATUS_COUNTERS 13 130 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36 131 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4 132 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64 133 #define NUM_SEND_ERR_STATUS_COUNTERS 3 134 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5 135 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24 136 137 /* 138 * per driver stats, either not device nor port-specific, or 139 * summed over all of the devices and ports. 140 * They are described by name via ipathfs filesystem, so layout 141 * and number of elements can change without breaking compatibility. 142 * If members are added or deleted hfi1_statnames[] in debugfs.c must 143 * change to match. 144 */ 145 struct hfi1_ib_stats { 146 __u64 sps_ints; /* number of interrupts handled */ 147 __u64 sps_errints; /* number of error interrupts */ 148 __u64 sps_txerrs; /* tx-related packet errors */ 149 __u64 sps_rcverrs; /* non-crc rcv packet errors */ 150 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */ 151 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */ 152 __u64 sps_ctxts; /* number of contexts currently open */ 153 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */ 154 __u64 sps_buffull; 155 __u64 sps_hdrfull; 156 }; 157 158 extern struct hfi1_ib_stats hfi1_stats; 159 extern const struct pci_error_handlers hfi1_pci_err_handler; 160 161 extern int num_driver_cntrs; 162 163 /* 164 * First-cut criterion for "device is active" is 165 * two thousand dwords combined Tx, Rx traffic per 166 * 5-second interval. SMA packets are 64 dwords, 167 * and occur "a few per second", presumably each way. 168 */ 169 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000) 170 171 /* 172 * Below contains all data related to a single context (formerly called port). 173 */ 174 175 struct hfi1_opcode_stats_perctx; 176 177 struct ctxt_eager_bufs { 178 struct eager_buffer { 179 void *addr; 180 dma_addr_t dma; 181 ssize_t len; 182 } *buffers; 183 struct { 184 void *addr; 185 dma_addr_t dma; 186 } *rcvtids; 187 u32 size; /* total size of eager buffers */ 188 u32 rcvtid_size; /* size of each eager rcv tid */ 189 u16 count; /* size of buffers array */ 190 u16 numbufs; /* number of buffers allocated */ 191 u16 alloced; /* number of rcvarray entries used */ 192 u16 threshold; /* head update threshold */ 193 }; 194 195 struct exp_tid_set { 196 struct list_head list; 197 u32 count; 198 }; 199 200 typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet); 201 202 struct tid_queue { 203 struct list_head queue_head; 204 /* queue head for QP TID resource waiters */ 205 u32 enqueue; /* count of tid enqueues */ 206 u32 dequeue; /* count of tid dequeues */ 207 }; 208 209 struct hfi1_ctxtdata { 210 /* rcvhdrq base, needs mmap before useful */ 211 void *rcvhdrq; 212 /* kernel virtual address where hdrqtail is updated */ 213 volatile __le64 *rcvhdrtail_kvaddr; 214 /* so functions that need physical port can get it easily */ 215 struct hfi1_pportdata *ppd; 216 /* so file ops can get at unit */ 217 struct hfi1_devdata *dd; 218 /* this receive context's assigned PIO ACK send context */ 219 struct send_context *sc; 220 /* per context recv functions */ 221 const rhf_rcv_function_ptr *rhf_rcv_function_map; 222 /* 223 * The interrupt handler for a particular receive context can vary 224 * throughout it's lifetime. This is not a lock protected data member so 225 * it must be updated atomically and the prev and new value must always 226 * be valid. Worst case is we process an extra interrupt and up to 64 227 * packets with the wrong interrupt handler. 228 */ 229 int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded); 230 /* verbs rx_stats per rcd */ 231 struct hfi1_opcode_stats_perctx *opstats; 232 /* clear interrupt mask */ 233 u64 imask; 234 /* ctxt rcvhdrq head offset */ 235 u32 head; 236 /* number of rcvhdrq entries */ 237 u16 rcvhdrq_cnt; 238 u8 ireg; /* clear interrupt register */ 239 /* receive packet sequence counter */ 240 u8 seq_cnt; 241 /* size of each of the rcvhdrq entries */ 242 u8 rcvhdrqentsize; 243 /* offset of RHF within receive header entry */ 244 u8 rhf_offset; 245 /* dynamic receive available interrupt timeout */ 246 u8 rcvavail_timeout; 247 /* Indicates that this is vnic context */ 248 bool is_vnic; 249 /* vnic queue index this context is mapped to */ 250 u8 vnic_q_idx; 251 /* Is ASPM interrupt supported for this context */ 252 bool aspm_intr_supported; 253 /* ASPM state (enabled/disabled) for this context */ 254 bool aspm_enabled; 255 /* Is ASPM processing enabled for this context (in intr context) */ 256 bool aspm_intr_enable; 257 struct ctxt_eager_bufs egrbufs; 258 /* QPs waiting for context processing */ 259 struct list_head qp_wait_list; 260 /* tid allocation lists */ 261 struct exp_tid_set tid_group_list; 262 struct exp_tid_set tid_used_list; 263 struct exp_tid_set tid_full_list; 264 265 /* Timer for re-enabling ASPM if interrupt activity quiets down */ 266 struct timer_list aspm_timer; 267 /* per-context configuration flags */ 268 unsigned long flags; 269 /* array of tid_groups */ 270 struct tid_group *groups; 271 /* mmap of hdrq, must fit in 44 bits */ 272 dma_addr_t rcvhdrq_dma; 273 dma_addr_t rcvhdrqtailaddr_dma; 274 /* Last interrupt timestamp */ 275 ktime_t aspm_ts_last_intr; 276 /* Last timestamp at which we scheduled a timer for this context */ 277 ktime_t aspm_ts_timer_sched; 278 /* Lock to serialize between intr, timer intr and user threads */ 279 spinlock_t aspm_lock; 280 /* Reference count the base context usage */ 281 struct kref kref; 282 /* numa node of this context */ 283 int numa_id; 284 /* associated msix interrupt. */ 285 s16 msix_intr; 286 /* job key */ 287 u16 jkey; 288 /* number of RcvArray groups for this context. */ 289 u16 rcv_array_groups; 290 /* index of first eager TID entry. */ 291 u16 eager_base; 292 /* number of expected TID entries */ 293 u16 expected_count; 294 /* index of first expected TID entry. */ 295 u16 expected_base; 296 /* Device context index */ 297 u8 ctxt; 298 299 /* PSM Specific fields */ 300 /* lock protecting all Expected TID data */ 301 struct mutex exp_mutex; 302 /* lock protecting all Expected TID data of kernel contexts */ 303 spinlock_t exp_lock; 304 /* Queue for QP's waiting for HW TID flows */ 305 struct tid_queue flow_queue; 306 /* Queue for QP's waiting for HW receive array entries */ 307 struct tid_queue rarr_queue; 308 /* when waiting for rcv or pioavail */ 309 wait_queue_head_t wait; 310 /* uuid from PSM */ 311 u8 uuid[16]; 312 /* same size as task_struct .comm[], command that opened context */ 313 char comm[TASK_COMM_LEN]; 314 /* Bitmask of in use context(s) */ 315 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS); 316 /* per-context event flags for fileops/intr communication */ 317 unsigned long event_flags; 318 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */ 319 void *subctxt_uregbase; 320 /* An array of pages for the eager receive buffers * N */ 321 void *subctxt_rcvegrbuf; 322 /* An array of pages for the eager header queue entries * N */ 323 void *subctxt_rcvhdr_base; 324 /* total number of polled urgent packets */ 325 u32 urgent; 326 /* saved total number of polled urgent packets for poll edge trigger */ 327 u32 urgent_poll; 328 /* Type of packets or conditions we want to poll for */ 329 u16 poll_type; 330 /* non-zero if ctxt is being shared. */ 331 u16 subctxt_id; 332 /* The version of the library which opened this ctxt */ 333 u32 userversion; 334 /* 335 * non-zero if ctxt can be shared, and defines the maximum number of 336 * sub-contexts for this device context. 337 */ 338 u8 subctxt_cnt; 339 340 /* Bit mask to track free TID RDMA HW flows */ 341 unsigned long flow_mask; 342 struct tid_flow_state flows[RXE_NUM_TID_FLOWS]; 343 }; 344 345 /** 346 * rcvhdrq_size - return total size in bytes for header queue 347 * @rcd: the receive context 348 * 349 * rcvhdrqentsize is in DWs, so we have to convert to bytes 350 * 351 */ 352 static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd) 353 { 354 return PAGE_ALIGN(rcd->rcvhdrq_cnt * 355 rcd->rcvhdrqentsize * sizeof(u32)); 356 } 357 358 /* 359 * Represents a single packet at a high level. Put commonly computed things in 360 * here so we do not have to keep doing them over and over. The rule of thumb is 361 * if something is used one time to derive some value, store that something in 362 * here. If it is used multiple times, then store the result of that derivation 363 * in here. 364 */ 365 struct hfi1_packet { 366 void *ebuf; 367 void *hdr; 368 void *payload; 369 struct hfi1_ctxtdata *rcd; 370 __le32 *rhf_addr; 371 struct rvt_qp *qp; 372 struct ib_other_headers *ohdr; 373 struct ib_grh *grh; 374 struct opa_16b_mgmt *mgmt; 375 u64 rhf; 376 u32 maxcnt; 377 u32 rhqoff; 378 u32 dlid; 379 u32 slid; 380 u16 tlen; 381 s16 etail; 382 u16 pkey; 383 u8 hlen; 384 u8 numpkt; 385 u8 rsize; 386 u8 updegr; 387 u8 etype; 388 u8 extra_byte; 389 u8 pad; 390 u8 sc; 391 u8 sl; 392 u8 opcode; 393 bool migrated; 394 }; 395 396 /* Packet types */ 397 #define HFI1_PKT_TYPE_9B 0 398 #define HFI1_PKT_TYPE_16B 1 399 400 /* 401 * OPA 16B Header 402 */ 403 #define OPA_16B_L4_MASK 0xFFull 404 #define OPA_16B_SC_MASK 0x1F00000ull 405 #define OPA_16B_SC_SHIFT 20 406 #define OPA_16B_LID_MASK 0xFFFFFull 407 #define OPA_16B_DLID_MASK 0xF000ull 408 #define OPA_16B_DLID_SHIFT 20 409 #define OPA_16B_DLID_HIGH_SHIFT 12 410 #define OPA_16B_SLID_MASK 0xF00ull 411 #define OPA_16B_SLID_SHIFT 20 412 #define OPA_16B_SLID_HIGH_SHIFT 8 413 #define OPA_16B_BECN_MASK 0x80000000ull 414 #define OPA_16B_BECN_SHIFT 31 415 #define OPA_16B_FECN_MASK 0x10000000ull 416 #define OPA_16B_FECN_SHIFT 28 417 #define OPA_16B_L2_MASK 0x60000000ull 418 #define OPA_16B_L2_SHIFT 29 419 #define OPA_16B_PKEY_MASK 0xFFFF0000ull 420 #define OPA_16B_PKEY_SHIFT 16 421 #define OPA_16B_LEN_MASK 0x7FF00000ull 422 #define OPA_16B_LEN_SHIFT 20 423 #define OPA_16B_RC_MASK 0xE000000ull 424 #define OPA_16B_RC_SHIFT 25 425 #define OPA_16B_AGE_MASK 0xFF0000ull 426 #define OPA_16B_AGE_SHIFT 16 427 #define OPA_16B_ENTROPY_MASK 0xFFFFull 428 429 /* 430 * OPA 16B L2/L4 Encodings 431 */ 432 #define OPA_16B_L4_9B 0x00 433 #define OPA_16B_L2_TYPE 0x02 434 #define OPA_16B_L4_FM 0x08 435 #define OPA_16B_L4_IB_LOCAL 0x09 436 #define OPA_16B_L4_IB_GLOBAL 0x0A 437 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR 438 439 /* 440 * OPA 16B Management 441 */ 442 #define OPA_16B_L4_FM_PAD 3 /* fixed 3B pad */ 443 #define OPA_16B_L4_FM_HLEN 24 /* 16B(16) + L4_FM(8) */ 444 445 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr) 446 { 447 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK); 448 } 449 450 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr) 451 { 452 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT); 453 } 454 455 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr) 456 { 457 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) | 458 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >> 459 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT)); 460 } 461 462 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr) 463 { 464 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) | 465 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >> 466 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT)); 467 } 468 469 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr) 470 { 471 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT); 472 } 473 474 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr) 475 { 476 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT); 477 } 478 479 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr) 480 { 481 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT); 482 } 483 484 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr) 485 { 486 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT); 487 } 488 489 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr) 490 { 491 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT); 492 } 493 494 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr) 495 { 496 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT); 497 } 498 499 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr) 500 { 501 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT); 502 } 503 504 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr) 505 { 506 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK); 507 } 508 509 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw)) 510 511 /* 512 * BTH 513 */ 514 #define OPA_16B_BTH_PAD_MASK 7 515 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr) 516 { 517 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) & 518 OPA_16B_BTH_PAD_MASK); 519 } 520 521 /* 522 * 16B Management 523 */ 524 #define OPA_16B_MGMT_QPN_MASK 0xFFFFFF 525 static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt) 526 { 527 return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK; 528 } 529 530 static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt) 531 { 532 return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK; 533 } 534 535 static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt, 536 u32 dest_qp, u32 src_qp) 537 { 538 mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK); 539 mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK); 540 } 541 542 struct rvt_sge_state; 543 544 /* 545 * Get/Set IB link-level config parameters for f_get/set_ib_cfg() 546 * Mostly for MADs that set or query link parameters, also ipath 547 * config interfaces 548 */ 549 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */ 550 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */ 551 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */ 552 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */ 553 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */ 554 #define HFI1_IB_CFG_SPD 5 /* current Link spd */ 555 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */ 556 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */ 557 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */ 558 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */ 559 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */ 560 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */ 561 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */ 562 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */ 563 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */ 564 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */ 565 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */ 566 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */ 567 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19 568 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */ 569 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */ 570 571 /* 572 * HFI or Host Link States 573 * 574 * These describe the states the driver thinks the logical and physical 575 * states are in. Used as an argument to set_link_state(). Implemented 576 * as bits for easy multi-state checking. The actual state can only be 577 * one. 578 */ 579 #define __HLS_UP_INIT_BP 0 580 #define __HLS_UP_ARMED_BP 1 581 #define __HLS_UP_ACTIVE_BP 2 582 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */ 583 #define __HLS_DN_POLL_BP 4 584 #define __HLS_DN_DISABLE_BP 5 585 #define __HLS_DN_OFFLINE_BP 6 586 #define __HLS_VERIFY_CAP_BP 7 587 #define __HLS_GOING_UP_BP 8 588 #define __HLS_GOING_OFFLINE_BP 9 589 #define __HLS_LINK_COOLDOWN_BP 10 590 591 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP) 592 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP) 593 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP) 594 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */ 595 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP) 596 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP) 597 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP) 598 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP) 599 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP) 600 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP) 601 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP) 602 603 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE) 604 #define HLS_DOWN ~(HLS_UP) 605 606 #define HLS_DEFAULT HLS_DN_POLL 607 608 /* use this MTU size if none other is given */ 609 #define HFI1_DEFAULT_ACTIVE_MTU 10240 610 /* use this MTU size as the default maximum */ 611 #define HFI1_DEFAULT_MAX_MTU 10240 612 /* default partition key */ 613 #define DEFAULT_PKEY 0xffff 614 615 /* 616 * Possible fabric manager config parameters for fm_{get,set}_table() 617 */ 618 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */ 619 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */ 620 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */ 621 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */ 622 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */ 623 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */ 624 625 /* 626 * Possible "operations" for f_rcvctrl(ppd, op, ctxt) 627 * these are bits so they can be combined, e.g. 628 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB 629 */ 630 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01 631 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02 632 #define HFI1_RCVCTRL_CTXT_ENB 0x04 633 #define HFI1_RCVCTRL_CTXT_DIS 0x08 634 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10 635 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20 636 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */ 637 #define HFI1_RCVCTRL_PKEY_DIS 0x80 638 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400 639 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800 640 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000 641 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000 642 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000 643 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000 644 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000 645 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000 646 #define HFI1_RCVCTRL_URGENT_ENB 0x40000 647 #define HFI1_RCVCTRL_URGENT_DIS 0x80000 648 649 /* partition enforcement flags */ 650 #define HFI1_PART_ENFORCE_IN 0x1 651 #define HFI1_PART_ENFORCE_OUT 0x2 652 653 /* how often we check for synthetic counter wrap around */ 654 #define SYNTH_CNT_TIME 3 655 656 /* Counter flags */ 657 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */ 658 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */ 659 #define CNTR_DISABLED 0x2 /* Disable this counter */ 660 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */ 661 #define CNTR_VL 0x8 /* Per VL counter */ 662 #define CNTR_SDMA 0x10 663 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */ 664 #define CNTR_MODE_W 0x0 665 #define CNTR_MODE_R 0x1 666 667 /* VLs Supported/Operational */ 668 #define HFI1_MIN_VLS_SUPPORTED 1 669 #define HFI1_MAX_VLS_SUPPORTED 8 670 671 #define HFI1_GUIDS_PER_PORT 5 672 #define HFI1_PORT_GUID_INDEX 0 673 674 static inline void incr_cntr64(u64 *cntr) 675 { 676 if (*cntr < (u64)-1LL) 677 (*cntr)++; 678 } 679 680 static inline void incr_cntr32(u32 *cntr) 681 { 682 if (*cntr < (u32)-1LL) 683 (*cntr)++; 684 } 685 686 #define MAX_NAME_SIZE 64 687 struct hfi1_msix_entry { 688 enum irq_type type; 689 int irq; 690 void *arg; 691 cpumask_t mask; 692 struct irq_affinity_notify notify; 693 }; 694 695 struct hfi1_msix_info { 696 /* lock to synchronize in_use_msix access */ 697 spinlock_t msix_lock; 698 DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS); 699 struct hfi1_msix_entry *msix_entries; 700 u16 max_requested; 701 }; 702 703 /* per-SL CCA information */ 704 struct cca_timer { 705 struct hrtimer hrtimer; 706 struct hfi1_pportdata *ppd; /* read-only */ 707 int sl; /* read-only */ 708 u16 ccti; /* read/write - current value of CCTI */ 709 }; 710 711 struct link_down_reason { 712 /* 713 * SMA-facing value. Should be set from .latest when 714 * HLS_UP_* -> HLS_DN_* transition actually occurs. 715 */ 716 u8 sma; 717 u8 latest; 718 }; 719 720 enum { 721 LO_PRIO_TABLE, 722 HI_PRIO_TABLE, 723 MAX_PRIO_TABLE 724 }; 725 726 struct vl_arb_cache { 727 /* protect vl arb cache */ 728 spinlock_t lock; 729 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE]; 730 }; 731 732 /* 733 * The structure below encapsulates data relevant to a physical IB Port. 734 * Current chips support only one such port, but the separation 735 * clarifies things a bit. Note that to conform to IB conventions, 736 * port-numbers are one-based. The first or only port is port1. 737 */ 738 struct hfi1_pportdata { 739 struct hfi1_ibport ibport_data; 740 741 struct hfi1_devdata *dd; 742 struct kobject pport_cc_kobj; 743 struct kobject sc2vl_kobj; 744 struct kobject sl2sc_kobj; 745 struct kobject vl2mtu_kobj; 746 747 /* PHY support */ 748 struct qsfp_data qsfp_info; 749 /* Values for SI tuning of SerDes */ 750 u32 port_type; 751 u32 tx_preset_eq; 752 u32 tx_preset_noeq; 753 u32 rx_preset; 754 u8 local_atten; 755 u8 remote_atten; 756 u8 default_atten; 757 u8 max_power_class; 758 759 /* did we read platform config from scratch registers? */ 760 bool config_from_scratch; 761 762 /* GUIDs for this interface, in host order, guids[0] is a port guid */ 763 u64 guids[HFI1_GUIDS_PER_PORT]; 764 765 /* GUID for peer interface, in host order */ 766 u64 neighbor_guid; 767 768 /* up or down physical link state */ 769 u32 linkup; 770 771 /* 772 * this address is mapped read-only into user processes so they can 773 * get status cheaply, whenever they want. One qword of status per port 774 */ 775 u64 *statusp; 776 777 /* SendDMA related entries */ 778 779 struct workqueue_struct *hfi1_wq; 780 struct workqueue_struct *link_wq; 781 782 /* move out of interrupt context */ 783 struct work_struct link_vc_work; 784 struct work_struct link_up_work; 785 struct work_struct link_down_work; 786 struct work_struct sma_message_work; 787 struct work_struct freeze_work; 788 struct work_struct link_downgrade_work; 789 struct work_struct link_bounce_work; 790 struct delayed_work start_link_work; 791 /* host link state variables */ 792 struct mutex hls_lock; 793 u32 host_link_state; 794 795 /* these are the "32 bit" regs */ 796 797 u32 ibmtu; /* The MTU programmed for this unit */ 798 /* 799 * Current max size IB packet (in bytes) including IB headers, that 800 * we can send. Changes when ibmtu changes. 801 */ 802 u32 ibmaxlen; 803 u32 current_egress_rate; /* units [10^6 bits/sec] */ 804 /* LID programmed for this instance */ 805 u32 lid; 806 /* list of pkeys programmed; 0 if not set */ 807 u16 pkeys[MAX_PKEY_VALUES]; 808 u16 link_width_supported; 809 u16 link_width_downgrade_supported; 810 u16 link_speed_supported; 811 u16 link_width_enabled; 812 u16 link_width_downgrade_enabled; 813 u16 link_speed_enabled; 814 u16 link_width_active; 815 u16 link_width_downgrade_tx_active; 816 u16 link_width_downgrade_rx_active; 817 u16 link_speed_active; 818 u8 vls_supported; 819 u8 vls_operational; 820 u8 actual_vls_operational; 821 /* LID mask control */ 822 u8 lmc; 823 /* Rx Polarity inversion (compensate for ~tx on partner) */ 824 u8 rx_pol_inv; 825 826 u8 hw_pidx; /* physical port index */ 827 u8 port; /* IB port number and index into dd->pports - 1 */ 828 /* type of neighbor node */ 829 u8 neighbor_type; 830 u8 neighbor_normal; 831 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */ 832 u8 neighbor_port_number; 833 u8 is_sm_config_started; 834 u8 offline_disabled_reason; 835 u8 is_active_optimize_enabled; 836 u8 driver_link_ready; /* driver ready for active link */ 837 u8 link_enabled; /* link enabled? */ 838 u8 linkinit_reason; 839 u8 local_tx_rate; /* rate given to 8051 firmware */ 840 u8 qsfp_retry_count; 841 842 /* placeholders for IB MAD packet settings */ 843 u8 overrun_threshold; 844 u8 phy_error_threshold; 845 unsigned int is_link_down_queued; 846 847 /* Used to override LED behavior for things like maintenance beaconing*/ 848 /* 849 * Alternates per phase of blink 850 * [0] holds LED off duration, [1] holds LED on duration 851 */ 852 unsigned long led_override_vals[2]; 853 u8 led_override_phase; /* LSB picks from vals[] */ 854 atomic_t led_override_timer_active; 855 /* Used to flash LEDs in override mode */ 856 struct timer_list led_override_timer; 857 858 u32 sm_trap_qp; 859 u32 sa_qp; 860 861 /* 862 * cca_timer_lock protects access to the per-SL cca_timer 863 * structures (specifically the ccti member). 864 */ 865 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp; 866 struct cca_timer cca_timer[OPA_MAX_SLS]; 867 868 /* List of congestion control table entries */ 869 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX]; 870 871 /* congestion entries, each entry corresponding to a SL */ 872 struct opa_congestion_setting_entry_shadow 873 congestion_entries[OPA_MAX_SLS]; 874 875 /* 876 * cc_state_lock protects (write) access to the per-port 877 * struct cc_state. 878 */ 879 spinlock_t cc_state_lock ____cacheline_aligned_in_smp; 880 881 struct cc_state __rcu *cc_state; 882 883 /* Total number of congestion control table entries */ 884 u16 total_cct_entry; 885 886 /* Bit map identifying service level */ 887 u32 cc_sl_control_map; 888 889 /* CA's max number of 64 entry units in the congestion control table */ 890 u8 cc_max_table_entries; 891 892 /* 893 * begin congestion log related entries 894 * cc_log_lock protects all congestion log related data 895 */ 896 spinlock_t cc_log_lock ____cacheline_aligned_in_smp; 897 u8 threshold_cong_event_map[OPA_MAX_SLS / 8]; 898 u16 threshold_event_counter; 899 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS]; 900 int cc_log_idx; /* index for logging events */ 901 int cc_mad_idx; /* index for reporting events */ 902 /* end congestion log related entries */ 903 904 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE]; 905 906 /* port relative counter buffer */ 907 u64 *cntrs; 908 /* port relative synthetic counter buffer */ 909 u64 *scntrs; 910 /* port_xmit_discards are synthesized from different egress errors */ 911 u64 port_xmit_discards; 912 u64 port_xmit_discards_vl[C_VL_COUNT]; 913 u64 port_xmit_constraint_errors; 914 u64 port_rcv_constraint_errors; 915 /* count of 'link_err' interrupts from DC */ 916 u64 link_downed; 917 /* number of times link retrained successfully */ 918 u64 link_up; 919 /* number of times a link unknown frame was reported */ 920 u64 unknown_frame_count; 921 /* port_ltp_crc_mode is returned in 'portinfo' MADs */ 922 u16 port_ltp_crc_mode; 923 /* port_crc_mode_enabled is the crc we support */ 924 u8 port_crc_mode_enabled; 925 /* mgmt_allowed is also returned in 'portinfo' MADs */ 926 u8 mgmt_allowed; 927 u8 part_enforce; /* partition enforcement flags */ 928 struct link_down_reason local_link_down_reason; 929 struct link_down_reason neigh_link_down_reason; 930 /* Value to be sent to link peer on LinkDown .*/ 931 u8 remote_link_down_reason; 932 /* Error events that will cause a port bounce. */ 933 u32 port_error_action; 934 struct work_struct linkstate_active_work; 935 /* Does this port need to prescan for FECNs */ 936 bool cc_prescan; 937 /* 938 * Sample sendWaitCnt & sendWaitVlCnt during link transition 939 * and counter request. 940 */ 941 u64 port_vl_xmit_wait_last[C_VL_COUNT + 1]; 942 u16 prev_link_width; 943 u64 vl_xmit_flit_cnt[C_VL_COUNT + 1]; 944 }; 945 946 typedef void (*opcode_handler)(struct hfi1_packet *packet); 947 typedef void (*hfi1_make_req)(struct rvt_qp *qp, 948 struct hfi1_pkt_state *ps, 949 struct rvt_swqe *wqe); 950 extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[]; 951 952 953 /* return values for the RHF receive functions */ 954 #define RHF_RCV_CONTINUE 0 /* keep going */ 955 #define RHF_RCV_DONE 1 /* stop, this packet processed */ 956 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */ 957 958 struct rcv_array_data { 959 u16 ngroups; 960 u16 nctxt_extra; 961 u8 group_size; 962 }; 963 964 struct per_vl_data { 965 u16 mtu; 966 struct send_context *sc; 967 }; 968 969 /* 16 to directly index */ 970 #define PER_VL_SEND_CONTEXTS 16 971 972 struct err_info_rcvport { 973 u8 status_and_code; 974 u64 packet_flit1; 975 u64 packet_flit2; 976 }; 977 978 struct err_info_constraint { 979 u8 status; 980 u16 pkey; 981 u32 slid; 982 }; 983 984 struct hfi1_temp { 985 unsigned int curr; /* current temperature */ 986 unsigned int lo_lim; /* low temperature limit */ 987 unsigned int hi_lim; /* high temperature limit */ 988 unsigned int crit_lim; /* critical temperature limit */ 989 u8 triggers; /* temperature triggers */ 990 }; 991 992 struct hfi1_i2c_bus { 993 struct hfi1_devdata *controlling_dd; /* current controlling device */ 994 struct i2c_adapter adapter; /* bus details */ 995 struct i2c_algo_bit_data algo; /* bus algorithm details */ 996 int num; /* bus number, 0 or 1 */ 997 }; 998 999 /* common data between shared ASIC HFIs */ 1000 struct hfi1_asic_data { 1001 struct hfi1_devdata *dds[2]; /* back pointers */ 1002 struct mutex asic_resource_mutex; 1003 struct hfi1_i2c_bus *i2c_bus0; 1004 struct hfi1_i2c_bus *i2c_bus1; 1005 }; 1006 1007 /* sizes for both the QP and RSM map tables */ 1008 #define NUM_MAP_ENTRIES 256 1009 #define NUM_MAP_REGS 32 1010 1011 /* 1012 * Number of VNIC contexts used. Ensure it is less than or equal to 1013 * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE). 1014 */ 1015 #define HFI1_NUM_VNIC_CTXT 8 1016 1017 /* Number of VNIC RSM entries */ 1018 #define NUM_VNIC_MAP_ENTRIES 8 1019 1020 /* Virtual NIC information */ 1021 struct hfi1_vnic_data { 1022 struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT]; 1023 struct kmem_cache *txreq_cache; 1024 u8 num_vports; 1025 struct idr vesw_idr; 1026 u8 rmt_start; 1027 u8 num_ctxt; 1028 }; 1029 1030 struct hfi1_vnic_vport_info; 1031 1032 /* device data struct now contains only "general per-device" info. 1033 * fields related to a physical IB port are in a hfi1_pportdata struct. 1034 */ 1035 struct sdma_engine; 1036 struct sdma_vl_map; 1037 1038 #define BOARD_VERS_MAX 96 /* how long the version string can be */ 1039 #define SERIAL_MAX 16 /* length of the serial number */ 1040 1041 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64); 1042 struct hfi1_devdata { 1043 struct hfi1_ibdev verbs_dev; /* must be first */ 1044 struct list_head list; 1045 /* pointers to related structs for this device */ 1046 /* pci access data structure */ 1047 struct pci_dev *pcidev; 1048 struct cdev user_cdev; 1049 struct cdev diag_cdev; 1050 struct cdev ui_cdev; 1051 struct device *user_device; 1052 struct device *diag_device; 1053 struct device *ui_device; 1054 1055 /* first mapping up to RcvArray */ 1056 u8 __iomem *kregbase1; 1057 resource_size_t physaddr; 1058 1059 /* second uncached mapping from RcvArray to pio send buffers */ 1060 u8 __iomem *kregbase2; 1061 /* for detecting offset above kregbase2 address */ 1062 u32 base2_start; 1063 1064 /* Per VL data. Enough for all VLs but not all elements are set/used. */ 1065 struct per_vl_data vld[PER_VL_SEND_CONTEXTS]; 1066 /* send context data */ 1067 struct send_context_info *send_contexts; 1068 /* map hardware send contexts to software index */ 1069 u8 *hw_to_sw; 1070 /* spinlock for allocating and releasing send context resources */ 1071 spinlock_t sc_lock; 1072 /* lock for pio_map */ 1073 spinlock_t pio_map_lock; 1074 /* Send Context initialization lock. */ 1075 spinlock_t sc_init_lock; 1076 /* lock for sdma_map */ 1077 spinlock_t sde_map_lock; 1078 /* array of kernel send contexts */ 1079 struct send_context **kernel_send_context; 1080 /* array of vl maps */ 1081 struct pio_vl_map __rcu *pio_map; 1082 /* default flags to last descriptor */ 1083 u64 default_desc1; 1084 1085 /* fields common to all SDMA engines */ 1086 1087 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */ 1088 dma_addr_t sdma_heads_phys; 1089 void *sdma_pad_dma; /* DMA'ed by chip */ 1090 dma_addr_t sdma_pad_phys; 1091 /* for deallocation */ 1092 size_t sdma_heads_size; 1093 /* num used */ 1094 u32 num_sdma; 1095 /* array of engines sized by num_sdma */ 1096 struct sdma_engine *per_sdma; 1097 /* array of vl maps */ 1098 struct sdma_vl_map __rcu *sdma_map; 1099 /* SPC freeze waitqueue and variable */ 1100 wait_queue_head_t sdma_unfreeze_wq; 1101 atomic_t sdma_unfreeze_count; 1102 1103 u32 lcb_access_count; /* count of LCB users */ 1104 1105 /* common data between shared ASIC HFIs in this OS */ 1106 struct hfi1_asic_data *asic_data; 1107 1108 /* mem-mapped pointer to base of PIO buffers */ 1109 void __iomem *piobase; 1110 /* 1111 * write-combining mem-mapped pointer to base of RcvArray 1112 * memory. 1113 */ 1114 void __iomem *rcvarray_wc; 1115 /* 1116 * credit return base - a per-NUMA range of DMA address that 1117 * the chip will use to update the per-context free counter 1118 */ 1119 struct credit_return_base *cr_base; 1120 1121 /* send context numbers and sizes for each type */ 1122 struct sc_config_sizes sc_sizes[SC_MAX]; 1123 1124 char *boardname; /* human readable board info */ 1125 1126 /* reset value */ 1127 u64 z_int_counter; 1128 u64 z_rcv_limit; 1129 u64 z_send_schedule; 1130 1131 u64 __percpu *send_schedule; 1132 /* number of reserved contexts for VNIC usage */ 1133 u16 num_vnic_contexts; 1134 /* number of receive contexts in use by the driver */ 1135 u32 num_rcv_contexts; 1136 /* number of pio send contexts in use by the driver */ 1137 u32 num_send_contexts; 1138 /* 1139 * number of ctxts available for PSM open 1140 */ 1141 u32 freectxts; 1142 /* total number of available user/PSM contexts */ 1143 u32 num_user_contexts; 1144 /* base receive interrupt timeout, in CSR units */ 1145 u32 rcv_intr_timeout_csr; 1146 1147 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */ 1148 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */ 1149 spinlock_t uctxt_lock; /* protect rcd changes */ 1150 struct mutex dc8051_lock; /* exclusive access to 8051 */ 1151 struct workqueue_struct *update_cntr_wq; 1152 struct work_struct update_cntr_work; 1153 /* exclusive access to 8051 memory */ 1154 spinlock_t dc8051_memlock; 1155 int dc8051_timed_out; /* remember if the 8051 timed out */ 1156 /* 1157 * A page that will hold event notification bitmaps for all 1158 * contexts. This page will be mapped into all processes. 1159 */ 1160 unsigned long *events; 1161 /* 1162 * per unit status, see also portdata statusp 1163 * mapped read-only into user processes so they can get unit and 1164 * IB link status cheaply 1165 */ 1166 struct hfi1_status *status; 1167 1168 /* revision register shadow */ 1169 u64 revision; 1170 /* Base GUID for device (network order) */ 1171 u64 base_guid; 1172 1173 /* both sides of the PCIe link are gen3 capable */ 1174 u8 link_gen3_capable; 1175 u8 dc_shutdown; 1176 /* localbus width (1, 2,4,8,16,32) from config space */ 1177 u32 lbus_width; 1178 /* localbus speed in MHz */ 1179 u32 lbus_speed; 1180 int unit; /* unit # of this chip */ 1181 int node; /* home node of this chip */ 1182 1183 /* save these PCI fields to restore after a reset */ 1184 u32 pcibar0; 1185 u32 pcibar1; 1186 u32 pci_rom; 1187 u16 pci_command; 1188 u16 pcie_devctl; 1189 u16 pcie_lnkctl; 1190 u16 pcie_devctl2; 1191 u32 pci_msix0; 1192 u32 pci_tph2; 1193 1194 /* 1195 * ASCII serial number, from flash, large enough for original 1196 * all digit strings, and longer serial number format 1197 */ 1198 u8 serial[SERIAL_MAX]; 1199 /* human readable board version */ 1200 u8 boardversion[BOARD_VERS_MAX]; 1201 u8 lbus_info[32]; /* human readable localbus info */ 1202 /* chip major rev, from CceRevision */ 1203 u8 majrev; 1204 /* chip minor rev, from CceRevision */ 1205 u8 minrev; 1206 /* hardware ID */ 1207 u8 hfi1_id; 1208 /* implementation code */ 1209 u8 icode; 1210 /* vAU of this device */ 1211 u8 vau; 1212 /* vCU of this device */ 1213 u8 vcu; 1214 /* link credits of this device */ 1215 u16 link_credits; 1216 /* initial vl15 credits to use */ 1217 u16 vl15_init; 1218 1219 /* 1220 * Cached value for vl15buf, read during verify cap interrupt. VL15 1221 * credits are to be kept at 0 and set when handling the link-up 1222 * interrupt. This removes the possibility of receiving VL15 MAD 1223 * packets before this HFI is ready. 1224 */ 1225 u16 vl15buf_cached; 1226 1227 /* Misc small ints */ 1228 u8 n_krcv_queues; 1229 u8 qos_shift; 1230 1231 u16 irev; /* implementation revision */ 1232 u32 dc8051_ver; /* 8051 firmware version */ 1233 1234 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */ 1235 struct platform_config platform_config; 1236 struct platform_config_cache pcfg_cache; 1237 1238 struct diag_client *diag_client; 1239 1240 /* general interrupt: mask of handled interrupts */ 1241 u64 gi_mask[CCE_NUM_INT_CSRS]; 1242 1243 struct rcv_array_data rcv_entries; 1244 1245 /* cycle length of PS* counters in HW (in picoseconds) */ 1246 u16 psxmitwait_check_rate; 1247 1248 /* 1249 * 64 bit synthetic counters 1250 */ 1251 struct timer_list synth_stats_timer; 1252 1253 /* MSI-X information */ 1254 struct hfi1_msix_info msix_info; 1255 1256 /* 1257 * device counters 1258 */ 1259 char *cntrnames; 1260 size_t cntrnameslen; 1261 size_t ndevcntrs; 1262 u64 *cntrs; 1263 u64 *scntrs; 1264 1265 /* 1266 * remembered values for synthetic counters 1267 */ 1268 u64 last_tx; 1269 u64 last_rx; 1270 1271 /* 1272 * per-port counters 1273 */ 1274 size_t nportcntrs; 1275 char *portcntrnames; 1276 size_t portcntrnameslen; 1277 1278 struct err_info_rcvport err_info_rcvport; 1279 struct err_info_constraint err_info_rcv_constraint; 1280 struct err_info_constraint err_info_xmit_constraint; 1281 1282 atomic_t drop_packet; 1283 u8 do_drop; 1284 u8 err_info_uncorrectable; 1285 u8 err_info_fmconfig; 1286 1287 /* 1288 * Software counters for the status bits defined by the 1289 * associated error status registers 1290 */ 1291 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS]; 1292 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS]; 1293 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS]; 1294 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS]; 1295 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS]; 1296 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS]; 1297 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS]; 1298 1299 /* Software counter that spans all contexts */ 1300 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS]; 1301 /* Software counter that spans all DMA engines */ 1302 u64 sw_send_dma_eng_err_status_cnt[ 1303 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS]; 1304 /* Software counter that aggregates all cce_err_status errors */ 1305 u64 sw_cce_err_status_aggregate; 1306 /* Software counter that aggregates all bypass packet rcv errors */ 1307 u64 sw_rcv_bypass_packet_errors; 1308 1309 /* Save the enabled LCB error bits */ 1310 u64 lcb_err_en; 1311 struct cpu_mask_set *comp_vect; 1312 int *comp_vect_mappings; 1313 u32 comp_vect_possible_cpus; 1314 1315 /* 1316 * Capability to have different send engines simply by changing a 1317 * pointer value. 1318 */ 1319 send_routine process_pio_send ____cacheline_aligned_in_smp; 1320 send_routine process_dma_send; 1321 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf, 1322 u64 pbc, const void *from, size_t count); 1323 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx, 1324 struct hfi1_vnic_vport_info *vinfo, 1325 struct sk_buff *skb, u64 pbc, u8 plen); 1326 /* hfi1_pportdata, points to array of (physical) port-specific 1327 * data structs, indexed by pidx (0..n-1) 1328 */ 1329 struct hfi1_pportdata *pport; 1330 /* receive context data */ 1331 struct hfi1_ctxtdata **rcd; 1332 u64 __percpu *int_counter; 1333 /* verbs tx opcode stats */ 1334 struct hfi1_opcode_stats_perctx __percpu *tx_opstats; 1335 /* device (not port) flags, basically device capabilities */ 1336 u16 flags; 1337 /* Number of physical ports available */ 1338 u8 num_pports; 1339 /* Lowest context number which can be used by user processes or VNIC */ 1340 u8 first_dyn_alloc_ctxt; 1341 /* adding a new field here would make it part of this cacheline */ 1342 1343 /* seqlock for sc2vl */ 1344 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp; 1345 u64 sc2vl[4]; 1346 u64 __percpu *rcv_limit; 1347 /* adding a new field here would make it part of this cacheline */ 1348 1349 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */ 1350 u8 oui1; 1351 u8 oui2; 1352 u8 oui3; 1353 1354 /* Timer and counter used to detect RcvBufOvflCnt changes */ 1355 struct timer_list rcverr_timer; 1356 1357 wait_queue_head_t event_queue; 1358 1359 /* receive context tail dummy address */ 1360 __le64 *rcvhdrtail_dummy_kvaddr; 1361 dma_addr_t rcvhdrtail_dummy_dma; 1362 1363 u32 rcv_ovfl_cnt; 1364 /* Serialize ASPM enable/disable between multiple verbs contexts */ 1365 spinlock_t aspm_lock; 1366 /* Number of verbs contexts which have disabled ASPM */ 1367 atomic_t aspm_disabled_cnt; 1368 /* Keeps track of user space clients */ 1369 atomic_t user_refcount; 1370 /* Used to wait for outstanding user space clients before dev removal */ 1371 struct completion user_comp; 1372 1373 bool eprom_available; /* true if EPROM is available for this device */ 1374 bool aspm_supported; /* Does HW support ASPM */ 1375 bool aspm_enabled; /* ASPM state: enabled/disabled */ 1376 struct rhashtable *sdma_rht; 1377 1378 struct kobject kobj; 1379 1380 /* vnic data */ 1381 struct hfi1_vnic_data vnic; 1382 /* Lock to protect IRQ SRC register access */ 1383 spinlock_t irq_src_lock; 1384 }; 1385 1386 static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare) 1387 { 1388 return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES; 1389 } 1390 1391 /* 8051 firmware version helper */ 1392 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c)) 1393 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16) 1394 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8) 1395 #define dc8051_ver_patch(a) ((a) & 0x0000ff) 1396 1397 /* f_put_tid types */ 1398 #define PT_EXPECTED 0 1399 #define PT_EAGER 1 1400 #define PT_INVALID_FLUSH 2 1401 #define PT_INVALID 3 1402 1403 struct tid_rb_node; 1404 struct mmu_rb_node; 1405 struct mmu_rb_handler; 1406 1407 /* Private data for file operations */ 1408 struct hfi1_filedata { 1409 struct hfi1_devdata *dd; 1410 struct hfi1_ctxtdata *uctxt; 1411 struct hfi1_user_sdma_comp_q *cq; 1412 struct hfi1_user_sdma_pkt_q *pq; 1413 u16 subctxt; 1414 /* for cpu affinity; -1 if none */ 1415 int rec_cpu_num; 1416 u32 tid_n_pinned; 1417 struct mmu_rb_handler *handler; 1418 struct tid_rb_node **entry_to_rb; 1419 spinlock_t tid_lock; /* protect tid_[limit,used] counters */ 1420 u32 tid_limit; 1421 u32 tid_used; 1422 u32 *invalid_tids; 1423 u32 invalid_tid_idx; 1424 /* protect invalid_tids array and invalid_tid_idx */ 1425 spinlock_t invalid_lock; 1426 struct mm_struct *mm; 1427 }; 1428 1429 extern struct list_head hfi1_dev_list; 1430 extern spinlock_t hfi1_devs_lock; 1431 struct hfi1_devdata *hfi1_lookup(int unit); 1432 1433 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt) 1434 { 1435 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * 1436 HFI1_MAX_SHARED_CTXTS; 1437 } 1438 1439 int hfi1_init(struct hfi1_devdata *dd, int reinit); 1440 int hfi1_count_active_units(void); 1441 1442 int hfi1_diag_add(struct hfi1_devdata *dd); 1443 void hfi1_diag_remove(struct hfi1_devdata *dd); 1444 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup); 1445 1446 void handle_user_interrupt(struct hfi1_ctxtdata *rcd); 1447 1448 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1449 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd); 1450 int hfi1_create_kctxts(struct hfi1_devdata *dd); 1451 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 1452 struct hfi1_ctxtdata **rcd); 1453 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd); 1454 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 1455 struct hfi1_devdata *dd, u8 hw_pidx, u8 port); 1456 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1457 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd); 1458 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd); 1459 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 1460 u16 ctxt); 1461 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt); 1462 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread); 1463 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1464 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1465 void set_all_slowpath(struct hfi1_devdata *dd); 1466 1467 extern const struct pci_device_id hfi1_pci_tbl[]; 1468 void hfi1_make_ud_req_9B(struct rvt_qp *qp, 1469 struct hfi1_pkt_state *ps, 1470 struct rvt_swqe *wqe); 1471 1472 void hfi1_make_ud_req_16B(struct rvt_qp *qp, 1473 struct hfi1_pkt_state *ps, 1474 struct rvt_swqe *wqe); 1475 1476 /* receive packet handler dispositions */ 1477 #define RCV_PKT_OK 0x0 /* keep going */ 1478 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */ 1479 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */ 1480 1481 /* calculate the current RHF address */ 1482 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd) 1483 { 1484 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset; 1485 } 1486 1487 int hfi1_reset_device(int); 1488 1489 void receive_interrupt_work(struct work_struct *work); 1490 1491 /* extract service channel from header and rhf */ 1492 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf) 1493 { 1494 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4); 1495 } 1496 1497 #define HFI1_JKEY_WIDTH 16 1498 #define HFI1_JKEY_MASK (BIT(16) - 1) 1499 #define HFI1_ADMIN_JKEY_RANGE 32 1500 1501 /* 1502 * J_KEYs are split and allocated in the following groups: 1503 * 0 - 31 - users with administrator privileges 1504 * 32 - 63 - kernel protocols using KDETH packets 1505 * 64 - 65535 - all other users using KDETH packets 1506 */ 1507 static inline u16 generate_jkey(kuid_t uid) 1508 { 1509 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK; 1510 1511 if (capable(CAP_SYS_ADMIN)) 1512 jkey &= HFI1_ADMIN_JKEY_RANGE - 1; 1513 else if (jkey < 64) 1514 jkey |= BIT(HFI1_JKEY_WIDTH - 1); 1515 1516 return jkey; 1517 } 1518 1519 /* 1520 * active_egress_rate 1521 * 1522 * returns the active egress rate in units of [10^6 bits/sec] 1523 */ 1524 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd) 1525 { 1526 u16 link_speed = ppd->link_speed_active; 1527 u16 link_width = ppd->link_width_active; 1528 u32 egress_rate; 1529 1530 if (link_speed == OPA_LINK_SPEED_25G) 1531 egress_rate = 25000; 1532 else /* assume OPA_LINK_SPEED_12_5G */ 1533 egress_rate = 12500; 1534 1535 switch (link_width) { 1536 case OPA_LINK_WIDTH_4X: 1537 egress_rate *= 4; 1538 break; 1539 case OPA_LINK_WIDTH_3X: 1540 egress_rate *= 3; 1541 break; 1542 case OPA_LINK_WIDTH_2X: 1543 egress_rate *= 2; 1544 break; 1545 default: 1546 /* assume IB_WIDTH_1X */ 1547 break; 1548 } 1549 1550 return egress_rate; 1551 } 1552 1553 /* 1554 * egress_cycles 1555 * 1556 * Returns the number of 'fabric clock cycles' to egress a packet 1557 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock 1558 * rate is (approximately) 805 MHz, the units of the returned value 1559 * are (1/805 MHz). 1560 */ 1561 static inline u32 egress_cycles(u32 len, u32 rate) 1562 { 1563 u32 cycles; 1564 1565 /* 1566 * cycles is: 1567 * 1568 * (length) [bits] / (rate) [bits/sec] 1569 * --------------------------------------------------- 1570 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec] 1571 */ 1572 1573 cycles = len * 8; /* bits */ 1574 cycles *= 805; 1575 cycles /= rate; 1576 1577 return cycles; 1578 } 1579 1580 void set_link_ipg(struct hfi1_pportdata *ppd); 1581 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, 1582 u32 rqpn, u8 svc_type); 1583 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, 1584 u16 pkey, u32 slid, u32 dlid, u8 sc5, 1585 const struct ib_grh *old_grh); 1586 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1587 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1588 u8 sc5, const struct ib_grh *old_grh); 1589 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1590 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1591 u8 sc5, const struct ib_grh *old_grh); 1592 1593 #define PKEY_CHECK_INVALID -1 1594 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1595 u8 sc5, int8_t s_pkey_index); 1596 1597 #define PACKET_EGRESS_TIMEOUT 350 1598 static inline void pause_for_credit_return(struct hfi1_devdata *dd) 1599 { 1600 /* Pause at least 1us, to ensure chip returns all credits */ 1601 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000; 1602 1603 udelay(usec ? usec : 1); 1604 } 1605 1606 /** 1607 * sc_to_vlt() reverse lookup sc to vl 1608 * @dd - devdata 1609 * @sc5 - 5 bit sc 1610 */ 1611 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5) 1612 { 1613 unsigned seq; 1614 u8 rval; 1615 1616 if (sc5 >= OPA_MAX_SCS) 1617 return (u8)(0xff); 1618 1619 do { 1620 seq = read_seqbegin(&dd->sc2vl_lock); 1621 rval = *(((u8 *)dd->sc2vl) + sc5); 1622 } while (read_seqretry(&dd->sc2vl_lock, seq)); 1623 1624 return rval; 1625 } 1626 1627 #define PKEY_MEMBER_MASK 0x8000 1628 #define PKEY_LOW_15_MASK 0x7fff 1629 1630 /* 1631 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1632 * being an entry from the ingress partition key table), return 0 1633 * otherwise. Use the matching criteria for ingress partition keys 1634 * specified in the OPAv1 spec., section 9.10.14. 1635 */ 1636 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent) 1637 { 1638 u16 mkey = pkey & PKEY_LOW_15_MASK; 1639 u16 ment = ent & PKEY_LOW_15_MASK; 1640 1641 if (mkey == ment) { 1642 /* 1643 * If pkey[15] is clear (limited partition member), 1644 * is bit 15 in the corresponding table element 1645 * clear (limited member)? 1646 */ 1647 if (!(pkey & PKEY_MEMBER_MASK)) 1648 return !!(ent & PKEY_MEMBER_MASK); 1649 return 1; 1650 } 1651 return 0; 1652 } 1653 1654 /* 1655 * ingress_pkey_table_search - search the entire pkey table for 1656 * an entry which matches 'pkey'. return 0 if a match is found, 1657 * and 1 otherwise. 1658 */ 1659 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey) 1660 { 1661 int i; 1662 1663 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1664 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1665 return 0; 1666 } 1667 return 1; 1668 } 1669 1670 /* 1671 * ingress_pkey_table_fail - record a failure of ingress pkey validation, 1672 * i.e., increment port_rcv_constraint_errors for the port, and record 1673 * the 'error info' for this failure. 1674 */ 1675 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey, 1676 u32 slid) 1677 { 1678 struct hfi1_devdata *dd = ppd->dd; 1679 1680 incr_cntr64(&ppd->port_rcv_constraint_errors); 1681 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) { 1682 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK; 1683 dd->err_info_rcv_constraint.slid = slid; 1684 dd->err_info_rcv_constraint.pkey = pkey; 1685 } 1686 } 1687 1688 /* 1689 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1 1690 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx 1691 * is a hint as to the best place in the partition key table to begin 1692 * searching. This function should not be called on the data path because 1693 * of performance reasons. On datapath pkey check is expected to be done 1694 * by HW and rcv_pkey_check function should be called instead. 1695 */ 1696 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1697 u8 sc5, u8 idx, u32 slid, bool force) 1698 { 1699 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1700 return 0; 1701 1702 /* If SC15, pkey[0:14] must be 0x7fff */ 1703 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1704 goto bad; 1705 1706 /* Is the pkey = 0x0, or 0x8000? */ 1707 if ((pkey & PKEY_LOW_15_MASK) == 0) 1708 goto bad; 1709 1710 /* The most likely matching pkey has index 'idx' */ 1711 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx])) 1712 return 0; 1713 1714 /* no match - try the whole table */ 1715 if (!ingress_pkey_table_search(ppd, pkey)) 1716 return 0; 1717 1718 bad: 1719 ingress_pkey_table_fail(ppd, pkey, slid); 1720 return 1; 1721 } 1722 1723 /* 1724 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1 1725 * otherwise. It only ensures pkey is vlid for QP0. This function 1726 * should be called on the data path instead of ingress_pkey_check 1727 * as on data path, pkey check is done by HW (except for QP0). 1728 */ 1729 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1730 u8 sc5, u16 slid) 1731 { 1732 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1733 return 0; 1734 1735 /* If SC15, pkey[0:14] must be 0x7fff */ 1736 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1737 goto bad; 1738 1739 return 0; 1740 bad: 1741 ingress_pkey_table_fail(ppd, pkey, slid); 1742 return 1; 1743 } 1744 1745 /* MTU handling */ 1746 1747 /* MTU enumeration, 256-4k match IB */ 1748 #define OPA_MTU_0 0 1749 #define OPA_MTU_256 1 1750 #define OPA_MTU_512 2 1751 #define OPA_MTU_1024 3 1752 #define OPA_MTU_2048 4 1753 #define OPA_MTU_4096 5 1754 1755 u32 lrh_max_header_bytes(struct hfi1_devdata *dd); 1756 int mtu_to_enum(u32 mtu, int default_if_bad); 1757 u16 enum_to_mtu(int mtu); 1758 static inline int valid_ib_mtu(unsigned int mtu) 1759 { 1760 return mtu == 256 || mtu == 512 || 1761 mtu == 1024 || mtu == 2048 || 1762 mtu == 4096; 1763 } 1764 1765 static inline int valid_opa_max_mtu(unsigned int mtu) 1766 { 1767 return mtu >= 2048 && 1768 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240); 1769 } 1770 1771 int set_mtu(struct hfi1_pportdata *ppd); 1772 1773 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc); 1774 void hfi1_disable_after_error(struct hfi1_devdata *dd); 1775 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit); 1776 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode); 1777 1778 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t); 1779 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t); 1780 1781 void set_up_vau(struct hfi1_devdata *dd, u8 vau); 1782 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf); 1783 void reset_link_credits(struct hfi1_devdata *dd); 1784 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu); 1785 1786 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc); 1787 1788 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd) 1789 { 1790 return ppd->dd; 1791 } 1792 1793 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev) 1794 { 1795 return container_of(dev, struct hfi1_devdata, verbs_dev); 1796 } 1797 1798 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev) 1799 { 1800 return dd_from_dev(to_idev(ibdev)); 1801 } 1802 1803 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp) 1804 { 1805 return container_of(ibp, struct hfi1_pportdata, ibport_data); 1806 } 1807 1808 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi) 1809 { 1810 return container_of(rdi, struct hfi1_ibdev, rdi); 1811 } 1812 1813 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port) 1814 { 1815 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1816 unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */ 1817 1818 WARN_ON(pidx >= dd->num_pports); 1819 return &dd->pport[pidx].ibport_data; 1820 } 1821 1822 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd) 1823 { 1824 return &rcd->ppd->ibport_data; 1825 } 1826 1827 /** 1828 * hfi1_may_ecn - Check whether FECN or BECN processing should be done 1829 * @pkt: the packet to be evaluated 1830 * 1831 * Check whether the FECN or BECN bits in the packet's header are 1832 * enabled, depending on packet type. 1833 * 1834 * This function only checks for FECN and BECN bits. Additional checks 1835 * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to 1836 * ensure correct handling. 1837 */ 1838 static inline bool hfi1_may_ecn(struct hfi1_packet *pkt) 1839 { 1840 bool fecn, becn; 1841 1842 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 1843 fecn = hfi1_16B_get_fecn(pkt->hdr); 1844 becn = hfi1_16B_get_becn(pkt->hdr); 1845 } else { 1846 fecn = ib_bth_get_fecn(pkt->ohdr); 1847 becn = ib_bth_get_becn(pkt->ohdr); 1848 } 1849 return fecn || becn; 1850 } 1851 1852 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 1853 bool prescan); 1854 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt) 1855 { 1856 bool do_work; 1857 1858 do_work = hfi1_may_ecn(pkt); 1859 if (unlikely(do_work)) 1860 return hfi1_process_ecn_slowpath(qp, pkt, false); 1861 return false; 1862 } 1863 1864 /* 1865 * Return the indexed PKEY from the port PKEY table. 1866 */ 1867 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index) 1868 { 1869 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1870 u16 ret; 1871 1872 if (index >= ARRAY_SIZE(ppd->pkeys)) 1873 ret = 0; 1874 else 1875 ret = ppd->pkeys[index]; 1876 1877 return ret; 1878 } 1879 1880 /* 1881 * Return the indexed GUID from the port GUIDs table. 1882 */ 1883 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index) 1884 { 1885 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1886 1887 WARN_ON(index >= HFI1_GUIDS_PER_PORT); 1888 return cpu_to_be64(ppd->guids[index]); 1889 } 1890 1891 /* 1892 * Called by readers of cc_state only, must call under rcu_read_lock(). 1893 */ 1894 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd) 1895 { 1896 return rcu_dereference(ppd->cc_state); 1897 } 1898 1899 /* 1900 * Called by writers of cc_state only, must call under cc_state_lock. 1901 */ 1902 static inline 1903 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd) 1904 { 1905 return rcu_dereference_protected(ppd->cc_state, 1906 lockdep_is_held(&ppd->cc_state_lock)); 1907 } 1908 1909 /* 1910 * values for dd->flags (_device_ related flags) 1911 */ 1912 #define HFI1_INITTED 0x1 /* chip and driver up and initted */ 1913 #define HFI1_PRESENT 0x2 /* chip accesses can be done */ 1914 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */ 1915 #define HFI1_HAS_SDMA_TIMEOUT 0x8 1916 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */ 1917 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */ 1918 #define HFI1_SHUTDOWN 0x100 /* device is shutting down */ 1919 1920 /* IB dword length mask in PBC (lower 11 bits); same for all chips */ 1921 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1) 1922 1923 /* ctxt_flag bit offsets */ 1924 /* base context has not finished initializing */ 1925 #define HFI1_CTXT_BASE_UNINIT 1 1926 /* base context initaliation failed */ 1927 #define HFI1_CTXT_BASE_FAILED 2 1928 /* waiting for a packet to arrive */ 1929 #define HFI1_CTXT_WAITING_RCV 3 1930 /* waiting for an urgent packet to arrive */ 1931 #define HFI1_CTXT_WAITING_URG 4 1932 1933 /* free up any allocated data at closes */ 1934 int hfi1_init_dd(struct hfi1_devdata *dd); 1935 void hfi1_free_devdata(struct hfi1_devdata *dd); 1936 1937 /* LED beaconing functions */ 1938 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1939 unsigned int timeoff); 1940 void shutdown_led_override(struct hfi1_pportdata *ppd); 1941 1942 #define HFI1_CREDIT_RETURN_RATE (100) 1943 1944 /* 1945 * The number of words for the KDETH protocol field. If this is 1946 * larger then the actual field used, then part of the payload 1947 * will be in the header. 1948 * 1949 * Optimally, we want this sized so that a typical case will 1950 * use full cache lines. The typical local KDETH header would 1951 * be: 1952 * 1953 * Bytes Field 1954 * 8 LRH 1955 * 12 BHT 1956 * ?? KDETH 1957 * 8 RHF 1958 * --- 1959 * 28 + KDETH 1960 * 1961 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS 1962 */ 1963 #define DEFAULT_RCVHDRSIZE 9 1964 1965 /* 1966 * Maximal header byte count: 1967 * 1968 * Bytes Field 1969 * 8 LRH 1970 * 40 GRH (optional) 1971 * 12 BTH 1972 * ?? KDETH 1973 * 8 RHF 1974 * --- 1975 * 68 + KDETH 1976 * 1977 * We also want to maintain a cache line alignment to assist DMA'ing 1978 * of the header bytes. Round up to a good size. 1979 */ 1980 #define DEFAULT_RCVHDR_ENTSIZE 32 1981 1982 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm, 1983 u32 nlocked, u32 npages); 1984 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, 1985 size_t npages, bool writable, struct page **pages); 1986 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p, 1987 size_t npages, bool dirty); 1988 1989 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 1990 { 1991 *((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL; 1992 } 1993 1994 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 1995 { 1996 /* 1997 * volatile because it's a DMA target from the chip, routine is 1998 * inlined, and don't want register caching or reordering. 1999 */ 2000 return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr); 2001 } 2002 2003 /* 2004 * sysfs interface. 2005 */ 2006 2007 extern const char ib_hfi1_version[]; 2008 extern const struct attribute_group ib_hfi1_attr_group; 2009 2010 int hfi1_device_create(struct hfi1_devdata *dd); 2011 void hfi1_device_remove(struct hfi1_devdata *dd); 2012 2013 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num, 2014 struct kobject *kobj); 2015 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd); 2016 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd); 2017 /* Hook for sysfs read of QSFP */ 2018 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len); 2019 2020 int hfi1_pcie_init(struct hfi1_devdata *dd); 2021 void hfi1_pcie_cleanup(struct pci_dev *pdev); 2022 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev); 2023 void hfi1_pcie_ddcleanup(struct hfi1_devdata *); 2024 int pcie_speeds(struct hfi1_devdata *dd); 2025 int restore_pci_variables(struct hfi1_devdata *dd); 2026 int save_pci_variables(struct hfi1_devdata *dd); 2027 int do_pcie_gen3_transition(struct hfi1_devdata *dd); 2028 void tune_pcie_caps(struct hfi1_devdata *dd); 2029 int parse_platform_config(struct hfi1_devdata *dd); 2030 int get_platform_config_field(struct hfi1_devdata *dd, 2031 enum platform_config_table_type_encoding 2032 table_type, int table_index, int field_index, 2033 u32 *data, u32 len); 2034 2035 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi); 2036 2037 /* 2038 * Flush write combining store buffers (if present) and perform a write 2039 * barrier. 2040 */ 2041 static inline void flush_wc(void) 2042 { 2043 asm volatile("sfence" : : : "memory"); 2044 } 2045 2046 void handle_eflags(struct hfi1_packet *packet); 2047 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd); 2048 2049 /* global module parameter variables */ 2050 extern unsigned int hfi1_max_mtu; 2051 extern unsigned int hfi1_cu; 2052 extern unsigned int user_credit_return_threshold; 2053 extern int num_user_contexts; 2054 extern unsigned long n_krcvqs; 2055 extern uint krcvqs[]; 2056 extern int krcvqsset; 2057 extern uint kdeth_qp; 2058 extern uint loopback; 2059 extern uint quick_linkup; 2060 extern uint rcv_intr_timeout; 2061 extern uint rcv_intr_count; 2062 extern uint rcv_intr_dynamic; 2063 extern ushort link_crc_mask; 2064 2065 extern struct mutex hfi1_mutex; 2066 2067 /* Number of seconds before our card status check... */ 2068 #define STATUS_TIMEOUT 60 2069 2070 #define DRIVER_NAME "hfi1" 2071 #define HFI1_USER_MINOR_BASE 0 2072 #define HFI1_TRACE_MINOR 127 2073 #define HFI1_NMINORS 255 2074 2075 #define PCI_VENDOR_ID_INTEL 0x8086 2076 #define PCI_DEVICE_ID_INTEL0 0x24f0 2077 #define PCI_DEVICE_ID_INTEL1 0x24f1 2078 2079 #define HFI1_PKT_USER_SC_INTEGRITY \ 2080 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \ 2081 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \ 2082 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \ 2083 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK) 2084 2085 #define HFI1_PKT_KERNEL_SC_INTEGRITY \ 2086 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK) 2087 2088 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd, 2089 u16 ctxt_type) 2090 { 2091 u64 base_sc_integrity; 2092 2093 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2094 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2095 return 0; 2096 2097 base_sc_integrity = 2098 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2099 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK 2100 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2101 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2102 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2103 #ifndef CONFIG_FAULT_INJECTION 2104 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK 2105 #endif 2106 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2107 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2108 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2109 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK 2110 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2111 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2112 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK 2113 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK 2114 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK 2115 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2116 2117 if (ctxt_type == SC_USER) 2118 base_sc_integrity |= 2119 #ifndef CONFIG_FAULT_INJECTION 2120 SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK | 2121 #endif 2122 HFI1_PKT_USER_SC_INTEGRITY; 2123 else if (ctxt_type != SC_KERNEL) 2124 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY; 2125 2126 /* turn on send-side job key checks if !A0 */ 2127 if (!is_ax(dd)) 2128 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2129 2130 return base_sc_integrity; 2131 } 2132 2133 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd) 2134 { 2135 u64 base_sdma_integrity; 2136 2137 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2138 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2139 return 0; 2140 2141 base_sdma_integrity = 2142 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2143 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2144 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2145 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2146 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2147 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2148 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2149 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK 2150 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2151 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2152 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK 2153 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK 2154 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK 2155 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2156 2157 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)) 2158 base_sdma_integrity |= 2159 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK; 2160 2161 /* turn on send-side job key checks if !A0 */ 2162 if (!is_ax(dd)) 2163 base_sdma_integrity |= 2164 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2165 2166 return base_sdma_integrity; 2167 } 2168 2169 #define dd_dev_emerg(dd, fmt, ...) \ 2170 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \ 2171 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2172 2173 #define dd_dev_err(dd, fmt, ...) \ 2174 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \ 2175 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2176 2177 #define dd_dev_err_ratelimited(dd, fmt, ...) \ 2178 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2179 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2180 ##__VA_ARGS__) 2181 2182 #define dd_dev_warn(dd, fmt, ...) \ 2183 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \ 2184 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2185 2186 #define dd_dev_warn_ratelimited(dd, fmt, ...) \ 2187 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2188 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2189 ##__VA_ARGS__) 2190 2191 #define dd_dev_info(dd, fmt, ...) \ 2192 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \ 2193 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2194 2195 #define dd_dev_info_ratelimited(dd, fmt, ...) \ 2196 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2197 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2198 ##__VA_ARGS__) 2199 2200 #define dd_dev_dbg(dd, fmt, ...) \ 2201 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \ 2202 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2203 2204 #define hfi1_dev_porterr(dd, port, fmt, ...) \ 2205 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \ 2206 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__) 2207 2208 /* 2209 * this is used for formatting hw error messages... 2210 */ 2211 struct hfi1_hwerror_msgs { 2212 u64 mask; 2213 const char *msg; 2214 size_t sz; 2215 }; 2216 2217 /* in intr.c... */ 2218 void hfi1_format_hwerrors(u64 hwerrs, 2219 const struct hfi1_hwerror_msgs *hwerrmsgs, 2220 size_t nhwerrmsgs, char *msg, size_t lmsg); 2221 2222 #define USER_OPCODE_CHECK_VAL 0xC0 2223 #define USER_OPCODE_CHECK_MASK 0xC0 2224 #define OPCODE_CHECK_VAL_DISABLED 0x0 2225 #define OPCODE_CHECK_MASK_DISABLED 0x0 2226 2227 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd) 2228 { 2229 struct hfi1_pportdata *ppd; 2230 int i; 2231 2232 dd->z_int_counter = get_all_cpu_total(dd->int_counter); 2233 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit); 2234 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule); 2235 2236 ppd = (struct hfi1_pportdata *)(dd + 1); 2237 for (i = 0; i < dd->num_pports; i++, ppd++) { 2238 ppd->ibport_data.rvp.z_rc_acks = 2239 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks); 2240 ppd->ibport_data.rvp.z_rc_qacks = 2241 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks); 2242 } 2243 } 2244 2245 /* Control LED state */ 2246 static inline void setextled(struct hfi1_devdata *dd, u32 on) 2247 { 2248 if (on) 2249 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F); 2250 else 2251 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10); 2252 } 2253 2254 /* return the i2c resource given the target */ 2255 static inline u32 i2c_target(u32 target) 2256 { 2257 return target ? CR_I2C2 : CR_I2C1; 2258 } 2259 2260 /* return the i2c chain chip resource that this HFI uses for QSFP */ 2261 static inline u32 qsfp_resource(struct hfi1_devdata *dd) 2262 { 2263 return i2c_target(dd->hfi1_id); 2264 } 2265 2266 /* Is this device integrated or discrete? */ 2267 static inline bool is_integrated(struct hfi1_devdata *dd) 2268 { 2269 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1; 2270 } 2271 2272 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp); 2273 2274 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev)) 2275 #define DD_DEV_ASSIGN(dd) __assign_str(dev, dev_name(&(dd)->pcidev->dev)) 2276 2277 static inline void hfi1_update_ah_attr(struct ib_device *ibdev, 2278 struct rdma_ah_attr *attr) 2279 { 2280 struct hfi1_pportdata *ppd; 2281 struct hfi1_ibport *ibp; 2282 u32 dlid = rdma_ah_get_dlid(attr); 2283 2284 /* 2285 * Kernel clients may not have setup GRH information 2286 * Set that here. 2287 */ 2288 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr)); 2289 ppd = ppd_from_ibp(ibp); 2290 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) || 2291 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) && 2292 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) && 2293 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2294 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) || 2295 (rdma_ah_get_make_grd(attr))) { 2296 rdma_ah_set_ah_flags(attr, IB_AH_GRH); 2297 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid)); 2298 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix); 2299 } 2300 } 2301 2302 /* 2303 * hfi1_check_mcast- Check if the given lid is 2304 * in the OPA multicast range. 2305 * 2306 * The LID might either reside in ah.dlid or might be 2307 * in the GRH of the address handle as DGID if extended 2308 * addresses are in use. 2309 */ 2310 static inline bool hfi1_check_mcast(u32 lid) 2311 { 2312 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) && 2313 (lid != be32_to_cpu(OPA_LID_PERMISSIVE))); 2314 } 2315 2316 #define opa_get_lid(lid, format) \ 2317 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format) 2318 2319 /* Convert a lid to a specific lid space */ 2320 static inline u32 __opa_get_lid(u32 lid, u8 format) 2321 { 2322 bool is_mcast = hfi1_check_mcast(lid); 2323 2324 switch (format) { 2325 case OPA_PORT_PACKET_FORMAT_8B: 2326 case OPA_PORT_PACKET_FORMAT_10B: 2327 if (is_mcast) 2328 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2329 0xF0000); 2330 return lid & 0xFFFFF; 2331 case OPA_PORT_PACKET_FORMAT_16B: 2332 if (is_mcast) 2333 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2334 0xF00000); 2335 return lid & 0xFFFFFF; 2336 case OPA_PORT_PACKET_FORMAT_9B: 2337 if (is_mcast) 2338 return (lid - 2339 opa_get_mcast_base(OPA_MCAST_NR) + 2340 be16_to_cpu(IB_MULTICAST_LID_BASE)); 2341 else 2342 return lid & 0xFFFF; 2343 default: 2344 return lid; 2345 } 2346 } 2347 2348 /* Return true if the given lid is the OPA 16B multicast range */ 2349 static inline bool hfi1_is_16B_mcast(u32 lid) 2350 { 2351 return ((lid >= 2352 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) && 2353 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))); 2354 } 2355 2356 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr) 2357 { 2358 const struct ib_global_route *grh = rdma_ah_read_grh(attr); 2359 u32 dlid = rdma_ah_get_dlid(attr); 2360 2361 /* Modify ah_attr.dlid to be in the 32 bit LID space. 2362 * This is how the address will be laid out: 2363 * Assuming MCAST_NR to be 4, 2364 * 32 bit permissive LID = 0xFFFFFFFF 2365 * Multicast LID range = 0xFFFFFFFE to 0xF0000000 2366 * Unicast LID range = 0xEFFFFFFF to 1 2367 * Invalid LID = 0 2368 */ 2369 if (ib_is_opa_gid(&grh->dgid)) 2370 dlid = opa_get_lid_from_gid(&grh->dgid); 2371 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 2372 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2373 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE))) 2374 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) + 2375 opa_get_mcast_base(OPA_MCAST_NR); 2376 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE)) 2377 dlid = be32_to_cpu(OPA_LID_PERMISSIVE); 2378 2379 rdma_ah_set_dlid(attr, dlid); 2380 } 2381 2382 static inline u8 hfi1_get_packet_type(u32 lid) 2383 { 2384 /* 9B if lid > 0xF0000000 */ 2385 if (lid >= opa_get_mcast_base(OPA_MCAST_NR)) 2386 return HFI1_PKT_TYPE_9B; 2387 2388 /* 16B if lid > 0xC000 */ 2389 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B)) 2390 return HFI1_PKT_TYPE_16B; 2391 2392 return HFI1_PKT_TYPE_9B; 2393 } 2394 2395 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr) 2396 { 2397 /* 2398 * If there was an incoming 16B packet with permissive 2399 * LIDs, OPA GIDs would have been programmed when those 2400 * packets were received. A 16B packet will have to 2401 * be sent in response to that packet. Return a 16B 2402 * header type if that's the case. 2403 */ 2404 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE)) 2405 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ? 2406 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B; 2407 2408 /* 2409 * Return a 16B header type if either the the destination 2410 * or source lid is extended. 2411 */ 2412 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B) 2413 return HFI1_PKT_TYPE_16B; 2414 2415 return hfi1_get_packet_type(lid); 2416 } 2417 2418 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet, 2419 struct ib_grh *grh, u32 slid, 2420 u32 dlid) 2421 { 2422 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; 2423 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2424 2425 if (!ibp) 2426 return; 2427 2428 grh->hop_limit = 1; 2429 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2430 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)) 2431 grh->sgid.global.interface_id = 2432 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE)); 2433 else 2434 grh->sgid.global.interface_id = OPA_MAKE_ID(slid); 2435 2436 /* 2437 * Upper layers (like mad) may compare the dgid in the 2438 * wc that is obtained here with the sgid_index in 2439 * the wr. Since sgid_index in wr is always 0 for 2440 * extended lids, set the dgid here to the default 2441 * IB gid. 2442 */ 2443 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2444 grh->dgid.global.interface_id = 2445 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]); 2446 } 2447 2448 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload) 2449 { 2450 return -(hdr_size + payload + (SIZE_OF_CRC << 2) + 2451 SIZE_OF_LT) & 0x7; 2452 } 2453 2454 static inline void hfi1_make_ib_hdr(struct ib_header *hdr, 2455 u16 lrh0, u16 len, 2456 u16 dlid, u16 slid) 2457 { 2458 hdr->lrh[0] = cpu_to_be16(lrh0); 2459 hdr->lrh[1] = cpu_to_be16(dlid); 2460 hdr->lrh[2] = cpu_to_be16(len); 2461 hdr->lrh[3] = cpu_to_be16(slid); 2462 } 2463 2464 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr, 2465 u32 slid, u32 dlid, 2466 u16 len, u16 pkey, 2467 bool becn, bool fecn, u8 l4, 2468 u8 sc) 2469 { 2470 u32 lrh0 = 0; 2471 u32 lrh1 = 0x40000000; 2472 u32 lrh2 = 0; 2473 u32 lrh3 = 0; 2474 2475 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT); 2476 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT); 2477 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK); 2478 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT); 2479 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT); 2480 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK); 2481 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) | 2482 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT); 2483 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) | 2484 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT); 2485 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT); 2486 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4; 2487 2488 hdr->lrh[0] = lrh0; 2489 hdr->lrh[1] = lrh1; 2490 hdr->lrh[2] = lrh2; 2491 hdr->lrh[3] = lrh3; 2492 } 2493 #endif /* _HFI1_KERNEL_H */ 2494