xref: /linux/drivers/infiniband/hw/hfi1/hfi.h (revision 4171a693a5159e47f72eea3331bebf538dea9b83)
1 #ifndef _HFI1_KERNEL_H
2 #define _HFI1_KERNEL_H
3 /*
4  * Copyright(c) 2015-2018 Intel Corporation.
5  *
6  * This file is provided under a dual BSD/GPLv2 license.  When using or
7  * redistributing this file, you may do so under either license.
8  *
9  * GPL LICENSE SUMMARY
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * BSD LICENSE
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  *
26  *  - Redistributions of source code must retain the above copyright
27  *    notice, this list of conditions and the following disclaimer.
28  *  - Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in
30  *    the documentation and/or other materials provided with the
31  *    distribution.
32  *  - Neither the name of Intel Corporation nor the names of its
33  *    contributors may be used to endorse or promote products derived
34  *    from this software without specific prior written permission.
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
37  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
38  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
39  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
40  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
42  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
43  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
45  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
46  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47  *
48  */
49 
50 #include <linux/interrupt.h>
51 #include <linux/pci.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/mutex.h>
54 #include <linux/list.h>
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/idr.h>
58 #include <linux/io.h>
59 #include <linux/fs.h>
60 #include <linux/completion.h>
61 #include <linux/kref.h>
62 #include <linux/sched.h>
63 #include <linux/cdev.h>
64 #include <linux/delay.h>
65 #include <linux/kthread.h>
66 #include <linux/i2c.h>
67 #include <linux/i2c-algo-bit.h>
68 #include <rdma/ib_hdrs.h>
69 #include <rdma/opa_addr.h>
70 #include <linux/rhashtable.h>
71 #include <linux/netdevice.h>
72 #include <rdma/rdma_vt.h>
73 
74 #include "chip_registers.h"
75 #include "common.h"
76 #include "verbs.h"
77 #include "pio.h"
78 #include "chip.h"
79 #include "mad.h"
80 #include "qsfp.h"
81 #include "platform.h"
82 #include "affinity.h"
83 
84 /* bumped 1 from s/w major version of TrueScale */
85 #define HFI1_CHIP_VERS_MAJ 3U
86 
87 /* don't care about this except printing */
88 #define HFI1_CHIP_VERS_MIN 0U
89 
90 /* The Organization Unique Identifier (Mfg code), and its position in GUID */
91 #define HFI1_OUI 0x001175
92 #define HFI1_OUI_LSB 40
93 
94 #define DROP_PACKET_OFF		0
95 #define DROP_PACKET_ON		1
96 
97 #define NEIGHBOR_TYPE_HFI		0
98 #define NEIGHBOR_TYPE_SWITCH	1
99 
100 extern unsigned long hfi1_cap_mask;
101 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
102 #define HFI1_CAP_UGET_MASK(mask, cap) \
103 	(((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
104 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
105 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
106 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
107 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
108 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
109 			HFI1_CAP_MISC_MASK)
110 /* Offline Disabled Reason is 4-bits */
111 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
112 
113 /*
114  * Control context is always 0 and handles the error packets.
115  * It also handles the VL15 and multicast packets.
116  */
117 #define HFI1_CTRL_CTXT    0
118 
119 /*
120  * Driver context will store software counters for each of the events
121  * associated with these status registers
122  */
123 #define NUM_CCE_ERR_STATUS_COUNTERS 41
124 #define NUM_RCV_ERR_STATUS_COUNTERS 64
125 #define NUM_MISC_ERR_STATUS_COUNTERS 13
126 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
127 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
128 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
129 #define NUM_SEND_ERR_STATUS_COUNTERS 3
130 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
131 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
132 
133 /*
134  * per driver stats, either not device nor port-specific, or
135  * summed over all of the devices and ports.
136  * They are described by name via ipathfs filesystem, so layout
137  * and number of elements can change without breaking compatibility.
138  * If members are added or deleted hfi1_statnames[] in debugfs.c must
139  * change to match.
140  */
141 struct hfi1_ib_stats {
142 	__u64 sps_ints; /* number of interrupts handled */
143 	__u64 sps_errints; /* number of error interrupts */
144 	__u64 sps_txerrs; /* tx-related packet errors */
145 	__u64 sps_rcverrs; /* non-crc rcv packet errors */
146 	__u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
147 	__u64 sps_nopiobufs; /* no pio bufs avail from kernel */
148 	__u64 sps_ctxts; /* number of contexts currently open */
149 	__u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
150 	__u64 sps_buffull;
151 	__u64 sps_hdrfull;
152 };
153 
154 extern struct hfi1_ib_stats hfi1_stats;
155 extern const struct pci_error_handlers hfi1_pci_err_handler;
156 
157 /*
158  * First-cut criterion for "device is active" is
159  * two thousand dwords combined Tx, Rx traffic per
160  * 5-second interval. SMA packets are 64 dwords,
161  * and occur "a few per second", presumably each way.
162  */
163 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
164 
165 /*
166  * Below contains all data related to a single context (formerly called port).
167  */
168 
169 struct hfi1_opcode_stats_perctx;
170 
171 struct ctxt_eager_bufs {
172 	ssize_t size;            /* total size of eager buffers */
173 	u32 count;               /* size of buffers array */
174 	u32 numbufs;             /* number of buffers allocated */
175 	u32 alloced;             /* number of rcvarray entries used */
176 	u32 rcvtid_size;         /* size of each eager rcv tid */
177 	u32 threshold;           /* head update threshold */
178 	struct eager_buffer {
179 		void *addr;
180 		dma_addr_t dma;
181 		ssize_t len;
182 	} *buffers;
183 	struct {
184 		void *addr;
185 		dma_addr_t dma;
186 	} *rcvtids;
187 };
188 
189 struct exp_tid_set {
190 	struct list_head list;
191 	u32 count;
192 };
193 
194 struct hfi1_ctxtdata {
195 	/* shadow the ctxt's RcvCtrl register */
196 	u64 rcvctrl;
197 	/* rcvhdrq base, needs mmap before useful */
198 	void *rcvhdrq;
199 	/* kernel virtual address where hdrqtail is updated */
200 	volatile __le64 *rcvhdrtail_kvaddr;
201 	/* when waiting for rcv or pioavail */
202 	wait_queue_head_t wait;
203 	/* rcvhdrq size (for freeing) */
204 	size_t rcvhdrq_size;
205 	/* number of rcvhdrq entries */
206 	u16 rcvhdrq_cnt;
207 	/* size of each of the rcvhdrq entries */
208 	u16 rcvhdrqentsize;
209 	/* mmap of hdrq, must fit in 44 bits */
210 	dma_addr_t rcvhdrq_dma;
211 	dma_addr_t rcvhdrqtailaddr_dma;
212 	struct ctxt_eager_bufs egrbufs;
213 	/* this receive context's assigned PIO ACK send context */
214 	struct send_context *sc;
215 
216 	/* dynamic receive available interrupt timeout */
217 	u32 rcvavail_timeout;
218 	/* Reference count the base context usage */
219 	struct kref kref;
220 
221 	/* Device context index */
222 	u16 ctxt;
223 	/*
224 	 * non-zero if ctxt can be shared, and defines the maximum number of
225 	 * sub-contexts for this device context.
226 	 */
227 	u16 subctxt_cnt;
228 	/* non-zero if ctxt is being shared. */
229 	u16 subctxt_id;
230 	u8 uuid[16];
231 	/* job key */
232 	u16 jkey;
233 	/* number of RcvArray groups for this context. */
234 	u32 rcv_array_groups;
235 	/* index of first eager TID entry. */
236 	u32 eager_base;
237 	/* number of expected TID entries */
238 	u32 expected_count;
239 	/* index of first expected TID entry. */
240 	u32 expected_base;
241 
242 	struct exp_tid_set tid_group_list;
243 	struct exp_tid_set tid_used_list;
244 	struct exp_tid_set tid_full_list;
245 
246 	/* lock protecting all Expected TID data */
247 	struct mutex exp_lock;
248 	/* per-context configuration flags */
249 	unsigned long flags;
250 	/* per-context event flags for fileops/intr communication */
251 	unsigned long event_flags;
252 	/* total number of polled urgent packets */
253 	u32 urgent;
254 	/* saved total number of polled urgent packets for poll edge trigger */
255 	u32 urgent_poll;
256 	/* same size as task_struct .comm[], command that opened context */
257 	char comm[TASK_COMM_LEN];
258 	/* so file ops can get at unit */
259 	struct hfi1_devdata *dd;
260 	/* so functions that need physical port can get it easily */
261 	struct hfi1_pportdata *ppd;
262 	/* associated msix interrupt */
263 	u32 msix_intr;
264 	/* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
265 	void *subctxt_uregbase;
266 	/* An array of pages for the eager receive buffers * N */
267 	void *subctxt_rcvegrbuf;
268 	/* An array of pages for the eager header queue entries * N */
269 	void *subctxt_rcvhdr_base;
270 	/* Bitmask of in use context(s) */
271 	DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS);
272 	/* The version of the library which opened this ctxt */
273 	u32 userversion;
274 	/* Type of packets or conditions we want to poll for */
275 	u16 poll_type;
276 	/* receive packet sequence counter */
277 	u8 seq_cnt;
278 	/* ctxt rcvhdrq head offset */
279 	u32 head;
280 	/* QPs waiting for context processing */
281 	struct list_head qp_wait_list;
282 	/* interrupt handling */
283 	u64 imask;	/* clear interrupt mask */
284 	int ireg;	/* clear interrupt register */
285 	unsigned numa_id; /* numa node of this context */
286 	/* verbs rx_stats per rcd */
287 	struct hfi1_opcode_stats_perctx *opstats;
288 
289 	/* Is ASPM interrupt supported for this context */
290 	bool aspm_intr_supported;
291 	/* ASPM state (enabled/disabled) for this context */
292 	bool aspm_enabled;
293 	/* Timer for re-enabling ASPM if interrupt activity quietens down */
294 	struct timer_list aspm_timer;
295 	/* Lock to serialize between intr, timer intr and user threads */
296 	spinlock_t aspm_lock;
297 	/* Is ASPM processing enabled for this context (in intr context) */
298 	bool aspm_intr_enable;
299 	/* Last interrupt timestamp */
300 	ktime_t aspm_ts_last_intr;
301 	/* Last timestamp at which we scheduled a timer for this context */
302 	ktime_t aspm_ts_timer_sched;
303 
304 	/*
305 	 * The interrupt handler for a particular receive context can vary
306 	 * throughout it's lifetime. This is not a lock protected data member so
307 	 * it must be updated atomically and the prev and new value must always
308 	 * be valid. Worst case is we process an extra interrupt and up to 64
309 	 * packets with the wrong interrupt handler.
310 	 */
311 	int (*do_interrupt)(struct hfi1_ctxtdata *rcd, int threaded);
312 
313 	/* Indicates that this is vnic context */
314 	bool is_vnic;
315 
316 	/* vnic queue index this context is mapped to */
317 	u8 vnic_q_idx;
318 };
319 
320 /*
321  * Represents a single packet at a high level. Put commonly computed things in
322  * here so we do not have to keep doing them over and over. The rule of thumb is
323  * if something is used one time to derive some value, store that something in
324  * here. If it is used multiple times, then store the result of that derivation
325  * in here.
326  */
327 struct hfi1_packet {
328 	void *ebuf;
329 	void *hdr;
330 	void *payload;
331 	struct hfi1_ctxtdata *rcd;
332 	__le32 *rhf_addr;
333 	struct rvt_qp *qp;
334 	struct ib_other_headers *ohdr;
335 	struct ib_grh *grh;
336 	u64 rhf;
337 	u32 maxcnt;
338 	u32 rhqoff;
339 	u32 dlid;
340 	u32 slid;
341 	u16 tlen;
342 	s16 etail;
343 	u16 pkey;
344 	u8 hlen;
345 	u8 numpkt;
346 	u8 rsize;
347 	u8 updegr;
348 	u8 etype;
349 	u8 extra_byte;
350 	u8 pad;
351 	u8 sc;
352 	u8 sl;
353 	u8 opcode;
354 	bool migrated;
355 };
356 
357 /* Packet types */
358 #define HFI1_PKT_TYPE_9B  0
359 #define HFI1_PKT_TYPE_16B 1
360 
361 /*
362  * OPA 16B Header
363  */
364 #define OPA_16B_L4_MASK		0xFFull
365 #define OPA_16B_SC_MASK		0x1F00000ull
366 #define OPA_16B_SC_SHIFT	20
367 #define OPA_16B_LID_MASK	0xFFFFFull
368 #define OPA_16B_DLID_MASK	0xF000ull
369 #define OPA_16B_DLID_SHIFT	20
370 #define OPA_16B_DLID_HIGH_SHIFT	12
371 #define OPA_16B_SLID_MASK	0xF00ull
372 #define OPA_16B_SLID_SHIFT	20
373 #define OPA_16B_SLID_HIGH_SHIFT	8
374 #define OPA_16B_BECN_MASK       0x80000000ull
375 #define OPA_16B_BECN_SHIFT      31
376 #define OPA_16B_FECN_MASK       0x10000000ull
377 #define OPA_16B_FECN_SHIFT      28
378 #define OPA_16B_L2_MASK		0x60000000ull
379 #define OPA_16B_L2_SHIFT	29
380 #define OPA_16B_PKEY_MASK	0xFFFF0000ull
381 #define OPA_16B_PKEY_SHIFT	16
382 #define OPA_16B_LEN_MASK	0x7FF00000ull
383 #define OPA_16B_LEN_SHIFT	20
384 #define OPA_16B_RC_MASK		0xE000000ull
385 #define OPA_16B_RC_SHIFT	25
386 #define OPA_16B_AGE_MASK	0xFF0000ull
387 #define OPA_16B_AGE_SHIFT	16
388 #define OPA_16B_ENTROPY_MASK	0xFFFFull
389 
390 /*
391  * OPA 16B L2/L4 Encodings
392  */
393 #define OPA_16B_L4_9B		0x00
394 #define OPA_16B_L2_TYPE		0x02
395 #define OPA_16B_L4_FM		0x08
396 #define OPA_16B_L4_IB_LOCAL	0x09
397 #define OPA_16B_L4_IB_GLOBAL	0x0A
398 #define OPA_16B_L4_ETHR		OPA_VNIC_L4_ETHR
399 
400 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr)
401 {
402 	return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK);
403 }
404 
405 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr)
406 {
407 	return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT);
408 }
409 
410 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr)
411 {
412 	return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) |
413 		     (((hdr->lrh[2] & OPA_16B_DLID_MASK) >>
414 		     OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT));
415 }
416 
417 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr)
418 {
419 	return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) |
420 		     (((hdr->lrh[2] & OPA_16B_SLID_MASK) >>
421 		     OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT));
422 }
423 
424 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr)
425 {
426 	return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT);
427 }
428 
429 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr)
430 {
431 	return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT);
432 }
433 
434 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr)
435 {
436 	return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT);
437 }
438 
439 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr)
440 {
441 	return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT);
442 }
443 
444 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr)
445 {
446 	return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT);
447 }
448 
449 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr)
450 {
451 	return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT);
452 }
453 
454 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr)
455 {
456 	return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT);
457 }
458 
459 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr)
460 {
461 	return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK);
462 }
463 
464 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw))
465 
466 /*
467  * BTH
468  */
469 #define OPA_16B_BTH_PAD_MASK	7
470 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr)
471 {
472 	return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) &
473 		   OPA_16B_BTH_PAD_MASK);
474 }
475 
476 struct rvt_sge_state;
477 
478 /*
479  * Get/Set IB link-level config parameters for f_get/set_ib_cfg()
480  * Mostly for MADs that set or query link parameters, also ipath
481  * config interfaces
482  */
483 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
484 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
485 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
486 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
487 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
488 #define HFI1_IB_CFG_SPD 5 /* current Link spd */
489 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
490 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
491 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
492 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
493 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
494 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
495 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
496 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
497 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
498 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
499 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
500 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
501 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19
502 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
503 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
504 
505 /*
506  * HFI or Host Link States
507  *
508  * These describe the states the driver thinks the logical and physical
509  * states are in.  Used as an argument to set_link_state().  Implemented
510  * as bits for easy multi-state checking.  The actual state can only be
511  * one.
512  */
513 #define __HLS_UP_INIT_BP	0
514 #define __HLS_UP_ARMED_BP	1
515 #define __HLS_UP_ACTIVE_BP	2
516 #define __HLS_DN_DOWNDEF_BP	3	/* link down default */
517 #define __HLS_DN_POLL_BP	4
518 #define __HLS_DN_DISABLE_BP	5
519 #define __HLS_DN_OFFLINE_BP	6
520 #define __HLS_VERIFY_CAP_BP	7
521 #define __HLS_GOING_UP_BP	8
522 #define __HLS_GOING_OFFLINE_BP  9
523 #define __HLS_LINK_COOLDOWN_BP 10
524 
525 #define HLS_UP_INIT	  BIT(__HLS_UP_INIT_BP)
526 #define HLS_UP_ARMED	  BIT(__HLS_UP_ARMED_BP)
527 #define HLS_UP_ACTIVE	  BIT(__HLS_UP_ACTIVE_BP)
528 #define HLS_DN_DOWNDEF	  BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
529 #define HLS_DN_POLL	  BIT(__HLS_DN_POLL_BP)
530 #define HLS_DN_DISABLE	  BIT(__HLS_DN_DISABLE_BP)
531 #define HLS_DN_OFFLINE	  BIT(__HLS_DN_OFFLINE_BP)
532 #define HLS_VERIFY_CAP	  BIT(__HLS_VERIFY_CAP_BP)
533 #define HLS_GOING_UP	  BIT(__HLS_GOING_UP_BP)
534 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
535 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
536 
537 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
538 #define HLS_DOWN ~(HLS_UP)
539 
540 #define HLS_DEFAULT HLS_DN_POLL
541 
542 /* use this MTU size if none other is given */
543 #define HFI1_DEFAULT_ACTIVE_MTU 10240
544 /* use this MTU size as the default maximum */
545 #define HFI1_DEFAULT_MAX_MTU 10240
546 /* default partition key */
547 #define DEFAULT_PKEY 0xffff
548 
549 /*
550  * Possible fabric manager config parameters for fm_{get,set}_table()
551  */
552 #define FM_TBL_VL_HIGH_ARB		1 /* Get/set VL high prio weights */
553 #define FM_TBL_VL_LOW_ARB		2 /* Get/set VL low prio weights */
554 #define FM_TBL_BUFFER_CONTROL		3 /* Get/set Buffer Control */
555 #define FM_TBL_SC2VLNT			4 /* Get/set SC->VLnt */
556 #define FM_TBL_VL_PREEMPT_ELEMS		5 /* Get (no set) VL preempt elems */
557 #define FM_TBL_VL_PREEMPT_MATRIX	6 /* Get (no set) VL preempt matrix */
558 
559 /*
560  * Possible "operations" for f_rcvctrl(ppd, op, ctxt)
561  * these are bits so they can be combined, e.g.
562  * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
563  */
564 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01
565 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02
566 #define HFI1_RCVCTRL_CTXT_ENB 0x04
567 #define HFI1_RCVCTRL_CTXT_DIS 0x08
568 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
569 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
570 #define HFI1_RCVCTRL_PKEY_ENB 0x40  /* Note, default is enabled */
571 #define HFI1_RCVCTRL_PKEY_DIS 0x80
572 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
573 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
574 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
575 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
576 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
577 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
578 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
579 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
580 
581 /* partition enforcement flags */
582 #define HFI1_PART_ENFORCE_IN	0x1
583 #define HFI1_PART_ENFORCE_OUT	0x2
584 
585 /* how often we check for synthetic counter wrap around */
586 #define SYNTH_CNT_TIME 3
587 
588 /* Counter flags */
589 #define CNTR_NORMAL		0x0 /* Normal counters, just read register */
590 #define CNTR_SYNTH		0x1 /* Synthetic counters, saturate at all 1s */
591 #define CNTR_DISABLED		0x2 /* Disable this counter */
592 #define CNTR_32BIT		0x4 /* Simulate 64 bits for this counter */
593 #define CNTR_VL			0x8 /* Per VL counter */
594 #define CNTR_SDMA              0x10
595 #define CNTR_INVALID_VL		-1  /* Specifies invalid VL */
596 #define CNTR_MODE_W		0x0
597 #define CNTR_MODE_R		0x1
598 
599 /* VLs Supported/Operational */
600 #define HFI1_MIN_VLS_SUPPORTED 1
601 #define HFI1_MAX_VLS_SUPPORTED 8
602 
603 #define HFI1_GUIDS_PER_PORT  5
604 #define HFI1_PORT_GUID_INDEX 0
605 
606 static inline void incr_cntr64(u64 *cntr)
607 {
608 	if (*cntr < (u64)-1LL)
609 		(*cntr)++;
610 }
611 
612 static inline void incr_cntr32(u32 *cntr)
613 {
614 	if (*cntr < (u32)-1LL)
615 		(*cntr)++;
616 }
617 
618 #define MAX_NAME_SIZE 64
619 struct hfi1_msix_entry {
620 	enum irq_type type;
621 	int irq;
622 	void *arg;
623 	cpumask_t mask;
624 	struct irq_affinity_notify notify;
625 };
626 
627 /* per-SL CCA information */
628 struct cca_timer {
629 	struct hrtimer hrtimer;
630 	struct hfi1_pportdata *ppd; /* read-only */
631 	int sl; /* read-only */
632 	u16 ccti; /* read/write - current value of CCTI */
633 };
634 
635 struct link_down_reason {
636 	/*
637 	 * SMA-facing value.  Should be set from .latest when
638 	 * HLS_UP_* -> HLS_DN_* transition actually occurs.
639 	 */
640 	u8 sma;
641 	u8 latest;
642 };
643 
644 enum {
645 	LO_PRIO_TABLE,
646 	HI_PRIO_TABLE,
647 	MAX_PRIO_TABLE
648 };
649 
650 struct vl_arb_cache {
651 	/* protect vl arb cache */
652 	spinlock_t lock;
653 	struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
654 };
655 
656 /*
657  * The structure below encapsulates data relevant to a physical IB Port.
658  * Current chips support only one such port, but the separation
659  * clarifies things a bit. Note that to conform to IB conventions,
660  * port-numbers are one-based. The first or only port is port1.
661  */
662 struct hfi1_pportdata {
663 	struct hfi1_ibport ibport_data;
664 
665 	struct hfi1_devdata *dd;
666 	struct kobject pport_cc_kobj;
667 	struct kobject sc2vl_kobj;
668 	struct kobject sl2sc_kobj;
669 	struct kobject vl2mtu_kobj;
670 
671 	/* PHY support */
672 	struct qsfp_data qsfp_info;
673 	/* Values for SI tuning of SerDes */
674 	u32 port_type;
675 	u32 tx_preset_eq;
676 	u32 tx_preset_noeq;
677 	u32 rx_preset;
678 	u8  local_atten;
679 	u8  remote_atten;
680 	u8  default_atten;
681 	u8  max_power_class;
682 
683 	/* did we read platform config from scratch registers? */
684 	bool config_from_scratch;
685 
686 	/* GUIDs for this interface, in host order, guids[0] is a port guid */
687 	u64 guids[HFI1_GUIDS_PER_PORT];
688 
689 	/* GUID for peer interface, in host order */
690 	u64 neighbor_guid;
691 
692 	/* up or down physical link state */
693 	u32 linkup;
694 
695 	/*
696 	 * this address is mapped read-only into user processes so they can
697 	 * get status cheaply, whenever they want.  One qword of status per port
698 	 */
699 	u64 *statusp;
700 
701 	/* SendDMA related entries */
702 
703 	struct workqueue_struct *hfi1_wq;
704 	struct workqueue_struct *link_wq;
705 
706 	/* move out of interrupt context */
707 	struct work_struct link_vc_work;
708 	struct work_struct link_up_work;
709 	struct work_struct link_down_work;
710 	struct work_struct sma_message_work;
711 	struct work_struct freeze_work;
712 	struct work_struct link_downgrade_work;
713 	struct work_struct link_bounce_work;
714 	struct delayed_work start_link_work;
715 	/* host link state variables */
716 	struct mutex hls_lock;
717 	u32 host_link_state;
718 
719 	/* these are the "32 bit" regs */
720 
721 	u32 ibmtu; /* The MTU programmed for this unit */
722 	/*
723 	 * Current max size IB packet (in bytes) including IB headers, that
724 	 * we can send. Changes when ibmtu changes.
725 	 */
726 	u32 ibmaxlen;
727 	u32 current_egress_rate; /* units [10^6 bits/sec] */
728 	/* LID programmed for this instance */
729 	u32 lid;
730 	/* list of pkeys programmed; 0 if not set */
731 	u16 pkeys[MAX_PKEY_VALUES];
732 	u16 link_width_supported;
733 	u16 link_width_downgrade_supported;
734 	u16 link_speed_supported;
735 	u16 link_width_enabled;
736 	u16 link_width_downgrade_enabled;
737 	u16 link_speed_enabled;
738 	u16 link_width_active;
739 	u16 link_width_downgrade_tx_active;
740 	u16 link_width_downgrade_rx_active;
741 	u16 link_speed_active;
742 	u8 vls_supported;
743 	u8 vls_operational;
744 	u8 actual_vls_operational;
745 	/* LID mask control */
746 	u8 lmc;
747 	/* Rx Polarity inversion (compensate for ~tx on partner) */
748 	u8 rx_pol_inv;
749 
750 	u8 hw_pidx;     /* physical port index */
751 	u8 port;        /* IB port number and index into dd->pports - 1 */
752 	/* type of neighbor node */
753 	u8 neighbor_type;
754 	u8 neighbor_normal;
755 	u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
756 	u8 neighbor_port_number;
757 	u8 is_sm_config_started;
758 	u8 offline_disabled_reason;
759 	u8 is_active_optimize_enabled;
760 	u8 driver_link_ready;	/* driver ready for active link */
761 	u8 link_enabled;	/* link enabled? */
762 	u8 linkinit_reason;
763 	u8 local_tx_rate;	/* rate given to 8051 firmware */
764 	u8 qsfp_retry_count;
765 
766 	/* placeholders for IB MAD packet settings */
767 	u8 overrun_threshold;
768 	u8 phy_error_threshold;
769 	unsigned int is_link_down_queued;
770 
771 	/* Used to override LED behavior for things like maintenance beaconing*/
772 	/*
773 	 * Alternates per phase of blink
774 	 * [0] holds LED off duration, [1] holds LED on duration
775 	 */
776 	unsigned long led_override_vals[2];
777 	u8 led_override_phase; /* LSB picks from vals[] */
778 	atomic_t led_override_timer_active;
779 	/* Used to flash LEDs in override mode */
780 	struct timer_list led_override_timer;
781 
782 	u32 sm_trap_qp;
783 	u32 sa_qp;
784 
785 	/*
786 	 * cca_timer_lock protects access to the per-SL cca_timer
787 	 * structures (specifically the ccti member).
788 	 */
789 	spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
790 	struct cca_timer cca_timer[OPA_MAX_SLS];
791 
792 	/* List of congestion control table entries */
793 	struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
794 
795 	/* congestion entries, each entry corresponding to a SL */
796 	struct opa_congestion_setting_entry_shadow
797 		congestion_entries[OPA_MAX_SLS];
798 
799 	/*
800 	 * cc_state_lock protects (write) access to the per-port
801 	 * struct cc_state.
802 	 */
803 	spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
804 
805 	struct cc_state __rcu *cc_state;
806 
807 	/* Total number of congestion control table entries */
808 	u16 total_cct_entry;
809 
810 	/* Bit map identifying service level */
811 	u32 cc_sl_control_map;
812 
813 	/* CA's max number of 64 entry units in the congestion control table */
814 	u8 cc_max_table_entries;
815 
816 	/*
817 	 * begin congestion log related entries
818 	 * cc_log_lock protects all congestion log related data
819 	 */
820 	spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
821 	u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
822 	u16 threshold_event_counter;
823 	struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
824 	int cc_log_idx; /* index for logging events */
825 	int cc_mad_idx; /* index for reporting events */
826 	/* end congestion log related entries */
827 
828 	struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
829 
830 	/* port relative counter buffer */
831 	u64 *cntrs;
832 	/* port relative synthetic counter buffer */
833 	u64 *scntrs;
834 	/* port_xmit_discards are synthesized from different egress errors */
835 	u64 port_xmit_discards;
836 	u64 port_xmit_discards_vl[C_VL_COUNT];
837 	u64 port_xmit_constraint_errors;
838 	u64 port_rcv_constraint_errors;
839 	/* count of 'link_err' interrupts from DC */
840 	u64 link_downed;
841 	/* number of times link retrained successfully */
842 	u64 link_up;
843 	/* number of times a link unknown frame was reported */
844 	u64 unknown_frame_count;
845 	/* port_ltp_crc_mode is returned in 'portinfo' MADs */
846 	u16 port_ltp_crc_mode;
847 	/* port_crc_mode_enabled is the crc we support */
848 	u8 port_crc_mode_enabled;
849 	/* mgmt_allowed is also returned in 'portinfo' MADs */
850 	u8 mgmt_allowed;
851 	u8 part_enforce; /* partition enforcement flags */
852 	struct link_down_reason local_link_down_reason;
853 	struct link_down_reason neigh_link_down_reason;
854 	/* Value to be sent to link peer on LinkDown .*/
855 	u8 remote_link_down_reason;
856 	/* Error events that will cause a port bounce. */
857 	u32 port_error_action;
858 	struct work_struct linkstate_active_work;
859 	/* Does this port need to prescan for FECNs */
860 	bool cc_prescan;
861 	/*
862 	 * Sample sendWaitCnt & sendWaitVlCnt during link transition
863 	 * and counter request.
864 	 */
865 	u64 port_vl_xmit_wait_last[C_VL_COUNT + 1];
866 	u16 prev_link_width;
867 	u64 vl_xmit_flit_cnt[C_VL_COUNT + 1];
868 };
869 
870 typedef int (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
871 
872 typedef void (*opcode_handler)(struct hfi1_packet *packet);
873 typedef void (*hfi1_make_req)(struct rvt_qp *qp,
874 			      struct hfi1_pkt_state *ps,
875 			      struct rvt_swqe *wqe);
876 
877 
878 /* return values for the RHF receive functions */
879 #define RHF_RCV_CONTINUE  0	/* keep going */
880 #define RHF_RCV_DONE	  1	/* stop, this packet processed */
881 #define RHF_RCV_REPROCESS 2	/* stop. retain this packet */
882 
883 struct rcv_array_data {
884 	u8 group_size;
885 	u16 ngroups;
886 	u16 nctxt_extra;
887 };
888 
889 struct per_vl_data {
890 	u16 mtu;
891 	struct send_context *sc;
892 };
893 
894 /* 16 to directly index */
895 #define PER_VL_SEND_CONTEXTS 16
896 
897 struct err_info_rcvport {
898 	u8 status_and_code;
899 	u64 packet_flit1;
900 	u64 packet_flit2;
901 };
902 
903 struct err_info_constraint {
904 	u8 status;
905 	u16 pkey;
906 	u32 slid;
907 };
908 
909 struct hfi1_temp {
910 	unsigned int curr;       /* current temperature */
911 	unsigned int lo_lim;     /* low temperature limit */
912 	unsigned int hi_lim;     /* high temperature limit */
913 	unsigned int crit_lim;   /* critical temperature limit */
914 	u8 triggers;      /* temperature triggers */
915 };
916 
917 struct hfi1_i2c_bus {
918 	struct hfi1_devdata *controlling_dd; /* current controlling device */
919 	struct i2c_adapter adapter;	/* bus details */
920 	struct i2c_algo_bit_data algo;	/* bus algorithm details */
921 	int num;			/* bus number, 0 or 1 */
922 };
923 
924 /* common data between shared ASIC HFIs */
925 struct hfi1_asic_data {
926 	struct hfi1_devdata *dds[2];	/* back pointers */
927 	struct mutex asic_resource_mutex;
928 	struct hfi1_i2c_bus *i2c_bus0;
929 	struct hfi1_i2c_bus *i2c_bus1;
930 };
931 
932 /* sizes for both the QP and RSM map tables */
933 #define NUM_MAP_ENTRIES	 256
934 #define NUM_MAP_REGS      32
935 
936 /*
937  * Number of VNIC contexts used. Ensure it is less than or equal to
938  * max queues supported by VNIC (HFI1_VNIC_MAX_QUEUE).
939  */
940 #define HFI1_NUM_VNIC_CTXT   8
941 
942 /* Number of VNIC RSM entries */
943 #define NUM_VNIC_MAP_ENTRIES 8
944 
945 /* Virtual NIC information */
946 struct hfi1_vnic_data {
947 	struct hfi1_ctxtdata *ctxt[HFI1_NUM_VNIC_CTXT];
948 	struct kmem_cache *txreq_cache;
949 	u8 num_vports;
950 	struct idr vesw_idr;
951 	u8 rmt_start;
952 	u8 num_ctxt;
953 	u32 msix_idx;
954 };
955 
956 struct hfi1_vnic_vport_info;
957 
958 /* device data struct now contains only "general per-device" info.
959  * fields related to a physical IB port are in a hfi1_pportdata struct.
960  */
961 struct sdma_engine;
962 struct sdma_vl_map;
963 
964 #define BOARD_VERS_MAX 96 /* how long the version string can be */
965 #define SERIAL_MAX 16 /* length of the serial number */
966 
967 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
968 struct hfi1_devdata {
969 	struct hfi1_ibdev verbs_dev;     /* must be first */
970 	struct list_head list;
971 	/* pointers to related structs for this device */
972 	/* pci access data structure */
973 	struct pci_dev *pcidev;
974 	struct cdev user_cdev;
975 	struct cdev diag_cdev;
976 	struct cdev ui_cdev;
977 	struct device *user_device;
978 	struct device *diag_device;
979 	struct device *ui_device;
980 
981 	/* first mapping up to RcvArray */
982 	u8 __iomem *kregbase1;
983 	resource_size_t physaddr;
984 
985 	/* second uncached mapping from RcvArray to pio send buffers */
986 	u8 __iomem *kregbase2;
987 	/* for detecting offset above kregbase2 address */
988 	u32 base2_start;
989 
990 	/* Per VL data. Enough for all VLs but not all elements are set/used. */
991 	struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
992 	/* send context data */
993 	struct send_context_info *send_contexts;
994 	/* map hardware send contexts to software index */
995 	u8 *hw_to_sw;
996 	/* spinlock for allocating and releasing send context resources */
997 	spinlock_t sc_lock;
998 	/* lock for pio_map */
999 	spinlock_t pio_map_lock;
1000 	/* Send Context initialization lock. */
1001 	spinlock_t sc_init_lock;
1002 	/* lock for sdma_map */
1003 	spinlock_t                          sde_map_lock;
1004 	/* array of kernel send contexts */
1005 	struct send_context **kernel_send_context;
1006 	/* array of vl maps */
1007 	struct pio_vl_map __rcu *pio_map;
1008 	/* default flags to last descriptor */
1009 	u64 default_desc1;
1010 
1011 	/* fields common to all SDMA engines */
1012 
1013 	volatile __le64                    *sdma_heads_dma; /* DMA'ed by chip */
1014 	dma_addr_t                          sdma_heads_phys;
1015 	void                               *sdma_pad_dma; /* DMA'ed by chip */
1016 	dma_addr_t                          sdma_pad_phys;
1017 	/* for deallocation */
1018 	size_t                              sdma_heads_size;
1019 	/* number from the chip */
1020 	u32                                 chip_sdma_engines;
1021 	/* num used */
1022 	u32                                 num_sdma;
1023 	/* array of engines sized by num_sdma */
1024 	struct sdma_engine                 *per_sdma;
1025 	/* array of vl maps */
1026 	struct sdma_vl_map __rcu           *sdma_map;
1027 	/* SPC freeze waitqueue and variable */
1028 	wait_queue_head_t		  sdma_unfreeze_wq;
1029 	atomic_t			  sdma_unfreeze_count;
1030 
1031 	u32 lcb_access_count;		/* count of LCB users */
1032 
1033 	/* common data between shared ASIC HFIs in this OS */
1034 	struct hfi1_asic_data *asic_data;
1035 
1036 	/* mem-mapped pointer to base of PIO buffers */
1037 	void __iomem *piobase;
1038 	/*
1039 	 * write-combining mem-mapped pointer to base of RcvArray
1040 	 * memory.
1041 	 */
1042 	void __iomem *rcvarray_wc;
1043 	/*
1044 	 * credit return base - a per-NUMA range of DMA address that
1045 	 * the chip will use to update the per-context free counter
1046 	 */
1047 	struct credit_return_base *cr_base;
1048 
1049 	/* send context numbers and sizes for each type */
1050 	struct sc_config_sizes sc_sizes[SC_MAX];
1051 
1052 	char *boardname; /* human readable board info */
1053 
1054 	/* reset value */
1055 	u64 z_int_counter;
1056 	u64 z_rcv_limit;
1057 	u64 z_send_schedule;
1058 
1059 	u64 __percpu *send_schedule;
1060 	/* number of reserved contexts for VNIC usage */
1061 	u16 num_vnic_contexts;
1062 	/* number of receive contexts in use by the driver */
1063 	u32 num_rcv_contexts;
1064 	/* number of pio send contexts in use by the driver */
1065 	u32 num_send_contexts;
1066 	/*
1067 	 * number of ctxts available for PSM open
1068 	 */
1069 	u32 freectxts;
1070 	/* total number of available user/PSM contexts */
1071 	u32 num_user_contexts;
1072 	/* base receive interrupt timeout, in CSR units */
1073 	u32 rcv_intr_timeout_csr;
1074 
1075 	u32 freezelen; /* max length of freezemsg */
1076 	u64 __iomem *egrtidbase;
1077 	spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
1078 	spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
1079 	spinlock_t uctxt_lock; /* protect rcd changes */
1080 	struct mutex dc8051_lock; /* exclusive access to 8051 */
1081 	struct workqueue_struct *update_cntr_wq;
1082 	struct work_struct update_cntr_work;
1083 	/* exclusive access to 8051 memory */
1084 	spinlock_t dc8051_memlock;
1085 	int dc8051_timed_out;	/* remember if the 8051 timed out */
1086 	/*
1087 	 * A page that will hold event notification bitmaps for all
1088 	 * contexts. This page will be mapped into all processes.
1089 	 */
1090 	unsigned long *events;
1091 	/*
1092 	 * per unit status, see also portdata statusp
1093 	 * mapped read-only into user processes so they can get unit and
1094 	 * IB link status cheaply
1095 	 */
1096 	struct hfi1_status *status;
1097 
1098 	/* revision register shadow */
1099 	u64 revision;
1100 	/* Base GUID for device (network order) */
1101 	u64 base_guid;
1102 
1103 	/* these are the "32 bit" regs */
1104 
1105 	/* value we put in kr_rcvhdrsize */
1106 	u32 rcvhdrsize;
1107 	/* number of receive contexts the chip supports */
1108 	u32 chip_rcv_contexts;
1109 	/* number of receive array entries */
1110 	u32 chip_rcv_array_count;
1111 	/* number of PIO send contexts the chip supports */
1112 	u32 chip_send_contexts;
1113 	/* number of bytes in the PIO memory buffer */
1114 	u32 chip_pio_mem_size;
1115 	/* number of bytes in the SDMA memory buffer */
1116 	u32 chip_sdma_mem_size;
1117 
1118 	/* size of each rcvegrbuffer */
1119 	u32 rcvegrbufsize;
1120 	/* log2 of above */
1121 	u16 rcvegrbufsize_shift;
1122 	/* both sides of the PCIe link are gen3 capable */
1123 	u8 link_gen3_capable;
1124 	u8 dc_shutdown;
1125 	/* localbus width (1, 2,4,8,16,32) from config space  */
1126 	u32 lbus_width;
1127 	/* localbus speed in MHz */
1128 	u32 lbus_speed;
1129 	int unit; /* unit # of this chip */
1130 	int node; /* home node of this chip */
1131 
1132 	/* save these PCI fields to restore after a reset */
1133 	u32 pcibar0;
1134 	u32 pcibar1;
1135 	u32 pci_rom;
1136 	u16 pci_command;
1137 	u16 pcie_devctl;
1138 	u16 pcie_lnkctl;
1139 	u16 pcie_devctl2;
1140 	u32 pci_msix0;
1141 	u32 pci_tph2;
1142 
1143 	/*
1144 	 * ASCII serial number, from flash, large enough for original
1145 	 * all digit strings, and longer serial number format
1146 	 */
1147 	u8 serial[SERIAL_MAX];
1148 	/* human readable board version */
1149 	u8 boardversion[BOARD_VERS_MAX];
1150 	u8 lbus_info[32]; /* human readable localbus info */
1151 	/* chip major rev, from CceRevision */
1152 	u8 majrev;
1153 	/* chip minor rev, from CceRevision */
1154 	u8 minrev;
1155 	/* hardware ID */
1156 	u8 hfi1_id;
1157 	/* implementation code */
1158 	u8 icode;
1159 	/* vAU of this device */
1160 	u8 vau;
1161 	/* vCU of this device */
1162 	u8 vcu;
1163 	/* link credits of this device */
1164 	u16 link_credits;
1165 	/* initial vl15 credits to use */
1166 	u16 vl15_init;
1167 
1168 	/*
1169 	 * Cached value for vl15buf, read during verify cap interrupt. VL15
1170 	 * credits are to be kept at 0 and set when handling the link-up
1171 	 * interrupt. This removes the possibility of receiving VL15 MAD
1172 	 * packets before this HFI is ready.
1173 	 */
1174 	u16 vl15buf_cached;
1175 
1176 	/* Misc small ints */
1177 	u8 n_krcv_queues;
1178 	u8 qos_shift;
1179 
1180 	u16 irev;	/* implementation revision */
1181 	u32 dc8051_ver; /* 8051 firmware version */
1182 
1183 	spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
1184 	struct platform_config platform_config;
1185 	struct platform_config_cache pcfg_cache;
1186 
1187 	struct diag_client *diag_client;
1188 
1189 	/* MSI-X information */
1190 	struct hfi1_msix_entry *msix_entries;
1191 	u32 num_msix_entries;
1192 	u32 first_dyn_msix_idx;
1193 
1194 	/* INTx information */
1195 	u32 requested_intx_irq;		/* did we request one? */
1196 
1197 	/* general interrupt: mask of handled interrupts */
1198 	u64 gi_mask[CCE_NUM_INT_CSRS];
1199 
1200 	struct rcv_array_data rcv_entries;
1201 
1202 	/* cycle length of PS* counters in HW (in picoseconds) */
1203 	u16 psxmitwait_check_rate;
1204 
1205 	/*
1206 	 * 64 bit synthetic counters
1207 	 */
1208 	struct timer_list synth_stats_timer;
1209 
1210 	/*
1211 	 * device counters
1212 	 */
1213 	char *cntrnames;
1214 	size_t cntrnameslen;
1215 	size_t ndevcntrs;
1216 	u64 *cntrs;
1217 	u64 *scntrs;
1218 
1219 	/*
1220 	 * remembered values for synthetic counters
1221 	 */
1222 	u64 last_tx;
1223 	u64 last_rx;
1224 
1225 	/*
1226 	 * per-port counters
1227 	 */
1228 	size_t nportcntrs;
1229 	char *portcntrnames;
1230 	size_t portcntrnameslen;
1231 
1232 	struct err_info_rcvport err_info_rcvport;
1233 	struct err_info_constraint err_info_rcv_constraint;
1234 	struct err_info_constraint err_info_xmit_constraint;
1235 
1236 	atomic_t drop_packet;
1237 	u8 do_drop;
1238 	u8 err_info_uncorrectable;
1239 	u8 err_info_fmconfig;
1240 
1241 	/*
1242 	 * Software counters for the status bits defined by the
1243 	 * associated error status registers
1244 	 */
1245 	u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
1246 	u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
1247 	u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
1248 	u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
1249 	u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
1250 	u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
1251 	u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
1252 
1253 	/* Software counter that spans all contexts */
1254 	u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
1255 	/* Software counter that spans all DMA engines */
1256 	u64 sw_send_dma_eng_err_status_cnt[
1257 		NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
1258 	/* Software counter that aggregates all cce_err_status errors */
1259 	u64 sw_cce_err_status_aggregate;
1260 	/* Software counter that aggregates all bypass packet rcv errors */
1261 	u64 sw_rcv_bypass_packet_errors;
1262 	/* receive interrupt function */
1263 	rhf_rcv_function_ptr normal_rhf_rcv_functions[8];
1264 
1265 	/* Save the enabled LCB error bits */
1266 	u64 lcb_err_en;
1267 	struct cpu_mask_set *comp_vect;
1268 	int *comp_vect_mappings;
1269 	u32 comp_vect_possible_cpus;
1270 
1271 	/*
1272 	 * Capability to have different send engines simply by changing a
1273 	 * pointer value.
1274 	 */
1275 	send_routine process_pio_send ____cacheline_aligned_in_smp;
1276 	send_routine process_dma_send;
1277 	void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
1278 				u64 pbc, const void *from, size_t count);
1279 	int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx,
1280 				     struct hfi1_vnic_vport_info *vinfo,
1281 				     struct sk_buff *skb, u64 pbc, u8 plen);
1282 	/* hfi1_pportdata, points to array of (physical) port-specific
1283 	 * data structs, indexed by pidx (0..n-1)
1284 	 */
1285 	struct hfi1_pportdata *pport;
1286 	/* receive context data */
1287 	struct hfi1_ctxtdata **rcd;
1288 	u64 __percpu *int_counter;
1289 	/* verbs tx opcode stats */
1290 	struct hfi1_opcode_stats_perctx __percpu *tx_opstats;
1291 	/* device (not port) flags, basically device capabilities */
1292 	u16 flags;
1293 	/* Number of physical ports available */
1294 	u8 num_pports;
1295 	/* Lowest context number which can be used by user processes or VNIC */
1296 	u8 first_dyn_alloc_ctxt;
1297 	/* adding a new field here would make it part of this cacheline */
1298 
1299 	/* seqlock for sc2vl */
1300 	seqlock_t sc2vl_lock ____cacheline_aligned_in_smp;
1301 	u64 sc2vl[4];
1302 	/* receive interrupt functions */
1303 	rhf_rcv_function_ptr *rhf_rcv_function_map;
1304 	u64 __percpu *rcv_limit;
1305 	u16 rhf_offset; /* offset of RHF within receive header entry */
1306 	/* adding a new field here would make it part of this cacheline */
1307 
1308 	/* OUI comes from the HW. Used everywhere as 3 separate bytes. */
1309 	u8 oui1;
1310 	u8 oui2;
1311 	u8 oui3;
1312 
1313 	/* Timer and counter used to detect RcvBufOvflCnt changes */
1314 	struct timer_list rcverr_timer;
1315 
1316 	wait_queue_head_t event_queue;
1317 
1318 	/* receive context tail dummy address */
1319 	__le64 *rcvhdrtail_dummy_kvaddr;
1320 	dma_addr_t rcvhdrtail_dummy_dma;
1321 
1322 	u32 rcv_ovfl_cnt;
1323 	/* Serialize ASPM enable/disable between multiple verbs contexts */
1324 	spinlock_t aspm_lock;
1325 	/* Number of verbs contexts which have disabled ASPM */
1326 	atomic_t aspm_disabled_cnt;
1327 	/* Keeps track of user space clients */
1328 	atomic_t user_refcount;
1329 	/* Used to wait for outstanding user space clients before dev removal */
1330 	struct completion user_comp;
1331 
1332 	bool eprom_available;	/* true if EPROM is available for this device */
1333 	bool aspm_supported;	/* Does HW support ASPM */
1334 	bool aspm_enabled;	/* ASPM state: enabled/disabled */
1335 	struct rhashtable *sdma_rht;
1336 
1337 	struct kobject kobj;
1338 
1339 	/* vnic data */
1340 	struct hfi1_vnic_data vnic;
1341 };
1342 
1343 static inline bool hfi1_vnic_is_rsm_full(struct hfi1_devdata *dd, int spare)
1344 {
1345 	return (dd->vnic.rmt_start + spare) > NUM_MAP_ENTRIES;
1346 }
1347 
1348 /* 8051 firmware version helper */
1349 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c))
1350 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16)
1351 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8)
1352 #define dc8051_ver_patch(a) ((a) & 0x0000ff)
1353 
1354 /* f_put_tid types */
1355 #define PT_EXPECTED       0
1356 #define PT_EAGER          1
1357 #define PT_INVALID_FLUSH  2
1358 #define PT_INVALID        3
1359 
1360 struct tid_rb_node;
1361 struct mmu_rb_node;
1362 struct mmu_rb_handler;
1363 
1364 /* Private data for file operations */
1365 struct hfi1_filedata {
1366 	struct hfi1_devdata *dd;
1367 	struct hfi1_ctxtdata *uctxt;
1368 	struct hfi1_user_sdma_comp_q *cq;
1369 	struct hfi1_user_sdma_pkt_q *pq;
1370 	u16 subctxt;
1371 	/* for cpu affinity; -1 if none */
1372 	int rec_cpu_num;
1373 	u32 tid_n_pinned;
1374 	struct mmu_rb_handler *handler;
1375 	struct tid_rb_node **entry_to_rb;
1376 	spinlock_t tid_lock; /* protect tid_[limit,used] counters */
1377 	u32 tid_limit;
1378 	u32 tid_used;
1379 	u32 *invalid_tids;
1380 	u32 invalid_tid_idx;
1381 	/* protect invalid_tids array and invalid_tid_idx */
1382 	spinlock_t invalid_lock;
1383 	struct mm_struct *mm;
1384 };
1385 
1386 extern struct list_head hfi1_dev_list;
1387 extern spinlock_t hfi1_devs_lock;
1388 struct hfi1_devdata *hfi1_lookup(int unit);
1389 
1390 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt)
1391 {
1392 	return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
1393 		HFI1_MAX_SHARED_CTXTS;
1394 }
1395 
1396 int hfi1_init(struct hfi1_devdata *dd, int reinit);
1397 int hfi1_count_active_units(void);
1398 
1399 int hfi1_diag_add(struct hfi1_devdata *dd);
1400 void hfi1_diag_remove(struct hfi1_devdata *dd);
1401 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
1402 
1403 void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
1404 
1405 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1406 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd);
1407 int hfi1_create_kctxts(struct hfi1_devdata *dd);
1408 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
1409 			 struct hfi1_ctxtdata **rcd);
1410 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd);
1411 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
1412 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port);
1413 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1414 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd);
1415 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd);
1416 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
1417 						 u16 ctxt);
1418 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt);
1419 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread);
1420 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1421 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1422 void set_all_slowpath(struct hfi1_devdata *dd);
1423 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd);
1424 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd);
1425 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd);
1426 
1427 extern const struct pci_device_id hfi1_pci_tbl[];
1428 void hfi1_make_ud_req_9B(struct rvt_qp *qp,
1429 			 struct hfi1_pkt_state *ps,
1430 			 struct rvt_swqe *wqe);
1431 
1432 void hfi1_make_ud_req_16B(struct rvt_qp *qp,
1433 			  struct hfi1_pkt_state *ps,
1434 			  struct rvt_swqe *wqe);
1435 
1436 /* receive packet handler dispositions */
1437 #define RCV_PKT_OK      0x0 /* keep going */
1438 #define RCV_PKT_LIMIT   0x1 /* stop, hit limit, start thread */
1439 #define RCV_PKT_DONE    0x2 /* stop, no more packets detected */
1440 
1441 /* calculate the current RHF address */
1442 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
1443 {
1444 	return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->dd->rhf_offset;
1445 }
1446 
1447 int hfi1_reset_device(int);
1448 
1449 void receive_interrupt_work(struct work_struct *work);
1450 
1451 /* extract service channel from header and rhf */
1452 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf)
1453 {
1454 	return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4);
1455 }
1456 
1457 #define HFI1_JKEY_WIDTH       16
1458 #define HFI1_JKEY_MASK        (BIT(16) - 1)
1459 #define HFI1_ADMIN_JKEY_RANGE 32
1460 
1461 /*
1462  * J_KEYs are split and allocated in the following groups:
1463  *   0 - 31    - users with administrator privileges
1464  *  32 - 63    - kernel protocols using KDETH packets
1465  *  64 - 65535 - all other users using KDETH packets
1466  */
1467 static inline u16 generate_jkey(kuid_t uid)
1468 {
1469 	u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK;
1470 
1471 	if (capable(CAP_SYS_ADMIN))
1472 		jkey &= HFI1_ADMIN_JKEY_RANGE - 1;
1473 	else if (jkey < 64)
1474 		jkey |= BIT(HFI1_JKEY_WIDTH - 1);
1475 
1476 	return jkey;
1477 }
1478 
1479 /*
1480  * active_egress_rate
1481  *
1482  * returns the active egress rate in units of [10^6 bits/sec]
1483  */
1484 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
1485 {
1486 	u16 link_speed = ppd->link_speed_active;
1487 	u16 link_width = ppd->link_width_active;
1488 	u32 egress_rate;
1489 
1490 	if (link_speed == OPA_LINK_SPEED_25G)
1491 		egress_rate = 25000;
1492 	else /* assume OPA_LINK_SPEED_12_5G */
1493 		egress_rate = 12500;
1494 
1495 	switch (link_width) {
1496 	case OPA_LINK_WIDTH_4X:
1497 		egress_rate *= 4;
1498 		break;
1499 	case OPA_LINK_WIDTH_3X:
1500 		egress_rate *= 3;
1501 		break;
1502 	case OPA_LINK_WIDTH_2X:
1503 		egress_rate *= 2;
1504 		break;
1505 	default:
1506 		/* assume IB_WIDTH_1X */
1507 		break;
1508 	}
1509 
1510 	return egress_rate;
1511 }
1512 
1513 /*
1514  * egress_cycles
1515  *
1516  * Returns the number of 'fabric clock cycles' to egress a packet
1517  * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
1518  * rate is (approximately) 805 MHz, the units of the returned value
1519  * are (1/805 MHz).
1520  */
1521 static inline u32 egress_cycles(u32 len, u32 rate)
1522 {
1523 	u32 cycles;
1524 
1525 	/*
1526 	 * cycles is:
1527 	 *
1528 	 *          (length) [bits] / (rate) [bits/sec]
1529 	 *  ---------------------------------------------------
1530 	 *  fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
1531 	 */
1532 
1533 	cycles = len * 8; /* bits */
1534 	cycles *= 805;
1535 	cycles /= rate;
1536 
1537 	return cycles;
1538 }
1539 
1540 void set_link_ipg(struct hfi1_pportdata *ppd);
1541 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
1542 		  u32 rqpn, u8 svc_type);
1543 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
1544 		u16 pkey, u32 slid, u32 dlid, u8 sc5,
1545 		const struct ib_grh *old_grh);
1546 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1547 		    u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1548 		    u8 sc5, const struct ib_grh *old_grh);
1549 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1550 				u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1551 				u8 sc5, const struct ib_grh *old_grh);
1552 
1553 #define PKEY_CHECK_INVALID -1
1554 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1555 		      u8 sc5, int8_t s_pkey_index);
1556 
1557 #define PACKET_EGRESS_TIMEOUT 350
1558 static inline void pause_for_credit_return(struct hfi1_devdata *dd)
1559 {
1560 	/* Pause at least 1us, to ensure chip returns all credits */
1561 	u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
1562 
1563 	udelay(usec ? usec : 1);
1564 }
1565 
1566 /**
1567  * sc_to_vlt() reverse lookup sc to vl
1568  * @dd - devdata
1569  * @sc5 - 5 bit sc
1570  */
1571 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
1572 {
1573 	unsigned seq;
1574 	u8 rval;
1575 
1576 	if (sc5 >= OPA_MAX_SCS)
1577 		return (u8)(0xff);
1578 
1579 	do {
1580 		seq = read_seqbegin(&dd->sc2vl_lock);
1581 		rval = *(((u8 *)dd->sc2vl) + sc5);
1582 	} while (read_seqretry(&dd->sc2vl_lock, seq));
1583 
1584 	return rval;
1585 }
1586 
1587 #define PKEY_MEMBER_MASK 0x8000
1588 #define PKEY_LOW_15_MASK 0x7fff
1589 
1590 /*
1591  * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1592  * being an entry from the ingress partition key table), return 0
1593  * otherwise. Use the matching criteria for ingress partition keys
1594  * specified in the OPAv1 spec., section 9.10.14.
1595  */
1596 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
1597 {
1598 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1599 	u16 ment = ent & PKEY_LOW_15_MASK;
1600 
1601 	if (mkey == ment) {
1602 		/*
1603 		 * If pkey[15] is clear (limited partition member),
1604 		 * is bit 15 in the corresponding table element
1605 		 * clear (limited member)?
1606 		 */
1607 		if (!(pkey & PKEY_MEMBER_MASK))
1608 			return !!(ent & PKEY_MEMBER_MASK);
1609 		return 1;
1610 	}
1611 	return 0;
1612 }
1613 
1614 /*
1615  * ingress_pkey_table_search - search the entire pkey table for
1616  * an entry which matches 'pkey'. return 0 if a match is found,
1617  * and 1 otherwise.
1618  */
1619 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
1620 {
1621 	int i;
1622 
1623 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1624 		if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1625 			return 0;
1626 	}
1627 	return 1;
1628 }
1629 
1630 /*
1631  * ingress_pkey_table_fail - record a failure of ingress pkey validation,
1632  * i.e., increment port_rcv_constraint_errors for the port, and record
1633  * the 'error info' for this failure.
1634  */
1635 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
1636 				    u32 slid)
1637 {
1638 	struct hfi1_devdata *dd = ppd->dd;
1639 
1640 	incr_cntr64(&ppd->port_rcv_constraint_errors);
1641 	if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
1642 		dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
1643 		dd->err_info_rcv_constraint.slid = slid;
1644 		dd->err_info_rcv_constraint.pkey = pkey;
1645 	}
1646 }
1647 
1648 /*
1649  * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
1650  * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
1651  * is a hint as to the best place in the partition key table to begin
1652  * searching. This function should not be called on the data path because
1653  * of performance reasons. On datapath pkey check is expected to be done
1654  * by HW and rcv_pkey_check function should be called instead.
1655  */
1656 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1657 				     u8 sc5, u8 idx, u32 slid, bool force)
1658 {
1659 	if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1660 		return 0;
1661 
1662 	/* If SC15, pkey[0:14] must be 0x7fff */
1663 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1664 		goto bad;
1665 
1666 	/* Is the pkey = 0x0, or 0x8000? */
1667 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1668 		goto bad;
1669 
1670 	/* The most likely matching pkey has index 'idx' */
1671 	if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
1672 		return 0;
1673 
1674 	/* no match - try the whole table */
1675 	if (!ingress_pkey_table_search(ppd, pkey))
1676 		return 0;
1677 
1678 bad:
1679 	ingress_pkey_table_fail(ppd, pkey, slid);
1680 	return 1;
1681 }
1682 
1683 /*
1684  * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
1685  * otherwise. It only ensures pkey is vlid for QP0. This function
1686  * should be called on the data path instead of ingress_pkey_check
1687  * as on data path, pkey check is done by HW (except for QP0).
1688  */
1689 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1690 				 u8 sc5, u16 slid)
1691 {
1692 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1693 		return 0;
1694 
1695 	/* If SC15, pkey[0:14] must be 0x7fff */
1696 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1697 		goto bad;
1698 
1699 	return 0;
1700 bad:
1701 	ingress_pkey_table_fail(ppd, pkey, slid);
1702 	return 1;
1703 }
1704 
1705 /* MTU handling */
1706 
1707 /* MTU enumeration, 256-4k match IB */
1708 #define OPA_MTU_0     0
1709 #define OPA_MTU_256   1
1710 #define OPA_MTU_512   2
1711 #define OPA_MTU_1024  3
1712 #define OPA_MTU_2048  4
1713 #define OPA_MTU_4096  5
1714 
1715 u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
1716 int mtu_to_enum(u32 mtu, int default_if_bad);
1717 u16 enum_to_mtu(int mtu);
1718 static inline int valid_ib_mtu(unsigned int mtu)
1719 {
1720 	return mtu == 256 || mtu == 512 ||
1721 		mtu == 1024 || mtu == 2048 ||
1722 		mtu == 4096;
1723 }
1724 
1725 static inline int valid_opa_max_mtu(unsigned int mtu)
1726 {
1727 	return mtu >= 2048 &&
1728 		(valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
1729 }
1730 
1731 int set_mtu(struct hfi1_pportdata *ppd);
1732 
1733 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc);
1734 void hfi1_disable_after_error(struct hfi1_devdata *dd);
1735 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit);
1736 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode);
1737 
1738 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t);
1739 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t);
1740 
1741 void set_up_vau(struct hfi1_devdata *dd, u8 vau);
1742 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf);
1743 void reset_link_credits(struct hfi1_devdata *dd);
1744 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
1745 
1746 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
1747 
1748 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
1749 {
1750 	return ppd->dd;
1751 }
1752 
1753 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
1754 {
1755 	return container_of(dev, struct hfi1_devdata, verbs_dev);
1756 }
1757 
1758 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
1759 {
1760 	return dd_from_dev(to_idev(ibdev));
1761 }
1762 
1763 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
1764 {
1765 	return container_of(ibp, struct hfi1_pportdata, ibport_data);
1766 }
1767 
1768 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
1769 {
1770 	return container_of(rdi, struct hfi1_ibdev, rdi);
1771 }
1772 
1773 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u8 port)
1774 {
1775 	struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1776 	unsigned pidx = port - 1; /* IB number port from 1, hdw from 0 */
1777 
1778 	WARN_ON(pidx >= dd->num_pports);
1779 	return &dd->pport[pidx].ibport_data;
1780 }
1781 
1782 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd)
1783 {
1784 	return &rcd->ppd->ibport_data;
1785 }
1786 
1787 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
1788 			       bool do_cnp);
1789 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt,
1790 			       bool do_cnp)
1791 {
1792 	bool becn;
1793 	bool fecn;
1794 
1795 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
1796 		fecn = hfi1_16B_get_fecn(pkt->hdr);
1797 		becn = hfi1_16B_get_becn(pkt->hdr);
1798 	} else {
1799 		fecn = ib_bth_get_fecn(pkt->ohdr);
1800 		becn = ib_bth_get_becn(pkt->ohdr);
1801 	}
1802 	if (unlikely(fecn || becn)) {
1803 		hfi1_process_ecn_slowpath(qp, pkt, do_cnp);
1804 		return fecn;
1805 	}
1806 	return false;
1807 }
1808 
1809 /*
1810  * Return the indexed PKEY from the port PKEY table.
1811  */
1812 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
1813 {
1814 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1815 	u16 ret;
1816 
1817 	if (index >= ARRAY_SIZE(ppd->pkeys))
1818 		ret = 0;
1819 	else
1820 		ret = ppd->pkeys[index];
1821 
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Return the indexed GUID from the port GUIDs table.
1827  */
1828 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index)
1829 {
1830 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1831 
1832 	WARN_ON(index >= HFI1_GUIDS_PER_PORT);
1833 	return cpu_to_be64(ppd->guids[index]);
1834 }
1835 
1836 /*
1837  * Called by readers of cc_state only, must call under rcu_read_lock().
1838  */
1839 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
1840 {
1841 	return rcu_dereference(ppd->cc_state);
1842 }
1843 
1844 /*
1845  * Called by writers of cc_state only,  must call under cc_state_lock.
1846  */
1847 static inline
1848 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
1849 {
1850 	return rcu_dereference_protected(ppd->cc_state,
1851 					 lockdep_is_held(&ppd->cc_state_lock));
1852 }
1853 
1854 /*
1855  * values for dd->flags (_device_ related flags)
1856  */
1857 #define HFI1_INITTED           0x1    /* chip and driver up and initted */
1858 #define HFI1_PRESENT           0x2    /* chip accesses can be done */
1859 #define HFI1_FROZEN            0x4    /* chip in SPC freeze */
1860 #define HFI1_HAS_SDMA_TIMEOUT  0x8
1861 #define HFI1_HAS_SEND_DMA      0x10   /* Supports Send DMA */
1862 #define HFI1_FORCED_FREEZE     0x80   /* driver forced freeze mode */
1863 #define HFI1_SHUTDOWN          0x100  /* device is shutting down */
1864 
1865 /* IB dword length mask in PBC (lower 11 bits); same for all chips */
1866 #define HFI1_PBC_LENGTH_MASK                     ((1 << 11) - 1)
1867 
1868 /* ctxt_flag bit offsets */
1869 		/* base context has not finished initializing */
1870 #define HFI1_CTXT_BASE_UNINIT 1
1871 		/* base context initaliation failed */
1872 #define HFI1_CTXT_BASE_FAILED 2
1873 		/* waiting for a packet to arrive */
1874 #define HFI1_CTXT_WAITING_RCV 3
1875 		/* waiting for an urgent packet to arrive */
1876 #define HFI1_CTXT_WAITING_URG 4
1877 
1878 /* free up any allocated data at closes */
1879 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
1880 				  const struct pci_device_id *ent);
1881 void hfi1_free_devdata(struct hfi1_devdata *dd);
1882 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra);
1883 
1884 /* LED beaconing functions */
1885 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1886 			     unsigned int timeoff);
1887 void shutdown_led_override(struct hfi1_pportdata *ppd);
1888 
1889 #define HFI1_CREDIT_RETURN_RATE (100)
1890 
1891 /*
1892  * The number of words for the KDETH protocol field.  If this is
1893  * larger then the actual field used, then part of the payload
1894  * will be in the header.
1895  *
1896  * Optimally, we want this sized so that a typical case will
1897  * use full cache lines.  The typical local KDETH header would
1898  * be:
1899  *
1900  *	Bytes	Field
1901  *	  8	LRH
1902  *	 12	BHT
1903  *	 ??	KDETH
1904  *	  8	RHF
1905  *	---
1906  *	 28 + KDETH
1907  *
1908  * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
1909  */
1910 #define DEFAULT_RCVHDRSIZE 9
1911 
1912 /*
1913  * Maximal header byte count:
1914  *
1915  *	Bytes	Field
1916  *	  8	LRH
1917  *	 40	GRH (optional)
1918  *	 12	BTH
1919  *	 ??	KDETH
1920  *	  8	RHF
1921  *	---
1922  *	 68 + KDETH
1923  *
1924  * We also want to maintain a cache line alignment to assist DMA'ing
1925  * of the header bytes.  Round up to a good size.
1926  */
1927 #define DEFAULT_RCVHDR_ENTSIZE 32
1928 
1929 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
1930 			u32 nlocked, u32 npages);
1931 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
1932 			    size_t npages, bool writable, struct page **pages);
1933 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
1934 			     size_t npages, bool dirty);
1935 
1936 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
1937 {
1938 	*((u64 *)rcd->rcvhdrtail_kvaddr) = 0ULL;
1939 }
1940 
1941 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
1942 {
1943 	/*
1944 	 * volatile because it's a DMA target from the chip, routine is
1945 	 * inlined, and don't want register caching or reordering.
1946 	 */
1947 	return (u32)le64_to_cpu(*rcd->rcvhdrtail_kvaddr);
1948 }
1949 
1950 /*
1951  * sysfs interface.
1952  */
1953 
1954 extern const char ib_hfi1_version[];
1955 
1956 int hfi1_device_create(struct hfi1_devdata *dd);
1957 void hfi1_device_remove(struct hfi1_devdata *dd);
1958 
1959 int hfi1_create_port_files(struct ib_device *ibdev, u8 port_num,
1960 			   struct kobject *kobj);
1961 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd);
1962 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd);
1963 /* Hook for sysfs read of QSFP */
1964 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
1965 
1966 int hfi1_pcie_init(struct pci_dev *pdev, const struct pci_device_id *ent);
1967 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd);
1968 void hfi1_pcie_cleanup(struct pci_dev *pdev);
1969 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev);
1970 void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
1971 int pcie_speeds(struct hfi1_devdata *dd);
1972 int request_msix(struct hfi1_devdata *dd, u32 msireq);
1973 int restore_pci_variables(struct hfi1_devdata *dd);
1974 int save_pci_variables(struct hfi1_devdata *dd);
1975 int do_pcie_gen3_transition(struct hfi1_devdata *dd);
1976 int parse_platform_config(struct hfi1_devdata *dd);
1977 int get_platform_config_field(struct hfi1_devdata *dd,
1978 			      enum platform_config_table_type_encoding
1979 			      table_type, int table_index, int field_index,
1980 			      u32 *data, u32 len);
1981 
1982 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
1983 
1984 /*
1985  * Flush write combining store buffers (if present) and perform a write
1986  * barrier.
1987  */
1988 static inline void flush_wc(void)
1989 {
1990 	asm volatile("sfence" : : : "memory");
1991 }
1992 
1993 void handle_eflags(struct hfi1_packet *packet);
1994 int process_receive_ib(struct hfi1_packet *packet);
1995 int process_receive_bypass(struct hfi1_packet *packet);
1996 int process_receive_error(struct hfi1_packet *packet);
1997 int kdeth_process_expected(struct hfi1_packet *packet);
1998 int kdeth_process_eager(struct hfi1_packet *packet);
1999 int process_receive_invalid(struct hfi1_packet *packet);
2000 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd);
2001 
2002 /* global module parameter variables */
2003 extern unsigned int hfi1_max_mtu;
2004 extern unsigned int hfi1_cu;
2005 extern unsigned int user_credit_return_threshold;
2006 extern int num_user_contexts;
2007 extern unsigned long n_krcvqs;
2008 extern uint krcvqs[];
2009 extern int krcvqsset;
2010 extern uint kdeth_qp;
2011 extern uint loopback;
2012 extern uint quick_linkup;
2013 extern uint rcv_intr_timeout;
2014 extern uint rcv_intr_count;
2015 extern uint rcv_intr_dynamic;
2016 extern ushort link_crc_mask;
2017 
2018 extern struct mutex hfi1_mutex;
2019 
2020 /* Number of seconds before our card status check...  */
2021 #define STATUS_TIMEOUT 60
2022 
2023 #define DRIVER_NAME		"hfi1"
2024 #define HFI1_USER_MINOR_BASE     0
2025 #define HFI1_TRACE_MINOR         127
2026 #define HFI1_NMINORS             255
2027 
2028 #define PCI_VENDOR_ID_INTEL 0x8086
2029 #define PCI_DEVICE_ID_INTEL0 0x24f0
2030 #define PCI_DEVICE_ID_INTEL1 0x24f1
2031 
2032 #define HFI1_PKT_USER_SC_INTEGRITY					    \
2033 	(SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK	    \
2034 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK		\
2035 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK		    \
2036 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
2037 
2038 #define HFI1_PKT_KERNEL_SC_INTEGRITY					    \
2039 	(SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
2040 
2041 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
2042 						  u16 ctxt_type)
2043 {
2044 	u64 base_sc_integrity;
2045 
2046 	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2047 	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2048 		return 0;
2049 
2050 	base_sc_integrity =
2051 	SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2052 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
2053 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2054 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2055 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2056 #ifndef CONFIG_FAULT_INJECTION
2057 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
2058 #endif
2059 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2060 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2061 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2062 	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
2063 	| SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2064 	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2065 	| SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
2066 	| SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
2067 	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
2068 	| SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2069 
2070 	if (ctxt_type == SC_USER)
2071 		base_sc_integrity |=
2072 #ifndef CONFIG_FAULT_INJECTION
2073 			SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK |
2074 #endif
2075 			HFI1_PKT_USER_SC_INTEGRITY;
2076 	else
2077 		base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
2078 
2079 	/* turn on send-side job key checks if !A0 */
2080 	if (!is_ax(dd))
2081 		base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2082 
2083 	return base_sc_integrity;
2084 }
2085 
2086 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
2087 {
2088 	u64 base_sdma_integrity;
2089 
2090 	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2091 	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2092 		return 0;
2093 
2094 	base_sdma_integrity =
2095 	SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2096 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2097 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2098 	| SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2099 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2100 	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2101 	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2102 	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
2103 	| SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2104 	| SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2105 	| SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
2106 	| SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
2107 	| SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
2108 	| SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2109 
2110 	if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
2111 		base_sdma_integrity |=
2112 		SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK;
2113 
2114 	/* turn on send-side job key checks if !A0 */
2115 	if (!is_ax(dd))
2116 		base_sdma_integrity |=
2117 			SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2118 
2119 	return base_sdma_integrity;
2120 }
2121 
2122 /*
2123  * hfi1_early_err is used (only!) to print early errors before devdata is
2124  * allocated, or when dd->pcidev may not be valid, and at the tail end of
2125  * cleanup when devdata may have been freed, etc.  hfi1_dev_porterr is
2126  * the same as dd_dev_err, but is used when the message really needs
2127  * the IB port# to be definitive as to what's happening..
2128  */
2129 #define hfi1_early_err(dev, fmt, ...) \
2130 	dev_err(dev, fmt, ##__VA_ARGS__)
2131 
2132 #define hfi1_early_info(dev, fmt, ...) \
2133 	dev_info(dev, fmt, ##__VA_ARGS__)
2134 
2135 #define dd_dev_emerg(dd, fmt, ...) \
2136 	dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
2137 		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2138 
2139 #define dd_dev_err(dd, fmt, ...) \
2140 	dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
2141 		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2142 
2143 #define dd_dev_err_ratelimited(dd, fmt, ...) \
2144 	dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2145 			    rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2146 			    ##__VA_ARGS__)
2147 
2148 #define dd_dev_warn(dd, fmt, ...) \
2149 	dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
2150 		 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2151 
2152 #define dd_dev_warn_ratelimited(dd, fmt, ...) \
2153 	dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2154 			     rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2155 			     ##__VA_ARGS__)
2156 
2157 #define dd_dev_info(dd, fmt, ...) \
2158 	dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
2159 		 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2160 
2161 #define dd_dev_info_ratelimited(dd, fmt, ...) \
2162 	dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2163 			     rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2164 			     ##__VA_ARGS__)
2165 
2166 #define dd_dev_dbg(dd, fmt, ...) \
2167 	dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
2168 		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2169 
2170 #define hfi1_dev_porterr(dd, port, fmt, ...) \
2171 	dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
2172 		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__)
2173 
2174 /*
2175  * this is used for formatting hw error messages...
2176  */
2177 struct hfi1_hwerror_msgs {
2178 	u64 mask;
2179 	const char *msg;
2180 	size_t sz;
2181 };
2182 
2183 /* in intr.c... */
2184 void hfi1_format_hwerrors(u64 hwerrs,
2185 			  const struct hfi1_hwerror_msgs *hwerrmsgs,
2186 			  size_t nhwerrmsgs, char *msg, size_t lmsg);
2187 
2188 #define USER_OPCODE_CHECK_VAL 0xC0
2189 #define USER_OPCODE_CHECK_MASK 0xC0
2190 #define OPCODE_CHECK_VAL_DISABLED 0x0
2191 #define OPCODE_CHECK_MASK_DISABLED 0x0
2192 
2193 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
2194 {
2195 	struct hfi1_pportdata *ppd;
2196 	int i;
2197 
2198 	dd->z_int_counter = get_all_cpu_total(dd->int_counter);
2199 	dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
2200 	dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
2201 
2202 	ppd = (struct hfi1_pportdata *)(dd + 1);
2203 	for (i = 0; i < dd->num_pports; i++, ppd++) {
2204 		ppd->ibport_data.rvp.z_rc_acks =
2205 			get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
2206 		ppd->ibport_data.rvp.z_rc_qacks =
2207 			get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
2208 	}
2209 }
2210 
2211 /* Control LED state */
2212 static inline void setextled(struct hfi1_devdata *dd, u32 on)
2213 {
2214 	if (on)
2215 		write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
2216 	else
2217 		write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
2218 }
2219 
2220 /* return the i2c resource given the target */
2221 static inline u32 i2c_target(u32 target)
2222 {
2223 	return target ? CR_I2C2 : CR_I2C1;
2224 }
2225 
2226 /* return the i2c chain chip resource that this HFI uses for QSFP */
2227 static inline u32 qsfp_resource(struct hfi1_devdata *dd)
2228 {
2229 	return i2c_target(dd->hfi1_id);
2230 }
2231 
2232 /* Is this device integrated or discrete? */
2233 static inline bool is_integrated(struct hfi1_devdata *dd)
2234 {
2235 	return dd->pcidev->device == PCI_DEVICE_ID_INTEL1;
2236 }
2237 
2238 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
2239 
2240 #define DD_DEV_ENTRY(dd)       __string(dev, dev_name(&(dd)->pcidev->dev))
2241 #define DD_DEV_ASSIGN(dd)      __assign_str(dev, dev_name(&(dd)->pcidev->dev))
2242 
2243 static inline void hfi1_update_ah_attr(struct ib_device *ibdev,
2244 				       struct rdma_ah_attr *attr)
2245 {
2246 	struct hfi1_pportdata *ppd;
2247 	struct hfi1_ibport *ibp;
2248 	u32 dlid = rdma_ah_get_dlid(attr);
2249 
2250 	/*
2251 	 * Kernel clients may not have setup GRH information
2252 	 * Set that here.
2253 	 */
2254 	ibp = to_iport(ibdev, rdma_ah_get_port_num(attr));
2255 	ppd = ppd_from_ibp(ibp);
2256 	if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ||
2257 	      (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) &&
2258 	    (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) &&
2259 	    (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2260 	    (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) ||
2261 	    (rdma_ah_get_make_grd(attr))) {
2262 		rdma_ah_set_ah_flags(attr, IB_AH_GRH);
2263 		rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid));
2264 		rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix);
2265 	}
2266 }
2267 
2268 /*
2269  * hfi1_check_mcast- Check if the given lid is
2270  * in the OPA multicast range.
2271  *
2272  * The LID might either reside in ah.dlid or might be
2273  * in the GRH of the address handle as DGID if extended
2274  * addresses are in use.
2275  */
2276 static inline bool hfi1_check_mcast(u32 lid)
2277 {
2278 	return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) &&
2279 		(lid != be32_to_cpu(OPA_LID_PERMISSIVE)));
2280 }
2281 
2282 #define opa_get_lid(lid, format)	\
2283 	__opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format)
2284 
2285 /* Convert a lid to a specific lid space */
2286 static inline u32 __opa_get_lid(u32 lid, u8 format)
2287 {
2288 	bool is_mcast = hfi1_check_mcast(lid);
2289 
2290 	switch (format) {
2291 	case OPA_PORT_PACKET_FORMAT_8B:
2292 	case OPA_PORT_PACKET_FORMAT_10B:
2293 		if (is_mcast)
2294 			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2295 				0xF0000);
2296 		return lid & 0xFFFFF;
2297 	case OPA_PORT_PACKET_FORMAT_16B:
2298 		if (is_mcast)
2299 			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2300 				0xF00000);
2301 		return lid & 0xFFFFFF;
2302 	case OPA_PORT_PACKET_FORMAT_9B:
2303 		if (is_mcast)
2304 			return (lid -
2305 				opa_get_mcast_base(OPA_MCAST_NR) +
2306 				be16_to_cpu(IB_MULTICAST_LID_BASE));
2307 		else
2308 			return lid & 0xFFFF;
2309 	default:
2310 		return lid;
2311 	}
2312 }
2313 
2314 /* Return true if the given lid is the OPA 16B multicast range */
2315 static inline bool hfi1_is_16B_mcast(u32 lid)
2316 {
2317 	return ((lid >=
2318 		opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) &&
2319 		(lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)));
2320 }
2321 
2322 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr)
2323 {
2324 	const struct ib_global_route *grh = rdma_ah_read_grh(attr);
2325 	u32 dlid = rdma_ah_get_dlid(attr);
2326 
2327 	/* Modify ah_attr.dlid to be in the 32 bit LID space.
2328 	 * This is how the address will be laid out:
2329 	 * Assuming MCAST_NR to be 4,
2330 	 * 32 bit permissive LID = 0xFFFFFFFF
2331 	 * Multicast LID range = 0xFFFFFFFE to 0xF0000000
2332 	 * Unicast LID range = 0xEFFFFFFF to 1
2333 	 * Invalid LID = 0
2334 	 */
2335 	if (ib_is_opa_gid(&grh->dgid))
2336 		dlid = opa_get_lid_from_gid(&grh->dgid);
2337 	else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
2338 		 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2339 		 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)))
2340 		dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) +
2341 			opa_get_mcast_base(OPA_MCAST_NR);
2342 	else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE))
2343 		dlid = be32_to_cpu(OPA_LID_PERMISSIVE);
2344 
2345 	rdma_ah_set_dlid(attr, dlid);
2346 }
2347 
2348 static inline u8 hfi1_get_packet_type(u32 lid)
2349 {
2350 	/* 9B if lid > 0xF0000000 */
2351 	if (lid >= opa_get_mcast_base(OPA_MCAST_NR))
2352 		return HFI1_PKT_TYPE_9B;
2353 
2354 	/* 16B if lid > 0xC000 */
2355 	if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B))
2356 		return HFI1_PKT_TYPE_16B;
2357 
2358 	return HFI1_PKT_TYPE_9B;
2359 }
2360 
2361 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr)
2362 {
2363 	/*
2364 	 * If there was an incoming 16B packet with permissive
2365 	 * LIDs, OPA GIDs would have been programmed when those
2366 	 * packets were received. A 16B packet will have to
2367 	 * be sent in response to that packet. Return a 16B
2368 	 * header type if that's the case.
2369 	 */
2370 	if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE))
2371 		return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ?
2372 			HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B;
2373 
2374 	/*
2375 	 * Return a 16B header type if either the the destination
2376 	 * or source lid is extended.
2377 	 */
2378 	if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B)
2379 		return HFI1_PKT_TYPE_16B;
2380 
2381 	return hfi1_get_packet_type(lid);
2382 }
2383 
2384 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet,
2385 				     struct ib_grh *grh, u32 slid,
2386 				     u32 dlid)
2387 {
2388 	struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2389 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2390 
2391 	if (!ibp)
2392 		return;
2393 
2394 	grh->hop_limit = 1;
2395 	grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2396 	if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))
2397 		grh->sgid.global.interface_id =
2398 			OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE));
2399 	else
2400 		grh->sgid.global.interface_id = OPA_MAKE_ID(slid);
2401 
2402 	/*
2403 	 * Upper layers (like mad) may compare the dgid in the
2404 	 * wc that is obtained here with the sgid_index in
2405 	 * the wr. Since sgid_index in wr is always 0 for
2406 	 * extended lids, set the dgid here to the default
2407 	 * IB gid.
2408 	 */
2409 	grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2410 	grh->dgid.global.interface_id =
2411 		cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]);
2412 }
2413 
2414 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload)
2415 {
2416 	return -(hdr_size + payload + (SIZE_OF_CRC << 2) +
2417 		     SIZE_OF_LT) & 0x7;
2418 }
2419 
2420 static inline void hfi1_make_ib_hdr(struct ib_header *hdr,
2421 				    u16 lrh0, u16 len,
2422 				    u16 dlid, u16 slid)
2423 {
2424 	hdr->lrh[0] = cpu_to_be16(lrh0);
2425 	hdr->lrh[1] = cpu_to_be16(dlid);
2426 	hdr->lrh[2] = cpu_to_be16(len);
2427 	hdr->lrh[3] = cpu_to_be16(slid);
2428 }
2429 
2430 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr,
2431 				     u32 slid, u32 dlid,
2432 				     u16 len, u16 pkey,
2433 				     bool becn, bool fecn, u8 l4,
2434 				     u8 sc)
2435 {
2436 	u32 lrh0 = 0;
2437 	u32 lrh1 = 0x40000000;
2438 	u32 lrh2 = 0;
2439 	u32 lrh3 = 0;
2440 
2441 	lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT);
2442 	lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT);
2443 	lrh0 = (lrh0 & ~OPA_16B_LID_MASK)  | (slid & OPA_16B_LID_MASK);
2444 	lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT);
2445 	lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT);
2446 	lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK);
2447 	lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) |
2448 		((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT);
2449 	lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) |
2450 		((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT);
2451 	lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT);
2452 	lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4;
2453 
2454 	hdr->lrh[0] = lrh0;
2455 	hdr->lrh[1] = lrh1;
2456 	hdr->lrh[2] = lrh2;
2457 	hdr->lrh[3] = lrh3;
2458 }
2459 #endif                          /* _HFI1_KERNEL_H */
2460