1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2 /* 3 * Copyright(c) 2020-2023 Cornelis Networks, Inc. 4 * Copyright(c) 2015-2020 Intel Corporation. 5 */ 6 7 #ifndef _HFI1_KERNEL_H 8 #define _HFI1_KERNEL_H 9 10 #include <linux/refcount.h> 11 #include <linux/interrupt.h> 12 #include <linux/pci.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/mutex.h> 15 #include <linux/list.h> 16 #include <linux/scatterlist.h> 17 #include <linux/slab.h> 18 #include <linux/io.h> 19 #include <linux/fs.h> 20 #include <linux/completion.h> 21 #include <linux/kref.h> 22 #include <linux/sched.h> 23 #include <linux/cdev.h> 24 #include <linux/delay.h> 25 #include <linux/kthread.h> 26 #include <linux/i2c.h> 27 #include <linux/i2c-algo-bit.h> 28 #include <linux/xarray.h> 29 #include <rdma/ib_hdrs.h> 30 #include <rdma/opa_addr.h> 31 #include <linux/rhashtable.h> 32 #include <rdma/rdma_vt.h> 33 34 #include "chip_registers.h" 35 #include "common.h" 36 #include "opfn.h" 37 #include "verbs.h" 38 #include "pio.h" 39 #include "chip.h" 40 #include "mad.h" 41 #include "qsfp.h" 42 #include "platform.h" 43 #include "affinity.h" 44 #include "msix.h" 45 46 /* bumped 1 from s/w major version of TrueScale */ 47 #define HFI1_CHIP_VERS_MAJ 3U 48 49 /* don't care about this except printing */ 50 #define HFI1_CHIP_VERS_MIN 0U 51 52 /* The Organization Unique Identifier (Mfg code), and its position in GUID */ 53 #define HFI1_OUI 0x001175 54 #define HFI1_OUI_LSB 40 55 56 #define DROP_PACKET_OFF 0 57 #define DROP_PACKET_ON 1 58 59 #define NEIGHBOR_TYPE_HFI 0 60 #define NEIGHBOR_TYPE_SWITCH 1 61 62 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5 63 64 extern unsigned long hfi1_cap_mask; 65 #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap) 66 #define HFI1_CAP_UGET_MASK(mask, cap) \ 67 (((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap) 68 #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap)) 69 #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap)) 70 #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap)) 71 #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap)) 72 #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \ 73 HFI1_CAP_MISC_MASK) 74 /* Offline Disabled Reason is 4-bits */ 75 #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON) 76 77 /* 78 * Control context is always 0 and handles the error packets. 79 * It also handles the VL15 and multicast packets. 80 */ 81 #define HFI1_CTRL_CTXT 0 82 83 /* 84 * Driver context will store software counters for each of the events 85 * associated with these status registers 86 */ 87 #define NUM_CCE_ERR_STATUS_COUNTERS 41 88 #define NUM_RCV_ERR_STATUS_COUNTERS 64 89 #define NUM_MISC_ERR_STATUS_COUNTERS 13 90 #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36 91 #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4 92 #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64 93 #define NUM_SEND_ERR_STATUS_COUNTERS 3 94 #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5 95 #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24 96 97 /* 98 * per driver stats, either not device nor port-specific, or 99 * summed over all of the devices and ports. 100 * They are described by name via ipathfs filesystem, so layout 101 * and number of elements can change without breaking compatibility. 102 * If members are added or deleted hfi1_statnames[] in debugfs.c must 103 * change to match. 104 */ 105 struct hfi1_ib_stats { 106 __u64 sps_ints; /* number of interrupts handled */ 107 __u64 sps_errints; /* number of error interrupts */ 108 __u64 sps_txerrs; /* tx-related packet errors */ 109 __u64 sps_rcverrs; /* non-crc rcv packet errors */ 110 __u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */ 111 __u64 sps_nopiobufs; /* no pio bufs avail from kernel */ 112 __u64 sps_ctxts; /* number of contexts currently open */ 113 __u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */ 114 __u64 sps_buffull; 115 __u64 sps_hdrfull; 116 }; 117 118 extern struct hfi1_ib_stats hfi1_stats; 119 extern const struct pci_error_handlers hfi1_pci_err_handler; 120 121 extern int num_driver_cntrs; 122 123 /* 124 * First-cut criterion for "device is active" is 125 * two thousand dwords combined Tx, Rx traffic per 126 * 5-second interval. SMA packets are 64 dwords, 127 * and occur "a few per second", presumably each way. 128 */ 129 #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000) 130 131 /* 132 * Below contains all data related to a single context (formerly called port). 133 */ 134 135 struct hfi1_opcode_stats_perctx; 136 137 struct ctxt_eager_bufs { 138 struct eager_buffer { 139 void *addr; 140 dma_addr_t dma; 141 ssize_t len; 142 } *buffers; 143 struct { 144 void *addr; 145 dma_addr_t dma; 146 } *rcvtids; 147 u32 size; /* total size of eager buffers */ 148 u32 rcvtid_size; /* size of each eager rcv tid */ 149 u16 count; /* size of buffers array */ 150 u16 numbufs; /* number of buffers allocated */ 151 u16 alloced; /* number of rcvarray entries used */ 152 u16 threshold; /* head update threshold */ 153 }; 154 155 struct exp_tid_set { 156 struct list_head list; 157 u32 count; 158 }; 159 160 struct hfi1_ctxtdata; 161 typedef int (*intr_handler)(struct hfi1_ctxtdata *rcd, int data); 162 typedef void (*rhf_rcv_function_ptr)(struct hfi1_packet *packet); 163 164 struct tid_queue { 165 struct list_head queue_head; 166 /* queue head for QP TID resource waiters */ 167 u32 enqueue; /* count of tid enqueues */ 168 u32 dequeue; /* count of tid dequeues */ 169 }; 170 171 struct hfi1_ctxtdata { 172 /* rcvhdrq base, needs mmap before useful */ 173 void *rcvhdrq; 174 /* kernel virtual address where hdrqtail is updated */ 175 volatile __le64 *rcvhdrtail_kvaddr; 176 /* so functions that need physical port can get it easily */ 177 struct hfi1_pportdata *ppd; 178 /* so file ops can get at unit */ 179 struct hfi1_devdata *dd; 180 /* this receive context's assigned PIO ACK send context */ 181 struct send_context *sc; 182 /* per context recv functions */ 183 const rhf_rcv_function_ptr *rhf_rcv_function_map; 184 /* 185 * The interrupt handler for a particular receive context can vary 186 * throughout it's lifetime. This is not a lock protected data member so 187 * it must be updated atomically and the prev and new value must always 188 * be valid. Worst case is we process an extra interrupt and up to 64 189 * packets with the wrong interrupt handler. 190 */ 191 intr_handler do_interrupt; 192 /** fast handler after autoactive */ 193 intr_handler fast_handler; 194 /** slow handler */ 195 intr_handler slow_handler; 196 /* napi pointer assiociated with netdev */ 197 struct napi_struct *napi; 198 /* verbs rx_stats per rcd */ 199 struct hfi1_opcode_stats_perctx *opstats; 200 /* clear interrupt mask */ 201 u64 imask; 202 /* ctxt rcvhdrq head offset */ 203 u32 head; 204 /* number of rcvhdrq entries */ 205 u16 rcvhdrq_cnt; 206 u8 ireg; /* clear interrupt register */ 207 /* receive packet sequence counter */ 208 u8 seq_cnt; 209 /* size of each of the rcvhdrq entries */ 210 u8 rcvhdrqentsize; 211 /* offset of RHF within receive header entry */ 212 u8 rhf_offset; 213 /* dynamic receive available interrupt timeout */ 214 u8 rcvavail_timeout; 215 /* Indicates that this is vnic context */ 216 bool is_vnic; 217 /* vnic queue index this context is mapped to */ 218 u8 vnic_q_idx; 219 /* Is ASPM interrupt supported for this context */ 220 bool aspm_intr_supported; 221 /* ASPM state (enabled/disabled) for this context */ 222 bool aspm_enabled; 223 /* Is ASPM processing enabled for this context (in intr context) */ 224 bool aspm_intr_enable; 225 struct ctxt_eager_bufs egrbufs; 226 /* QPs waiting for context processing */ 227 struct list_head qp_wait_list; 228 /* tid allocation lists */ 229 struct exp_tid_set tid_group_list; 230 struct exp_tid_set tid_used_list; 231 struct exp_tid_set tid_full_list; 232 233 /* Timer for re-enabling ASPM if interrupt activity quiets down */ 234 struct timer_list aspm_timer; 235 /* per-context configuration flags */ 236 unsigned long flags; 237 /* array of tid_groups */ 238 struct tid_group *groups; 239 /* mmap of hdrq, must fit in 44 bits */ 240 dma_addr_t rcvhdrq_dma; 241 dma_addr_t rcvhdrqtailaddr_dma; 242 /* Last interrupt timestamp */ 243 ktime_t aspm_ts_last_intr; 244 /* Last timestamp at which we scheduled a timer for this context */ 245 ktime_t aspm_ts_timer_sched; 246 /* Lock to serialize between intr, timer intr and user threads */ 247 spinlock_t aspm_lock; 248 /* Reference count the base context usage */ 249 struct kref kref; 250 /* numa node of this context */ 251 int numa_id; 252 /* associated msix interrupt. */ 253 s16 msix_intr; 254 /* job key */ 255 u16 jkey; 256 /* number of RcvArray groups for this context. */ 257 u16 rcv_array_groups; 258 /* index of first eager TID entry. */ 259 u16 eager_base; 260 /* number of expected TID entries */ 261 u16 expected_count; 262 /* index of first expected TID entry. */ 263 u16 expected_base; 264 /* Device context index */ 265 u8 ctxt; 266 267 /* PSM Specific fields */ 268 /* lock protecting all Expected TID data */ 269 struct mutex exp_mutex; 270 /* lock protecting all Expected TID data of kernel contexts */ 271 spinlock_t exp_lock; 272 /* Queue for QP's waiting for HW TID flows */ 273 struct tid_queue flow_queue; 274 /* Queue for QP's waiting for HW receive array entries */ 275 struct tid_queue rarr_queue; 276 /* when waiting for rcv or pioavail */ 277 wait_queue_head_t wait; 278 /* uuid from PSM */ 279 u8 uuid[16]; 280 /* same size as task_struct .comm[], command that opened context */ 281 char comm[TASK_COMM_LEN]; 282 /* Bitmask of in use context(s) */ 283 DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS); 284 /* per-context event flags for fileops/intr communication */ 285 unsigned long event_flags; 286 /* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */ 287 void *subctxt_uregbase; 288 /* An array of pages for the eager receive buffers * N */ 289 void *subctxt_rcvegrbuf; 290 /* An array of pages for the eager header queue entries * N */ 291 void *subctxt_rcvhdr_base; 292 /* total number of polled urgent packets */ 293 u32 urgent; 294 /* saved total number of polled urgent packets for poll edge trigger */ 295 u32 urgent_poll; 296 /* Type of packets or conditions we want to poll for */ 297 u16 poll_type; 298 /* non-zero if ctxt is being shared. */ 299 u16 subctxt_id; 300 /* The version of the library which opened this ctxt */ 301 u32 userversion; 302 /* 303 * non-zero if ctxt can be shared, and defines the maximum number of 304 * sub-contexts for this device context. 305 */ 306 u8 subctxt_cnt; 307 308 /* Bit mask to track free TID RDMA HW flows */ 309 unsigned long flow_mask; 310 struct tid_flow_state flows[RXE_NUM_TID_FLOWS]; 311 }; 312 313 /** 314 * rcvhdrq_size - return total size in bytes for header queue 315 * @rcd: the receive context 316 * 317 * rcvhdrqentsize is in DWs, so we have to convert to bytes 318 * 319 */ 320 static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd) 321 { 322 return PAGE_ALIGN(rcd->rcvhdrq_cnt * 323 rcd->rcvhdrqentsize * sizeof(u32)); 324 } 325 326 /* 327 * Represents a single packet at a high level. Put commonly computed things in 328 * here so we do not have to keep doing them over and over. The rule of thumb is 329 * if something is used one time to derive some value, store that something in 330 * here. If it is used multiple times, then store the result of that derivation 331 * in here. 332 */ 333 struct hfi1_packet { 334 void *ebuf; 335 void *hdr; 336 void *payload; 337 struct hfi1_ctxtdata *rcd; 338 __le32 *rhf_addr; 339 struct rvt_qp *qp; 340 struct ib_other_headers *ohdr; 341 struct ib_grh *grh; 342 struct opa_16b_mgmt *mgmt; 343 u64 rhf; 344 u32 maxcnt; 345 u32 rhqoff; 346 u32 dlid; 347 u32 slid; 348 int numpkt; 349 u16 tlen; 350 s16 etail; 351 u16 pkey; 352 u8 hlen; 353 u8 rsize; 354 u8 updegr; 355 u8 etype; 356 u8 extra_byte; 357 u8 pad; 358 u8 sc; 359 u8 sl; 360 u8 opcode; 361 bool migrated; 362 }; 363 364 /* Packet types */ 365 #define HFI1_PKT_TYPE_9B 0 366 #define HFI1_PKT_TYPE_16B 1 367 368 /* 369 * OPA 16B Header 370 */ 371 #define OPA_16B_L4_MASK 0xFFull 372 #define OPA_16B_SC_MASK 0x1F00000ull 373 #define OPA_16B_SC_SHIFT 20 374 #define OPA_16B_LID_MASK 0xFFFFFull 375 #define OPA_16B_DLID_MASK 0xF000ull 376 #define OPA_16B_DLID_SHIFT 20 377 #define OPA_16B_DLID_HIGH_SHIFT 12 378 #define OPA_16B_SLID_MASK 0xF00ull 379 #define OPA_16B_SLID_SHIFT 20 380 #define OPA_16B_SLID_HIGH_SHIFT 8 381 #define OPA_16B_BECN_MASK 0x80000000ull 382 #define OPA_16B_BECN_SHIFT 31 383 #define OPA_16B_FECN_MASK 0x10000000ull 384 #define OPA_16B_FECN_SHIFT 28 385 #define OPA_16B_L2_MASK 0x60000000ull 386 #define OPA_16B_L2_SHIFT 29 387 #define OPA_16B_PKEY_MASK 0xFFFF0000ull 388 #define OPA_16B_PKEY_SHIFT 16 389 #define OPA_16B_LEN_MASK 0x7FF00000ull 390 #define OPA_16B_LEN_SHIFT 20 391 #define OPA_16B_RC_MASK 0xE000000ull 392 #define OPA_16B_RC_SHIFT 25 393 #define OPA_16B_AGE_MASK 0xFF0000ull 394 #define OPA_16B_AGE_SHIFT 16 395 #define OPA_16B_ENTROPY_MASK 0xFFFFull 396 397 /* 398 * OPA 16B L2/L4 Encodings 399 */ 400 #define OPA_16B_L4_9B 0x00 401 #define OPA_16B_L2_TYPE 0x02 402 #define OPA_16B_L4_FM 0x08 403 #define OPA_16B_L4_IB_LOCAL 0x09 404 #define OPA_16B_L4_IB_GLOBAL 0x0A 405 #define OPA_16B_L4_ETHR OPA_VNIC_L4_ETHR 406 407 /* 408 * OPA 16B Management 409 */ 410 #define OPA_16B_L4_FM_PAD 3 /* fixed 3B pad */ 411 #define OPA_16B_L4_FM_HLEN 24 /* 16B(16) + L4_FM(8) */ 412 413 static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr) 414 { 415 return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK); 416 } 417 418 static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr) 419 { 420 return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT); 421 } 422 423 static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr) 424 { 425 return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) | 426 (((hdr->lrh[2] & OPA_16B_DLID_MASK) >> 427 OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT)); 428 } 429 430 static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr) 431 { 432 return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) | 433 (((hdr->lrh[2] & OPA_16B_SLID_MASK) >> 434 OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT)); 435 } 436 437 static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr) 438 { 439 return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT); 440 } 441 442 static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr) 443 { 444 return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT); 445 } 446 447 static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr) 448 { 449 return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT); 450 } 451 452 static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr) 453 { 454 return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT); 455 } 456 457 static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr) 458 { 459 return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT); 460 } 461 462 static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr) 463 { 464 return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT); 465 } 466 467 static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr) 468 { 469 return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT); 470 } 471 472 static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr) 473 { 474 return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK); 475 } 476 477 #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw)) 478 479 /* 480 * BTH 481 */ 482 #define OPA_16B_BTH_PAD_MASK 7 483 static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr) 484 { 485 return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) & 486 OPA_16B_BTH_PAD_MASK); 487 } 488 489 /* 490 * 16B Management 491 */ 492 #define OPA_16B_MGMT_QPN_MASK 0xFFFFFF 493 static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt) 494 { 495 return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK; 496 } 497 498 static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt) 499 { 500 return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK; 501 } 502 503 static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt, 504 u32 dest_qp, u32 src_qp) 505 { 506 mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK); 507 mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK); 508 } 509 510 /** 511 * hfi1_get_rc_ohdr - get extended header 512 * @opah - the opaheader 513 */ 514 static inline struct ib_other_headers * 515 hfi1_get_rc_ohdr(struct hfi1_opa_header *opah) 516 { 517 struct ib_other_headers *ohdr; 518 struct ib_header *hdr = NULL; 519 struct hfi1_16b_header *hdr_16b = NULL; 520 521 /* Find out where the BTH is */ 522 if (opah->hdr_type == HFI1_PKT_TYPE_9B) { 523 hdr = &opah->ibh; 524 if (ib_get_lnh(hdr) == HFI1_LRH_BTH) 525 ohdr = &hdr->u.oth; 526 else 527 ohdr = &hdr->u.l.oth; 528 } else { 529 u8 l4; 530 531 hdr_16b = &opah->opah; 532 l4 = hfi1_16B_get_l4(hdr_16b); 533 if (l4 == OPA_16B_L4_IB_LOCAL) 534 ohdr = &hdr_16b->u.oth; 535 else 536 ohdr = &hdr_16b->u.l.oth; 537 } 538 return ohdr; 539 } 540 541 struct rvt_sge_state; 542 543 /* 544 * Get/Set IB link-level config parameters for f_get/set_ib_cfg() 545 * Mostly for MADs that set or query link parameters, also ipath 546 * config interfaces 547 */ 548 #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */ 549 #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */ 550 #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */ 551 #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */ 552 #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */ 553 #define HFI1_IB_CFG_SPD 5 /* current Link spd */ 554 #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */ 555 #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */ 556 #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */ 557 #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */ 558 #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */ 559 #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */ 560 #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */ 561 #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */ 562 #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */ 563 #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */ 564 #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */ 565 #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */ 566 #define HFI1_IB_CFG_VL_HIGH_LIMIT 19 567 #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */ 568 #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */ 569 570 /* 571 * HFI or Host Link States 572 * 573 * These describe the states the driver thinks the logical and physical 574 * states are in. Used as an argument to set_link_state(). Implemented 575 * as bits for easy multi-state checking. The actual state can only be 576 * one. 577 */ 578 #define __HLS_UP_INIT_BP 0 579 #define __HLS_UP_ARMED_BP 1 580 #define __HLS_UP_ACTIVE_BP 2 581 #define __HLS_DN_DOWNDEF_BP 3 /* link down default */ 582 #define __HLS_DN_POLL_BP 4 583 #define __HLS_DN_DISABLE_BP 5 584 #define __HLS_DN_OFFLINE_BP 6 585 #define __HLS_VERIFY_CAP_BP 7 586 #define __HLS_GOING_UP_BP 8 587 #define __HLS_GOING_OFFLINE_BP 9 588 #define __HLS_LINK_COOLDOWN_BP 10 589 590 #define HLS_UP_INIT BIT(__HLS_UP_INIT_BP) 591 #define HLS_UP_ARMED BIT(__HLS_UP_ARMED_BP) 592 #define HLS_UP_ACTIVE BIT(__HLS_UP_ACTIVE_BP) 593 #define HLS_DN_DOWNDEF BIT(__HLS_DN_DOWNDEF_BP) /* link down default */ 594 #define HLS_DN_POLL BIT(__HLS_DN_POLL_BP) 595 #define HLS_DN_DISABLE BIT(__HLS_DN_DISABLE_BP) 596 #define HLS_DN_OFFLINE BIT(__HLS_DN_OFFLINE_BP) 597 #define HLS_VERIFY_CAP BIT(__HLS_VERIFY_CAP_BP) 598 #define HLS_GOING_UP BIT(__HLS_GOING_UP_BP) 599 #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP) 600 #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP) 601 602 #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE) 603 #define HLS_DOWN ~(HLS_UP) 604 605 #define HLS_DEFAULT HLS_DN_POLL 606 607 /* use this MTU size if none other is given */ 608 #define HFI1_DEFAULT_ACTIVE_MTU 10240 609 /* use this MTU size as the default maximum */ 610 #define HFI1_DEFAULT_MAX_MTU 10240 611 /* default partition key */ 612 #define DEFAULT_PKEY 0xffff 613 614 /* 615 * Possible fabric manager config parameters for fm_{get,set}_table() 616 */ 617 #define FM_TBL_VL_HIGH_ARB 1 /* Get/set VL high prio weights */ 618 #define FM_TBL_VL_LOW_ARB 2 /* Get/set VL low prio weights */ 619 #define FM_TBL_BUFFER_CONTROL 3 /* Get/set Buffer Control */ 620 #define FM_TBL_SC2VLNT 4 /* Get/set SC->VLnt */ 621 #define FM_TBL_VL_PREEMPT_ELEMS 5 /* Get (no set) VL preempt elems */ 622 #define FM_TBL_VL_PREEMPT_MATRIX 6 /* Get (no set) VL preempt matrix */ 623 624 /* 625 * Possible "operations" for f_rcvctrl(ppd, op, ctxt) 626 * these are bits so they can be combined, e.g. 627 * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB 628 */ 629 #define HFI1_RCVCTRL_TAILUPD_ENB 0x01 630 #define HFI1_RCVCTRL_TAILUPD_DIS 0x02 631 #define HFI1_RCVCTRL_CTXT_ENB 0x04 632 #define HFI1_RCVCTRL_CTXT_DIS 0x08 633 #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10 634 #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20 635 #define HFI1_RCVCTRL_PKEY_ENB 0x40 /* Note, default is enabled */ 636 #define HFI1_RCVCTRL_PKEY_DIS 0x80 637 #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400 638 #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800 639 #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000 640 #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000 641 #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000 642 #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000 643 #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000 644 #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000 645 #define HFI1_RCVCTRL_URGENT_ENB 0x40000 646 #define HFI1_RCVCTRL_URGENT_DIS 0x80000 647 648 /* partition enforcement flags */ 649 #define HFI1_PART_ENFORCE_IN 0x1 650 #define HFI1_PART_ENFORCE_OUT 0x2 651 652 /* how often we check for synthetic counter wrap around */ 653 #define SYNTH_CNT_TIME 3 654 655 /* Counter flags */ 656 #define CNTR_NORMAL 0x0 /* Normal counters, just read register */ 657 #define CNTR_SYNTH 0x1 /* Synthetic counters, saturate at all 1s */ 658 #define CNTR_DISABLED 0x2 /* Disable this counter */ 659 #define CNTR_32BIT 0x4 /* Simulate 64 bits for this counter */ 660 #define CNTR_VL 0x8 /* Per VL counter */ 661 #define CNTR_SDMA 0x10 662 #define CNTR_INVALID_VL -1 /* Specifies invalid VL */ 663 #define CNTR_MODE_W 0x0 664 #define CNTR_MODE_R 0x1 665 666 /* VLs Supported/Operational */ 667 #define HFI1_MIN_VLS_SUPPORTED 1 668 #define HFI1_MAX_VLS_SUPPORTED 8 669 670 #define HFI1_GUIDS_PER_PORT 5 671 #define HFI1_PORT_GUID_INDEX 0 672 673 static inline void incr_cntr64(u64 *cntr) 674 { 675 if (*cntr < (u64)-1LL) 676 (*cntr)++; 677 } 678 679 #define MAX_NAME_SIZE 64 680 struct hfi1_msix_entry { 681 enum irq_type type; 682 int irq; 683 void *arg; 684 cpumask_t mask; 685 struct irq_affinity_notify notify; 686 }; 687 688 struct hfi1_msix_info { 689 /* lock to synchronize in_use_msix access */ 690 spinlock_t msix_lock; 691 DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS); 692 struct hfi1_msix_entry *msix_entries; 693 u16 max_requested; 694 }; 695 696 /* per-SL CCA information */ 697 struct cca_timer { 698 struct hrtimer hrtimer; 699 struct hfi1_pportdata *ppd; /* read-only */ 700 int sl; /* read-only */ 701 u16 ccti; /* read/write - current value of CCTI */ 702 }; 703 704 struct link_down_reason { 705 /* 706 * SMA-facing value. Should be set from .latest when 707 * HLS_UP_* -> HLS_DN_* transition actually occurs. 708 */ 709 u8 sma; 710 u8 latest; 711 }; 712 713 enum { 714 LO_PRIO_TABLE, 715 HI_PRIO_TABLE, 716 MAX_PRIO_TABLE 717 }; 718 719 struct vl_arb_cache { 720 /* protect vl arb cache */ 721 spinlock_t lock; 722 struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE]; 723 }; 724 725 /* 726 * The structure below encapsulates data relevant to a physical IB Port. 727 * Current chips support only one such port, but the separation 728 * clarifies things a bit. Note that to conform to IB conventions, 729 * port-numbers are one-based. The first or only port is port1. 730 */ 731 struct hfi1_pportdata { 732 struct hfi1_ibport ibport_data; 733 734 struct hfi1_devdata *dd; 735 736 /* PHY support */ 737 struct qsfp_data qsfp_info; 738 /* Values for SI tuning of SerDes */ 739 u32 port_type; 740 u32 tx_preset_eq; 741 u32 tx_preset_noeq; 742 u32 rx_preset; 743 u8 local_atten; 744 u8 remote_atten; 745 u8 default_atten; 746 u8 max_power_class; 747 748 /* did we read platform config from scratch registers? */ 749 bool config_from_scratch; 750 751 /* GUIDs for this interface, in host order, guids[0] is a port guid */ 752 u64 guids[HFI1_GUIDS_PER_PORT]; 753 754 /* GUID for peer interface, in host order */ 755 u64 neighbor_guid; 756 757 /* up or down physical link state */ 758 u32 linkup; 759 760 /* 761 * this address is mapped read-only into user processes so they can 762 * get status cheaply, whenever they want. One qword of status per port 763 */ 764 u64 *statusp; 765 766 /* SendDMA related entries */ 767 768 struct workqueue_struct *hfi1_wq; 769 struct workqueue_struct *link_wq; 770 771 /* move out of interrupt context */ 772 struct work_struct link_vc_work; 773 struct work_struct link_up_work; 774 struct work_struct link_down_work; 775 struct work_struct sma_message_work; 776 struct work_struct freeze_work; 777 struct work_struct link_downgrade_work; 778 struct work_struct link_bounce_work; 779 struct delayed_work start_link_work; 780 /* host link state variables */ 781 struct mutex hls_lock; 782 u32 host_link_state; 783 784 /* these are the "32 bit" regs */ 785 786 u32 ibmtu; /* The MTU programmed for this unit */ 787 /* 788 * Current max size IB packet (in bytes) including IB headers, that 789 * we can send. Changes when ibmtu changes. 790 */ 791 u32 ibmaxlen; 792 u32 current_egress_rate; /* units [10^6 bits/sec] */ 793 /* LID programmed for this instance */ 794 u32 lid; 795 /* list of pkeys programmed; 0 if not set */ 796 u16 pkeys[MAX_PKEY_VALUES]; 797 u16 link_width_supported; 798 u16 link_width_downgrade_supported; 799 u16 link_speed_supported; 800 u16 link_width_enabled; 801 u16 link_width_downgrade_enabled; 802 u16 link_speed_enabled; 803 u16 link_width_active; 804 u16 link_width_downgrade_tx_active; 805 u16 link_width_downgrade_rx_active; 806 u16 link_speed_active; 807 u8 vls_supported; 808 u8 vls_operational; 809 u8 actual_vls_operational; 810 /* LID mask control */ 811 u8 lmc; 812 /* Rx Polarity inversion (compensate for ~tx on partner) */ 813 u8 rx_pol_inv; 814 815 u8 hw_pidx; /* physical port index */ 816 u32 port; /* IB port number and index into dd->pports - 1 */ 817 /* type of neighbor node */ 818 u8 neighbor_type; 819 u8 neighbor_normal; 820 u8 neighbor_fm_security; /* 1 if firmware checking is disabled */ 821 u8 neighbor_port_number; 822 u8 is_sm_config_started; 823 u8 offline_disabled_reason; 824 u8 is_active_optimize_enabled; 825 u8 driver_link_ready; /* driver ready for active link */ 826 u8 link_enabled; /* link enabled? */ 827 u8 linkinit_reason; 828 u8 local_tx_rate; /* rate given to 8051 firmware */ 829 u8 qsfp_retry_count; 830 831 /* placeholders for IB MAD packet settings */ 832 u8 overrun_threshold; 833 u8 phy_error_threshold; 834 unsigned int is_link_down_queued; 835 836 /* Used to override LED behavior for things like maintenance beaconing*/ 837 /* 838 * Alternates per phase of blink 839 * [0] holds LED off duration, [1] holds LED on duration 840 */ 841 unsigned long led_override_vals[2]; 842 u8 led_override_phase; /* LSB picks from vals[] */ 843 atomic_t led_override_timer_active; 844 /* Used to flash LEDs in override mode */ 845 struct timer_list led_override_timer; 846 847 u32 sm_trap_qp; 848 u32 sa_qp; 849 850 /* 851 * cca_timer_lock protects access to the per-SL cca_timer 852 * structures (specifically the ccti member). 853 */ 854 spinlock_t cca_timer_lock ____cacheline_aligned_in_smp; 855 struct cca_timer cca_timer[OPA_MAX_SLS]; 856 857 /* List of congestion control table entries */ 858 struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX]; 859 860 /* congestion entries, each entry corresponding to a SL */ 861 struct opa_congestion_setting_entry_shadow 862 congestion_entries[OPA_MAX_SLS]; 863 864 /* 865 * cc_state_lock protects (write) access to the per-port 866 * struct cc_state. 867 */ 868 spinlock_t cc_state_lock ____cacheline_aligned_in_smp; 869 870 struct cc_state __rcu *cc_state; 871 872 /* Total number of congestion control table entries */ 873 u16 total_cct_entry; 874 875 /* Bit map identifying service level */ 876 u32 cc_sl_control_map; 877 878 /* CA's max number of 64 entry units in the congestion control table */ 879 u8 cc_max_table_entries; 880 881 /* 882 * begin congestion log related entries 883 * cc_log_lock protects all congestion log related data 884 */ 885 spinlock_t cc_log_lock ____cacheline_aligned_in_smp; 886 u8 threshold_cong_event_map[OPA_MAX_SLS / 8]; 887 u16 threshold_event_counter; 888 struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS]; 889 int cc_log_idx; /* index for logging events */ 890 int cc_mad_idx; /* index for reporting events */ 891 /* end congestion log related entries */ 892 893 struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE]; 894 895 /* port relative counter buffer */ 896 u64 *cntrs; 897 /* port relative synthetic counter buffer */ 898 u64 *scntrs; 899 /* port_xmit_discards are synthesized from different egress errors */ 900 u64 port_xmit_discards; 901 u64 port_xmit_discards_vl[C_VL_COUNT]; 902 u64 port_xmit_constraint_errors; 903 u64 port_rcv_constraint_errors; 904 /* count of 'link_err' interrupts from DC */ 905 u64 link_downed; 906 /* number of times link retrained successfully */ 907 u64 link_up; 908 /* number of times a link unknown frame was reported */ 909 u64 unknown_frame_count; 910 /* port_ltp_crc_mode is returned in 'portinfo' MADs */ 911 u16 port_ltp_crc_mode; 912 /* port_crc_mode_enabled is the crc we support */ 913 u8 port_crc_mode_enabled; 914 /* mgmt_allowed is also returned in 'portinfo' MADs */ 915 u8 mgmt_allowed; 916 u8 part_enforce; /* partition enforcement flags */ 917 struct link_down_reason local_link_down_reason; 918 struct link_down_reason neigh_link_down_reason; 919 /* Value to be sent to link peer on LinkDown .*/ 920 u8 remote_link_down_reason; 921 /* Error events that will cause a port bounce. */ 922 u32 port_error_action; 923 struct work_struct linkstate_active_work; 924 /* Does this port need to prescan for FECNs */ 925 bool cc_prescan; 926 /* 927 * Sample sendWaitCnt & sendWaitVlCnt during link transition 928 * and counter request. 929 */ 930 u64 port_vl_xmit_wait_last[C_VL_COUNT + 1]; 931 u16 prev_link_width; 932 u64 vl_xmit_flit_cnt[C_VL_COUNT + 1]; 933 }; 934 935 typedef void (*opcode_handler)(struct hfi1_packet *packet); 936 typedef void (*hfi1_make_req)(struct rvt_qp *qp, 937 struct hfi1_pkt_state *ps, 938 struct rvt_swqe *wqe); 939 extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[]; 940 extern const rhf_rcv_function_ptr netdev_rhf_rcv_functions[]; 941 942 /* return values for the RHF receive functions */ 943 #define RHF_RCV_CONTINUE 0 /* keep going */ 944 #define RHF_RCV_DONE 1 /* stop, this packet processed */ 945 #define RHF_RCV_REPROCESS 2 /* stop. retain this packet */ 946 947 struct rcv_array_data { 948 u16 ngroups; 949 u16 nctxt_extra; 950 u8 group_size; 951 }; 952 953 struct per_vl_data { 954 u16 mtu; 955 struct send_context *sc; 956 }; 957 958 /* 16 to directly index */ 959 #define PER_VL_SEND_CONTEXTS 16 960 961 struct err_info_rcvport { 962 u8 status_and_code; 963 u64 packet_flit1; 964 u64 packet_flit2; 965 }; 966 967 struct err_info_constraint { 968 u8 status; 969 u16 pkey; 970 u32 slid; 971 }; 972 973 struct hfi1_temp { 974 unsigned int curr; /* current temperature */ 975 unsigned int lo_lim; /* low temperature limit */ 976 unsigned int hi_lim; /* high temperature limit */ 977 unsigned int crit_lim; /* critical temperature limit */ 978 u8 triggers; /* temperature triggers */ 979 }; 980 981 struct hfi1_i2c_bus { 982 struct hfi1_devdata *controlling_dd; /* current controlling device */ 983 struct i2c_adapter adapter; /* bus details */ 984 struct i2c_algo_bit_data algo; /* bus algorithm details */ 985 int num; /* bus number, 0 or 1 */ 986 }; 987 988 /* common data between shared ASIC HFIs */ 989 struct hfi1_asic_data { 990 struct hfi1_devdata *dds[2]; /* back pointers */ 991 struct mutex asic_resource_mutex; 992 struct hfi1_i2c_bus *i2c_bus0; 993 struct hfi1_i2c_bus *i2c_bus1; 994 }; 995 996 /* sizes for both the QP and RSM map tables */ 997 #define NUM_MAP_ENTRIES 256 998 #define NUM_MAP_REGS 32 999 1000 /* Virtual NIC information */ 1001 struct hfi1_vnic_data { 1002 struct kmem_cache *txreq_cache; 1003 u8 num_vports; 1004 }; 1005 1006 struct hfi1_vnic_vport_info; 1007 1008 /* device data struct now contains only "general per-device" info. 1009 * fields related to a physical IB port are in a hfi1_pportdata struct. 1010 */ 1011 struct sdma_engine; 1012 struct sdma_vl_map; 1013 1014 #define BOARD_VERS_MAX 96 /* how long the version string can be */ 1015 #define SERIAL_MAX 16 /* length of the serial number */ 1016 1017 typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64); 1018 struct hfi1_netdev_rx; 1019 struct hfi1_devdata { 1020 struct hfi1_ibdev verbs_dev; /* must be first */ 1021 /* pointers to related structs for this device */ 1022 /* pci access data structure */ 1023 struct pci_dev *pcidev; 1024 struct cdev user_cdev; 1025 struct cdev diag_cdev; 1026 struct cdev ui_cdev; 1027 struct device *user_device; 1028 struct device *diag_device; 1029 struct device *ui_device; 1030 1031 /* first mapping up to RcvArray */ 1032 u8 __iomem *kregbase1; 1033 resource_size_t physaddr; 1034 1035 /* second uncached mapping from RcvArray to pio send buffers */ 1036 u8 __iomem *kregbase2; 1037 /* for detecting offset above kregbase2 address */ 1038 u32 base2_start; 1039 1040 /* Per VL data. Enough for all VLs but not all elements are set/used. */ 1041 struct per_vl_data vld[PER_VL_SEND_CONTEXTS]; 1042 /* send context data */ 1043 struct send_context_info *send_contexts; 1044 /* map hardware send contexts to software index */ 1045 u8 *hw_to_sw; 1046 /* spinlock for allocating and releasing send context resources */ 1047 spinlock_t sc_lock; 1048 /* lock for pio_map */ 1049 spinlock_t pio_map_lock; 1050 /* Send Context initialization lock. */ 1051 spinlock_t sc_init_lock; 1052 /* lock for sdma_map */ 1053 spinlock_t sde_map_lock; 1054 /* array of kernel send contexts */ 1055 struct send_context **kernel_send_context; 1056 /* array of vl maps */ 1057 struct pio_vl_map __rcu *pio_map; 1058 /* default flags to last descriptor */ 1059 u64 default_desc1; 1060 1061 /* fields common to all SDMA engines */ 1062 1063 volatile __le64 *sdma_heads_dma; /* DMA'ed by chip */ 1064 dma_addr_t sdma_heads_phys; 1065 void *sdma_pad_dma; /* DMA'ed by chip */ 1066 dma_addr_t sdma_pad_phys; 1067 /* for deallocation */ 1068 size_t sdma_heads_size; 1069 /* num used */ 1070 u32 num_sdma; 1071 /* array of engines sized by num_sdma */ 1072 struct sdma_engine *per_sdma; 1073 /* array of vl maps */ 1074 struct sdma_vl_map __rcu *sdma_map; 1075 /* SPC freeze waitqueue and variable */ 1076 wait_queue_head_t sdma_unfreeze_wq; 1077 atomic_t sdma_unfreeze_count; 1078 1079 u32 lcb_access_count; /* count of LCB users */ 1080 1081 /* common data between shared ASIC HFIs in this OS */ 1082 struct hfi1_asic_data *asic_data; 1083 1084 /* mem-mapped pointer to base of PIO buffers */ 1085 void __iomem *piobase; 1086 /* 1087 * write-combining mem-mapped pointer to base of RcvArray 1088 * memory. 1089 */ 1090 void __iomem *rcvarray_wc; 1091 /* 1092 * credit return base - a per-NUMA range of DMA address that 1093 * the chip will use to update the per-context free counter 1094 */ 1095 struct credit_return_base *cr_base; 1096 1097 /* send context numbers and sizes for each type */ 1098 struct sc_config_sizes sc_sizes[SC_MAX]; 1099 1100 char *boardname; /* human readable board info */ 1101 1102 u64 ctx0_seq_drop; 1103 1104 /* reset value */ 1105 u64 z_int_counter; 1106 u64 z_rcv_limit; 1107 u64 z_send_schedule; 1108 1109 u64 __percpu *send_schedule; 1110 /* number of reserved contexts for netdev usage */ 1111 u16 num_netdev_contexts; 1112 /* number of receive contexts in use by the driver */ 1113 u32 num_rcv_contexts; 1114 /* number of pio send contexts in use by the driver */ 1115 u32 num_send_contexts; 1116 /* 1117 * number of ctxts available for PSM open 1118 */ 1119 u32 freectxts; 1120 /* total number of available user/PSM contexts */ 1121 u32 num_user_contexts; 1122 /* base receive interrupt timeout, in CSR units */ 1123 u32 rcv_intr_timeout_csr; 1124 1125 spinlock_t sendctrl_lock; /* protect changes to SendCtrl */ 1126 spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */ 1127 spinlock_t uctxt_lock; /* protect rcd changes */ 1128 struct mutex dc8051_lock; /* exclusive access to 8051 */ 1129 struct workqueue_struct *update_cntr_wq; 1130 struct work_struct update_cntr_work; 1131 /* exclusive access to 8051 memory */ 1132 spinlock_t dc8051_memlock; 1133 int dc8051_timed_out; /* remember if the 8051 timed out */ 1134 /* 1135 * A page that will hold event notification bitmaps for all 1136 * contexts. This page will be mapped into all processes. 1137 */ 1138 unsigned long *events; 1139 /* 1140 * per unit status, see also portdata statusp 1141 * mapped read-only into user processes so they can get unit and 1142 * IB link status cheaply 1143 */ 1144 struct hfi1_status *status; 1145 1146 /* revision register shadow */ 1147 u64 revision; 1148 /* Base GUID for device (network order) */ 1149 u64 base_guid; 1150 1151 /* both sides of the PCIe link are gen3 capable */ 1152 u8 link_gen3_capable; 1153 u8 dc_shutdown; 1154 /* localbus width (1, 2,4,8,16,32) from config space */ 1155 u32 lbus_width; 1156 /* localbus speed in MHz */ 1157 u32 lbus_speed; 1158 int unit; /* unit # of this chip */ 1159 int node; /* home node of this chip */ 1160 1161 /* save these PCI fields to restore after a reset */ 1162 u32 pcibar0; 1163 u32 pcibar1; 1164 u32 pci_rom; 1165 u16 pci_command; 1166 u16 pcie_devctl; 1167 u16 pcie_lnkctl; 1168 u16 pcie_devctl2; 1169 u32 pci_msix0; 1170 u32 pci_tph2; 1171 1172 /* 1173 * ASCII serial number, from flash, large enough for original 1174 * all digit strings, and longer serial number format 1175 */ 1176 u8 serial[SERIAL_MAX]; 1177 /* human readable board version */ 1178 u8 boardversion[BOARD_VERS_MAX]; 1179 u8 lbus_info[32]; /* human readable localbus info */ 1180 /* chip major rev, from CceRevision */ 1181 u8 majrev; 1182 /* chip minor rev, from CceRevision */ 1183 u8 minrev; 1184 /* hardware ID */ 1185 u8 hfi1_id; 1186 /* implementation code */ 1187 u8 icode; 1188 /* vAU of this device */ 1189 u8 vau; 1190 /* vCU of this device */ 1191 u8 vcu; 1192 /* link credits of this device */ 1193 u16 link_credits; 1194 /* initial vl15 credits to use */ 1195 u16 vl15_init; 1196 1197 /* 1198 * Cached value for vl15buf, read during verify cap interrupt. VL15 1199 * credits are to be kept at 0 and set when handling the link-up 1200 * interrupt. This removes the possibility of receiving VL15 MAD 1201 * packets before this HFI is ready. 1202 */ 1203 u16 vl15buf_cached; 1204 1205 /* Misc small ints */ 1206 u8 n_krcv_queues; 1207 u8 qos_shift; 1208 1209 u16 irev; /* implementation revision */ 1210 u32 dc8051_ver; /* 8051 firmware version */ 1211 1212 spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */ 1213 struct platform_config platform_config; 1214 struct platform_config_cache pcfg_cache; 1215 1216 struct diag_client *diag_client; 1217 1218 /* general interrupt: mask of handled interrupts */ 1219 u64 gi_mask[CCE_NUM_INT_CSRS]; 1220 1221 struct rcv_array_data rcv_entries; 1222 1223 /* cycle length of PS* counters in HW (in picoseconds) */ 1224 u16 psxmitwait_check_rate; 1225 1226 /* 1227 * 64 bit synthetic counters 1228 */ 1229 struct timer_list synth_stats_timer; 1230 1231 /* MSI-X information */ 1232 struct hfi1_msix_info msix_info; 1233 1234 /* 1235 * device counters 1236 */ 1237 char *cntrnames; 1238 size_t cntrnameslen; 1239 size_t ndevcntrs; 1240 u64 *cntrs; 1241 u64 *scntrs; 1242 1243 /* 1244 * remembered values for synthetic counters 1245 */ 1246 u64 last_tx; 1247 u64 last_rx; 1248 1249 /* 1250 * per-port counters 1251 */ 1252 size_t nportcntrs; 1253 char *portcntrnames; 1254 size_t portcntrnameslen; 1255 1256 struct err_info_rcvport err_info_rcvport; 1257 struct err_info_constraint err_info_rcv_constraint; 1258 struct err_info_constraint err_info_xmit_constraint; 1259 1260 atomic_t drop_packet; 1261 bool do_drop; 1262 u8 err_info_uncorrectable; 1263 u8 err_info_fmconfig; 1264 1265 /* 1266 * Software counters for the status bits defined by the 1267 * associated error status registers 1268 */ 1269 u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS]; 1270 u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS]; 1271 u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS]; 1272 u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS]; 1273 u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS]; 1274 u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS]; 1275 u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS]; 1276 1277 /* Software counter that spans all contexts */ 1278 u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS]; 1279 /* Software counter that spans all DMA engines */ 1280 u64 sw_send_dma_eng_err_status_cnt[ 1281 NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS]; 1282 /* Software counter that aggregates all cce_err_status errors */ 1283 u64 sw_cce_err_status_aggregate; 1284 /* Software counter that aggregates all bypass packet rcv errors */ 1285 u64 sw_rcv_bypass_packet_errors; 1286 1287 /* Save the enabled LCB error bits */ 1288 u64 lcb_err_en; 1289 struct cpu_mask_set *comp_vect; 1290 int *comp_vect_mappings; 1291 u32 comp_vect_possible_cpus; 1292 1293 /* 1294 * Capability to have different send engines simply by changing a 1295 * pointer value. 1296 */ 1297 send_routine process_pio_send ____cacheline_aligned_in_smp; 1298 send_routine process_dma_send; 1299 void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf, 1300 u64 pbc, const void *from, size_t count); 1301 int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx, 1302 struct hfi1_vnic_vport_info *vinfo, 1303 struct sk_buff *skb, u64 pbc, u8 plen); 1304 /* hfi1_pportdata, points to array of (physical) port-specific 1305 * data structs, indexed by pidx (0..n-1) 1306 */ 1307 struct hfi1_pportdata *pport; 1308 /* receive context data */ 1309 struct hfi1_ctxtdata **rcd; 1310 u64 __percpu *int_counter; 1311 /* verbs tx opcode stats */ 1312 struct hfi1_opcode_stats_perctx __percpu *tx_opstats; 1313 /* device (not port) flags, basically device capabilities */ 1314 u16 flags; 1315 /* Number of physical ports available */ 1316 u8 num_pports; 1317 /* Lowest context number which can be used by user processes or VNIC */ 1318 u8 first_dyn_alloc_ctxt; 1319 /* adding a new field here would make it part of this cacheline */ 1320 1321 /* seqlock for sc2vl */ 1322 seqlock_t sc2vl_lock ____cacheline_aligned_in_smp; 1323 u64 sc2vl[4]; 1324 u64 __percpu *rcv_limit; 1325 /* adding a new field here would make it part of this cacheline */ 1326 1327 /* OUI comes from the HW. Used everywhere as 3 separate bytes. */ 1328 u8 oui1; 1329 u8 oui2; 1330 u8 oui3; 1331 1332 /* Timer and counter used to detect RcvBufOvflCnt changes */ 1333 struct timer_list rcverr_timer; 1334 1335 wait_queue_head_t event_queue; 1336 1337 /* receive context tail dummy address */ 1338 __le64 *rcvhdrtail_dummy_kvaddr; 1339 dma_addr_t rcvhdrtail_dummy_dma; 1340 1341 u32 rcv_ovfl_cnt; 1342 /* Serialize ASPM enable/disable between multiple verbs contexts */ 1343 spinlock_t aspm_lock; 1344 /* Number of verbs contexts which have disabled ASPM */ 1345 atomic_t aspm_disabled_cnt; 1346 /* Keeps track of user space clients */ 1347 refcount_t user_refcount; 1348 /* Used to wait for outstanding user space clients before dev removal */ 1349 struct completion user_comp; 1350 1351 bool eprom_available; /* true if EPROM is available for this device */ 1352 bool aspm_supported; /* Does HW support ASPM */ 1353 bool aspm_enabled; /* ASPM state: enabled/disabled */ 1354 struct rhashtable *sdma_rht; 1355 1356 /* vnic data */ 1357 struct hfi1_vnic_data vnic; 1358 /* Lock to protect IRQ SRC register access */ 1359 spinlock_t irq_src_lock; 1360 int vnic_num_vports; 1361 struct hfi1_netdev_rx *netdev_rx; 1362 struct hfi1_affinity_node *affinity_entry; 1363 1364 /* Keeps track of IPoIB RSM rule users */ 1365 atomic_t ipoib_rsm_usr_num; 1366 }; 1367 1368 /* 8051 firmware version helper */ 1369 #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c)) 1370 #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16) 1371 #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8) 1372 #define dc8051_ver_patch(a) ((a) & 0x0000ff) 1373 1374 /* f_put_tid types */ 1375 #define PT_EXPECTED 0 1376 #define PT_EAGER 1 1377 #define PT_INVALID_FLUSH 2 1378 #define PT_INVALID 3 1379 1380 struct tid_rb_node; 1381 1382 /* Private data for file operations */ 1383 struct hfi1_filedata { 1384 struct srcu_struct pq_srcu; 1385 struct hfi1_devdata *dd; 1386 struct hfi1_ctxtdata *uctxt; 1387 struct hfi1_user_sdma_comp_q *cq; 1388 /* update side lock for SRCU */ 1389 spinlock_t pq_rcu_lock; 1390 struct hfi1_user_sdma_pkt_q __rcu *pq; 1391 u16 subctxt; 1392 /* for cpu affinity; -1 if none */ 1393 int rec_cpu_num; 1394 u32 tid_n_pinned; 1395 bool use_mn; 1396 struct tid_rb_node **entry_to_rb; 1397 spinlock_t tid_lock; /* protect tid_[limit,used] counters */ 1398 u32 tid_limit; 1399 u32 tid_used; 1400 u32 *invalid_tids; 1401 u32 invalid_tid_idx; 1402 /* protect invalid_tids array and invalid_tid_idx */ 1403 spinlock_t invalid_lock; 1404 }; 1405 1406 extern struct xarray hfi1_dev_table; 1407 struct hfi1_devdata *hfi1_lookup(int unit); 1408 1409 static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt) 1410 { 1411 return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) * 1412 HFI1_MAX_SHARED_CTXTS; 1413 } 1414 1415 int hfi1_init(struct hfi1_devdata *dd, int reinit); 1416 int hfi1_count_active_units(void); 1417 1418 int hfi1_diag_add(struct hfi1_devdata *dd); 1419 void hfi1_diag_remove(struct hfi1_devdata *dd); 1420 void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup); 1421 1422 void handle_user_interrupt(struct hfi1_ctxtdata *rcd); 1423 1424 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1425 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd); 1426 int hfi1_create_kctxts(struct hfi1_devdata *dd); 1427 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, 1428 struct hfi1_ctxtdata **rcd); 1429 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd); 1430 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, 1431 struct hfi1_devdata *dd, u8 hw_pidx, u32 port); 1432 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd); 1433 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd); 1434 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd); 1435 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, 1436 u16 ctxt); 1437 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt); 1438 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread); 1439 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1440 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread); 1441 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget); 1442 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget); 1443 void set_all_slowpath(struct hfi1_devdata *dd); 1444 1445 extern const struct pci_device_id hfi1_pci_tbl[]; 1446 void hfi1_make_ud_req_9B(struct rvt_qp *qp, 1447 struct hfi1_pkt_state *ps, 1448 struct rvt_swqe *wqe); 1449 1450 void hfi1_make_ud_req_16B(struct rvt_qp *qp, 1451 struct hfi1_pkt_state *ps, 1452 struct rvt_swqe *wqe); 1453 1454 /* receive packet handler dispositions */ 1455 #define RCV_PKT_OK 0x0 /* keep going */ 1456 #define RCV_PKT_LIMIT 0x1 /* stop, hit limit, start thread */ 1457 #define RCV_PKT_DONE 0x2 /* stop, no more packets detected */ 1458 1459 /** 1460 * hfi1_rcd_head - add accessor for rcd head 1461 * @rcd: the context 1462 */ 1463 static inline u32 hfi1_rcd_head(struct hfi1_ctxtdata *rcd) 1464 { 1465 return rcd->head; 1466 } 1467 1468 /** 1469 * hfi1_set_rcd_head - add accessor for rcd head 1470 * @rcd: the context 1471 * @head: the new head 1472 */ 1473 static inline void hfi1_set_rcd_head(struct hfi1_ctxtdata *rcd, u32 head) 1474 { 1475 rcd->head = head; 1476 } 1477 1478 /* calculate the current RHF address */ 1479 static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd) 1480 { 1481 return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset; 1482 } 1483 1484 /* return DMA_RTAIL configuration */ 1485 static inline bool get_dma_rtail_setting(struct hfi1_ctxtdata *rcd) 1486 { 1487 return !!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL); 1488 } 1489 1490 /** 1491 * hfi1_seq_incr_wrap - wrapping increment for sequence 1492 * @seq: the current sequence number 1493 * 1494 * Returns: the incremented seq 1495 */ 1496 static inline u8 hfi1_seq_incr_wrap(u8 seq) 1497 { 1498 if (++seq > RHF_MAX_SEQ) 1499 seq = 1; 1500 return seq; 1501 } 1502 1503 /** 1504 * hfi1_seq_cnt - return seq_cnt member 1505 * @rcd: the receive context 1506 * 1507 * Return seq_cnt member 1508 */ 1509 static inline u8 hfi1_seq_cnt(struct hfi1_ctxtdata *rcd) 1510 { 1511 return rcd->seq_cnt; 1512 } 1513 1514 /** 1515 * hfi1_set_seq_cnt - return seq_cnt member 1516 * @rcd: the receive context 1517 * 1518 * Return seq_cnt member 1519 */ 1520 static inline void hfi1_set_seq_cnt(struct hfi1_ctxtdata *rcd, u8 cnt) 1521 { 1522 rcd->seq_cnt = cnt; 1523 } 1524 1525 /** 1526 * last_rcv_seq - is last 1527 * @rcd: the receive context 1528 * @seq: sequence 1529 * 1530 * return true if last packet 1531 */ 1532 static inline bool last_rcv_seq(struct hfi1_ctxtdata *rcd, u32 seq) 1533 { 1534 return seq != rcd->seq_cnt; 1535 } 1536 1537 /** 1538 * rcd_seq_incr - increment context sequence number 1539 * @rcd: the receive context 1540 * @seq: the current sequence number 1541 * 1542 * Returns: true if the this was the last packet 1543 */ 1544 static inline bool hfi1_seq_incr(struct hfi1_ctxtdata *rcd, u32 seq) 1545 { 1546 rcd->seq_cnt = hfi1_seq_incr_wrap(rcd->seq_cnt); 1547 return last_rcv_seq(rcd, seq); 1548 } 1549 1550 /** 1551 * get_hdrqentsize - return hdrq entry size 1552 * @rcd: the receive context 1553 */ 1554 static inline u8 get_hdrqentsize(struct hfi1_ctxtdata *rcd) 1555 { 1556 return rcd->rcvhdrqentsize; 1557 } 1558 1559 /** 1560 * get_hdrq_cnt - return hdrq count 1561 * @rcd: the receive context 1562 */ 1563 static inline u16 get_hdrq_cnt(struct hfi1_ctxtdata *rcd) 1564 { 1565 return rcd->rcvhdrq_cnt; 1566 } 1567 1568 /** 1569 * hfi1_is_slowpath - check if this context is slow path 1570 * @rcd: the receive context 1571 */ 1572 static inline bool hfi1_is_slowpath(struct hfi1_ctxtdata *rcd) 1573 { 1574 return rcd->do_interrupt == rcd->slow_handler; 1575 } 1576 1577 /** 1578 * hfi1_is_fastpath - check if this context is fast path 1579 * @rcd: the receive context 1580 */ 1581 static inline bool hfi1_is_fastpath(struct hfi1_ctxtdata *rcd) 1582 { 1583 if (rcd->ctxt == HFI1_CTRL_CTXT) 1584 return false; 1585 1586 return rcd->do_interrupt == rcd->fast_handler; 1587 } 1588 1589 /** 1590 * hfi1_set_fast - change to the fast handler 1591 * @rcd: the receive context 1592 */ 1593 static inline void hfi1_set_fast(struct hfi1_ctxtdata *rcd) 1594 { 1595 if (unlikely(!rcd)) 1596 return; 1597 if (unlikely(!hfi1_is_fastpath(rcd))) 1598 rcd->do_interrupt = rcd->fast_handler; 1599 } 1600 1601 int hfi1_reset_device(int); 1602 1603 void receive_interrupt_work(struct work_struct *work); 1604 1605 /* extract service channel from header and rhf */ 1606 static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf) 1607 { 1608 return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4); 1609 } 1610 1611 #define HFI1_JKEY_WIDTH 16 1612 #define HFI1_JKEY_MASK (BIT(16) - 1) 1613 #define HFI1_ADMIN_JKEY_RANGE 32 1614 1615 /* 1616 * J_KEYs are split and allocated in the following groups: 1617 * 0 - 31 - users with administrator privileges 1618 * 32 - 63 - kernel protocols using KDETH packets 1619 * 64 - 65535 - all other users using KDETH packets 1620 */ 1621 static inline u16 generate_jkey(kuid_t uid) 1622 { 1623 u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK; 1624 1625 if (capable(CAP_SYS_ADMIN)) 1626 jkey &= HFI1_ADMIN_JKEY_RANGE - 1; 1627 else if (jkey < 64) 1628 jkey |= BIT(HFI1_JKEY_WIDTH - 1); 1629 1630 return jkey; 1631 } 1632 1633 /* 1634 * active_egress_rate 1635 * 1636 * returns the active egress rate in units of [10^6 bits/sec] 1637 */ 1638 static inline u32 active_egress_rate(struct hfi1_pportdata *ppd) 1639 { 1640 u16 link_speed = ppd->link_speed_active; 1641 u16 link_width = ppd->link_width_active; 1642 u32 egress_rate; 1643 1644 if (link_speed == OPA_LINK_SPEED_25G) 1645 egress_rate = 25000; 1646 else /* assume OPA_LINK_SPEED_12_5G */ 1647 egress_rate = 12500; 1648 1649 switch (link_width) { 1650 case OPA_LINK_WIDTH_4X: 1651 egress_rate *= 4; 1652 break; 1653 case OPA_LINK_WIDTH_3X: 1654 egress_rate *= 3; 1655 break; 1656 case OPA_LINK_WIDTH_2X: 1657 egress_rate *= 2; 1658 break; 1659 default: 1660 /* assume IB_WIDTH_1X */ 1661 break; 1662 } 1663 1664 return egress_rate; 1665 } 1666 1667 /* 1668 * egress_cycles 1669 * 1670 * Returns the number of 'fabric clock cycles' to egress a packet 1671 * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock 1672 * rate is (approximately) 805 MHz, the units of the returned value 1673 * are (1/805 MHz). 1674 */ 1675 static inline u32 egress_cycles(u32 len, u32 rate) 1676 { 1677 u32 cycles; 1678 1679 /* 1680 * cycles is: 1681 * 1682 * (length) [bits] / (rate) [bits/sec] 1683 * --------------------------------------------------- 1684 * fabric_clock_period == 1 /(805 * 10^6) [cycles/sec] 1685 */ 1686 1687 cycles = len * 8; /* bits */ 1688 cycles *= 805; 1689 cycles /= rate; 1690 1691 return cycles; 1692 } 1693 1694 void set_link_ipg(struct hfi1_pportdata *ppd); 1695 void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, 1696 u32 rqpn, u8 svc_type); 1697 void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn, 1698 u16 pkey, u32 slid, u32 dlid, u8 sc5, 1699 const struct ib_grh *old_grh); 1700 void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1701 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1702 u8 sc5, const struct ib_grh *old_grh); 1703 typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp, 1704 u32 remote_qpn, u16 pkey, u32 slid, u32 dlid, 1705 u8 sc5, const struct ib_grh *old_grh); 1706 1707 #define PKEY_CHECK_INVALID -1 1708 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, 1709 u8 sc5, int8_t s_pkey_index); 1710 1711 #define PACKET_EGRESS_TIMEOUT 350 1712 static inline void pause_for_credit_return(struct hfi1_devdata *dd) 1713 { 1714 /* Pause at least 1us, to ensure chip returns all credits */ 1715 u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000; 1716 1717 udelay(usec ? usec : 1); 1718 } 1719 1720 /** 1721 * sc_to_vlt() - reverse lookup sc to vl 1722 * @dd - devdata 1723 * @sc5 - 5 bit sc 1724 */ 1725 static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5) 1726 { 1727 unsigned seq; 1728 u8 rval; 1729 1730 if (sc5 >= OPA_MAX_SCS) 1731 return (u8)(0xff); 1732 1733 do { 1734 seq = read_seqbegin(&dd->sc2vl_lock); 1735 rval = *(((u8 *)dd->sc2vl) + sc5); 1736 } while (read_seqretry(&dd->sc2vl_lock, seq)); 1737 1738 return rval; 1739 } 1740 1741 #define PKEY_MEMBER_MASK 0x8000 1742 #define PKEY_LOW_15_MASK 0x7fff 1743 1744 /* 1745 * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent 1746 * being an entry from the ingress partition key table), return 0 1747 * otherwise. Use the matching criteria for ingress partition keys 1748 * specified in the OPAv1 spec., section 9.10.14. 1749 */ 1750 static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent) 1751 { 1752 u16 mkey = pkey & PKEY_LOW_15_MASK; 1753 u16 ment = ent & PKEY_LOW_15_MASK; 1754 1755 if (mkey == ment) { 1756 /* 1757 * If pkey[15] is clear (limited partition member), 1758 * is bit 15 in the corresponding table element 1759 * clear (limited member)? 1760 */ 1761 if (!(pkey & PKEY_MEMBER_MASK)) 1762 return !!(ent & PKEY_MEMBER_MASK); 1763 return 1; 1764 } 1765 return 0; 1766 } 1767 1768 /* 1769 * ingress_pkey_table_search - search the entire pkey table for 1770 * an entry which matches 'pkey'. return 0 if a match is found, 1771 * and 1 otherwise. 1772 */ 1773 static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey) 1774 { 1775 int i; 1776 1777 for (i = 0; i < MAX_PKEY_VALUES; i++) { 1778 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i])) 1779 return 0; 1780 } 1781 return 1; 1782 } 1783 1784 /* 1785 * ingress_pkey_table_fail - record a failure of ingress pkey validation, 1786 * i.e., increment port_rcv_constraint_errors for the port, and record 1787 * the 'error info' for this failure. 1788 */ 1789 static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey, 1790 u32 slid) 1791 { 1792 struct hfi1_devdata *dd = ppd->dd; 1793 1794 incr_cntr64(&ppd->port_rcv_constraint_errors); 1795 if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) { 1796 dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK; 1797 dd->err_info_rcv_constraint.slid = slid; 1798 dd->err_info_rcv_constraint.pkey = pkey; 1799 } 1800 } 1801 1802 /* 1803 * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1 1804 * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx 1805 * is a hint as to the best place in the partition key table to begin 1806 * searching. This function should not be called on the data path because 1807 * of performance reasons. On datapath pkey check is expected to be done 1808 * by HW and rcv_pkey_check function should be called instead. 1809 */ 1810 static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1811 u8 sc5, u8 idx, u32 slid, bool force) 1812 { 1813 if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1814 return 0; 1815 1816 /* If SC15, pkey[0:14] must be 0x7fff */ 1817 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1818 goto bad; 1819 1820 /* Is the pkey = 0x0, or 0x8000? */ 1821 if ((pkey & PKEY_LOW_15_MASK) == 0) 1822 goto bad; 1823 1824 /* The most likely matching pkey has index 'idx' */ 1825 if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx])) 1826 return 0; 1827 1828 /* no match - try the whole table */ 1829 if (!ingress_pkey_table_search(ppd, pkey)) 1830 return 0; 1831 1832 bad: 1833 ingress_pkey_table_fail(ppd, pkey, slid); 1834 return 1; 1835 } 1836 1837 /* 1838 * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1 1839 * otherwise. It only ensures pkey is vlid for QP0. This function 1840 * should be called on the data path instead of ingress_pkey_check 1841 * as on data path, pkey check is done by HW (except for QP0). 1842 */ 1843 static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey, 1844 u8 sc5, u16 slid) 1845 { 1846 if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN)) 1847 return 0; 1848 1849 /* If SC15, pkey[0:14] must be 0x7fff */ 1850 if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) 1851 goto bad; 1852 1853 return 0; 1854 bad: 1855 ingress_pkey_table_fail(ppd, pkey, slid); 1856 return 1; 1857 } 1858 1859 /* MTU handling */ 1860 1861 /* MTU enumeration, 256-4k match IB */ 1862 #define OPA_MTU_0 0 1863 #define OPA_MTU_256 1 1864 #define OPA_MTU_512 2 1865 #define OPA_MTU_1024 3 1866 #define OPA_MTU_2048 4 1867 #define OPA_MTU_4096 5 1868 1869 u32 lrh_max_header_bytes(struct hfi1_devdata *dd); 1870 int mtu_to_enum(u32 mtu, int default_if_bad); 1871 u16 enum_to_mtu(int mtu); 1872 static inline int valid_ib_mtu(unsigned int mtu) 1873 { 1874 return mtu == 256 || mtu == 512 || 1875 mtu == 1024 || mtu == 2048 || 1876 mtu == 4096; 1877 } 1878 1879 static inline int valid_opa_max_mtu(unsigned int mtu) 1880 { 1881 return mtu >= 2048 && 1882 (valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240); 1883 } 1884 1885 int set_mtu(struct hfi1_pportdata *ppd); 1886 1887 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc); 1888 void hfi1_disable_after_error(struct hfi1_devdata *dd); 1889 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit); 1890 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode); 1891 1892 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t); 1893 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t); 1894 1895 void set_up_vau(struct hfi1_devdata *dd, u8 vau); 1896 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf); 1897 void reset_link_credits(struct hfi1_devdata *dd); 1898 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu); 1899 1900 int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc); 1901 1902 static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd) 1903 { 1904 return ppd->dd; 1905 } 1906 1907 static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev) 1908 { 1909 return container_of(dev, struct hfi1_devdata, verbs_dev); 1910 } 1911 1912 static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev) 1913 { 1914 return dd_from_dev(to_idev(ibdev)); 1915 } 1916 1917 static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp) 1918 { 1919 return container_of(ibp, struct hfi1_pportdata, ibport_data); 1920 } 1921 1922 static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi) 1923 { 1924 return container_of(rdi, struct hfi1_ibdev, rdi); 1925 } 1926 1927 static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u32 port) 1928 { 1929 struct hfi1_devdata *dd = dd_from_ibdev(ibdev); 1930 u32 pidx = port - 1; /* IB number port from 1, hdw from 0 */ 1931 1932 WARN_ON(pidx >= dd->num_pports); 1933 return &dd->pport[pidx].ibport_data; 1934 } 1935 1936 static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd) 1937 { 1938 return &rcd->ppd->ibport_data; 1939 } 1940 1941 /** 1942 * hfi1_may_ecn - Check whether FECN or BECN processing should be done 1943 * @pkt: the packet to be evaluated 1944 * 1945 * Check whether the FECN or BECN bits in the packet's header are 1946 * enabled, depending on packet type. 1947 * 1948 * This function only checks for FECN and BECN bits. Additional checks 1949 * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to 1950 * ensure correct handling. 1951 */ 1952 static inline bool hfi1_may_ecn(struct hfi1_packet *pkt) 1953 { 1954 bool fecn, becn; 1955 1956 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 1957 fecn = hfi1_16B_get_fecn(pkt->hdr); 1958 becn = hfi1_16B_get_becn(pkt->hdr); 1959 } else { 1960 fecn = ib_bth_get_fecn(pkt->ohdr); 1961 becn = ib_bth_get_becn(pkt->ohdr); 1962 } 1963 return fecn || becn; 1964 } 1965 1966 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 1967 bool prescan); 1968 static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt) 1969 { 1970 bool do_work; 1971 1972 do_work = hfi1_may_ecn(pkt); 1973 if (unlikely(do_work)) 1974 return hfi1_process_ecn_slowpath(qp, pkt, false); 1975 return false; 1976 } 1977 1978 /* 1979 * Return the indexed PKEY from the port PKEY table. 1980 */ 1981 static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index) 1982 { 1983 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 1984 u16 ret; 1985 1986 if (index >= ARRAY_SIZE(ppd->pkeys)) 1987 ret = 0; 1988 else 1989 ret = ppd->pkeys[index]; 1990 1991 return ret; 1992 } 1993 1994 /* 1995 * Return the indexed GUID from the port GUIDs table. 1996 */ 1997 static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index) 1998 { 1999 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2000 2001 WARN_ON(index >= HFI1_GUIDS_PER_PORT); 2002 return cpu_to_be64(ppd->guids[index]); 2003 } 2004 2005 /* 2006 * Called by readers of cc_state only, must call under rcu_read_lock(). 2007 */ 2008 static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd) 2009 { 2010 return rcu_dereference(ppd->cc_state); 2011 } 2012 2013 /* 2014 * Called by writers of cc_state only, must call under cc_state_lock. 2015 */ 2016 static inline 2017 struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd) 2018 { 2019 return rcu_dereference_protected(ppd->cc_state, 2020 lockdep_is_held(&ppd->cc_state_lock)); 2021 } 2022 2023 /* 2024 * values for dd->flags (_device_ related flags) 2025 */ 2026 #define HFI1_INITTED 0x1 /* chip and driver up and initted */ 2027 #define HFI1_PRESENT 0x2 /* chip accesses can be done */ 2028 #define HFI1_FROZEN 0x4 /* chip in SPC freeze */ 2029 #define HFI1_HAS_SDMA_TIMEOUT 0x8 2030 #define HFI1_HAS_SEND_DMA 0x10 /* Supports Send DMA */ 2031 #define HFI1_FORCED_FREEZE 0x80 /* driver forced freeze mode */ 2032 #define HFI1_SHUTDOWN 0x100 /* device is shutting down */ 2033 2034 /* IB dword length mask in PBC (lower 11 bits); same for all chips */ 2035 #define HFI1_PBC_LENGTH_MASK ((1 << 11) - 1) 2036 2037 /* ctxt_flag bit offsets */ 2038 /* base context has not finished initializing */ 2039 #define HFI1_CTXT_BASE_UNINIT 1 2040 /* base context initaliation failed */ 2041 #define HFI1_CTXT_BASE_FAILED 2 2042 /* waiting for a packet to arrive */ 2043 #define HFI1_CTXT_WAITING_RCV 3 2044 /* waiting for an urgent packet to arrive */ 2045 #define HFI1_CTXT_WAITING_URG 4 2046 2047 /* free up any allocated data at closes */ 2048 int hfi1_init_dd(struct hfi1_devdata *dd); 2049 void hfi1_free_devdata(struct hfi1_devdata *dd); 2050 2051 /* LED beaconing functions */ 2052 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 2053 unsigned int timeoff); 2054 void shutdown_led_override(struct hfi1_pportdata *ppd); 2055 2056 #define HFI1_CREDIT_RETURN_RATE (100) 2057 2058 /* 2059 * The number of words for the KDETH protocol field. If this is 2060 * larger then the actual field used, then part of the payload 2061 * will be in the header. 2062 * 2063 * Optimally, we want this sized so that a typical case will 2064 * use full cache lines. The typical local KDETH header would 2065 * be: 2066 * 2067 * Bytes Field 2068 * 8 LRH 2069 * 12 BHT 2070 * ?? KDETH 2071 * 8 RHF 2072 * --- 2073 * 28 + KDETH 2074 * 2075 * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS 2076 */ 2077 #define DEFAULT_RCVHDRSIZE 9 2078 2079 /* 2080 * Maximal header byte count: 2081 * 2082 * Bytes Field 2083 * 8 LRH 2084 * 40 GRH (optional) 2085 * 12 BTH 2086 * ?? KDETH 2087 * 8 RHF 2088 * --- 2089 * 68 + KDETH 2090 * 2091 * We also want to maintain a cache line alignment to assist DMA'ing 2092 * of the header bytes. Round up to a good size. 2093 */ 2094 #define DEFAULT_RCVHDR_ENTSIZE 32 2095 2096 bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm, 2097 u32 nlocked, u32 npages); 2098 int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr, 2099 size_t npages, bool writable, struct page **pages); 2100 void hfi1_release_user_pages(struct mm_struct *mm, struct page **p, 2101 size_t npages, bool dirty); 2102 2103 /** 2104 * hfi1_rcvhdrtail_kvaddr - return tail kvaddr 2105 * @rcd - the receive context 2106 */ 2107 static inline __le64 *hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata *rcd) 2108 { 2109 return (__le64 *)rcd->rcvhdrtail_kvaddr; 2110 } 2111 2112 static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 2113 { 2114 u64 *kv = (u64 *)hfi1_rcvhdrtail_kvaddr(rcd); 2115 2116 if (kv) 2117 *kv = 0ULL; 2118 } 2119 2120 static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd) 2121 { 2122 /* 2123 * volatile because it's a DMA target from the chip, routine is 2124 * inlined, and don't want register caching or reordering. 2125 */ 2126 return (u32)le64_to_cpu(*hfi1_rcvhdrtail_kvaddr(rcd)); 2127 } 2128 2129 static inline bool hfi1_packet_present(struct hfi1_ctxtdata *rcd) 2130 { 2131 if (likely(!rcd->rcvhdrtail_kvaddr)) { 2132 u32 seq = rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))); 2133 2134 return !last_rcv_seq(rcd, seq); 2135 } 2136 return hfi1_rcd_head(rcd) != get_rcvhdrtail(rcd); 2137 } 2138 2139 /* 2140 * sysfs interface. 2141 */ 2142 2143 extern const char ib_hfi1_version[]; 2144 extern const struct attribute_group ib_hfi1_attr_group; 2145 extern const struct attribute_group *hfi1_attr_port_groups[]; 2146 2147 int hfi1_device_create(struct hfi1_devdata *dd); 2148 void hfi1_device_remove(struct hfi1_devdata *dd); 2149 2150 int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd); 2151 void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd); 2152 /* Hook for sysfs read of QSFP */ 2153 int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len); 2154 2155 int hfi1_pcie_init(struct hfi1_devdata *dd); 2156 void hfi1_pcie_cleanup(struct pci_dev *pdev); 2157 int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev); 2158 void hfi1_pcie_ddcleanup(struct hfi1_devdata *); 2159 int pcie_speeds(struct hfi1_devdata *dd); 2160 int restore_pci_variables(struct hfi1_devdata *dd); 2161 int save_pci_variables(struct hfi1_devdata *dd); 2162 int do_pcie_gen3_transition(struct hfi1_devdata *dd); 2163 void tune_pcie_caps(struct hfi1_devdata *dd); 2164 int parse_platform_config(struct hfi1_devdata *dd); 2165 int get_platform_config_field(struct hfi1_devdata *dd, 2166 enum platform_config_table_type_encoding 2167 table_type, int table_index, int field_index, 2168 u32 *data, u32 len); 2169 2170 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi); 2171 2172 /* 2173 * Flush write combining store buffers (if present) and perform a write 2174 * barrier. 2175 */ 2176 static inline void flush_wc(void) 2177 { 2178 asm volatile("sfence" : : : "memory"); 2179 } 2180 2181 void handle_eflags(struct hfi1_packet *packet); 2182 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd); 2183 2184 /* global module parameter variables */ 2185 extern unsigned int hfi1_max_mtu; 2186 extern unsigned int hfi1_cu; 2187 extern unsigned int user_credit_return_threshold; 2188 extern int num_user_contexts; 2189 extern unsigned long n_krcvqs; 2190 extern uint krcvqs[]; 2191 extern int krcvqsset; 2192 extern uint loopback; 2193 extern uint quick_linkup; 2194 extern uint rcv_intr_timeout; 2195 extern uint rcv_intr_count; 2196 extern uint rcv_intr_dynamic; 2197 extern ushort link_crc_mask; 2198 2199 extern struct mutex hfi1_mutex; 2200 2201 /* Number of seconds before our card status check... */ 2202 #define STATUS_TIMEOUT 60 2203 2204 #define DRIVER_NAME "hfi1" 2205 #define HFI1_USER_MINOR_BASE 0 2206 #define HFI1_TRACE_MINOR 127 2207 #define HFI1_NMINORS 255 2208 2209 #define PCI_VENDOR_ID_INTEL 0x8086 2210 #define PCI_DEVICE_ID_INTEL0 0x24f0 2211 #define PCI_DEVICE_ID_INTEL1 0x24f1 2212 2213 #define HFI1_PKT_USER_SC_INTEGRITY \ 2214 (SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK \ 2215 | SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK \ 2216 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK \ 2217 | SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK) 2218 2219 #define HFI1_PKT_KERNEL_SC_INTEGRITY \ 2220 (SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK) 2221 2222 static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd, 2223 u16 ctxt_type) 2224 { 2225 u64 base_sc_integrity; 2226 2227 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2228 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2229 return 0; 2230 2231 base_sc_integrity = 2232 SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2233 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK 2234 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2235 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2236 | SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2237 #ifndef CONFIG_FAULT_INJECTION 2238 | SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK 2239 #endif 2240 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2241 | SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2242 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2243 | SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK 2244 | SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2245 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2246 | SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK 2247 | SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK 2248 | SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK 2249 | SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2250 2251 if (ctxt_type == SC_USER) 2252 base_sc_integrity |= 2253 #ifndef CONFIG_FAULT_INJECTION 2254 SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK | 2255 #endif 2256 HFI1_PKT_USER_SC_INTEGRITY; 2257 else if (ctxt_type != SC_KERNEL) 2258 base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY; 2259 2260 /* turn on send-side job key checks if !A0 */ 2261 if (!is_ax(dd)) 2262 base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2263 2264 return base_sc_integrity; 2265 } 2266 2267 static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd) 2268 { 2269 u64 base_sdma_integrity; 2270 2271 /* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */ 2272 if (HFI1_CAP_IS_KSET(NO_INTEGRITY)) 2273 return 0; 2274 2275 base_sdma_integrity = 2276 SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK 2277 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK 2278 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK 2279 | SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK 2280 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK 2281 | SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK 2282 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK 2283 | SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK 2284 | SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK 2285 | SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK 2286 | SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK 2287 | SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK 2288 | SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK 2289 | SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK; 2290 2291 if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)) 2292 base_sdma_integrity |= 2293 SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK; 2294 2295 /* turn on send-side job key checks if !A0 */ 2296 if (!is_ax(dd)) 2297 base_sdma_integrity |= 2298 SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 2299 2300 return base_sdma_integrity; 2301 } 2302 2303 #define dd_dev_emerg(dd, fmt, ...) \ 2304 dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \ 2305 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2306 2307 #define dd_dev_err(dd, fmt, ...) \ 2308 dev_err(&(dd)->pcidev->dev, "%s: " fmt, \ 2309 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2310 2311 #define dd_dev_err_ratelimited(dd, fmt, ...) \ 2312 dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2313 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2314 ##__VA_ARGS__) 2315 2316 #define dd_dev_warn(dd, fmt, ...) \ 2317 dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \ 2318 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2319 2320 #define dd_dev_warn_ratelimited(dd, fmt, ...) \ 2321 dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2322 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2323 ##__VA_ARGS__) 2324 2325 #define dd_dev_info(dd, fmt, ...) \ 2326 dev_info(&(dd)->pcidev->dev, "%s: " fmt, \ 2327 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2328 2329 #define dd_dev_info_ratelimited(dd, fmt, ...) \ 2330 dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \ 2331 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \ 2332 ##__VA_ARGS__) 2333 2334 #define dd_dev_dbg(dd, fmt, ...) \ 2335 dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \ 2336 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__) 2337 2338 #define hfi1_dev_porterr(dd, port, fmt, ...) \ 2339 dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \ 2340 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__) 2341 2342 /* 2343 * this is used for formatting hw error messages... 2344 */ 2345 struct hfi1_hwerror_msgs { 2346 u64 mask; 2347 const char *msg; 2348 size_t sz; 2349 }; 2350 2351 /* in intr.c... */ 2352 void hfi1_format_hwerrors(u64 hwerrs, 2353 const struct hfi1_hwerror_msgs *hwerrmsgs, 2354 size_t nhwerrmsgs, char *msg, size_t lmsg); 2355 2356 #define USER_OPCODE_CHECK_VAL 0xC0 2357 #define USER_OPCODE_CHECK_MASK 0xC0 2358 #define OPCODE_CHECK_VAL_DISABLED 0x0 2359 #define OPCODE_CHECK_MASK_DISABLED 0x0 2360 2361 static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd) 2362 { 2363 struct hfi1_pportdata *ppd; 2364 int i; 2365 2366 dd->z_int_counter = get_all_cpu_total(dd->int_counter); 2367 dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit); 2368 dd->z_send_schedule = get_all_cpu_total(dd->send_schedule); 2369 2370 ppd = (struct hfi1_pportdata *)(dd + 1); 2371 for (i = 0; i < dd->num_pports; i++, ppd++) { 2372 ppd->ibport_data.rvp.z_rc_acks = 2373 get_all_cpu_total(ppd->ibport_data.rvp.rc_acks); 2374 ppd->ibport_data.rvp.z_rc_qacks = 2375 get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks); 2376 } 2377 } 2378 2379 /* Control LED state */ 2380 static inline void setextled(struct hfi1_devdata *dd, u32 on) 2381 { 2382 if (on) 2383 write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F); 2384 else 2385 write_csr(dd, DCC_CFG_LED_CNTRL, 0x10); 2386 } 2387 2388 /* return the i2c resource given the target */ 2389 static inline u32 i2c_target(u32 target) 2390 { 2391 return target ? CR_I2C2 : CR_I2C1; 2392 } 2393 2394 /* return the i2c chain chip resource that this HFI uses for QSFP */ 2395 static inline u32 qsfp_resource(struct hfi1_devdata *dd) 2396 { 2397 return i2c_target(dd->hfi1_id); 2398 } 2399 2400 /* Is this device integrated or discrete? */ 2401 static inline bool is_integrated(struct hfi1_devdata *dd) 2402 { 2403 return dd->pcidev->device == PCI_DEVICE_ID_INTEL1; 2404 } 2405 2406 /** 2407 * hfi1_need_drop - detect need for drop 2408 * @dd: - the device 2409 * 2410 * In some cases, the first packet needs to be dropped. 2411 * 2412 * Return true is the current packet needs to be dropped and false otherwise. 2413 */ 2414 static inline bool hfi1_need_drop(struct hfi1_devdata *dd) 2415 { 2416 if (unlikely(dd->do_drop && 2417 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 2418 DROP_PACKET_ON)) { 2419 dd->do_drop = false; 2420 return true; 2421 } 2422 return false; 2423 } 2424 2425 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp); 2426 2427 #define DD_DEV_ENTRY(dd) __string(dev, dev_name(&(dd)->pcidev->dev)) 2428 #define DD_DEV_ASSIGN(dd) __assign_str(dev) 2429 2430 static inline void hfi1_update_ah_attr(struct ib_device *ibdev, 2431 struct rdma_ah_attr *attr) 2432 { 2433 struct hfi1_pportdata *ppd; 2434 struct hfi1_ibport *ibp; 2435 u32 dlid = rdma_ah_get_dlid(attr); 2436 2437 /* 2438 * Kernel clients may not have setup GRH information 2439 * Set that here. 2440 */ 2441 ibp = to_iport(ibdev, rdma_ah_get_port_num(attr)); 2442 ppd = ppd_from_ibp(ibp); 2443 if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) || 2444 (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) && 2445 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) && 2446 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2447 (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) || 2448 (rdma_ah_get_make_grd(attr))) { 2449 rdma_ah_set_ah_flags(attr, IB_AH_GRH); 2450 rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid)); 2451 rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix); 2452 } 2453 } 2454 2455 /* 2456 * hfi1_check_mcast- Check if the given lid is 2457 * in the OPA multicast range. 2458 * 2459 * The LID might either reside in ah.dlid or might be 2460 * in the GRH of the address handle as DGID if extended 2461 * addresses are in use. 2462 */ 2463 static inline bool hfi1_check_mcast(u32 lid) 2464 { 2465 return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) && 2466 (lid != be32_to_cpu(OPA_LID_PERMISSIVE))); 2467 } 2468 2469 #define opa_get_lid(lid, format) \ 2470 __opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format) 2471 2472 /* Convert a lid to a specific lid space */ 2473 static inline u32 __opa_get_lid(u32 lid, u8 format) 2474 { 2475 bool is_mcast = hfi1_check_mcast(lid); 2476 2477 switch (format) { 2478 case OPA_PORT_PACKET_FORMAT_8B: 2479 case OPA_PORT_PACKET_FORMAT_10B: 2480 if (is_mcast) 2481 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2482 0xF0000); 2483 return lid & 0xFFFFF; 2484 case OPA_PORT_PACKET_FORMAT_16B: 2485 if (is_mcast) 2486 return (lid - opa_get_mcast_base(OPA_MCAST_NR) + 2487 0xF00000); 2488 return lid & 0xFFFFFF; 2489 case OPA_PORT_PACKET_FORMAT_9B: 2490 if (is_mcast) 2491 return (lid - 2492 opa_get_mcast_base(OPA_MCAST_NR) + 2493 be16_to_cpu(IB_MULTICAST_LID_BASE)); 2494 else 2495 return lid & 0xFFFF; 2496 default: 2497 return lid; 2498 } 2499 } 2500 2501 /* Return true if the given lid is the OPA 16B multicast range */ 2502 static inline bool hfi1_is_16B_mcast(u32 lid) 2503 { 2504 return ((lid >= 2505 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) && 2506 (lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))); 2507 } 2508 2509 static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr) 2510 { 2511 const struct ib_global_route *grh = rdma_ah_read_grh(attr); 2512 u32 dlid = rdma_ah_get_dlid(attr); 2513 2514 /* Modify ah_attr.dlid to be in the 32 bit LID space. 2515 * This is how the address will be laid out: 2516 * Assuming MCAST_NR to be 4, 2517 * 32 bit permissive LID = 0xFFFFFFFF 2518 * Multicast LID range = 0xFFFFFFFE to 0xF0000000 2519 * Unicast LID range = 0xEFFFFFFF to 1 2520 * Invalid LID = 0 2521 */ 2522 if (ib_is_opa_gid(&grh->dgid)) 2523 dlid = opa_get_lid_from_gid(&grh->dgid); 2524 else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 2525 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) && 2526 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE))) 2527 dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) + 2528 opa_get_mcast_base(OPA_MCAST_NR); 2529 else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE)) 2530 dlid = be32_to_cpu(OPA_LID_PERMISSIVE); 2531 2532 rdma_ah_set_dlid(attr, dlid); 2533 } 2534 2535 static inline u8 hfi1_get_packet_type(u32 lid) 2536 { 2537 /* 9B if lid > 0xF0000000 */ 2538 if (lid >= opa_get_mcast_base(OPA_MCAST_NR)) 2539 return HFI1_PKT_TYPE_9B; 2540 2541 /* 16B if lid > 0xC000 */ 2542 if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B)) 2543 return HFI1_PKT_TYPE_16B; 2544 2545 return HFI1_PKT_TYPE_9B; 2546 } 2547 2548 static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr) 2549 { 2550 /* 2551 * If there was an incoming 16B packet with permissive 2552 * LIDs, OPA GIDs would have been programmed when those 2553 * packets were received. A 16B packet will have to 2554 * be sent in response to that packet. Return a 16B 2555 * header type if that's the case. 2556 */ 2557 if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE)) 2558 return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ? 2559 HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B; 2560 2561 /* 2562 * Return a 16B header type if either the destination 2563 * or source lid is extended. 2564 */ 2565 if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B) 2566 return HFI1_PKT_TYPE_16B; 2567 2568 return hfi1_get_packet_type(lid); 2569 } 2570 2571 static inline void hfi1_make_ext_grh(struct hfi1_packet *packet, 2572 struct ib_grh *grh, u32 slid, 2573 u32 dlid) 2574 { 2575 struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data; 2576 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 2577 2578 if (!ibp) 2579 return; 2580 2581 grh->hop_limit = 1; 2582 grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2583 if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)) 2584 grh->sgid.global.interface_id = 2585 OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE)); 2586 else 2587 grh->sgid.global.interface_id = OPA_MAKE_ID(slid); 2588 2589 /* 2590 * Upper layers (like mad) may compare the dgid in the 2591 * wc that is obtained here with the sgid_index in 2592 * the wr. Since sgid_index in wr is always 0 for 2593 * extended lids, set the dgid here to the default 2594 * IB gid. 2595 */ 2596 grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix; 2597 grh->dgid.global.interface_id = 2598 cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]); 2599 } 2600 2601 static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload) 2602 { 2603 return -(hdr_size + payload + (SIZE_OF_CRC << 2) + 2604 SIZE_OF_LT) & 0x7; 2605 } 2606 2607 static inline void hfi1_make_ib_hdr(struct ib_header *hdr, 2608 u16 lrh0, u16 len, 2609 u16 dlid, u16 slid) 2610 { 2611 hdr->lrh[0] = cpu_to_be16(lrh0); 2612 hdr->lrh[1] = cpu_to_be16(dlid); 2613 hdr->lrh[2] = cpu_to_be16(len); 2614 hdr->lrh[3] = cpu_to_be16(slid); 2615 } 2616 2617 static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr, 2618 u32 slid, u32 dlid, 2619 u16 len, u16 pkey, 2620 bool becn, bool fecn, u8 l4, 2621 u8 sc) 2622 { 2623 u32 lrh0 = 0; 2624 u32 lrh1 = 0x40000000; 2625 u32 lrh2 = 0; 2626 u32 lrh3 = 0; 2627 2628 lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT); 2629 lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT); 2630 lrh0 = (lrh0 & ~OPA_16B_LID_MASK) | (slid & OPA_16B_LID_MASK); 2631 lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT); 2632 lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT); 2633 lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK); 2634 lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) | 2635 ((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT); 2636 lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) | 2637 ((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT); 2638 lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT); 2639 lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4; 2640 2641 hdr->lrh[0] = lrh0; 2642 hdr->lrh[1] = lrh1; 2643 hdr->lrh[2] = lrh2; 2644 hdr->lrh[3] = lrh3; 2645 } 2646 #endif /* _HFI1_KERNEL_H */ 2647