xref: /linux/drivers/infiniband/hw/hfi1/firmware.c (revision 10accd2e6890b57db8e717e9aee91b791f90fe14)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/firmware.h>
49 #include <linux/mutex.h>
50 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/crc32.h>
53 
54 #include "hfi.h"
55 #include "trace.h"
56 
57 /*
58  * Make it easy to toggle firmware file name and if it gets loaded by
59  * editing the following. This may be something we do while in development
60  * but not necessarily something a user would ever need to use.
61  */
62 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
63 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
64 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
65 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
66 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
67 #define DEFAULT_PLATFORM_CONFIG_NAME "hfi1_platform.dat"
68 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
69 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
70 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
71 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
72 
73 static uint fw_8051_load = 1;
74 static uint fw_fabric_serdes_load = 1;
75 static uint fw_pcie_serdes_load = 1;
76 static uint fw_sbus_load = 1;
77 
78 /*
79  * Access required in platform.c
80  * Maintains state of whether the platform config was fetched via the
81  * fallback option
82  */
83 uint platform_config_load;
84 
85 /* Firmware file names get set in hfi1_firmware_init() based on the above */
86 static char *fw_8051_name;
87 static char *fw_fabric_serdes_name;
88 static char *fw_sbus_name;
89 static char *fw_pcie_serdes_name;
90 static char *platform_config_name;
91 
92 #define SBUS_MAX_POLL_COUNT 100
93 #define SBUS_COUNTER(reg, name) \
94 	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
95 	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
96 
97 /*
98  * Firmware security header.
99  */
100 struct css_header {
101 	u32 module_type;
102 	u32 header_len;
103 	u32 header_version;
104 	u32 module_id;
105 	u32 module_vendor;
106 	u32 date;		/* BCD yyyymmdd */
107 	u32 size;		/* in DWORDs */
108 	u32 key_size;		/* in DWORDs */
109 	u32 modulus_size;	/* in DWORDs */
110 	u32 exponent_size;	/* in DWORDs */
111 	u32 reserved[22];
112 };
113 
114 /* expected field values */
115 #define CSS_MODULE_TYPE	   0x00000006
116 #define CSS_HEADER_LEN	   0x000000a1
117 #define CSS_HEADER_VERSION 0x00010000
118 #define CSS_MODULE_VENDOR  0x00008086
119 
120 #define KEY_SIZE      256
121 #define MU_SIZE		8
122 #define EXPONENT_SIZE	4
123 
124 /* the file itself */
125 struct firmware_file {
126 	struct css_header css_header;
127 	u8 modulus[KEY_SIZE];
128 	u8 exponent[EXPONENT_SIZE];
129 	u8 signature[KEY_SIZE];
130 	u8 firmware[];
131 };
132 
133 struct augmented_firmware_file {
134 	struct css_header css_header;
135 	u8 modulus[KEY_SIZE];
136 	u8 exponent[EXPONENT_SIZE];
137 	u8 signature[KEY_SIZE];
138 	u8 r2[KEY_SIZE];
139 	u8 mu[MU_SIZE];
140 	u8 firmware[];
141 };
142 
143 /* augmented file size difference */
144 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
145 						sizeof(struct firmware_file))
146 
147 struct firmware_details {
148 	/* Linux core piece */
149 	const struct firmware *fw;
150 
151 	struct css_header *css_header;
152 	u8 *firmware_ptr;		/* pointer to binary data */
153 	u32 firmware_len;		/* length in bytes */
154 	u8 *modulus;			/* pointer to the modulus */
155 	u8 *exponent;			/* pointer to the exponent */
156 	u8 *signature;			/* pointer to the signature */
157 	u8 *r2;				/* pointer to r2 */
158 	u8 *mu;				/* pointer to mu */
159 	struct augmented_firmware_file dummy_header;
160 };
161 
162 /*
163  * The mutex protects fw_state, fw_err, and all of the firmware_details
164  * variables.
165  */
166 static DEFINE_MUTEX(fw_mutex);
167 enum fw_state {
168 	FW_EMPTY,
169 	FW_TRY,
170 	FW_FINAL,
171 	FW_ERR
172 };
173 
174 static enum fw_state fw_state = FW_EMPTY;
175 static int fw_err;
176 static struct firmware_details fw_8051;
177 static struct firmware_details fw_fabric;
178 static struct firmware_details fw_pcie;
179 static struct firmware_details fw_sbus;
180 static const struct firmware *platform_config;
181 
182 /* flags for turn_off_spicos() */
183 #define SPICO_SBUS   0x1
184 #define SPICO_FABRIC 0x2
185 #define ENABLE_SPICO_SMASK 0x1
186 
187 /* security block commands */
188 #define RSA_CMD_INIT  0x1
189 #define RSA_CMD_START 0x2
190 
191 /* security block status */
192 #define RSA_STATUS_IDLE   0x0
193 #define RSA_STATUS_ACTIVE 0x1
194 #define RSA_STATUS_DONE   0x2
195 #define RSA_STATUS_FAILED 0x3
196 
197 /* RSA engine timeout, in ms */
198 #define RSA_ENGINE_TIMEOUT 100 /* ms */
199 
200 /* hardware mutex timeout, in ms */
201 #define HM_TIMEOUT 10 /* ms */
202 
203 /* 8051 memory access timeout, in us */
204 #define DC8051_ACCESS_TIMEOUT 100 /* us */
205 
206 /* the number of fabric SerDes on the SBus */
207 #define NUM_FABRIC_SERDES 4
208 
209 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
210 #define SBUS_READ_COMPLETE 0x4
211 
212 /* SBus fabric SerDes addresses, one set per HFI */
213 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
214 	{ 0x01, 0x02, 0x03, 0x04 },
215 	{ 0x28, 0x29, 0x2a, 0x2b }
216 };
217 
218 /* SBus PCIe SerDes addresses, one set per HFI */
219 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
220 	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
221 	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
222 	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
223 	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
224 };
225 
226 /* SBus PCIe PCS addresses, one set per HFI */
227 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
228 	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
229 	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
230 	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
231 	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
232 };
233 
234 /* SBus fabric SerDes broadcast addresses, one per HFI */
235 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
236 static const u8 all_fabric_serdes_broadcast = 0xe1;
237 
238 /* SBus PCIe SerDes broadcast addresses, one per HFI */
239 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
240 static const u8 all_pcie_serdes_broadcast = 0xe0;
241 
242 /* forwards */
243 static void dispose_one_firmware(struct firmware_details *fdet);
244 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
245 				       struct firmware_details *fdet);
246 static void dump_fw_version(struct hfi1_devdata *dd);
247 
248 /*
249  * Read a single 64-bit value from 8051 data memory.
250  *
251  * Expects:
252  * o caller to have already set up data read, no auto increment
253  * o caller to turn off read enable when finished
254  *
255  * The address argument is a byte offset.  Bits 0:2 in the address are
256  * ignored - i.e. the hardware will always do aligned 8-byte reads as if
257  * the lower bits are zero.
258  *
259  * Return 0 on success, -ENXIO on a read error (timeout).
260  */
261 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
262 {
263 	u64 reg;
264 	int count;
265 
266 	/* start the read at the given address */
267 	reg = ((addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
268 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
269 		| DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK;
270 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
271 
272 	/* wait until ACCESS_COMPLETED is set */
273 	count = 0;
274 	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
275 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
276 		    == 0) {
277 		count++;
278 		if (count > DC8051_ACCESS_TIMEOUT) {
279 			dd_dev_err(dd, "timeout reading 8051 data\n");
280 			return -ENXIO;
281 		}
282 		ndelay(10);
283 	}
284 
285 	/* gather the data */
286 	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
287 
288 	return 0;
289 }
290 
291 /*
292  * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
293  * Return 0 on success, -errno on error.
294  */
295 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
296 {
297 	unsigned long flags;
298 	u32 done;
299 	int ret = 0;
300 
301 	spin_lock_irqsave(&dd->dc8051_memlock, flags);
302 
303 	/* data read set-up, no auto-increment */
304 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
305 
306 	for (done = 0; done < len; addr += 8, done += 8, result++) {
307 		ret = __read_8051_data(dd, addr, result);
308 		if (ret)
309 			break;
310 	}
311 
312 	/* turn off read enable */
313 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
314 
315 	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
316 
317 	return ret;
318 }
319 
320 /*
321  * Write data or code to the 8051 code or data RAM.
322  */
323 static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
324 		      const u8 *data, u32 len)
325 {
326 	u64 reg;
327 	u32 offset;
328 	int aligned, count;
329 
330 	/* check alignment */
331 	aligned = ((unsigned long)data & 0x7) == 0;
332 
333 	/* write set-up */
334 	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
335 		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
336 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
337 
338 	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
339 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
340 		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
341 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
342 
343 	/* write */
344 	for (offset = 0; offset < len; offset += 8) {
345 		int bytes = len - offset;
346 
347 		if (bytes < 8) {
348 			reg = 0;
349 			memcpy(&reg, &data[offset], bytes);
350 		} else if (aligned) {
351 			reg = *(u64 *)&data[offset];
352 		} else {
353 			memcpy(&reg, &data[offset], 8);
354 		}
355 		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
356 
357 		/* wait until ACCESS_COMPLETED is set */
358 		count = 0;
359 		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
360 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
361 		    == 0) {
362 			count++;
363 			if (count > DC8051_ACCESS_TIMEOUT) {
364 				dd_dev_err(dd, "timeout writing 8051 data\n");
365 				return -ENXIO;
366 			}
367 			udelay(1);
368 		}
369 	}
370 
371 	/* turn off write access, auto increment (also sets to data access) */
372 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
373 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
374 
375 	return 0;
376 }
377 
378 /* return 0 if values match, non-zero and complain otherwise */
379 static int invalid_header(struct hfi1_devdata *dd, const char *what,
380 			  u32 actual, u32 expected)
381 {
382 	if (actual == expected)
383 		return 0;
384 
385 	dd_dev_err(dd,
386 		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
387 		   what, expected, actual);
388 	return 1;
389 }
390 
391 /*
392  * Verify that the static fields in the CSS header match.
393  */
394 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
395 {
396 	/* verify CSS header fields (most sizes are in DW, so add /4) */
397 	if (invalid_header(dd, "module_type", css->module_type,
398 			   CSS_MODULE_TYPE) ||
399 	    invalid_header(dd, "header_len", css->header_len,
400 			   (sizeof(struct firmware_file) / 4)) ||
401 	    invalid_header(dd, "header_version", css->header_version,
402 			   CSS_HEADER_VERSION) ||
403 	    invalid_header(dd, "module_vendor", css->module_vendor,
404 			   CSS_MODULE_VENDOR) ||
405 	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
406 	    invalid_header(dd, "modulus_size", css->modulus_size,
407 			   KEY_SIZE / 4) ||
408 	    invalid_header(dd, "exponent_size", css->exponent_size,
409 			   EXPONENT_SIZE / 4)) {
410 		return -EINVAL;
411 	}
412 	return 0;
413 }
414 
415 /*
416  * Make sure there are at least some bytes after the prefix.
417  */
418 static int payload_check(struct hfi1_devdata *dd, const char *name,
419 			 long file_size, long prefix_size)
420 {
421 	/* make sure we have some payload */
422 	if (prefix_size >= file_size) {
423 		dd_dev_err(dd,
424 			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
425 			   name, file_size, prefix_size);
426 		return -EINVAL;
427 	}
428 
429 	return 0;
430 }
431 
432 /*
433  * Request the firmware from the system.  Extract the pieces and fill in
434  * fdet.  If successful, the caller will need to call dispose_one_firmware().
435  * Returns 0 on success, -ERRNO on error.
436  */
437 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
438 			       struct firmware_details *fdet)
439 {
440 	struct css_header *css;
441 	int ret;
442 
443 	memset(fdet, 0, sizeof(*fdet));
444 
445 	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
446 	if (ret) {
447 		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
448 			    name, ret);
449 		return ret;
450 	}
451 
452 	/* verify the firmware */
453 	if (fdet->fw->size < sizeof(struct css_header)) {
454 		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
455 		ret = -EINVAL;
456 		goto done;
457 	}
458 	css = (struct css_header *)fdet->fw->data;
459 
460 	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
461 	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
462 	hfi1_cdbg(FIRMWARE, "CSS structure:");
463 	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
464 	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
465 		  css->header_len, 4 * css->header_len);
466 	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
467 	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
468 	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
469 	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
470 	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
471 		  css->size, 4 * css->size);
472 	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
473 		  css->key_size, 4 * css->key_size);
474 	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
475 		  css->modulus_size, 4 * css->modulus_size);
476 	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
477 		  css->exponent_size, 4 * css->exponent_size);
478 	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
479 		  fdet->fw->size - sizeof(struct firmware_file));
480 
481 	/*
482 	 * If the file does not have a valid CSS header, fail.
483 	 * Otherwise, check the CSS size field for an expected size.
484 	 * The augmented file has r2 and mu inserted after the header
485 	 * was generated, so there will be a known difference between
486 	 * the CSS header size and the actual file size.  Use this
487 	 * difference to identify an augmented file.
488 	 *
489 	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
490 	 */
491 	ret = verify_css_header(dd, css);
492 	if (ret) {
493 		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
494 	} else if ((css->size * 4) == fdet->fw->size) {
495 		/* non-augmented firmware file */
496 		struct firmware_file *ff = (struct firmware_file *)
497 							fdet->fw->data;
498 
499 		/* make sure there are bytes in the payload */
500 		ret = payload_check(dd, name, fdet->fw->size,
501 				    sizeof(struct firmware_file));
502 		if (ret == 0) {
503 			fdet->css_header = css;
504 			fdet->modulus = ff->modulus;
505 			fdet->exponent = ff->exponent;
506 			fdet->signature = ff->signature;
507 			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
508 			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
509 			fdet->firmware_ptr = ff->firmware;
510 			fdet->firmware_len = fdet->fw->size -
511 						sizeof(struct firmware_file);
512 			/*
513 			 * Header does not include r2 and mu - generate here.
514 			 * For now, fail.
515 			 */
516 			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
517 			ret = -EINVAL;
518 		}
519 	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
520 		/* augmented firmware file */
521 		struct augmented_firmware_file *aff =
522 			(struct augmented_firmware_file *)fdet->fw->data;
523 
524 		/* make sure there are bytes in the payload */
525 		ret = payload_check(dd, name, fdet->fw->size,
526 				    sizeof(struct augmented_firmware_file));
527 		if (ret == 0) {
528 			fdet->css_header = css;
529 			fdet->modulus = aff->modulus;
530 			fdet->exponent = aff->exponent;
531 			fdet->signature = aff->signature;
532 			fdet->r2 = aff->r2;
533 			fdet->mu = aff->mu;
534 			fdet->firmware_ptr = aff->firmware;
535 			fdet->firmware_len = fdet->fw->size -
536 					sizeof(struct augmented_firmware_file);
537 		}
538 	} else {
539 		/* css->size check failed */
540 		dd_dev_err(dd,
541 			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
542 			   fdet->fw->size / 4,
543 			   (fdet->fw->size - AUGMENT_SIZE) / 4,
544 			   css->size);
545 
546 		ret = -EINVAL;
547 	}
548 
549 done:
550 	/* if returning an error, clean up after ourselves */
551 	if (ret)
552 		dispose_one_firmware(fdet);
553 	return ret;
554 }
555 
556 static void dispose_one_firmware(struct firmware_details *fdet)
557 {
558 	release_firmware(fdet->fw);
559 	/* erase all previous information */
560 	memset(fdet, 0, sizeof(*fdet));
561 }
562 
563 /*
564  * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
565  * at all.  If called with the firmware state in FW_TRY, use alternate names.
566  * On exit, this routine will have set the firmware state to one of FW_TRY,
567  * FW_FINAL, or FW_ERR.
568  *
569  * Must be holding fw_mutex.
570  */
571 static void __obtain_firmware(struct hfi1_devdata *dd)
572 {
573 	int err = 0;
574 
575 	if (fw_state == FW_FINAL)	/* nothing more to obtain */
576 		return;
577 	if (fw_state == FW_ERR)		/* already in error */
578 		return;
579 
580 	/* fw_state is FW_EMPTY or FW_TRY */
581 retry:
582 	if (fw_state == FW_TRY) {
583 		/*
584 		 * We tried the original and it failed.  Move to the
585 		 * alternate.
586 		 */
587 		dd_dev_warn(dd, "using alternate firmware names\n");
588 		/*
589 		 * Let others run.  Some systems, when missing firmware, does
590 		 * something that holds for 30 seconds.  If we do that twice
591 		 * in a row it triggers task blocked warning.
592 		 */
593 		cond_resched();
594 		if (fw_8051_load)
595 			dispose_one_firmware(&fw_8051);
596 		if (fw_fabric_serdes_load)
597 			dispose_one_firmware(&fw_fabric);
598 		if (fw_sbus_load)
599 			dispose_one_firmware(&fw_sbus);
600 		if (fw_pcie_serdes_load)
601 			dispose_one_firmware(&fw_pcie);
602 		fw_8051_name = ALT_FW_8051_NAME_ASIC;
603 		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
604 		fw_sbus_name = ALT_FW_SBUS_NAME;
605 		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
606 	}
607 
608 	if (fw_sbus_load) {
609 		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
610 		if (err)
611 			goto done;
612 	}
613 
614 	if (fw_pcie_serdes_load) {
615 		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
616 		if (err)
617 			goto done;
618 	}
619 
620 	if (fw_fabric_serdes_load) {
621 		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
622 					  &fw_fabric);
623 		if (err)
624 			goto done;
625 	}
626 
627 	if (fw_8051_load) {
628 		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
629 		if (err)
630 			goto done;
631 	}
632 
633 done:
634 	if (err) {
635 		/* oops, had problems obtaining a firmware */
636 		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
637 			/* retry with alternate (RTL only) */
638 			fw_state = FW_TRY;
639 			goto retry;
640 		}
641 		dd_dev_err(dd, "unable to obtain working firmware\n");
642 		fw_state = FW_ERR;
643 		fw_err = -ENOENT;
644 	} else {
645 		/* success */
646 		if (fw_state == FW_EMPTY &&
647 		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
648 			fw_state = FW_TRY;	/* may retry later */
649 		else
650 			fw_state = FW_FINAL;	/* cannot try again */
651 	}
652 }
653 
654 /*
655  * Called by all HFIs when loading their firmware - i.e. device probe time.
656  * The first one will do the actual firmware load.  Use a mutex to resolve
657  * any possible race condition.
658  *
659  * The call to this routine cannot be moved to driver load because the kernel
660  * call request_firmware() requires a device which is only available after
661  * the first device probe.
662  */
663 static int obtain_firmware(struct hfi1_devdata *dd)
664 {
665 	unsigned long timeout;
666 	int err = 0;
667 
668 	mutex_lock(&fw_mutex);
669 
670 	/* 40s delay due to long delay on missing firmware on some systems */
671 	timeout = jiffies + msecs_to_jiffies(40000);
672 	while (fw_state == FW_TRY) {
673 		/*
674 		 * Another device is trying the firmware.  Wait until it
675 		 * decides what works (or not).
676 		 */
677 		if (time_after(jiffies, timeout)) {
678 			/* waited too long */
679 			dd_dev_err(dd, "Timeout waiting for firmware try");
680 			fw_state = FW_ERR;
681 			fw_err = -ETIMEDOUT;
682 			break;
683 		}
684 		mutex_unlock(&fw_mutex);
685 		msleep(20);	/* arbitrary delay */
686 		mutex_lock(&fw_mutex);
687 	}
688 	/* not in FW_TRY state */
689 
690 	if (fw_state == FW_FINAL) {
691 		if (platform_config) {
692 			dd->platform_config.data = platform_config->data;
693 			dd->platform_config.size = platform_config->size;
694 		}
695 		goto done;	/* already acquired */
696 	} else if (fw_state == FW_ERR) {
697 		goto done;	/* already tried and failed */
698 	}
699 	/* fw_state is FW_EMPTY */
700 
701 	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
702 	__obtain_firmware(dd);
703 
704 	if (platform_config_load) {
705 		platform_config = NULL;
706 		err = request_firmware(&platform_config, platform_config_name,
707 				       &dd->pcidev->dev);
708 		if (err) {
709 			platform_config = NULL;
710 			goto done;
711 		}
712 		dd->platform_config.data = platform_config->data;
713 		dd->platform_config.size = platform_config->size;
714 	}
715 
716 done:
717 	mutex_unlock(&fw_mutex);
718 
719 	return fw_err;
720 }
721 
722 /*
723  * Called when the driver unloads.  The timing is asymmetric with its
724  * counterpart, obtain_firmware().  If called at device remove time,
725  * then it is conceivable that another device could probe while the
726  * firmware is being disposed.  The mutexes can be moved to do that
727  * safely, but then the firmware would be requested from the OS multiple
728  * times.
729  *
730  * No mutex is needed as the driver is unloading and there cannot be any
731  * other callers.
732  */
733 void dispose_firmware(void)
734 {
735 	dispose_one_firmware(&fw_8051);
736 	dispose_one_firmware(&fw_fabric);
737 	dispose_one_firmware(&fw_pcie);
738 	dispose_one_firmware(&fw_sbus);
739 
740 	release_firmware(platform_config);
741 	platform_config = NULL;
742 
743 	/* retain the error state, otherwise revert to empty */
744 	if (fw_state != FW_ERR)
745 		fw_state = FW_EMPTY;
746 }
747 
748 /*
749  * Called with the result of a firmware download.
750  *
751  * Return 1 to retry loading the firmware, 0 to stop.
752  */
753 static int retry_firmware(struct hfi1_devdata *dd, int load_result)
754 {
755 	int retry;
756 
757 	mutex_lock(&fw_mutex);
758 
759 	if (load_result == 0) {
760 		/*
761 		 * The load succeeded, so expect all others to do the same.
762 		 * Do not retry again.
763 		 */
764 		if (fw_state == FW_TRY)
765 			fw_state = FW_FINAL;
766 		retry = 0;	/* do NOT retry */
767 	} else if (fw_state == FW_TRY) {
768 		/* load failed, obtain alternate firmware */
769 		__obtain_firmware(dd);
770 		retry = (fw_state == FW_FINAL);
771 	} else {
772 		/* else in FW_FINAL or FW_ERR, no retry in either case */
773 		retry = 0;
774 	}
775 
776 	mutex_unlock(&fw_mutex);
777 	return retry;
778 }
779 
780 /*
781  * Write a block of data to a given array CSR.  All calls will be in
782  * multiples of 8 bytes.
783  */
784 static void write_rsa_data(struct hfi1_devdata *dd, int what,
785 			   const u8 *data, int nbytes)
786 {
787 	int qw_size = nbytes / 8;
788 	int i;
789 
790 	if (((unsigned long)data & 0x7) == 0) {
791 		/* aligned */
792 		u64 *ptr = (u64 *)data;
793 
794 		for (i = 0; i < qw_size; i++, ptr++)
795 			write_csr(dd, what + (8 * i), *ptr);
796 	} else {
797 		/* not aligned */
798 		for (i = 0; i < qw_size; i++, data += 8) {
799 			u64 value;
800 
801 			memcpy(&value, data, 8);
802 			write_csr(dd, what + (8 * i), value);
803 		}
804 	}
805 }
806 
807 /*
808  * Write a block of data to a given CSR as a stream of writes.  All calls will
809  * be in multiples of 8 bytes.
810  */
811 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
812 				    const u8 *data, int nbytes)
813 {
814 	u64 *ptr = (u64 *)data;
815 	int qw_size = nbytes / 8;
816 
817 	for (; qw_size > 0; qw_size--, ptr++)
818 		write_csr(dd, what, *ptr);
819 }
820 
821 /*
822  * Download the signature and start the RSA mechanism.  Wait for
823  * RSA_ENGINE_TIMEOUT before giving up.
824  */
825 static int run_rsa(struct hfi1_devdata *dd, const char *who,
826 		   const u8 *signature)
827 {
828 	unsigned long timeout;
829 	u64 reg;
830 	u32 status;
831 	int ret = 0;
832 
833 	/* write the signature */
834 	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
835 
836 	/* initialize RSA */
837 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
838 
839 	/*
840 	 * Make sure the engine is idle and insert a delay between the two
841 	 * writes to MISC_CFG_RSA_CMD.
842 	 */
843 	status = (read_csr(dd, MISC_CFG_FW_CTRL)
844 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
845 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
846 	if (status != RSA_STATUS_IDLE) {
847 		dd_dev_err(dd, "%s security engine not idle - giving up\n",
848 			   who);
849 		return -EBUSY;
850 	}
851 
852 	/* start RSA */
853 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
854 
855 	/*
856 	 * Look for the result.
857 	 *
858 	 * The RSA engine is hooked up to two MISC errors.  The driver
859 	 * masks these errors as they do not respond to the standard
860 	 * error "clear down" mechanism.  Look for these errors here and
861 	 * clear them when possible.  This routine will exit with the
862 	 * errors of the current run still set.
863 	 *
864 	 * MISC_FW_AUTH_FAILED_ERR
865 	 *	Firmware authorization failed.  This can be cleared by
866 	 *	re-initializing the RSA engine, then clearing the status bit.
867 	 *	Do not re-init the RSA angine immediately after a successful
868 	 *	run - this will reset the current authorization.
869 	 *
870 	 * MISC_KEY_MISMATCH_ERR
871 	 *	Key does not match.  The only way to clear this is to load
872 	 *	a matching key then clear the status bit.  If this error
873 	 *	is raised, it will persist outside of this routine until a
874 	 *	matching key is loaded.
875 	 */
876 	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
877 	while (1) {
878 		status = (read_csr(dd, MISC_CFG_FW_CTRL)
879 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
880 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
881 
882 		if (status == RSA_STATUS_IDLE) {
883 			/* should not happen */
884 			dd_dev_err(dd, "%s firmware security bad idle state\n",
885 				   who);
886 			ret = -EINVAL;
887 			break;
888 		} else if (status == RSA_STATUS_DONE) {
889 			/* finished successfully */
890 			break;
891 		} else if (status == RSA_STATUS_FAILED) {
892 			/* finished unsuccessfully */
893 			ret = -EINVAL;
894 			break;
895 		}
896 		/* else still active */
897 
898 		if (time_after(jiffies, timeout)) {
899 			/*
900 			 * Timed out while active.  We can't reset the engine
901 			 * if it is stuck active, but run through the
902 			 * error code to see what error bits are set.
903 			 */
904 			dd_dev_err(dd, "%s firmware security time out\n", who);
905 			ret = -ETIMEDOUT;
906 			break;
907 		}
908 
909 		msleep(20);
910 	}
911 
912 	/*
913 	 * Arrive here on success or failure.  Clear all RSA engine
914 	 * errors.  All current errors will stick - the RSA logic is keeping
915 	 * error high.  All previous errors will clear - the RSA logic
916 	 * is not keeping the error high.
917 	 */
918 	write_csr(dd, MISC_ERR_CLEAR,
919 		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
920 		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
921 	/*
922 	 * All that is left are the current errors.  Print warnings on
923 	 * authorization failure details, if any.  Firmware authorization
924 	 * can be retried, so these are only warnings.
925 	 */
926 	reg = read_csr(dd, MISC_ERR_STATUS);
927 	if (ret) {
928 		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
929 			dd_dev_warn(dd, "%s firmware authorization failed\n",
930 				    who);
931 		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
932 			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
933 	}
934 
935 	return ret;
936 }
937 
938 static void load_security_variables(struct hfi1_devdata *dd,
939 				    struct firmware_details *fdet)
940 {
941 	/* Security variables a.  Write the modulus */
942 	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
943 	/* Security variables b.  Write the r2 */
944 	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
945 	/* Security variables c.  Write the mu */
946 	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
947 	/* Security variables d.  Write the header */
948 	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
949 				(u8 *)fdet->css_header,
950 				sizeof(struct css_header));
951 }
952 
953 /* return the 8051 firmware state */
954 static inline u32 get_firmware_state(struct hfi1_devdata *dd)
955 {
956 	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
957 
958 	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
959 				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
960 }
961 
962 /*
963  * Wait until the firmware is up and ready to take host requests.
964  * Return 0 on success, -ETIMEDOUT on timeout.
965  */
966 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
967 {
968 	unsigned long timeout;
969 
970 	/* in the simulator, the fake 8051 is always ready */
971 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
972 		return 0;
973 
974 	timeout = msecs_to_jiffies(mstimeout) + jiffies;
975 	while (1) {
976 		if (get_firmware_state(dd) == 0xa0)	/* ready */
977 			return 0;
978 		if (time_after(jiffies, timeout))	/* timed out */
979 			return -ETIMEDOUT;
980 		usleep_range(1950, 2050); /* sleep 2ms-ish */
981 	}
982 }
983 
984 /*
985  * Load the 8051 firmware.
986  */
987 static int load_8051_firmware(struct hfi1_devdata *dd,
988 			      struct firmware_details *fdet)
989 {
990 	u64 reg;
991 	int ret;
992 	u8 ver_a, ver_b;
993 
994 	/*
995 	 * DC Reset sequence
996 	 * Load DC 8051 firmware
997 	 */
998 	/*
999 	 * DC reset step 1: Reset DC8051
1000 	 */
1001 	reg = DC_DC8051_CFG_RST_M8051W_SMASK
1002 		| DC_DC8051_CFG_RST_CRAM_SMASK
1003 		| DC_DC8051_CFG_RST_DRAM_SMASK
1004 		| DC_DC8051_CFG_RST_IRAM_SMASK
1005 		| DC_DC8051_CFG_RST_SFR_SMASK;
1006 	write_csr(dd, DC_DC8051_CFG_RST, reg);
1007 
1008 	/*
1009 	 * DC reset step 2 (optional): Load 8051 data memory with link
1010 	 * configuration
1011 	 */
1012 
1013 	/*
1014 	 * DC reset step 3: Load DC8051 firmware
1015 	 */
1016 	/* release all but the core reset */
1017 	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1018 	write_csr(dd, DC_DC8051_CFG_RST, reg);
1019 
1020 	/* Firmware load step 1 */
1021 	load_security_variables(dd, fdet);
1022 
1023 	/*
1024 	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1025 	 */
1026 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1027 
1028 	/* Firmware load steps 3-5 */
1029 	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1030 			 fdet->firmware_len);
1031 	if (ret)
1032 		return ret;
1033 
1034 	/*
1035 	 * DC reset step 4. Host starts the DC8051 firmware
1036 	 */
1037 	/*
1038 	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1039 	 */
1040 	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1041 
1042 	/* Firmware load steps 7-10 */
1043 	ret = run_rsa(dd, "8051", fdet->signature);
1044 	if (ret)
1045 		return ret;
1046 
1047 	/* clear all reset bits, releasing the 8051 */
1048 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1049 
1050 	/*
1051 	 * DC reset step 5. Wait for firmware to be ready to accept host
1052 	 * requests.
1053 	 */
1054 	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1055 	if (ret) { /* timed out */
1056 		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1057 			   get_firmware_state(dd));
1058 		return -ETIMEDOUT;
1059 	}
1060 
1061 	read_misc_status(dd, &ver_a, &ver_b);
1062 	dd_dev_info(dd, "8051 firmware version %d.%d\n",
1063 		    (int)ver_b, (int)ver_a);
1064 	dd->dc8051_ver = dc8051_ver(ver_b, ver_a);
1065 
1066 	return 0;
1067 }
1068 
1069 /*
1070  * Write the SBus request register
1071  *
1072  * No need for masking - the arguments are sized exactly.
1073  */
1074 void sbus_request(struct hfi1_devdata *dd,
1075 		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1076 {
1077 	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1078 		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1079 		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1080 		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1081 		  ((u64)receiver_addr <<
1082 		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1083 }
1084 
1085 /*
1086  * Read a value from the SBus.
1087  *
1088  * Requires the caller to be in fast mode
1089  */
1090 static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1091 		     u32 data_in)
1092 {
1093 	u64 reg;
1094 	int retries;
1095 	int success = 0;
1096 	u32 result = 0;
1097 	u32 result_code = 0;
1098 
1099 	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1100 
1101 	for (retries = 0; retries < 100; retries++) {
1102 		usleep_range(1000, 1200); /* arbitrary */
1103 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1104 		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1105 				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1106 		if (result_code != SBUS_READ_COMPLETE)
1107 			continue;
1108 
1109 		success = 1;
1110 		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1111 			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1112 		break;
1113 	}
1114 
1115 	if (!success) {
1116 		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1117 			   result_code);
1118 	}
1119 
1120 	return result;
1121 }
1122 
1123 /*
1124  * Turn off the SBus and fabric serdes spicos.
1125  *
1126  * + Must be called with Sbus fast mode turned on.
1127  * + Must be called after fabric serdes broadcast is set up.
1128  * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1129  *   when using MISC_CFG_FW_CTRL.
1130  */
1131 static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1132 {
1133 	/* only needed on A0 */
1134 	if (!is_ax(dd))
1135 		return;
1136 
1137 	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1138 		    flags & SPICO_SBUS ? " SBus" : "",
1139 		    flags & SPICO_FABRIC ? " fabric" : "");
1140 
1141 	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1142 	/* disable SBus spico */
1143 	if (flags & SPICO_SBUS)
1144 		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1145 			     WRITE_SBUS_RECEIVER, 0x00000040);
1146 
1147 	/* disable the fabric serdes spicos */
1148 	if (flags & SPICO_FABRIC)
1149 		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1150 			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1151 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1152 }
1153 
1154 /*
1155  * Reset all of the fabric serdes for this HFI in preparation to take the
1156  * link to Polling.
1157  *
1158  * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1159  * the fabric serdes download to the other HFI on the ASIC will have turned
1160  * off the firmware validation on this HFI.  This means we can't write to the
1161  * registers to reset the serdes.  Work around this by performing a complete
1162  * re-download and validation of the fabric serdes firmware.  This, as a
1163  * by-product, will reset the serdes.  NOTE: the re-download requires that
1164  * the 8051 be in the Offline state.  I.e. not actively trying to use the
1165  * serdes.  This routine is called at the point where the link is Offline and
1166  * is getting ready to go to Polling.
1167  */
1168 void fabric_serdes_reset(struct hfi1_devdata *dd)
1169 {
1170 	int ret;
1171 
1172 	if (!fw_fabric_serdes_load)
1173 		return;
1174 
1175 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1176 	if (ret) {
1177 		dd_dev_err(dd,
1178 			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1179 		return;
1180 	}
1181 	set_sbus_fast_mode(dd);
1182 
1183 	if (is_ax(dd)) {
1184 		/* A0 serdes do not work with a re-download */
1185 		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1186 
1187 		/* place SerDes in reset and disable SPICO */
1188 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1189 		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1190 		udelay(1);
1191 		/* remove SerDes reset */
1192 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1193 		/* turn SPICO enable on */
1194 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1195 	} else {
1196 		turn_off_spicos(dd, SPICO_FABRIC);
1197 		/*
1198 		 * No need for firmware retry - what to download has already
1199 		 * been decided.
1200 		 * No need to pay attention to the load return - the only
1201 		 * failure is a validation failure, which has already been
1202 		 * checked by the initial download.
1203 		 */
1204 		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1205 	}
1206 
1207 	clear_sbus_fast_mode(dd);
1208 	release_chip_resource(dd, CR_SBUS);
1209 }
1210 
1211 /* Access to the SBus in this routine should probably be serialized */
1212 int sbus_request_slow(struct hfi1_devdata *dd,
1213 		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1214 {
1215 	u64 reg, count = 0;
1216 
1217 	/* make sure fast mode is clear */
1218 	clear_sbus_fast_mode(dd);
1219 
1220 	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1221 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1222 		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1223 	/* Wait for both DONE and RCV_DATA_VALID to go high */
1224 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1225 	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1226 		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1227 		if (count++ >= SBUS_MAX_POLL_COUNT) {
1228 			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1229 			/*
1230 			 * If the loop has timed out, we are OK if DONE bit
1231 			 * is set and RCV_DATA_VALID and EXECUTE counters
1232 			 * are the same. If not, we cannot proceed.
1233 			 */
1234 			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1235 			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1236 			     SBUS_COUNTER(counts, EXECUTE)))
1237 				break;
1238 			return -ETIMEDOUT;
1239 		}
1240 		udelay(1);
1241 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1242 	}
1243 	count = 0;
1244 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1245 	/* Wait for DONE to clear after EXECUTE is cleared */
1246 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1247 	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1248 		if (count++ >= SBUS_MAX_POLL_COUNT)
1249 			return -ETIME;
1250 		udelay(1);
1251 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1252 	}
1253 	return 0;
1254 }
1255 
1256 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1257 				       struct firmware_details *fdet)
1258 {
1259 	int i, err;
1260 	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1261 
1262 	dd_dev_info(dd, "Downloading fabric firmware\n");
1263 
1264 	/* step 1: load security variables */
1265 	load_security_variables(dd, fdet);
1266 	/* step 2: place SerDes in reset and disable SPICO */
1267 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1268 	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1269 	udelay(1);
1270 	/* step 3:  remove SerDes reset */
1271 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1272 	/* step 4: assert IMEM override */
1273 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1274 	/* step 5: download SerDes machine code */
1275 	for (i = 0; i < fdet->firmware_len; i += 4) {
1276 		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1277 			     *(u32 *)&fdet->firmware_ptr[i]);
1278 	}
1279 	/* step 6: IMEM override off */
1280 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1281 	/* step 7: turn ECC on */
1282 	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1283 
1284 	/* steps 8-11: run the RSA engine */
1285 	err = run_rsa(dd, "fabric serdes", fdet->signature);
1286 	if (err)
1287 		return err;
1288 
1289 	/* step 12: turn SPICO enable on */
1290 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1291 	/* step 13: enable core hardware interrupts */
1292 	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1293 
1294 	return 0;
1295 }
1296 
1297 static int load_sbus_firmware(struct hfi1_devdata *dd,
1298 			      struct firmware_details *fdet)
1299 {
1300 	int i, err;
1301 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1302 
1303 	dd_dev_info(dd, "Downloading SBus firmware\n");
1304 
1305 	/* step 1: load security variables */
1306 	load_security_variables(dd, fdet);
1307 	/* step 2: place SPICO into reset and enable off */
1308 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1309 	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1310 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1311 	/* step 4: set starting IMEM address for burst download */
1312 	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1313 	/* step 5: download the SBus Master machine code */
1314 	for (i = 0; i < fdet->firmware_len; i += 4) {
1315 		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1316 			     *(u32 *)&fdet->firmware_ptr[i]);
1317 	}
1318 	/* step 6: set IMEM_CNTL_EN off */
1319 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1320 	/* step 7: turn ECC on */
1321 	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1322 
1323 	/* steps 8-11: run the RSA engine */
1324 	err = run_rsa(dd, "SBus", fdet->signature);
1325 	if (err)
1326 		return err;
1327 
1328 	/* step 12: set SPICO_ENABLE on */
1329 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1330 
1331 	return 0;
1332 }
1333 
1334 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1335 				     struct firmware_details *fdet)
1336 {
1337 	int i;
1338 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1339 
1340 	dd_dev_info(dd, "Downloading PCIe firmware\n");
1341 
1342 	/* step 1: load security variables */
1343 	load_security_variables(dd, fdet);
1344 	/* step 2: assert single step (halts the SBus Master spico) */
1345 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1346 	/* step 3: enable XDMEM access */
1347 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1348 	/* step 4: load firmware into SBus Master XDMEM */
1349 	/*
1350 	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1351 	 * we only need to pick up the bytes and write them
1352 	 */
1353 	for (i = 0; i < fdet->firmware_len; i += 4) {
1354 		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1355 			     *(u32 *)&fdet->firmware_ptr[i]);
1356 	}
1357 	/* step 5: disable XDMEM access */
1358 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1359 	/* step 6: allow SBus Spico to run */
1360 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1361 
1362 	/*
1363 	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1364 	 * be swapped
1365 	 */
1366 	return run_rsa(dd, "PCIe serdes", fdet->signature);
1367 }
1368 
1369 /*
1370  * Set the given broadcast values on the given list of devices.
1371  */
1372 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1373 				 const u8 *addrs, int count)
1374 {
1375 	while (--count >= 0) {
1376 		/*
1377 		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1378 		 * defaults for everything else.  Do not read-modify-write,
1379 		 * per instruction from the manufacturer.
1380 		 *
1381 		 * Register 0xfd:
1382 		 *	bits    what
1383 		 *	-----	---------------------------------
1384 		 *	  0	IGNORE_BROADCAST  (default 0)
1385 		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1386 		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1387 		 */
1388 		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1389 			     (u32)bg1 << 4 | (u32)bg2 << 16);
1390 	}
1391 }
1392 
1393 int acquire_hw_mutex(struct hfi1_devdata *dd)
1394 {
1395 	unsigned long timeout;
1396 	int try = 0;
1397 	u8 mask = 1 << dd->hfi1_id;
1398 	u8 user;
1399 
1400 retry:
1401 	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1402 	while (1) {
1403 		write_csr(dd, ASIC_CFG_MUTEX, mask);
1404 		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1405 		if (user == mask)
1406 			return 0; /* success */
1407 		if (time_after(jiffies, timeout))
1408 			break; /* timed out */
1409 		msleep(20);
1410 	}
1411 
1412 	/* timed out */
1413 	dd_dev_err(dd,
1414 		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1415 		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1416 
1417 	if (try == 0) {
1418 		/* break mutex and retry */
1419 		write_csr(dd, ASIC_CFG_MUTEX, 0);
1420 		try++;
1421 		goto retry;
1422 	}
1423 
1424 	return -EBUSY;
1425 }
1426 
1427 void release_hw_mutex(struct hfi1_devdata *dd)
1428 {
1429 	write_csr(dd, ASIC_CFG_MUTEX, 0);
1430 }
1431 
1432 /* return the given resource bit(s) as a mask for the given HFI */
1433 static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1434 {
1435 	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1436 }
1437 
1438 static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1439 				       const char *func)
1440 {
1441 	dd_dev_err(dd,
1442 		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1443 		   func);
1444 }
1445 
1446 /*
1447  * Acquire access to a chip resource.
1448  *
1449  * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1450  */
1451 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1452 {
1453 	u64 scratch0, all_bits, my_bit;
1454 	int ret;
1455 
1456 	if (resource & CR_DYN_MASK) {
1457 		/* a dynamic resource is in use if either HFI has set the bit */
1458 		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1459 		    (resource & (CR_I2C1 | CR_I2C2))) {
1460 			/* discrete devices must serialize across both chains */
1461 			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1462 					resource_mask(1, CR_I2C1 | CR_I2C2);
1463 		} else {
1464 			all_bits = resource_mask(0, resource) |
1465 						resource_mask(1, resource);
1466 		}
1467 		my_bit = resource_mask(dd->hfi1_id, resource);
1468 	} else {
1469 		/* non-dynamic resources are not split between HFIs */
1470 		all_bits = resource;
1471 		my_bit = resource;
1472 	}
1473 
1474 	/* lock against other callers within the driver wanting a resource */
1475 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1476 
1477 	ret = acquire_hw_mutex(dd);
1478 	if (ret) {
1479 		fail_mutex_acquire_message(dd, __func__);
1480 		ret = -EIO;
1481 		goto done;
1482 	}
1483 
1484 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1485 	if (scratch0 & all_bits) {
1486 		ret = -EBUSY;
1487 	} else {
1488 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1489 		/* force write to be visible to other HFI on another OS */
1490 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1491 	}
1492 
1493 	release_hw_mutex(dd);
1494 
1495 done:
1496 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1497 	return ret;
1498 }
1499 
1500 /*
1501  * Acquire access to a chip resource, wait up to mswait milliseconds for
1502  * the resource to become available.
1503  *
1504  * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1505  * acquire failed.
1506  */
1507 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1508 {
1509 	unsigned long timeout;
1510 	int ret;
1511 
1512 	timeout = jiffies + msecs_to_jiffies(mswait);
1513 	while (1) {
1514 		ret = __acquire_chip_resource(dd, resource);
1515 		if (ret != -EBUSY)
1516 			return ret;
1517 		/* resource is busy, check our timeout */
1518 		if (time_after_eq(jiffies, timeout))
1519 			return -EBUSY;
1520 		usleep_range(80, 120);	/* arbitrary delay */
1521 	}
1522 }
1523 
1524 /*
1525  * Release access to a chip resource
1526  */
1527 void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1528 {
1529 	u64 scratch0, bit;
1530 
1531 	/* only dynamic resources should ever be cleared */
1532 	if (!(resource & CR_DYN_MASK)) {
1533 		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1534 			   resource);
1535 		return;
1536 	}
1537 	bit = resource_mask(dd->hfi1_id, resource);
1538 
1539 	/* lock against other callers within the driver wanting a resource */
1540 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1541 
1542 	if (acquire_hw_mutex(dd)) {
1543 		fail_mutex_acquire_message(dd, __func__);
1544 		goto done;
1545 	}
1546 
1547 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1548 	if ((scratch0 & bit) != 0) {
1549 		scratch0 &= ~bit;
1550 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1551 		/* force write to be visible to other HFI on another OS */
1552 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1553 	} else {
1554 		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1555 			    __func__, dd->hfi1_id, resource);
1556 	}
1557 
1558 	release_hw_mutex(dd);
1559 
1560 done:
1561 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1562 }
1563 
1564 /*
1565  * Return true if resource is set, false otherwise.  Print a warning
1566  * if not set and a function is supplied.
1567  */
1568 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1569 			 const char *func)
1570 {
1571 	u64 scratch0, bit;
1572 
1573 	if (resource & CR_DYN_MASK)
1574 		bit = resource_mask(dd->hfi1_id, resource);
1575 	else
1576 		bit = resource;
1577 
1578 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1579 	if ((scratch0 & bit) == 0) {
1580 		if (func)
1581 			dd_dev_warn(dd,
1582 				    "%s: id %d, resource 0x%x, not acquired!\n",
1583 				    func, dd->hfi1_id, resource);
1584 		return false;
1585 	}
1586 	return true;
1587 }
1588 
1589 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1590 {
1591 	u64 scratch0;
1592 
1593 	/* lock against other callers within the driver wanting a resource */
1594 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1595 
1596 	if (acquire_hw_mutex(dd)) {
1597 		fail_mutex_acquire_message(dd, func);
1598 		goto done;
1599 	}
1600 
1601 	/* clear all dynamic access bits for this HFI */
1602 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1603 	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1604 	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1605 	/* force write to be visible to other HFI on another OS */
1606 	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1607 
1608 	release_hw_mutex(dd);
1609 
1610 done:
1611 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1612 }
1613 
1614 void init_chip_resources(struct hfi1_devdata *dd)
1615 {
1616 	/* clear any holds left by us */
1617 	clear_chip_resources(dd, __func__);
1618 }
1619 
1620 void finish_chip_resources(struct hfi1_devdata *dd)
1621 {
1622 	/* clear any holds left by us */
1623 	clear_chip_resources(dd, __func__);
1624 }
1625 
1626 void set_sbus_fast_mode(struct hfi1_devdata *dd)
1627 {
1628 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1629 		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1630 }
1631 
1632 void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1633 {
1634 	u64 reg, count = 0;
1635 
1636 	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1637 	while (SBUS_COUNTER(reg, EXECUTE) !=
1638 	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1639 		if (count++ >= SBUS_MAX_POLL_COUNT)
1640 			break;
1641 		udelay(1);
1642 		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1643 	}
1644 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1645 }
1646 
1647 int load_firmware(struct hfi1_devdata *dd)
1648 {
1649 	int ret;
1650 
1651 	if (fw_fabric_serdes_load) {
1652 		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1653 		if (ret)
1654 			return ret;
1655 
1656 		set_sbus_fast_mode(dd);
1657 
1658 		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1659 				     fabric_serdes_broadcast[dd->hfi1_id],
1660 				     fabric_serdes_addrs[dd->hfi1_id],
1661 				     NUM_FABRIC_SERDES);
1662 		turn_off_spicos(dd, SPICO_FABRIC);
1663 		do {
1664 			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1665 		} while (retry_firmware(dd, ret));
1666 
1667 		clear_sbus_fast_mode(dd);
1668 		release_chip_resource(dd, CR_SBUS);
1669 		if (ret)
1670 			return ret;
1671 	}
1672 
1673 	if (fw_8051_load) {
1674 		do {
1675 			ret = load_8051_firmware(dd, &fw_8051);
1676 		} while (retry_firmware(dd, ret));
1677 		if (ret)
1678 			return ret;
1679 	}
1680 
1681 	dump_fw_version(dd);
1682 	return 0;
1683 }
1684 
1685 int hfi1_firmware_init(struct hfi1_devdata *dd)
1686 {
1687 	/* only RTL can use these */
1688 	if (dd->icode != ICODE_RTL_SILICON) {
1689 		fw_fabric_serdes_load = 0;
1690 		fw_pcie_serdes_load = 0;
1691 		fw_sbus_load = 0;
1692 	}
1693 
1694 	/* no 8051 or QSFP on simulator */
1695 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
1696 		fw_8051_load = 0;
1697 		platform_config_load = 0;
1698 	}
1699 
1700 	if (!fw_8051_name) {
1701 		if (dd->icode == ICODE_RTL_SILICON)
1702 			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1703 		else
1704 			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1705 	}
1706 	if (!fw_fabric_serdes_name)
1707 		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1708 	if (!fw_sbus_name)
1709 		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1710 	if (!fw_pcie_serdes_name)
1711 		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1712 	if (!platform_config_name)
1713 		platform_config_name = DEFAULT_PLATFORM_CONFIG_NAME;
1714 
1715 	return obtain_firmware(dd);
1716 }
1717 
1718 /*
1719  * This function is a helper function for parse_platform_config(...) and
1720  * does not check for validity of the platform configuration cache
1721  * (because we know it is invalid as we are building up the cache).
1722  * As such, this should not be called from anywhere other than
1723  * parse_platform_config
1724  */
1725 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1726 {
1727 	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1728 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1729 
1730 	if (!system_table)
1731 		return -EINVAL;
1732 
1733 	meta_ver_meta =
1734 	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1735 	+ SYSTEM_TABLE_META_VERSION);
1736 
1737 	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1738 	ver_start = meta_ver_meta & mask;
1739 
1740 	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1741 
1742 	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1743 	ver_len = meta_ver_meta & mask;
1744 
1745 	ver_start /= 8;
1746 	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1747 
1748 	if (meta_ver < 5) {
1749 		dd_dev_info(
1750 			dd, "%s:Please update platform config\n", __func__);
1751 		return -EINVAL;
1752 	}
1753 	return 0;
1754 }
1755 
1756 int parse_platform_config(struct hfi1_devdata *dd)
1757 {
1758 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1759 	u32 *ptr = NULL;
1760 	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1761 	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1762 	int ret = -EINVAL; /* assume failure */
1763 
1764 	if (!dd->platform_config.data) {
1765 		dd_dev_info(dd, "%s: Missing config file\n", __func__);
1766 		goto bail;
1767 	}
1768 	ptr = (u32 *)dd->platform_config.data;
1769 
1770 	magic_num = *ptr;
1771 	ptr++;
1772 	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1773 		dd_dev_info(dd, "%s: Bad config file\n", __func__);
1774 		goto bail;
1775 	}
1776 
1777 	/* Field is file size in DWORDs */
1778 	file_length = (*ptr) * 4;
1779 	ptr++;
1780 
1781 	if (file_length > dd->platform_config.size) {
1782 		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1783 			    __func__);
1784 		goto bail;
1785 	} else if (file_length < dd->platform_config.size) {
1786 		dd_dev_info(dd,
1787 			    "%s:File claims to be smaller than read size, continuing\n",
1788 			    __func__);
1789 	}
1790 	/* exactly equal, perfection */
1791 
1792 	/*
1793 	 * In both cases where we proceed, using the self-reported file length
1794 	 * is the safer option
1795 	 */
1796 	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1797 		header1 = *ptr;
1798 		header2 = *(ptr + 1);
1799 		if (header1 != ~header2) {
1800 			dd_dev_info(dd, "%s: Failed validation at offset %ld\n",
1801 				    __func__, (ptr - (u32 *)
1802 					       dd->platform_config.data));
1803 			goto bail;
1804 		}
1805 
1806 		record_idx = *ptr &
1807 			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1808 
1809 		table_length_dwords = (*ptr >>
1810 				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1811 		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1812 
1813 		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1814 			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1815 
1816 		/* Done with this set of headers */
1817 		ptr += 2;
1818 
1819 		if (record_idx) {
1820 			/* data table */
1821 			switch (table_type) {
1822 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1823 				pcfgcache->config_tables[table_type].num_table =
1824 									1;
1825 				ret = check_meta_version(dd, ptr);
1826 				if (ret)
1827 					goto bail;
1828 				break;
1829 			case PLATFORM_CONFIG_PORT_TABLE:
1830 				pcfgcache->config_tables[table_type].num_table =
1831 									2;
1832 				break;
1833 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1834 				/* fall through */
1835 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1836 				/* fall through */
1837 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1838 				/* fall through */
1839 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1840 				pcfgcache->config_tables[table_type].num_table =
1841 							table_length_dwords;
1842 				break;
1843 			default:
1844 				dd_dev_info(dd,
1845 					    "%s: Unknown data table %d, offset %ld\n",
1846 					    __func__, table_type,
1847 					    (ptr - (u32 *)
1848 					     dd->platform_config.data));
1849 				goto bail; /* We don't trust this file now */
1850 			}
1851 			pcfgcache->config_tables[table_type].table = ptr;
1852 		} else {
1853 			/* metadata table */
1854 			switch (table_type) {
1855 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1856 				/* fall through */
1857 			case PLATFORM_CONFIG_PORT_TABLE:
1858 				/* fall through */
1859 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1860 				/* fall through */
1861 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1862 				/* fall through */
1863 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1864 				/* fall through */
1865 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1866 				break;
1867 			default:
1868 				dd_dev_info(dd,
1869 					    "%s: Unknown meta table %d, offset %ld\n",
1870 					    __func__, table_type,
1871 					    (ptr -
1872 					     (u32 *)dd->platform_config.data));
1873 				goto bail; /* We don't trust this file now */
1874 			}
1875 			pcfgcache->config_tables[table_type].table_metadata =
1876 									ptr;
1877 		}
1878 
1879 		/* Calculate and check table crc */
1880 		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1881 			       (table_length_dwords * 4));
1882 		crc ^= ~(u32)0;
1883 
1884 		/* Jump the table */
1885 		ptr += table_length_dwords;
1886 		if (crc != *ptr) {
1887 			dd_dev_info(dd, "%s: Failed CRC check at offset %ld\n",
1888 				    __func__, (ptr -
1889 					       (u32 *)
1890 					       dd->platform_config.data));
1891 			goto bail;
1892 		}
1893 		/* Jump the CRC DWORD */
1894 		ptr++;
1895 	}
1896 
1897 	pcfgcache->cache_valid = 1;
1898 	return 0;
1899 bail:
1900 	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1901 	return ret;
1902 }
1903 
1904 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
1905 					  int field, u32 *field_len_bits,
1906 					  u32 *field_start_bits)
1907 {
1908 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1909 	u32 *src_ptr = NULL;
1910 
1911 	if (!pcfgcache->cache_valid)
1912 		return -EINVAL;
1913 
1914 	switch (table) {
1915 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1916 		/* fall through */
1917 	case PLATFORM_CONFIG_PORT_TABLE:
1918 		/* fall through */
1919 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1920 		/* fall through */
1921 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1922 		/* fall through */
1923 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1924 		/* fall through */
1925 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1926 		if (field && field < platform_config_table_limits[table])
1927 			src_ptr =
1928 			pcfgcache->config_tables[table].table_metadata + field;
1929 		break;
1930 	default:
1931 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
1932 		break;
1933 	}
1934 
1935 	if (!src_ptr)
1936 		return -EINVAL;
1937 
1938 	if (field_start_bits)
1939 		*field_start_bits = *src_ptr &
1940 		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1941 
1942 	if (field_len_bits)
1943 		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
1944 		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1945 
1946 	return 0;
1947 }
1948 
1949 /* This is the central interface to getting data out of the platform config
1950  * file. It depends on parse_platform_config() having populated the
1951  * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
1952  * validate the sanity of the cache.
1953  *
1954  * The non-obvious parameters:
1955  * @table_index: Acts as a look up key into which instance of the tables the
1956  * relevant field is fetched from.
1957  *
1958  * This applies to the data tables that have multiple instances. The port table
1959  * is an exception to this rule as each HFI only has one port and thus the
1960  * relevant table can be distinguished by hfi_id.
1961  *
1962  * @data: pointer to memory that will be populated with the field requested.
1963  * @len: length of memory pointed by @data in bytes.
1964  */
1965 int get_platform_config_field(struct hfi1_devdata *dd,
1966 			      enum platform_config_table_type_encoding
1967 			      table_type, int table_index, int field_index,
1968 			      u32 *data, u32 len)
1969 {
1970 	int ret = 0, wlen = 0, seek = 0;
1971 	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
1972 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1973 
1974 	if (data)
1975 		memset(data, 0, len);
1976 	else
1977 		return -EINVAL;
1978 
1979 	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
1980 					     &field_len_bits,
1981 					     &field_start_bits);
1982 	if (ret)
1983 		return -EINVAL;
1984 
1985 	/* Convert length to bits */
1986 	len *= 8;
1987 
1988 	/* Our metadata function checked cache_valid and field_index for us */
1989 	switch (table_type) {
1990 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1991 		src_ptr = pcfgcache->config_tables[table_type].table;
1992 
1993 		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
1994 			if (len < field_len_bits)
1995 				return -EINVAL;
1996 
1997 			seek = field_start_bits / 8;
1998 			wlen = field_len_bits / 8;
1999 
2000 			src_ptr = (u32 *)((u8 *)src_ptr + seek);
2001 
2002 			/*
2003 			 * We expect the field to be byte aligned and whole byte
2004 			 * lengths if we are here
2005 			 */
2006 			memcpy(data, src_ptr, wlen);
2007 			return 0;
2008 		}
2009 		break;
2010 	case PLATFORM_CONFIG_PORT_TABLE:
2011 		/* Port table is 4 DWORDS */
2012 		src_ptr = dd->hfi1_id ?
2013 			pcfgcache->config_tables[table_type].table + 4 :
2014 			pcfgcache->config_tables[table_type].table;
2015 		break;
2016 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2017 		/* fall through */
2018 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2019 		/* fall through */
2020 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2021 		/* fall through */
2022 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2023 		src_ptr = pcfgcache->config_tables[table_type].table;
2024 
2025 		if (table_index <
2026 			pcfgcache->config_tables[table_type].num_table)
2027 			src_ptr += table_index;
2028 		else
2029 			src_ptr = NULL;
2030 		break;
2031 	default:
2032 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2033 		break;
2034 	}
2035 
2036 	if (!src_ptr || len < field_len_bits)
2037 		return -EINVAL;
2038 
2039 	src_ptr += (field_start_bits / 32);
2040 	*data = (*src_ptr >> (field_start_bits % 32)) &
2041 			((1 << field_len_bits) - 1);
2042 
2043 	return 0;
2044 }
2045 
2046 /*
2047  * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2048  * to the SBus firmware is needed before updating the PCIe firmware.
2049  *
2050  * Note: caller must be holding the SBus resource.
2051  */
2052 int load_pcie_firmware(struct hfi1_devdata *dd)
2053 {
2054 	int ret = 0;
2055 
2056 	/* both firmware loads below use the SBus */
2057 	set_sbus_fast_mode(dd);
2058 
2059 	if (fw_sbus_load) {
2060 		turn_off_spicos(dd, SPICO_SBUS);
2061 		do {
2062 			ret = load_sbus_firmware(dd, &fw_sbus);
2063 		} while (retry_firmware(dd, ret));
2064 		if (ret)
2065 			goto done;
2066 	}
2067 
2068 	if (fw_pcie_serdes_load) {
2069 		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2070 		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2071 				     pcie_serdes_broadcast[dd->hfi1_id],
2072 				     pcie_serdes_addrs[dd->hfi1_id],
2073 				     NUM_PCIE_SERDES);
2074 		do {
2075 			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2076 		} while (retry_firmware(dd, ret));
2077 		if (ret)
2078 			goto done;
2079 	}
2080 
2081 done:
2082 	clear_sbus_fast_mode(dd);
2083 
2084 	return ret;
2085 }
2086 
2087 /*
2088  * Read the GUID from the hardware, store it in dd.
2089  */
2090 void read_guid(struct hfi1_devdata *dd)
2091 {
2092 	/* Take the DC out of reset to get a valid GUID value */
2093 	write_csr(dd, CCE_DC_CTRL, 0);
2094 	(void)read_csr(dd, CCE_DC_CTRL);
2095 
2096 	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2097 	dd_dev_info(dd, "GUID %llx",
2098 		    (unsigned long long)dd->base_guid);
2099 }
2100 
2101 /* read and display firmware version info */
2102 static void dump_fw_version(struct hfi1_devdata *dd)
2103 {
2104 	u32 pcie_vers[NUM_PCIE_SERDES];
2105 	u32 fabric_vers[NUM_FABRIC_SERDES];
2106 	u32 sbus_vers;
2107 	int i;
2108 	int all_same;
2109 	int ret;
2110 	u8 rcv_addr;
2111 
2112 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2113 	if (ret) {
2114 		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2115 		return;
2116 	}
2117 
2118 	/* set fast mode */
2119 	set_sbus_fast_mode(dd);
2120 
2121 	/* read version for SBus Master */
2122 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2123 	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2124 	/* wait for interrupt to be processed */
2125 	usleep_range(10000, 11000);
2126 	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2127 	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2128 
2129 	/* read version for PCIe SerDes */
2130 	all_same = 1;
2131 	pcie_vers[0] = 0;
2132 	for (i = 0; i < NUM_PCIE_SERDES; i++) {
2133 		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2134 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2135 		/* wait for interrupt to be processed */
2136 		usleep_range(10000, 11000);
2137 		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2138 		if (i > 0 && pcie_vers[0] != pcie_vers[i])
2139 			all_same = 0;
2140 	}
2141 
2142 	if (all_same) {
2143 		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2144 			    pcie_vers[0]);
2145 	} else {
2146 		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2147 		for (i = 0; i < NUM_PCIE_SERDES; i++) {
2148 			dd_dev_info(dd,
2149 				    "PCIe SerDes lane %d firmware version 0x%x\n",
2150 				    i, pcie_vers[i]);
2151 		}
2152 	}
2153 
2154 	/* read version for fabric SerDes */
2155 	all_same = 1;
2156 	fabric_vers[0] = 0;
2157 	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2158 		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2159 		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2160 		/* wait for interrupt to be processed */
2161 		usleep_range(10000, 11000);
2162 		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2163 		if (i > 0 && fabric_vers[0] != fabric_vers[i])
2164 			all_same = 0;
2165 	}
2166 
2167 	if (all_same) {
2168 		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2169 			    fabric_vers[0]);
2170 	} else {
2171 		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2172 		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2173 			dd_dev_info(dd,
2174 				    "Fabric SerDes lane %d firmware version 0x%x\n",
2175 				    i, fabric_vers[i]);
2176 		}
2177 	}
2178 
2179 	clear_sbus_fast_mode(dd);
2180 	release_chip_resource(dd, CR_SBUS);
2181 }
2182