xref: /linux/drivers/infiniband/hw/hfi1/firmware.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/firmware.h>
49 #include <linux/mutex.h>
50 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/crc32.h>
53 
54 #include "hfi.h"
55 #include "trace.h"
56 
57 /*
58  * Make it easy to toggle firmware file name and if it gets loaded by
59  * editing the following. This may be something we do while in development
60  * but not necessarily something a user would ever need to use.
61  */
62 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
63 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
64 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
65 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
66 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
67 #define DEFAULT_PLATFORM_CONFIG_NAME "hfi1_platform.dat"
68 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
69 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
70 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
71 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
72 
73 static uint fw_8051_load = 1;
74 static uint fw_fabric_serdes_load = 1;
75 static uint fw_pcie_serdes_load = 1;
76 static uint fw_sbus_load = 1;
77 
78 /*
79  * Access required in platform.c
80  * Maintains state of whether the platform config was fetched via the
81  * fallback option
82  */
83 uint platform_config_load;
84 
85 /* Firmware file names get set in hfi1_firmware_init() based on the above */
86 static char *fw_8051_name;
87 static char *fw_fabric_serdes_name;
88 static char *fw_sbus_name;
89 static char *fw_pcie_serdes_name;
90 static char *platform_config_name;
91 
92 #define SBUS_MAX_POLL_COUNT 100
93 #define SBUS_COUNTER(reg, name) \
94 	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
95 	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
96 
97 /*
98  * Firmware security header.
99  */
100 struct css_header {
101 	u32 module_type;
102 	u32 header_len;
103 	u32 header_version;
104 	u32 module_id;
105 	u32 module_vendor;
106 	u32 date;		/* BCD yyyymmdd */
107 	u32 size;		/* in DWORDs */
108 	u32 key_size;		/* in DWORDs */
109 	u32 modulus_size;	/* in DWORDs */
110 	u32 exponent_size;	/* in DWORDs */
111 	u32 reserved[22];
112 };
113 
114 /* expected field values */
115 #define CSS_MODULE_TYPE	   0x00000006
116 #define CSS_HEADER_LEN	   0x000000a1
117 #define CSS_HEADER_VERSION 0x00010000
118 #define CSS_MODULE_VENDOR  0x00008086
119 
120 #define KEY_SIZE      256
121 #define MU_SIZE		8
122 #define EXPONENT_SIZE	4
123 
124 /* the file itself */
125 struct firmware_file {
126 	struct css_header css_header;
127 	u8 modulus[KEY_SIZE];
128 	u8 exponent[EXPONENT_SIZE];
129 	u8 signature[KEY_SIZE];
130 	u8 firmware[];
131 };
132 
133 struct augmented_firmware_file {
134 	struct css_header css_header;
135 	u8 modulus[KEY_SIZE];
136 	u8 exponent[EXPONENT_SIZE];
137 	u8 signature[KEY_SIZE];
138 	u8 r2[KEY_SIZE];
139 	u8 mu[MU_SIZE];
140 	u8 firmware[];
141 };
142 
143 /* augmented file size difference */
144 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
145 						sizeof(struct firmware_file))
146 
147 struct firmware_details {
148 	/* Linux core piece */
149 	const struct firmware *fw;
150 
151 	struct css_header *css_header;
152 	u8 *firmware_ptr;		/* pointer to binary data */
153 	u32 firmware_len;		/* length in bytes */
154 	u8 *modulus;			/* pointer to the modulus */
155 	u8 *exponent;			/* pointer to the exponent */
156 	u8 *signature;			/* pointer to the signature */
157 	u8 *r2;				/* pointer to r2 */
158 	u8 *mu;				/* pointer to mu */
159 	struct augmented_firmware_file dummy_header;
160 };
161 
162 /*
163  * The mutex protects fw_state, fw_err, and all of the firmware_details
164  * variables.
165  */
166 static DEFINE_MUTEX(fw_mutex);
167 enum fw_state {
168 	FW_EMPTY,
169 	FW_TRY,
170 	FW_FINAL,
171 	FW_ERR
172 };
173 
174 static enum fw_state fw_state = FW_EMPTY;
175 static int fw_err;
176 static struct firmware_details fw_8051;
177 static struct firmware_details fw_fabric;
178 static struct firmware_details fw_pcie;
179 static struct firmware_details fw_sbus;
180 static const struct firmware *platform_config;
181 
182 /* flags for turn_off_spicos() */
183 #define SPICO_SBUS   0x1
184 #define SPICO_FABRIC 0x2
185 #define ENABLE_SPICO_SMASK 0x1
186 
187 /* security block commands */
188 #define RSA_CMD_INIT  0x1
189 #define RSA_CMD_START 0x2
190 
191 /* security block status */
192 #define RSA_STATUS_IDLE   0x0
193 #define RSA_STATUS_ACTIVE 0x1
194 #define RSA_STATUS_DONE   0x2
195 #define RSA_STATUS_FAILED 0x3
196 
197 /* RSA engine timeout, in ms */
198 #define RSA_ENGINE_TIMEOUT 100 /* ms */
199 
200 /* hardware mutex timeout, in ms */
201 #define HM_TIMEOUT 10 /* ms */
202 
203 /* 8051 memory access timeout, in us */
204 #define DC8051_ACCESS_TIMEOUT 100 /* us */
205 
206 /* the number of fabric SerDes on the SBus */
207 #define NUM_FABRIC_SERDES 4
208 
209 /* SBus fabric SerDes addresses, one set per HFI */
210 static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
211 	{ 0x01, 0x02, 0x03, 0x04 },
212 	{ 0x28, 0x29, 0x2a, 0x2b }
213 };
214 
215 /* SBus PCIe SerDes addresses, one set per HFI */
216 static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
217 	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
218 	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
219 	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
220 	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
221 };
222 
223 /* SBus PCIe PCS addresses, one set per HFI */
224 const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
225 	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
226 	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
227 	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
228 	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
229 };
230 
231 /* SBus fabric SerDes broadcast addresses, one per HFI */
232 static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
233 static const u8 all_fabric_serdes_broadcast = 0xe1;
234 
235 /* SBus PCIe SerDes broadcast addresses, one per HFI */
236 const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
237 static const u8 all_pcie_serdes_broadcast = 0xe0;
238 
239 /* forwards */
240 static void dispose_one_firmware(struct firmware_details *fdet);
241 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
242 				       struct firmware_details *fdet);
243 
244 /*
245  * Read a single 64-bit value from 8051 data memory.
246  *
247  * Expects:
248  * o caller to have already set up data read, no auto increment
249  * o caller to turn off read enable when finished
250  *
251  * The address argument is a byte offset.  Bits 0:2 in the address are
252  * ignored - i.e. the hardware will always do aligned 8-byte reads as if
253  * the lower bits are zero.
254  *
255  * Return 0 on success, -ENXIO on a read error (timeout).
256  */
257 static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
258 {
259 	u64 reg;
260 	int count;
261 
262 	/* start the read at the given address */
263 	reg = ((addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
264 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
265 		| DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK;
266 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
267 
268 	/* wait until ACCESS_COMPLETED is set */
269 	count = 0;
270 	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
271 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
272 		    == 0) {
273 		count++;
274 		if (count > DC8051_ACCESS_TIMEOUT) {
275 			dd_dev_err(dd, "timeout reading 8051 data\n");
276 			return -ENXIO;
277 		}
278 		ndelay(10);
279 	}
280 
281 	/* gather the data */
282 	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
283 
284 	return 0;
285 }
286 
287 /*
288  * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
289  * Return 0 on success, -errno on error.
290  */
291 int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
292 {
293 	unsigned long flags;
294 	u32 done;
295 	int ret = 0;
296 
297 	spin_lock_irqsave(&dd->dc8051_memlock, flags);
298 
299 	/* data read set-up, no auto-increment */
300 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
301 
302 	for (done = 0; done < len; addr += 8, done += 8, result++) {
303 		ret = __read_8051_data(dd, addr, result);
304 		if (ret)
305 			break;
306 	}
307 
308 	/* turn off read enable */
309 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
310 
311 	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
312 
313 	return ret;
314 }
315 
316 /*
317  * Write data or code to the 8051 code or data RAM.
318  */
319 static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
320 		      const u8 *data, u32 len)
321 {
322 	u64 reg;
323 	u32 offset;
324 	int aligned, count;
325 
326 	/* check alignment */
327 	aligned = ((unsigned long)data & 0x7) == 0;
328 
329 	/* write set-up */
330 	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
331 		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
332 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
333 
334 	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
335 			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
336 		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
337 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
338 
339 	/* write */
340 	for (offset = 0; offset < len; offset += 8) {
341 		int bytes = len - offset;
342 
343 		if (bytes < 8) {
344 			reg = 0;
345 			memcpy(&reg, &data[offset], bytes);
346 		} else if (aligned) {
347 			reg = *(u64 *)&data[offset];
348 		} else {
349 			memcpy(&reg, &data[offset], 8);
350 		}
351 		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
352 
353 		/* wait until ACCESS_COMPLETED is set */
354 		count = 0;
355 		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
356 		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
357 		    == 0) {
358 			count++;
359 			if (count > DC8051_ACCESS_TIMEOUT) {
360 				dd_dev_err(dd, "timeout writing 8051 data\n");
361 				return -ENXIO;
362 			}
363 			udelay(1);
364 		}
365 	}
366 
367 	/* turn off write access, auto increment (also sets to data access) */
368 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
369 	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
370 
371 	return 0;
372 }
373 
374 /* return 0 if values match, non-zero and complain otherwise */
375 static int invalid_header(struct hfi1_devdata *dd, const char *what,
376 			  u32 actual, u32 expected)
377 {
378 	if (actual == expected)
379 		return 0;
380 
381 	dd_dev_err(dd,
382 		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
383 		   what, expected, actual);
384 	return 1;
385 }
386 
387 /*
388  * Verify that the static fields in the CSS header match.
389  */
390 static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
391 {
392 	/* verify CSS header fields (most sizes are in DW, so add /4) */
393 	if (invalid_header(dd, "module_type", css->module_type,
394 			   CSS_MODULE_TYPE) ||
395 	    invalid_header(dd, "header_len", css->header_len,
396 			   (sizeof(struct firmware_file) / 4)) ||
397 	    invalid_header(dd, "header_version", css->header_version,
398 			   CSS_HEADER_VERSION) ||
399 	    invalid_header(dd, "module_vendor", css->module_vendor,
400 			   CSS_MODULE_VENDOR) ||
401 	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
402 	    invalid_header(dd, "modulus_size", css->modulus_size,
403 			   KEY_SIZE / 4) ||
404 	    invalid_header(dd, "exponent_size", css->exponent_size,
405 			   EXPONENT_SIZE / 4)) {
406 		return -EINVAL;
407 	}
408 	return 0;
409 }
410 
411 /*
412  * Make sure there are at least some bytes after the prefix.
413  */
414 static int payload_check(struct hfi1_devdata *dd, const char *name,
415 			 long file_size, long prefix_size)
416 {
417 	/* make sure we have some payload */
418 	if (prefix_size >= file_size) {
419 		dd_dev_err(dd,
420 			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
421 			   name, file_size, prefix_size);
422 		return -EINVAL;
423 	}
424 
425 	return 0;
426 }
427 
428 /*
429  * Request the firmware from the system.  Extract the pieces and fill in
430  * fdet.  If successful, the caller will need to call dispose_one_firmware().
431  * Returns 0 on success, -ERRNO on error.
432  */
433 static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
434 			       struct firmware_details *fdet)
435 {
436 	struct css_header *css;
437 	int ret;
438 
439 	memset(fdet, 0, sizeof(*fdet));
440 
441 	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
442 	if (ret) {
443 		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
444 			    name, ret);
445 		return ret;
446 	}
447 
448 	/* verify the firmware */
449 	if (fdet->fw->size < sizeof(struct css_header)) {
450 		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
451 		ret = -EINVAL;
452 		goto done;
453 	}
454 	css = (struct css_header *)fdet->fw->data;
455 
456 	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
457 	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
458 	hfi1_cdbg(FIRMWARE, "CSS structure:");
459 	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
460 	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
461 		  css->header_len, 4 * css->header_len);
462 	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
463 	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
464 	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
465 	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
466 	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
467 		  css->size, 4 * css->size);
468 	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
469 		  css->key_size, 4 * css->key_size);
470 	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
471 		  css->modulus_size, 4 * css->modulus_size);
472 	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
473 		  css->exponent_size, 4 * css->exponent_size);
474 	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
475 		  fdet->fw->size - sizeof(struct firmware_file));
476 
477 	/*
478 	 * If the file does not have a valid CSS header, fail.
479 	 * Otherwise, check the CSS size field for an expected size.
480 	 * The augmented file has r2 and mu inserted after the header
481 	 * was generated, so there will be a known difference between
482 	 * the CSS header size and the actual file size.  Use this
483 	 * difference to identify an augmented file.
484 	 *
485 	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
486 	 */
487 	ret = verify_css_header(dd, css);
488 	if (ret) {
489 		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
490 	} else if ((css->size * 4) == fdet->fw->size) {
491 		/* non-augmented firmware file */
492 		struct firmware_file *ff = (struct firmware_file *)
493 							fdet->fw->data;
494 
495 		/* make sure there are bytes in the payload */
496 		ret = payload_check(dd, name, fdet->fw->size,
497 				    sizeof(struct firmware_file));
498 		if (ret == 0) {
499 			fdet->css_header = css;
500 			fdet->modulus = ff->modulus;
501 			fdet->exponent = ff->exponent;
502 			fdet->signature = ff->signature;
503 			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
504 			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
505 			fdet->firmware_ptr = ff->firmware;
506 			fdet->firmware_len = fdet->fw->size -
507 						sizeof(struct firmware_file);
508 			/*
509 			 * Header does not include r2 and mu - generate here.
510 			 * For now, fail.
511 			 */
512 			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
513 			ret = -EINVAL;
514 		}
515 	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
516 		/* augmented firmware file */
517 		struct augmented_firmware_file *aff =
518 			(struct augmented_firmware_file *)fdet->fw->data;
519 
520 		/* make sure there are bytes in the payload */
521 		ret = payload_check(dd, name, fdet->fw->size,
522 				    sizeof(struct augmented_firmware_file));
523 		if (ret == 0) {
524 			fdet->css_header = css;
525 			fdet->modulus = aff->modulus;
526 			fdet->exponent = aff->exponent;
527 			fdet->signature = aff->signature;
528 			fdet->r2 = aff->r2;
529 			fdet->mu = aff->mu;
530 			fdet->firmware_ptr = aff->firmware;
531 			fdet->firmware_len = fdet->fw->size -
532 					sizeof(struct augmented_firmware_file);
533 		}
534 	} else {
535 		/* css->size check failed */
536 		dd_dev_err(dd,
537 			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
538 			   fdet->fw->size / 4,
539 			   (fdet->fw->size - AUGMENT_SIZE) / 4,
540 			   css->size);
541 
542 		ret = -EINVAL;
543 	}
544 
545 done:
546 	/* if returning an error, clean up after ourselves */
547 	if (ret)
548 		dispose_one_firmware(fdet);
549 	return ret;
550 }
551 
552 static void dispose_one_firmware(struct firmware_details *fdet)
553 {
554 	release_firmware(fdet->fw);
555 	/* erase all previous information */
556 	memset(fdet, 0, sizeof(*fdet));
557 }
558 
559 /*
560  * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
561  * at all.  If called with the firmware state in FW_TRY, use alternate names.
562  * On exit, this routine will have set the firmware state to one of FW_TRY,
563  * FW_FINAL, or FW_ERR.
564  *
565  * Must be holding fw_mutex.
566  */
567 static void __obtain_firmware(struct hfi1_devdata *dd)
568 {
569 	int err = 0;
570 
571 	if (fw_state == FW_FINAL)	/* nothing more to obtain */
572 		return;
573 	if (fw_state == FW_ERR)		/* already in error */
574 		return;
575 
576 	/* fw_state is FW_EMPTY or FW_TRY */
577 retry:
578 	if (fw_state == FW_TRY) {
579 		/*
580 		 * We tried the original and it failed.  Move to the
581 		 * alternate.
582 		 */
583 		dd_dev_warn(dd, "using alternate firmware names\n");
584 		/*
585 		 * Let others run.  Some systems, when missing firmware, does
586 		 * something that holds for 30 seconds.  If we do that twice
587 		 * in a row it triggers task blocked warning.
588 		 */
589 		cond_resched();
590 		if (fw_8051_load)
591 			dispose_one_firmware(&fw_8051);
592 		if (fw_fabric_serdes_load)
593 			dispose_one_firmware(&fw_fabric);
594 		if (fw_sbus_load)
595 			dispose_one_firmware(&fw_sbus);
596 		if (fw_pcie_serdes_load)
597 			dispose_one_firmware(&fw_pcie);
598 		fw_8051_name = ALT_FW_8051_NAME_ASIC;
599 		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
600 		fw_sbus_name = ALT_FW_SBUS_NAME;
601 		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
602 	}
603 
604 	if (fw_sbus_load) {
605 		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
606 		if (err)
607 			goto done;
608 	}
609 
610 	if (fw_pcie_serdes_load) {
611 		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
612 		if (err)
613 			goto done;
614 	}
615 
616 	if (fw_fabric_serdes_load) {
617 		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
618 					  &fw_fabric);
619 		if (err)
620 			goto done;
621 	}
622 
623 	if (fw_8051_load) {
624 		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
625 		if (err)
626 			goto done;
627 	}
628 
629 done:
630 	if (err) {
631 		/* oops, had problems obtaining a firmware */
632 		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
633 			/* retry with alternate (RTL only) */
634 			fw_state = FW_TRY;
635 			goto retry;
636 		}
637 		dd_dev_err(dd, "unable to obtain working firmware\n");
638 		fw_state = FW_ERR;
639 		fw_err = -ENOENT;
640 	} else {
641 		/* success */
642 		if (fw_state == FW_EMPTY &&
643 		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
644 			fw_state = FW_TRY;	/* may retry later */
645 		else
646 			fw_state = FW_FINAL;	/* cannot try again */
647 	}
648 }
649 
650 /*
651  * Called by all HFIs when loading their firmware - i.e. device probe time.
652  * The first one will do the actual firmware load.  Use a mutex to resolve
653  * any possible race condition.
654  *
655  * The call to this routine cannot be moved to driver load because the kernel
656  * call request_firmware() requires a device which is only available after
657  * the first device probe.
658  */
659 static int obtain_firmware(struct hfi1_devdata *dd)
660 {
661 	unsigned long timeout;
662 	int err = 0;
663 
664 	mutex_lock(&fw_mutex);
665 
666 	/* 40s delay due to long delay on missing firmware on some systems */
667 	timeout = jiffies + msecs_to_jiffies(40000);
668 	while (fw_state == FW_TRY) {
669 		/*
670 		 * Another device is trying the firmware.  Wait until it
671 		 * decides what works (or not).
672 		 */
673 		if (time_after(jiffies, timeout)) {
674 			/* waited too long */
675 			dd_dev_err(dd, "Timeout waiting for firmware try");
676 			fw_state = FW_ERR;
677 			fw_err = -ETIMEDOUT;
678 			break;
679 		}
680 		mutex_unlock(&fw_mutex);
681 		msleep(20);	/* arbitrary delay */
682 		mutex_lock(&fw_mutex);
683 	}
684 	/* not in FW_TRY state */
685 
686 	if (fw_state == FW_FINAL) {
687 		if (platform_config) {
688 			dd->platform_config.data = platform_config->data;
689 			dd->platform_config.size = platform_config->size;
690 		}
691 		goto done;	/* already acquired */
692 	} else if (fw_state == FW_ERR) {
693 		goto done;	/* already tried and failed */
694 	}
695 	/* fw_state is FW_EMPTY */
696 
697 	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
698 	__obtain_firmware(dd);
699 
700 	if (platform_config_load) {
701 		platform_config = NULL;
702 		err = request_firmware(&platform_config, platform_config_name,
703 				       &dd->pcidev->dev);
704 		if (err) {
705 			platform_config = NULL;
706 			goto done;
707 		}
708 		dd->platform_config.data = platform_config->data;
709 		dd->platform_config.size = platform_config->size;
710 	}
711 
712 done:
713 	mutex_unlock(&fw_mutex);
714 
715 	return fw_err;
716 }
717 
718 /*
719  * Called when the driver unloads.  The timing is asymmetric with its
720  * counterpart, obtain_firmware().  If called at device remove time,
721  * then it is conceivable that another device could probe while the
722  * firmware is being disposed.  The mutexes can be moved to do that
723  * safely, but then the firmware would be requested from the OS multiple
724  * times.
725  *
726  * No mutex is needed as the driver is unloading and there cannot be any
727  * other callers.
728  */
729 void dispose_firmware(void)
730 {
731 	dispose_one_firmware(&fw_8051);
732 	dispose_one_firmware(&fw_fabric);
733 	dispose_one_firmware(&fw_pcie);
734 	dispose_one_firmware(&fw_sbus);
735 
736 	release_firmware(platform_config);
737 	platform_config = NULL;
738 
739 	/* retain the error state, otherwise revert to empty */
740 	if (fw_state != FW_ERR)
741 		fw_state = FW_EMPTY;
742 }
743 
744 /*
745  * Called with the result of a firmware download.
746  *
747  * Return 1 to retry loading the firmware, 0 to stop.
748  */
749 static int retry_firmware(struct hfi1_devdata *dd, int load_result)
750 {
751 	int retry;
752 
753 	mutex_lock(&fw_mutex);
754 
755 	if (load_result == 0) {
756 		/*
757 		 * The load succeeded, so expect all others to do the same.
758 		 * Do not retry again.
759 		 */
760 		if (fw_state == FW_TRY)
761 			fw_state = FW_FINAL;
762 		retry = 0;	/* do NOT retry */
763 	} else if (fw_state == FW_TRY) {
764 		/* load failed, obtain alternate firmware */
765 		__obtain_firmware(dd);
766 		retry = (fw_state == FW_FINAL);
767 	} else {
768 		/* else in FW_FINAL or FW_ERR, no retry in either case */
769 		retry = 0;
770 	}
771 
772 	mutex_unlock(&fw_mutex);
773 	return retry;
774 }
775 
776 /*
777  * Write a block of data to a given array CSR.  All calls will be in
778  * multiples of 8 bytes.
779  */
780 static void write_rsa_data(struct hfi1_devdata *dd, int what,
781 			   const u8 *data, int nbytes)
782 {
783 	int qw_size = nbytes / 8;
784 	int i;
785 
786 	if (((unsigned long)data & 0x7) == 0) {
787 		/* aligned */
788 		u64 *ptr = (u64 *)data;
789 
790 		for (i = 0; i < qw_size; i++, ptr++)
791 			write_csr(dd, what + (8 * i), *ptr);
792 	} else {
793 		/* not aligned */
794 		for (i = 0; i < qw_size; i++, data += 8) {
795 			u64 value;
796 
797 			memcpy(&value, data, 8);
798 			write_csr(dd, what + (8 * i), value);
799 		}
800 	}
801 }
802 
803 /*
804  * Write a block of data to a given CSR as a stream of writes.  All calls will
805  * be in multiples of 8 bytes.
806  */
807 static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
808 				    const u8 *data, int nbytes)
809 {
810 	u64 *ptr = (u64 *)data;
811 	int qw_size = nbytes / 8;
812 
813 	for (; qw_size > 0; qw_size--, ptr++)
814 		write_csr(dd, what, *ptr);
815 }
816 
817 /*
818  * Download the signature and start the RSA mechanism.  Wait for
819  * RSA_ENGINE_TIMEOUT before giving up.
820  */
821 static int run_rsa(struct hfi1_devdata *dd, const char *who,
822 		   const u8 *signature)
823 {
824 	unsigned long timeout;
825 	u64 reg;
826 	u32 status;
827 	int ret = 0;
828 
829 	/* write the signature */
830 	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
831 
832 	/* initialize RSA */
833 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
834 
835 	/*
836 	 * Make sure the engine is idle and insert a delay between the two
837 	 * writes to MISC_CFG_RSA_CMD.
838 	 */
839 	status = (read_csr(dd, MISC_CFG_FW_CTRL)
840 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
841 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
842 	if (status != RSA_STATUS_IDLE) {
843 		dd_dev_err(dd, "%s security engine not idle - giving up\n",
844 			   who);
845 		return -EBUSY;
846 	}
847 
848 	/* start RSA */
849 	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
850 
851 	/*
852 	 * Look for the result.
853 	 *
854 	 * The RSA engine is hooked up to two MISC errors.  The driver
855 	 * masks these errors as they do not respond to the standard
856 	 * error "clear down" mechanism.  Look for these errors here and
857 	 * clear them when possible.  This routine will exit with the
858 	 * errors of the current run still set.
859 	 *
860 	 * MISC_FW_AUTH_FAILED_ERR
861 	 *	Firmware authorization failed.  This can be cleared by
862 	 *	re-initializing the RSA engine, then clearing the status bit.
863 	 *	Do not re-init the RSA angine immediately after a successful
864 	 *	run - this will reset the current authorization.
865 	 *
866 	 * MISC_KEY_MISMATCH_ERR
867 	 *	Key does not match.  The only way to clear this is to load
868 	 *	a matching key then clear the status bit.  If this error
869 	 *	is raised, it will persist outside of this routine until a
870 	 *	matching key is loaded.
871 	 */
872 	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
873 	while (1) {
874 		status = (read_csr(dd, MISC_CFG_FW_CTRL)
875 			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
876 			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
877 
878 		if (status == RSA_STATUS_IDLE) {
879 			/* should not happen */
880 			dd_dev_err(dd, "%s firmware security bad idle state\n",
881 				   who);
882 			ret = -EINVAL;
883 			break;
884 		} else if (status == RSA_STATUS_DONE) {
885 			/* finished successfully */
886 			break;
887 		} else if (status == RSA_STATUS_FAILED) {
888 			/* finished unsuccessfully */
889 			ret = -EINVAL;
890 			break;
891 		}
892 		/* else still active */
893 
894 		if (time_after(jiffies, timeout)) {
895 			/*
896 			 * Timed out while active.  We can't reset the engine
897 			 * if it is stuck active, but run through the
898 			 * error code to see what error bits are set.
899 			 */
900 			dd_dev_err(dd, "%s firmware security time out\n", who);
901 			ret = -ETIMEDOUT;
902 			break;
903 		}
904 
905 		msleep(20);
906 	}
907 
908 	/*
909 	 * Arrive here on success or failure.  Clear all RSA engine
910 	 * errors.  All current errors will stick - the RSA logic is keeping
911 	 * error high.  All previous errors will clear - the RSA logic
912 	 * is not keeping the error high.
913 	 */
914 	write_csr(dd, MISC_ERR_CLEAR,
915 		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
916 		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
917 	/*
918 	 * All that is left are the current errors.  Print warnings on
919 	 * authorization failure details, if any.  Firmware authorization
920 	 * can be retried, so these are only warnings.
921 	 */
922 	reg = read_csr(dd, MISC_ERR_STATUS);
923 	if (ret) {
924 		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
925 			dd_dev_warn(dd, "%s firmware authorization failed\n",
926 				    who);
927 		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
928 			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
929 	}
930 
931 	return ret;
932 }
933 
934 static void load_security_variables(struct hfi1_devdata *dd,
935 				    struct firmware_details *fdet)
936 {
937 	/* Security variables a.  Write the modulus */
938 	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
939 	/* Security variables b.  Write the r2 */
940 	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
941 	/* Security variables c.  Write the mu */
942 	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
943 	/* Security variables d.  Write the header */
944 	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
945 				(u8 *)fdet->css_header,
946 				sizeof(struct css_header));
947 }
948 
949 /* return the 8051 firmware state */
950 static inline u32 get_firmware_state(struct hfi1_devdata *dd)
951 {
952 	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
953 
954 	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
955 				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
956 }
957 
958 /*
959  * Wait until the firmware is up and ready to take host requests.
960  * Return 0 on success, -ETIMEDOUT on timeout.
961  */
962 int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
963 {
964 	unsigned long timeout;
965 
966 	/* in the simulator, the fake 8051 is always ready */
967 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
968 		return 0;
969 
970 	timeout = msecs_to_jiffies(mstimeout) + jiffies;
971 	while (1) {
972 		if (get_firmware_state(dd) == 0xa0)	/* ready */
973 			return 0;
974 		if (time_after(jiffies, timeout))	/* timed out */
975 			return -ETIMEDOUT;
976 		usleep_range(1950, 2050); /* sleep 2ms-ish */
977 	}
978 }
979 
980 /*
981  * Load the 8051 firmware.
982  */
983 static int load_8051_firmware(struct hfi1_devdata *dd,
984 			      struct firmware_details *fdet)
985 {
986 	u64 reg;
987 	int ret;
988 	u8 ver_a, ver_b;
989 
990 	/*
991 	 * DC Reset sequence
992 	 * Load DC 8051 firmware
993 	 */
994 	/*
995 	 * DC reset step 1: Reset DC8051
996 	 */
997 	reg = DC_DC8051_CFG_RST_M8051W_SMASK
998 		| DC_DC8051_CFG_RST_CRAM_SMASK
999 		| DC_DC8051_CFG_RST_DRAM_SMASK
1000 		| DC_DC8051_CFG_RST_IRAM_SMASK
1001 		| DC_DC8051_CFG_RST_SFR_SMASK;
1002 	write_csr(dd, DC_DC8051_CFG_RST, reg);
1003 
1004 	/*
1005 	 * DC reset step 2 (optional): Load 8051 data memory with link
1006 	 * configuration
1007 	 */
1008 
1009 	/*
1010 	 * DC reset step 3: Load DC8051 firmware
1011 	 */
1012 	/* release all but the core reset */
1013 	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1014 	write_csr(dd, DC_DC8051_CFG_RST, reg);
1015 
1016 	/* Firmware load step 1 */
1017 	load_security_variables(dd, fdet);
1018 
1019 	/*
1020 	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1021 	 */
1022 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1023 
1024 	/* Firmware load steps 3-5 */
1025 	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1026 			 fdet->firmware_len);
1027 	if (ret)
1028 		return ret;
1029 
1030 	/*
1031 	 * DC reset step 4. Host starts the DC8051 firmware
1032 	 */
1033 	/*
1034 	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1035 	 */
1036 	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1037 
1038 	/* Firmware load steps 7-10 */
1039 	ret = run_rsa(dd, "8051", fdet->signature);
1040 	if (ret)
1041 		return ret;
1042 
1043 	/* clear all reset bits, releasing the 8051 */
1044 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1045 
1046 	/*
1047 	 * DC reset step 5. Wait for firmware to be ready to accept host
1048 	 * requests.
1049 	 */
1050 	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1051 	if (ret) { /* timed out */
1052 		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1053 			   get_firmware_state(dd));
1054 		return -ETIMEDOUT;
1055 	}
1056 
1057 	read_misc_status(dd, &ver_a, &ver_b);
1058 	dd_dev_info(dd, "8051 firmware version %d.%d\n",
1059 		    (int)ver_b, (int)ver_a);
1060 	dd->dc8051_ver = dc8051_ver(ver_b, ver_a);
1061 
1062 	return 0;
1063 }
1064 
1065 /*
1066  * Write the SBus request register
1067  *
1068  * No need for masking - the arguments are sized exactly.
1069  */
1070 void sbus_request(struct hfi1_devdata *dd,
1071 		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1072 {
1073 	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1074 		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1075 		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1076 		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1077 		  ((u64)receiver_addr <<
1078 		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1079 }
1080 
1081 /*
1082  * Turn off the SBus and fabric serdes spicos.
1083  *
1084  * + Must be called with Sbus fast mode turned on.
1085  * + Must be called after fabric serdes broadcast is set up.
1086  * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1087  *   when using MISC_CFG_FW_CTRL.
1088  */
1089 static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1090 {
1091 	/* only needed on A0 */
1092 	if (!is_ax(dd))
1093 		return;
1094 
1095 	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1096 		    flags & SPICO_SBUS ? " SBus" : "",
1097 		    flags & SPICO_FABRIC ? " fabric" : "");
1098 
1099 	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1100 	/* disable SBus spico */
1101 	if (flags & SPICO_SBUS)
1102 		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1103 			     WRITE_SBUS_RECEIVER, 0x00000040);
1104 
1105 	/* disable the fabric serdes spicos */
1106 	if (flags & SPICO_FABRIC)
1107 		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1108 			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1109 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1110 }
1111 
1112 /*
1113  * Reset all of the fabric serdes for this HFI in preparation to take the
1114  * link to Polling.
1115  *
1116  * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1117  * the fabric serdes download to the other HFI on the ASIC will have turned
1118  * off the firmware validation on this HFI.  This means we can't write to the
1119  * registers to reset the serdes.  Work around this by performing a complete
1120  * re-download and validation of the fabric serdes firmware.  This, as a
1121  * by-product, will reset the serdes.  NOTE: the re-download requires that
1122  * the 8051 be in the Offline state.  I.e. not actively trying to use the
1123  * serdes.  This routine is called at the point where the link is Offline and
1124  * is getting ready to go to Polling.
1125  */
1126 void fabric_serdes_reset(struct hfi1_devdata *dd)
1127 {
1128 	int ret;
1129 
1130 	if (!fw_fabric_serdes_load)
1131 		return;
1132 
1133 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1134 	if (ret) {
1135 		dd_dev_err(dd,
1136 			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1137 		return;
1138 	}
1139 	set_sbus_fast_mode(dd);
1140 
1141 	if (is_ax(dd)) {
1142 		/* A0 serdes do not work with a re-download */
1143 		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1144 
1145 		/* place SerDes in reset and disable SPICO */
1146 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1147 		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1148 		udelay(1);
1149 		/* remove SerDes reset */
1150 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1151 		/* turn SPICO enable on */
1152 		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1153 	} else {
1154 		turn_off_spicos(dd, SPICO_FABRIC);
1155 		/*
1156 		 * No need for firmware retry - what to download has already
1157 		 * been decided.
1158 		 * No need to pay attention to the load return - the only
1159 		 * failure is a validation failure, which has already been
1160 		 * checked by the initial download.
1161 		 */
1162 		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1163 	}
1164 
1165 	clear_sbus_fast_mode(dd);
1166 	release_chip_resource(dd, CR_SBUS);
1167 }
1168 
1169 /* Access to the SBus in this routine should probably be serialized */
1170 int sbus_request_slow(struct hfi1_devdata *dd,
1171 		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1172 {
1173 	u64 reg, count = 0;
1174 
1175 	/* make sure fast mode is clear */
1176 	clear_sbus_fast_mode(dd);
1177 
1178 	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1179 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1180 		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1181 	/* Wait for both DONE and RCV_DATA_VALID to go high */
1182 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1183 	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1184 		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1185 		if (count++ >= SBUS_MAX_POLL_COUNT) {
1186 			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1187 			/*
1188 			 * If the loop has timed out, we are OK if DONE bit
1189 			 * is set and RCV_DATA_VALID and EXECUTE counters
1190 			 * are the same. If not, we cannot proceed.
1191 			 */
1192 			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1193 			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1194 			     SBUS_COUNTER(counts, EXECUTE)))
1195 				break;
1196 			return -ETIMEDOUT;
1197 		}
1198 		udelay(1);
1199 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1200 	}
1201 	count = 0;
1202 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1203 	/* Wait for DONE to clear after EXECUTE is cleared */
1204 	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1205 	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1206 		if (count++ >= SBUS_MAX_POLL_COUNT)
1207 			return -ETIME;
1208 		udelay(1);
1209 		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1210 	}
1211 	return 0;
1212 }
1213 
1214 static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1215 				       struct firmware_details *fdet)
1216 {
1217 	int i, err;
1218 	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1219 
1220 	dd_dev_info(dd, "Downloading fabric firmware\n");
1221 
1222 	/* step 1: load security variables */
1223 	load_security_variables(dd, fdet);
1224 	/* step 2: place SerDes in reset and disable SPICO */
1225 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1226 	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1227 	udelay(1);
1228 	/* step 3:  remove SerDes reset */
1229 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1230 	/* step 4: assert IMEM override */
1231 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1232 	/* step 5: download SerDes machine code */
1233 	for (i = 0; i < fdet->firmware_len; i += 4) {
1234 		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1235 			     *(u32 *)&fdet->firmware_ptr[i]);
1236 	}
1237 	/* step 6: IMEM override off */
1238 	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1239 	/* step 7: turn ECC on */
1240 	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1241 
1242 	/* steps 8-11: run the RSA engine */
1243 	err = run_rsa(dd, "fabric serdes", fdet->signature);
1244 	if (err)
1245 		return err;
1246 
1247 	/* step 12: turn SPICO enable on */
1248 	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1249 	/* step 13: enable core hardware interrupts */
1250 	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1251 
1252 	return 0;
1253 }
1254 
1255 static int load_sbus_firmware(struct hfi1_devdata *dd,
1256 			      struct firmware_details *fdet)
1257 {
1258 	int i, err;
1259 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1260 
1261 	dd_dev_info(dd, "Downloading SBus firmware\n");
1262 
1263 	/* step 1: load security variables */
1264 	load_security_variables(dd, fdet);
1265 	/* step 2: place SPICO into reset and enable off */
1266 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1267 	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1268 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1269 	/* step 4: set starting IMEM address for burst download */
1270 	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1271 	/* step 5: download the SBus Master machine code */
1272 	for (i = 0; i < fdet->firmware_len; i += 4) {
1273 		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1274 			     *(u32 *)&fdet->firmware_ptr[i]);
1275 	}
1276 	/* step 6: set IMEM_CNTL_EN off */
1277 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1278 	/* step 7: turn ECC on */
1279 	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1280 
1281 	/* steps 8-11: run the RSA engine */
1282 	err = run_rsa(dd, "SBus", fdet->signature);
1283 	if (err)
1284 		return err;
1285 
1286 	/* step 12: set SPICO_ENABLE on */
1287 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1288 
1289 	return 0;
1290 }
1291 
1292 static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1293 				     struct firmware_details *fdet)
1294 {
1295 	int i;
1296 	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1297 
1298 	dd_dev_info(dd, "Downloading PCIe firmware\n");
1299 
1300 	/* step 1: load security variables */
1301 	load_security_variables(dd, fdet);
1302 	/* step 2: assert single step (halts the SBus Master spico) */
1303 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1304 	/* step 3: enable XDMEM access */
1305 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1306 	/* step 4: load firmware into SBus Master XDMEM */
1307 	/*
1308 	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1309 	 * we only need to pick up the bytes and write them
1310 	 */
1311 	for (i = 0; i < fdet->firmware_len; i += 4) {
1312 		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1313 			     *(u32 *)&fdet->firmware_ptr[i]);
1314 	}
1315 	/* step 5: disable XDMEM access */
1316 	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1317 	/* step 6: allow SBus Spico to run */
1318 	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1319 
1320 	/*
1321 	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1322 	 * be swapped
1323 	 */
1324 	return run_rsa(dd, "PCIe serdes", fdet->signature);
1325 }
1326 
1327 /*
1328  * Set the given broadcast values on the given list of devices.
1329  */
1330 static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1331 				 const u8 *addrs, int count)
1332 {
1333 	while (--count >= 0) {
1334 		/*
1335 		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1336 		 * defaults for everything else.  Do not read-modify-write,
1337 		 * per instruction from the manufacturer.
1338 		 *
1339 		 * Register 0xfd:
1340 		 *	bits    what
1341 		 *	-----	---------------------------------
1342 		 *	  0	IGNORE_BROADCAST  (default 0)
1343 		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1344 		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1345 		 */
1346 		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1347 			     (u32)bg1 << 4 | (u32)bg2 << 16);
1348 	}
1349 }
1350 
1351 int acquire_hw_mutex(struct hfi1_devdata *dd)
1352 {
1353 	unsigned long timeout;
1354 	int try = 0;
1355 	u8 mask = 1 << dd->hfi1_id;
1356 	u8 user;
1357 
1358 retry:
1359 	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1360 	while (1) {
1361 		write_csr(dd, ASIC_CFG_MUTEX, mask);
1362 		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1363 		if (user == mask)
1364 			return 0; /* success */
1365 		if (time_after(jiffies, timeout))
1366 			break; /* timed out */
1367 		msleep(20);
1368 	}
1369 
1370 	/* timed out */
1371 	dd_dev_err(dd,
1372 		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1373 		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1374 
1375 	if (try == 0) {
1376 		/* break mutex and retry */
1377 		write_csr(dd, ASIC_CFG_MUTEX, 0);
1378 		try++;
1379 		goto retry;
1380 	}
1381 
1382 	return -EBUSY;
1383 }
1384 
1385 void release_hw_mutex(struct hfi1_devdata *dd)
1386 {
1387 	write_csr(dd, ASIC_CFG_MUTEX, 0);
1388 }
1389 
1390 /* return the given resource bit(s) as a mask for the given HFI */
1391 static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1392 {
1393 	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1394 }
1395 
1396 static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1397 				       const char *func)
1398 {
1399 	dd_dev_err(dd,
1400 		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1401 		   func);
1402 }
1403 
1404 /*
1405  * Acquire access to a chip resource.
1406  *
1407  * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1408  */
1409 static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1410 {
1411 	u64 scratch0, all_bits, my_bit;
1412 	int ret;
1413 
1414 	if (resource & CR_DYN_MASK) {
1415 		/* a dynamic resource is in use if either HFI has set the bit */
1416 		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1417 		    (resource & (CR_I2C1 | CR_I2C2))) {
1418 			/* discrete devices must serialize across both chains */
1419 			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1420 					resource_mask(1, CR_I2C1 | CR_I2C2);
1421 		} else {
1422 			all_bits = resource_mask(0, resource) |
1423 						resource_mask(1, resource);
1424 		}
1425 		my_bit = resource_mask(dd->hfi1_id, resource);
1426 	} else {
1427 		/* non-dynamic resources are not split between HFIs */
1428 		all_bits = resource;
1429 		my_bit = resource;
1430 	}
1431 
1432 	/* lock against other callers within the driver wanting a resource */
1433 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1434 
1435 	ret = acquire_hw_mutex(dd);
1436 	if (ret) {
1437 		fail_mutex_acquire_message(dd, __func__);
1438 		ret = -EIO;
1439 		goto done;
1440 	}
1441 
1442 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1443 	if (scratch0 & all_bits) {
1444 		ret = -EBUSY;
1445 	} else {
1446 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1447 		/* force write to be visible to other HFI on another OS */
1448 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1449 	}
1450 
1451 	release_hw_mutex(dd);
1452 
1453 done:
1454 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1455 	return ret;
1456 }
1457 
1458 /*
1459  * Acquire access to a chip resource, wait up to mswait milliseconds for
1460  * the resource to become available.
1461  *
1462  * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1463  * acquire failed.
1464  */
1465 int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1466 {
1467 	unsigned long timeout;
1468 	int ret;
1469 
1470 	timeout = jiffies + msecs_to_jiffies(mswait);
1471 	while (1) {
1472 		ret = __acquire_chip_resource(dd, resource);
1473 		if (ret != -EBUSY)
1474 			return ret;
1475 		/* resource is busy, check our timeout */
1476 		if (time_after_eq(jiffies, timeout))
1477 			return -EBUSY;
1478 		usleep_range(80, 120);	/* arbitrary delay */
1479 	}
1480 }
1481 
1482 /*
1483  * Release access to a chip resource
1484  */
1485 void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1486 {
1487 	u64 scratch0, bit;
1488 
1489 	/* only dynamic resources should ever be cleared */
1490 	if (!(resource & CR_DYN_MASK)) {
1491 		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1492 			   resource);
1493 		return;
1494 	}
1495 	bit = resource_mask(dd->hfi1_id, resource);
1496 
1497 	/* lock against other callers within the driver wanting a resource */
1498 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1499 
1500 	if (acquire_hw_mutex(dd)) {
1501 		fail_mutex_acquire_message(dd, __func__);
1502 		goto done;
1503 	}
1504 
1505 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1506 	if ((scratch0 & bit) != 0) {
1507 		scratch0 &= ~bit;
1508 		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1509 		/* force write to be visible to other HFI on another OS */
1510 		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1511 	} else {
1512 		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1513 			    __func__, dd->hfi1_id, resource);
1514 	}
1515 
1516 	release_hw_mutex(dd);
1517 
1518 done:
1519 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1520 }
1521 
1522 /*
1523  * Return true if resource is set, false otherwise.  Print a warning
1524  * if not set and a function is supplied.
1525  */
1526 bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1527 			 const char *func)
1528 {
1529 	u64 scratch0, bit;
1530 
1531 	if (resource & CR_DYN_MASK)
1532 		bit = resource_mask(dd->hfi1_id, resource);
1533 	else
1534 		bit = resource;
1535 
1536 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1537 	if ((scratch0 & bit) == 0) {
1538 		if (func)
1539 			dd_dev_warn(dd,
1540 				    "%s: id %d, resource 0x%x, not acquired!\n",
1541 				    func, dd->hfi1_id, resource);
1542 		return false;
1543 	}
1544 	return true;
1545 }
1546 
1547 static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1548 {
1549 	u64 scratch0;
1550 
1551 	/* lock against other callers within the driver wanting a resource */
1552 	mutex_lock(&dd->asic_data->asic_resource_mutex);
1553 
1554 	if (acquire_hw_mutex(dd)) {
1555 		fail_mutex_acquire_message(dd, func);
1556 		goto done;
1557 	}
1558 
1559 	/* clear all dynamic access bits for this HFI */
1560 	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1561 	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1562 	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1563 	/* force write to be visible to other HFI on another OS */
1564 	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1565 
1566 	release_hw_mutex(dd);
1567 
1568 done:
1569 	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1570 }
1571 
1572 void init_chip_resources(struct hfi1_devdata *dd)
1573 {
1574 	/* clear any holds left by us */
1575 	clear_chip_resources(dd, __func__);
1576 }
1577 
1578 void finish_chip_resources(struct hfi1_devdata *dd)
1579 {
1580 	/* clear any holds left by us */
1581 	clear_chip_resources(dd, __func__);
1582 }
1583 
1584 void set_sbus_fast_mode(struct hfi1_devdata *dd)
1585 {
1586 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1587 		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1588 }
1589 
1590 void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1591 {
1592 	u64 reg, count = 0;
1593 
1594 	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1595 	while (SBUS_COUNTER(reg, EXECUTE) !=
1596 	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1597 		if (count++ >= SBUS_MAX_POLL_COUNT)
1598 			break;
1599 		udelay(1);
1600 		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1601 	}
1602 	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1603 }
1604 
1605 int load_firmware(struct hfi1_devdata *dd)
1606 {
1607 	int ret;
1608 
1609 	if (fw_fabric_serdes_load) {
1610 		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1611 		if (ret)
1612 			return ret;
1613 
1614 		set_sbus_fast_mode(dd);
1615 
1616 		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1617 				     fabric_serdes_broadcast[dd->hfi1_id],
1618 				     fabric_serdes_addrs[dd->hfi1_id],
1619 				     NUM_FABRIC_SERDES);
1620 		turn_off_spicos(dd, SPICO_FABRIC);
1621 		do {
1622 			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1623 		} while (retry_firmware(dd, ret));
1624 
1625 		clear_sbus_fast_mode(dd);
1626 		release_chip_resource(dd, CR_SBUS);
1627 		if (ret)
1628 			return ret;
1629 	}
1630 
1631 	if (fw_8051_load) {
1632 		do {
1633 			ret = load_8051_firmware(dd, &fw_8051);
1634 		} while (retry_firmware(dd, ret));
1635 		if (ret)
1636 			return ret;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 int hfi1_firmware_init(struct hfi1_devdata *dd)
1643 {
1644 	/* only RTL can use these */
1645 	if (dd->icode != ICODE_RTL_SILICON) {
1646 		fw_fabric_serdes_load = 0;
1647 		fw_pcie_serdes_load = 0;
1648 		fw_sbus_load = 0;
1649 	}
1650 
1651 	/* no 8051 or QSFP on simulator */
1652 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
1653 		fw_8051_load = 0;
1654 		platform_config_load = 0;
1655 	}
1656 
1657 	if (!fw_8051_name) {
1658 		if (dd->icode == ICODE_RTL_SILICON)
1659 			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1660 		else
1661 			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1662 	}
1663 	if (!fw_fabric_serdes_name)
1664 		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1665 	if (!fw_sbus_name)
1666 		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1667 	if (!fw_pcie_serdes_name)
1668 		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1669 	if (!platform_config_name)
1670 		platform_config_name = DEFAULT_PLATFORM_CONFIG_NAME;
1671 
1672 	return obtain_firmware(dd);
1673 }
1674 
1675 /*
1676  * This function is a helper function for parse_platform_config(...) and
1677  * does not check for validity of the platform configuration cache
1678  * (because we know it is invalid as we are building up the cache).
1679  * As such, this should not be called from anywhere other than
1680  * parse_platform_config
1681  */
1682 static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1683 {
1684 	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1685 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1686 
1687 	if (!system_table)
1688 		return -EINVAL;
1689 
1690 	meta_ver_meta =
1691 	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1692 	+ SYSTEM_TABLE_META_VERSION);
1693 
1694 	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1695 	ver_start = meta_ver_meta & mask;
1696 
1697 	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1698 
1699 	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1700 	ver_len = meta_ver_meta & mask;
1701 
1702 	ver_start /= 8;
1703 	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1704 
1705 	if (meta_ver < 5) {
1706 		dd_dev_info(
1707 			dd, "%s:Please update platform config\n", __func__);
1708 		return -EINVAL;
1709 	}
1710 	return 0;
1711 }
1712 
1713 int parse_platform_config(struct hfi1_devdata *dd)
1714 {
1715 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1716 	u32 *ptr = NULL;
1717 	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1718 	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1719 	int ret = -EINVAL; /* assume failure */
1720 
1721 	if (!dd->platform_config.data) {
1722 		dd_dev_info(dd, "%s: Missing config file\n", __func__);
1723 		goto bail;
1724 	}
1725 	ptr = (u32 *)dd->platform_config.data;
1726 
1727 	magic_num = *ptr;
1728 	ptr++;
1729 	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1730 		dd_dev_info(dd, "%s: Bad config file\n", __func__);
1731 		goto bail;
1732 	}
1733 
1734 	/* Field is file size in DWORDs */
1735 	file_length = (*ptr) * 4;
1736 	ptr++;
1737 
1738 	if (file_length > dd->platform_config.size) {
1739 		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1740 			    __func__);
1741 		goto bail;
1742 	} else if (file_length < dd->platform_config.size) {
1743 		dd_dev_info(dd,
1744 			    "%s:File claims to be smaller than read size, continuing\n",
1745 			    __func__);
1746 	}
1747 	/* exactly equal, perfection */
1748 
1749 	/*
1750 	 * In both cases where we proceed, using the self-reported file length
1751 	 * is the safer option
1752 	 */
1753 	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1754 		header1 = *ptr;
1755 		header2 = *(ptr + 1);
1756 		if (header1 != ~header2) {
1757 			dd_dev_info(dd, "%s: Failed validation at offset %ld\n",
1758 				    __func__, (ptr - (u32 *)
1759 					       dd->platform_config.data));
1760 			goto bail;
1761 		}
1762 
1763 		record_idx = *ptr &
1764 			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1765 
1766 		table_length_dwords = (*ptr >>
1767 				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1768 		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1769 
1770 		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1771 			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1772 
1773 		/* Done with this set of headers */
1774 		ptr += 2;
1775 
1776 		if (record_idx) {
1777 			/* data table */
1778 			switch (table_type) {
1779 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1780 				pcfgcache->config_tables[table_type].num_table =
1781 									1;
1782 				ret = check_meta_version(dd, ptr);
1783 				if (ret)
1784 					goto bail;
1785 				break;
1786 			case PLATFORM_CONFIG_PORT_TABLE:
1787 				pcfgcache->config_tables[table_type].num_table =
1788 									2;
1789 				break;
1790 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1791 				/* fall through */
1792 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1793 				/* fall through */
1794 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1795 				/* fall through */
1796 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1797 				pcfgcache->config_tables[table_type].num_table =
1798 							table_length_dwords;
1799 				break;
1800 			default:
1801 				dd_dev_info(dd,
1802 					    "%s: Unknown data table %d, offset %ld\n",
1803 					    __func__, table_type,
1804 					    (ptr - (u32 *)
1805 					     dd->platform_config.data));
1806 				goto bail; /* We don't trust this file now */
1807 			}
1808 			pcfgcache->config_tables[table_type].table = ptr;
1809 		} else {
1810 			/* metadata table */
1811 			switch (table_type) {
1812 			case PLATFORM_CONFIG_SYSTEM_TABLE:
1813 				/* fall through */
1814 			case PLATFORM_CONFIG_PORT_TABLE:
1815 				/* fall through */
1816 			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1817 				/* fall through */
1818 			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1819 				/* fall through */
1820 			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1821 				/* fall through */
1822 			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1823 				break;
1824 			default:
1825 				dd_dev_info(dd,
1826 					    "%s: Unknown meta table %d, offset %ld\n",
1827 					    __func__, table_type,
1828 					    (ptr -
1829 					     (u32 *)dd->platform_config.data));
1830 				goto bail; /* We don't trust this file now */
1831 			}
1832 			pcfgcache->config_tables[table_type].table_metadata =
1833 									ptr;
1834 		}
1835 
1836 		/* Calculate and check table crc */
1837 		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1838 			       (table_length_dwords * 4));
1839 		crc ^= ~(u32)0;
1840 
1841 		/* Jump the table */
1842 		ptr += table_length_dwords;
1843 		if (crc != *ptr) {
1844 			dd_dev_info(dd, "%s: Failed CRC check at offset %ld\n",
1845 				    __func__, (ptr -
1846 					       (u32 *)
1847 					       dd->platform_config.data));
1848 			goto bail;
1849 		}
1850 		/* Jump the CRC DWORD */
1851 		ptr++;
1852 	}
1853 
1854 	pcfgcache->cache_valid = 1;
1855 	return 0;
1856 bail:
1857 	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1858 	return ret;
1859 }
1860 
1861 static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
1862 					  int field, u32 *field_len_bits,
1863 					  u32 *field_start_bits)
1864 {
1865 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1866 	u32 *src_ptr = NULL;
1867 
1868 	if (!pcfgcache->cache_valid)
1869 		return -EINVAL;
1870 
1871 	switch (table) {
1872 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1873 		/* fall through */
1874 	case PLATFORM_CONFIG_PORT_TABLE:
1875 		/* fall through */
1876 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1877 		/* fall through */
1878 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1879 		/* fall through */
1880 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1881 		/* fall through */
1882 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1883 		if (field && field < platform_config_table_limits[table])
1884 			src_ptr =
1885 			pcfgcache->config_tables[table].table_metadata + field;
1886 		break;
1887 	default:
1888 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
1889 		break;
1890 	}
1891 
1892 	if (!src_ptr)
1893 		return -EINVAL;
1894 
1895 	if (field_start_bits)
1896 		*field_start_bits = *src_ptr &
1897 		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1898 
1899 	if (field_len_bits)
1900 		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
1901 		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1902 
1903 	return 0;
1904 }
1905 
1906 /* This is the central interface to getting data out of the platform config
1907  * file. It depends on parse_platform_config() having populated the
1908  * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
1909  * validate the sanity of the cache.
1910  *
1911  * The non-obvious parameters:
1912  * @table_index: Acts as a look up key into which instance of the tables the
1913  * relevant field is fetched from.
1914  *
1915  * This applies to the data tables that have multiple instances. The port table
1916  * is an exception to this rule as each HFI only has one port and thus the
1917  * relevant table can be distinguished by hfi_id.
1918  *
1919  * @data: pointer to memory that will be populated with the field requested.
1920  * @len: length of memory pointed by @data in bytes.
1921  */
1922 int get_platform_config_field(struct hfi1_devdata *dd,
1923 			      enum platform_config_table_type_encoding
1924 			      table_type, int table_index, int field_index,
1925 			      u32 *data, u32 len)
1926 {
1927 	int ret = 0, wlen = 0, seek = 0;
1928 	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
1929 	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1930 
1931 	if (data)
1932 		memset(data, 0, len);
1933 	else
1934 		return -EINVAL;
1935 
1936 	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
1937 					     &field_len_bits,
1938 					     &field_start_bits);
1939 	if (ret)
1940 		return -EINVAL;
1941 
1942 	/* Convert length to bits */
1943 	len *= 8;
1944 
1945 	/* Our metadata function checked cache_valid and field_index for us */
1946 	switch (table_type) {
1947 	case PLATFORM_CONFIG_SYSTEM_TABLE:
1948 		src_ptr = pcfgcache->config_tables[table_type].table;
1949 
1950 		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
1951 			if (len < field_len_bits)
1952 				return -EINVAL;
1953 
1954 			seek = field_start_bits / 8;
1955 			wlen = field_len_bits / 8;
1956 
1957 			src_ptr = (u32 *)((u8 *)src_ptr + seek);
1958 
1959 			/*
1960 			 * We expect the field to be byte aligned and whole byte
1961 			 * lengths if we are here
1962 			 */
1963 			memcpy(data, src_ptr, wlen);
1964 			return 0;
1965 		}
1966 		break;
1967 	case PLATFORM_CONFIG_PORT_TABLE:
1968 		/* Port table is 4 DWORDS */
1969 		src_ptr = dd->hfi1_id ?
1970 			pcfgcache->config_tables[table_type].table + 4 :
1971 			pcfgcache->config_tables[table_type].table;
1972 		break;
1973 	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1974 		/* fall through */
1975 	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1976 		/* fall through */
1977 	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1978 		/* fall through */
1979 	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1980 		src_ptr = pcfgcache->config_tables[table_type].table;
1981 
1982 		if (table_index <
1983 			pcfgcache->config_tables[table_type].num_table)
1984 			src_ptr += table_index;
1985 		else
1986 			src_ptr = NULL;
1987 		break;
1988 	default:
1989 		dd_dev_info(dd, "%s: Unknown table\n", __func__);
1990 		break;
1991 	}
1992 
1993 	if (!src_ptr || len < field_len_bits)
1994 		return -EINVAL;
1995 
1996 	src_ptr += (field_start_bits / 32);
1997 	*data = (*src_ptr >> (field_start_bits % 32)) &
1998 			((1 << field_len_bits) - 1);
1999 
2000 	return 0;
2001 }
2002 
2003 /*
2004  * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2005  * to the SBus firmware is needed before updating the PCIe firmware.
2006  *
2007  * Note: caller must be holding the SBus resource.
2008  */
2009 int load_pcie_firmware(struct hfi1_devdata *dd)
2010 {
2011 	int ret = 0;
2012 
2013 	/* both firmware loads below use the SBus */
2014 	set_sbus_fast_mode(dd);
2015 
2016 	if (fw_sbus_load) {
2017 		turn_off_spicos(dd, SPICO_SBUS);
2018 		do {
2019 			ret = load_sbus_firmware(dd, &fw_sbus);
2020 		} while (retry_firmware(dd, ret));
2021 		if (ret)
2022 			goto done;
2023 	}
2024 
2025 	if (fw_pcie_serdes_load) {
2026 		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2027 		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2028 				     pcie_serdes_broadcast[dd->hfi1_id],
2029 				     pcie_serdes_addrs[dd->hfi1_id],
2030 				     NUM_PCIE_SERDES);
2031 		do {
2032 			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2033 		} while (retry_firmware(dd, ret));
2034 		if (ret)
2035 			goto done;
2036 	}
2037 
2038 done:
2039 	clear_sbus_fast_mode(dd);
2040 
2041 	return ret;
2042 }
2043 
2044 /*
2045  * Read the GUID from the hardware, store it in dd.
2046  */
2047 void read_guid(struct hfi1_devdata *dd)
2048 {
2049 	/* Take the DC out of reset to get a valid GUID value */
2050 	write_csr(dd, CCE_DC_CTRL, 0);
2051 	(void)read_csr(dd, CCE_DC_CTRL);
2052 
2053 	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2054 	dd_dev_info(dd, "GUID %llx",
2055 		    (unsigned long long)dd->base_guid);
2056 }
2057