1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright(c) 2020 Cornelis Networks, Inc. 4 * Copyright(c) 2015-2020 Intel Corporation. 5 */ 6 7 #include <linux/poll.h> 8 #include <linux/cdev.h> 9 #include <linux/vmalloc.h> 10 #include <linux/io.h> 11 #include <linux/sched/mm.h> 12 #include <linux/bitmap.h> 13 14 #include <rdma/ib.h> 15 16 #include "hfi.h" 17 #include "pio.h" 18 #include "device.h" 19 #include "common.h" 20 #include "trace.h" 21 #include "mmu_rb.h" 22 #include "user_sdma.h" 23 #include "user_exp_rcv.h" 24 #include "aspm.h" 25 26 #undef pr_fmt 27 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 28 29 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 30 31 /* 32 * File operation functions 33 */ 34 static int hfi1_file_open(struct inode *inode, struct file *fp); 35 static int hfi1_file_close(struct inode *inode, struct file *fp); 36 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from); 37 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt); 38 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma); 39 40 static u64 kvirt_to_phys(void *addr); 41 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len); 42 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 43 const struct hfi1_user_info *uinfo); 44 static int init_user_ctxt(struct hfi1_filedata *fd, 45 struct hfi1_ctxtdata *uctxt); 46 static void user_init(struct hfi1_ctxtdata *uctxt); 47 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 48 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len); 49 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 50 u32 len); 51 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 52 u32 len); 53 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 54 u32 len); 55 static int setup_base_ctxt(struct hfi1_filedata *fd, 56 struct hfi1_ctxtdata *uctxt); 57 static int setup_subctxt(struct hfi1_ctxtdata *uctxt); 58 59 static int find_sub_ctxt(struct hfi1_filedata *fd, 60 const struct hfi1_user_info *uinfo); 61 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 62 struct hfi1_user_info *uinfo, 63 struct hfi1_ctxtdata **cd); 64 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt); 65 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt); 66 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt); 67 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 68 unsigned long arg); 69 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg); 70 static int ctxt_reset(struct hfi1_ctxtdata *uctxt); 71 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 72 unsigned long arg); 73 static vm_fault_t vma_fault(struct vm_fault *vmf); 74 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 75 unsigned long arg); 76 77 static const struct file_operations hfi1_file_ops = { 78 .owner = THIS_MODULE, 79 .write_iter = hfi1_write_iter, 80 .open = hfi1_file_open, 81 .release = hfi1_file_close, 82 .unlocked_ioctl = hfi1_file_ioctl, 83 .poll = hfi1_poll, 84 .mmap = hfi1_file_mmap, 85 .llseek = noop_llseek, 86 }; 87 88 static const struct vm_operations_struct vm_ops = { 89 .fault = vma_fault, 90 }; 91 92 /* 93 * Types of memories mapped into user processes' space 94 */ 95 enum mmap_types { 96 PIO_BUFS = 1, 97 PIO_BUFS_SOP, 98 PIO_CRED, 99 RCV_HDRQ, 100 RCV_EGRBUF, 101 UREGS, 102 EVENTS, 103 STATUS, 104 RTAIL, 105 SUBCTXT_UREGS, 106 SUBCTXT_RCV_HDRQ, 107 SUBCTXT_EGRBUF, 108 SDMA_COMP 109 }; 110 111 /* 112 * Masks and offsets defining the mmap tokens 113 */ 114 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 115 #define HFI1_MMAP_OFFSET_SHIFT 0 116 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 117 #define HFI1_MMAP_SUBCTXT_SHIFT 12 118 #define HFI1_MMAP_CTXT_MASK 0xffULL 119 #define HFI1_MMAP_CTXT_SHIFT 16 120 #define HFI1_MMAP_TYPE_MASK 0xfULL 121 #define HFI1_MMAP_TYPE_SHIFT 24 122 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 123 #define HFI1_MMAP_MAGIC_SHIFT 32 124 125 #define HFI1_MMAP_MAGIC 0xdabbad00 126 127 #define HFI1_MMAP_TOKEN_SET(field, val) \ 128 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 129 #define HFI1_MMAP_TOKEN_GET(field, token) \ 130 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 131 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 132 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 133 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 134 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 135 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 136 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 137 138 #define dbg(fmt, ...) \ 139 pr_info(fmt, ##__VA_ARGS__) 140 141 static inline int is_valid_mmap(u64 token) 142 { 143 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 144 } 145 146 static int hfi1_file_open(struct inode *inode, struct file *fp) 147 { 148 struct hfi1_filedata *fd; 149 struct hfi1_devdata *dd = container_of(inode->i_cdev, 150 struct hfi1_devdata, 151 user_cdev); 152 153 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1)) 154 return -EINVAL; 155 156 if (!refcount_inc_not_zero(&dd->user_refcount)) 157 return -ENXIO; 158 159 /* The real work is performed later in assign_ctxt() */ 160 161 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 162 163 if (!fd || init_srcu_struct(&fd->pq_srcu)) 164 goto nomem; 165 spin_lock_init(&fd->pq_rcu_lock); 166 spin_lock_init(&fd->tid_lock); 167 spin_lock_init(&fd->invalid_lock); 168 fd->rec_cpu_num = -1; /* no cpu affinity by default */ 169 fd->dd = dd; 170 fp->private_data = fd; 171 return 0; 172 nomem: 173 kfree(fd); 174 fp->private_data = NULL; 175 if (refcount_dec_and_test(&dd->user_refcount)) 176 complete(&dd->user_comp); 177 return -ENOMEM; 178 } 179 180 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 181 unsigned long arg) 182 { 183 struct hfi1_filedata *fd = fp->private_data; 184 struct hfi1_ctxtdata *uctxt = fd->uctxt; 185 int ret = 0; 186 int uval = 0; 187 188 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 189 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 190 cmd != HFI1_IOCTL_GET_VERS && 191 !uctxt) 192 return -EINVAL; 193 194 switch (cmd) { 195 case HFI1_IOCTL_ASSIGN_CTXT: 196 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd)); 197 break; 198 199 case HFI1_IOCTL_CTXT_INFO: 200 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd)); 201 break; 202 203 case HFI1_IOCTL_USER_INFO: 204 ret = get_base_info(fd, arg, _IOC_SIZE(cmd)); 205 break; 206 207 case HFI1_IOCTL_CREDIT_UPD: 208 if (uctxt) 209 sc_return_credits(uctxt->sc); 210 break; 211 212 case HFI1_IOCTL_TID_UPDATE: 213 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd)); 214 break; 215 216 case HFI1_IOCTL_TID_FREE: 217 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd)); 218 break; 219 220 case HFI1_IOCTL_TID_INVAL_READ: 221 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd)); 222 break; 223 224 case HFI1_IOCTL_RECV_CTRL: 225 ret = manage_rcvq(uctxt, fd->subctxt, arg); 226 break; 227 228 case HFI1_IOCTL_POLL_TYPE: 229 if (get_user(uval, (int __user *)arg)) 230 return -EFAULT; 231 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 232 break; 233 234 case HFI1_IOCTL_ACK_EVENT: 235 ret = user_event_ack(uctxt, fd->subctxt, arg); 236 break; 237 238 case HFI1_IOCTL_SET_PKEY: 239 ret = set_ctxt_pkey(uctxt, arg); 240 break; 241 242 case HFI1_IOCTL_CTXT_RESET: 243 ret = ctxt_reset(uctxt); 244 break; 245 246 case HFI1_IOCTL_GET_VERS: 247 uval = HFI1_USER_SWVERSION; 248 if (put_user(uval, (int __user *)arg)) 249 return -EFAULT; 250 break; 251 252 default: 253 return -EINVAL; 254 } 255 256 return ret; 257 } 258 259 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 260 { 261 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 262 struct hfi1_user_sdma_pkt_q *pq; 263 struct hfi1_user_sdma_comp_q *cq = fd->cq; 264 int done = 0, reqs = 0; 265 unsigned long dim = from->nr_segs; 266 int idx; 267 268 if (!HFI1_CAP_IS_KSET(SDMA)) 269 return -EINVAL; 270 if (!user_backed_iter(from)) 271 return -EINVAL; 272 idx = srcu_read_lock(&fd->pq_srcu); 273 pq = srcu_dereference(fd->pq, &fd->pq_srcu); 274 if (!cq || !pq) { 275 srcu_read_unlock(&fd->pq_srcu, idx); 276 return -EIO; 277 } 278 279 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim); 280 281 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) { 282 srcu_read_unlock(&fd->pq_srcu, idx); 283 return -ENOSPC; 284 } 285 286 while (dim) { 287 const struct iovec *iov = iter_iov(from); 288 int ret; 289 unsigned long count = 0; 290 291 ret = hfi1_user_sdma_process_request( 292 fd, (struct iovec *)(iov + done), 293 dim, &count); 294 if (ret) { 295 reqs = ret; 296 break; 297 } 298 dim -= count; 299 done += count; 300 reqs++; 301 } 302 303 srcu_read_unlock(&fd->pq_srcu, idx); 304 return reqs; 305 } 306 307 static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf, 308 u64 memaddr, void *memvirt, dma_addr_t memdma, 309 ssize_t memlen, struct vm_area_struct *vma) 310 { 311 hfi1_cdbg(PROC, 312 "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx", 313 ctxt, subctxt, type, mapio, vmf, !!memdma, 314 memaddr ?: (u64)memvirt, memlen, 315 vma->vm_end - vma->vm_start, vma->vm_flags); 316 } 317 318 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 319 { 320 struct hfi1_filedata *fd = fp->private_data; 321 struct hfi1_ctxtdata *uctxt = fd->uctxt; 322 struct hfi1_devdata *dd; 323 unsigned long flags; 324 u64 token = vma->vm_pgoff << PAGE_SHIFT, 325 memaddr = 0; 326 void *memvirt = NULL; 327 dma_addr_t memdma = 0; 328 u8 subctxt, mapio = 0, vmf = 0, type; 329 ssize_t memlen = 0; 330 int ret = 0; 331 u16 ctxt; 332 333 if (!is_valid_mmap(token) || !uctxt || 334 !(vma->vm_flags & VM_SHARED)) { 335 ret = -EINVAL; 336 goto done; 337 } 338 dd = uctxt->dd; 339 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 340 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 341 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 342 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 343 ret = -EINVAL; 344 goto done; 345 } 346 347 /* 348 * vm_pgoff is used as a buffer selector cookie. Always mmap from 349 * the beginning. 350 */ 351 vma->vm_pgoff = 0; 352 flags = vma->vm_flags; 353 354 switch (type) { 355 case PIO_BUFS: 356 case PIO_BUFS_SOP: 357 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 358 /* chip pio base */ 359 (uctxt->sc->hw_context * BIT(16))) + 360 /* 64K PIO space / ctxt */ 361 (type == PIO_BUFS_SOP ? 362 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 363 /* 364 * Map only the amount allocated to the context, not the 365 * entire available context's PIO space. 366 */ 367 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 368 flags &= ~VM_MAYREAD; 369 flags |= VM_DONTCOPY | VM_DONTEXPAND; 370 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 371 mapio = 1; 372 break; 373 case PIO_CRED: { 374 u64 cr_page_offset; 375 if (flags & VM_WRITE) { 376 ret = -EPERM; 377 goto done; 378 } 379 /* 380 * The credit return location for this context could be on the 381 * second or third page allocated for credit returns (if number 382 * of enabled contexts > 64 and 128 respectively). 383 */ 384 cr_page_offset = ((u64)uctxt->sc->hw_free - 385 (u64)dd->cr_base[uctxt->numa_id].va) & 386 PAGE_MASK; 387 memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset; 388 memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset; 389 memlen = PAGE_SIZE; 390 flags &= ~VM_MAYWRITE; 391 flags |= VM_DONTCOPY | VM_DONTEXPAND; 392 /* 393 * The driver has already allocated memory for credit 394 * returns and programmed it into the chip. Has that 395 * memory been flagged as non-cached? 396 */ 397 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 398 break; 399 } 400 case RCV_HDRQ: 401 memlen = rcvhdrq_size(uctxt); 402 memvirt = uctxt->rcvhdrq; 403 memdma = uctxt->rcvhdrq_dma; 404 break; 405 case RCV_EGRBUF: { 406 unsigned long vm_start_save; 407 unsigned long vm_end_save; 408 int i; 409 /* 410 * The RcvEgr buffer need to be handled differently 411 * as multiple non-contiguous pages need to be mapped 412 * into the user process. 413 */ 414 memlen = uctxt->egrbufs.size; 415 if ((vma->vm_end - vma->vm_start) != memlen) { 416 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 417 (vma->vm_end - vma->vm_start), memlen); 418 ret = -EINVAL; 419 goto done; 420 } 421 if (vma->vm_flags & VM_WRITE) { 422 ret = -EPERM; 423 goto done; 424 } 425 vm_flags_clear(vma, VM_MAYWRITE); 426 /* 427 * Mmap multiple separate allocations into a single vma. From 428 * here, dma_mmap_coherent() calls dma_direct_mmap(), which 429 * requires the mmap to exactly fill the vma starting at 430 * vma_start. Adjust the vma start and end for each eager 431 * buffer segment mapped. Restore the originals when done. 432 */ 433 vm_start_save = vma->vm_start; 434 vm_end_save = vma->vm_end; 435 vma->vm_end = vma->vm_start; 436 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 437 memlen = uctxt->egrbufs.buffers[i].len; 438 memvirt = uctxt->egrbufs.buffers[i].addr; 439 memdma = uctxt->egrbufs.buffers[i].dma; 440 vma->vm_end += memlen; 441 mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, 442 memvirt, memdma, memlen, vma); 443 ret = dma_mmap_coherent(&dd->pcidev->dev, vma, 444 memvirt, memdma, memlen); 445 if (ret < 0) { 446 vma->vm_start = vm_start_save; 447 vma->vm_end = vm_end_save; 448 goto done; 449 } 450 vma->vm_start += memlen; 451 } 452 vma->vm_start = vm_start_save; 453 vma->vm_end = vm_end_save; 454 ret = 0; 455 goto done; 456 } 457 case UREGS: 458 /* 459 * Map only the page that contains this context's user 460 * registers. 461 */ 462 memaddr = (unsigned long) 463 (dd->physaddr + RXE_PER_CONTEXT_USER) 464 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 465 /* 466 * TidFlow table is on the same page as the rest of the 467 * user registers. 468 */ 469 memlen = PAGE_SIZE; 470 flags |= VM_DONTCOPY | VM_DONTEXPAND; 471 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 472 mapio = 1; 473 break; 474 case EVENTS: 475 /* 476 * Use the page where this context's flags are. User level 477 * knows where it's own bitmap is within the page. 478 */ 479 memaddr = (unsigned long) 480 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK; 481 memlen = PAGE_SIZE; 482 /* 483 * v3.7 removes VM_RESERVED but the effect is kept by 484 * using VM_IO. 485 */ 486 flags |= VM_IO | VM_DONTEXPAND; 487 vmf = 1; 488 break; 489 case STATUS: 490 if (flags & VM_WRITE) { 491 ret = -EPERM; 492 goto done; 493 } 494 memaddr = kvirt_to_phys((void *)dd->status); 495 memlen = PAGE_SIZE; 496 flags |= VM_IO | VM_DONTEXPAND; 497 break; 498 case RTAIL: 499 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 500 /* 501 * If the memory allocation failed, the context alloc 502 * also would have failed, so we would never get here 503 */ 504 ret = -EINVAL; 505 goto done; 506 } 507 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) { 508 ret = -EPERM; 509 goto done; 510 } 511 memlen = PAGE_SIZE; 512 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt); 513 memdma = uctxt->rcvhdrqtailaddr_dma; 514 flags &= ~VM_MAYWRITE; 515 break; 516 case SUBCTXT_UREGS: 517 memaddr = (u64)uctxt->subctxt_uregbase; 518 memlen = PAGE_SIZE; 519 flags |= VM_IO | VM_DONTEXPAND; 520 vmf = 1; 521 break; 522 case SUBCTXT_RCV_HDRQ: 523 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 524 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt; 525 flags |= VM_IO | VM_DONTEXPAND; 526 vmf = 1; 527 break; 528 case SUBCTXT_EGRBUF: 529 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 530 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 531 flags |= VM_IO | VM_DONTEXPAND; 532 flags &= ~VM_MAYWRITE; 533 vmf = 1; 534 break; 535 case SDMA_COMP: { 536 struct hfi1_user_sdma_comp_q *cq = fd->cq; 537 538 if (!cq) { 539 ret = -EFAULT; 540 goto done; 541 } 542 memaddr = (u64)cq->comps; 543 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 544 flags |= VM_IO | VM_DONTEXPAND; 545 vmf = 1; 546 break; 547 } 548 default: 549 ret = -EINVAL; 550 break; 551 } 552 553 if ((vma->vm_end - vma->vm_start) != memlen) { 554 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 555 uctxt->ctxt, fd->subctxt, 556 (vma->vm_end - vma->vm_start), memlen); 557 ret = -EINVAL; 558 goto done; 559 } 560 561 vm_flags_reset(vma, flags); 562 mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma, 563 memlen, vma); 564 if (vmf) { 565 vma->vm_pgoff = PFN_DOWN(memaddr); 566 vma->vm_ops = &vm_ops; 567 ret = 0; 568 } else if (memdma) { 569 ret = dma_mmap_coherent(&dd->pcidev->dev, vma, 570 memvirt, memdma, memlen); 571 } else if (mapio) { 572 ret = io_remap_pfn_range(vma, vma->vm_start, 573 PFN_DOWN(memaddr), 574 memlen, 575 vma->vm_page_prot); 576 } else if (memvirt) { 577 ret = remap_pfn_range(vma, vma->vm_start, 578 PFN_DOWN(__pa(memvirt)), 579 memlen, 580 vma->vm_page_prot); 581 } else { 582 ret = remap_pfn_range(vma, vma->vm_start, 583 PFN_DOWN(memaddr), 584 memlen, 585 vma->vm_page_prot); 586 } 587 done: 588 return ret; 589 } 590 591 /* 592 * Local (non-chip) user memory is not mapped right away but as it is 593 * accessed by the user-level code. 594 */ 595 static vm_fault_t vma_fault(struct vm_fault *vmf) 596 { 597 struct page *page; 598 599 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 600 if (!page) 601 return VM_FAULT_SIGBUS; 602 603 get_page(page); 604 vmf->page = page; 605 606 return 0; 607 } 608 609 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt) 610 { 611 struct hfi1_ctxtdata *uctxt; 612 __poll_t pollflag; 613 614 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 615 if (!uctxt) 616 pollflag = EPOLLERR; 617 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 618 pollflag = poll_urgent(fp, pt); 619 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 620 pollflag = poll_next(fp, pt); 621 else /* invalid */ 622 pollflag = EPOLLERR; 623 624 return pollflag; 625 } 626 627 static int hfi1_file_close(struct inode *inode, struct file *fp) 628 { 629 struct hfi1_filedata *fdata = fp->private_data; 630 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 631 struct hfi1_devdata *dd = container_of(inode->i_cdev, 632 struct hfi1_devdata, 633 user_cdev); 634 unsigned long flags, *ev; 635 636 fp->private_data = NULL; 637 638 if (!uctxt) 639 goto done; 640 641 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 642 643 flush_wc(); 644 /* drain user sdma queue */ 645 hfi1_user_sdma_free_queues(fdata, uctxt); 646 647 /* release the cpu */ 648 hfi1_put_proc_affinity(fdata->rec_cpu_num); 649 650 /* clean up rcv side */ 651 hfi1_user_exp_rcv_free(fdata); 652 653 /* 654 * fdata->uctxt is used in the above cleanup. It is not ready to be 655 * removed until here. 656 */ 657 fdata->uctxt = NULL; 658 hfi1_rcd_put(uctxt); 659 660 /* 661 * Clear any left over, unhandled events so the next process that 662 * gets this context doesn't get confused. 663 */ 664 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt; 665 *ev = 0; 666 667 spin_lock_irqsave(&dd->uctxt_lock, flags); 668 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts); 669 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 670 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 671 goto done; 672 } 673 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 674 675 /* 676 * Disable receive context and interrupt available, reset all 677 * RcvCtxtCtrl bits to default values. 678 */ 679 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 680 HFI1_RCVCTRL_TIDFLOW_DIS | 681 HFI1_RCVCTRL_INTRAVAIL_DIS | 682 HFI1_RCVCTRL_TAILUPD_DIS | 683 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 684 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 685 HFI1_RCVCTRL_NO_EGR_DROP_DIS | 686 HFI1_RCVCTRL_URGENT_DIS, uctxt); 687 /* Clear the context's J_KEY */ 688 hfi1_clear_ctxt_jkey(dd, uctxt); 689 /* 690 * If a send context is allocated, reset context integrity 691 * checks to default and disable the send context. 692 */ 693 if (uctxt->sc) { 694 sc_disable(uctxt->sc); 695 set_pio_integrity(uctxt->sc); 696 } 697 698 hfi1_free_ctxt_rcv_groups(uctxt); 699 hfi1_clear_ctxt_pkey(dd, uctxt); 700 701 uctxt->event_flags = 0; 702 703 deallocate_ctxt(uctxt); 704 done: 705 706 if (refcount_dec_and_test(&dd->user_refcount)) 707 complete(&dd->user_comp); 708 709 cleanup_srcu_struct(&fdata->pq_srcu); 710 kfree(fdata); 711 return 0; 712 } 713 714 /* 715 * Convert kernel *virtual* addresses to physical addresses. 716 * This is used to vmalloc'ed addresses. 717 */ 718 static u64 kvirt_to_phys(void *addr) 719 { 720 struct page *page; 721 u64 paddr = 0; 722 723 page = vmalloc_to_page(addr); 724 if (page) 725 paddr = page_to_pfn(page) << PAGE_SHIFT; 726 727 return paddr; 728 } 729 730 /** 731 * complete_subctxt - complete sub-context info 732 * @fd: valid filedata pointer 733 * 734 * Sub-context info can only be set up after the base context 735 * has been completed. This is indicated by the clearing of the 736 * HFI1_CTXT_BASE_UINIT bit. 737 * 738 * Wait for the bit to be cleared, and then complete the subcontext 739 * initialization. 740 * 741 */ 742 static int complete_subctxt(struct hfi1_filedata *fd) 743 { 744 int ret; 745 unsigned long flags; 746 747 /* 748 * sub-context info can only be set up after the base context 749 * has been completed. 750 */ 751 ret = wait_event_interruptible( 752 fd->uctxt->wait, 753 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags)); 754 755 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags)) 756 ret = -ENOMEM; 757 758 /* Finish the sub-context init */ 759 if (!ret) { 760 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id); 761 ret = init_user_ctxt(fd, fd->uctxt); 762 } 763 764 if (ret) { 765 spin_lock_irqsave(&fd->dd->uctxt_lock, flags); 766 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts); 767 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags); 768 hfi1_rcd_put(fd->uctxt); 769 fd->uctxt = NULL; 770 } 771 772 return ret; 773 } 774 775 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len) 776 { 777 int ret; 778 unsigned int swmajor; 779 struct hfi1_ctxtdata *uctxt = NULL; 780 struct hfi1_user_info uinfo; 781 782 if (fd->uctxt) 783 return -EINVAL; 784 785 if (sizeof(uinfo) != len) 786 return -EINVAL; 787 788 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo))) 789 return -EFAULT; 790 791 swmajor = uinfo.userversion >> 16; 792 if (swmajor != HFI1_USER_SWMAJOR) 793 return -ENODEV; 794 795 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS) 796 return -EINVAL; 797 798 /* 799 * Acquire the mutex to protect against multiple creations of what 800 * could be a shared base context. 801 */ 802 mutex_lock(&hfi1_mutex); 803 /* 804 * Get a sub context if available (fd->uctxt will be set). 805 * ret < 0 error, 0 no context, 1 sub-context found 806 */ 807 ret = find_sub_ctxt(fd, &uinfo); 808 809 /* 810 * Allocate a base context if context sharing is not required or a 811 * sub context wasn't found. 812 */ 813 if (!ret) 814 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt); 815 816 mutex_unlock(&hfi1_mutex); 817 818 /* Depending on the context type, finish the appropriate init */ 819 switch (ret) { 820 case 0: 821 ret = setup_base_ctxt(fd, uctxt); 822 if (ret) 823 deallocate_ctxt(uctxt); 824 break; 825 case 1: 826 ret = complete_subctxt(fd); 827 break; 828 default: 829 break; 830 } 831 832 return ret; 833 } 834 835 /** 836 * match_ctxt - match context 837 * @fd: valid filedata pointer 838 * @uinfo: user info to compare base context with 839 * @uctxt: context to compare uinfo to. 840 * 841 * Compare the given context with the given information to see if it 842 * can be used for a sub context. 843 */ 844 static int match_ctxt(struct hfi1_filedata *fd, 845 const struct hfi1_user_info *uinfo, 846 struct hfi1_ctxtdata *uctxt) 847 { 848 struct hfi1_devdata *dd = fd->dd; 849 unsigned long flags; 850 u16 subctxt; 851 852 /* Skip dynamically allocated kernel contexts */ 853 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL)) 854 return 0; 855 856 /* Skip ctxt if it doesn't match the requested one */ 857 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) || 858 uctxt->jkey != generate_jkey(current_uid()) || 859 uctxt->subctxt_id != uinfo->subctxt_id || 860 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 861 return 0; 862 863 /* Verify the sharing process matches the base */ 864 if (uctxt->userversion != uinfo->userversion) 865 return -EINVAL; 866 867 /* Find an unused sub context */ 868 spin_lock_irqsave(&dd->uctxt_lock, flags); 869 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) { 870 /* context is being closed, do not use */ 871 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 872 return 0; 873 } 874 875 subctxt = find_first_zero_bit(uctxt->in_use_ctxts, 876 HFI1_MAX_SHARED_CTXTS); 877 if (subctxt >= uctxt->subctxt_cnt) { 878 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 879 return -EBUSY; 880 } 881 882 fd->subctxt = subctxt; 883 __set_bit(fd->subctxt, uctxt->in_use_ctxts); 884 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 885 886 fd->uctxt = uctxt; 887 hfi1_rcd_get(uctxt); 888 889 return 1; 890 } 891 892 /** 893 * find_sub_ctxt - fund sub-context 894 * @fd: valid filedata pointer 895 * @uinfo: matching info to use to find a possible context to share. 896 * 897 * The hfi1_mutex must be held when this function is called. It is 898 * necessary to ensure serialized creation of shared contexts. 899 * 900 * Return: 901 * 0 No sub-context found 902 * 1 Subcontext found and allocated 903 * errno EINVAL (incorrect parameters) 904 * EBUSY (all sub contexts in use) 905 */ 906 static int find_sub_ctxt(struct hfi1_filedata *fd, 907 const struct hfi1_user_info *uinfo) 908 { 909 struct hfi1_ctxtdata *uctxt; 910 struct hfi1_devdata *dd = fd->dd; 911 u16 i; 912 int ret; 913 914 if (!uinfo->subctxt_cnt) 915 return 0; 916 917 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) { 918 uctxt = hfi1_rcd_get_by_index(dd, i); 919 if (uctxt) { 920 ret = match_ctxt(fd, uinfo, uctxt); 921 hfi1_rcd_put(uctxt); 922 /* value of != 0 will return */ 923 if (ret) 924 return ret; 925 } 926 } 927 928 return 0; 929 } 930 931 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd, 932 struct hfi1_user_info *uinfo, 933 struct hfi1_ctxtdata **rcd) 934 { 935 struct hfi1_ctxtdata *uctxt; 936 int ret, numa; 937 938 if (dd->flags & HFI1_FROZEN) { 939 /* 940 * Pick an error that is unique from all other errors 941 * that are returned so the user process knows that 942 * it tried to allocate while the SPC was frozen. It 943 * it should be able to retry with success in a short 944 * while. 945 */ 946 return -EIO; 947 } 948 949 if (!dd->freectxts) 950 return -EBUSY; 951 952 /* 953 * If we don't have a NUMA node requested, preference is towards 954 * device NUMA node. 955 */ 956 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); 957 if (fd->rec_cpu_num != -1) 958 numa = cpu_to_node(fd->rec_cpu_num); 959 else 960 numa = numa_node_id(); 961 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt); 962 if (ret < 0) { 963 dd_dev_err(dd, "user ctxtdata allocation failed\n"); 964 return ret; 965 } 966 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 967 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 968 uctxt->numa_id); 969 970 /* 971 * Allocate and enable a PIO send context. 972 */ 973 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node); 974 if (!uctxt->sc) { 975 ret = -ENOMEM; 976 goto ctxdata_free; 977 } 978 hfi1_cdbg(PROC, "allocated send context %u(%u)", uctxt->sc->sw_index, 979 uctxt->sc->hw_context); 980 ret = sc_enable(uctxt->sc); 981 if (ret) 982 goto ctxdata_free; 983 984 /* 985 * Setup sub context information if the user-level has requested 986 * sub contexts. 987 * This has to be done here so the rest of the sub-contexts find the 988 * proper base context. 989 * NOTE: _set_bit() can be used here because the context creation is 990 * protected by the mutex (rather than the spin_lock), and will be the 991 * very first instance of this context. 992 */ 993 __set_bit(0, uctxt->in_use_ctxts); 994 if (uinfo->subctxt_cnt) 995 init_subctxts(uctxt, uinfo); 996 uctxt->userversion = uinfo->userversion; 997 uctxt->flags = hfi1_cap_mask; /* save current flag state */ 998 init_waitqueue_head(&uctxt->wait); 999 strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 1000 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 1001 uctxt->jkey = generate_jkey(current_uid()); 1002 hfi1_stats.sps_ctxts++; 1003 /* 1004 * Disable ASPM when there are open user/PSM contexts to avoid 1005 * issues with ASPM L1 exit latency 1006 */ 1007 if (dd->freectxts-- == dd->num_user_contexts) 1008 aspm_disable_all(dd); 1009 1010 *rcd = uctxt; 1011 1012 return 0; 1013 1014 ctxdata_free: 1015 hfi1_free_ctxt(uctxt); 1016 return ret; 1017 } 1018 1019 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt) 1020 { 1021 mutex_lock(&hfi1_mutex); 1022 hfi1_stats.sps_ctxts--; 1023 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts) 1024 aspm_enable_all(uctxt->dd); 1025 mutex_unlock(&hfi1_mutex); 1026 1027 hfi1_free_ctxt(uctxt); 1028 } 1029 1030 static void init_subctxts(struct hfi1_ctxtdata *uctxt, 1031 const struct hfi1_user_info *uinfo) 1032 { 1033 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1034 uctxt->subctxt_id = uinfo->subctxt_id; 1035 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1036 } 1037 1038 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1039 { 1040 int ret = 0; 1041 u16 num_subctxts = uctxt->subctxt_cnt; 1042 1043 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1044 if (!uctxt->subctxt_uregbase) 1045 return -ENOMEM; 1046 1047 /* We can take the size of the RcvHdr Queue from the master */ 1048 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) * 1049 num_subctxts); 1050 if (!uctxt->subctxt_rcvhdr_base) { 1051 ret = -ENOMEM; 1052 goto bail_ureg; 1053 } 1054 1055 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1056 num_subctxts); 1057 if (!uctxt->subctxt_rcvegrbuf) { 1058 ret = -ENOMEM; 1059 goto bail_rhdr; 1060 } 1061 1062 return 0; 1063 1064 bail_rhdr: 1065 vfree(uctxt->subctxt_rcvhdr_base); 1066 uctxt->subctxt_rcvhdr_base = NULL; 1067 bail_ureg: 1068 vfree(uctxt->subctxt_uregbase); 1069 uctxt->subctxt_uregbase = NULL; 1070 1071 return ret; 1072 } 1073 1074 static void user_init(struct hfi1_ctxtdata *uctxt) 1075 { 1076 unsigned int rcvctrl_ops = 0; 1077 1078 /* initialize poll variables... */ 1079 uctxt->urgent = 0; 1080 uctxt->urgent_poll = 0; 1081 1082 /* 1083 * Now enable the ctxt for receive. 1084 * For chips that are set to DMA the tail register to memory 1085 * when they change (and when the update bit transitions from 1086 * 0 to 1. So for those chips, we turn it off and then back on. 1087 * This will (very briefly) affect any other open ctxts, but the 1088 * duration is very short, and therefore isn't an issue. We 1089 * explicitly set the in-memory tail copy to 0 beforehand, so we 1090 * don't have to wait to be sure the DMA update has happened 1091 * (chip resets head/tail to 0 on transition to enable). 1092 */ 1093 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1094 clear_rcvhdrtail(uctxt); 1095 1096 /* Setup J_KEY before enabling the context */ 1097 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey); 1098 1099 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1100 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB; 1101 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) 1102 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1103 /* 1104 * Ignore the bit in the flags for now until proper 1105 * support for multiple packet per rcv array entry is 1106 * added. 1107 */ 1108 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1109 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1110 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1111 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1112 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1113 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1114 /* 1115 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1116 * We can't rely on the correct value to be set from prior 1117 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1118 * for both cases. 1119 */ 1120 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) 1121 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1122 else 1123 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1124 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt); 1125 } 1126 1127 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1128 { 1129 struct hfi1_ctxt_info cinfo; 1130 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1131 1132 if (sizeof(cinfo) != len) 1133 return -EINVAL; 1134 1135 memset(&cinfo, 0, sizeof(cinfo)); 1136 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & 1137 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | 1138 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | 1139 HFI1_CAP_KGET_MASK(uctxt->flags, K2U); 1140 /* adjust flag if this fd is not able to cache */ 1141 if (!fd->use_mn) 1142 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ 1143 1144 cinfo.num_active = hfi1_count_active_units(); 1145 cinfo.unit = uctxt->dd->unit; 1146 cinfo.ctxt = uctxt->ctxt; 1147 cinfo.subctxt = fd->subctxt; 1148 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1149 uctxt->dd->rcv_entries.group_size) + 1150 uctxt->expected_count; 1151 cinfo.credits = uctxt->sc->credits; 1152 cinfo.numa_node = uctxt->numa_id; 1153 cinfo.rec_cpu = fd->rec_cpu_num; 1154 cinfo.send_ctxt = uctxt->sc->hw_context; 1155 1156 cinfo.egrtids = uctxt->egrbufs.alloced; 1157 cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt); 1158 cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2; 1159 cinfo.sdma_ring_size = fd->cq->nentries; 1160 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1161 1162 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo); 1163 if (copy_to_user((void __user *)arg, &cinfo, len)) 1164 return -EFAULT; 1165 1166 return 0; 1167 } 1168 1169 static int init_user_ctxt(struct hfi1_filedata *fd, 1170 struct hfi1_ctxtdata *uctxt) 1171 { 1172 int ret; 1173 1174 ret = hfi1_user_sdma_alloc_queues(uctxt, fd); 1175 if (ret) 1176 return ret; 1177 1178 ret = hfi1_user_exp_rcv_init(fd, uctxt); 1179 if (ret) 1180 hfi1_user_sdma_free_queues(fd, uctxt); 1181 1182 return ret; 1183 } 1184 1185 static int setup_base_ctxt(struct hfi1_filedata *fd, 1186 struct hfi1_ctxtdata *uctxt) 1187 { 1188 struct hfi1_devdata *dd = uctxt->dd; 1189 int ret = 0; 1190 1191 hfi1_init_ctxt(uctxt->sc); 1192 1193 /* Now allocate the RcvHdr queue and eager buffers. */ 1194 ret = hfi1_create_rcvhdrq(dd, uctxt); 1195 if (ret) 1196 goto done; 1197 1198 ret = hfi1_setup_eagerbufs(uctxt); 1199 if (ret) 1200 goto done; 1201 1202 /* If sub-contexts are enabled, do the appropriate setup */ 1203 if (uctxt->subctxt_cnt) 1204 ret = setup_subctxt(uctxt); 1205 if (ret) 1206 goto done; 1207 1208 ret = hfi1_alloc_ctxt_rcv_groups(uctxt); 1209 if (ret) 1210 goto done; 1211 1212 ret = init_user_ctxt(fd, uctxt); 1213 if (ret) { 1214 hfi1_free_ctxt_rcv_groups(uctxt); 1215 goto done; 1216 } 1217 1218 user_init(uctxt); 1219 1220 /* Now that the context is set up, the fd can get a reference. */ 1221 fd->uctxt = uctxt; 1222 hfi1_rcd_get(uctxt); 1223 1224 done: 1225 if (uctxt->subctxt_cnt) { 1226 /* 1227 * On error, set the failed bit so sub-contexts will clean up 1228 * correctly. 1229 */ 1230 if (ret) 1231 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags); 1232 1233 /* 1234 * Base context is done (successfully or not), notify anybody 1235 * using a sub-context that is waiting for this completion. 1236 */ 1237 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags); 1238 wake_up(&uctxt->wait); 1239 } 1240 1241 return ret; 1242 } 1243 1244 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len) 1245 { 1246 struct hfi1_base_info binfo; 1247 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1248 struct hfi1_devdata *dd = uctxt->dd; 1249 unsigned offset; 1250 1251 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt); 1252 1253 if (sizeof(binfo) != len) 1254 return -EINVAL; 1255 1256 memset(&binfo, 0, sizeof(binfo)); 1257 binfo.hw_version = dd->revision; 1258 binfo.sw_version = HFI1_USER_SWVERSION; 1259 binfo.bthqp = RVT_KDETH_QP_PREFIX; 1260 binfo.jkey = uctxt->jkey; 1261 /* 1262 * If more than 64 contexts are enabled the allocated credit 1263 * return will span two or three contiguous pages. Since we only 1264 * map the page containing the context's credit return address, 1265 * we need to calculate the offset in the proper page. 1266 */ 1267 offset = ((u64)uctxt->sc->hw_free - 1268 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1269 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1270 fd->subctxt, offset); 1271 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1272 fd->subctxt, 1273 uctxt->sc->base_addr); 1274 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1275 uctxt->ctxt, 1276 fd->subctxt, 1277 uctxt->sc->base_addr); 1278 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1279 fd->subctxt, 1280 uctxt->rcvhdrq); 1281 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1282 fd->subctxt, 1283 uctxt->egrbufs.rcvtids[0].dma); 1284 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1285 fd->subctxt, 0); 1286 /* 1287 * user regs are at 1288 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1289 */ 1290 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1291 fd->subctxt, 0); 1292 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) * 1293 sizeof(*dd->events)); 1294 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1295 fd->subctxt, 1296 offset); 1297 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1298 fd->subctxt, 1299 dd->status); 1300 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1301 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1302 fd->subctxt, 0); 1303 if (uctxt->subctxt_cnt) { 1304 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1305 uctxt->ctxt, 1306 fd->subctxt, 0); 1307 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1308 uctxt->ctxt, 1309 fd->subctxt, 0); 1310 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1311 uctxt->ctxt, 1312 fd->subctxt, 0); 1313 } 1314 1315 if (copy_to_user((void __user *)arg, &binfo, len)) 1316 return -EFAULT; 1317 1318 return 0; 1319 } 1320 1321 /** 1322 * user_exp_rcv_setup - Set up the given tid rcv list 1323 * @fd: file data of the current driver instance 1324 * @arg: ioctl argumnent for user space information 1325 * @len: length of data structure associated with ioctl command 1326 * 1327 * Wrapper to validate ioctl information before doing _rcv_setup. 1328 * 1329 */ 1330 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg, 1331 u32 len) 1332 { 1333 int ret; 1334 unsigned long addr; 1335 struct hfi1_tid_info tinfo; 1336 1337 if (sizeof(tinfo) != len) 1338 return -EINVAL; 1339 1340 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1341 return -EFAULT; 1342 1343 ret = hfi1_user_exp_rcv_setup(fd, &tinfo); 1344 if (!ret) { 1345 /* 1346 * Copy the number of tidlist entries we used 1347 * and the length of the buffer we registered. 1348 */ 1349 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1350 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1351 sizeof(tinfo.tidcnt))) 1352 ret = -EFAULT; 1353 1354 addr = arg + offsetof(struct hfi1_tid_info, length); 1355 if (!ret && copy_to_user((void __user *)addr, &tinfo.length, 1356 sizeof(tinfo.length))) 1357 ret = -EFAULT; 1358 1359 if (ret) 1360 hfi1_user_exp_rcv_invalid(fd, &tinfo); 1361 } 1362 1363 return ret; 1364 } 1365 1366 /** 1367 * user_exp_rcv_clear - Clear the given tid rcv list 1368 * @fd: file data of the current driver instance 1369 * @arg: ioctl argumnent for user space information 1370 * @len: length of data structure associated with ioctl command 1371 * 1372 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because 1373 * of this, we need to use this wrapper to copy the user space information 1374 * before doing the clear. 1375 */ 1376 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg, 1377 u32 len) 1378 { 1379 int ret; 1380 unsigned long addr; 1381 struct hfi1_tid_info tinfo; 1382 1383 if (sizeof(tinfo) != len) 1384 return -EINVAL; 1385 1386 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1387 return -EFAULT; 1388 1389 ret = hfi1_user_exp_rcv_clear(fd, &tinfo); 1390 if (!ret) { 1391 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1392 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1393 sizeof(tinfo.tidcnt))) 1394 return -EFAULT; 1395 } 1396 1397 return ret; 1398 } 1399 1400 /** 1401 * user_exp_rcv_invalid - Invalidate the given tid rcv list 1402 * @fd: file data of the current driver instance 1403 * @arg: ioctl argumnent for user space information 1404 * @len: length of data structure associated with ioctl command 1405 * 1406 * Wrapper to validate ioctl information before doing _rcv_invalid. 1407 * 1408 */ 1409 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg, 1410 u32 len) 1411 { 1412 int ret; 1413 unsigned long addr; 1414 struct hfi1_tid_info tinfo; 1415 1416 if (sizeof(tinfo) != len) 1417 return -EINVAL; 1418 1419 if (!fd->invalid_tids) 1420 return -EINVAL; 1421 1422 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo)))) 1423 return -EFAULT; 1424 1425 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo); 1426 if (ret) 1427 return ret; 1428 1429 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 1430 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 1431 sizeof(tinfo.tidcnt))) 1432 ret = -EFAULT; 1433 1434 return ret; 1435 } 1436 1437 static __poll_t poll_urgent(struct file *fp, 1438 struct poll_table_struct *pt) 1439 { 1440 struct hfi1_filedata *fd = fp->private_data; 1441 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1442 struct hfi1_devdata *dd = uctxt->dd; 1443 __poll_t pollflag; 1444 1445 poll_wait(fp, &uctxt->wait, pt); 1446 1447 spin_lock_irq(&dd->uctxt_lock); 1448 if (uctxt->urgent != uctxt->urgent_poll) { 1449 pollflag = EPOLLIN | EPOLLRDNORM; 1450 uctxt->urgent_poll = uctxt->urgent; 1451 } else { 1452 pollflag = 0; 1453 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1454 } 1455 spin_unlock_irq(&dd->uctxt_lock); 1456 1457 return pollflag; 1458 } 1459 1460 static __poll_t poll_next(struct file *fp, 1461 struct poll_table_struct *pt) 1462 { 1463 struct hfi1_filedata *fd = fp->private_data; 1464 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1465 struct hfi1_devdata *dd = uctxt->dd; 1466 __poll_t pollflag; 1467 1468 poll_wait(fp, &uctxt->wait, pt); 1469 1470 spin_lock_irq(&dd->uctxt_lock); 1471 if (hdrqempty(uctxt)) { 1472 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1473 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt); 1474 pollflag = 0; 1475 } else { 1476 pollflag = EPOLLIN | EPOLLRDNORM; 1477 } 1478 spin_unlock_irq(&dd->uctxt_lock); 1479 1480 return pollflag; 1481 } 1482 1483 /* 1484 * Find all user contexts in use, and set the specified bit in their 1485 * event mask. 1486 * See also find_ctxt() for a similar use, that is specific to send buffers. 1487 */ 1488 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1489 { 1490 struct hfi1_ctxtdata *uctxt; 1491 struct hfi1_devdata *dd = ppd->dd; 1492 u16 ctxt; 1493 1494 if (!dd->events) 1495 return -EINVAL; 1496 1497 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; 1498 ctxt++) { 1499 uctxt = hfi1_rcd_get_by_index(dd, ctxt); 1500 if (uctxt) { 1501 unsigned long *evs; 1502 int i; 1503 /* 1504 * subctxt_cnt is 0 if not shared, so do base 1505 * separately, first, then remaining subctxt, if any 1506 */ 1507 evs = dd->events + uctxt_offset(uctxt); 1508 set_bit(evtbit, evs); 1509 for (i = 1; i < uctxt->subctxt_cnt; i++) 1510 set_bit(evtbit, evs + i); 1511 hfi1_rcd_put(uctxt); 1512 } 1513 } 1514 1515 return 0; 1516 } 1517 1518 /** 1519 * manage_rcvq - manage a context's receive queue 1520 * @uctxt: the context 1521 * @subctxt: the sub-context 1522 * @arg: start/stop action to carry out 1523 * 1524 * start_stop == 0 disables receive on the context, for use in queue 1525 * overflow conditions. start_stop==1 re-enables, to be used to 1526 * re-init the software copy of the head register 1527 */ 1528 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1529 unsigned long arg) 1530 { 1531 struct hfi1_devdata *dd = uctxt->dd; 1532 unsigned int rcvctrl_op; 1533 int start_stop; 1534 1535 if (subctxt) 1536 return 0; 1537 1538 if (get_user(start_stop, (int __user *)arg)) 1539 return -EFAULT; 1540 1541 /* atomically clear receive enable ctxt. */ 1542 if (start_stop) { 1543 /* 1544 * On enable, force in-memory copy of the tail register to 1545 * 0, so that protocol code doesn't have to worry about 1546 * whether or not the chip has yet updated the in-memory 1547 * copy or not on return from the system call. The chip 1548 * always resets it's tail register back to 0 on a 1549 * transition from disabled to enabled. 1550 */ 1551 if (hfi1_rcvhdrtail_kvaddr(uctxt)) 1552 clear_rcvhdrtail(uctxt); 1553 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1554 } else { 1555 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1556 } 1557 hfi1_rcvctrl(dd, rcvctrl_op, uctxt); 1558 /* always; new head should be equal to new tail; see above */ 1559 1560 return 0; 1561 } 1562 1563 /* 1564 * clear the event notifier events for this context. 1565 * User process then performs actions appropriate to bit having been 1566 * set, if desired, and checks again in future. 1567 */ 1568 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt, 1569 unsigned long arg) 1570 { 1571 int i; 1572 struct hfi1_devdata *dd = uctxt->dd; 1573 unsigned long *evs; 1574 unsigned long events; 1575 1576 if (!dd->events) 1577 return 0; 1578 1579 if (get_user(events, (unsigned long __user *)arg)) 1580 return -EFAULT; 1581 1582 evs = dd->events + uctxt_offset(uctxt) + subctxt; 1583 1584 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1585 if (!test_bit(i, &events)) 1586 continue; 1587 clear_bit(i, evs); 1588 } 1589 return 0; 1590 } 1591 1592 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg) 1593 { 1594 int i; 1595 struct hfi1_pportdata *ppd = uctxt->ppd; 1596 struct hfi1_devdata *dd = uctxt->dd; 1597 u16 pkey; 1598 1599 if (!HFI1_CAP_IS_USET(PKEY_CHECK)) 1600 return -EPERM; 1601 1602 if (get_user(pkey, (u16 __user *)arg)) 1603 return -EFAULT; 1604 1605 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) 1606 return -EINVAL; 1607 1608 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1609 if (pkey == ppd->pkeys[i]) 1610 return hfi1_set_ctxt_pkey(dd, uctxt, pkey); 1611 1612 return -ENOENT; 1613 } 1614 1615 /** 1616 * ctxt_reset - Reset the user context 1617 * @uctxt: valid user context 1618 */ 1619 static int ctxt_reset(struct hfi1_ctxtdata *uctxt) 1620 { 1621 struct send_context *sc; 1622 struct hfi1_devdata *dd; 1623 int ret = 0; 1624 1625 if (!uctxt || !uctxt->dd || !uctxt->sc) 1626 return -EINVAL; 1627 1628 /* 1629 * There is no protection here. User level has to guarantee that 1630 * no one will be writing to the send context while it is being 1631 * re-initialized. If user level breaks that guarantee, it will 1632 * break it's own context and no one else's. 1633 */ 1634 dd = uctxt->dd; 1635 sc = uctxt->sc; 1636 1637 /* 1638 * Wait until the interrupt handler has marked the context as 1639 * halted or frozen. Report error if we time out. 1640 */ 1641 wait_event_interruptible_timeout( 1642 sc->halt_wait, (sc->flags & SCF_HALTED), 1643 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1644 if (!(sc->flags & SCF_HALTED)) 1645 return -ENOLCK; 1646 1647 /* 1648 * If the send context was halted due to a Freeze, wait until the 1649 * device has been "unfrozen" before resetting the context. 1650 */ 1651 if (sc->flags & SCF_FROZEN) { 1652 wait_event_interruptible_timeout( 1653 dd->event_queue, 1654 !(READ_ONCE(dd->flags) & HFI1_FROZEN), 1655 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 1656 if (dd->flags & HFI1_FROZEN) 1657 return -ENOLCK; 1658 1659 if (dd->flags & HFI1_FORCED_FREEZE) 1660 /* 1661 * Don't allow context reset if we are into 1662 * forced freeze 1663 */ 1664 return -ENODEV; 1665 1666 sc_disable(sc); 1667 ret = sc_enable(sc); 1668 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt); 1669 } else { 1670 ret = sc_restart(sc); 1671 } 1672 if (!ret) 1673 sc_return_credits(sc); 1674 1675 return ret; 1676 } 1677 1678 static void user_remove(struct hfi1_devdata *dd) 1679 { 1680 1681 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1682 } 1683 1684 static int user_add(struct hfi1_devdata *dd) 1685 { 1686 char name[10]; 1687 int ret; 1688 1689 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1690 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1691 &dd->user_cdev, &dd->user_device, 1692 true, &dd->verbs_dev.rdi.ibdev.dev.kobj); 1693 if (ret) 1694 user_remove(dd); 1695 1696 return ret; 1697 } 1698 1699 /* 1700 * Create per-unit files in /dev 1701 */ 1702 int hfi1_device_create(struct hfi1_devdata *dd) 1703 { 1704 return user_add(dd); 1705 } 1706 1707 /* 1708 * Remove per-unit files in /dev 1709 * void, core kernel returns no errors for this stuff 1710 */ 1711 void hfi1_device_remove(struct hfi1_devdata *dd) 1712 { 1713 user_remove(dd); 1714 } 1715