1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/poll.h> 48 #include <linux/cdev.h> 49 #include <linux/vmalloc.h> 50 #include <linux/io.h> 51 52 #include <rdma/ib.h> 53 54 #include "hfi.h" 55 #include "pio.h" 56 #include "device.h" 57 #include "common.h" 58 #include "trace.h" 59 #include "user_sdma.h" 60 #include "user_exp_rcv.h" 61 #include "eprom.h" 62 #include "aspm.h" 63 #include "mmu_rb.h" 64 65 #undef pr_fmt 66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 67 68 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ 69 70 /* 71 * File operation functions 72 */ 73 static int hfi1_file_open(struct inode *, struct file *); 74 static int hfi1_file_close(struct inode *, struct file *); 75 static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *); 76 static unsigned int hfi1_poll(struct file *, struct poll_table_struct *); 77 static int hfi1_file_mmap(struct file *, struct vm_area_struct *); 78 79 static u64 kvirt_to_phys(void *); 80 static int assign_ctxt(struct file *, struct hfi1_user_info *); 81 static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *); 82 static int user_init(struct file *); 83 static int get_ctxt_info(struct file *, void __user *, __u32); 84 static int get_base_info(struct file *, void __user *, __u32); 85 static int setup_ctxt(struct file *); 86 static int setup_subctxt(struct hfi1_ctxtdata *); 87 static int get_user_context(struct file *, struct hfi1_user_info *, int); 88 static int find_shared_ctxt(struct file *, const struct hfi1_user_info *); 89 static int allocate_ctxt(struct file *, struct hfi1_devdata *, 90 struct hfi1_user_info *); 91 static unsigned int poll_urgent(struct file *, struct poll_table_struct *); 92 static unsigned int poll_next(struct file *, struct poll_table_struct *); 93 static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long); 94 static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16); 95 static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int); 96 static int vma_fault(struct vm_area_struct *, struct vm_fault *); 97 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 98 unsigned long arg); 99 100 static const struct file_operations hfi1_file_ops = { 101 .owner = THIS_MODULE, 102 .write_iter = hfi1_write_iter, 103 .open = hfi1_file_open, 104 .release = hfi1_file_close, 105 .unlocked_ioctl = hfi1_file_ioctl, 106 .poll = hfi1_poll, 107 .mmap = hfi1_file_mmap, 108 .llseek = noop_llseek, 109 }; 110 111 static struct vm_operations_struct vm_ops = { 112 .fault = vma_fault, 113 }; 114 115 /* 116 * Types of memories mapped into user processes' space 117 */ 118 enum mmap_types { 119 PIO_BUFS = 1, 120 PIO_BUFS_SOP, 121 PIO_CRED, 122 RCV_HDRQ, 123 RCV_EGRBUF, 124 UREGS, 125 EVENTS, 126 STATUS, 127 RTAIL, 128 SUBCTXT_UREGS, 129 SUBCTXT_RCV_HDRQ, 130 SUBCTXT_EGRBUF, 131 SDMA_COMP 132 }; 133 134 /* 135 * Masks and offsets defining the mmap tokens 136 */ 137 #define HFI1_MMAP_OFFSET_MASK 0xfffULL 138 #define HFI1_MMAP_OFFSET_SHIFT 0 139 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL 140 #define HFI1_MMAP_SUBCTXT_SHIFT 12 141 #define HFI1_MMAP_CTXT_MASK 0xffULL 142 #define HFI1_MMAP_CTXT_SHIFT 16 143 #define HFI1_MMAP_TYPE_MASK 0xfULL 144 #define HFI1_MMAP_TYPE_SHIFT 24 145 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL 146 #define HFI1_MMAP_MAGIC_SHIFT 32 147 148 #define HFI1_MMAP_MAGIC 0xdabbad00 149 150 #define HFI1_MMAP_TOKEN_SET(field, val) \ 151 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) 152 #define HFI1_MMAP_TOKEN_GET(field, token) \ 153 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) 154 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ 155 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ 156 HFI1_MMAP_TOKEN_SET(TYPE, type) | \ 157 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ 158 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ 159 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) 160 161 #define dbg(fmt, ...) \ 162 pr_info(fmt, ##__VA_ARGS__) 163 164 static inline int is_valid_mmap(u64 token) 165 { 166 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); 167 } 168 169 static int hfi1_file_open(struct inode *inode, struct file *fp) 170 { 171 struct hfi1_devdata *dd = container_of(inode->i_cdev, 172 struct hfi1_devdata, 173 user_cdev); 174 175 /* Just take a ref now. Not all opens result in a context assign */ 176 kobject_get(&dd->kobj); 177 178 /* The real work is performed later in assign_ctxt() */ 179 fp->private_data = kzalloc(sizeof(struct hfi1_filedata), GFP_KERNEL); 180 if (fp->private_data) /* no cpu affinity by default */ 181 ((struct hfi1_filedata *)fp->private_data)->rec_cpu_num = -1; 182 return fp->private_data ? 0 : -ENOMEM; 183 } 184 185 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, 186 unsigned long arg) 187 { 188 struct hfi1_filedata *fd = fp->private_data; 189 struct hfi1_ctxtdata *uctxt = fd->uctxt; 190 struct hfi1_user_info uinfo; 191 struct hfi1_tid_info tinfo; 192 int ret = 0; 193 unsigned long addr; 194 int uval = 0; 195 unsigned long ul_uval = 0; 196 u16 uval16 = 0; 197 198 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); 199 if (cmd != HFI1_IOCTL_ASSIGN_CTXT && 200 cmd != HFI1_IOCTL_GET_VERS && 201 !uctxt) 202 return -EINVAL; 203 204 switch (cmd) { 205 case HFI1_IOCTL_ASSIGN_CTXT: 206 if (copy_from_user(&uinfo, 207 (struct hfi1_user_info __user *)arg, 208 sizeof(uinfo))) 209 return -EFAULT; 210 211 ret = assign_ctxt(fp, &uinfo); 212 if (ret < 0) 213 return ret; 214 setup_ctxt(fp); 215 if (ret) 216 return ret; 217 ret = user_init(fp); 218 break; 219 case HFI1_IOCTL_CTXT_INFO: 220 ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg, 221 sizeof(struct hfi1_ctxt_info)); 222 break; 223 case HFI1_IOCTL_USER_INFO: 224 ret = get_base_info(fp, (void __user *)(unsigned long)arg, 225 sizeof(struct hfi1_base_info)); 226 break; 227 case HFI1_IOCTL_CREDIT_UPD: 228 if (uctxt && uctxt->sc) 229 sc_return_credits(uctxt->sc); 230 break; 231 232 case HFI1_IOCTL_TID_UPDATE: 233 if (copy_from_user(&tinfo, 234 (struct hfi11_tid_info __user *)arg, 235 sizeof(tinfo))) 236 return -EFAULT; 237 238 ret = hfi1_user_exp_rcv_setup(fp, &tinfo); 239 if (!ret) { 240 /* 241 * Copy the number of tidlist entries we used 242 * and the length of the buffer we registered. 243 * These fields are adjacent in the structure so 244 * we can copy them at the same time. 245 */ 246 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 247 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 248 sizeof(tinfo.tidcnt) + 249 sizeof(tinfo.length))) 250 ret = -EFAULT; 251 } 252 break; 253 254 case HFI1_IOCTL_TID_FREE: 255 if (copy_from_user(&tinfo, 256 (struct hfi11_tid_info __user *)arg, 257 sizeof(tinfo))) 258 return -EFAULT; 259 260 ret = hfi1_user_exp_rcv_clear(fp, &tinfo); 261 if (ret) 262 break; 263 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 264 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 265 sizeof(tinfo.tidcnt))) 266 ret = -EFAULT; 267 break; 268 269 case HFI1_IOCTL_TID_INVAL_READ: 270 if (copy_from_user(&tinfo, 271 (struct hfi11_tid_info __user *)arg, 272 sizeof(tinfo))) 273 return -EFAULT; 274 275 ret = hfi1_user_exp_rcv_invalid(fp, &tinfo); 276 if (ret) 277 break; 278 addr = arg + offsetof(struct hfi1_tid_info, tidcnt); 279 if (copy_to_user((void __user *)addr, &tinfo.tidcnt, 280 sizeof(tinfo.tidcnt))) 281 ret = -EFAULT; 282 break; 283 284 case HFI1_IOCTL_RECV_CTRL: 285 ret = get_user(uval, (int __user *)arg); 286 if (ret != 0) 287 return -EFAULT; 288 ret = manage_rcvq(uctxt, fd->subctxt, uval); 289 break; 290 291 case HFI1_IOCTL_POLL_TYPE: 292 ret = get_user(uval, (int __user *)arg); 293 if (ret != 0) 294 return -EFAULT; 295 uctxt->poll_type = (typeof(uctxt->poll_type))uval; 296 break; 297 298 case HFI1_IOCTL_ACK_EVENT: 299 ret = get_user(ul_uval, (unsigned long __user *)arg); 300 if (ret != 0) 301 return -EFAULT; 302 ret = user_event_ack(uctxt, fd->subctxt, ul_uval); 303 break; 304 305 case HFI1_IOCTL_SET_PKEY: 306 ret = get_user(uval16, (u16 __user *)arg); 307 if (ret != 0) 308 return -EFAULT; 309 if (HFI1_CAP_IS_USET(PKEY_CHECK)) 310 ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16); 311 else 312 return -EPERM; 313 break; 314 315 case HFI1_IOCTL_CTXT_RESET: { 316 struct send_context *sc; 317 struct hfi1_devdata *dd; 318 319 if (!uctxt || !uctxt->dd || !uctxt->sc) 320 return -EINVAL; 321 322 /* 323 * There is no protection here. User level has to 324 * guarantee that no one will be writing to the send 325 * context while it is being re-initialized. 326 * If user level breaks that guarantee, it will break 327 * it's own context and no one else's. 328 */ 329 dd = uctxt->dd; 330 sc = uctxt->sc; 331 /* 332 * Wait until the interrupt handler has marked the 333 * context as halted or frozen. Report error if we time 334 * out. 335 */ 336 wait_event_interruptible_timeout( 337 sc->halt_wait, (sc->flags & SCF_HALTED), 338 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 339 if (!(sc->flags & SCF_HALTED)) 340 return -ENOLCK; 341 342 /* 343 * If the send context was halted due to a Freeze, 344 * wait until the device has been "unfrozen" before 345 * resetting the context. 346 */ 347 if (sc->flags & SCF_FROZEN) { 348 wait_event_interruptible_timeout( 349 dd->event_queue, 350 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN), 351 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); 352 if (dd->flags & HFI1_FROZEN) 353 return -ENOLCK; 354 355 if (dd->flags & HFI1_FORCED_FREEZE) 356 /* 357 * Don't allow context reset if we are into 358 * forced freeze 359 */ 360 return -ENODEV; 361 362 sc_disable(sc); 363 ret = sc_enable(sc); 364 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, 365 uctxt->ctxt); 366 } else { 367 ret = sc_restart(sc); 368 } 369 if (!ret) 370 sc_return_credits(sc); 371 break; 372 } 373 374 case HFI1_IOCTL_GET_VERS: 375 uval = HFI1_USER_SWVERSION; 376 if (put_user(uval, (int __user *)arg)) 377 return -EFAULT; 378 break; 379 380 default: 381 return -EINVAL; 382 } 383 384 return ret; 385 } 386 387 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) 388 { 389 struct hfi1_filedata *fd = kiocb->ki_filp->private_data; 390 struct hfi1_user_sdma_pkt_q *pq = fd->pq; 391 struct hfi1_user_sdma_comp_q *cq = fd->cq; 392 int ret = 0, done = 0, reqs = 0; 393 unsigned long dim = from->nr_segs; 394 395 if (!cq || !pq) { 396 ret = -EIO; 397 goto done; 398 } 399 400 if (!iter_is_iovec(from) || !dim) { 401 ret = -EINVAL; 402 goto done; 403 } 404 405 hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)", 406 fd->uctxt->ctxt, fd->subctxt, dim); 407 408 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) { 409 ret = -ENOSPC; 410 goto done; 411 } 412 413 while (dim) { 414 unsigned long count = 0; 415 416 ret = hfi1_user_sdma_process_request( 417 kiocb->ki_filp, (struct iovec *)(from->iov + done), 418 dim, &count); 419 if (ret) 420 goto done; 421 dim -= count; 422 done += count; 423 reqs++; 424 } 425 done: 426 return ret ? ret : reqs; 427 } 428 429 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) 430 { 431 struct hfi1_filedata *fd = fp->private_data; 432 struct hfi1_ctxtdata *uctxt = fd->uctxt; 433 struct hfi1_devdata *dd; 434 unsigned long flags, pfn; 435 u64 token = vma->vm_pgoff << PAGE_SHIFT, 436 memaddr = 0; 437 u8 subctxt, mapio = 0, vmf = 0, type; 438 ssize_t memlen = 0; 439 int ret = 0; 440 u16 ctxt; 441 442 if (!is_valid_mmap(token) || !uctxt || 443 !(vma->vm_flags & VM_SHARED)) { 444 ret = -EINVAL; 445 goto done; 446 } 447 dd = uctxt->dd; 448 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); 449 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); 450 type = HFI1_MMAP_TOKEN_GET(TYPE, token); 451 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { 452 ret = -EINVAL; 453 goto done; 454 } 455 456 flags = vma->vm_flags; 457 458 switch (type) { 459 case PIO_BUFS: 460 case PIO_BUFS_SOP: 461 memaddr = ((dd->physaddr + TXE_PIO_SEND) + 462 /* chip pio base */ 463 (uctxt->sc->hw_context * BIT(16))) + 464 /* 64K PIO space / ctxt */ 465 (type == PIO_BUFS_SOP ? 466 (TXE_PIO_SIZE / 2) : 0); /* sop? */ 467 /* 468 * Map only the amount allocated to the context, not the 469 * entire available context's PIO space. 470 */ 471 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); 472 flags &= ~VM_MAYREAD; 473 flags |= VM_DONTCOPY | VM_DONTEXPAND; 474 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); 475 mapio = 1; 476 break; 477 case PIO_CRED: 478 if (flags & VM_WRITE) { 479 ret = -EPERM; 480 goto done; 481 } 482 /* 483 * The credit return location for this context could be on the 484 * second or third page allocated for credit returns (if number 485 * of enabled contexts > 64 and 128 respectively). 486 */ 487 memaddr = dd->cr_base[uctxt->numa_id].pa + 488 (((u64)uctxt->sc->hw_free - 489 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); 490 memlen = PAGE_SIZE; 491 flags &= ~VM_MAYWRITE; 492 flags |= VM_DONTCOPY | VM_DONTEXPAND; 493 /* 494 * The driver has already allocated memory for credit 495 * returns and programmed it into the chip. Has that 496 * memory been flagged as non-cached? 497 */ 498 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ 499 mapio = 1; 500 break; 501 case RCV_HDRQ: 502 memaddr = uctxt->rcvhdrq_phys; 503 memlen = uctxt->rcvhdrq_size; 504 break; 505 case RCV_EGRBUF: { 506 unsigned long addr; 507 int i; 508 /* 509 * The RcvEgr buffer need to be handled differently 510 * as multiple non-contiguous pages need to be mapped 511 * into the user process. 512 */ 513 memlen = uctxt->egrbufs.size; 514 if ((vma->vm_end - vma->vm_start) != memlen) { 515 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", 516 (vma->vm_end - vma->vm_start), memlen); 517 ret = -EINVAL; 518 goto done; 519 } 520 if (vma->vm_flags & VM_WRITE) { 521 ret = -EPERM; 522 goto done; 523 } 524 vma->vm_flags &= ~VM_MAYWRITE; 525 addr = vma->vm_start; 526 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { 527 ret = remap_pfn_range( 528 vma, addr, 529 uctxt->egrbufs.buffers[i].phys >> PAGE_SHIFT, 530 uctxt->egrbufs.buffers[i].len, 531 vma->vm_page_prot); 532 if (ret < 0) 533 goto done; 534 addr += uctxt->egrbufs.buffers[i].len; 535 } 536 ret = 0; 537 goto done; 538 } 539 case UREGS: 540 /* 541 * Map only the page that contains this context's user 542 * registers. 543 */ 544 memaddr = (unsigned long) 545 (dd->physaddr + RXE_PER_CONTEXT_USER) 546 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); 547 /* 548 * TidFlow table is on the same page as the rest of the 549 * user registers. 550 */ 551 memlen = PAGE_SIZE; 552 flags |= VM_DONTCOPY | VM_DONTEXPAND; 553 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 554 mapio = 1; 555 break; 556 case EVENTS: 557 /* 558 * Use the page where this context's flags are. User level 559 * knows where it's own bitmap is within the page. 560 */ 561 memaddr = (unsigned long)(dd->events + 562 ((uctxt->ctxt - dd->first_user_ctxt) * 563 HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK; 564 memlen = PAGE_SIZE; 565 /* 566 * v3.7 removes VM_RESERVED but the effect is kept by 567 * using VM_IO. 568 */ 569 flags |= VM_IO | VM_DONTEXPAND; 570 vmf = 1; 571 break; 572 case STATUS: 573 memaddr = kvirt_to_phys((void *)dd->status); 574 memlen = PAGE_SIZE; 575 flags |= VM_IO | VM_DONTEXPAND; 576 break; 577 case RTAIL: 578 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { 579 /* 580 * If the memory allocation failed, the context alloc 581 * also would have failed, so we would never get here 582 */ 583 ret = -EINVAL; 584 goto done; 585 } 586 if (flags & VM_WRITE) { 587 ret = -EPERM; 588 goto done; 589 } 590 memaddr = uctxt->rcvhdrqtailaddr_phys; 591 memlen = PAGE_SIZE; 592 flags &= ~VM_MAYWRITE; 593 break; 594 case SUBCTXT_UREGS: 595 memaddr = (u64)uctxt->subctxt_uregbase; 596 memlen = PAGE_SIZE; 597 flags |= VM_IO | VM_DONTEXPAND; 598 vmf = 1; 599 break; 600 case SUBCTXT_RCV_HDRQ: 601 memaddr = (u64)uctxt->subctxt_rcvhdr_base; 602 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt; 603 flags |= VM_IO | VM_DONTEXPAND; 604 vmf = 1; 605 break; 606 case SUBCTXT_EGRBUF: 607 memaddr = (u64)uctxt->subctxt_rcvegrbuf; 608 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; 609 flags |= VM_IO | VM_DONTEXPAND; 610 flags &= ~VM_MAYWRITE; 611 vmf = 1; 612 break; 613 case SDMA_COMP: { 614 struct hfi1_user_sdma_comp_q *cq = fd->cq; 615 616 if (!cq) { 617 ret = -EFAULT; 618 goto done; 619 } 620 memaddr = (u64)cq->comps; 621 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); 622 flags |= VM_IO | VM_DONTEXPAND; 623 vmf = 1; 624 break; 625 } 626 default: 627 ret = -EINVAL; 628 break; 629 } 630 631 if ((vma->vm_end - vma->vm_start) != memlen) { 632 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", 633 uctxt->ctxt, fd->subctxt, 634 (vma->vm_end - vma->vm_start), memlen); 635 ret = -EINVAL; 636 goto done; 637 } 638 639 vma->vm_flags = flags; 640 hfi1_cdbg(PROC, 641 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", 642 ctxt, subctxt, type, mapio, vmf, memaddr, memlen, 643 vma->vm_end - vma->vm_start, vma->vm_flags); 644 pfn = (unsigned long)(memaddr >> PAGE_SHIFT); 645 if (vmf) { 646 vma->vm_pgoff = pfn; 647 vma->vm_ops = &vm_ops; 648 ret = 0; 649 } else if (mapio) { 650 ret = io_remap_pfn_range(vma, vma->vm_start, pfn, memlen, 651 vma->vm_page_prot); 652 } else { 653 ret = remap_pfn_range(vma, vma->vm_start, pfn, memlen, 654 vma->vm_page_prot); 655 } 656 done: 657 return ret; 658 } 659 660 /* 661 * Local (non-chip) user memory is not mapped right away but as it is 662 * accessed by the user-level code. 663 */ 664 static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 665 { 666 struct page *page; 667 668 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); 669 if (!page) 670 return VM_FAULT_SIGBUS; 671 672 get_page(page); 673 vmf->page = page; 674 675 return 0; 676 } 677 678 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt) 679 { 680 struct hfi1_ctxtdata *uctxt; 681 unsigned pollflag; 682 683 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; 684 if (!uctxt) 685 pollflag = POLLERR; 686 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) 687 pollflag = poll_urgent(fp, pt); 688 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) 689 pollflag = poll_next(fp, pt); 690 else /* invalid */ 691 pollflag = POLLERR; 692 693 return pollflag; 694 } 695 696 static int hfi1_file_close(struct inode *inode, struct file *fp) 697 { 698 struct hfi1_filedata *fdata = fp->private_data; 699 struct hfi1_ctxtdata *uctxt = fdata->uctxt; 700 struct hfi1_devdata *dd = container_of(inode->i_cdev, 701 struct hfi1_devdata, 702 user_cdev); 703 unsigned long flags, *ev; 704 705 fp->private_data = NULL; 706 707 if (!uctxt) 708 goto done; 709 710 hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); 711 mutex_lock(&hfi1_mutex); 712 713 flush_wc(); 714 /* drain user sdma queue */ 715 hfi1_user_sdma_free_queues(fdata); 716 717 /* release the cpu */ 718 hfi1_put_proc_affinity(dd, fdata->rec_cpu_num); 719 720 /* 721 * Clear any left over, unhandled events so the next process that 722 * gets this context doesn't get confused. 723 */ 724 ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 725 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt; 726 *ev = 0; 727 728 if (--uctxt->cnt) { 729 uctxt->active_slaves &= ~(1 << fdata->subctxt); 730 uctxt->subpid[fdata->subctxt] = 0; 731 mutex_unlock(&hfi1_mutex); 732 goto done; 733 } 734 735 spin_lock_irqsave(&dd->uctxt_lock, flags); 736 /* 737 * Disable receive context and interrupt available, reset all 738 * RcvCtxtCtrl bits to default values. 739 */ 740 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | 741 HFI1_RCVCTRL_TIDFLOW_DIS | 742 HFI1_RCVCTRL_INTRAVAIL_DIS | 743 HFI1_RCVCTRL_TAILUPD_DIS | 744 HFI1_RCVCTRL_ONE_PKT_EGR_DIS | 745 HFI1_RCVCTRL_NO_RHQ_DROP_DIS | 746 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt); 747 /* Clear the context's J_KEY */ 748 hfi1_clear_ctxt_jkey(dd, uctxt->ctxt); 749 /* 750 * Reset context integrity checks to default. 751 * (writes to CSRs probably belong in chip.c) 752 */ 753 write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE, 754 hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type)); 755 sc_disable(uctxt->sc); 756 uctxt->pid = 0; 757 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 758 759 dd->rcd[uctxt->ctxt] = NULL; 760 761 hfi1_user_exp_rcv_free(fdata); 762 hfi1_clear_ctxt_pkey(dd, uctxt->ctxt); 763 764 uctxt->rcvwait_to = 0; 765 uctxt->piowait_to = 0; 766 uctxt->rcvnowait = 0; 767 uctxt->pionowait = 0; 768 uctxt->event_flags = 0; 769 770 hfi1_stats.sps_ctxts--; 771 if (++dd->freectxts == dd->num_user_contexts) 772 aspm_enable_all(dd); 773 mutex_unlock(&hfi1_mutex); 774 hfi1_free_ctxtdata(dd, uctxt); 775 done: 776 kobject_put(&dd->kobj); 777 kfree(fdata); 778 return 0; 779 } 780 781 /* 782 * Convert kernel *virtual* addresses to physical addresses. 783 * This is used to vmalloc'ed addresses. 784 */ 785 static u64 kvirt_to_phys(void *addr) 786 { 787 struct page *page; 788 u64 paddr = 0; 789 790 page = vmalloc_to_page(addr); 791 if (page) 792 paddr = page_to_pfn(page) << PAGE_SHIFT; 793 794 return paddr; 795 } 796 797 static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo) 798 { 799 int i_minor, ret = 0; 800 unsigned int swmajor, swminor; 801 802 swmajor = uinfo->userversion >> 16; 803 if (swmajor != HFI1_USER_SWMAJOR) { 804 ret = -ENODEV; 805 goto done; 806 } 807 808 swminor = uinfo->userversion & 0xffff; 809 810 mutex_lock(&hfi1_mutex); 811 /* First, lets check if we need to setup a shared context? */ 812 if (uinfo->subctxt_cnt) { 813 struct hfi1_filedata *fd = fp->private_data; 814 815 ret = find_shared_ctxt(fp, uinfo); 816 if (ret < 0) 817 goto done_unlock; 818 if (ret) 819 fd->rec_cpu_num = hfi1_get_proc_affinity( 820 fd->uctxt->dd, fd->uctxt->numa_id); 821 } 822 823 /* 824 * We execute the following block if we couldn't find a 825 * shared context or if context sharing is not required. 826 */ 827 if (!ret) { 828 i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE; 829 ret = get_user_context(fp, uinfo, i_minor); 830 } 831 done_unlock: 832 mutex_unlock(&hfi1_mutex); 833 done: 834 return ret; 835 } 836 837 static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo, 838 int devno) 839 { 840 struct hfi1_devdata *dd = NULL; 841 int devmax, npresent, nup; 842 843 devmax = hfi1_count_units(&npresent, &nup); 844 if (!npresent) 845 return -ENXIO; 846 847 if (!nup) 848 return -ENETDOWN; 849 850 dd = hfi1_lookup(devno); 851 if (!dd) 852 return -ENODEV; 853 else if (!dd->freectxts) 854 return -EBUSY; 855 856 return allocate_ctxt(fp, dd, uinfo); 857 } 858 859 static int find_shared_ctxt(struct file *fp, 860 const struct hfi1_user_info *uinfo) 861 { 862 int devmax, ndev, i; 863 int ret = 0; 864 struct hfi1_filedata *fd = fp->private_data; 865 866 devmax = hfi1_count_units(NULL, NULL); 867 868 for (ndev = 0; ndev < devmax; ndev++) { 869 struct hfi1_devdata *dd = hfi1_lookup(ndev); 870 871 if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase)) 872 continue; 873 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) { 874 struct hfi1_ctxtdata *uctxt = dd->rcd[i]; 875 876 /* Skip ctxts which are not yet open */ 877 if (!uctxt || !uctxt->cnt) 878 continue; 879 /* Skip ctxt if it doesn't match the requested one */ 880 if (memcmp(uctxt->uuid, uinfo->uuid, 881 sizeof(uctxt->uuid)) || 882 uctxt->jkey != generate_jkey(current_uid()) || 883 uctxt->subctxt_id != uinfo->subctxt_id || 884 uctxt->subctxt_cnt != uinfo->subctxt_cnt) 885 continue; 886 887 /* Verify the sharing process matches the master */ 888 if (uctxt->userversion != uinfo->userversion || 889 uctxt->cnt >= uctxt->subctxt_cnt) { 890 ret = -EINVAL; 891 goto done; 892 } 893 fd->uctxt = uctxt; 894 fd->subctxt = uctxt->cnt++; 895 uctxt->subpid[fd->subctxt] = current->pid; 896 uctxt->active_slaves |= 1 << fd->subctxt; 897 ret = 1; 898 goto done; 899 } 900 } 901 902 done: 903 return ret; 904 } 905 906 static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd, 907 struct hfi1_user_info *uinfo) 908 { 909 struct hfi1_filedata *fd = fp->private_data; 910 struct hfi1_ctxtdata *uctxt; 911 unsigned ctxt; 912 int ret, numa; 913 914 if (dd->flags & HFI1_FROZEN) { 915 /* 916 * Pick an error that is unique from all other errors 917 * that are returned so the user process knows that 918 * it tried to allocate while the SPC was frozen. It 919 * it should be able to retry with success in a short 920 * while. 921 */ 922 return -EIO; 923 } 924 925 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++) 926 if (!dd->rcd[ctxt]) 927 break; 928 929 if (ctxt == dd->num_rcv_contexts) 930 return -EBUSY; 931 932 fd->rec_cpu_num = hfi1_get_proc_affinity(dd, -1); 933 if (fd->rec_cpu_num != -1) 934 numa = cpu_to_node(fd->rec_cpu_num); 935 else 936 numa = numa_node_id(); 937 uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa); 938 if (!uctxt) { 939 dd_dev_err(dd, 940 "Unable to allocate ctxtdata memory, failing open\n"); 941 return -ENOMEM; 942 } 943 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", 944 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, 945 uctxt->numa_id); 946 947 /* 948 * Allocate and enable a PIO send context. 949 */ 950 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, 951 uctxt->dd->node); 952 if (!uctxt->sc) 953 return -ENOMEM; 954 955 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, 956 uctxt->sc->hw_context); 957 ret = sc_enable(uctxt->sc); 958 if (ret) 959 return ret; 960 /* 961 * Setup shared context resources if the user-level has requested 962 * shared contexts and this is the 'master' process. 963 * This has to be done here so the rest of the sub-contexts find the 964 * proper master. 965 */ 966 if (uinfo->subctxt_cnt && !fd->subctxt) { 967 ret = init_subctxts(uctxt, uinfo); 968 /* 969 * On error, we don't need to disable and de-allocate the 970 * send context because it will be done during file close 971 */ 972 if (ret) 973 return ret; 974 } 975 uctxt->userversion = uinfo->userversion; 976 uctxt->pid = current->pid; 977 uctxt->flags = HFI1_CAP_UGET(MASK); 978 init_waitqueue_head(&uctxt->wait); 979 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); 980 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); 981 uctxt->jkey = generate_jkey(current_uid()); 982 INIT_LIST_HEAD(&uctxt->sdma_queues); 983 spin_lock_init(&uctxt->sdma_qlock); 984 hfi1_stats.sps_ctxts++; 985 /* 986 * Disable ASPM when there are open user/PSM contexts to avoid 987 * issues with ASPM L1 exit latency 988 */ 989 if (dd->freectxts-- == dd->num_user_contexts) 990 aspm_disable_all(dd); 991 fd->uctxt = uctxt; 992 993 return 0; 994 } 995 996 static int init_subctxts(struct hfi1_ctxtdata *uctxt, 997 const struct hfi1_user_info *uinfo) 998 { 999 unsigned num_subctxts; 1000 1001 num_subctxts = uinfo->subctxt_cnt; 1002 if (num_subctxts > HFI1_MAX_SHARED_CTXTS) 1003 return -EINVAL; 1004 1005 uctxt->subctxt_cnt = uinfo->subctxt_cnt; 1006 uctxt->subctxt_id = uinfo->subctxt_id; 1007 uctxt->active_slaves = 1; 1008 uctxt->redirect_seq_cnt = 1; 1009 set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1010 1011 return 0; 1012 } 1013 1014 static int setup_subctxt(struct hfi1_ctxtdata *uctxt) 1015 { 1016 int ret = 0; 1017 unsigned num_subctxts = uctxt->subctxt_cnt; 1018 1019 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); 1020 if (!uctxt->subctxt_uregbase) { 1021 ret = -ENOMEM; 1022 goto bail; 1023 } 1024 /* We can take the size of the RcvHdr Queue from the master */ 1025 uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size * 1026 num_subctxts); 1027 if (!uctxt->subctxt_rcvhdr_base) { 1028 ret = -ENOMEM; 1029 goto bail_ureg; 1030 } 1031 1032 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * 1033 num_subctxts); 1034 if (!uctxt->subctxt_rcvegrbuf) { 1035 ret = -ENOMEM; 1036 goto bail_rhdr; 1037 } 1038 goto bail; 1039 bail_rhdr: 1040 vfree(uctxt->subctxt_rcvhdr_base); 1041 bail_ureg: 1042 vfree(uctxt->subctxt_uregbase); 1043 uctxt->subctxt_uregbase = NULL; 1044 bail: 1045 return ret; 1046 } 1047 1048 static int user_init(struct file *fp) 1049 { 1050 unsigned int rcvctrl_ops = 0; 1051 struct hfi1_filedata *fd = fp->private_data; 1052 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1053 1054 /* make sure that the context has already been setup */ 1055 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags)) 1056 return -EFAULT; 1057 1058 /* initialize poll variables... */ 1059 uctxt->urgent = 0; 1060 uctxt->urgent_poll = 0; 1061 1062 /* 1063 * Now enable the ctxt for receive. 1064 * For chips that are set to DMA the tail register to memory 1065 * when they change (and when the update bit transitions from 1066 * 0 to 1. So for those chips, we turn it off and then back on. 1067 * This will (very briefly) affect any other open ctxts, but the 1068 * duration is very short, and therefore isn't an issue. We 1069 * explicitly set the in-memory tail copy to 0 beforehand, so we 1070 * don't have to wait to be sure the DMA update has happened 1071 * (chip resets head/tail to 0 on transition to enable). 1072 */ 1073 if (uctxt->rcvhdrtail_kvaddr) 1074 clear_rcvhdrtail(uctxt); 1075 1076 /* Setup J_KEY before enabling the context */ 1077 hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey); 1078 1079 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; 1080 if (HFI1_CAP_KGET_MASK(uctxt->flags, HDRSUPP)) 1081 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; 1082 /* 1083 * Ignore the bit in the flags for now until proper 1084 * support for multiple packet per rcv array entry is 1085 * added. 1086 */ 1087 if (!HFI1_CAP_KGET_MASK(uctxt->flags, MULTI_PKT_EGR)) 1088 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; 1089 if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_EGR_FULL)) 1090 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; 1091 if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) 1092 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; 1093 /* 1094 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. 1095 * We can't rely on the correct value to be set from prior 1096 * uses of the chip or ctxt. Therefore, add the rcvctrl op 1097 * for both cases. 1098 */ 1099 if (HFI1_CAP_KGET_MASK(uctxt->flags, DMA_RTAIL)) 1100 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; 1101 else 1102 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; 1103 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt); 1104 1105 /* Notify any waiting slaves */ 1106 if (uctxt->subctxt_cnt) { 1107 clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); 1108 wake_up(&uctxt->wait); 1109 } 1110 1111 return 0; 1112 } 1113 1114 static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len) 1115 { 1116 struct hfi1_ctxt_info cinfo; 1117 struct hfi1_filedata *fd = fp->private_data; 1118 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1119 int ret = 0; 1120 1121 memset(&cinfo, 0, sizeof(cinfo)); 1122 ret = hfi1_get_base_kinfo(uctxt, &cinfo); 1123 if (ret < 0) 1124 goto done; 1125 cinfo.num_active = hfi1_count_active_units(); 1126 cinfo.unit = uctxt->dd->unit; 1127 cinfo.ctxt = uctxt->ctxt; 1128 cinfo.subctxt = fd->subctxt; 1129 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, 1130 uctxt->dd->rcv_entries.group_size) + 1131 uctxt->expected_count; 1132 cinfo.credits = uctxt->sc->credits; 1133 cinfo.numa_node = uctxt->numa_id; 1134 cinfo.rec_cpu = fd->rec_cpu_num; 1135 cinfo.send_ctxt = uctxt->sc->hw_context; 1136 1137 cinfo.egrtids = uctxt->egrbufs.alloced; 1138 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; 1139 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; 1140 cinfo.sdma_ring_size = fd->cq->nentries; 1141 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; 1142 1143 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo); 1144 if (copy_to_user(ubase, &cinfo, sizeof(cinfo))) 1145 ret = -EFAULT; 1146 done: 1147 return ret; 1148 } 1149 1150 static int setup_ctxt(struct file *fp) 1151 { 1152 struct hfi1_filedata *fd = fp->private_data; 1153 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1154 struct hfi1_devdata *dd = uctxt->dd; 1155 int ret = 0; 1156 1157 /* 1158 * Context should be set up only once, including allocation and 1159 * programming of eager buffers. This is done if context sharing 1160 * is not requested or by the master process. 1161 */ 1162 if (!uctxt->subctxt_cnt || !fd->subctxt) { 1163 ret = hfi1_init_ctxt(uctxt->sc); 1164 if (ret) 1165 goto done; 1166 1167 /* Now allocate the RcvHdr queue and eager buffers. */ 1168 ret = hfi1_create_rcvhdrq(dd, uctxt); 1169 if (ret) 1170 goto done; 1171 ret = hfi1_setup_eagerbufs(uctxt); 1172 if (ret) 1173 goto done; 1174 if (uctxt->subctxt_cnt && !fd->subctxt) { 1175 ret = setup_subctxt(uctxt); 1176 if (ret) 1177 goto done; 1178 } 1179 } else { 1180 ret = wait_event_interruptible(uctxt->wait, !test_bit( 1181 HFI1_CTXT_MASTER_UNINIT, 1182 &uctxt->event_flags)); 1183 if (ret) 1184 goto done; 1185 } 1186 1187 ret = hfi1_user_sdma_alloc_queues(uctxt, fp); 1188 if (ret) 1189 goto done; 1190 /* 1191 * Expected receive has to be setup for all processes (including 1192 * shared contexts). However, it has to be done after the master 1193 * context has been fully configured as it depends on the 1194 * eager/expected split of the RcvArray entries. 1195 * Setting it up here ensures that the subcontexts will be waiting 1196 * (due to the above wait_event_interruptible() until the master 1197 * is setup. 1198 */ 1199 ret = hfi1_user_exp_rcv_init(fp); 1200 if (ret) 1201 goto done; 1202 1203 set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags); 1204 done: 1205 return ret; 1206 } 1207 1208 static int get_base_info(struct file *fp, void __user *ubase, __u32 len) 1209 { 1210 struct hfi1_base_info binfo; 1211 struct hfi1_filedata *fd = fp->private_data; 1212 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1213 struct hfi1_devdata *dd = uctxt->dd; 1214 ssize_t sz; 1215 unsigned offset; 1216 int ret = 0; 1217 1218 trace_hfi1_uctxtdata(uctxt->dd, uctxt); 1219 1220 memset(&binfo, 0, sizeof(binfo)); 1221 binfo.hw_version = dd->revision; 1222 binfo.sw_version = HFI1_KERN_SWVERSION; 1223 binfo.bthqp = kdeth_qp; 1224 binfo.jkey = uctxt->jkey; 1225 /* 1226 * If more than 64 contexts are enabled the allocated credit 1227 * return will span two or three contiguous pages. Since we only 1228 * map the page containing the context's credit return address, 1229 * we need to calculate the offset in the proper page. 1230 */ 1231 offset = ((u64)uctxt->sc->hw_free - 1232 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; 1233 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, 1234 fd->subctxt, offset); 1235 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, 1236 fd->subctxt, 1237 uctxt->sc->base_addr); 1238 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, 1239 uctxt->ctxt, 1240 fd->subctxt, 1241 uctxt->sc->base_addr); 1242 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, 1243 fd->subctxt, 1244 uctxt->rcvhdrq); 1245 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, 1246 fd->subctxt, 1247 uctxt->egrbufs.rcvtids[0].phys); 1248 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, 1249 fd->subctxt, 0); 1250 /* 1251 * user regs are at 1252 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) 1253 */ 1254 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, 1255 fd->subctxt, 0); 1256 offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) * 1257 HFI1_MAX_SHARED_CTXTS) + fd->subctxt) * 1258 sizeof(*dd->events)); 1259 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, 1260 fd->subctxt, 1261 offset); 1262 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, 1263 fd->subctxt, 1264 dd->status); 1265 if (HFI1_CAP_IS_USET(DMA_RTAIL)) 1266 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, 1267 fd->subctxt, 0); 1268 if (uctxt->subctxt_cnt) { 1269 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, 1270 uctxt->ctxt, 1271 fd->subctxt, 0); 1272 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, 1273 uctxt->ctxt, 1274 fd->subctxt, 0); 1275 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, 1276 uctxt->ctxt, 1277 fd->subctxt, 0); 1278 } 1279 sz = (len < sizeof(binfo)) ? len : sizeof(binfo); 1280 if (copy_to_user(ubase, &binfo, sz)) 1281 ret = -EFAULT; 1282 return ret; 1283 } 1284 1285 static unsigned int poll_urgent(struct file *fp, 1286 struct poll_table_struct *pt) 1287 { 1288 struct hfi1_filedata *fd = fp->private_data; 1289 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1290 struct hfi1_devdata *dd = uctxt->dd; 1291 unsigned pollflag; 1292 1293 poll_wait(fp, &uctxt->wait, pt); 1294 1295 spin_lock_irq(&dd->uctxt_lock); 1296 if (uctxt->urgent != uctxt->urgent_poll) { 1297 pollflag = POLLIN | POLLRDNORM; 1298 uctxt->urgent_poll = uctxt->urgent; 1299 } else { 1300 pollflag = 0; 1301 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); 1302 } 1303 spin_unlock_irq(&dd->uctxt_lock); 1304 1305 return pollflag; 1306 } 1307 1308 static unsigned int poll_next(struct file *fp, 1309 struct poll_table_struct *pt) 1310 { 1311 struct hfi1_filedata *fd = fp->private_data; 1312 struct hfi1_ctxtdata *uctxt = fd->uctxt; 1313 struct hfi1_devdata *dd = uctxt->dd; 1314 unsigned pollflag; 1315 1316 poll_wait(fp, &uctxt->wait, pt); 1317 1318 spin_lock_irq(&dd->uctxt_lock); 1319 if (hdrqempty(uctxt)) { 1320 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); 1321 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt); 1322 pollflag = 0; 1323 } else { 1324 pollflag = POLLIN | POLLRDNORM; 1325 } 1326 spin_unlock_irq(&dd->uctxt_lock); 1327 1328 return pollflag; 1329 } 1330 1331 /* 1332 * Find all user contexts in use, and set the specified bit in their 1333 * event mask. 1334 * See also find_ctxt() for a similar use, that is specific to send buffers. 1335 */ 1336 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) 1337 { 1338 struct hfi1_ctxtdata *uctxt; 1339 struct hfi1_devdata *dd = ppd->dd; 1340 unsigned ctxt; 1341 int ret = 0; 1342 unsigned long flags; 1343 1344 if (!dd->events) { 1345 ret = -EINVAL; 1346 goto done; 1347 } 1348 1349 spin_lock_irqsave(&dd->uctxt_lock, flags); 1350 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; 1351 ctxt++) { 1352 uctxt = dd->rcd[ctxt]; 1353 if (uctxt) { 1354 unsigned long *evs = dd->events + 1355 (uctxt->ctxt - dd->first_user_ctxt) * 1356 HFI1_MAX_SHARED_CTXTS; 1357 int i; 1358 /* 1359 * subctxt_cnt is 0 if not shared, so do base 1360 * separately, first, then remaining subctxt, if any 1361 */ 1362 set_bit(evtbit, evs); 1363 for (i = 1; i < uctxt->subctxt_cnt; i++) 1364 set_bit(evtbit, evs + i); 1365 } 1366 } 1367 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1368 done: 1369 return ret; 1370 } 1371 1372 /** 1373 * manage_rcvq - manage a context's receive queue 1374 * @uctxt: the context 1375 * @subctxt: the sub-context 1376 * @start_stop: action to carry out 1377 * 1378 * start_stop == 0 disables receive on the context, for use in queue 1379 * overflow conditions. start_stop==1 re-enables, to be used to 1380 * re-init the software copy of the head register 1381 */ 1382 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1383 int start_stop) 1384 { 1385 struct hfi1_devdata *dd = uctxt->dd; 1386 unsigned int rcvctrl_op; 1387 1388 if (subctxt) 1389 goto bail; 1390 /* atomically clear receive enable ctxt. */ 1391 if (start_stop) { 1392 /* 1393 * On enable, force in-memory copy of the tail register to 1394 * 0, so that protocol code doesn't have to worry about 1395 * whether or not the chip has yet updated the in-memory 1396 * copy or not on return from the system call. The chip 1397 * always resets it's tail register back to 0 on a 1398 * transition from disabled to enabled. 1399 */ 1400 if (uctxt->rcvhdrtail_kvaddr) 1401 clear_rcvhdrtail(uctxt); 1402 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; 1403 } else { 1404 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; 1405 } 1406 hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt); 1407 /* always; new head should be equal to new tail; see above */ 1408 bail: 1409 return 0; 1410 } 1411 1412 /* 1413 * clear the event notifier events for this context. 1414 * User process then performs actions appropriate to bit having been 1415 * set, if desired, and checks again in future. 1416 */ 1417 static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt, 1418 unsigned long events) 1419 { 1420 int i; 1421 struct hfi1_devdata *dd = uctxt->dd; 1422 unsigned long *evs; 1423 1424 if (!dd->events) 1425 return 0; 1426 1427 evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) * 1428 HFI1_MAX_SHARED_CTXTS) + subctxt; 1429 1430 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { 1431 if (!test_bit(i, &events)) 1432 continue; 1433 clear_bit(i, evs); 1434 } 1435 return 0; 1436 } 1437 1438 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt, 1439 u16 pkey) 1440 { 1441 int ret = -ENOENT, i, intable = 0; 1442 struct hfi1_pportdata *ppd = uctxt->ppd; 1443 struct hfi1_devdata *dd = uctxt->dd; 1444 1445 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) { 1446 ret = -EINVAL; 1447 goto done; 1448 } 1449 1450 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) 1451 if (pkey == ppd->pkeys[i]) { 1452 intable = 1; 1453 break; 1454 } 1455 1456 if (intable) 1457 ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey); 1458 done: 1459 return ret; 1460 } 1461 1462 static void user_remove(struct hfi1_devdata *dd) 1463 { 1464 1465 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); 1466 } 1467 1468 static int user_add(struct hfi1_devdata *dd) 1469 { 1470 char name[10]; 1471 int ret; 1472 1473 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); 1474 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, 1475 &dd->user_cdev, &dd->user_device, 1476 true, &dd->kobj); 1477 if (ret) 1478 user_remove(dd); 1479 1480 return ret; 1481 } 1482 1483 /* 1484 * Create per-unit files in /dev 1485 */ 1486 int hfi1_device_create(struct hfi1_devdata *dd) 1487 { 1488 return user_add(dd); 1489 } 1490 1491 /* 1492 * Remove per-unit files in /dev 1493 * void, core kernel returns no errors for this stuff 1494 */ 1495 void hfi1_device_remove(struct hfi1_devdata *dd) 1496 { 1497 user_remove(dd); 1498 } 1499