1 /* 2 * Copyright(c) 2015, 2016 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 #include <linux/spinlock.h> 49 #include <linux/pci.h> 50 #include <linux/io.h> 51 #include <linux/delay.h> 52 #include <linux/netdevice.h> 53 #include <linux/vmalloc.h> 54 #include <linux/module.h> 55 #include <linux/prefetch.h> 56 #include <rdma/ib_verbs.h> 57 58 #include "hfi.h" 59 #include "trace.h" 60 #include "qp.h" 61 #include "sdma.h" 62 63 #undef pr_fmt 64 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 65 66 /* 67 * The size has to be longer than this string, so we can append 68 * board/chip information to it in the initialization code. 69 */ 70 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; 71 72 DEFINE_SPINLOCK(hfi1_devs_lock); 73 LIST_HEAD(hfi1_dev_list); 74 DEFINE_MUTEX(hfi1_mutex); /* general driver use */ 75 76 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 77 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); 78 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( 79 HFI1_DEFAULT_MAX_MTU)); 80 81 unsigned int hfi1_cu = 1; 82 module_param_named(cu, hfi1_cu, uint, S_IRUGO); 83 MODULE_PARM_DESC(cu, "Credit return units"); 84 85 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; 86 static int hfi1_caps_set(const char *, const struct kernel_param *); 87 static int hfi1_caps_get(char *, const struct kernel_param *); 88 static const struct kernel_param_ops cap_ops = { 89 .set = hfi1_caps_set, 90 .get = hfi1_caps_get 91 }; 92 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); 93 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); 94 95 MODULE_LICENSE("Dual BSD/GPL"); 96 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); 97 MODULE_VERSION(HFI1_DRIVER_VERSION); 98 99 /* 100 * MAX_PKT_RCV is the max # if packets processed per receive interrupt. 101 */ 102 #define MAX_PKT_RECV 64 103 /* 104 * MAX_PKT_THREAD_RCV is the max # of packets processed before 105 * the qp_wait_list queue is flushed. 106 */ 107 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) 108 #define EGR_HEAD_UPDATE_THRESHOLD 16 109 110 struct hfi1_ib_stats hfi1_stats; 111 112 static int hfi1_caps_set(const char *val, const struct kernel_param *kp) 113 { 114 int ret = 0; 115 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, 116 cap_mask = *cap_mask_ptr, value, diff, 117 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | 118 HFI1_CAP_WRITABLE_MASK); 119 120 ret = kstrtoul(val, 0, &value); 121 if (ret) { 122 pr_warn("Invalid module parameter value for 'cap_mask'\n"); 123 goto done; 124 } 125 /* Get the changed bits (except the locked bit) */ 126 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); 127 128 /* Remove any bits that are not allowed to change after driver load */ 129 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { 130 pr_warn("Ignoring non-writable capability bits %#lx\n", 131 diff & ~write_mask); 132 diff &= write_mask; 133 } 134 135 /* Mask off any reserved bits */ 136 diff &= ~HFI1_CAP_RESERVED_MASK; 137 /* Clear any previously set and changing bits */ 138 cap_mask &= ~diff; 139 /* Update the bits with the new capability */ 140 cap_mask |= (value & diff); 141 /* Check for any kernel/user restrictions */ 142 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ 143 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); 144 cap_mask &= ~diff; 145 /* Set the bitmask to the final set */ 146 *cap_mask_ptr = cap_mask; 147 done: 148 return ret; 149 } 150 151 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) 152 { 153 unsigned long cap_mask = *(unsigned long *)kp->arg; 154 155 cap_mask &= ~HFI1_CAP_LOCKED_SMASK; 156 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); 157 158 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); 159 } 160 161 const char *get_unit_name(int unit) 162 { 163 static char iname[16]; 164 165 snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit); 166 return iname; 167 } 168 169 const char *get_card_name(struct rvt_dev_info *rdi) 170 { 171 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 172 struct hfi1_devdata *dd = container_of(ibdev, 173 struct hfi1_devdata, verbs_dev); 174 return get_unit_name(dd->unit); 175 } 176 177 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) 178 { 179 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 180 struct hfi1_devdata *dd = container_of(ibdev, 181 struct hfi1_devdata, verbs_dev); 182 return dd->pcidev; 183 } 184 185 /* 186 * Return count of units with at least one port ACTIVE. 187 */ 188 int hfi1_count_active_units(void) 189 { 190 struct hfi1_devdata *dd; 191 struct hfi1_pportdata *ppd; 192 unsigned long flags; 193 int pidx, nunits_active = 0; 194 195 spin_lock_irqsave(&hfi1_devs_lock, flags); 196 list_for_each_entry(dd, &hfi1_dev_list, list) { 197 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase) 198 continue; 199 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 200 ppd = dd->pport + pidx; 201 if (ppd->lid && ppd->linkup) { 202 nunits_active++; 203 break; 204 } 205 } 206 } 207 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 208 return nunits_active; 209 } 210 211 /* 212 * Return count of all units, optionally return in arguments 213 * the number of usable (present) units, and the number of 214 * ports that are up. 215 */ 216 int hfi1_count_units(int *npresentp, int *nupp) 217 { 218 int nunits = 0, npresent = 0, nup = 0; 219 struct hfi1_devdata *dd; 220 unsigned long flags; 221 int pidx; 222 struct hfi1_pportdata *ppd; 223 224 spin_lock_irqsave(&hfi1_devs_lock, flags); 225 226 list_for_each_entry(dd, &hfi1_dev_list, list) { 227 nunits++; 228 if ((dd->flags & HFI1_PRESENT) && dd->kregbase) 229 npresent++; 230 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 231 ppd = dd->pport + pidx; 232 if (ppd->lid && ppd->linkup) 233 nup++; 234 } 235 } 236 237 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 238 239 if (npresentp) 240 *npresentp = npresent; 241 if (nupp) 242 *nupp = nup; 243 244 return nunits; 245 } 246 247 /* 248 * Get address of eager buffer from it's index (allocated in chunks, not 249 * contiguous). 250 */ 251 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, 252 u8 *update) 253 { 254 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); 255 256 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; 257 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + 258 (offset * RCV_BUF_BLOCK_SIZE)); 259 } 260 261 /* 262 * Validate and encode the a given RcvArray Buffer size. 263 * The function will check whether the given size falls within 264 * allowed size ranges for the respective type and, optionally, 265 * return the proper encoding. 266 */ 267 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) 268 { 269 if (unlikely(!PAGE_ALIGNED(size))) 270 return 0; 271 if (unlikely(size < MIN_EAGER_BUFFER)) 272 return 0; 273 if (size > 274 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) 275 return 0; 276 if (encoded) 277 *encoded = ilog2(size / PAGE_SIZE) + 1; 278 return 1; 279 } 280 281 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, 282 struct hfi1_packet *packet) 283 { 284 struct ib_header *rhdr = packet->hdr; 285 u32 rte = rhf_rcv_type_err(packet->rhf); 286 int lnh = be16_to_cpu(rhdr->lrh[0]) & 3; 287 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 288 struct hfi1_devdata *dd = ppd->dd; 289 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 290 291 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR)) 292 return; 293 294 if (packet->rhf & RHF_TID_ERR) { 295 /* For TIDERR and RC QPs preemptively schedule a NAK */ 296 struct ib_other_headers *ohdr = NULL; 297 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 298 u16 lid = be16_to_cpu(rhdr->lrh[1]); 299 u32 qp_num; 300 u32 rcv_flags = 0; 301 302 /* Sanity check packet */ 303 if (tlen < 24) 304 goto drop; 305 306 /* Check for GRH */ 307 if (lnh == HFI1_LRH_BTH) { 308 ohdr = &rhdr->u.oth; 309 } else if (lnh == HFI1_LRH_GRH) { 310 u32 vtf; 311 312 ohdr = &rhdr->u.l.oth; 313 if (rhdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR) 314 goto drop; 315 vtf = be32_to_cpu(rhdr->u.l.grh.version_tclass_flow); 316 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 317 goto drop; 318 rcv_flags |= HFI1_HAS_GRH; 319 } else { 320 goto drop; 321 } 322 /* Get the destination QP number. */ 323 qp_num = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK; 324 if (lid < be16_to_cpu(IB_MULTICAST_LID_BASE)) { 325 struct rvt_qp *qp; 326 unsigned long flags; 327 328 rcu_read_lock(); 329 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 330 if (!qp) { 331 rcu_read_unlock(); 332 goto drop; 333 } 334 335 /* 336 * Handle only RC QPs - for other QP types drop error 337 * packet. 338 */ 339 spin_lock_irqsave(&qp->r_lock, flags); 340 341 /* Check for valid receive state. */ 342 if (!(ib_rvt_state_ops[qp->state] & 343 RVT_PROCESS_RECV_OK)) { 344 ibp->rvp.n_pkt_drops++; 345 } 346 347 switch (qp->ibqp.qp_type) { 348 case IB_QPT_RC: 349 hfi1_rc_hdrerr( 350 rcd, 351 rhdr, 352 rcv_flags, 353 qp); 354 break; 355 default: 356 /* For now don't handle any other QP types */ 357 break; 358 } 359 360 spin_unlock_irqrestore(&qp->r_lock, flags); 361 rcu_read_unlock(); 362 } /* Unicast QP */ 363 } /* Valid packet with TIDErr */ 364 365 /* handle "RcvTypeErr" flags */ 366 switch (rte) { 367 case RHF_RTE_ERROR_OP_CODE_ERR: 368 { 369 u32 opcode; 370 void *ebuf = NULL; 371 __be32 *bth = NULL; 372 373 if (rhf_use_egr_bfr(packet->rhf)) 374 ebuf = packet->ebuf; 375 376 if (!ebuf) 377 goto drop; /* this should never happen */ 378 379 if (lnh == HFI1_LRH_BTH) 380 bth = (__be32 *)ebuf; 381 else if (lnh == HFI1_LRH_GRH) 382 bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh)); 383 else 384 goto drop; 385 386 opcode = be32_to_cpu(bth[0]) >> 24; 387 opcode &= 0xff; 388 389 if (opcode == IB_OPCODE_CNP) { 390 /* 391 * Only in pre-B0 h/w is the CNP_OPCODE handled 392 * via this code path. 393 */ 394 struct rvt_qp *qp = NULL; 395 u32 lqpn, rqpn; 396 u16 rlid; 397 u8 svc_type, sl, sc5; 398 399 sc5 = hdr2sc(rhdr, packet->rhf); 400 sl = ibp->sc_to_sl[sc5]; 401 402 lqpn = be32_to_cpu(bth[1]) & RVT_QPN_MASK; 403 rcu_read_lock(); 404 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); 405 if (!qp) { 406 rcu_read_unlock(); 407 goto drop; 408 } 409 410 switch (qp->ibqp.qp_type) { 411 case IB_QPT_UD: 412 rlid = 0; 413 rqpn = 0; 414 svc_type = IB_CC_SVCTYPE_UD; 415 break; 416 case IB_QPT_UC: 417 rlid = be16_to_cpu(rhdr->lrh[3]); 418 rqpn = qp->remote_qpn; 419 svc_type = IB_CC_SVCTYPE_UC; 420 break; 421 default: 422 goto drop; 423 } 424 425 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 426 rcu_read_unlock(); 427 } 428 429 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; 430 break; 431 } 432 default: 433 break; 434 } 435 436 drop: 437 return; 438 } 439 440 static inline void init_packet(struct hfi1_ctxtdata *rcd, 441 struct hfi1_packet *packet) 442 { 443 packet->rsize = rcd->rcvhdrqentsize; /* words */ 444 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */ 445 packet->rcd = rcd; 446 packet->updegr = 0; 447 packet->etail = -1; 448 packet->rhf_addr = get_rhf_addr(rcd); 449 packet->rhf = rhf_to_cpu(packet->rhf_addr); 450 packet->rhqoff = rcd->head; 451 packet->numpkt = 0; 452 packet->rcv_flags = 0; 453 } 454 455 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 456 bool do_cnp) 457 { 458 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 459 struct ib_header *hdr = pkt->hdr; 460 struct ib_other_headers *ohdr = pkt->ohdr; 461 struct ib_grh *grh = NULL; 462 u32 rqpn = 0, bth1; 463 u16 rlid, dlid = be16_to_cpu(hdr->lrh[1]); 464 u8 sc, svc_type; 465 bool is_mcast = false; 466 467 if (pkt->rcv_flags & HFI1_HAS_GRH) 468 grh = &hdr->u.l.grh; 469 470 switch (qp->ibqp.qp_type) { 471 case IB_QPT_SMI: 472 case IB_QPT_GSI: 473 case IB_QPT_UD: 474 rlid = be16_to_cpu(hdr->lrh[3]); 475 rqpn = be32_to_cpu(ohdr->u.ud.deth[1]) & RVT_QPN_MASK; 476 svc_type = IB_CC_SVCTYPE_UD; 477 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && 478 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); 479 break; 480 case IB_QPT_UC: 481 rlid = qp->remote_ah_attr.dlid; 482 rqpn = qp->remote_qpn; 483 svc_type = IB_CC_SVCTYPE_UC; 484 break; 485 case IB_QPT_RC: 486 rlid = qp->remote_ah_attr.dlid; 487 rqpn = qp->remote_qpn; 488 svc_type = IB_CC_SVCTYPE_RC; 489 break; 490 default: 491 return; 492 } 493 494 sc = hdr2sc(hdr, pkt->rhf); 495 496 bth1 = be32_to_cpu(ohdr->bth[1]); 497 if (do_cnp && (bth1 & HFI1_FECN_SMASK)) { 498 u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]); 499 500 return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc, grh); 501 } 502 503 if (!is_mcast && (bth1 & HFI1_BECN_SMASK)) { 504 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 505 u32 lqpn = bth1 & RVT_QPN_MASK; 506 u8 sl = ibp->sc_to_sl[sc]; 507 508 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 509 } 510 511 } 512 513 struct ps_mdata { 514 struct hfi1_ctxtdata *rcd; 515 u32 rsize; 516 u32 maxcnt; 517 u32 ps_head; 518 u32 ps_tail; 519 u32 ps_seq; 520 }; 521 522 static inline void init_ps_mdata(struct ps_mdata *mdata, 523 struct hfi1_packet *packet) 524 { 525 struct hfi1_ctxtdata *rcd = packet->rcd; 526 527 mdata->rcd = rcd; 528 mdata->rsize = packet->rsize; 529 mdata->maxcnt = packet->maxcnt; 530 mdata->ps_head = packet->rhqoff; 531 532 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 533 mdata->ps_tail = get_rcvhdrtail(rcd); 534 if (rcd->ctxt == HFI1_CTRL_CTXT) 535 mdata->ps_seq = rcd->seq_cnt; 536 else 537 mdata->ps_seq = 0; /* not used with DMA_RTAIL */ 538 } else { 539 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ 540 mdata->ps_seq = rcd->seq_cnt; 541 } 542 } 543 544 static inline int ps_done(struct ps_mdata *mdata, u64 rhf, 545 struct hfi1_ctxtdata *rcd) 546 { 547 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 548 return mdata->ps_head == mdata->ps_tail; 549 return mdata->ps_seq != rhf_rcv_seq(rhf); 550 } 551 552 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, 553 struct hfi1_ctxtdata *rcd) 554 { 555 /* 556 * Control context can potentially receive an invalid rhf. 557 * Drop such packets. 558 */ 559 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) 560 return mdata->ps_seq != rhf_rcv_seq(rhf); 561 562 return 0; 563 } 564 565 static inline void update_ps_mdata(struct ps_mdata *mdata, 566 struct hfi1_ctxtdata *rcd) 567 { 568 mdata->ps_head += mdata->rsize; 569 if (mdata->ps_head >= mdata->maxcnt) 570 mdata->ps_head = 0; 571 572 /* Control context must do seq counting */ 573 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || 574 (rcd->ctxt == HFI1_CTRL_CTXT)) { 575 if (++mdata->ps_seq > 13) 576 mdata->ps_seq = 1; 577 } 578 } 579 580 /* 581 * prescan_rxq - search through the receive queue looking for packets 582 * containing Excplicit Congestion Notifications (FECNs, or BECNs). 583 * When an ECN is found, process the Congestion Notification, and toggle 584 * it off. 585 * This is declared as a macro to allow quick checking of the port to avoid 586 * the overhead of a function call if not enabled. 587 */ 588 #define prescan_rxq(rcd, packet) \ 589 do { \ 590 if (rcd->ppd->cc_prescan) \ 591 __prescan_rxq(packet); \ 592 } while (0) 593 static void __prescan_rxq(struct hfi1_packet *packet) 594 { 595 struct hfi1_ctxtdata *rcd = packet->rcd; 596 struct ps_mdata mdata; 597 598 init_ps_mdata(&mdata, packet); 599 600 while (1) { 601 struct hfi1_devdata *dd = rcd->dd; 602 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 603 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 604 dd->rhf_offset; 605 struct rvt_qp *qp; 606 struct ib_header *hdr; 607 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; 608 u64 rhf = rhf_to_cpu(rhf_addr); 609 u32 etype = rhf_rcv_type(rhf), qpn, bth1; 610 int is_ecn = 0; 611 u8 lnh; 612 613 if (ps_done(&mdata, rhf, rcd)) 614 break; 615 616 if (ps_skip(&mdata, rhf, rcd)) 617 goto next; 618 619 if (etype != RHF_RCV_TYPE_IB) 620 goto next; 621 622 packet->hdr = hfi1_get_msgheader(dd, rhf_addr); 623 hdr = packet->hdr; 624 625 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 626 627 if (lnh == HFI1_LRH_BTH) { 628 packet->ohdr = &hdr->u.oth; 629 } else if (lnh == HFI1_LRH_GRH) { 630 packet->ohdr = &hdr->u.l.oth; 631 packet->rcv_flags |= HFI1_HAS_GRH; 632 } else { 633 goto next; /* just in case */ 634 } 635 636 bth1 = be32_to_cpu(packet->ohdr->bth[1]); 637 is_ecn = !!(bth1 & (HFI1_FECN_SMASK | HFI1_BECN_SMASK)); 638 639 if (!is_ecn) 640 goto next; 641 642 qpn = bth1 & RVT_QPN_MASK; 643 rcu_read_lock(); 644 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); 645 646 if (!qp) { 647 rcu_read_unlock(); 648 goto next; 649 } 650 651 process_ecn(qp, packet, true); 652 rcu_read_unlock(); 653 654 /* turn off BECN, FECN */ 655 bth1 &= ~(HFI1_FECN_SMASK | HFI1_BECN_SMASK); 656 packet->ohdr->bth[1] = cpu_to_be32(bth1); 657 next: 658 update_ps_mdata(&mdata, rcd); 659 } 660 } 661 662 static void process_rcv_qp_work(struct hfi1_ctxtdata *rcd) 663 { 664 struct rvt_qp *qp, *nqp; 665 666 /* 667 * Iterate over all QPs waiting to respond. 668 * The list won't change since the IRQ is only run on one CPU. 669 */ 670 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { 671 list_del_init(&qp->rspwait); 672 if (qp->r_flags & RVT_R_RSP_NAK) { 673 qp->r_flags &= ~RVT_R_RSP_NAK; 674 hfi1_send_rc_ack(rcd, qp, 0); 675 } 676 if (qp->r_flags & RVT_R_RSP_SEND) { 677 unsigned long flags; 678 679 qp->r_flags &= ~RVT_R_RSP_SEND; 680 spin_lock_irqsave(&qp->s_lock, flags); 681 if (ib_rvt_state_ops[qp->state] & 682 RVT_PROCESS_OR_FLUSH_SEND) 683 hfi1_schedule_send(qp); 684 spin_unlock_irqrestore(&qp->s_lock, flags); 685 } 686 rvt_put_qp(qp); 687 } 688 } 689 690 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) 691 { 692 if (thread) { 693 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) 694 /* allow defered processing */ 695 process_rcv_qp_work(packet->rcd); 696 cond_resched(); 697 return RCV_PKT_OK; 698 } else { 699 this_cpu_inc(*packet->rcd->dd->rcv_limit); 700 return RCV_PKT_LIMIT; 701 } 702 } 703 704 static inline int check_max_packet(struct hfi1_packet *packet, int thread) 705 { 706 int ret = RCV_PKT_OK; 707 708 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) 709 ret = max_packet_exceeded(packet, thread); 710 return ret; 711 } 712 713 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) 714 { 715 int ret; 716 717 /* Set up for the next packet */ 718 packet->rhqoff += packet->rsize; 719 if (packet->rhqoff >= packet->maxcnt) 720 packet->rhqoff = 0; 721 722 packet->numpkt++; 723 ret = check_max_packet(packet, thread); 724 725 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 726 packet->rcd->dd->rhf_offset; 727 packet->rhf = rhf_to_cpu(packet->rhf_addr); 728 729 return ret; 730 } 731 732 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) 733 { 734 int ret; 735 736 packet->hdr = hfi1_get_msgheader(packet->rcd->dd, 737 packet->rhf_addr); 738 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 739 packet->etype = rhf_rcv_type(packet->rhf); 740 /* total length */ 741 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 742 /* retrieve eager buffer details */ 743 packet->ebuf = NULL; 744 if (rhf_use_egr_bfr(packet->rhf)) { 745 packet->etail = rhf_egr_index(packet->rhf); 746 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 747 &packet->updegr); 748 /* 749 * Prefetch the contents of the eager buffer. It is 750 * OK to send a negative length to prefetch_range(). 751 * The +2 is the size of the RHF. 752 */ 753 prefetch_range(packet->ebuf, 754 packet->tlen - ((packet->rcd->rcvhdrqentsize - 755 (rhf_hdrq_offset(packet->rhf) 756 + 2)) * 4)); 757 } 758 759 /* 760 * Call a type specific handler for the packet. We 761 * should be able to trust that etype won't be beyond 762 * the range of valid indexes. If so something is really 763 * wrong and we can probably just let things come 764 * crashing down. There is no need to eat another 765 * comparison in this performance critical code. 766 */ 767 packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet); 768 packet->numpkt++; 769 770 /* Set up for the next packet */ 771 packet->rhqoff += packet->rsize; 772 if (packet->rhqoff >= packet->maxcnt) 773 packet->rhqoff = 0; 774 775 ret = check_max_packet(packet, thread); 776 777 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 778 packet->rcd->dd->rhf_offset; 779 packet->rhf = rhf_to_cpu(packet->rhf_addr); 780 781 return ret; 782 } 783 784 static inline void process_rcv_update(int last, struct hfi1_packet *packet) 785 { 786 /* 787 * Update head regs etc., every 16 packets, if not last pkt, 788 * to help prevent rcvhdrq overflows, when many packets 789 * are processed and queue is nearly full. 790 * Don't request an interrupt for intermediate updates. 791 */ 792 if (!last && !(packet->numpkt & 0xf)) { 793 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, 794 packet->etail, 0, 0); 795 packet->updegr = 0; 796 } 797 packet->rcv_flags = 0; 798 } 799 800 static inline void finish_packet(struct hfi1_packet *packet) 801 { 802 /* 803 * Nothing we need to free for the packet. 804 * 805 * The only thing we need to do is a final update and call for an 806 * interrupt 807 */ 808 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr, 809 packet->etail, rcv_intr_dynamic, packet->numpkt); 810 } 811 812 /* 813 * Handle receive interrupts when using the no dma rtail option. 814 */ 815 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) 816 { 817 u32 seq; 818 int last = RCV_PKT_OK; 819 struct hfi1_packet packet; 820 821 init_packet(rcd, &packet); 822 seq = rhf_rcv_seq(packet.rhf); 823 if (seq != rcd->seq_cnt) { 824 last = RCV_PKT_DONE; 825 goto bail; 826 } 827 828 prescan_rxq(rcd, &packet); 829 830 while (last == RCV_PKT_OK) { 831 last = process_rcv_packet(&packet, thread); 832 seq = rhf_rcv_seq(packet.rhf); 833 if (++rcd->seq_cnt > 13) 834 rcd->seq_cnt = 1; 835 if (seq != rcd->seq_cnt) 836 last = RCV_PKT_DONE; 837 process_rcv_update(last, &packet); 838 } 839 process_rcv_qp_work(rcd); 840 rcd->head = packet.rhqoff; 841 bail: 842 finish_packet(&packet); 843 return last; 844 } 845 846 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) 847 { 848 u32 hdrqtail; 849 int last = RCV_PKT_OK; 850 struct hfi1_packet packet; 851 852 init_packet(rcd, &packet); 853 hdrqtail = get_rcvhdrtail(rcd); 854 if (packet.rhqoff == hdrqtail) { 855 last = RCV_PKT_DONE; 856 goto bail; 857 } 858 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 859 860 prescan_rxq(rcd, &packet); 861 862 while (last == RCV_PKT_OK) { 863 last = process_rcv_packet(&packet, thread); 864 if (packet.rhqoff == hdrqtail) 865 last = RCV_PKT_DONE; 866 process_rcv_update(last, &packet); 867 } 868 process_rcv_qp_work(rcd); 869 rcd->head = packet.rhqoff; 870 bail: 871 finish_packet(&packet); 872 return last; 873 } 874 875 static inline void set_all_nodma_rtail(struct hfi1_devdata *dd) 876 { 877 int i; 878 879 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++) 880 dd->rcd[i]->do_interrupt = 881 &handle_receive_interrupt_nodma_rtail; 882 } 883 884 static inline void set_all_dma_rtail(struct hfi1_devdata *dd) 885 { 886 int i; 887 888 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++) 889 dd->rcd[i]->do_interrupt = 890 &handle_receive_interrupt_dma_rtail; 891 } 892 893 void set_all_slowpath(struct hfi1_devdata *dd) 894 { 895 int i; 896 897 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ 898 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++) 899 dd->rcd[i]->do_interrupt = &handle_receive_interrupt; 900 } 901 902 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd, 903 struct hfi1_packet *packet, 904 struct hfi1_devdata *dd) 905 { 906 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work; 907 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd, 908 packet->rhf_addr); 909 u8 etype = rhf_rcv_type(packet->rhf); 910 911 if (etype == RHF_RCV_TYPE_IB && hdr2sc(hdr, packet->rhf) != 0xf) { 912 int hwstate = read_logical_state(dd); 913 914 if (hwstate != LSTATE_ACTIVE) { 915 dd_dev_info(dd, "Unexpected link state %d\n", hwstate); 916 return 0; 917 } 918 919 queue_work(rcd->ppd->hfi1_wq, lsaw); 920 return 1; 921 } 922 return 0; 923 } 924 925 /* 926 * handle_receive_interrupt - receive a packet 927 * @rcd: the context 928 * 929 * Called from interrupt handler for errors or receive interrupt. 930 * This is the slow path interrupt handler. 931 */ 932 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) 933 { 934 struct hfi1_devdata *dd = rcd->dd; 935 u32 hdrqtail; 936 int needset, last = RCV_PKT_OK; 937 struct hfi1_packet packet; 938 int skip_pkt = 0; 939 940 /* Control context will always use the slow path interrupt handler */ 941 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; 942 943 init_packet(rcd, &packet); 944 945 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 946 u32 seq = rhf_rcv_seq(packet.rhf); 947 948 if (seq != rcd->seq_cnt) { 949 last = RCV_PKT_DONE; 950 goto bail; 951 } 952 hdrqtail = 0; 953 } else { 954 hdrqtail = get_rcvhdrtail(rcd); 955 if (packet.rhqoff == hdrqtail) { 956 last = RCV_PKT_DONE; 957 goto bail; 958 } 959 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 960 961 /* 962 * Control context can potentially receive an invalid 963 * rhf. Drop such packets. 964 */ 965 if (rcd->ctxt == HFI1_CTRL_CTXT) { 966 u32 seq = rhf_rcv_seq(packet.rhf); 967 968 if (seq != rcd->seq_cnt) 969 skip_pkt = 1; 970 } 971 } 972 973 prescan_rxq(rcd, &packet); 974 975 while (last == RCV_PKT_OK) { 976 if (unlikely(dd->do_drop && 977 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == 978 DROP_PACKET_ON)) { 979 dd->do_drop = 0; 980 981 /* On to the next packet */ 982 packet.rhqoff += packet.rsize; 983 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 984 packet.rhqoff + 985 dd->rhf_offset; 986 packet.rhf = rhf_to_cpu(packet.rhf_addr); 987 988 } else if (skip_pkt) { 989 last = skip_rcv_packet(&packet, thread); 990 skip_pkt = 0; 991 } else { 992 /* Auto activate link on non-SC15 packet receive */ 993 if (unlikely(rcd->ppd->host_link_state == 994 HLS_UP_ARMED) && 995 set_armed_to_active(rcd, &packet, dd)) 996 goto bail; 997 last = process_rcv_packet(&packet, thread); 998 } 999 1000 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { 1001 u32 seq = rhf_rcv_seq(packet.rhf); 1002 1003 if (++rcd->seq_cnt > 13) 1004 rcd->seq_cnt = 1; 1005 if (seq != rcd->seq_cnt) 1006 last = RCV_PKT_DONE; 1007 if (needset) { 1008 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n"); 1009 set_all_nodma_rtail(dd); 1010 needset = 0; 1011 } 1012 } else { 1013 if (packet.rhqoff == hdrqtail) 1014 last = RCV_PKT_DONE; 1015 /* 1016 * Control context can potentially receive an invalid 1017 * rhf. Drop such packets. 1018 */ 1019 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1020 u32 seq = rhf_rcv_seq(packet.rhf); 1021 1022 if (++rcd->seq_cnt > 13) 1023 rcd->seq_cnt = 1; 1024 if (!last && (seq != rcd->seq_cnt)) 1025 skip_pkt = 1; 1026 } 1027 1028 if (needset) { 1029 dd_dev_info(dd, 1030 "Switching to DMA_RTAIL\n"); 1031 set_all_dma_rtail(dd); 1032 needset = 0; 1033 } 1034 } 1035 1036 process_rcv_update(last, &packet); 1037 } 1038 1039 process_rcv_qp_work(rcd); 1040 rcd->head = packet.rhqoff; 1041 1042 bail: 1043 /* 1044 * Always write head at end, and setup rcv interrupt, even 1045 * if no packets were processed. 1046 */ 1047 finish_packet(&packet); 1048 return last; 1049 } 1050 1051 /* 1052 * We may discover in the interrupt that the hardware link state has 1053 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), 1054 * and we need to update the driver's notion of the link state. We cannot 1055 * run set_link_state from interrupt context, so we queue this function on 1056 * a workqueue. 1057 * 1058 * We delay the regular interrupt processing until after the state changes 1059 * so that the link will be in the correct state by the time any application 1060 * we wake up attempts to send a reply to any message it received. 1061 * (Subsequent receive interrupts may possibly force the wakeup before we 1062 * update the link state.) 1063 * 1064 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes 1065 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, 1066 * so we're safe from use-after-free of the rcd. 1067 */ 1068 void receive_interrupt_work(struct work_struct *work) 1069 { 1070 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 1071 linkstate_active_work); 1072 struct hfi1_devdata *dd = ppd->dd; 1073 int i; 1074 1075 /* Received non-SC15 packet implies neighbor_normal */ 1076 ppd->neighbor_normal = 1; 1077 set_link_state(ppd, HLS_UP_ACTIVE); 1078 1079 /* 1080 * Interrupt all kernel contexts that could have had an 1081 * interrupt during auto activation. 1082 */ 1083 for (i = HFI1_CTRL_CTXT; i < dd->first_user_ctxt; i++) 1084 force_recv_intr(dd->rcd[i]); 1085 } 1086 1087 /* 1088 * Convert a given MTU size to the on-wire MAD packet enumeration. 1089 * Return -1 if the size is invalid. 1090 */ 1091 int mtu_to_enum(u32 mtu, int default_if_bad) 1092 { 1093 switch (mtu) { 1094 case 0: return OPA_MTU_0; 1095 case 256: return OPA_MTU_256; 1096 case 512: return OPA_MTU_512; 1097 case 1024: return OPA_MTU_1024; 1098 case 2048: return OPA_MTU_2048; 1099 case 4096: return OPA_MTU_4096; 1100 case 8192: return OPA_MTU_8192; 1101 case 10240: return OPA_MTU_10240; 1102 } 1103 return default_if_bad; 1104 } 1105 1106 u16 enum_to_mtu(int mtu) 1107 { 1108 switch (mtu) { 1109 case OPA_MTU_0: return 0; 1110 case OPA_MTU_256: return 256; 1111 case OPA_MTU_512: return 512; 1112 case OPA_MTU_1024: return 1024; 1113 case OPA_MTU_2048: return 2048; 1114 case OPA_MTU_4096: return 4096; 1115 case OPA_MTU_8192: return 8192; 1116 case OPA_MTU_10240: return 10240; 1117 default: return 0xffff; 1118 } 1119 } 1120 1121 /* 1122 * set_mtu - set the MTU 1123 * @ppd: the per port data 1124 * 1125 * We can handle "any" incoming size, the issue here is whether we 1126 * need to restrict our outgoing size. We do not deal with what happens 1127 * to programs that are already running when the size changes. 1128 */ 1129 int set_mtu(struct hfi1_pportdata *ppd) 1130 { 1131 struct hfi1_devdata *dd = ppd->dd; 1132 int i, drain, ret = 0, is_up = 0; 1133 1134 ppd->ibmtu = 0; 1135 for (i = 0; i < ppd->vls_supported; i++) 1136 if (ppd->ibmtu < dd->vld[i].mtu) 1137 ppd->ibmtu = dd->vld[i].mtu; 1138 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); 1139 1140 mutex_lock(&ppd->hls_lock); 1141 if (ppd->host_link_state == HLS_UP_INIT || 1142 ppd->host_link_state == HLS_UP_ARMED || 1143 ppd->host_link_state == HLS_UP_ACTIVE) 1144 is_up = 1; 1145 1146 drain = !is_ax(dd) && is_up; 1147 1148 if (drain) 1149 /* 1150 * MTU is specified per-VL. To ensure that no packet gets 1151 * stuck (due, e.g., to the MTU for the packet's VL being 1152 * reduced), empty the per-VL FIFOs before adjusting MTU. 1153 */ 1154 ret = stop_drain_data_vls(dd); 1155 1156 if (ret) { 1157 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", 1158 __func__); 1159 goto err; 1160 } 1161 1162 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); 1163 1164 if (drain) 1165 open_fill_data_vls(dd); /* reopen all VLs */ 1166 1167 err: 1168 mutex_unlock(&ppd->hls_lock); 1169 1170 return ret; 1171 } 1172 1173 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) 1174 { 1175 struct hfi1_devdata *dd = ppd->dd; 1176 1177 ppd->lid = lid; 1178 ppd->lmc = lmc; 1179 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); 1180 1181 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); 1182 1183 return 0; 1184 } 1185 1186 void shutdown_led_override(struct hfi1_pportdata *ppd) 1187 { 1188 struct hfi1_devdata *dd = ppd->dd; 1189 1190 /* 1191 * This pairs with the memory barrier in hfi1_start_led_override to 1192 * ensure that we read the correct state of LED beaconing represented 1193 * by led_override_timer_active 1194 */ 1195 smp_rmb(); 1196 if (atomic_read(&ppd->led_override_timer_active)) { 1197 del_timer_sync(&ppd->led_override_timer); 1198 atomic_set(&ppd->led_override_timer_active, 0); 1199 /* Ensure the atomic_set is visible to all CPUs */ 1200 smp_wmb(); 1201 } 1202 1203 /* Hand control of the LED to the DC for normal operation */ 1204 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 1205 } 1206 1207 static void run_led_override(unsigned long opaque) 1208 { 1209 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque; 1210 struct hfi1_devdata *dd = ppd->dd; 1211 unsigned long timeout; 1212 int phase_idx; 1213 1214 if (!(dd->flags & HFI1_INITTED)) 1215 return; 1216 1217 phase_idx = ppd->led_override_phase & 1; 1218 1219 setextled(dd, phase_idx); 1220 1221 timeout = ppd->led_override_vals[phase_idx]; 1222 1223 /* Set up for next phase */ 1224 ppd->led_override_phase = !ppd->led_override_phase; 1225 1226 mod_timer(&ppd->led_override_timer, jiffies + timeout); 1227 } 1228 1229 /* 1230 * To have the LED blink in a particular pattern, provide timeon and timeoff 1231 * in milliseconds. 1232 * To turn off custom blinking and return to normal operation, use 1233 * shutdown_led_override() 1234 */ 1235 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1236 unsigned int timeoff) 1237 { 1238 if (!(ppd->dd->flags & HFI1_INITTED)) 1239 return; 1240 1241 /* Convert to jiffies for direct use in timer */ 1242 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); 1243 ppd->led_override_vals[1] = msecs_to_jiffies(timeon); 1244 1245 /* Arbitrarily start from LED on phase */ 1246 ppd->led_override_phase = 1; 1247 1248 /* 1249 * If the timer has not already been started, do so. Use a "quick" 1250 * timeout so the handler will be called soon to look at our request. 1251 */ 1252 if (!timer_pending(&ppd->led_override_timer)) { 1253 setup_timer(&ppd->led_override_timer, run_led_override, 1254 (unsigned long)ppd); 1255 ppd->led_override_timer.expires = jiffies + 1; 1256 add_timer(&ppd->led_override_timer); 1257 atomic_set(&ppd->led_override_timer_active, 1); 1258 /* Ensure the atomic_set is visible to all CPUs */ 1259 smp_wmb(); 1260 } 1261 } 1262 1263 /** 1264 * hfi1_reset_device - reset the chip if possible 1265 * @unit: the device to reset 1266 * 1267 * Whether or not reset is successful, we attempt to re-initialize the chip 1268 * (that is, much like a driver unload/reload). We clear the INITTED flag 1269 * so that the various entry points will fail until we reinitialize. For 1270 * now, we only allow this if no user contexts are open that use chip resources 1271 */ 1272 int hfi1_reset_device(int unit) 1273 { 1274 int ret, i; 1275 struct hfi1_devdata *dd = hfi1_lookup(unit); 1276 struct hfi1_pportdata *ppd; 1277 unsigned long flags; 1278 int pidx; 1279 1280 if (!dd) { 1281 ret = -ENODEV; 1282 goto bail; 1283 } 1284 1285 dd_dev_info(dd, "Reset on unit %u requested\n", unit); 1286 1287 if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) { 1288 dd_dev_info(dd, 1289 "Invalid unit number %u or not initialized or not present\n", 1290 unit); 1291 ret = -ENXIO; 1292 goto bail; 1293 } 1294 1295 spin_lock_irqsave(&dd->uctxt_lock, flags); 1296 if (dd->rcd) 1297 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) { 1298 if (!dd->rcd[i] || !dd->rcd[i]->cnt) 1299 continue; 1300 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1301 ret = -EBUSY; 1302 goto bail; 1303 } 1304 spin_unlock_irqrestore(&dd->uctxt_lock, flags); 1305 1306 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1307 ppd = dd->pport + pidx; 1308 1309 shutdown_led_override(ppd); 1310 } 1311 if (dd->flags & HFI1_HAS_SEND_DMA) 1312 sdma_exit(dd); 1313 1314 hfi1_reset_cpu_counters(dd); 1315 1316 ret = hfi1_init(dd, 1); 1317 1318 if (ret) 1319 dd_dev_err(dd, 1320 "Reinitialize unit %u after reset failed with %d\n", 1321 unit, ret); 1322 else 1323 dd_dev_info(dd, "Reinitialized unit %u after resetting\n", 1324 unit); 1325 1326 bail: 1327 return ret; 1328 } 1329 1330 void handle_eflags(struct hfi1_packet *packet) 1331 { 1332 struct hfi1_ctxtdata *rcd = packet->rcd; 1333 u32 rte = rhf_rcv_type_err(packet->rhf); 1334 1335 rcv_hdrerr(rcd, rcd->ppd, packet); 1336 if (rhf_err_flags(packet->rhf)) 1337 dd_dev_err(rcd->dd, 1338 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n", 1339 rcd->ctxt, packet->rhf, 1340 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", 1341 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", 1342 packet->rhf & RHF_DC_ERR ? "dc " : "", 1343 packet->rhf & RHF_TID_ERR ? "tid " : "", 1344 packet->rhf & RHF_LEN_ERR ? "len " : "", 1345 packet->rhf & RHF_ECC_ERR ? "ecc " : "", 1346 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "", 1347 packet->rhf & RHF_ICRC_ERR ? "icrc " : "", 1348 rte); 1349 } 1350 1351 /* 1352 * The following functions are called by the interrupt handler. They are type 1353 * specific handlers for each packet type. 1354 */ 1355 int process_receive_ib(struct hfi1_packet *packet) 1356 { 1357 trace_hfi1_rcvhdr(packet->rcd->ppd->dd, 1358 packet->rcd->ctxt, 1359 rhf_err_flags(packet->rhf), 1360 RHF_RCV_TYPE_IB, 1361 packet->hlen, 1362 packet->tlen, 1363 packet->updegr, 1364 rhf_egr_index(packet->rhf)); 1365 1366 if (unlikely(rhf_err_flags(packet->rhf))) { 1367 handle_eflags(packet); 1368 return RHF_RCV_CONTINUE; 1369 } 1370 1371 hfi1_ib_rcv(packet); 1372 return RHF_RCV_CONTINUE; 1373 } 1374 1375 int process_receive_bypass(struct hfi1_packet *packet) 1376 { 1377 struct hfi1_devdata *dd = packet->rcd->dd; 1378 1379 if (unlikely(rhf_err_flags(packet->rhf))) 1380 handle_eflags(packet); 1381 1382 dd_dev_err(dd, 1383 "Bypass packets are not supported in normal operation. Dropping\n"); 1384 incr_cntr64(&dd->sw_rcv_bypass_packet_errors); 1385 if (!(dd->err_info_rcvport.status_and_code & OPA_EI_STATUS_SMASK)) { 1386 u64 *flits = packet->ebuf; 1387 1388 if (flits && !(packet->rhf & RHF_LEN_ERR)) { 1389 dd->err_info_rcvport.packet_flit1 = flits[0]; 1390 dd->err_info_rcvport.packet_flit2 = 1391 packet->tlen > sizeof(flits[0]) ? flits[1] : 0; 1392 } 1393 dd->err_info_rcvport.status_and_code |= 1394 (OPA_EI_STATUS_SMASK | BAD_L2_ERR); 1395 } 1396 return RHF_RCV_CONTINUE; 1397 } 1398 1399 int process_receive_error(struct hfi1_packet *packet) 1400 { 1401 handle_eflags(packet); 1402 1403 if (unlikely(rhf_err_flags(packet->rhf))) 1404 dd_dev_err(packet->rcd->dd, 1405 "Unhandled error packet received. Dropping.\n"); 1406 1407 return RHF_RCV_CONTINUE; 1408 } 1409 1410 int kdeth_process_expected(struct hfi1_packet *packet) 1411 { 1412 if (unlikely(rhf_err_flags(packet->rhf))) 1413 handle_eflags(packet); 1414 1415 dd_dev_err(packet->rcd->dd, 1416 "Unhandled expected packet received. Dropping.\n"); 1417 return RHF_RCV_CONTINUE; 1418 } 1419 1420 int kdeth_process_eager(struct hfi1_packet *packet) 1421 { 1422 if (unlikely(rhf_err_flags(packet->rhf))) 1423 handle_eflags(packet); 1424 1425 dd_dev_err(packet->rcd->dd, 1426 "Unhandled eager packet received. Dropping.\n"); 1427 return RHF_RCV_CONTINUE; 1428 } 1429 1430 int process_receive_invalid(struct hfi1_packet *packet) 1431 { 1432 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", 1433 rhf_rcv_type(packet->rhf)); 1434 return RHF_RCV_CONTINUE; 1435 } 1436