1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause 2 /* 3 * Copyright(c) 2015-2020 Intel Corporation. 4 * Copyright(c) 2021 Cornelis Networks. 5 */ 6 7 #include <linux/spinlock.h> 8 #include <linux/pci.h> 9 #include <linux/io.h> 10 #include <linux/delay.h> 11 #include <linux/netdevice.h> 12 #include <linux/vmalloc.h> 13 #include <linux/module.h> 14 #include <linux/prefetch.h> 15 #include <rdma/ib_verbs.h> 16 #include <linux/etherdevice.h> 17 18 #include "hfi.h" 19 #include "trace.h" 20 #include "qp.h" 21 #include "sdma.h" 22 #include "debugfs.h" 23 #include "vnic.h" 24 #include "fault.h" 25 26 #include "ipoib.h" 27 #include "netdev.h" 28 29 #undef pr_fmt 30 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 31 32 DEFINE_MUTEX(hfi1_mutex); /* general driver use */ 33 34 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; 35 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); 36 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( 37 HFI1_DEFAULT_MAX_MTU)); 38 39 unsigned int hfi1_cu = 1; 40 module_param_named(cu, hfi1_cu, uint, S_IRUGO); 41 MODULE_PARM_DESC(cu, "Credit return units"); 42 43 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; 44 static int hfi1_caps_set(const char *val, const struct kernel_param *kp); 45 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp); 46 static const struct kernel_param_ops cap_ops = { 47 .set = hfi1_caps_set, 48 .get = hfi1_caps_get 49 }; 50 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); 51 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); 52 53 MODULE_LICENSE("Dual BSD/GPL"); 54 MODULE_DESCRIPTION("Cornelis Omni-Path Express driver"); 55 56 /* 57 * MAX_PKT_RCV is the max # if packets processed per receive interrupt. 58 */ 59 #define MAX_PKT_RECV 64 60 /* 61 * MAX_PKT_THREAD_RCV is the max # of packets processed before 62 * the qp_wait_list queue is flushed. 63 */ 64 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) 65 #define EGR_HEAD_UPDATE_THRESHOLD 16 66 67 struct hfi1_ib_stats hfi1_stats; 68 69 static int hfi1_caps_set(const char *val, const struct kernel_param *kp) 70 { 71 int ret = 0; 72 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, 73 cap_mask = *cap_mask_ptr, value, diff, 74 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | 75 HFI1_CAP_WRITABLE_MASK); 76 77 ret = kstrtoul(val, 0, &value); 78 if (ret) { 79 pr_warn("Invalid module parameter value for 'cap_mask'\n"); 80 goto done; 81 } 82 /* Get the changed bits (except the locked bit) */ 83 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); 84 85 /* Remove any bits that are not allowed to change after driver load */ 86 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { 87 pr_warn("Ignoring non-writable capability bits %#lx\n", 88 diff & ~write_mask); 89 diff &= write_mask; 90 } 91 92 /* Mask off any reserved bits */ 93 diff &= ~HFI1_CAP_RESERVED_MASK; 94 /* Clear any previously set and changing bits */ 95 cap_mask &= ~diff; 96 /* Update the bits with the new capability */ 97 cap_mask |= (value & diff); 98 /* Check for any kernel/user restrictions */ 99 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ 100 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); 101 cap_mask &= ~diff; 102 /* Set the bitmask to the final set */ 103 *cap_mask_ptr = cap_mask; 104 done: 105 return ret; 106 } 107 108 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) 109 { 110 unsigned long cap_mask = *(unsigned long *)kp->arg; 111 112 cap_mask &= ~HFI1_CAP_LOCKED_SMASK; 113 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); 114 115 return sysfs_emit(buffer, "0x%lx\n", cap_mask); 116 } 117 118 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) 119 { 120 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); 121 struct hfi1_devdata *dd = container_of(ibdev, 122 struct hfi1_devdata, verbs_dev); 123 return dd->pcidev; 124 } 125 126 /* 127 * Return count of units with at least one port ACTIVE. 128 */ 129 int hfi1_count_active_units(void) 130 { 131 struct hfi1_devdata *dd; 132 struct hfi1_pportdata *ppd; 133 unsigned long index, flags; 134 int pidx, nunits_active = 0; 135 136 xa_lock_irqsave(&hfi1_dev_table, flags); 137 xa_for_each(&hfi1_dev_table, index, dd) { 138 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1) 139 continue; 140 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 141 ppd = dd->pport + pidx; 142 if (ppd->lid && ppd->linkup) { 143 nunits_active++; 144 break; 145 } 146 } 147 } 148 xa_unlock_irqrestore(&hfi1_dev_table, flags); 149 return nunits_active; 150 } 151 152 /* 153 * Get address of eager buffer from it's index (allocated in chunks, not 154 * contiguous). 155 */ 156 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, 157 u8 *update) 158 { 159 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); 160 161 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; 162 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + 163 (offset * RCV_BUF_BLOCK_SIZE)); 164 } 165 166 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd, 167 __le32 *rhf_addr) 168 { 169 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); 170 171 return (void *)(rhf_addr - rcd->rhf_offset + offset); 172 } 173 174 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd, 175 __le32 *rhf_addr) 176 { 177 return (struct ib_header *)hfi1_get_header(rcd, rhf_addr); 178 } 179 180 static inline struct hfi1_16b_header 181 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd, 182 __le32 *rhf_addr) 183 { 184 return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr); 185 } 186 187 /* 188 * Validate and encode the a given RcvArray Buffer size. 189 * The function will check whether the given size falls within 190 * allowed size ranges for the respective type and, optionally, 191 * return the proper encoding. 192 */ 193 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) 194 { 195 if (unlikely(!PAGE_ALIGNED(size))) 196 return 0; 197 if (unlikely(size < MIN_EAGER_BUFFER)) 198 return 0; 199 if (size > 200 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) 201 return 0; 202 if (encoded) 203 *encoded = ilog2(size / PAGE_SIZE) + 1; 204 return 1; 205 } 206 207 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, 208 struct hfi1_packet *packet) 209 { 210 struct ib_header *rhdr = packet->hdr; 211 u32 rte = rhf_rcv_type_err(packet->rhf); 212 u32 mlid_base; 213 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 214 struct hfi1_devdata *dd = ppd->dd; 215 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev; 216 struct rvt_dev_info *rdi = &verbs_dev->rdi; 217 218 if ((packet->rhf & RHF_DC_ERR) && 219 hfi1_dbg_fault_suppress_err(verbs_dev)) 220 return; 221 222 if (packet->rhf & RHF_ICRC_ERR) 223 return; 224 225 if (packet->etype == RHF_RCV_TYPE_BYPASS) { 226 goto drop; 227 } else { 228 u8 lnh = ib_get_lnh(rhdr); 229 230 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE); 231 if (lnh == HFI1_LRH_BTH) { 232 packet->ohdr = &rhdr->u.oth; 233 } else if (lnh == HFI1_LRH_GRH) { 234 packet->ohdr = &rhdr->u.l.oth; 235 packet->grh = &rhdr->u.l.grh; 236 } else { 237 goto drop; 238 } 239 } 240 241 if (packet->rhf & RHF_TID_ERR) { 242 /* For TIDERR and RC QPs preemptively schedule a NAK */ 243 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 244 u32 dlid = ib_get_dlid(rhdr); 245 u32 qp_num; 246 247 /* Sanity check packet */ 248 if (tlen < 24) 249 goto drop; 250 251 /* Check for GRH */ 252 if (packet->grh) { 253 u32 vtf; 254 struct ib_grh *grh = packet->grh; 255 256 if (grh->next_hdr != IB_GRH_NEXT_HDR) 257 goto drop; 258 vtf = be32_to_cpu(grh->version_tclass_flow); 259 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 260 goto drop; 261 } 262 263 /* Get the destination QP number. */ 264 qp_num = ib_bth_get_qpn(packet->ohdr); 265 if (dlid < mlid_base) { 266 struct rvt_qp *qp; 267 unsigned long flags; 268 269 rcu_read_lock(); 270 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); 271 if (!qp) { 272 rcu_read_unlock(); 273 goto drop; 274 } 275 276 /* 277 * Handle only RC QPs - for other QP types drop error 278 * packet. 279 */ 280 spin_lock_irqsave(&qp->r_lock, flags); 281 282 /* Check for valid receive state. */ 283 if (!(ib_rvt_state_ops[qp->state] & 284 RVT_PROCESS_RECV_OK)) { 285 ibp->rvp.n_pkt_drops++; 286 } 287 288 switch (qp->ibqp.qp_type) { 289 case IB_QPT_RC: 290 hfi1_rc_hdrerr(rcd, packet, qp); 291 break; 292 default: 293 /* For now don't handle any other QP types */ 294 break; 295 } 296 297 spin_unlock_irqrestore(&qp->r_lock, flags); 298 rcu_read_unlock(); 299 } /* Unicast QP */ 300 } /* Valid packet with TIDErr */ 301 302 /* handle "RcvTypeErr" flags */ 303 switch (rte) { 304 case RHF_RTE_ERROR_OP_CODE_ERR: 305 { 306 void *ebuf = NULL; 307 u8 opcode; 308 309 if (rhf_use_egr_bfr(packet->rhf)) 310 ebuf = packet->ebuf; 311 312 if (!ebuf) 313 goto drop; /* this should never happen */ 314 315 opcode = ib_bth_get_opcode(packet->ohdr); 316 if (opcode == IB_OPCODE_CNP) { 317 /* 318 * Only in pre-B0 h/w is the CNP_OPCODE handled 319 * via this code path. 320 */ 321 struct rvt_qp *qp = NULL; 322 u32 lqpn, rqpn; 323 u16 rlid; 324 u8 svc_type, sl, sc5; 325 326 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf); 327 sl = ibp->sc_to_sl[sc5]; 328 329 lqpn = ib_bth_get_qpn(packet->ohdr); 330 rcu_read_lock(); 331 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); 332 if (!qp) { 333 rcu_read_unlock(); 334 goto drop; 335 } 336 337 switch (qp->ibqp.qp_type) { 338 case IB_QPT_UD: 339 rlid = 0; 340 rqpn = 0; 341 svc_type = IB_CC_SVCTYPE_UD; 342 break; 343 case IB_QPT_UC: 344 rlid = ib_get_slid(rhdr); 345 rqpn = qp->remote_qpn; 346 svc_type = IB_CC_SVCTYPE_UC; 347 break; 348 default: 349 rcu_read_unlock(); 350 goto drop; 351 } 352 353 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 354 rcu_read_unlock(); 355 } 356 357 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; 358 break; 359 } 360 default: 361 break; 362 } 363 364 drop: 365 return; 366 } 367 368 static inline void init_packet(struct hfi1_ctxtdata *rcd, 369 struct hfi1_packet *packet) 370 { 371 packet->rsize = get_hdrqentsize(rcd); /* words */ 372 packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */ 373 packet->rcd = rcd; 374 packet->updegr = 0; 375 packet->etail = -1; 376 packet->rhf_addr = get_rhf_addr(rcd); 377 packet->rhf = rhf_to_cpu(packet->rhf_addr); 378 packet->rhqoff = hfi1_rcd_head(rcd); 379 packet->numpkt = 0; 380 } 381 382 /* We support only two types - 9B and 16B for now */ 383 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = { 384 [HFI1_PKT_TYPE_9B] = &return_cnp, 385 [HFI1_PKT_TYPE_16B] = &return_cnp_16B 386 }; 387 388 /** 389 * hfi1_process_ecn_slowpath - Process FECN or BECN bits 390 * @qp: The packet's destination QP 391 * @pkt: The packet itself. 392 * @prescan: Is the caller the RXQ prescan 393 * 394 * Process the packet's FECN or BECN bits. By now, the packet 395 * has already been evaluated whether processing of those bit should 396 * be done. 397 * The significance of the @prescan argument is that if the caller 398 * is the RXQ prescan, a CNP will be send out instead of waiting for the 399 * normal packet processing to send an ACK with BECN set (or a CNP). 400 */ 401 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, 402 bool prescan) 403 { 404 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); 405 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); 406 struct ib_other_headers *ohdr = pkt->ohdr; 407 struct ib_grh *grh = pkt->grh; 408 u32 rqpn = 0; 409 u16 pkey; 410 u32 rlid, slid, dlid = 0; 411 u8 hdr_type, sc, svc_type, opcode; 412 bool is_mcast = false, ignore_fecn = false, do_cnp = false, 413 fecn, becn; 414 415 /* can be called from prescan */ 416 if (pkt->etype == RHF_RCV_TYPE_BYPASS) { 417 pkey = hfi1_16B_get_pkey(pkt->hdr); 418 sc = hfi1_16B_get_sc(pkt->hdr); 419 dlid = hfi1_16B_get_dlid(pkt->hdr); 420 slid = hfi1_16B_get_slid(pkt->hdr); 421 is_mcast = hfi1_is_16B_mcast(dlid); 422 opcode = ib_bth_get_opcode(ohdr); 423 hdr_type = HFI1_PKT_TYPE_16B; 424 fecn = hfi1_16B_get_fecn(pkt->hdr); 425 becn = hfi1_16B_get_becn(pkt->hdr); 426 } else { 427 pkey = ib_bth_get_pkey(ohdr); 428 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf); 429 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) : 430 ppd->lid; 431 slid = ib_get_slid(pkt->hdr); 432 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && 433 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); 434 opcode = ib_bth_get_opcode(ohdr); 435 hdr_type = HFI1_PKT_TYPE_9B; 436 fecn = ib_bth_get_fecn(ohdr); 437 becn = ib_bth_get_becn(ohdr); 438 } 439 440 switch (qp->ibqp.qp_type) { 441 case IB_QPT_UD: 442 rlid = slid; 443 rqpn = ib_get_sqpn(pkt->ohdr); 444 svc_type = IB_CC_SVCTYPE_UD; 445 break; 446 case IB_QPT_SMI: 447 case IB_QPT_GSI: 448 rlid = slid; 449 rqpn = ib_get_sqpn(pkt->ohdr); 450 svc_type = IB_CC_SVCTYPE_UD; 451 break; 452 case IB_QPT_UC: 453 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 454 rqpn = qp->remote_qpn; 455 svc_type = IB_CC_SVCTYPE_UC; 456 break; 457 case IB_QPT_RC: 458 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); 459 rqpn = qp->remote_qpn; 460 svc_type = IB_CC_SVCTYPE_RC; 461 break; 462 default: 463 return false; 464 } 465 466 ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) || 467 (opcode == IB_OPCODE_RC_ACKNOWLEDGE); 468 /* 469 * ACKNOWLEDGE packets do not get a CNP but this will be 470 * guarded by ignore_fecn above. 471 */ 472 do_cnp = prescan || 473 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST && 474 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) || 475 opcode == TID_OP(READ_RESP) || 476 opcode == TID_OP(ACK); 477 478 /* Call appropriate CNP handler */ 479 if (!ignore_fecn && do_cnp && fecn) 480 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey, 481 dlid, rlid, sc, grh); 482 483 if (becn) { 484 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK; 485 u8 sl = ibp->sc_to_sl[sc]; 486 487 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); 488 } 489 return !ignore_fecn && fecn; 490 } 491 492 struct ps_mdata { 493 struct hfi1_ctxtdata *rcd; 494 u32 rsize; 495 u32 maxcnt; 496 u32 ps_head; 497 u32 ps_tail; 498 u32 ps_seq; 499 }; 500 501 static inline void init_ps_mdata(struct ps_mdata *mdata, 502 struct hfi1_packet *packet) 503 { 504 struct hfi1_ctxtdata *rcd = packet->rcd; 505 506 mdata->rcd = rcd; 507 mdata->rsize = packet->rsize; 508 mdata->maxcnt = packet->maxcnt; 509 mdata->ps_head = packet->rhqoff; 510 511 if (get_dma_rtail_setting(rcd)) { 512 mdata->ps_tail = get_rcvhdrtail(rcd); 513 if (rcd->ctxt == HFI1_CTRL_CTXT) 514 mdata->ps_seq = hfi1_seq_cnt(rcd); 515 else 516 mdata->ps_seq = 0; /* not used with DMA_RTAIL */ 517 } else { 518 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ 519 mdata->ps_seq = hfi1_seq_cnt(rcd); 520 } 521 } 522 523 static inline int ps_done(struct ps_mdata *mdata, u64 rhf, 524 struct hfi1_ctxtdata *rcd) 525 { 526 if (get_dma_rtail_setting(rcd)) 527 return mdata->ps_head == mdata->ps_tail; 528 return mdata->ps_seq != rhf_rcv_seq(rhf); 529 } 530 531 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, 532 struct hfi1_ctxtdata *rcd) 533 { 534 /* 535 * Control context can potentially receive an invalid rhf. 536 * Drop such packets. 537 */ 538 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) 539 return mdata->ps_seq != rhf_rcv_seq(rhf); 540 541 return 0; 542 } 543 544 static inline void update_ps_mdata(struct ps_mdata *mdata, 545 struct hfi1_ctxtdata *rcd) 546 { 547 mdata->ps_head += mdata->rsize; 548 if (mdata->ps_head >= mdata->maxcnt) 549 mdata->ps_head = 0; 550 551 /* Control context must do seq counting */ 552 if (!get_dma_rtail_setting(rcd) || 553 rcd->ctxt == HFI1_CTRL_CTXT) 554 mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq); 555 } 556 557 /* 558 * prescan_rxq - search through the receive queue looking for packets 559 * containing Excplicit Congestion Notifications (FECNs, or BECNs). 560 * When an ECN is found, process the Congestion Notification, and toggle 561 * it off. 562 * This is declared as a macro to allow quick checking of the port to avoid 563 * the overhead of a function call if not enabled. 564 */ 565 #define prescan_rxq(rcd, packet) \ 566 do { \ 567 if (rcd->ppd->cc_prescan) \ 568 __prescan_rxq(packet); \ 569 } while (0) 570 static void __prescan_rxq(struct hfi1_packet *packet) 571 { 572 struct hfi1_ctxtdata *rcd = packet->rcd; 573 struct ps_mdata mdata; 574 575 init_ps_mdata(&mdata, packet); 576 577 while (1) { 578 struct hfi1_ibport *ibp = rcd_to_iport(rcd); 579 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 580 packet->rcd->rhf_offset; 581 struct rvt_qp *qp; 582 struct ib_header *hdr; 583 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi; 584 u64 rhf = rhf_to_cpu(rhf_addr); 585 u32 etype = rhf_rcv_type(rhf), qpn, bth1; 586 u8 lnh; 587 588 if (ps_done(&mdata, rhf, rcd)) 589 break; 590 591 if (ps_skip(&mdata, rhf, rcd)) 592 goto next; 593 594 if (etype != RHF_RCV_TYPE_IB) 595 goto next; 596 597 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr); 598 hdr = packet->hdr; 599 lnh = ib_get_lnh(hdr); 600 601 if (lnh == HFI1_LRH_BTH) { 602 packet->ohdr = &hdr->u.oth; 603 packet->grh = NULL; 604 } else if (lnh == HFI1_LRH_GRH) { 605 packet->ohdr = &hdr->u.l.oth; 606 packet->grh = &hdr->u.l.grh; 607 } else { 608 goto next; /* just in case */ 609 } 610 611 if (!hfi1_may_ecn(packet)) 612 goto next; 613 614 bth1 = be32_to_cpu(packet->ohdr->bth[1]); 615 qpn = bth1 & RVT_QPN_MASK; 616 rcu_read_lock(); 617 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); 618 619 if (!qp) { 620 rcu_read_unlock(); 621 goto next; 622 } 623 624 hfi1_process_ecn_slowpath(qp, packet, true); 625 rcu_read_unlock(); 626 627 /* turn off BECN, FECN */ 628 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK); 629 packet->ohdr->bth[1] = cpu_to_be32(bth1); 630 next: 631 update_ps_mdata(&mdata, rcd); 632 } 633 } 634 635 static void process_rcv_qp_work(struct hfi1_packet *packet) 636 { 637 struct rvt_qp *qp, *nqp; 638 struct hfi1_ctxtdata *rcd = packet->rcd; 639 640 /* 641 * Iterate over all QPs waiting to respond. 642 * The list won't change since the IRQ is only run on one CPU. 643 */ 644 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { 645 list_del_init(&qp->rspwait); 646 if (qp->r_flags & RVT_R_RSP_NAK) { 647 qp->r_flags &= ~RVT_R_RSP_NAK; 648 packet->qp = qp; 649 hfi1_send_rc_ack(packet, 0); 650 } 651 if (qp->r_flags & RVT_R_RSP_SEND) { 652 unsigned long flags; 653 654 qp->r_flags &= ~RVT_R_RSP_SEND; 655 spin_lock_irqsave(&qp->s_lock, flags); 656 if (ib_rvt_state_ops[qp->state] & 657 RVT_PROCESS_OR_FLUSH_SEND) 658 hfi1_schedule_send(qp); 659 spin_unlock_irqrestore(&qp->s_lock, flags); 660 } 661 rvt_put_qp(qp); 662 } 663 } 664 665 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) 666 { 667 if (thread) { 668 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) 669 /* allow defered processing */ 670 process_rcv_qp_work(packet); 671 cond_resched(); 672 return RCV_PKT_OK; 673 } else { 674 this_cpu_inc(*packet->rcd->dd->rcv_limit); 675 return RCV_PKT_LIMIT; 676 } 677 } 678 679 static inline int check_max_packet(struct hfi1_packet *packet, int thread) 680 { 681 int ret = RCV_PKT_OK; 682 683 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) 684 ret = max_packet_exceeded(packet, thread); 685 return ret; 686 } 687 688 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) 689 { 690 int ret; 691 692 packet->rcd->dd->ctx0_seq_drop++; 693 /* Set up for the next packet */ 694 packet->rhqoff += packet->rsize; 695 if (packet->rhqoff >= packet->maxcnt) 696 packet->rhqoff = 0; 697 698 packet->numpkt++; 699 ret = check_max_packet(packet, thread); 700 701 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 702 packet->rcd->rhf_offset; 703 packet->rhf = rhf_to_cpu(packet->rhf_addr); 704 705 return ret; 706 } 707 708 static void process_rcv_packet_napi(struct hfi1_packet *packet) 709 { 710 packet->etype = rhf_rcv_type(packet->rhf); 711 712 /* total length */ 713 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 714 /* retrieve eager buffer details */ 715 packet->etail = rhf_egr_index(packet->rhf); 716 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 717 &packet->updegr); 718 /* 719 * Prefetch the contents of the eager buffer. It is 720 * OK to send a negative length to prefetch_range(). 721 * The +2 is the size of the RHF. 722 */ 723 prefetch_range(packet->ebuf, 724 packet->tlen - ((packet->rcd->rcvhdrqentsize - 725 (rhf_hdrq_offset(packet->rhf) 726 + 2)) * 4)); 727 728 packet->rcd->rhf_rcv_function_map[packet->etype](packet); 729 packet->numpkt++; 730 731 /* Set up for the next packet */ 732 packet->rhqoff += packet->rsize; 733 if (packet->rhqoff >= packet->maxcnt) 734 packet->rhqoff = 0; 735 736 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 737 packet->rcd->rhf_offset; 738 packet->rhf = rhf_to_cpu(packet->rhf_addr); 739 } 740 741 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) 742 { 743 int ret; 744 745 packet->etype = rhf_rcv_type(packet->rhf); 746 747 /* total length */ 748 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ 749 /* retrieve eager buffer details */ 750 packet->ebuf = NULL; 751 if (rhf_use_egr_bfr(packet->rhf)) { 752 packet->etail = rhf_egr_index(packet->rhf); 753 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, 754 &packet->updegr); 755 /* 756 * Prefetch the contents of the eager buffer. It is 757 * OK to send a negative length to prefetch_range(). 758 * The +2 is the size of the RHF. 759 */ 760 prefetch_range(packet->ebuf, 761 packet->tlen - ((get_hdrqentsize(packet->rcd) - 762 (rhf_hdrq_offset(packet->rhf) 763 + 2)) * 4)); 764 } 765 766 /* 767 * Call a type specific handler for the packet. We 768 * should be able to trust that etype won't be beyond 769 * the range of valid indexes. If so something is really 770 * wrong and we can probably just let things come 771 * crashing down. There is no need to eat another 772 * comparison in this performance critical code. 773 */ 774 packet->rcd->rhf_rcv_function_map[packet->etype](packet); 775 packet->numpkt++; 776 777 /* Set up for the next packet */ 778 packet->rhqoff += packet->rsize; 779 if (packet->rhqoff >= packet->maxcnt) 780 packet->rhqoff = 0; 781 782 ret = check_max_packet(packet, thread); 783 784 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + 785 packet->rcd->rhf_offset; 786 packet->rhf = rhf_to_cpu(packet->rhf_addr); 787 788 return ret; 789 } 790 791 static inline void process_rcv_update(int last, struct hfi1_packet *packet) 792 { 793 /* 794 * Update head regs etc., every 16 packets, if not last pkt, 795 * to help prevent rcvhdrq overflows, when many packets 796 * are processed and queue is nearly full. 797 * Don't request an interrupt for intermediate updates. 798 */ 799 if (!last && !(packet->numpkt & 0xf)) { 800 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, 801 packet->etail, 0, 0); 802 packet->updegr = 0; 803 } 804 packet->grh = NULL; 805 } 806 807 static inline void finish_packet(struct hfi1_packet *packet) 808 { 809 /* 810 * Nothing we need to free for the packet. 811 * 812 * The only thing we need to do is a final update and call for an 813 * interrupt 814 */ 815 update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr, 816 packet->etail, rcv_intr_dynamic, packet->numpkt); 817 } 818 819 /* 820 * handle_receive_interrupt_napi_fp - receive a packet 821 * @rcd: the context 822 * @budget: polling budget 823 * 824 * Called from interrupt handler for receive interrupt. 825 * This is the fast path interrupt handler 826 * when executing napi soft irq environment. 827 */ 828 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget) 829 { 830 struct hfi1_packet packet; 831 832 init_packet(rcd, &packet); 833 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) 834 goto bail; 835 836 while (packet.numpkt < budget) { 837 process_rcv_packet_napi(&packet); 838 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf))) 839 break; 840 841 process_rcv_update(0, &packet); 842 } 843 hfi1_set_rcd_head(rcd, packet.rhqoff); 844 bail: 845 finish_packet(&packet); 846 return packet.numpkt; 847 } 848 849 /* 850 * Handle receive interrupts when using the no dma rtail option. 851 */ 852 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) 853 { 854 int last = RCV_PKT_OK; 855 struct hfi1_packet packet; 856 857 init_packet(rcd, &packet); 858 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) { 859 last = RCV_PKT_DONE; 860 goto bail; 861 } 862 863 prescan_rxq(rcd, &packet); 864 865 while (last == RCV_PKT_OK) { 866 last = process_rcv_packet(&packet, thread); 867 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf))) 868 last = RCV_PKT_DONE; 869 process_rcv_update(last, &packet); 870 } 871 process_rcv_qp_work(&packet); 872 hfi1_set_rcd_head(rcd, packet.rhqoff); 873 bail: 874 finish_packet(&packet); 875 return last; 876 } 877 878 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) 879 { 880 u32 hdrqtail; 881 int last = RCV_PKT_OK; 882 struct hfi1_packet packet; 883 884 init_packet(rcd, &packet); 885 hdrqtail = get_rcvhdrtail(rcd); 886 if (packet.rhqoff == hdrqtail) { 887 last = RCV_PKT_DONE; 888 goto bail; 889 } 890 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 891 892 prescan_rxq(rcd, &packet); 893 894 while (last == RCV_PKT_OK) { 895 last = process_rcv_packet(&packet, thread); 896 if (packet.rhqoff == hdrqtail) 897 last = RCV_PKT_DONE; 898 process_rcv_update(last, &packet); 899 } 900 process_rcv_qp_work(&packet); 901 hfi1_set_rcd_head(rcd, packet.rhqoff); 902 bail: 903 finish_packet(&packet); 904 return last; 905 } 906 907 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 908 { 909 u16 i; 910 911 /* 912 * For dynamically allocated kernel contexts (like vnic) switch 913 * interrupt handler only for that context. Otherwise, switch 914 * interrupt handler for all statically allocated kernel contexts. 915 */ 916 if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) { 917 hfi1_rcd_get(rcd); 918 hfi1_set_fast(rcd); 919 hfi1_rcd_put(rcd); 920 return; 921 } 922 923 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { 924 rcd = hfi1_rcd_get_by_index(dd, i); 925 if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)) 926 hfi1_set_fast(rcd); 927 hfi1_rcd_put(rcd); 928 } 929 } 930 931 void set_all_slowpath(struct hfi1_devdata *dd) 932 { 933 struct hfi1_ctxtdata *rcd; 934 u16 i; 935 936 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ 937 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { 938 rcd = hfi1_rcd_get_by_index(dd, i); 939 if (!rcd) 940 continue; 941 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 942 rcd->do_interrupt = rcd->slow_handler; 943 944 hfi1_rcd_put(rcd); 945 } 946 } 947 948 static bool __set_armed_to_active(struct hfi1_packet *packet) 949 { 950 u8 etype = rhf_rcv_type(packet->rhf); 951 u8 sc = SC15_PACKET; 952 953 if (etype == RHF_RCV_TYPE_IB) { 954 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd, 955 packet->rhf_addr); 956 sc = hfi1_9B_get_sc5(hdr, packet->rhf); 957 } else if (etype == RHF_RCV_TYPE_BYPASS) { 958 struct hfi1_16b_header *hdr = hfi1_get_16B_header( 959 packet->rcd, 960 packet->rhf_addr); 961 sc = hfi1_16B_get_sc(hdr); 962 } 963 if (sc != SC15_PACKET) { 964 int hwstate = driver_lstate(packet->rcd->ppd); 965 struct work_struct *lsaw = 966 &packet->rcd->ppd->linkstate_active_work; 967 968 if (hwstate != IB_PORT_ACTIVE) { 969 dd_dev_info(packet->rcd->dd, 970 "Unexpected link state %s\n", 971 opa_lstate_name(hwstate)); 972 return false; 973 } 974 975 queue_work(packet->rcd->ppd->link_wq, lsaw); 976 return true; 977 } 978 return false; 979 } 980 981 /** 982 * set_armed_to_active - the fast path for armed to active 983 * @packet: the packet structure 984 * 985 * Return true if packet processing needs to bail. 986 */ 987 static bool set_armed_to_active(struct hfi1_packet *packet) 988 { 989 if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED)) 990 return false; 991 return __set_armed_to_active(packet); 992 } 993 994 /* 995 * handle_receive_interrupt - receive a packet 996 * @rcd: the context 997 * 998 * Called from interrupt handler for errors or receive interrupt. 999 * This is the slow path interrupt handler. 1000 */ 1001 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) 1002 { 1003 struct hfi1_devdata *dd = rcd->dd; 1004 u32 hdrqtail; 1005 int needset, last = RCV_PKT_OK; 1006 struct hfi1_packet packet; 1007 int skip_pkt = 0; 1008 1009 if (!rcd->rcvhdrq) 1010 return RCV_PKT_OK; 1011 /* Control context will always use the slow path interrupt handler */ 1012 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; 1013 1014 init_packet(rcd, &packet); 1015 1016 if (!get_dma_rtail_setting(rcd)) { 1017 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) { 1018 last = RCV_PKT_DONE; 1019 goto bail; 1020 } 1021 hdrqtail = 0; 1022 } else { 1023 hdrqtail = get_rcvhdrtail(rcd); 1024 if (packet.rhqoff == hdrqtail) { 1025 last = RCV_PKT_DONE; 1026 goto bail; 1027 } 1028 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ 1029 1030 /* 1031 * Control context can potentially receive an invalid 1032 * rhf. Drop such packets. 1033 */ 1034 if (rcd->ctxt == HFI1_CTRL_CTXT) 1035 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) 1036 skip_pkt = 1; 1037 } 1038 1039 prescan_rxq(rcd, &packet); 1040 1041 while (last == RCV_PKT_OK) { 1042 if (hfi1_need_drop(dd)) { 1043 /* On to the next packet */ 1044 packet.rhqoff += packet.rsize; 1045 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 1046 packet.rhqoff + 1047 rcd->rhf_offset; 1048 packet.rhf = rhf_to_cpu(packet.rhf_addr); 1049 1050 } else if (skip_pkt) { 1051 last = skip_rcv_packet(&packet, thread); 1052 skip_pkt = 0; 1053 } else { 1054 if (set_armed_to_active(&packet)) 1055 goto bail; 1056 last = process_rcv_packet(&packet, thread); 1057 } 1058 1059 if (!get_dma_rtail_setting(rcd)) { 1060 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf))) 1061 last = RCV_PKT_DONE; 1062 } else { 1063 if (packet.rhqoff == hdrqtail) 1064 last = RCV_PKT_DONE; 1065 /* 1066 * Control context can potentially receive an invalid 1067 * rhf. Drop such packets. 1068 */ 1069 if (rcd->ctxt == HFI1_CTRL_CTXT) { 1070 bool lseq; 1071 1072 lseq = hfi1_seq_incr(rcd, 1073 rhf_rcv_seq(packet.rhf)); 1074 if (!last && lseq) 1075 skip_pkt = 1; 1076 } 1077 } 1078 1079 if (needset) { 1080 needset = false; 1081 set_all_fastpath(dd, rcd); 1082 } 1083 process_rcv_update(last, &packet); 1084 } 1085 1086 process_rcv_qp_work(&packet); 1087 hfi1_set_rcd_head(rcd, packet.rhqoff); 1088 1089 bail: 1090 /* 1091 * Always write head at end, and setup rcv interrupt, even 1092 * if no packets were processed. 1093 */ 1094 finish_packet(&packet); 1095 return last; 1096 } 1097 1098 /* 1099 * handle_receive_interrupt_napi_sp - receive a packet 1100 * @rcd: the context 1101 * @budget: polling budget 1102 * 1103 * Called from interrupt handler for errors or receive interrupt. 1104 * This is the slow path interrupt handler 1105 * when executing napi soft irq environment. 1106 */ 1107 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget) 1108 { 1109 struct hfi1_devdata *dd = rcd->dd; 1110 int last = RCV_PKT_OK; 1111 bool needset = true; 1112 struct hfi1_packet packet; 1113 1114 init_packet(rcd, &packet); 1115 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) 1116 goto bail; 1117 1118 while (last != RCV_PKT_DONE && packet.numpkt < budget) { 1119 if (hfi1_need_drop(dd)) { 1120 /* On to the next packet */ 1121 packet.rhqoff += packet.rsize; 1122 packet.rhf_addr = (__le32 *)rcd->rcvhdrq + 1123 packet.rhqoff + 1124 rcd->rhf_offset; 1125 packet.rhf = rhf_to_cpu(packet.rhf_addr); 1126 1127 } else { 1128 if (set_armed_to_active(&packet)) 1129 goto bail; 1130 process_rcv_packet_napi(&packet); 1131 } 1132 1133 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf))) 1134 last = RCV_PKT_DONE; 1135 1136 if (needset) { 1137 needset = false; 1138 set_all_fastpath(dd, rcd); 1139 } 1140 1141 process_rcv_update(last, &packet); 1142 } 1143 1144 hfi1_set_rcd_head(rcd, packet.rhqoff); 1145 1146 bail: 1147 /* 1148 * Always write head at end, and setup rcv interrupt, even 1149 * if no packets were processed. 1150 */ 1151 finish_packet(&packet); 1152 return packet.numpkt; 1153 } 1154 1155 /* 1156 * We may discover in the interrupt that the hardware link state has 1157 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), 1158 * and we need to update the driver's notion of the link state. We cannot 1159 * run set_link_state from interrupt context, so we queue this function on 1160 * a workqueue. 1161 * 1162 * We delay the regular interrupt processing until after the state changes 1163 * so that the link will be in the correct state by the time any application 1164 * we wake up attempts to send a reply to any message it received. 1165 * (Subsequent receive interrupts may possibly force the wakeup before we 1166 * update the link state.) 1167 * 1168 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes 1169 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, 1170 * so we're safe from use-after-free of the rcd. 1171 */ 1172 void receive_interrupt_work(struct work_struct *work) 1173 { 1174 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 1175 linkstate_active_work); 1176 struct hfi1_devdata *dd = ppd->dd; 1177 struct hfi1_ctxtdata *rcd; 1178 u16 i; 1179 1180 /* Received non-SC15 packet implies neighbor_normal */ 1181 ppd->neighbor_normal = 1; 1182 set_link_state(ppd, HLS_UP_ACTIVE); 1183 1184 /* 1185 * Interrupt all statically allocated kernel contexts that could 1186 * have had an interrupt during auto activation. 1187 */ 1188 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) { 1189 rcd = hfi1_rcd_get_by_index(dd, i); 1190 if (rcd) 1191 force_recv_intr(rcd); 1192 hfi1_rcd_put(rcd); 1193 } 1194 } 1195 1196 /* 1197 * Convert a given MTU size to the on-wire MAD packet enumeration. 1198 * Return -1 if the size is invalid. 1199 */ 1200 int mtu_to_enum(u32 mtu, int default_if_bad) 1201 { 1202 switch (mtu) { 1203 case 0: return OPA_MTU_0; 1204 case 256: return OPA_MTU_256; 1205 case 512: return OPA_MTU_512; 1206 case 1024: return OPA_MTU_1024; 1207 case 2048: return OPA_MTU_2048; 1208 case 4096: return OPA_MTU_4096; 1209 case 8192: return OPA_MTU_8192; 1210 case 10240: return OPA_MTU_10240; 1211 } 1212 return default_if_bad; 1213 } 1214 1215 u16 enum_to_mtu(int mtu) 1216 { 1217 switch (mtu) { 1218 case OPA_MTU_0: return 0; 1219 case OPA_MTU_256: return 256; 1220 case OPA_MTU_512: return 512; 1221 case OPA_MTU_1024: return 1024; 1222 case OPA_MTU_2048: return 2048; 1223 case OPA_MTU_4096: return 4096; 1224 case OPA_MTU_8192: return 8192; 1225 case OPA_MTU_10240: return 10240; 1226 default: return 0xffff; 1227 } 1228 } 1229 1230 /* 1231 * set_mtu - set the MTU 1232 * @ppd: the per port data 1233 * 1234 * We can handle "any" incoming size, the issue here is whether we 1235 * need to restrict our outgoing size. We do not deal with what happens 1236 * to programs that are already running when the size changes. 1237 */ 1238 int set_mtu(struct hfi1_pportdata *ppd) 1239 { 1240 struct hfi1_devdata *dd = ppd->dd; 1241 int i, drain, ret = 0, is_up = 0; 1242 1243 ppd->ibmtu = 0; 1244 for (i = 0; i < ppd->vls_supported; i++) 1245 if (ppd->ibmtu < dd->vld[i].mtu) 1246 ppd->ibmtu = dd->vld[i].mtu; 1247 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); 1248 1249 mutex_lock(&ppd->hls_lock); 1250 if (ppd->host_link_state == HLS_UP_INIT || 1251 ppd->host_link_state == HLS_UP_ARMED || 1252 ppd->host_link_state == HLS_UP_ACTIVE) 1253 is_up = 1; 1254 1255 drain = !is_ax(dd) && is_up; 1256 1257 if (drain) 1258 /* 1259 * MTU is specified per-VL. To ensure that no packet gets 1260 * stuck (due, e.g., to the MTU for the packet's VL being 1261 * reduced), empty the per-VL FIFOs before adjusting MTU. 1262 */ 1263 ret = stop_drain_data_vls(dd); 1264 1265 if (ret) { 1266 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", 1267 __func__); 1268 goto err; 1269 } 1270 1271 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); 1272 1273 if (drain) 1274 open_fill_data_vls(dd); /* reopen all VLs */ 1275 1276 err: 1277 mutex_unlock(&ppd->hls_lock); 1278 1279 return ret; 1280 } 1281 1282 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) 1283 { 1284 struct hfi1_devdata *dd = ppd->dd; 1285 1286 ppd->lid = lid; 1287 ppd->lmc = lmc; 1288 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); 1289 1290 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); 1291 1292 return 0; 1293 } 1294 1295 void shutdown_led_override(struct hfi1_pportdata *ppd) 1296 { 1297 struct hfi1_devdata *dd = ppd->dd; 1298 1299 /* 1300 * This pairs with the memory barrier in hfi1_start_led_override to 1301 * ensure that we read the correct state of LED beaconing represented 1302 * by led_override_timer_active 1303 */ 1304 smp_rmb(); 1305 if (atomic_read(&ppd->led_override_timer_active)) { 1306 del_timer_sync(&ppd->led_override_timer); 1307 atomic_set(&ppd->led_override_timer_active, 0); 1308 /* Ensure the atomic_set is visible to all CPUs */ 1309 smp_wmb(); 1310 } 1311 1312 /* Hand control of the LED to the DC for normal operation */ 1313 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 1314 } 1315 1316 static void run_led_override(struct timer_list *t) 1317 { 1318 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer); 1319 struct hfi1_devdata *dd = ppd->dd; 1320 unsigned long timeout; 1321 int phase_idx; 1322 1323 if (!(dd->flags & HFI1_INITTED)) 1324 return; 1325 1326 phase_idx = ppd->led_override_phase & 1; 1327 1328 setextled(dd, phase_idx); 1329 1330 timeout = ppd->led_override_vals[phase_idx]; 1331 1332 /* Set up for next phase */ 1333 ppd->led_override_phase = !ppd->led_override_phase; 1334 1335 mod_timer(&ppd->led_override_timer, jiffies + timeout); 1336 } 1337 1338 /* 1339 * To have the LED blink in a particular pattern, provide timeon and timeoff 1340 * in milliseconds. 1341 * To turn off custom blinking and return to normal operation, use 1342 * shutdown_led_override() 1343 */ 1344 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, 1345 unsigned int timeoff) 1346 { 1347 if (!(ppd->dd->flags & HFI1_INITTED)) 1348 return; 1349 1350 /* Convert to jiffies for direct use in timer */ 1351 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); 1352 ppd->led_override_vals[1] = msecs_to_jiffies(timeon); 1353 1354 /* Arbitrarily start from LED on phase */ 1355 ppd->led_override_phase = 1; 1356 1357 /* 1358 * If the timer has not already been started, do so. Use a "quick" 1359 * timeout so the handler will be called soon to look at our request. 1360 */ 1361 if (!timer_pending(&ppd->led_override_timer)) { 1362 timer_setup(&ppd->led_override_timer, run_led_override, 0); 1363 ppd->led_override_timer.expires = jiffies + 1; 1364 add_timer(&ppd->led_override_timer); 1365 atomic_set(&ppd->led_override_timer_active, 1); 1366 /* Ensure the atomic_set is visible to all CPUs */ 1367 smp_wmb(); 1368 } 1369 } 1370 1371 /** 1372 * hfi1_reset_device - reset the chip if possible 1373 * @unit: the device to reset 1374 * 1375 * Whether or not reset is successful, we attempt to re-initialize the chip 1376 * (that is, much like a driver unload/reload). We clear the INITTED flag 1377 * so that the various entry points will fail until we reinitialize. For 1378 * now, we only allow this if no user contexts are open that use chip resources 1379 */ 1380 int hfi1_reset_device(int unit) 1381 { 1382 int ret; 1383 struct hfi1_devdata *dd = hfi1_lookup(unit); 1384 struct hfi1_pportdata *ppd; 1385 int pidx; 1386 1387 if (!dd) { 1388 ret = -ENODEV; 1389 goto bail; 1390 } 1391 1392 dd_dev_info(dd, "Reset on unit %u requested\n", unit); 1393 1394 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) { 1395 dd_dev_info(dd, 1396 "Invalid unit number %u or not initialized or not present\n", 1397 unit); 1398 ret = -ENXIO; 1399 goto bail; 1400 } 1401 1402 /* If there are any user/vnic contexts, we cannot reset */ 1403 mutex_lock(&hfi1_mutex); 1404 if (dd->rcd) 1405 if (hfi1_stats.sps_ctxts) { 1406 mutex_unlock(&hfi1_mutex); 1407 ret = -EBUSY; 1408 goto bail; 1409 } 1410 mutex_unlock(&hfi1_mutex); 1411 1412 for (pidx = 0; pidx < dd->num_pports; ++pidx) { 1413 ppd = dd->pport + pidx; 1414 1415 shutdown_led_override(ppd); 1416 } 1417 if (dd->flags & HFI1_HAS_SEND_DMA) 1418 sdma_exit(dd); 1419 1420 hfi1_reset_cpu_counters(dd); 1421 1422 ret = hfi1_init(dd, 1); 1423 1424 if (ret) 1425 dd_dev_err(dd, 1426 "Reinitialize unit %u after reset failed with %d\n", 1427 unit, ret); 1428 else 1429 dd_dev_info(dd, "Reinitialized unit %u after resetting\n", 1430 unit); 1431 1432 bail: 1433 return ret; 1434 } 1435 1436 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet) 1437 { 1438 packet->hdr = (struct hfi1_ib_message_header *) 1439 hfi1_get_msgheader(packet->rcd, 1440 packet->rhf_addr); 1441 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; 1442 } 1443 1444 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet) 1445 { 1446 struct hfi1_pportdata *ppd = packet->rcd->ppd; 1447 1448 /* slid and dlid cannot be 0 */ 1449 if ((!packet->slid) || (!packet->dlid)) 1450 return -EINVAL; 1451 1452 /* Compare port lid with incoming packet dlid */ 1453 if ((!(hfi1_is_16B_mcast(packet->dlid))) && 1454 (packet->dlid != 1455 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) { 1456 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid) 1457 return -EINVAL; 1458 } 1459 1460 /* No multicast packets with SC15 */ 1461 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF)) 1462 return -EINVAL; 1463 1464 /* Packets with permissive DLID always on SC15 */ 1465 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 1466 16B)) && 1467 (packet->sc != 0xF)) 1468 return -EINVAL; 1469 1470 return 0; 1471 } 1472 1473 static int hfi1_setup_9B_packet(struct hfi1_packet *packet) 1474 { 1475 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); 1476 struct ib_header *hdr; 1477 u8 lnh; 1478 1479 hfi1_setup_ib_header(packet); 1480 hdr = packet->hdr; 1481 1482 lnh = ib_get_lnh(hdr); 1483 if (lnh == HFI1_LRH_BTH) { 1484 packet->ohdr = &hdr->u.oth; 1485 packet->grh = NULL; 1486 } else if (lnh == HFI1_LRH_GRH) { 1487 u32 vtf; 1488 1489 packet->ohdr = &hdr->u.l.oth; 1490 packet->grh = &hdr->u.l.grh; 1491 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1492 goto drop; 1493 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1494 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1495 goto drop; 1496 } else { 1497 goto drop; 1498 } 1499 1500 /* Query commonly used fields from packet header */ 1501 packet->payload = packet->ebuf; 1502 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1503 packet->slid = ib_get_slid(hdr); 1504 packet->dlid = ib_get_dlid(hdr); 1505 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && 1506 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE)))) 1507 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1508 be16_to_cpu(IB_MULTICAST_LID_BASE); 1509 packet->sl = ib_get_sl(hdr); 1510 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf); 1511 packet->pad = ib_bth_get_pad(packet->ohdr); 1512 packet->extra_byte = 0; 1513 packet->pkey = ib_bth_get_pkey(packet->ohdr); 1514 packet->migrated = ib_bth_is_migration(packet->ohdr); 1515 1516 return 0; 1517 drop: 1518 ibp->rvp.n_pkt_drops++; 1519 return -EINVAL; 1520 } 1521 1522 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet) 1523 { 1524 /* 1525 * Bypass packets have a different header/payload split 1526 * compared to an IB packet. 1527 * Current split is set such that 16 bytes of the actual 1528 * header is in the header buffer and the remining is in 1529 * the eager buffer. We chose 16 since hfi1 driver only 1530 * supports 16B bypass packets and we will be able to 1531 * receive the entire LRH with such a split. 1532 */ 1533 1534 struct hfi1_ctxtdata *rcd = packet->rcd; 1535 struct hfi1_pportdata *ppd = rcd->ppd; 1536 struct hfi1_ibport *ibp = &ppd->ibport_data; 1537 u8 l4; 1538 1539 packet->hdr = (struct hfi1_16b_header *) 1540 hfi1_get_16B_header(packet->rcd, 1541 packet->rhf_addr); 1542 l4 = hfi1_16B_get_l4(packet->hdr); 1543 if (l4 == OPA_16B_L4_IB_LOCAL) { 1544 packet->ohdr = packet->ebuf; 1545 packet->grh = NULL; 1546 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1547 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1548 /* hdr_len_by_opcode already has an IB LRH factored in */ 1549 packet->hlen = hdr_len_by_opcode[packet->opcode] + 1550 (LRH_16B_BYTES - LRH_9B_BYTES); 1551 packet->migrated = opa_bth_is_migration(packet->ohdr); 1552 } else if (l4 == OPA_16B_L4_IB_GLOBAL) { 1553 u32 vtf; 1554 u8 grh_len = sizeof(struct ib_grh); 1555 1556 packet->ohdr = packet->ebuf + grh_len; 1557 packet->grh = packet->ebuf; 1558 packet->opcode = ib_bth_get_opcode(packet->ohdr); 1559 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); 1560 /* hdr_len_by_opcode already has an IB LRH factored in */ 1561 packet->hlen = hdr_len_by_opcode[packet->opcode] + 1562 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len; 1563 packet->migrated = opa_bth_is_migration(packet->ohdr); 1564 1565 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) 1566 goto drop; 1567 vtf = be32_to_cpu(packet->grh->version_tclass_flow); 1568 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) 1569 goto drop; 1570 } else if (l4 == OPA_16B_L4_FM) { 1571 packet->mgmt = packet->ebuf; 1572 packet->ohdr = NULL; 1573 packet->grh = NULL; 1574 packet->opcode = IB_OPCODE_UD_SEND_ONLY; 1575 packet->pad = OPA_16B_L4_FM_PAD; 1576 packet->hlen = OPA_16B_L4_FM_HLEN; 1577 packet->migrated = false; 1578 } else { 1579 goto drop; 1580 } 1581 1582 /* Query commonly used fields from packet header */ 1583 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES; 1584 packet->slid = hfi1_16B_get_slid(packet->hdr); 1585 packet->dlid = hfi1_16B_get_dlid(packet->hdr); 1586 if (unlikely(hfi1_is_16B_mcast(packet->dlid))) 1587 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - 1588 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 1589 16B); 1590 packet->sc = hfi1_16B_get_sc(packet->hdr); 1591 packet->sl = ibp->sc_to_sl[packet->sc]; 1592 packet->extra_byte = SIZE_OF_LT; 1593 packet->pkey = hfi1_16B_get_pkey(packet->hdr); 1594 1595 if (hfi1_bypass_ingress_pkt_check(packet)) 1596 goto drop; 1597 1598 return 0; 1599 drop: 1600 hfi1_cdbg(PKT, "%s: packet dropped", __func__); 1601 ibp->rvp.n_pkt_drops++; 1602 return -EINVAL; 1603 } 1604 1605 static void show_eflags_errs(struct hfi1_packet *packet) 1606 { 1607 struct hfi1_ctxtdata *rcd = packet->rcd; 1608 u32 rte = rhf_rcv_type_err(packet->rhf); 1609 1610 dd_dev_err(rcd->dd, 1611 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n", 1612 rcd->ctxt, packet->rhf, 1613 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", 1614 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", 1615 packet->rhf & RHF_DC_ERR ? "dc " : "", 1616 packet->rhf & RHF_TID_ERR ? "tid " : "", 1617 packet->rhf & RHF_LEN_ERR ? "len " : "", 1618 packet->rhf & RHF_ECC_ERR ? "ecc " : "", 1619 packet->rhf & RHF_ICRC_ERR ? "icrc " : "", 1620 rte); 1621 } 1622 1623 void handle_eflags(struct hfi1_packet *packet) 1624 { 1625 struct hfi1_ctxtdata *rcd = packet->rcd; 1626 1627 rcv_hdrerr(rcd, rcd->ppd, packet); 1628 if (rhf_err_flags(packet->rhf)) 1629 show_eflags_errs(packet); 1630 } 1631 1632 static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet) 1633 { 1634 struct hfi1_ibport *ibp; 1635 struct net_device *netdev; 1636 struct hfi1_ctxtdata *rcd = packet->rcd; 1637 struct napi_struct *napi = rcd->napi; 1638 struct sk_buff *skb; 1639 struct hfi1_netdev_rxq *rxq = container_of(napi, 1640 struct hfi1_netdev_rxq, napi); 1641 u32 extra_bytes; 1642 u32 tlen, qpnum; 1643 bool do_work, do_cnp; 1644 1645 trace_hfi1_rcvhdr(packet); 1646 1647 hfi1_setup_ib_header(packet); 1648 1649 packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth; 1650 packet->grh = NULL; 1651 1652 if (unlikely(rhf_err_flags(packet->rhf))) { 1653 handle_eflags(packet); 1654 return; 1655 } 1656 1657 qpnum = ib_bth_get_qpn(packet->ohdr); 1658 netdev = hfi1_netdev_get_data(rcd->dd, qpnum); 1659 if (!netdev) 1660 goto drop_no_nd; 1661 1662 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); 1663 trace_ctxt_rsm_hist(rcd->ctxt); 1664 1665 /* handle congestion notifications */ 1666 do_work = hfi1_may_ecn(packet); 1667 if (unlikely(do_work)) { 1668 do_cnp = (packet->opcode != IB_OPCODE_CNP); 1669 (void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp, 1670 packet, do_cnp); 1671 } 1672 1673 /* 1674 * We have split point after last byte of DETH 1675 * lets strip padding and CRC and ICRC. 1676 * tlen is whole packet len so we need to 1677 * subtract header size as well. 1678 */ 1679 tlen = packet->tlen; 1680 extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) + 1681 packet->hlen; 1682 if (unlikely(tlen < extra_bytes)) 1683 goto drop; 1684 1685 tlen -= extra_bytes; 1686 1687 skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf); 1688 if (unlikely(!skb)) 1689 goto drop; 1690 1691 dev_sw_netstats_rx_add(netdev, skb->len); 1692 1693 skb->dev = netdev; 1694 skb->pkt_type = PACKET_HOST; 1695 netif_receive_skb(skb); 1696 1697 return; 1698 1699 drop: 1700 ++netdev->stats.rx_dropped; 1701 drop_no_nd: 1702 ibp = rcd_to_iport(packet->rcd); 1703 ++ibp->rvp.n_pkt_drops; 1704 } 1705 1706 /* 1707 * The following functions are called by the interrupt handler. They are type 1708 * specific handlers for each packet type. 1709 */ 1710 static void process_receive_ib(struct hfi1_packet *packet) 1711 { 1712 if (hfi1_setup_9B_packet(packet)) 1713 return; 1714 1715 if (unlikely(hfi1_dbg_should_fault_rx(packet))) 1716 return; 1717 1718 trace_hfi1_rcvhdr(packet); 1719 1720 if (unlikely(rhf_err_flags(packet->rhf))) { 1721 handle_eflags(packet); 1722 return; 1723 } 1724 1725 hfi1_ib_rcv(packet); 1726 } 1727 1728 static void process_receive_bypass(struct hfi1_packet *packet) 1729 { 1730 struct hfi1_devdata *dd = packet->rcd->dd; 1731 1732 if (hfi1_setup_bypass_packet(packet)) 1733 return; 1734 1735 trace_hfi1_rcvhdr(packet); 1736 1737 if (unlikely(rhf_err_flags(packet->rhf))) { 1738 handle_eflags(packet); 1739 return; 1740 } 1741 1742 if (hfi1_16B_get_l2(packet->hdr) == 0x2) { 1743 hfi1_16B_rcv(packet); 1744 } else { 1745 dd_dev_err(dd, 1746 "Bypass packets other than 16B are not supported in normal operation. Dropping\n"); 1747 incr_cntr64(&dd->sw_rcv_bypass_packet_errors); 1748 if (!(dd->err_info_rcvport.status_and_code & 1749 OPA_EI_STATUS_SMASK)) { 1750 u64 *flits = packet->ebuf; 1751 1752 if (flits && !(packet->rhf & RHF_LEN_ERR)) { 1753 dd->err_info_rcvport.packet_flit1 = flits[0]; 1754 dd->err_info_rcvport.packet_flit2 = 1755 packet->tlen > sizeof(flits[0]) ? 1756 flits[1] : 0; 1757 } 1758 dd->err_info_rcvport.status_and_code |= 1759 (OPA_EI_STATUS_SMASK | BAD_L2_ERR); 1760 } 1761 } 1762 } 1763 1764 static void process_receive_error(struct hfi1_packet *packet) 1765 { 1766 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */ 1767 if (unlikely( 1768 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && 1769 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR || 1770 packet->rhf & RHF_DC_ERR))) 1771 return; 1772 1773 hfi1_setup_ib_header(packet); 1774 handle_eflags(packet); 1775 1776 if (unlikely(rhf_err_flags(packet->rhf))) 1777 dd_dev_err(packet->rcd->dd, 1778 "Unhandled error packet received. Dropping.\n"); 1779 } 1780 1781 static void kdeth_process_expected(struct hfi1_packet *packet) 1782 { 1783 hfi1_setup_9B_packet(packet); 1784 if (unlikely(hfi1_dbg_should_fault_rx(packet))) 1785 return; 1786 1787 if (unlikely(rhf_err_flags(packet->rhf))) { 1788 struct hfi1_ctxtdata *rcd = packet->rcd; 1789 1790 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet)) 1791 return; 1792 } 1793 1794 hfi1_kdeth_expected_rcv(packet); 1795 } 1796 1797 static void kdeth_process_eager(struct hfi1_packet *packet) 1798 { 1799 hfi1_setup_9B_packet(packet); 1800 if (unlikely(hfi1_dbg_should_fault_rx(packet))) 1801 return; 1802 1803 trace_hfi1_rcvhdr(packet); 1804 if (unlikely(rhf_err_flags(packet->rhf))) { 1805 struct hfi1_ctxtdata *rcd = packet->rcd; 1806 1807 show_eflags_errs(packet); 1808 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet)) 1809 return; 1810 } 1811 1812 hfi1_kdeth_eager_rcv(packet); 1813 } 1814 1815 static void process_receive_invalid(struct hfi1_packet *packet) 1816 { 1817 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", 1818 rhf_rcv_type(packet->rhf)); 1819 } 1820 1821 #define HFI1_RCVHDR_DUMP_MAX 5 1822 1823 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd) 1824 { 1825 struct hfi1_packet packet; 1826 struct ps_mdata mdata; 1827 int i; 1828 1829 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu sw head %u\n", 1830 rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd), 1831 get_dma_rtail_setting(rcd) ? 1832 "dma_rtail" : "nodma_rtail", 1833 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL), 1834 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS), 1835 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) & 1836 RCV_HDR_HEAD_HEAD_MASK, 1837 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL), 1838 rcd->head); 1839 1840 init_packet(rcd, &packet); 1841 init_ps_mdata(&mdata, &packet); 1842 1843 for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) { 1844 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + 1845 rcd->rhf_offset; 1846 struct ib_header *hdr; 1847 u64 rhf = rhf_to_cpu(rhf_addr); 1848 u32 etype = rhf_rcv_type(rhf), qpn; 1849 u8 opcode; 1850 u32 psn; 1851 u8 lnh; 1852 1853 if (ps_done(&mdata, rhf, rcd)) 1854 break; 1855 1856 if (ps_skip(&mdata, rhf, rcd)) 1857 goto next; 1858 1859 if (etype > RHF_RCV_TYPE_IB) 1860 goto next; 1861 1862 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr); 1863 hdr = packet.hdr; 1864 1865 lnh = be16_to_cpu(hdr->lrh[0]) & 3; 1866 1867 if (lnh == HFI1_LRH_BTH) 1868 packet.ohdr = &hdr->u.oth; 1869 else if (lnh == HFI1_LRH_GRH) 1870 packet.ohdr = &hdr->u.l.oth; 1871 else 1872 goto next; /* just in case */ 1873 1874 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24); 1875 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK; 1876 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2])); 1877 1878 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n", 1879 mdata.ps_head, opcode, qpn, psn); 1880 next: 1881 update_ps_mdata(&mdata, rcd); 1882 } 1883 } 1884 1885 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = { 1886 [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected, 1887 [RHF_RCV_TYPE_EAGER] = kdeth_process_eager, 1888 [RHF_RCV_TYPE_IB] = process_receive_ib, 1889 [RHF_RCV_TYPE_ERROR] = process_receive_error, 1890 [RHF_RCV_TYPE_BYPASS] = process_receive_bypass, 1891 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid, 1892 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid, 1893 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid, 1894 }; 1895 1896 const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = { 1897 [RHF_RCV_TYPE_EXPECTED] = process_receive_invalid, 1898 [RHF_RCV_TYPE_EAGER] = process_receive_invalid, 1899 [RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv, 1900 [RHF_RCV_TYPE_ERROR] = process_receive_error, 1901 [RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv, 1902 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid, 1903 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid, 1904 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid, 1905 }; 1906