xref: /linux/drivers/infiniband/hw/hfi1/driver.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2015-2020 Intel Corporation.
4  * Copyright(c) 2021 Cornelis Networks.
5  */
6 
7 #include <linux/spinlock.h>
8 #include <linux/pci.h>
9 #include <linux/io.h>
10 #include <linux/delay.h>
11 #include <linux/netdevice.h>
12 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/prefetch.h>
15 #include <rdma/ib_verbs.h>
16 #include <linux/etherdevice.h>
17 
18 #include "hfi.h"
19 #include "trace.h"
20 #include "qp.h"
21 #include "sdma.h"
22 #include "debugfs.h"
23 #include "vnic.h"
24 #include "fault.h"
25 
26 #include "ipoib.h"
27 #include "netdev.h"
28 
29 #undef pr_fmt
30 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
31 
32 DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
33 
34 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
35 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
36 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
37 		 HFI1_DEFAULT_MAX_MTU));
38 
39 unsigned int hfi1_cu = 1;
40 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
41 MODULE_PARM_DESC(cu, "Credit return units");
42 
43 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
44 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
45 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
46 static const struct kernel_param_ops cap_ops = {
47 	.set = hfi1_caps_set,
48 	.get = hfi1_caps_get
49 };
50 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
51 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
52 
53 MODULE_LICENSE("Dual BSD/GPL");
54 MODULE_DESCRIPTION("Cornelis Omni-Path Express driver");
55 
56 /*
57  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
58  */
59 #define MAX_PKT_RECV 64
60 /*
61  * MAX_PKT_THREAD_RCV is the max # of packets processed before
62  * the qp_wait_list queue is flushed.
63  */
64 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
65 #define EGR_HEAD_UPDATE_THRESHOLD 16
66 
67 struct hfi1_ib_stats hfi1_stats;
68 
69 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
70 {
71 	int ret = 0;
72 	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
73 		cap_mask = *cap_mask_ptr, value, diff,
74 		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
75 			      HFI1_CAP_WRITABLE_MASK);
76 
77 	ret = kstrtoul(val, 0, &value);
78 	if (ret) {
79 		pr_warn("Invalid module parameter value for 'cap_mask'\n");
80 		goto done;
81 	}
82 	/* Get the changed bits (except the locked bit) */
83 	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
84 
85 	/* Remove any bits that are not allowed to change after driver load */
86 	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
87 		pr_warn("Ignoring non-writable capability bits %#lx\n",
88 			diff & ~write_mask);
89 		diff &= write_mask;
90 	}
91 
92 	/* Mask off any reserved bits */
93 	diff &= ~HFI1_CAP_RESERVED_MASK;
94 	/* Clear any previously set and changing bits */
95 	cap_mask &= ~diff;
96 	/* Update the bits with the new capability */
97 	cap_mask |= (value & diff);
98 	/* Check for any kernel/user restrictions */
99 	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
100 		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
101 	cap_mask &= ~diff;
102 	/* Set the bitmask to the final set */
103 	*cap_mask_ptr = cap_mask;
104 done:
105 	return ret;
106 }
107 
108 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
109 {
110 	unsigned long cap_mask = *(unsigned long *)kp->arg;
111 
112 	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
113 	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
114 
115 	return sysfs_emit(buffer, "0x%lx\n", cap_mask);
116 }
117 
118 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
119 {
120 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
121 	struct hfi1_devdata *dd = container_of(ibdev,
122 					       struct hfi1_devdata, verbs_dev);
123 	return dd->pcidev;
124 }
125 
126 /*
127  * Return count of units with at least one port ACTIVE.
128  */
129 int hfi1_count_active_units(void)
130 {
131 	struct hfi1_devdata *dd;
132 	struct hfi1_pportdata *ppd;
133 	unsigned long index, flags;
134 	int pidx, nunits_active = 0;
135 
136 	xa_lock_irqsave(&hfi1_dev_table, flags);
137 	xa_for_each(&hfi1_dev_table, index, dd) {
138 		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
139 			continue;
140 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
141 			ppd = dd->pport + pidx;
142 			if (ppd->lid && ppd->linkup) {
143 				nunits_active++;
144 				break;
145 			}
146 		}
147 	}
148 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
149 	return nunits_active;
150 }
151 
152 /*
153  * Get address of eager buffer from it's index (allocated in chunks, not
154  * contiguous).
155  */
156 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
157 			       u8 *update)
158 {
159 	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
160 
161 	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
162 	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
163 			(offset * RCV_BUF_BLOCK_SIZE));
164 }
165 
166 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
167 				    __le32 *rhf_addr)
168 {
169 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
170 
171 	return (void *)(rhf_addr - rcd->rhf_offset + offset);
172 }
173 
174 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
175 						   __le32 *rhf_addr)
176 {
177 	return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
178 }
179 
180 static inline struct hfi1_16b_header
181 		*hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
182 				     __le32 *rhf_addr)
183 {
184 	return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
185 }
186 
187 /*
188  * Validate and encode the a given RcvArray Buffer size.
189  * The function will check whether the given size falls within
190  * allowed size ranges for the respective type and, optionally,
191  * return the proper encoding.
192  */
193 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
194 {
195 	if (unlikely(!PAGE_ALIGNED(size)))
196 		return 0;
197 	if (unlikely(size < MIN_EAGER_BUFFER))
198 		return 0;
199 	if (size >
200 	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
201 		return 0;
202 	if (encoded)
203 		*encoded = ilog2(size / PAGE_SIZE) + 1;
204 	return 1;
205 }
206 
207 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
208 		       struct hfi1_packet *packet)
209 {
210 	struct ib_header *rhdr = packet->hdr;
211 	u32 rte = rhf_rcv_type_err(packet->rhf);
212 	u32 mlid_base;
213 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
214 	struct hfi1_devdata *dd = ppd->dd;
215 	struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
216 	struct rvt_dev_info *rdi = &verbs_dev->rdi;
217 
218 	if ((packet->rhf & RHF_DC_ERR) &&
219 	    hfi1_dbg_fault_suppress_err(verbs_dev))
220 		return;
221 
222 	if (packet->rhf & RHF_ICRC_ERR)
223 		return;
224 
225 	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
226 		goto drop;
227 	} else {
228 		u8 lnh = ib_get_lnh(rhdr);
229 
230 		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
231 		if (lnh == HFI1_LRH_BTH) {
232 			packet->ohdr = &rhdr->u.oth;
233 		} else if (lnh == HFI1_LRH_GRH) {
234 			packet->ohdr = &rhdr->u.l.oth;
235 			packet->grh = &rhdr->u.l.grh;
236 		} else {
237 			goto drop;
238 		}
239 	}
240 
241 	if (packet->rhf & RHF_TID_ERR) {
242 		/* For TIDERR and RC QPs preemptively schedule a NAK */
243 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
244 		u32 dlid = ib_get_dlid(rhdr);
245 		u32 qp_num;
246 
247 		/* Sanity check packet */
248 		if (tlen < 24)
249 			goto drop;
250 
251 		/* Check for GRH */
252 		if (packet->grh) {
253 			u32 vtf;
254 			struct ib_grh *grh = packet->grh;
255 
256 			if (grh->next_hdr != IB_GRH_NEXT_HDR)
257 				goto drop;
258 			vtf = be32_to_cpu(grh->version_tclass_flow);
259 			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
260 				goto drop;
261 		}
262 
263 		/* Get the destination QP number. */
264 		qp_num = ib_bth_get_qpn(packet->ohdr);
265 		if (dlid < mlid_base) {
266 			struct rvt_qp *qp;
267 			unsigned long flags;
268 
269 			rcu_read_lock();
270 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
271 			if (!qp) {
272 				rcu_read_unlock();
273 				goto drop;
274 			}
275 
276 			/*
277 			 * Handle only RC QPs - for other QP types drop error
278 			 * packet.
279 			 */
280 			spin_lock_irqsave(&qp->r_lock, flags);
281 
282 			/* Check for valid receive state. */
283 			if (!(ib_rvt_state_ops[qp->state] &
284 			      RVT_PROCESS_RECV_OK)) {
285 				ibp->rvp.n_pkt_drops++;
286 			}
287 
288 			switch (qp->ibqp.qp_type) {
289 			case IB_QPT_RC:
290 				hfi1_rc_hdrerr(rcd, packet, qp);
291 				break;
292 			default:
293 				/* For now don't handle any other QP types */
294 				break;
295 			}
296 
297 			spin_unlock_irqrestore(&qp->r_lock, flags);
298 			rcu_read_unlock();
299 		} /* Unicast QP */
300 	} /* Valid packet with TIDErr */
301 
302 	/* handle "RcvTypeErr" flags */
303 	switch (rte) {
304 	case RHF_RTE_ERROR_OP_CODE_ERR:
305 	{
306 		void *ebuf = NULL;
307 		u8 opcode;
308 
309 		if (rhf_use_egr_bfr(packet->rhf))
310 			ebuf = packet->ebuf;
311 
312 		if (!ebuf)
313 			goto drop; /* this should never happen */
314 
315 		opcode = ib_bth_get_opcode(packet->ohdr);
316 		if (opcode == IB_OPCODE_CNP) {
317 			/*
318 			 * Only in pre-B0 h/w is the CNP_OPCODE handled
319 			 * via this code path.
320 			 */
321 			struct rvt_qp *qp = NULL;
322 			u32 lqpn, rqpn;
323 			u16 rlid;
324 			u8 svc_type, sl, sc5;
325 
326 			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
327 			sl = ibp->sc_to_sl[sc5];
328 
329 			lqpn = ib_bth_get_qpn(packet->ohdr);
330 			rcu_read_lock();
331 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
332 			if (!qp) {
333 				rcu_read_unlock();
334 				goto drop;
335 			}
336 
337 			switch (qp->ibqp.qp_type) {
338 			case IB_QPT_UD:
339 				rlid = 0;
340 				rqpn = 0;
341 				svc_type = IB_CC_SVCTYPE_UD;
342 				break;
343 			case IB_QPT_UC:
344 				rlid = ib_get_slid(rhdr);
345 				rqpn = qp->remote_qpn;
346 				svc_type = IB_CC_SVCTYPE_UC;
347 				break;
348 			default:
349 				rcu_read_unlock();
350 				goto drop;
351 			}
352 
353 			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
354 			rcu_read_unlock();
355 		}
356 
357 		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
358 		break;
359 	}
360 	default:
361 		break;
362 	}
363 
364 drop:
365 	return;
366 }
367 
368 static inline void init_packet(struct hfi1_ctxtdata *rcd,
369 			       struct hfi1_packet *packet)
370 {
371 	packet->rsize = get_hdrqentsize(rcd); /* words */
372 	packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
373 	packet->rcd = rcd;
374 	packet->updegr = 0;
375 	packet->etail = -1;
376 	packet->rhf_addr = get_rhf_addr(rcd);
377 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
378 	packet->rhqoff = hfi1_rcd_head(rcd);
379 	packet->numpkt = 0;
380 }
381 
382 /* We support only two types - 9B and 16B for now */
383 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
384 	[HFI1_PKT_TYPE_9B] = &return_cnp,
385 	[HFI1_PKT_TYPE_16B] = &return_cnp_16B
386 };
387 
388 /**
389  * hfi1_process_ecn_slowpath - Process FECN or BECN bits
390  * @qp: The packet's destination QP
391  * @pkt: The packet itself.
392  * @prescan: Is the caller the RXQ prescan
393  *
394  * Process the packet's FECN or BECN bits. By now, the packet
395  * has already been evaluated whether processing of those bit should
396  * be done.
397  * The significance of the @prescan argument is that if the caller
398  * is the RXQ prescan, a CNP will be send out instead of waiting for the
399  * normal packet processing to send an ACK with BECN set (or a CNP).
400  */
401 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
402 			       bool prescan)
403 {
404 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
405 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
406 	struct ib_other_headers *ohdr = pkt->ohdr;
407 	struct ib_grh *grh = pkt->grh;
408 	u32 rqpn = 0;
409 	u16 pkey;
410 	u32 rlid, slid, dlid = 0;
411 	u8 hdr_type, sc, svc_type, opcode;
412 	bool is_mcast = false, ignore_fecn = false, do_cnp = false,
413 		fecn, becn;
414 
415 	/* can be called from prescan */
416 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
417 		pkey = hfi1_16B_get_pkey(pkt->hdr);
418 		sc = hfi1_16B_get_sc(pkt->hdr);
419 		dlid = hfi1_16B_get_dlid(pkt->hdr);
420 		slid = hfi1_16B_get_slid(pkt->hdr);
421 		is_mcast = hfi1_is_16B_mcast(dlid);
422 		opcode = ib_bth_get_opcode(ohdr);
423 		hdr_type = HFI1_PKT_TYPE_16B;
424 		fecn = hfi1_16B_get_fecn(pkt->hdr);
425 		becn = hfi1_16B_get_becn(pkt->hdr);
426 	} else {
427 		pkey = ib_bth_get_pkey(ohdr);
428 		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
429 		dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
430 			ppd->lid;
431 		slid = ib_get_slid(pkt->hdr);
432 		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
433 			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
434 		opcode = ib_bth_get_opcode(ohdr);
435 		hdr_type = HFI1_PKT_TYPE_9B;
436 		fecn = ib_bth_get_fecn(ohdr);
437 		becn = ib_bth_get_becn(ohdr);
438 	}
439 
440 	switch (qp->ibqp.qp_type) {
441 	case IB_QPT_UD:
442 		rlid = slid;
443 		rqpn = ib_get_sqpn(pkt->ohdr);
444 		svc_type = IB_CC_SVCTYPE_UD;
445 		break;
446 	case IB_QPT_SMI:
447 	case IB_QPT_GSI:
448 		rlid = slid;
449 		rqpn = ib_get_sqpn(pkt->ohdr);
450 		svc_type = IB_CC_SVCTYPE_UD;
451 		break;
452 	case IB_QPT_UC:
453 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
454 		rqpn = qp->remote_qpn;
455 		svc_type = IB_CC_SVCTYPE_UC;
456 		break;
457 	case IB_QPT_RC:
458 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
459 		rqpn = qp->remote_qpn;
460 		svc_type = IB_CC_SVCTYPE_RC;
461 		break;
462 	default:
463 		return false;
464 	}
465 
466 	ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
467 		(opcode == IB_OPCODE_RC_ACKNOWLEDGE);
468 	/*
469 	 * ACKNOWLEDGE packets do not get a CNP but this will be
470 	 * guarded by ignore_fecn above.
471 	 */
472 	do_cnp = prescan ||
473 		(opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
474 		 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
475 		opcode == TID_OP(READ_RESP) ||
476 		opcode == TID_OP(ACK);
477 
478 	/* Call appropriate CNP handler */
479 	if (!ignore_fecn && do_cnp && fecn)
480 		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
481 					      dlid, rlid, sc, grh);
482 
483 	if (becn) {
484 		u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
485 		u8 sl = ibp->sc_to_sl[sc];
486 
487 		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
488 	}
489 	return !ignore_fecn && fecn;
490 }
491 
492 struct ps_mdata {
493 	struct hfi1_ctxtdata *rcd;
494 	u32 rsize;
495 	u32 maxcnt;
496 	u32 ps_head;
497 	u32 ps_tail;
498 	u32 ps_seq;
499 };
500 
501 static inline void init_ps_mdata(struct ps_mdata *mdata,
502 				 struct hfi1_packet *packet)
503 {
504 	struct hfi1_ctxtdata *rcd = packet->rcd;
505 
506 	mdata->rcd = rcd;
507 	mdata->rsize = packet->rsize;
508 	mdata->maxcnt = packet->maxcnt;
509 	mdata->ps_head = packet->rhqoff;
510 
511 	if (get_dma_rtail_setting(rcd)) {
512 		mdata->ps_tail = get_rcvhdrtail(rcd);
513 		if (rcd->ctxt == HFI1_CTRL_CTXT)
514 			mdata->ps_seq = hfi1_seq_cnt(rcd);
515 		else
516 			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
517 	} else {
518 		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
519 		mdata->ps_seq = hfi1_seq_cnt(rcd);
520 	}
521 }
522 
523 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
524 			  struct hfi1_ctxtdata *rcd)
525 {
526 	if (get_dma_rtail_setting(rcd))
527 		return mdata->ps_head == mdata->ps_tail;
528 	return mdata->ps_seq != rhf_rcv_seq(rhf);
529 }
530 
531 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
532 			  struct hfi1_ctxtdata *rcd)
533 {
534 	/*
535 	 * Control context can potentially receive an invalid rhf.
536 	 * Drop such packets.
537 	 */
538 	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
539 		return mdata->ps_seq != rhf_rcv_seq(rhf);
540 
541 	return 0;
542 }
543 
544 static inline void update_ps_mdata(struct ps_mdata *mdata,
545 				   struct hfi1_ctxtdata *rcd)
546 {
547 	mdata->ps_head += mdata->rsize;
548 	if (mdata->ps_head >= mdata->maxcnt)
549 		mdata->ps_head = 0;
550 
551 	/* Control context must do seq counting */
552 	if (!get_dma_rtail_setting(rcd) ||
553 	    rcd->ctxt == HFI1_CTRL_CTXT)
554 		mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
555 }
556 
557 /*
558  * prescan_rxq - search through the receive queue looking for packets
559  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
560  * When an ECN is found, process the Congestion Notification, and toggle
561  * it off.
562  * This is declared as a macro to allow quick checking of the port to avoid
563  * the overhead of a function call if not enabled.
564  */
565 #define prescan_rxq(rcd, packet) \
566 	do { \
567 		if (rcd->ppd->cc_prescan) \
568 			__prescan_rxq(packet); \
569 	} while (0)
570 static void __prescan_rxq(struct hfi1_packet *packet)
571 {
572 	struct hfi1_ctxtdata *rcd = packet->rcd;
573 	struct ps_mdata mdata;
574 
575 	init_ps_mdata(&mdata, packet);
576 
577 	while (1) {
578 		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
579 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
580 					 packet->rcd->rhf_offset;
581 		struct rvt_qp *qp;
582 		struct ib_header *hdr;
583 		struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
584 		u64 rhf = rhf_to_cpu(rhf_addr);
585 		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
586 		u8 lnh;
587 
588 		if (ps_done(&mdata, rhf, rcd))
589 			break;
590 
591 		if (ps_skip(&mdata, rhf, rcd))
592 			goto next;
593 
594 		if (etype != RHF_RCV_TYPE_IB)
595 			goto next;
596 
597 		packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
598 		hdr = packet->hdr;
599 		lnh = ib_get_lnh(hdr);
600 
601 		if (lnh == HFI1_LRH_BTH) {
602 			packet->ohdr = &hdr->u.oth;
603 			packet->grh = NULL;
604 		} else if (lnh == HFI1_LRH_GRH) {
605 			packet->ohdr = &hdr->u.l.oth;
606 			packet->grh = &hdr->u.l.grh;
607 		} else {
608 			goto next; /* just in case */
609 		}
610 
611 		if (!hfi1_may_ecn(packet))
612 			goto next;
613 
614 		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
615 		qpn = bth1 & RVT_QPN_MASK;
616 		rcu_read_lock();
617 		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
618 
619 		if (!qp) {
620 			rcu_read_unlock();
621 			goto next;
622 		}
623 
624 		hfi1_process_ecn_slowpath(qp, packet, true);
625 		rcu_read_unlock();
626 
627 		/* turn off BECN, FECN */
628 		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
629 		packet->ohdr->bth[1] = cpu_to_be32(bth1);
630 next:
631 		update_ps_mdata(&mdata, rcd);
632 	}
633 }
634 
635 static void process_rcv_qp_work(struct hfi1_packet *packet)
636 {
637 	struct rvt_qp *qp, *nqp;
638 	struct hfi1_ctxtdata *rcd = packet->rcd;
639 
640 	/*
641 	 * Iterate over all QPs waiting to respond.
642 	 * The list won't change since the IRQ is only run on one CPU.
643 	 */
644 	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
645 		list_del_init(&qp->rspwait);
646 		if (qp->r_flags & RVT_R_RSP_NAK) {
647 			qp->r_flags &= ~RVT_R_RSP_NAK;
648 			packet->qp = qp;
649 			hfi1_send_rc_ack(packet, 0);
650 		}
651 		if (qp->r_flags & RVT_R_RSP_SEND) {
652 			unsigned long flags;
653 
654 			qp->r_flags &= ~RVT_R_RSP_SEND;
655 			spin_lock_irqsave(&qp->s_lock, flags);
656 			if (ib_rvt_state_ops[qp->state] &
657 					RVT_PROCESS_OR_FLUSH_SEND)
658 				hfi1_schedule_send(qp);
659 			spin_unlock_irqrestore(&qp->s_lock, flags);
660 		}
661 		rvt_put_qp(qp);
662 	}
663 }
664 
665 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
666 {
667 	if (thread) {
668 		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
669 			/* allow defered processing */
670 			process_rcv_qp_work(packet);
671 		cond_resched();
672 		return RCV_PKT_OK;
673 	} else {
674 		this_cpu_inc(*packet->rcd->dd->rcv_limit);
675 		return RCV_PKT_LIMIT;
676 	}
677 }
678 
679 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
680 {
681 	int ret = RCV_PKT_OK;
682 
683 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
684 		ret = max_packet_exceeded(packet, thread);
685 	return ret;
686 }
687 
688 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
689 {
690 	int ret;
691 
692 	packet->rcd->dd->ctx0_seq_drop++;
693 	/* Set up for the next packet */
694 	packet->rhqoff += packet->rsize;
695 	if (packet->rhqoff >= packet->maxcnt)
696 		packet->rhqoff = 0;
697 
698 	packet->numpkt++;
699 	ret = check_max_packet(packet, thread);
700 
701 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
702 				     packet->rcd->rhf_offset;
703 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
704 
705 	return ret;
706 }
707 
708 static void process_rcv_packet_napi(struct hfi1_packet *packet)
709 {
710 	packet->etype = rhf_rcv_type(packet->rhf);
711 
712 	/* total length */
713 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
714 	/* retrieve eager buffer details */
715 	packet->etail = rhf_egr_index(packet->rhf);
716 	packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
717 				  &packet->updegr);
718 	/*
719 	 * Prefetch the contents of the eager buffer.  It is
720 	 * OK to send a negative length to prefetch_range().
721 	 * The +2 is the size of the RHF.
722 	 */
723 	prefetch_range(packet->ebuf,
724 		       packet->tlen - ((packet->rcd->rcvhdrqentsize -
725 				       (rhf_hdrq_offset(packet->rhf)
726 					+ 2)) * 4));
727 
728 	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
729 	packet->numpkt++;
730 
731 	/* Set up for the next packet */
732 	packet->rhqoff += packet->rsize;
733 	if (packet->rhqoff >= packet->maxcnt)
734 		packet->rhqoff = 0;
735 
736 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
737 				      packet->rcd->rhf_offset;
738 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
739 }
740 
741 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
742 {
743 	int ret;
744 
745 	packet->etype = rhf_rcv_type(packet->rhf);
746 
747 	/* total length */
748 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
749 	/* retrieve eager buffer details */
750 	packet->ebuf = NULL;
751 	if (rhf_use_egr_bfr(packet->rhf)) {
752 		packet->etail = rhf_egr_index(packet->rhf);
753 		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
754 				 &packet->updegr);
755 		/*
756 		 * Prefetch the contents of the eager buffer.  It is
757 		 * OK to send a negative length to prefetch_range().
758 		 * The +2 is the size of the RHF.
759 		 */
760 		prefetch_range(packet->ebuf,
761 			       packet->tlen - ((get_hdrqentsize(packet->rcd) -
762 					       (rhf_hdrq_offset(packet->rhf)
763 						+ 2)) * 4));
764 	}
765 
766 	/*
767 	 * Call a type specific handler for the packet. We
768 	 * should be able to trust that etype won't be beyond
769 	 * the range of valid indexes. If so something is really
770 	 * wrong and we can probably just let things come
771 	 * crashing down. There is no need to eat another
772 	 * comparison in this performance critical code.
773 	 */
774 	packet->rcd->rhf_rcv_function_map[packet->etype](packet);
775 	packet->numpkt++;
776 
777 	/* Set up for the next packet */
778 	packet->rhqoff += packet->rsize;
779 	if (packet->rhqoff >= packet->maxcnt)
780 		packet->rhqoff = 0;
781 
782 	ret = check_max_packet(packet, thread);
783 
784 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
785 				      packet->rcd->rhf_offset;
786 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
787 
788 	return ret;
789 }
790 
791 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
792 {
793 	/*
794 	 * Update head regs etc., every 16 packets, if not last pkt,
795 	 * to help prevent rcvhdrq overflows, when many packets
796 	 * are processed and queue is nearly full.
797 	 * Don't request an interrupt for intermediate updates.
798 	 */
799 	if (!last && !(packet->numpkt & 0xf)) {
800 		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
801 			       packet->etail, 0, 0);
802 		packet->updegr = 0;
803 	}
804 	packet->grh = NULL;
805 }
806 
807 static inline void finish_packet(struct hfi1_packet *packet)
808 {
809 	/*
810 	 * Nothing we need to free for the packet.
811 	 *
812 	 * The only thing we need to do is a final update and call for an
813 	 * interrupt
814 	 */
815 	update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
816 		       packet->etail, rcv_intr_dynamic, packet->numpkt);
817 }
818 
819 /*
820  * handle_receive_interrupt_napi_fp - receive a packet
821  * @rcd: the context
822  * @budget: polling budget
823  *
824  * Called from interrupt handler for receive interrupt.
825  * This is the fast path interrupt handler
826  * when executing napi soft irq environment.
827  */
828 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
829 {
830 	struct hfi1_packet packet;
831 
832 	init_packet(rcd, &packet);
833 	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
834 		goto bail;
835 
836 	while (packet.numpkt < budget) {
837 		process_rcv_packet_napi(&packet);
838 		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
839 			break;
840 
841 		process_rcv_update(0, &packet);
842 	}
843 	hfi1_set_rcd_head(rcd, packet.rhqoff);
844 bail:
845 	finish_packet(&packet);
846 	return packet.numpkt;
847 }
848 
849 /*
850  * Handle receive interrupts when using the no dma rtail option.
851  */
852 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
853 {
854 	int last = RCV_PKT_OK;
855 	struct hfi1_packet packet;
856 
857 	init_packet(rcd, &packet);
858 	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
859 		last = RCV_PKT_DONE;
860 		goto bail;
861 	}
862 
863 	prescan_rxq(rcd, &packet);
864 
865 	while (last == RCV_PKT_OK) {
866 		last = process_rcv_packet(&packet, thread);
867 		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
868 			last = RCV_PKT_DONE;
869 		process_rcv_update(last, &packet);
870 	}
871 	process_rcv_qp_work(&packet);
872 	hfi1_set_rcd_head(rcd, packet.rhqoff);
873 bail:
874 	finish_packet(&packet);
875 	return last;
876 }
877 
878 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
879 {
880 	u32 hdrqtail;
881 	int last = RCV_PKT_OK;
882 	struct hfi1_packet packet;
883 
884 	init_packet(rcd, &packet);
885 	hdrqtail = get_rcvhdrtail(rcd);
886 	if (packet.rhqoff == hdrqtail) {
887 		last = RCV_PKT_DONE;
888 		goto bail;
889 	}
890 	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
891 
892 	prescan_rxq(rcd, &packet);
893 
894 	while (last == RCV_PKT_OK) {
895 		last = process_rcv_packet(&packet, thread);
896 		if (packet.rhqoff == hdrqtail)
897 			last = RCV_PKT_DONE;
898 		process_rcv_update(last, &packet);
899 	}
900 	process_rcv_qp_work(&packet);
901 	hfi1_set_rcd_head(rcd, packet.rhqoff);
902 bail:
903 	finish_packet(&packet);
904 	return last;
905 }
906 
907 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
908 {
909 	u16 i;
910 
911 	/*
912 	 * For dynamically allocated kernel contexts (like vnic) switch
913 	 * interrupt handler only for that context. Otherwise, switch
914 	 * interrupt handler for all statically allocated kernel contexts.
915 	 */
916 	if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
917 		hfi1_rcd_get(rcd);
918 		hfi1_set_fast(rcd);
919 		hfi1_rcd_put(rcd);
920 		return;
921 	}
922 
923 	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
924 		rcd = hfi1_rcd_get_by_index(dd, i);
925 		if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
926 			hfi1_set_fast(rcd);
927 		hfi1_rcd_put(rcd);
928 	}
929 }
930 
931 void set_all_slowpath(struct hfi1_devdata *dd)
932 {
933 	struct hfi1_ctxtdata *rcd;
934 	u16 i;
935 
936 	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
937 	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
938 		rcd = hfi1_rcd_get_by_index(dd, i);
939 		if (!rcd)
940 			continue;
941 		if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
942 			rcd->do_interrupt = rcd->slow_handler;
943 
944 		hfi1_rcd_put(rcd);
945 	}
946 }
947 
948 static bool __set_armed_to_active(struct hfi1_packet *packet)
949 {
950 	u8 etype = rhf_rcv_type(packet->rhf);
951 	u8 sc = SC15_PACKET;
952 
953 	if (etype == RHF_RCV_TYPE_IB) {
954 		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
955 							   packet->rhf_addr);
956 		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
957 	} else if (etype == RHF_RCV_TYPE_BYPASS) {
958 		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
959 						packet->rcd,
960 						packet->rhf_addr);
961 		sc = hfi1_16B_get_sc(hdr);
962 	}
963 	if (sc != SC15_PACKET) {
964 		int hwstate = driver_lstate(packet->rcd->ppd);
965 		struct work_struct *lsaw =
966 				&packet->rcd->ppd->linkstate_active_work;
967 
968 		if (hwstate != IB_PORT_ACTIVE) {
969 			dd_dev_info(packet->rcd->dd,
970 				    "Unexpected link state %s\n",
971 				    opa_lstate_name(hwstate));
972 			return false;
973 		}
974 
975 		queue_work(packet->rcd->ppd->link_wq, lsaw);
976 		return true;
977 	}
978 	return false;
979 }
980 
981 /**
982  * set_armed_to_active  - the fast path for armed to active
983  * @packet: the packet structure
984  *
985  * Return true if packet processing needs to bail.
986  */
987 static bool set_armed_to_active(struct hfi1_packet *packet)
988 {
989 	if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
990 		return false;
991 	return __set_armed_to_active(packet);
992 }
993 
994 /*
995  * handle_receive_interrupt - receive a packet
996  * @rcd: the context
997  *
998  * Called from interrupt handler for errors or receive interrupt.
999  * This is the slow path interrupt handler.
1000  */
1001 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1002 {
1003 	struct hfi1_devdata *dd = rcd->dd;
1004 	u32 hdrqtail;
1005 	int needset, last = RCV_PKT_OK;
1006 	struct hfi1_packet packet;
1007 	int skip_pkt = 0;
1008 
1009 	if (!rcd->rcvhdrq)
1010 		return RCV_PKT_OK;
1011 	/* Control context will always use the slow path interrupt handler */
1012 	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1013 
1014 	init_packet(rcd, &packet);
1015 
1016 	if (!get_dma_rtail_setting(rcd)) {
1017 		if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
1018 			last = RCV_PKT_DONE;
1019 			goto bail;
1020 		}
1021 		hdrqtail = 0;
1022 	} else {
1023 		hdrqtail = get_rcvhdrtail(rcd);
1024 		if (packet.rhqoff == hdrqtail) {
1025 			last = RCV_PKT_DONE;
1026 			goto bail;
1027 		}
1028 		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1029 
1030 		/*
1031 		 * Control context can potentially receive an invalid
1032 		 * rhf. Drop such packets.
1033 		 */
1034 		if (rcd->ctxt == HFI1_CTRL_CTXT)
1035 			if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1036 				skip_pkt = 1;
1037 	}
1038 
1039 	prescan_rxq(rcd, &packet);
1040 
1041 	while (last == RCV_PKT_OK) {
1042 		if (hfi1_need_drop(dd)) {
1043 			/* On to the next packet */
1044 			packet.rhqoff += packet.rsize;
1045 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1046 					  packet.rhqoff +
1047 					  rcd->rhf_offset;
1048 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1049 
1050 		} else if (skip_pkt) {
1051 			last = skip_rcv_packet(&packet, thread);
1052 			skip_pkt = 0;
1053 		} else {
1054 			if (set_armed_to_active(&packet))
1055 				goto bail;
1056 			last = process_rcv_packet(&packet, thread);
1057 		}
1058 
1059 		if (!get_dma_rtail_setting(rcd)) {
1060 			if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1061 				last = RCV_PKT_DONE;
1062 		} else {
1063 			if (packet.rhqoff == hdrqtail)
1064 				last = RCV_PKT_DONE;
1065 			/*
1066 			 * Control context can potentially receive an invalid
1067 			 * rhf. Drop such packets.
1068 			 */
1069 			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1070 				bool lseq;
1071 
1072 				lseq = hfi1_seq_incr(rcd,
1073 						     rhf_rcv_seq(packet.rhf));
1074 				if (!last && lseq)
1075 					skip_pkt = 1;
1076 			}
1077 		}
1078 
1079 		if (needset) {
1080 			needset = false;
1081 			set_all_fastpath(dd, rcd);
1082 		}
1083 		process_rcv_update(last, &packet);
1084 	}
1085 
1086 	process_rcv_qp_work(&packet);
1087 	hfi1_set_rcd_head(rcd, packet.rhqoff);
1088 
1089 bail:
1090 	/*
1091 	 * Always write head at end, and setup rcv interrupt, even
1092 	 * if no packets were processed.
1093 	 */
1094 	finish_packet(&packet);
1095 	return last;
1096 }
1097 
1098 /*
1099  * handle_receive_interrupt_napi_sp - receive a packet
1100  * @rcd: the context
1101  * @budget: polling budget
1102  *
1103  * Called from interrupt handler for errors or receive interrupt.
1104  * This is the slow path interrupt handler
1105  * when executing napi soft irq environment.
1106  */
1107 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
1108 {
1109 	struct hfi1_devdata *dd = rcd->dd;
1110 	int last = RCV_PKT_OK;
1111 	bool needset = true;
1112 	struct hfi1_packet packet;
1113 
1114 	init_packet(rcd, &packet);
1115 	if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1116 		goto bail;
1117 
1118 	while (last != RCV_PKT_DONE && packet.numpkt < budget) {
1119 		if (hfi1_need_drop(dd)) {
1120 			/* On to the next packet */
1121 			packet.rhqoff += packet.rsize;
1122 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1123 					  packet.rhqoff +
1124 					  rcd->rhf_offset;
1125 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1126 
1127 		} else {
1128 			if (set_armed_to_active(&packet))
1129 				goto bail;
1130 			process_rcv_packet_napi(&packet);
1131 		}
1132 
1133 		if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1134 			last = RCV_PKT_DONE;
1135 
1136 		if (needset) {
1137 			needset = false;
1138 			set_all_fastpath(dd, rcd);
1139 		}
1140 
1141 		process_rcv_update(last, &packet);
1142 	}
1143 
1144 	hfi1_set_rcd_head(rcd, packet.rhqoff);
1145 
1146 bail:
1147 	/*
1148 	 * Always write head at end, and setup rcv interrupt, even
1149 	 * if no packets were processed.
1150 	 */
1151 	finish_packet(&packet);
1152 	return packet.numpkt;
1153 }
1154 
1155 /*
1156  * We may discover in the interrupt that the hardware link state has
1157  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1158  * and we need to update the driver's notion of the link state.  We cannot
1159  * run set_link_state from interrupt context, so we queue this function on
1160  * a workqueue.
1161  *
1162  * We delay the regular interrupt processing until after the state changes
1163  * so that the link will be in the correct state by the time any application
1164  * we wake up attempts to send a reply to any message it received.
1165  * (Subsequent receive interrupts may possibly force the wakeup before we
1166  * update the link state.)
1167  *
1168  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1169  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1170  * so we're safe from use-after-free of the rcd.
1171  */
1172 void receive_interrupt_work(struct work_struct *work)
1173 {
1174 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1175 						  linkstate_active_work);
1176 	struct hfi1_devdata *dd = ppd->dd;
1177 	struct hfi1_ctxtdata *rcd;
1178 	u16 i;
1179 
1180 	/* Received non-SC15 packet implies neighbor_normal */
1181 	ppd->neighbor_normal = 1;
1182 	set_link_state(ppd, HLS_UP_ACTIVE);
1183 
1184 	/*
1185 	 * Interrupt all statically allocated kernel contexts that could
1186 	 * have had an interrupt during auto activation.
1187 	 */
1188 	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1189 		rcd = hfi1_rcd_get_by_index(dd, i);
1190 		if (rcd)
1191 			force_recv_intr(rcd);
1192 		hfi1_rcd_put(rcd);
1193 	}
1194 }
1195 
1196 /*
1197  * Convert a given MTU size to the on-wire MAD packet enumeration.
1198  * Return -1 if the size is invalid.
1199  */
1200 int mtu_to_enum(u32 mtu, int default_if_bad)
1201 {
1202 	switch (mtu) {
1203 	case     0: return OPA_MTU_0;
1204 	case   256: return OPA_MTU_256;
1205 	case   512: return OPA_MTU_512;
1206 	case  1024: return OPA_MTU_1024;
1207 	case  2048: return OPA_MTU_2048;
1208 	case  4096: return OPA_MTU_4096;
1209 	case  8192: return OPA_MTU_8192;
1210 	case 10240: return OPA_MTU_10240;
1211 	}
1212 	return default_if_bad;
1213 }
1214 
1215 u16 enum_to_mtu(int mtu)
1216 {
1217 	switch (mtu) {
1218 	case OPA_MTU_0:     return 0;
1219 	case OPA_MTU_256:   return 256;
1220 	case OPA_MTU_512:   return 512;
1221 	case OPA_MTU_1024:  return 1024;
1222 	case OPA_MTU_2048:  return 2048;
1223 	case OPA_MTU_4096:  return 4096;
1224 	case OPA_MTU_8192:  return 8192;
1225 	case OPA_MTU_10240: return 10240;
1226 	default: return 0xffff;
1227 	}
1228 }
1229 
1230 /*
1231  * set_mtu - set the MTU
1232  * @ppd: the per port data
1233  *
1234  * We can handle "any" incoming size, the issue here is whether we
1235  * need to restrict our outgoing size.  We do not deal with what happens
1236  * to programs that are already running when the size changes.
1237  */
1238 int set_mtu(struct hfi1_pportdata *ppd)
1239 {
1240 	struct hfi1_devdata *dd = ppd->dd;
1241 	int i, drain, ret = 0, is_up = 0;
1242 
1243 	ppd->ibmtu = 0;
1244 	for (i = 0; i < ppd->vls_supported; i++)
1245 		if (ppd->ibmtu < dd->vld[i].mtu)
1246 			ppd->ibmtu = dd->vld[i].mtu;
1247 	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1248 
1249 	mutex_lock(&ppd->hls_lock);
1250 	if (ppd->host_link_state == HLS_UP_INIT ||
1251 	    ppd->host_link_state == HLS_UP_ARMED ||
1252 	    ppd->host_link_state == HLS_UP_ACTIVE)
1253 		is_up = 1;
1254 
1255 	drain = !is_ax(dd) && is_up;
1256 
1257 	if (drain)
1258 		/*
1259 		 * MTU is specified per-VL. To ensure that no packet gets
1260 		 * stuck (due, e.g., to the MTU for the packet's VL being
1261 		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1262 		 */
1263 		ret = stop_drain_data_vls(dd);
1264 
1265 	if (ret) {
1266 		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1267 			   __func__);
1268 		goto err;
1269 	}
1270 
1271 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1272 
1273 	if (drain)
1274 		open_fill_data_vls(dd); /* reopen all VLs */
1275 
1276 err:
1277 	mutex_unlock(&ppd->hls_lock);
1278 
1279 	return ret;
1280 }
1281 
1282 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1283 {
1284 	struct hfi1_devdata *dd = ppd->dd;
1285 
1286 	ppd->lid = lid;
1287 	ppd->lmc = lmc;
1288 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1289 
1290 	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1291 
1292 	return 0;
1293 }
1294 
1295 void shutdown_led_override(struct hfi1_pportdata *ppd)
1296 {
1297 	struct hfi1_devdata *dd = ppd->dd;
1298 
1299 	/*
1300 	 * This pairs with the memory barrier in hfi1_start_led_override to
1301 	 * ensure that we read the correct state of LED beaconing represented
1302 	 * by led_override_timer_active
1303 	 */
1304 	smp_rmb();
1305 	if (atomic_read(&ppd->led_override_timer_active)) {
1306 		del_timer_sync(&ppd->led_override_timer);
1307 		atomic_set(&ppd->led_override_timer_active, 0);
1308 		/* Ensure the atomic_set is visible to all CPUs */
1309 		smp_wmb();
1310 	}
1311 
1312 	/* Hand control of the LED to the DC for normal operation */
1313 	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1314 }
1315 
1316 static void run_led_override(struct timer_list *t)
1317 {
1318 	struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1319 	struct hfi1_devdata *dd = ppd->dd;
1320 	unsigned long timeout;
1321 	int phase_idx;
1322 
1323 	if (!(dd->flags & HFI1_INITTED))
1324 		return;
1325 
1326 	phase_idx = ppd->led_override_phase & 1;
1327 
1328 	setextled(dd, phase_idx);
1329 
1330 	timeout = ppd->led_override_vals[phase_idx];
1331 
1332 	/* Set up for next phase */
1333 	ppd->led_override_phase = !ppd->led_override_phase;
1334 
1335 	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1336 }
1337 
1338 /*
1339  * To have the LED blink in a particular pattern, provide timeon and timeoff
1340  * in milliseconds.
1341  * To turn off custom blinking and return to normal operation, use
1342  * shutdown_led_override()
1343  */
1344 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1345 			     unsigned int timeoff)
1346 {
1347 	if (!(ppd->dd->flags & HFI1_INITTED))
1348 		return;
1349 
1350 	/* Convert to jiffies for direct use in timer */
1351 	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1352 	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1353 
1354 	/* Arbitrarily start from LED on phase */
1355 	ppd->led_override_phase = 1;
1356 
1357 	/*
1358 	 * If the timer has not already been started, do so. Use a "quick"
1359 	 * timeout so the handler will be called soon to look at our request.
1360 	 */
1361 	if (!timer_pending(&ppd->led_override_timer)) {
1362 		timer_setup(&ppd->led_override_timer, run_led_override, 0);
1363 		ppd->led_override_timer.expires = jiffies + 1;
1364 		add_timer(&ppd->led_override_timer);
1365 		atomic_set(&ppd->led_override_timer_active, 1);
1366 		/* Ensure the atomic_set is visible to all CPUs */
1367 		smp_wmb();
1368 	}
1369 }
1370 
1371 /**
1372  * hfi1_reset_device - reset the chip if possible
1373  * @unit: the device to reset
1374  *
1375  * Whether or not reset is successful, we attempt to re-initialize the chip
1376  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1377  * so that the various entry points will fail until we reinitialize.  For
1378  * now, we only allow this if no user contexts are open that use chip resources
1379  */
1380 int hfi1_reset_device(int unit)
1381 {
1382 	int ret;
1383 	struct hfi1_devdata *dd = hfi1_lookup(unit);
1384 	struct hfi1_pportdata *ppd;
1385 	int pidx;
1386 
1387 	if (!dd) {
1388 		ret = -ENODEV;
1389 		goto bail;
1390 	}
1391 
1392 	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1393 
1394 	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1395 		dd_dev_info(dd,
1396 			    "Invalid unit number %u or not initialized or not present\n",
1397 			    unit);
1398 		ret = -ENXIO;
1399 		goto bail;
1400 	}
1401 
1402 	/* If there are any user/vnic contexts, we cannot reset */
1403 	mutex_lock(&hfi1_mutex);
1404 	if (dd->rcd)
1405 		if (hfi1_stats.sps_ctxts) {
1406 			mutex_unlock(&hfi1_mutex);
1407 			ret = -EBUSY;
1408 			goto bail;
1409 		}
1410 	mutex_unlock(&hfi1_mutex);
1411 
1412 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1413 		ppd = dd->pport + pidx;
1414 
1415 		shutdown_led_override(ppd);
1416 	}
1417 	if (dd->flags & HFI1_HAS_SEND_DMA)
1418 		sdma_exit(dd);
1419 
1420 	hfi1_reset_cpu_counters(dd);
1421 
1422 	ret = hfi1_init(dd, 1);
1423 
1424 	if (ret)
1425 		dd_dev_err(dd,
1426 			   "Reinitialize unit %u after reset failed with %d\n",
1427 			   unit, ret);
1428 	else
1429 		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1430 			    unit);
1431 
1432 bail:
1433 	return ret;
1434 }
1435 
1436 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1437 {
1438 	packet->hdr = (struct hfi1_ib_message_header *)
1439 			hfi1_get_msgheader(packet->rcd,
1440 					   packet->rhf_addr);
1441 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1442 }
1443 
1444 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1445 {
1446 	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1447 
1448 	/* slid and dlid cannot be 0 */
1449 	if ((!packet->slid) || (!packet->dlid))
1450 		return -EINVAL;
1451 
1452 	/* Compare port lid with incoming packet dlid */
1453 	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1454 	    (packet->dlid !=
1455 		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1456 		if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1457 			return -EINVAL;
1458 	}
1459 
1460 	/* No multicast packets with SC15 */
1461 	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1462 		return -EINVAL;
1463 
1464 	/* Packets with permissive DLID always on SC15 */
1465 	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1466 					 16B)) &&
1467 	    (packet->sc != 0xF))
1468 		return -EINVAL;
1469 
1470 	return 0;
1471 }
1472 
1473 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1474 {
1475 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1476 	struct ib_header *hdr;
1477 	u8 lnh;
1478 
1479 	hfi1_setup_ib_header(packet);
1480 	hdr = packet->hdr;
1481 
1482 	lnh = ib_get_lnh(hdr);
1483 	if (lnh == HFI1_LRH_BTH) {
1484 		packet->ohdr = &hdr->u.oth;
1485 		packet->grh = NULL;
1486 	} else if (lnh == HFI1_LRH_GRH) {
1487 		u32 vtf;
1488 
1489 		packet->ohdr = &hdr->u.l.oth;
1490 		packet->grh = &hdr->u.l.grh;
1491 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1492 			goto drop;
1493 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1494 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1495 			goto drop;
1496 	} else {
1497 		goto drop;
1498 	}
1499 
1500 	/* Query commonly used fields from packet header */
1501 	packet->payload = packet->ebuf;
1502 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1503 	packet->slid = ib_get_slid(hdr);
1504 	packet->dlid = ib_get_dlid(hdr);
1505 	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1506 		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1507 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1508 				be16_to_cpu(IB_MULTICAST_LID_BASE);
1509 	packet->sl = ib_get_sl(hdr);
1510 	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1511 	packet->pad = ib_bth_get_pad(packet->ohdr);
1512 	packet->extra_byte = 0;
1513 	packet->pkey = ib_bth_get_pkey(packet->ohdr);
1514 	packet->migrated = ib_bth_is_migration(packet->ohdr);
1515 
1516 	return 0;
1517 drop:
1518 	ibp->rvp.n_pkt_drops++;
1519 	return -EINVAL;
1520 }
1521 
1522 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1523 {
1524 	/*
1525 	 * Bypass packets have a different header/payload split
1526 	 * compared to an IB packet.
1527 	 * Current split is set such that 16 bytes of the actual
1528 	 * header is in the header buffer and the remining is in
1529 	 * the eager buffer. We chose 16 since hfi1 driver only
1530 	 * supports 16B bypass packets and we will be able to
1531 	 * receive the entire LRH with such a split.
1532 	 */
1533 
1534 	struct hfi1_ctxtdata *rcd = packet->rcd;
1535 	struct hfi1_pportdata *ppd = rcd->ppd;
1536 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1537 	u8 l4;
1538 
1539 	packet->hdr = (struct hfi1_16b_header *)
1540 			hfi1_get_16B_header(packet->rcd,
1541 					    packet->rhf_addr);
1542 	l4 = hfi1_16B_get_l4(packet->hdr);
1543 	if (l4 == OPA_16B_L4_IB_LOCAL) {
1544 		packet->ohdr = packet->ebuf;
1545 		packet->grh = NULL;
1546 		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1547 		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1548 		/* hdr_len_by_opcode already has an IB LRH factored in */
1549 		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1550 			(LRH_16B_BYTES - LRH_9B_BYTES);
1551 		packet->migrated = opa_bth_is_migration(packet->ohdr);
1552 	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1553 		u32 vtf;
1554 		u8 grh_len = sizeof(struct ib_grh);
1555 
1556 		packet->ohdr = packet->ebuf + grh_len;
1557 		packet->grh = packet->ebuf;
1558 		packet->opcode = ib_bth_get_opcode(packet->ohdr);
1559 		packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1560 		/* hdr_len_by_opcode already has an IB LRH factored in */
1561 		packet->hlen = hdr_len_by_opcode[packet->opcode] +
1562 			(LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1563 		packet->migrated = opa_bth_is_migration(packet->ohdr);
1564 
1565 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1566 			goto drop;
1567 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1568 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1569 			goto drop;
1570 	} else if (l4 == OPA_16B_L4_FM) {
1571 		packet->mgmt = packet->ebuf;
1572 		packet->ohdr = NULL;
1573 		packet->grh = NULL;
1574 		packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1575 		packet->pad = OPA_16B_L4_FM_PAD;
1576 		packet->hlen = OPA_16B_L4_FM_HLEN;
1577 		packet->migrated = false;
1578 	} else {
1579 		goto drop;
1580 	}
1581 
1582 	/* Query commonly used fields from packet header */
1583 	packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1584 	packet->slid = hfi1_16B_get_slid(packet->hdr);
1585 	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1586 	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1587 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1588 				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1589 					    16B);
1590 	packet->sc = hfi1_16B_get_sc(packet->hdr);
1591 	packet->sl = ibp->sc_to_sl[packet->sc];
1592 	packet->extra_byte = SIZE_OF_LT;
1593 	packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1594 
1595 	if (hfi1_bypass_ingress_pkt_check(packet))
1596 		goto drop;
1597 
1598 	return 0;
1599 drop:
1600 	hfi1_cdbg(PKT, "%s: packet dropped", __func__);
1601 	ibp->rvp.n_pkt_drops++;
1602 	return -EINVAL;
1603 }
1604 
1605 static void show_eflags_errs(struct hfi1_packet *packet)
1606 {
1607 	struct hfi1_ctxtdata *rcd = packet->rcd;
1608 	u32 rte = rhf_rcv_type_err(packet->rhf);
1609 
1610 	dd_dev_err(rcd->dd,
1611 		   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1612 		   rcd->ctxt, packet->rhf,
1613 		   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1614 		   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1615 		   packet->rhf & RHF_DC_ERR ? "dc " : "",
1616 		   packet->rhf & RHF_TID_ERR ? "tid " : "",
1617 		   packet->rhf & RHF_LEN_ERR ? "len " : "",
1618 		   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1619 		   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1620 		   rte);
1621 }
1622 
1623 void handle_eflags(struct hfi1_packet *packet)
1624 {
1625 	struct hfi1_ctxtdata *rcd = packet->rcd;
1626 
1627 	rcv_hdrerr(rcd, rcd->ppd, packet);
1628 	if (rhf_err_flags(packet->rhf))
1629 		show_eflags_errs(packet);
1630 }
1631 
1632 static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
1633 {
1634 	struct hfi1_ibport *ibp;
1635 	struct net_device *netdev;
1636 	struct hfi1_ctxtdata *rcd = packet->rcd;
1637 	struct napi_struct *napi = rcd->napi;
1638 	struct sk_buff *skb;
1639 	struct hfi1_netdev_rxq *rxq = container_of(napi,
1640 			struct hfi1_netdev_rxq, napi);
1641 	u32 extra_bytes;
1642 	u32 tlen, qpnum;
1643 	bool do_work, do_cnp;
1644 
1645 	trace_hfi1_rcvhdr(packet);
1646 
1647 	hfi1_setup_ib_header(packet);
1648 
1649 	packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
1650 	packet->grh = NULL;
1651 
1652 	if (unlikely(rhf_err_flags(packet->rhf))) {
1653 		handle_eflags(packet);
1654 		return;
1655 	}
1656 
1657 	qpnum = ib_bth_get_qpn(packet->ohdr);
1658 	netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
1659 	if (!netdev)
1660 		goto drop_no_nd;
1661 
1662 	trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
1663 	trace_ctxt_rsm_hist(rcd->ctxt);
1664 
1665 	/* handle congestion notifications */
1666 	do_work = hfi1_may_ecn(packet);
1667 	if (unlikely(do_work)) {
1668 		do_cnp = (packet->opcode != IB_OPCODE_CNP);
1669 		(void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
1670 						 packet, do_cnp);
1671 	}
1672 
1673 	/*
1674 	 * We have split point after last byte of DETH
1675 	 * lets strip padding and CRC and ICRC.
1676 	 * tlen is whole packet len so we need to
1677 	 * subtract header size as well.
1678 	 */
1679 	tlen = packet->tlen;
1680 	extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
1681 			packet->hlen;
1682 	if (unlikely(tlen < extra_bytes))
1683 		goto drop;
1684 
1685 	tlen -= extra_bytes;
1686 
1687 	skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
1688 	if (unlikely(!skb))
1689 		goto drop;
1690 
1691 	dev_sw_netstats_rx_add(netdev, skb->len);
1692 
1693 	skb->dev = netdev;
1694 	skb->pkt_type = PACKET_HOST;
1695 	netif_receive_skb(skb);
1696 
1697 	return;
1698 
1699 drop:
1700 	++netdev->stats.rx_dropped;
1701 drop_no_nd:
1702 	ibp = rcd_to_iport(packet->rcd);
1703 	++ibp->rvp.n_pkt_drops;
1704 }
1705 
1706 /*
1707  * The following functions are called by the interrupt handler. They are type
1708  * specific handlers for each packet type.
1709  */
1710 static void process_receive_ib(struct hfi1_packet *packet)
1711 {
1712 	if (hfi1_setup_9B_packet(packet))
1713 		return;
1714 
1715 	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1716 		return;
1717 
1718 	trace_hfi1_rcvhdr(packet);
1719 
1720 	if (unlikely(rhf_err_flags(packet->rhf))) {
1721 		handle_eflags(packet);
1722 		return;
1723 	}
1724 
1725 	hfi1_ib_rcv(packet);
1726 }
1727 
1728 static void process_receive_bypass(struct hfi1_packet *packet)
1729 {
1730 	struct hfi1_devdata *dd = packet->rcd->dd;
1731 
1732 	if (hfi1_setup_bypass_packet(packet))
1733 		return;
1734 
1735 	trace_hfi1_rcvhdr(packet);
1736 
1737 	if (unlikely(rhf_err_flags(packet->rhf))) {
1738 		handle_eflags(packet);
1739 		return;
1740 	}
1741 
1742 	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1743 		hfi1_16B_rcv(packet);
1744 	} else {
1745 		dd_dev_err(dd,
1746 			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1747 		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1748 		if (!(dd->err_info_rcvport.status_and_code &
1749 		      OPA_EI_STATUS_SMASK)) {
1750 			u64 *flits = packet->ebuf;
1751 
1752 			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1753 				dd->err_info_rcvport.packet_flit1 = flits[0];
1754 				dd->err_info_rcvport.packet_flit2 =
1755 					packet->tlen > sizeof(flits[0]) ?
1756 					flits[1] : 0;
1757 			}
1758 			dd->err_info_rcvport.status_and_code |=
1759 				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1760 		}
1761 	}
1762 }
1763 
1764 static void process_receive_error(struct hfi1_packet *packet)
1765 {
1766 	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1767 	if (unlikely(
1768 		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1769 		 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1770 		  packet->rhf & RHF_DC_ERR)))
1771 		return;
1772 
1773 	hfi1_setup_ib_header(packet);
1774 	handle_eflags(packet);
1775 
1776 	if (unlikely(rhf_err_flags(packet->rhf)))
1777 		dd_dev_err(packet->rcd->dd,
1778 			   "Unhandled error packet received. Dropping.\n");
1779 }
1780 
1781 static void kdeth_process_expected(struct hfi1_packet *packet)
1782 {
1783 	hfi1_setup_9B_packet(packet);
1784 	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1785 		return;
1786 
1787 	if (unlikely(rhf_err_flags(packet->rhf))) {
1788 		struct hfi1_ctxtdata *rcd = packet->rcd;
1789 
1790 		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1791 			return;
1792 	}
1793 
1794 	hfi1_kdeth_expected_rcv(packet);
1795 }
1796 
1797 static void kdeth_process_eager(struct hfi1_packet *packet)
1798 {
1799 	hfi1_setup_9B_packet(packet);
1800 	if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1801 		return;
1802 
1803 	trace_hfi1_rcvhdr(packet);
1804 	if (unlikely(rhf_err_flags(packet->rhf))) {
1805 		struct hfi1_ctxtdata *rcd = packet->rcd;
1806 
1807 		show_eflags_errs(packet);
1808 		if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1809 			return;
1810 	}
1811 
1812 	hfi1_kdeth_eager_rcv(packet);
1813 }
1814 
1815 static void process_receive_invalid(struct hfi1_packet *packet)
1816 {
1817 	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1818 		   rhf_rcv_type(packet->rhf));
1819 }
1820 
1821 #define HFI1_RCVHDR_DUMP_MAX	5
1822 
1823 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1824 {
1825 	struct hfi1_packet packet;
1826 	struct ps_mdata mdata;
1827 	int i;
1828 
1829 	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu  sw head %u\n",
1830 		   rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1831 		   get_dma_rtail_setting(rcd) ?
1832 		   "dma_rtail" : "nodma_rtail",
1833 		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1834 		   read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1835 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1836 		   RCV_HDR_HEAD_HEAD_MASK,
1837 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1838 		   rcd->head);
1839 
1840 	init_packet(rcd, &packet);
1841 	init_ps_mdata(&mdata, &packet);
1842 
1843 	for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1844 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1845 					 rcd->rhf_offset;
1846 		struct ib_header *hdr;
1847 		u64 rhf = rhf_to_cpu(rhf_addr);
1848 		u32 etype = rhf_rcv_type(rhf), qpn;
1849 		u8 opcode;
1850 		u32 psn;
1851 		u8 lnh;
1852 
1853 		if (ps_done(&mdata, rhf, rcd))
1854 			break;
1855 
1856 		if (ps_skip(&mdata, rhf, rcd))
1857 			goto next;
1858 
1859 		if (etype > RHF_RCV_TYPE_IB)
1860 			goto next;
1861 
1862 		packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1863 		hdr = packet.hdr;
1864 
1865 		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1866 
1867 		if (lnh == HFI1_LRH_BTH)
1868 			packet.ohdr = &hdr->u.oth;
1869 		else if (lnh == HFI1_LRH_GRH)
1870 			packet.ohdr = &hdr->u.l.oth;
1871 		else
1872 			goto next; /* just in case */
1873 
1874 		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1875 		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1876 		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1877 
1878 		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1879 			   mdata.ps_head, opcode, qpn, psn);
1880 next:
1881 		update_ps_mdata(&mdata, rcd);
1882 	}
1883 }
1884 
1885 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1886 	[RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1887 	[RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1888 	[RHF_RCV_TYPE_IB] = process_receive_ib,
1889 	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1890 	[RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1891 	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1892 	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1893 	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1894 };
1895 
1896 const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
1897 	[RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
1898 	[RHF_RCV_TYPE_EAGER] = process_receive_invalid,
1899 	[RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
1900 	[RHF_RCV_TYPE_ERROR] = process_receive_error,
1901 	[RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
1902 	[RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1903 	[RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1904 	[RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1905 };
1906