xref: /linux/drivers/infiniband/hw/hfi1/driver.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 
63 #undef pr_fmt
64 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
65 
66 /*
67  * The size has to be longer than this string, so we can append
68  * board/chip information to it in the initialization code.
69  */
70 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
71 
72 DEFINE_SPINLOCK(hfi1_devs_lock);
73 LIST_HEAD(hfi1_dev_list);
74 DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
75 
76 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
77 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
78 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
79 		 HFI1_DEFAULT_MAX_MTU));
80 
81 unsigned int hfi1_cu = 1;
82 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
83 MODULE_PARM_DESC(cu, "Credit return units");
84 
85 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
86 static int hfi1_caps_set(const char *, const struct kernel_param *);
87 static int hfi1_caps_get(char *, const struct kernel_param *);
88 static const struct kernel_param_ops cap_ops = {
89 	.set = hfi1_caps_set,
90 	.get = hfi1_caps_get
91 };
92 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
93 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
94 
95 MODULE_LICENSE("Dual BSD/GPL");
96 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
97 MODULE_VERSION(HFI1_DRIVER_VERSION);
98 
99 /*
100  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
101  */
102 #define MAX_PKT_RECV 64
103 #define EGR_HEAD_UPDATE_THRESHOLD 16
104 
105 struct hfi1_ib_stats hfi1_stats;
106 
107 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
108 {
109 	int ret = 0;
110 	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
111 		cap_mask = *cap_mask_ptr, value, diff,
112 		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
113 			      HFI1_CAP_WRITABLE_MASK);
114 
115 	ret = kstrtoul(val, 0, &value);
116 	if (ret) {
117 		pr_warn("Invalid module parameter value for 'cap_mask'\n");
118 		goto done;
119 	}
120 	/* Get the changed bits (except the locked bit) */
121 	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
122 
123 	/* Remove any bits that are not allowed to change after driver load */
124 	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
125 		pr_warn("Ignoring non-writable capability bits %#lx\n",
126 			diff & ~write_mask);
127 		diff &= write_mask;
128 	}
129 
130 	/* Mask off any reserved bits */
131 	diff &= ~HFI1_CAP_RESERVED_MASK;
132 	/* Clear any previously set and changing bits */
133 	cap_mask &= ~diff;
134 	/* Update the bits with the new capability */
135 	cap_mask |= (value & diff);
136 	/* Check for any kernel/user restrictions */
137 	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
138 		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
139 	cap_mask &= ~diff;
140 	/* Set the bitmask to the final set */
141 	*cap_mask_ptr = cap_mask;
142 done:
143 	return ret;
144 }
145 
146 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
147 {
148 	unsigned long cap_mask = *(unsigned long *)kp->arg;
149 
150 	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
151 	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
152 
153 	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
154 }
155 
156 const char *get_unit_name(int unit)
157 {
158 	static char iname[16];
159 
160 	snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit);
161 	return iname;
162 }
163 
164 const char *get_card_name(struct rvt_dev_info *rdi)
165 {
166 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
167 	struct hfi1_devdata *dd = container_of(ibdev,
168 					       struct hfi1_devdata, verbs_dev);
169 	return get_unit_name(dd->unit);
170 }
171 
172 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
173 {
174 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
175 	struct hfi1_devdata *dd = container_of(ibdev,
176 					       struct hfi1_devdata, verbs_dev);
177 	return dd->pcidev;
178 }
179 
180 /*
181  * Return count of units with at least one port ACTIVE.
182  */
183 int hfi1_count_active_units(void)
184 {
185 	struct hfi1_devdata *dd;
186 	struct hfi1_pportdata *ppd;
187 	unsigned long flags;
188 	int pidx, nunits_active = 0;
189 
190 	spin_lock_irqsave(&hfi1_devs_lock, flags);
191 	list_for_each_entry(dd, &hfi1_dev_list, list) {
192 		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
193 			continue;
194 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
195 			ppd = dd->pport + pidx;
196 			if (ppd->lid && ppd->linkup) {
197 				nunits_active++;
198 				break;
199 			}
200 		}
201 	}
202 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
203 	return nunits_active;
204 }
205 
206 /*
207  * Return count of all units, optionally return in arguments
208  * the number of usable (present) units, and the number of
209  * ports that are up.
210  */
211 int hfi1_count_units(int *npresentp, int *nupp)
212 {
213 	int nunits = 0, npresent = 0, nup = 0;
214 	struct hfi1_devdata *dd;
215 	unsigned long flags;
216 	int pidx;
217 	struct hfi1_pportdata *ppd;
218 
219 	spin_lock_irqsave(&hfi1_devs_lock, flags);
220 
221 	list_for_each_entry(dd, &hfi1_dev_list, list) {
222 		nunits++;
223 		if ((dd->flags & HFI1_PRESENT) && dd->kregbase)
224 			npresent++;
225 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
226 			ppd = dd->pport + pidx;
227 			if (ppd->lid && ppd->linkup)
228 				nup++;
229 		}
230 	}
231 
232 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
233 
234 	if (npresentp)
235 		*npresentp = npresent;
236 	if (nupp)
237 		*nupp = nup;
238 
239 	return nunits;
240 }
241 
242 /*
243  * Get address of eager buffer from it's index (allocated in chunks, not
244  * contiguous).
245  */
246 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
247 			       u8 *update)
248 {
249 	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
250 
251 	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
252 	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
253 			(offset * RCV_BUF_BLOCK_SIZE));
254 }
255 
256 /*
257  * Validate and encode the a given RcvArray Buffer size.
258  * The function will check whether the given size falls within
259  * allowed size ranges for the respective type and, optionally,
260  * return the proper encoding.
261  */
262 inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
263 {
264 	if (unlikely(!PAGE_ALIGNED(size)))
265 		return 0;
266 	if (unlikely(size < MIN_EAGER_BUFFER))
267 		return 0;
268 	if (size >
269 	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
270 		return 0;
271 	if (encoded)
272 		*encoded = ilog2(size / PAGE_SIZE) + 1;
273 	return 1;
274 }
275 
276 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
277 		       struct hfi1_packet *packet)
278 {
279 	struct hfi1_message_header *rhdr = packet->hdr;
280 	u32 rte = rhf_rcv_type_err(packet->rhf);
281 	int lnh = be16_to_cpu(rhdr->lrh[0]) & 3;
282 	struct hfi1_ibport *ibp = &ppd->ibport_data;
283 	struct hfi1_devdata *dd = ppd->dd;
284 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
285 
286 	if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
287 		return;
288 
289 	if (packet->rhf & RHF_TID_ERR) {
290 		/* For TIDERR and RC QPs preemptively schedule a NAK */
291 		struct hfi1_ib_header *hdr = (struct hfi1_ib_header *)rhdr;
292 		struct hfi1_other_headers *ohdr = NULL;
293 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
294 		u16 lid  = be16_to_cpu(hdr->lrh[1]);
295 		u32 qp_num;
296 		u32 rcv_flags = 0;
297 
298 		/* Sanity check packet */
299 		if (tlen < 24)
300 			goto drop;
301 
302 		/* Check for GRH */
303 		if (lnh == HFI1_LRH_BTH) {
304 			ohdr = &hdr->u.oth;
305 		} else if (lnh == HFI1_LRH_GRH) {
306 			u32 vtf;
307 
308 			ohdr = &hdr->u.l.oth;
309 			if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
310 				goto drop;
311 			vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
312 			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
313 				goto drop;
314 			rcv_flags |= HFI1_HAS_GRH;
315 		} else {
316 			goto drop;
317 		}
318 		/* Get the destination QP number. */
319 		qp_num = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
320 		if (lid < be16_to_cpu(IB_MULTICAST_LID_BASE)) {
321 			struct rvt_qp *qp;
322 			unsigned long flags;
323 
324 			rcu_read_lock();
325 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
326 			if (!qp) {
327 				rcu_read_unlock();
328 				goto drop;
329 			}
330 
331 			/*
332 			 * Handle only RC QPs - for other QP types drop error
333 			 * packet.
334 			 */
335 			spin_lock_irqsave(&qp->r_lock, flags);
336 
337 			/* Check for valid receive state. */
338 			if (!(ib_rvt_state_ops[qp->state] &
339 			      RVT_PROCESS_RECV_OK)) {
340 				ibp->rvp.n_pkt_drops++;
341 			}
342 
343 			switch (qp->ibqp.qp_type) {
344 			case IB_QPT_RC:
345 				hfi1_rc_hdrerr(
346 					rcd,
347 					hdr,
348 					rcv_flags,
349 					qp);
350 				break;
351 			default:
352 				/* For now don't handle any other QP types */
353 				break;
354 			}
355 
356 			spin_unlock_irqrestore(&qp->r_lock, flags);
357 			rcu_read_unlock();
358 		} /* Unicast QP */
359 	} /* Valid packet with TIDErr */
360 
361 	/* handle "RcvTypeErr" flags */
362 	switch (rte) {
363 	case RHF_RTE_ERROR_OP_CODE_ERR:
364 	{
365 		u32 opcode;
366 		void *ebuf = NULL;
367 		__be32 *bth = NULL;
368 
369 		if (rhf_use_egr_bfr(packet->rhf))
370 			ebuf = packet->ebuf;
371 
372 		if (!ebuf)
373 			goto drop; /* this should never happen */
374 
375 		if (lnh == HFI1_LRH_BTH)
376 			bth = (__be32 *)ebuf;
377 		else if (lnh == HFI1_LRH_GRH)
378 			bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
379 		else
380 			goto drop;
381 
382 		opcode = be32_to_cpu(bth[0]) >> 24;
383 		opcode &= 0xff;
384 
385 		if (opcode == IB_OPCODE_CNP) {
386 			/*
387 			 * Only in pre-B0 h/w is the CNP_OPCODE handled
388 			 * via this code path.
389 			 */
390 			struct rvt_qp *qp = NULL;
391 			u32 lqpn, rqpn;
392 			u16 rlid;
393 			u8 svc_type, sl, sc5;
394 
395 			sc5  = (be16_to_cpu(rhdr->lrh[0]) >> 12) & 0xf;
396 			if (rhf_dc_info(packet->rhf))
397 				sc5 |= 0x10;
398 			sl = ibp->sc_to_sl[sc5];
399 
400 			lqpn = be32_to_cpu(bth[1]) & RVT_QPN_MASK;
401 			rcu_read_lock();
402 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
403 			if (!qp) {
404 				rcu_read_unlock();
405 				goto drop;
406 			}
407 
408 			switch (qp->ibqp.qp_type) {
409 			case IB_QPT_UD:
410 				rlid = 0;
411 				rqpn = 0;
412 				svc_type = IB_CC_SVCTYPE_UD;
413 				break;
414 			case IB_QPT_UC:
415 				rlid = be16_to_cpu(rhdr->lrh[3]);
416 				rqpn = qp->remote_qpn;
417 				svc_type = IB_CC_SVCTYPE_UC;
418 				break;
419 			default:
420 				goto drop;
421 			}
422 
423 			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
424 			rcu_read_unlock();
425 		}
426 
427 		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
428 		break;
429 	}
430 	default:
431 		break;
432 	}
433 
434 drop:
435 	return;
436 }
437 
438 static inline void init_packet(struct hfi1_ctxtdata *rcd,
439 			       struct hfi1_packet *packet)
440 {
441 	packet->rsize = rcd->rcvhdrqentsize; /* words */
442 	packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
443 	packet->rcd = rcd;
444 	packet->updegr = 0;
445 	packet->etail = -1;
446 	packet->rhf_addr = get_rhf_addr(rcd);
447 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
448 	packet->rhqoff = rcd->head;
449 	packet->numpkt = 0;
450 	packet->rcv_flags = 0;
451 }
452 
453 static void process_ecn(struct rvt_qp *qp, struct hfi1_ib_header *hdr,
454 			struct hfi1_other_headers *ohdr,
455 			u64 rhf, u32 bth1, struct ib_grh *grh)
456 {
457 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
458 	u32 rqpn = 0;
459 	u16 rlid;
460 	u8 sc5, svc_type;
461 
462 	switch (qp->ibqp.qp_type) {
463 	case IB_QPT_SMI:
464 	case IB_QPT_GSI:
465 	case IB_QPT_UD:
466 		rlid = be16_to_cpu(hdr->lrh[3]);
467 		rqpn = be32_to_cpu(ohdr->u.ud.deth[1]) & RVT_QPN_MASK;
468 		svc_type = IB_CC_SVCTYPE_UD;
469 		break;
470 	case IB_QPT_UC:
471 		rlid = qp->remote_ah_attr.dlid;
472 		rqpn = qp->remote_qpn;
473 		svc_type = IB_CC_SVCTYPE_UC;
474 		break;
475 	case IB_QPT_RC:
476 		rlid = qp->remote_ah_attr.dlid;
477 		rqpn = qp->remote_qpn;
478 		svc_type = IB_CC_SVCTYPE_RC;
479 		break;
480 	default:
481 		return;
482 	}
483 
484 	sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
485 	if (rhf_dc_info(rhf))
486 		sc5 |= 0x10;
487 
488 	if (bth1 & HFI1_FECN_SMASK) {
489 		u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
490 		u16 dlid = be16_to_cpu(hdr->lrh[1]);
491 
492 		return_cnp(ibp, qp, rqpn, pkey, dlid, rlid, sc5, grh);
493 	}
494 
495 	if (bth1 & HFI1_BECN_SMASK) {
496 		struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
497 		u32 lqpn = bth1 & RVT_QPN_MASK;
498 		u8 sl = ibp->sc_to_sl[sc5];
499 
500 		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
501 	}
502 }
503 
504 struct ps_mdata {
505 	struct hfi1_ctxtdata *rcd;
506 	u32 rsize;
507 	u32 maxcnt;
508 	u32 ps_head;
509 	u32 ps_tail;
510 	u32 ps_seq;
511 };
512 
513 static inline void init_ps_mdata(struct ps_mdata *mdata,
514 				 struct hfi1_packet *packet)
515 {
516 	struct hfi1_ctxtdata *rcd = packet->rcd;
517 
518 	mdata->rcd = rcd;
519 	mdata->rsize = packet->rsize;
520 	mdata->maxcnt = packet->maxcnt;
521 	mdata->ps_head = packet->rhqoff;
522 
523 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
524 		mdata->ps_tail = get_rcvhdrtail(rcd);
525 		if (rcd->ctxt == HFI1_CTRL_CTXT)
526 			mdata->ps_seq = rcd->seq_cnt;
527 		else
528 			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
529 	} else {
530 		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
531 		mdata->ps_seq = rcd->seq_cnt;
532 	}
533 }
534 
535 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
536 			  struct hfi1_ctxtdata *rcd)
537 {
538 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
539 		return mdata->ps_head == mdata->ps_tail;
540 	return mdata->ps_seq != rhf_rcv_seq(rhf);
541 }
542 
543 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
544 			  struct hfi1_ctxtdata *rcd)
545 {
546 	/*
547 	 * Control context can potentially receive an invalid rhf.
548 	 * Drop such packets.
549 	 */
550 	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
551 		return mdata->ps_seq != rhf_rcv_seq(rhf);
552 
553 	return 0;
554 }
555 
556 static inline void update_ps_mdata(struct ps_mdata *mdata,
557 				   struct hfi1_ctxtdata *rcd)
558 {
559 	mdata->ps_head += mdata->rsize;
560 	if (mdata->ps_head >= mdata->maxcnt)
561 		mdata->ps_head = 0;
562 
563 	/* Control context must do seq counting */
564 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
565 	    (rcd->ctxt == HFI1_CTRL_CTXT)) {
566 		if (++mdata->ps_seq > 13)
567 			mdata->ps_seq = 1;
568 	}
569 }
570 
571 /*
572  * prescan_rxq - search through the receive queue looking for packets
573  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
574  * When an ECN is found, process the Congestion Notification, and toggle
575  * it off.
576  * This is declared as a macro to allow quick checking of the port to avoid
577  * the overhead of a function call if not enabled.
578  */
579 #define prescan_rxq(rcd, packet) \
580 	do { \
581 		if (rcd->ppd->cc_prescan) \
582 			__prescan_rxq(packet); \
583 	} while (0)
584 static void __prescan_rxq(struct hfi1_packet *packet)
585 {
586 	struct hfi1_ctxtdata *rcd = packet->rcd;
587 	struct ps_mdata mdata;
588 
589 	init_ps_mdata(&mdata, packet);
590 
591 	while (1) {
592 		struct hfi1_devdata *dd = rcd->dd;
593 		struct hfi1_ibport *ibp = &rcd->ppd->ibport_data;
594 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
595 					 dd->rhf_offset;
596 		struct rvt_qp *qp;
597 		struct hfi1_ib_header *hdr;
598 		struct hfi1_other_headers *ohdr;
599 		struct ib_grh *grh = NULL;
600 		struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
601 		u64 rhf = rhf_to_cpu(rhf_addr);
602 		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
603 		int is_ecn = 0;
604 		u8 lnh;
605 
606 		if (ps_done(&mdata, rhf, rcd))
607 			break;
608 
609 		if (ps_skip(&mdata, rhf, rcd))
610 			goto next;
611 
612 		if (etype != RHF_RCV_TYPE_IB)
613 			goto next;
614 
615 		hdr = (struct hfi1_ib_header *)
616 			hfi1_get_msgheader(dd, rhf_addr);
617 		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
618 
619 		if (lnh == HFI1_LRH_BTH) {
620 			ohdr = &hdr->u.oth;
621 		} else if (lnh == HFI1_LRH_GRH) {
622 			ohdr = &hdr->u.l.oth;
623 			grh = &hdr->u.l.grh;
624 		} else {
625 			goto next; /* just in case */
626 		}
627 		bth1 = be32_to_cpu(ohdr->bth[1]);
628 		is_ecn = !!(bth1 & (HFI1_FECN_SMASK | HFI1_BECN_SMASK));
629 
630 		if (!is_ecn)
631 			goto next;
632 
633 		qpn = bth1 & RVT_QPN_MASK;
634 		rcu_read_lock();
635 		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
636 
637 		if (!qp) {
638 			rcu_read_unlock();
639 			goto next;
640 		}
641 
642 		process_ecn(qp, hdr, ohdr, rhf, bth1, grh);
643 		rcu_read_unlock();
644 
645 		/* turn off BECN, FECN */
646 		bth1 &= ~(HFI1_FECN_SMASK | HFI1_BECN_SMASK);
647 		ohdr->bth[1] = cpu_to_be32(bth1);
648 next:
649 		update_ps_mdata(&mdata, rcd);
650 	}
651 }
652 
653 static inline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
654 {
655 	int ret = RCV_PKT_OK;
656 
657 	/* Set up for the next packet */
658 	packet->rhqoff += packet->rsize;
659 	if (packet->rhqoff >= packet->maxcnt)
660 		packet->rhqoff = 0;
661 
662 	packet->numpkt++;
663 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
664 		if (thread) {
665 			cond_resched();
666 		} else {
667 			ret = RCV_PKT_LIMIT;
668 			this_cpu_inc(*packet->rcd->dd->rcv_limit);
669 		}
670 	}
671 
672 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
673 				     packet->rcd->dd->rhf_offset;
674 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
675 
676 	return ret;
677 }
678 
679 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
680 {
681 	int ret = RCV_PKT_OK;
682 
683 	packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
684 					 packet->rhf_addr);
685 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
686 	packet->etype = rhf_rcv_type(packet->rhf);
687 	/* total length */
688 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
689 	/* retrieve eager buffer details */
690 	packet->ebuf = NULL;
691 	if (rhf_use_egr_bfr(packet->rhf)) {
692 		packet->etail = rhf_egr_index(packet->rhf);
693 		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
694 				 &packet->updegr);
695 		/*
696 		 * Prefetch the contents of the eager buffer.  It is
697 		 * OK to send a negative length to prefetch_range().
698 		 * The +2 is the size of the RHF.
699 		 */
700 		prefetch_range(packet->ebuf,
701 			       packet->tlen - ((packet->rcd->rcvhdrqentsize -
702 					       (rhf_hdrq_offset(packet->rhf)
703 						+ 2)) * 4));
704 	}
705 
706 	/*
707 	 * Call a type specific handler for the packet. We
708 	 * should be able to trust that etype won't be beyond
709 	 * the range of valid indexes. If so something is really
710 	 * wrong and we can probably just let things come
711 	 * crashing down. There is no need to eat another
712 	 * comparison in this performance critical code.
713 	 */
714 	packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
715 	packet->numpkt++;
716 
717 	/* Set up for the next packet */
718 	packet->rhqoff += packet->rsize;
719 	if (packet->rhqoff >= packet->maxcnt)
720 		packet->rhqoff = 0;
721 
722 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
723 		if (thread) {
724 			cond_resched();
725 		} else {
726 			ret = RCV_PKT_LIMIT;
727 			this_cpu_inc(*packet->rcd->dd->rcv_limit);
728 		}
729 	}
730 
731 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
732 				      packet->rcd->dd->rhf_offset;
733 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
734 
735 	return ret;
736 }
737 
738 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
739 {
740 	/*
741 	 * Update head regs etc., every 16 packets, if not last pkt,
742 	 * to help prevent rcvhdrq overflows, when many packets
743 	 * are processed and queue is nearly full.
744 	 * Don't request an interrupt for intermediate updates.
745 	 */
746 	if (!last && !(packet->numpkt & 0xf)) {
747 		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
748 			       packet->etail, 0, 0);
749 		packet->updegr = 0;
750 	}
751 	packet->rcv_flags = 0;
752 }
753 
754 static inline void finish_packet(struct hfi1_packet *packet)
755 {
756 	/*
757 	 * Nothing we need to free for the packet.
758 	 *
759 	 * The only thing we need to do is a final update and call for an
760 	 * interrupt
761 	 */
762 	update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
763 		       packet->etail, rcv_intr_dynamic, packet->numpkt);
764 }
765 
766 static inline void process_rcv_qp_work(struct hfi1_packet *packet)
767 {
768 	struct hfi1_ctxtdata *rcd;
769 	struct rvt_qp *qp, *nqp;
770 
771 	rcd = packet->rcd;
772 	rcd->head = packet->rhqoff;
773 
774 	/*
775 	 * Iterate over all QPs waiting to respond.
776 	 * The list won't change since the IRQ is only run on one CPU.
777 	 */
778 	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
779 		list_del_init(&qp->rspwait);
780 		if (qp->r_flags & RVT_R_RSP_NAK) {
781 			qp->r_flags &= ~RVT_R_RSP_NAK;
782 			hfi1_send_rc_ack(rcd, qp, 0);
783 		}
784 		if (qp->r_flags & RVT_R_RSP_SEND) {
785 			unsigned long flags;
786 
787 			qp->r_flags &= ~RVT_R_RSP_SEND;
788 			spin_lock_irqsave(&qp->s_lock, flags);
789 			if (ib_rvt_state_ops[qp->state] &
790 					RVT_PROCESS_OR_FLUSH_SEND)
791 				hfi1_schedule_send(qp);
792 			spin_unlock_irqrestore(&qp->s_lock, flags);
793 		}
794 		if (atomic_dec_and_test(&qp->refcount))
795 			wake_up(&qp->wait);
796 	}
797 }
798 
799 /*
800  * Handle receive interrupts when using the no dma rtail option.
801  */
802 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
803 {
804 	u32 seq;
805 	int last = RCV_PKT_OK;
806 	struct hfi1_packet packet;
807 
808 	init_packet(rcd, &packet);
809 	seq = rhf_rcv_seq(packet.rhf);
810 	if (seq != rcd->seq_cnt) {
811 		last = RCV_PKT_DONE;
812 		goto bail;
813 	}
814 
815 	prescan_rxq(rcd, &packet);
816 
817 	while (last == RCV_PKT_OK) {
818 		last = process_rcv_packet(&packet, thread);
819 		seq = rhf_rcv_seq(packet.rhf);
820 		if (++rcd->seq_cnt > 13)
821 			rcd->seq_cnt = 1;
822 		if (seq != rcd->seq_cnt)
823 			last = RCV_PKT_DONE;
824 		process_rcv_update(last, &packet);
825 	}
826 	process_rcv_qp_work(&packet);
827 bail:
828 	finish_packet(&packet);
829 	return last;
830 }
831 
832 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
833 {
834 	u32 hdrqtail;
835 	int last = RCV_PKT_OK;
836 	struct hfi1_packet packet;
837 
838 	init_packet(rcd, &packet);
839 	hdrqtail = get_rcvhdrtail(rcd);
840 	if (packet.rhqoff == hdrqtail) {
841 		last = RCV_PKT_DONE;
842 		goto bail;
843 	}
844 	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
845 
846 	prescan_rxq(rcd, &packet);
847 
848 	while (last == RCV_PKT_OK) {
849 		last = process_rcv_packet(&packet, thread);
850 		if (packet.rhqoff == hdrqtail)
851 			last = RCV_PKT_DONE;
852 		process_rcv_update(last, &packet);
853 	}
854 	process_rcv_qp_work(&packet);
855 bail:
856 	finish_packet(&packet);
857 	return last;
858 }
859 
860 static inline void set_all_nodma_rtail(struct hfi1_devdata *dd)
861 {
862 	int i;
863 
864 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
865 		dd->rcd[i]->do_interrupt =
866 			&handle_receive_interrupt_nodma_rtail;
867 }
868 
869 static inline void set_all_dma_rtail(struct hfi1_devdata *dd)
870 {
871 	int i;
872 
873 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
874 		dd->rcd[i]->do_interrupt =
875 			&handle_receive_interrupt_dma_rtail;
876 }
877 
878 void set_all_slowpath(struct hfi1_devdata *dd)
879 {
880 	int i;
881 
882 	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
883 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_user_ctxt; i++)
884 		dd->rcd[i]->do_interrupt = &handle_receive_interrupt;
885 }
886 
887 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
888 				      struct hfi1_packet packet,
889 				      struct hfi1_devdata *dd)
890 {
891 	struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
892 	struct hfi1_message_header *hdr = hfi1_get_msgheader(packet.rcd->dd,
893 							     packet.rhf_addr);
894 
895 	if (hdr2sc(hdr, packet.rhf) != 0xf) {
896 		int hwstate = read_logical_state(dd);
897 
898 		if (hwstate != LSTATE_ACTIVE) {
899 			dd_dev_info(dd, "Unexpected link state %d\n", hwstate);
900 			return 0;
901 		}
902 
903 		queue_work(rcd->ppd->hfi1_wq, lsaw);
904 		return 1;
905 	}
906 	return 0;
907 }
908 
909 /*
910  * handle_receive_interrupt - receive a packet
911  * @rcd: the context
912  *
913  * Called from interrupt handler for errors or receive interrupt.
914  * This is the slow path interrupt handler.
915  */
916 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
917 {
918 	struct hfi1_devdata *dd = rcd->dd;
919 	u32 hdrqtail;
920 	int needset, last = RCV_PKT_OK;
921 	struct hfi1_packet packet;
922 	int skip_pkt = 0;
923 
924 	/* Control context will always use the slow path interrupt handler */
925 	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
926 
927 	init_packet(rcd, &packet);
928 
929 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
930 		u32 seq = rhf_rcv_seq(packet.rhf);
931 
932 		if (seq != rcd->seq_cnt) {
933 			last = RCV_PKT_DONE;
934 			goto bail;
935 		}
936 		hdrqtail = 0;
937 	} else {
938 		hdrqtail = get_rcvhdrtail(rcd);
939 		if (packet.rhqoff == hdrqtail) {
940 			last = RCV_PKT_DONE;
941 			goto bail;
942 		}
943 		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
944 
945 		/*
946 		 * Control context can potentially receive an invalid
947 		 * rhf. Drop such packets.
948 		 */
949 		if (rcd->ctxt == HFI1_CTRL_CTXT) {
950 			u32 seq = rhf_rcv_seq(packet.rhf);
951 
952 			if (seq != rcd->seq_cnt)
953 				skip_pkt = 1;
954 		}
955 	}
956 
957 	prescan_rxq(rcd, &packet);
958 
959 	while (last == RCV_PKT_OK) {
960 		if (unlikely(dd->do_drop &&
961 			     atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
962 			     DROP_PACKET_ON)) {
963 			dd->do_drop = 0;
964 
965 			/* On to the next packet */
966 			packet.rhqoff += packet.rsize;
967 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
968 					  packet.rhqoff +
969 					  dd->rhf_offset;
970 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
971 
972 		} else if (skip_pkt) {
973 			last = skip_rcv_packet(&packet, thread);
974 			skip_pkt = 0;
975 		} else {
976 			/* Auto activate link on non-SC15 packet receive */
977 			if (unlikely(rcd->ppd->host_link_state ==
978 				     HLS_UP_ARMED) &&
979 			    set_armed_to_active(rcd, packet, dd))
980 				goto bail;
981 			last = process_rcv_packet(&packet, thread);
982 		}
983 
984 		if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
985 			u32 seq = rhf_rcv_seq(packet.rhf);
986 
987 			if (++rcd->seq_cnt > 13)
988 				rcd->seq_cnt = 1;
989 			if (seq != rcd->seq_cnt)
990 				last = RCV_PKT_DONE;
991 			if (needset) {
992 				dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
993 				set_all_nodma_rtail(dd);
994 				needset = 0;
995 			}
996 		} else {
997 			if (packet.rhqoff == hdrqtail)
998 				last = RCV_PKT_DONE;
999 			/*
1000 			 * Control context can potentially receive an invalid
1001 			 * rhf. Drop such packets.
1002 			 */
1003 			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1004 				u32 seq = rhf_rcv_seq(packet.rhf);
1005 
1006 				if (++rcd->seq_cnt > 13)
1007 					rcd->seq_cnt = 1;
1008 				if (!last && (seq != rcd->seq_cnt))
1009 					skip_pkt = 1;
1010 			}
1011 
1012 			if (needset) {
1013 				dd_dev_info(dd,
1014 					    "Switching to DMA_RTAIL\n");
1015 				set_all_dma_rtail(dd);
1016 				needset = 0;
1017 			}
1018 		}
1019 
1020 		process_rcv_update(last, &packet);
1021 	}
1022 
1023 	process_rcv_qp_work(&packet);
1024 
1025 bail:
1026 	/*
1027 	 * Always write head at end, and setup rcv interrupt, even
1028 	 * if no packets were processed.
1029 	 */
1030 	finish_packet(&packet);
1031 	return last;
1032 }
1033 
1034 /*
1035  * We may discover in the interrupt that the hardware link state has
1036  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1037  * and we need to update the driver's notion of the link state.  We cannot
1038  * run set_link_state from interrupt context, so we queue this function on
1039  * a workqueue.
1040  *
1041  * We delay the regular interrupt processing until after the state changes
1042  * so that the link will be in the correct state by the time any application
1043  * we wake up attempts to send a reply to any message it received.
1044  * (Subsequent receive interrupts may possibly force the wakeup before we
1045  * update the link state.)
1046  *
1047  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1048  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1049  * so we're safe from use-after-free of the rcd.
1050  */
1051 void receive_interrupt_work(struct work_struct *work)
1052 {
1053 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1054 						  linkstate_active_work);
1055 	struct hfi1_devdata *dd = ppd->dd;
1056 	int i;
1057 
1058 	/* Received non-SC15 packet implies neighbor_normal */
1059 	ppd->neighbor_normal = 1;
1060 	set_link_state(ppd, HLS_UP_ACTIVE);
1061 
1062 	/*
1063 	 * Interrupt all kernel contexts that could have had an
1064 	 * interrupt during auto activation.
1065 	 */
1066 	for (i = HFI1_CTRL_CTXT; i < dd->first_user_ctxt; i++)
1067 		force_recv_intr(dd->rcd[i]);
1068 }
1069 
1070 /*
1071  * Convert a given MTU size to the on-wire MAD packet enumeration.
1072  * Return -1 if the size is invalid.
1073  */
1074 int mtu_to_enum(u32 mtu, int default_if_bad)
1075 {
1076 	switch (mtu) {
1077 	case     0: return OPA_MTU_0;
1078 	case   256: return OPA_MTU_256;
1079 	case   512: return OPA_MTU_512;
1080 	case  1024: return OPA_MTU_1024;
1081 	case  2048: return OPA_MTU_2048;
1082 	case  4096: return OPA_MTU_4096;
1083 	case  8192: return OPA_MTU_8192;
1084 	case 10240: return OPA_MTU_10240;
1085 	}
1086 	return default_if_bad;
1087 }
1088 
1089 u16 enum_to_mtu(int mtu)
1090 {
1091 	switch (mtu) {
1092 	case OPA_MTU_0:     return 0;
1093 	case OPA_MTU_256:   return 256;
1094 	case OPA_MTU_512:   return 512;
1095 	case OPA_MTU_1024:  return 1024;
1096 	case OPA_MTU_2048:  return 2048;
1097 	case OPA_MTU_4096:  return 4096;
1098 	case OPA_MTU_8192:  return 8192;
1099 	case OPA_MTU_10240: return 10240;
1100 	default: return 0xffff;
1101 	}
1102 }
1103 
1104 /*
1105  * set_mtu - set the MTU
1106  * @ppd: the per port data
1107  *
1108  * We can handle "any" incoming size, the issue here is whether we
1109  * need to restrict our outgoing size.  We do not deal with what happens
1110  * to programs that are already running when the size changes.
1111  */
1112 int set_mtu(struct hfi1_pportdata *ppd)
1113 {
1114 	struct hfi1_devdata *dd = ppd->dd;
1115 	int i, drain, ret = 0, is_up = 0;
1116 
1117 	ppd->ibmtu = 0;
1118 	for (i = 0; i < ppd->vls_supported; i++)
1119 		if (ppd->ibmtu < dd->vld[i].mtu)
1120 			ppd->ibmtu = dd->vld[i].mtu;
1121 	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1122 
1123 	mutex_lock(&ppd->hls_lock);
1124 	if (ppd->host_link_state == HLS_UP_INIT ||
1125 	    ppd->host_link_state == HLS_UP_ARMED ||
1126 	    ppd->host_link_state == HLS_UP_ACTIVE)
1127 		is_up = 1;
1128 
1129 	drain = !is_ax(dd) && is_up;
1130 
1131 	if (drain)
1132 		/*
1133 		 * MTU is specified per-VL. To ensure that no packet gets
1134 		 * stuck (due, e.g., to the MTU for the packet's VL being
1135 		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1136 		 */
1137 		ret = stop_drain_data_vls(dd);
1138 
1139 	if (ret) {
1140 		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1141 			   __func__);
1142 		goto err;
1143 	}
1144 
1145 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1146 
1147 	if (drain)
1148 		open_fill_data_vls(dd); /* reopen all VLs */
1149 
1150 err:
1151 	mutex_unlock(&ppd->hls_lock);
1152 
1153 	return ret;
1154 }
1155 
1156 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1157 {
1158 	struct hfi1_devdata *dd = ppd->dd;
1159 
1160 	ppd->lid = lid;
1161 	ppd->lmc = lmc;
1162 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1163 
1164 	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1165 
1166 	return 0;
1167 }
1168 
1169 void shutdown_led_override(struct hfi1_pportdata *ppd)
1170 {
1171 	struct hfi1_devdata *dd = ppd->dd;
1172 
1173 	/*
1174 	 * This pairs with the memory barrier in hfi1_start_led_override to
1175 	 * ensure that we read the correct state of LED beaconing represented
1176 	 * by led_override_timer_active
1177 	 */
1178 	smp_rmb();
1179 	if (atomic_read(&ppd->led_override_timer_active)) {
1180 		del_timer_sync(&ppd->led_override_timer);
1181 		atomic_set(&ppd->led_override_timer_active, 0);
1182 		/* Ensure the atomic_set is visible to all CPUs */
1183 		smp_wmb();
1184 	}
1185 
1186 	/* Hand control of the LED to the DC for normal operation */
1187 	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1188 }
1189 
1190 static void run_led_override(unsigned long opaque)
1191 {
1192 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1193 	struct hfi1_devdata *dd = ppd->dd;
1194 	unsigned long timeout;
1195 	int phase_idx;
1196 
1197 	if (!(dd->flags & HFI1_INITTED))
1198 		return;
1199 
1200 	phase_idx = ppd->led_override_phase & 1;
1201 
1202 	setextled(dd, phase_idx);
1203 
1204 	timeout = ppd->led_override_vals[phase_idx];
1205 
1206 	/* Set up for next phase */
1207 	ppd->led_override_phase = !ppd->led_override_phase;
1208 
1209 	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1210 }
1211 
1212 /*
1213  * To have the LED blink in a particular pattern, provide timeon and timeoff
1214  * in milliseconds.
1215  * To turn off custom blinking and return to normal operation, use
1216  * shutdown_led_override()
1217  */
1218 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1219 			     unsigned int timeoff)
1220 {
1221 	if (!(ppd->dd->flags & HFI1_INITTED))
1222 		return;
1223 
1224 	/* Convert to jiffies for direct use in timer */
1225 	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1226 	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1227 
1228 	/* Arbitrarily start from LED on phase */
1229 	ppd->led_override_phase = 1;
1230 
1231 	/*
1232 	 * If the timer has not already been started, do so. Use a "quick"
1233 	 * timeout so the handler will be called soon to look at our request.
1234 	 */
1235 	if (!timer_pending(&ppd->led_override_timer)) {
1236 		setup_timer(&ppd->led_override_timer, run_led_override,
1237 			    (unsigned long)ppd);
1238 		ppd->led_override_timer.expires = jiffies + 1;
1239 		add_timer(&ppd->led_override_timer);
1240 		atomic_set(&ppd->led_override_timer_active, 1);
1241 		/* Ensure the atomic_set is visible to all CPUs */
1242 		smp_wmb();
1243 	}
1244 }
1245 
1246 /**
1247  * hfi1_reset_device - reset the chip if possible
1248  * @unit: the device to reset
1249  *
1250  * Whether or not reset is successful, we attempt to re-initialize the chip
1251  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1252  * so that the various entry points will fail until we reinitialize.  For
1253  * now, we only allow this if no user contexts are open that use chip resources
1254  */
1255 int hfi1_reset_device(int unit)
1256 {
1257 	int ret, i;
1258 	struct hfi1_devdata *dd = hfi1_lookup(unit);
1259 	struct hfi1_pportdata *ppd;
1260 	unsigned long flags;
1261 	int pidx;
1262 
1263 	if (!dd) {
1264 		ret = -ENODEV;
1265 		goto bail;
1266 	}
1267 
1268 	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1269 
1270 	if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
1271 		dd_dev_info(dd,
1272 			    "Invalid unit number %u or not initialized or not present\n",
1273 			    unit);
1274 		ret = -ENXIO;
1275 		goto bail;
1276 	}
1277 
1278 	spin_lock_irqsave(&dd->uctxt_lock, flags);
1279 	if (dd->rcd)
1280 		for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
1281 			if (!dd->rcd[i] || !dd->rcd[i]->cnt)
1282 				continue;
1283 			spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1284 			ret = -EBUSY;
1285 			goto bail;
1286 		}
1287 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1288 
1289 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1290 		ppd = dd->pport + pidx;
1291 
1292 		shutdown_led_override(ppd);
1293 	}
1294 	if (dd->flags & HFI1_HAS_SEND_DMA)
1295 		sdma_exit(dd);
1296 
1297 	hfi1_reset_cpu_counters(dd);
1298 
1299 	ret = hfi1_init(dd, 1);
1300 
1301 	if (ret)
1302 		dd_dev_err(dd,
1303 			   "Reinitialize unit %u after reset failed with %d\n",
1304 			   unit, ret);
1305 	else
1306 		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1307 			    unit);
1308 
1309 bail:
1310 	return ret;
1311 }
1312 
1313 void handle_eflags(struct hfi1_packet *packet)
1314 {
1315 	struct hfi1_ctxtdata *rcd = packet->rcd;
1316 	u32 rte = rhf_rcv_type_err(packet->rhf);
1317 
1318 	rcv_hdrerr(rcd, rcd->ppd, packet);
1319 	if (rhf_err_flags(packet->rhf))
1320 		dd_dev_err(rcd->dd,
1321 			   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1322 			   rcd->ctxt, packet->rhf,
1323 			   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1324 			   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1325 			   packet->rhf & RHF_DC_ERR ? "dc " : "",
1326 			   packet->rhf & RHF_TID_ERR ? "tid " : "",
1327 			   packet->rhf & RHF_LEN_ERR ? "len " : "",
1328 			   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1329 			   packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1330 			   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1331 			   rte);
1332 }
1333 
1334 /*
1335  * The following functions are called by the interrupt handler. They are type
1336  * specific handlers for each packet type.
1337  */
1338 int process_receive_ib(struct hfi1_packet *packet)
1339 {
1340 	trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1341 			  packet->rcd->ctxt,
1342 			  rhf_err_flags(packet->rhf),
1343 			  RHF_RCV_TYPE_IB,
1344 			  packet->hlen,
1345 			  packet->tlen,
1346 			  packet->updegr,
1347 			  rhf_egr_index(packet->rhf));
1348 
1349 	if (unlikely(rhf_err_flags(packet->rhf))) {
1350 		handle_eflags(packet);
1351 		return RHF_RCV_CONTINUE;
1352 	}
1353 
1354 	hfi1_ib_rcv(packet);
1355 	return RHF_RCV_CONTINUE;
1356 }
1357 
1358 int process_receive_bypass(struct hfi1_packet *packet)
1359 {
1360 	if (unlikely(rhf_err_flags(packet->rhf)))
1361 		handle_eflags(packet);
1362 
1363 	dd_dev_err(packet->rcd->dd,
1364 		   "Bypass packets are not supported in normal operation. Dropping\n");
1365 	return RHF_RCV_CONTINUE;
1366 }
1367 
1368 int process_receive_error(struct hfi1_packet *packet)
1369 {
1370 	handle_eflags(packet);
1371 
1372 	if (unlikely(rhf_err_flags(packet->rhf)))
1373 		dd_dev_err(packet->rcd->dd,
1374 			   "Unhandled error packet received. Dropping.\n");
1375 
1376 	return RHF_RCV_CONTINUE;
1377 }
1378 
1379 int kdeth_process_expected(struct hfi1_packet *packet)
1380 {
1381 	if (unlikely(rhf_err_flags(packet->rhf)))
1382 		handle_eflags(packet);
1383 
1384 	dd_dev_err(packet->rcd->dd,
1385 		   "Unhandled expected packet received. Dropping.\n");
1386 	return RHF_RCV_CONTINUE;
1387 }
1388 
1389 int kdeth_process_eager(struct hfi1_packet *packet)
1390 {
1391 	if (unlikely(rhf_err_flags(packet->rhf)))
1392 		handle_eflags(packet);
1393 
1394 	dd_dev_err(packet->rcd->dd,
1395 		   "Unhandled eager packet received. Dropping.\n");
1396 	return RHF_RCV_CONTINUE;
1397 }
1398 
1399 int process_receive_invalid(struct hfi1_packet *packet)
1400 {
1401 	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1402 		   rhf_rcv_type(packet->rhf));
1403 	return RHF_RCV_CONTINUE;
1404 }
1405