xref: /linux/drivers/infiniband/hw/hfi1/chip.c (revision 9d1bd9e8e028d1e1753120ba53d39fcdaeca6ea6)
1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 #include "netdev.h"
70 
71 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
72 module_param(num_vls, uint, S_IRUGO);
73 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
74 
75 /*
76  * Default time to aggregate two 10K packets from the idle state
77  * (timer not running). The timer starts at the end of the first packet,
78  * so only the time for one 10K packet and header plus a bit extra is needed.
79  * 10 * 1024 + 64 header byte = 10304 byte
80  * 10304 byte / 12.5 GB/s = 824.32ns
81  */
82 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
83 module_param(rcv_intr_timeout, uint, S_IRUGO);
84 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
85 
86 uint rcv_intr_count = 16; /* same as qib */
87 module_param(rcv_intr_count, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
89 
90 ushort link_crc_mask = SUPPORTED_CRCS;
91 module_param(link_crc_mask, ushort, S_IRUGO);
92 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
93 
94 uint loopback;
95 module_param_named(loopback, loopback, uint, S_IRUGO);
96 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
97 
98 /* Other driver tunables */
99 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
100 static ushort crc_14b_sideband = 1;
101 static uint use_flr = 1;
102 uint quick_linkup; /* skip LNI */
103 
104 struct flag_table {
105 	u64 flag;	/* the flag */
106 	char *str;	/* description string */
107 	u16 extra;	/* extra information */
108 	u16 unused0;
109 	u32 unused1;
110 };
111 
112 /* str must be a string constant */
113 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
114 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
115 
116 /* Send Error Consequences */
117 #define SEC_WRITE_DROPPED	0x1
118 #define SEC_PACKET_DROPPED	0x2
119 #define SEC_SC_HALTED		0x4	/* per-context only */
120 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
121 
122 #define DEFAULT_KRCVQS		  2
123 #define MIN_KERNEL_KCTXTS         2
124 #define FIRST_KERNEL_KCTXT        1
125 
126 /*
127  * RSM instance allocation
128  *   0 - User Fecn Handling
129  *   1 - Vnic
130  *   2 - AIP
131  *   3 - Verbs
132  */
133 #define RSM_INS_FECN              0
134 #define RSM_INS_VNIC              1
135 #define RSM_INS_AIP               2
136 #define RSM_INS_VERBS             3
137 
138 /* Bit offset into the GUID which carries HFI id information */
139 #define GUID_HFI_INDEX_SHIFT     39
140 
141 /* extract the emulation revision */
142 #define emulator_rev(dd) ((dd)->irev >> 8)
143 /* parallel and serial emulation versions are 3 and 4 respectively */
144 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
145 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
146 
147 /* RSM fields for Verbs */
148 /* packet type */
149 #define IB_PACKET_TYPE         2ull
150 #define QW_SHIFT               6ull
151 /* QPN[7..1] */
152 #define QPN_WIDTH              7ull
153 
154 /* LRH.BTH: QW 0, OFFSET 48 - for match */
155 #define LRH_BTH_QW             0ull
156 #define LRH_BTH_BIT_OFFSET     48ull
157 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
158 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
159 #define LRH_BTH_SELECT
160 #define LRH_BTH_MASK           3ull
161 #define LRH_BTH_VALUE          2ull
162 
163 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
164 #define LRH_SC_QW              0ull
165 #define LRH_SC_BIT_OFFSET      56ull
166 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
167 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
168 #define LRH_SC_MASK            128ull
169 #define LRH_SC_VALUE           0ull
170 
171 /* SC[n..0] QW 0, OFFSET 60 - for select */
172 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
173 
174 /* QPN[m+n:1] QW 1, OFFSET 1 */
175 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
176 
177 /* RSM fields for AIP */
178 /* LRH.BTH above is reused for this rule */
179 
180 /* BTH.DESTQP: QW 1, OFFSET 16 for match */
181 #define BTH_DESTQP_QW           1ull
182 #define BTH_DESTQP_BIT_OFFSET   16ull
183 #define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
184 #define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
185 #define BTH_DESTQP_MASK         0xFFull
186 #define BTH_DESTQP_VALUE        0x81ull
187 
188 /* DETH.SQPN: QW 1 Offset 56 for select */
189 /* We use 8 most significant Soure QPN bits as entropy fpr AIP */
190 #define DETH_AIP_SQPN_QW 3ull
191 #define DETH_AIP_SQPN_BIT_OFFSET 56ull
192 #define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
193 #define DETH_AIP_SQPN_SELECT_OFFSET \
194 	DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
195 
196 /* RSM fields for Vnic */
197 /* L2_TYPE: QW 0, OFFSET 61 - for match */
198 #define L2_TYPE_QW             0ull
199 #define L2_TYPE_BIT_OFFSET     61ull
200 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
201 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
202 #define L2_TYPE_MASK           3ull
203 #define L2_16B_VALUE           2ull
204 
205 /* L4_TYPE QW 1, OFFSET 0 - for match */
206 #define L4_TYPE_QW              1ull
207 #define L4_TYPE_BIT_OFFSET      0ull
208 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
209 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
210 #define L4_16B_TYPE_MASK        0xFFull
211 #define L4_16B_ETH_VALUE        0x78ull
212 
213 /* 16B VESWID - for select */
214 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
215 /* 16B ENTROPY - for select */
216 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
217 
218 /* defines to build power on SC2VL table */
219 #define SC2VL_VAL( \
220 	num, \
221 	sc0, sc0val, \
222 	sc1, sc1val, \
223 	sc2, sc2val, \
224 	sc3, sc3val, \
225 	sc4, sc4val, \
226 	sc5, sc5val, \
227 	sc6, sc6val, \
228 	sc7, sc7val) \
229 ( \
230 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
231 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
232 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
233 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
234 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
235 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
236 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
237 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
238 )
239 
240 #define DC_SC_VL_VAL( \
241 	range, \
242 	e0, e0val, \
243 	e1, e1val, \
244 	e2, e2val, \
245 	e3, e3val, \
246 	e4, e4val, \
247 	e5, e5val, \
248 	e6, e6val, \
249 	e7, e7val, \
250 	e8, e8val, \
251 	e9, e9val, \
252 	e10, e10val, \
253 	e11, e11val, \
254 	e12, e12val, \
255 	e13, e13val, \
256 	e14, e14val, \
257 	e15, e15val) \
258 ( \
259 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
260 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
261 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
262 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
263 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
264 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
265 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
266 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
267 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
268 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
269 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
270 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
271 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
272 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
273 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
274 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
275 )
276 
277 /* all CceStatus sub-block freeze bits */
278 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
279 			| CCE_STATUS_RXE_FROZE_SMASK \
280 			| CCE_STATUS_TXE_FROZE_SMASK \
281 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
282 /* all CceStatus sub-block TXE pause bits */
283 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
284 			| CCE_STATUS_TXE_PAUSED_SMASK \
285 			| CCE_STATUS_SDMA_PAUSED_SMASK)
286 /* all CceStatus sub-block RXE pause bits */
287 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
288 
289 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
290 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
291 
292 /*
293  * CCE Error flags.
294  */
295 static struct flag_table cce_err_status_flags[] = {
296 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
297 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
298 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
299 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
300 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
301 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
302 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
303 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
304 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
305 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
306 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
307 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
308 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
309 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
310 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
311 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
312 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
313 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
314 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
315 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
316 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
317 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
318 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
319 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
320 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
321 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
322 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
324 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
325 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
326 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
327 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
328 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
329 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
330 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
331 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
332 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
333 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
334 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
335 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
336 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
337 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
338 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
339 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
340 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
341 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
342 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
343 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
344 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
345 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
346 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
347 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
348 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
349 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
350 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
351 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
352 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
353 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
354 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
355 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
356 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
357 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
358 /*31*/	FLAG_ENTRY0("LATriggered",
359 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
360 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
361 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
362 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
363 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
364 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
365 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
366 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
367 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
368 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
369 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
370 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
371 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
372 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
373 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
374 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
375 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
376 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
377 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
378 /*41-63 reserved*/
379 };
380 
381 /*
382  * Misc Error flags
383  */
384 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
385 static struct flag_table misc_err_status_flags[] = {
386 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
387 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
388 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
389 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
390 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
391 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
392 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
393 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
394 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
395 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
396 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
397 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
398 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
399 };
400 
401 /*
402  * TXE PIO Error flags and consequences
403  */
404 static struct flag_table pio_err_status_flags[] = {
405 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
406 	SEC_WRITE_DROPPED,
407 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
408 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
411 /* 2*/	FLAG_ENTRY("PioCsrParity",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
414 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
415 	SEC_SPC_FREEZE,
416 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
417 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
420 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
423 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
424 	SEC_SPC_FREEZE,
425 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
426 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
427 	SEC_SPC_FREEZE,
428 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
429 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
430 	SEC_SPC_FREEZE,
431 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
432 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
433 	SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
435 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
436 	SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
438 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
439 	SEC_SPC_FREEZE,
440 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
441 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
444 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
445 	0,
446 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
447 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
448 	0,
449 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
450 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
453 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
456 /*17*/	FLAG_ENTRY("PioInitSmIn",
457 	0,
458 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
459 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
460 	SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
462 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
463 	SEC_SPC_FREEZE,
464 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
465 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
466 	0,
467 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
468 /*21*/	FLAG_ENTRY("PioWriteDataParity",
469 	SEC_SPC_FREEZE,
470 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
471 /*22*/	FLAG_ENTRY("PioStateMachine",
472 	SEC_SPC_FREEZE,
473 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
474 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
475 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
476 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
477 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
478 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
479 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
480 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
481 	SEC_SPC_FREEZE,
482 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
483 /*26*/	FLAG_ENTRY("PioVlfSopParity",
484 	SEC_SPC_FREEZE,
485 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
486 /*27*/	FLAG_ENTRY("PioVlFifoParity",
487 	SEC_SPC_FREEZE,
488 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
489 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
490 	SEC_SPC_FREEZE,
491 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
492 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
493 	SEC_SPC_FREEZE,
494 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
495 /*30-31 reserved*/
496 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
497 	SEC_SPC_FREEZE,
498 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
499 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
500 	SEC_SPC_FREEZE,
501 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
502 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
503 	SEC_SPC_FREEZE,
504 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
505 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
506 	SEC_SPC_FREEZE,
507 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
508 /*36-63 reserved*/
509 };
510 
511 /* TXE PIO errors that cause an SPC freeze */
512 #define ALL_PIO_FREEZE_ERR \
513 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
525 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
526 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
527 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
528 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
529 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
530 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
531 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
532 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
533 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
534 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
535 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
536 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
537 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
538 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
539 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
540 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
541 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
542 
543 /*
544  * TXE SDMA Error flags
545  */
546 static struct flag_table sdma_err_status_flags[] = {
547 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
548 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
549 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
550 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
551 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
552 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
553 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
554 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
555 /*04-63 reserved*/
556 };
557 
558 /* TXE SDMA errors that cause an SPC freeze */
559 #define ALL_SDMA_FREEZE_ERR  \
560 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
561 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
562 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
563 
564 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
565 #define PORT_DISCARD_EGRESS_ERRS \
566 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
567 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
568 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
569 
570 /*
571  * TXE Egress Error flags
572  */
573 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
574 static struct flag_table egress_err_status_flags[] = {
575 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
576 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
577 /* 2 reserved */
578 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
579 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
580 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
581 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
582 /* 6 reserved */
583 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
584 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
585 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
586 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
587 /* 9-10 reserved */
588 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
589 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
590 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
591 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
592 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
593 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
594 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
595 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
596 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
597 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
598 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
599 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
600 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
601 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
602 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
603 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
604 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
605 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
606 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
607 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
608 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
609 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
610 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
611 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
612 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
613 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
614 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
615 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
616 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
617 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
618 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
619 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
620 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
621 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
622 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
623 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
624 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
625 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
626 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
627 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
628 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
629 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
630 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
631 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
632 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
633 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
634 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
635 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
636 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
637 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
638 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
639 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
640 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
641 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
642 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
643 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
644 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
645 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
646 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
647 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
648 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
649 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
650 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
651 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
652 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
653 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
654 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
655 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
656 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
657 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
658 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
659 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
660 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
661 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
662 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
663 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
664 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
665 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
666 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
667 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
668 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
669 };
670 
671 /*
672  * TXE Egress Error Info flags
673  */
674 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
675 static struct flag_table egress_err_info_flags[] = {
676 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
677 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
678 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
679 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
680 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
681 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
682 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
683 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
684 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
685 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
686 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
687 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
688 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
689 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
690 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
691 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
692 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
693 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
694 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
695 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
696 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
697 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
698 };
699 
700 /* TXE Egress errors that cause an SPC freeze */
701 #define ALL_TXE_EGRESS_FREEZE_ERR \
702 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
703 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
704 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
705 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
706 	| SEES(TX_LAUNCH_CSR_PARITY) \
707 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
708 	| SEES(TX_CONFIG_PARITY) \
709 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
710 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
711 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
712 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
713 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
714 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
715 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
716 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
717 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
718 	| SEES(TX_CREDIT_RETURN_PARITY))
719 
720 /*
721  * TXE Send error flags
722  */
723 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
724 static struct flag_table send_err_status_flags[] = {
725 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
726 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
727 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
728 };
729 
730 /*
731  * TXE Send Context Error flags and consequences
732  */
733 static struct flag_table sc_err_status_flags[] = {
734 /* 0*/	FLAG_ENTRY("InconsistentSop",
735 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
736 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
737 /* 1*/	FLAG_ENTRY("DisallowedPacket",
738 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
739 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
740 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
741 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
742 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
743 /* 3*/	FLAG_ENTRY("WriteOverflow",
744 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
745 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
746 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
747 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
748 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
749 /* 5-63 reserved*/
750 };
751 
752 /*
753  * RXE Receive Error flags
754  */
755 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
756 static struct flag_table rxe_err_status_flags[] = {
757 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
758 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
759 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
760 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
761 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
762 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
763 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
764 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
765 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
766 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
767 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
768 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
769 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
770 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
771 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
772 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
773 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
774 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
775 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
776 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
777 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
778 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
779 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
780 		RXES(RBUF_BLOCK_LIST_READ_COR)),
781 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
782 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
783 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
784 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
785 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
786 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
787 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
788 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
789 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
790 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
791 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
792 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
793 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
794 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
795 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
796 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
797 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
798 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
799 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
800 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
801 		RXES(RBUF_FL_INITDONE_PARITY)),
802 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
803 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
804 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
805 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
806 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
807 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
808 		RXES(LOOKUP_DES_PART1_UNC_COR)),
809 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
810 		RXES(LOOKUP_DES_PART2_PARITY)),
811 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
812 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
813 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
814 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
815 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
816 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
817 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
818 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
819 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
820 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
821 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
822 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
823 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
824 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
825 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
826 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
827 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
828 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
829 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
830 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
831 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
832 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
833 };
834 
835 /* RXE errors that will trigger an SPC freeze */
836 #define ALL_RXE_FREEZE_ERR  \
837 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
864 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
865 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
866 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
867 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
868 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
869 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
870 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
871 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
872 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
873 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
874 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
875 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
876 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
877 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
878 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
879 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
880 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
881 
882 #define RXE_FREEZE_ABORT_MASK \
883 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
884 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
885 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
886 
887 /*
888  * DCC Error Flags
889  */
890 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
891 static struct flag_table dcc_err_flags[] = {
892 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
893 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
894 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
895 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
896 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
897 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
898 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
899 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
900 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
901 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
902 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
903 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
904 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
905 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
906 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
907 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
908 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
909 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
910 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
911 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
912 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
913 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
914 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
915 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
916 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
917 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
918 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
919 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
920 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
921 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
922 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
923 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
924 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
925 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
926 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
927 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
928 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
929 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
930 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
931 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
932 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
933 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
934 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
935 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
936 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
937 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
938 };
939 
940 /*
941  * LCB error flags
942  */
943 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
944 static struct flag_table lcb_err_flags[] = {
945 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
946 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
947 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
948 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
949 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
950 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
951 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
952 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
953 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
954 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
955 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
956 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
957 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
958 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
959 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
960 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
961 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
962 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
963 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
964 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
965 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
966 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
967 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
968 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
969 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
970 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
971 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
972 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
973 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
974 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
975 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
976 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
977 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
978 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
979 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
980 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
981 };
982 
983 /*
984  * DC8051 Error Flags
985  */
986 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
987 static struct flag_table dc8051_err_flags[] = {
988 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
989 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
990 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
991 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
992 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
993 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
994 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
995 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
996 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
997 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
998 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
999 };
1000 
1001 /*
1002  * DC8051 Information Error flags
1003  *
1004  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
1005  */
1006 static struct flag_table dc8051_info_err_flags[] = {
1007 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
1008 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
1009 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
1010 	FLAG_ENTRY0("Serdes internal loopback failure",
1011 		    FAILED_SERDES_INTERNAL_LOOPBACK),
1012 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
1013 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
1014 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
1015 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
1016 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1017 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1018 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1019 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1020 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1021 	FLAG_ENTRY0("External Device Request Timeout",
1022 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1023 };
1024 
1025 /*
1026  * DC8051 Information Host Information flags
1027  *
1028  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1029  */
1030 static struct flag_table dc8051_info_host_msg_flags[] = {
1031 	FLAG_ENTRY0("Host request done", 0x0001),
1032 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1033 	FLAG_ENTRY0("BC SMA message", 0x0004),
1034 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1035 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1036 	FLAG_ENTRY0("External device config request", 0x0020),
1037 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1038 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1039 	FLAG_ENTRY0("Link going down", 0x0100),
1040 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1041 };
1042 
1043 static u32 encoded_size(u32 size);
1044 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1045 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1046 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1047 			       u8 *continuous);
1048 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1049 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1050 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1051 				      u8 *remote_tx_rate, u16 *link_widths);
1052 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1053 				    u8 *flag_bits, u16 *link_widths);
1054 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1055 				  u8 *device_rev);
1056 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1057 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1058 			    u8 *tx_polarity_inversion,
1059 			    u8 *rx_polarity_inversion, u8 *max_rate);
1060 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1061 				unsigned int context, u64 err_status);
1062 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1063 static void handle_dcc_err(struct hfi1_devdata *dd,
1064 			   unsigned int context, u64 err_status);
1065 static void handle_lcb_err(struct hfi1_devdata *dd,
1066 			   unsigned int context, u64 err_status);
1067 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1068 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1069 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1070 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1071 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1072 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1073 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1074 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1075 static void set_partition_keys(struct hfi1_pportdata *ppd);
1076 static const char *link_state_name(u32 state);
1077 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1078 					  u32 state);
1079 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1080 			   u64 *out_data);
1081 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1082 static int thermal_init(struct hfi1_devdata *dd);
1083 
1084 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1085 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1086 					    int msecs);
1087 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1088 				  int msecs);
1089 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1090 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1091 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1092 				   int msecs);
1093 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1094 					 int msecs);
1095 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1096 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1097 static void handle_temp_err(struct hfi1_devdata *dd);
1098 static void dc_shutdown(struct hfi1_devdata *dd);
1099 static void dc_start(struct hfi1_devdata *dd);
1100 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1101 			   unsigned int *np);
1102 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1103 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1104 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1105 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1106 
1107 /*
1108  * Error interrupt table entry.  This is used as input to the interrupt
1109  * "clear down" routine used for all second tier error interrupt register.
1110  * Second tier interrupt registers have a single bit representing them
1111  * in the top-level CceIntStatus.
1112  */
1113 struct err_reg_info {
1114 	u32 status;		/* status CSR offset */
1115 	u32 clear;		/* clear CSR offset */
1116 	u32 mask;		/* mask CSR offset */
1117 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1118 	const char *desc;
1119 };
1120 
1121 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1122 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1123 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1124 
1125 /*
1126  * Helpers for building HFI and DC error interrupt table entries.  Different
1127  * helpers are needed because of inconsistent register names.
1128  */
1129 #define EE(reg, handler, desc) \
1130 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1131 		handler, desc }
1132 #define DC_EE1(reg, handler, desc) \
1133 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1134 #define DC_EE2(reg, handler, desc) \
1135 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1136 
1137 /*
1138  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1139  * another register containing more information.
1140  */
1141 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1142 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1143 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1144 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1145 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1146 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1147 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1148 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1149 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1150 	/* the rest are reserved */
1151 };
1152 
1153 /*
1154  * Index into the Various section of the interrupt sources
1155  * corresponding to the Critical Temperature interrupt.
1156  */
1157 #define TCRIT_INT_SOURCE 4
1158 
1159 /*
1160  * SDMA error interrupt entry - refers to another register containing more
1161  * information.
1162  */
1163 static const struct err_reg_info sdma_eng_err =
1164 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1165 
1166 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1167 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1168 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1169 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1170 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1171 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1172 	/* rest are reserved */
1173 };
1174 
1175 /*
1176  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1177  * register can not be derived from the MTU value because 10K is not
1178  * a power of 2. Therefore, we need a constant. Everything else can
1179  * be calculated.
1180  */
1181 #define DCC_CFG_PORT_MTU_CAP_10240 7
1182 
1183 /*
1184  * Table of the DC grouping of error interrupts.  Each entry refers to
1185  * another register containing more information.
1186  */
1187 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1188 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1189 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1190 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1191 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1192 	/* the rest are reserved */
1193 };
1194 
1195 struct cntr_entry {
1196 	/*
1197 	 * counter name
1198 	 */
1199 	char *name;
1200 
1201 	/*
1202 	 * csr to read for name (if applicable)
1203 	 */
1204 	u64 csr;
1205 
1206 	/*
1207 	 * offset into dd or ppd to store the counter's value
1208 	 */
1209 	int offset;
1210 
1211 	/*
1212 	 * flags
1213 	 */
1214 	u8 flags;
1215 
1216 	/*
1217 	 * accessor for stat element, context either dd or ppd
1218 	 */
1219 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1220 		       int mode, u64 data);
1221 };
1222 
1223 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1224 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1225 
1226 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1227 { \
1228 	name, \
1229 	csr, \
1230 	offset, \
1231 	flags, \
1232 	accessor \
1233 }
1234 
1235 /* 32bit RXE */
1236 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1237 CNTR_ELEM(#name, \
1238 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1239 	  0, flags | CNTR_32BIT, \
1240 	  port_access_u32_csr)
1241 
1242 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1243 CNTR_ELEM(#name, \
1244 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1245 	  0, flags | CNTR_32BIT, \
1246 	  dev_access_u32_csr)
1247 
1248 /* 64bit RXE */
1249 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1250 CNTR_ELEM(#name, \
1251 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1252 	  0, flags, \
1253 	  port_access_u64_csr)
1254 
1255 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1256 CNTR_ELEM(#name, \
1257 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1258 	  0, flags, \
1259 	  dev_access_u64_csr)
1260 
1261 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1262 #define OVR_ELM(ctx) \
1263 CNTR_ELEM("RcvHdrOvr" #ctx, \
1264 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1265 	  0, CNTR_NORMAL, port_access_u64_csr)
1266 
1267 /* 32bit TXE */
1268 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1271 	  0, flags | CNTR_32BIT, \
1272 	  port_access_u32_csr)
1273 
1274 /* 64bit TXE */
1275 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1278 	  0, flags, \
1279 	  port_access_u64_csr)
1280 
1281 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1282 CNTR_ELEM(#name,\
1283 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1284 	  0, \
1285 	  flags, \
1286 	  dev_access_u64_csr)
1287 
1288 /* CCE */
1289 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1290 CNTR_ELEM(#name, \
1291 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1292 	  0, flags | CNTR_32BIT, \
1293 	  dev_access_u32_csr)
1294 
1295 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1296 CNTR_ELEM(#name, \
1297 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1298 	  0, flags | CNTR_32BIT, \
1299 	  dev_access_u32_csr)
1300 
1301 /* DC */
1302 #define DC_PERF_CNTR(name, counter, flags) \
1303 CNTR_ELEM(#name, \
1304 	  counter, \
1305 	  0, \
1306 	  flags, \
1307 	  dev_access_u64_csr)
1308 
1309 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1310 CNTR_ELEM(#name, \
1311 	  counter, \
1312 	  0, \
1313 	  flags, \
1314 	  dc_access_lcb_cntr)
1315 
1316 /* ibp counters */
1317 #define SW_IBP_CNTR(name, cntr) \
1318 CNTR_ELEM(#name, \
1319 	  0, \
1320 	  0, \
1321 	  CNTR_SYNTH, \
1322 	  access_ibp_##cntr)
1323 
1324 /**
1325  * hfi_addr_from_offset - return addr for readq/writeq
1326  * @dd - the dd device
1327  * @offset - the offset of the CSR within bar0
1328  *
1329  * This routine selects the appropriate base address
1330  * based on the indicated offset.
1331  */
1332 static inline void __iomem *hfi1_addr_from_offset(
1333 	const struct hfi1_devdata *dd,
1334 	u32 offset)
1335 {
1336 	if (offset >= dd->base2_start)
1337 		return dd->kregbase2 + (offset - dd->base2_start);
1338 	return dd->kregbase1 + offset;
1339 }
1340 
1341 /**
1342  * read_csr - read CSR at the indicated offset
1343  * @dd - the dd device
1344  * @offset - the offset of the CSR within bar0
1345  *
1346  * Return: the value read or all FF's if there
1347  * is no mapping
1348  */
1349 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1350 {
1351 	if (dd->flags & HFI1_PRESENT)
1352 		return readq(hfi1_addr_from_offset(dd, offset));
1353 	return -1;
1354 }
1355 
1356 /**
1357  * write_csr - write CSR at the indicated offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  * @value - value to write
1361  */
1362 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1363 {
1364 	if (dd->flags & HFI1_PRESENT) {
1365 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1366 
1367 		/* avoid write to RcvArray */
1368 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1369 			return;
1370 		writeq(value, base);
1371 	}
1372 }
1373 
1374 /**
1375  * get_csr_addr - return te iomem address for offset
1376  * @dd - the dd device
1377  * @offset - the offset of the CSR within bar0
1378  *
1379  * Return: The iomem address to use in subsequent
1380  * writeq/readq operations.
1381  */
1382 void __iomem *get_csr_addr(
1383 	const struct hfi1_devdata *dd,
1384 	u32 offset)
1385 {
1386 	if (dd->flags & HFI1_PRESENT)
1387 		return hfi1_addr_from_offset(dd, offset);
1388 	return NULL;
1389 }
1390 
1391 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1392 				 int mode, u64 value)
1393 {
1394 	u64 ret;
1395 
1396 	if (mode == CNTR_MODE_R) {
1397 		ret = read_csr(dd, csr);
1398 	} else if (mode == CNTR_MODE_W) {
1399 		write_csr(dd, csr, value);
1400 		ret = value;
1401 	} else {
1402 		dd_dev_err(dd, "Invalid cntr register access mode");
1403 		return 0;
1404 	}
1405 
1406 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1407 	return ret;
1408 }
1409 
1410 /* Dev Access */
1411 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1412 			      void *context, int vl, int mode, u64 data)
1413 {
1414 	struct hfi1_devdata *dd = context;
1415 	u64 csr = entry->csr;
1416 
1417 	if (entry->flags & CNTR_SDMA) {
1418 		if (vl == CNTR_INVALID_VL)
1419 			return 0;
1420 		csr += 0x100 * vl;
1421 	} else {
1422 		if (vl != CNTR_INVALID_VL)
1423 			return 0;
1424 	}
1425 	return read_write_csr(dd, csr, mode, data);
1426 }
1427 
1428 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1429 			      void *context, int idx, int mode, u64 data)
1430 {
1431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1432 
1433 	if (dd->per_sdma && idx < dd->num_sdma)
1434 		return dd->per_sdma[idx].err_cnt;
1435 	return 0;
1436 }
1437 
1438 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1439 			      void *context, int idx, int mode, u64 data)
1440 {
1441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1442 
1443 	if (dd->per_sdma && idx < dd->num_sdma)
1444 		return dd->per_sdma[idx].sdma_int_cnt;
1445 	return 0;
1446 }
1447 
1448 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1449 				   void *context, int idx, int mode, u64 data)
1450 {
1451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1452 
1453 	if (dd->per_sdma && idx < dd->num_sdma)
1454 		return dd->per_sdma[idx].idle_int_cnt;
1455 	return 0;
1456 }
1457 
1458 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1459 				       void *context, int idx, int mode,
1460 				       u64 data)
1461 {
1462 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1463 
1464 	if (dd->per_sdma && idx < dd->num_sdma)
1465 		return dd->per_sdma[idx].progress_int_cnt;
1466 	return 0;
1467 }
1468 
1469 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1470 			      int vl, int mode, u64 data)
1471 {
1472 	struct hfi1_devdata *dd = context;
1473 
1474 	u64 val = 0;
1475 	u64 csr = entry->csr;
1476 
1477 	if (entry->flags & CNTR_VL) {
1478 		if (vl == CNTR_INVALID_VL)
1479 			return 0;
1480 		csr += 8 * vl;
1481 	} else {
1482 		if (vl != CNTR_INVALID_VL)
1483 			return 0;
1484 	}
1485 
1486 	val = read_write_csr(dd, csr, mode, data);
1487 	return val;
1488 }
1489 
1490 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1491 			      int vl, int mode, u64 data)
1492 {
1493 	struct hfi1_devdata *dd = context;
1494 	u32 csr = entry->csr;
1495 	int ret = 0;
1496 
1497 	if (vl != CNTR_INVALID_VL)
1498 		return 0;
1499 	if (mode == CNTR_MODE_R)
1500 		ret = read_lcb_csr(dd, csr, &data);
1501 	else if (mode == CNTR_MODE_W)
1502 		ret = write_lcb_csr(dd, csr, data);
1503 
1504 	if (ret) {
1505 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1506 		return 0;
1507 	}
1508 
1509 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1510 	return data;
1511 }
1512 
1513 /* Port Access */
1514 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1515 			       int vl, int mode, u64 data)
1516 {
1517 	struct hfi1_pportdata *ppd = context;
1518 
1519 	if (vl != CNTR_INVALID_VL)
1520 		return 0;
1521 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1522 }
1523 
1524 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1525 			       void *context, int vl, int mode, u64 data)
1526 {
1527 	struct hfi1_pportdata *ppd = context;
1528 	u64 val;
1529 	u64 csr = entry->csr;
1530 
1531 	if (entry->flags & CNTR_VL) {
1532 		if (vl == CNTR_INVALID_VL)
1533 			return 0;
1534 		csr += 8 * vl;
1535 	} else {
1536 		if (vl != CNTR_INVALID_VL)
1537 			return 0;
1538 	}
1539 	val = read_write_csr(ppd->dd, csr, mode, data);
1540 	return val;
1541 }
1542 
1543 /* Software defined */
1544 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1545 				u64 data)
1546 {
1547 	u64 ret;
1548 
1549 	if (mode == CNTR_MODE_R) {
1550 		ret = *cntr;
1551 	} else if (mode == CNTR_MODE_W) {
1552 		*cntr = data;
1553 		ret = data;
1554 	} else {
1555 		dd_dev_err(dd, "Invalid cntr sw access mode");
1556 		return 0;
1557 	}
1558 
1559 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1560 
1561 	return ret;
1562 }
1563 
1564 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1565 				 int vl, int mode, u64 data)
1566 {
1567 	struct hfi1_pportdata *ppd = context;
1568 
1569 	if (vl != CNTR_INVALID_VL)
1570 		return 0;
1571 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1572 }
1573 
1574 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1575 				 int vl, int mode, u64 data)
1576 {
1577 	struct hfi1_pportdata *ppd = context;
1578 
1579 	if (vl != CNTR_INVALID_VL)
1580 		return 0;
1581 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1582 }
1583 
1584 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1585 				       void *context, int vl, int mode,
1586 				       u64 data)
1587 {
1588 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1589 
1590 	if (vl != CNTR_INVALID_VL)
1591 		return 0;
1592 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1593 }
1594 
1595 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1596 				   void *context, int vl, int mode, u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1599 	u64 zero = 0;
1600 	u64 *counter;
1601 
1602 	if (vl == CNTR_INVALID_VL)
1603 		counter = &ppd->port_xmit_discards;
1604 	else if (vl >= 0 && vl < C_VL_COUNT)
1605 		counter = &ppd->port_xmit_discards_vl[vl];
1606 	else
1607 		counter = &zero;
1608 
1609 	return read_write_sw(ppd->dd, counter, mode, data);
1610 }
1611 
1612 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1613 				       void *context, int vl, int mode,
1614 				       u64 data)
1615 {
1616 	struct hfi1_pportdata *ppd = context;
1617 
1618 	if (vl != CNTR_INVALID_VL)
1619 		return 0;
1620 
1621 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1622 			     mode, data);
1623 }
1624 
1625 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1626 				      void *context, int vl, int mode, u64 data)
1627 {
1628 	struct hfi1_pportdata *ppd = context;
1629 
1630 	if (vl != CNTR_INVALID_VL)
1631 		return 0;
1632 
1633 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1634 			     mode, data);
1635 }
1636 
1637 u64 get_all_cpu_total(u64 __percpu *cntr)
1638 {
1639 	int cpu;
1640 	u64 counter = 0;
1641 
1642 	for_each_possible_cpu(cpu)
1643 		counter += *per_cpu_ptr(cntr, cpu);
1644 	return counter;
1645 }
1646 
1647 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1648 			  u64 __percpu *cntr,
1649 			  int vl, int mode, u64 data)
1650 {
1651 	u64 ret = 0;
1652 
1653 	if (vl != CNTR_INVALID_VL)
1654 		return 0;
1655 
1656 	if (mode == CNTR_MODE_R) {
1657 		ret = get_all_cpu_total(cntr) - *z_val;
1658 	} else if (mode == CNTR_MODE_W) {
1659 		/* A write can only zero the counter */
1660 		if (data == 0)
1661 			*z_val = get_all_cpu_total(cntr);
1662 		else
1663 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1664 	} else {
1665 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1666 		return 0;
1667 	}
1668 
1669 	return ret;
1670 }
1671 
1672 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1678 			      mode, data);
1679 }
1680 
1681 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1682 				   void *context, int vl, int mode, u64 data)
1683 {
1684 	struct hfi1_devdata *dd = context;
1685 
1686 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1687 			      mode, data);
1688 }
1689 
1690 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1691 			      void *context, int vl, int mode, u64 data)
1692 {
1693 	struct hfi1_devdata *dd = context;
1694 
1695 	return dd->verbs_dev.n_piowait;
1696 }
1697 
1698 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1699 			       void *context, int vl, int mode, u64 data)
1700 {
1701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1702 
1703 	return dd->verbs_dev.n_piodrain;
1704 }
1705 
1706 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1707 				   void *context, int vl, int mode, u64 data)
1708 {
1709 	struct hfi1_devdata *dd = context;
1710 
1711 	return dd->ctx0_seq_drop;
1712 }
1713 
1714 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1715 			      void *context, int vl, int mode, u64 data)
1716 {
1717 	struct hfi1_devdata *dd = context;
1718 
1719 	return dd->verbs_dev.n_txwait;
1720 }
1721 
1722 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1723 			       void *context, int vl, int mode, u64 data)
1724 {
1725 	struct hfi1_devdata *dd = context;
1726 
1727 	return dd->verbs_dev.n_kmem_wait;
1728 }
1729 
1730 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1731 				   void *context, int vl, int mode, u64 data)
1732 {
1733 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1734 
1735 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1736 			      mode, data);
1737 }
1738 
1739 /* Software counters for the error status bits within MISC_ERR_STATUS */
1740 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1741 					     void *context, int vl, int mode,
1742 					     u64 data)
1743 {
1744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1745 
1746 	return dd->misc_err_status_cnt[12];
1747 }
1748 
1749 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1750 					  void *context, int vl, int mode,
1751 					  u64 data)
1752 {
1753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1754 
1755 	return dd->misc_err_status_cnt[11];
1756 }
1757 
1758 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1759 					       void *context, int vl, int mode,
1760 					       u64 data)
1761 {
1762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1763 
1764 	return dd->misc_err_status_cnt[10];
1765 }
1766 
1767 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1768 						 void *context, int vl,
1769 						 int mode, u64 data)
1770 {
1771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1772 
1773 	return dd->misc_err_status_cnt[9];
1774 }
1775 
1776 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1777 					   void *context, int vl, int mode,
1778 					   u64 data)
1779 {
1780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1781 
1782 	return dd->misc_err_status_cnt[8];
1783 }
1784 
1785 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1786 				const struct cntr_entry *entry,
1787 				void *context, int vl, int mode, u64 data)
1788 {
1789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1790 
1791 	return dd->misc_err_status_cnt[7];
1792 }
1793 
1794 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1795 						void *context, int vl,
1796 						int mode, u64 data)
1797 {
1798 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1799 
1800 	return dd->misc_err_status_cnt[6];
1801 }
1802 
1803 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1804 					      void *context, int vl, int mode,
1805 					      u64 data)
1806 {
1807 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1808 
1809 	return dd->misc_err_status_cnt[5];
1810 }
1811 
1812 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1813 					    void *context, int vl, int mode,
1814 					    u64 data)
1815 {
1816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1817 
1818 	return dd->misc_err_status_cnt[4];
1819 }
1820 
1821 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1822 						 void *context, int vl,
1823 						 int mode, u64 data)
1824 {
1825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826 
1827 	return dd->misc_err_status_cnt[3];
1828 }
1829 
1830 static u64 access_misc_csr_write_bad_addr_err_cnt(
1831 				const struct cntr_entry *entry,
1832 				void *context, int vl, int mode, u64 data)
1833 {
1834 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1835 
1836 	return dd->misc_err_status_cnt[2];
1837 }
1838 
1839 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1840 						 void *context, int vl,
1841 						 int mode, u64 data)
1842 {
1843 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1844 
1845 	return dd->misc_err_status_cnt[1];
1846 }
1847 
1848 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 					  void *context, int vl, int mode,
1850 					  u64 data)
1851 {
1852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853 
1854 	return dd->misc_err_status_cnt[0];
1855 }
1856 
1857 /*
1858  * Software counter for the aggregate of
1859  * individual CceErrStatus counters
1860  */
1861 static u64 access_sw_cce_err_status_aggregated_cnt(
1862 				const struct cntr_entry *entry,
1863 				void *context, int vl, int mode, u64 data)
1864 {
1865 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1866 
1867 	return dd->sw_cce_err_status_aggregate;
1868 }
1869 
1870 /*
1871  * Software counters corresponding to each of the
1872  * error status bits within CceErrStatus
1873  */
1874 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1875 					      void *context, int vl, int mode,
1876 					      u64 data)
1877 {
1878 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1879 
1880 	return dd->cce_err_status_cnt[40];
1881 }
1882 
1883 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1884 					  void *context, int vl, int mode,
1885 					  u64 data)
1886 {
1887 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1888 
1889 	return dd->cce_err_status_cnt[39];
1890 }
1891 
1892 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1893 					  void *context, int vl, int mode,
1894 					  u64 data)
1895 {
1896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1897 
1898 	return dd->cce_err_status_cnt[38];
1899 }
1900 
1901 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1902 					     void *context, int vl, int mode,
1903 					     u64 data)
1904 {
1905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1906 
1907 	return dd->cce_err_status_cnt[37];
1908 }
1909 
1910 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1911 					     void *context, int vl, int mode,
1912 					     u64 data)
1913 {
1914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1915 
1916 	return dd->cce_err_status_cnt[36];
1917 }
1918 
1919 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1920 				const struct cntr_entry *entry,
1921 				void *context, int vl, int mode, u64 data)
1922 {
1923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1924 
1925 	return dd->cce_err_status_cnt[35];
1926 }
1927 
1928 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1929 				const struct cntr_entry *entry,
1930 				void *context, int vl, int mode, u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[34];
1935 }
1936 
1937 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1938 						 void *context, int vl,
1939 						 int mode, u64 data)
1940 {
1941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942 
1943 	return dd->cce_err_status_cnt[33];
1944 }
1945 
1946 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1947 						void *context, int vl, int mode,
1948 						u64 data)
1949 {
1950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951 
1952 	return dd->cce_err_status_cnt[32];
1953 }
1954 
1955 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1956 				   void *context, int vl, int mode, u64 data)
1957 {
1958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1959 
1960 	return dd->cce_err_status_cnt[31];
1961 }
1962 
1963 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1964 					       void *context, int vl, int mode,
1965 					       u64 data)
1966 {
1967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1968 
1969 	return dd->cce_err_status_cnt[30];
1970 }
1971 
1972 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1973 					      void *context, int vl, int mode,
1974 					      u64 data)
1975 {
1976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1977 
1978 	return dd->cce_err_status_cnt[29];
1979 }
1980 
1981 static u64 access_pcic_transmit_back_parity_err_cnt(
1982 				const struct cntr_entry *entry,
1983 				void *context, int vl, int mode, u64 data)
1984 {
1985 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1986 
1987 	return dd->cce_err_status_cnt[28];
1988 }
1989 
1990 static u64 access_pcic_transmit_front_parity_err_cnt(
1991 				const struct cntr_entry *entry,
1992 				void *context, int vl, int mode, u64 data)
1993 {
1994 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1995 
1996 	return dd->cce_err_status_cnt[27];
1997 }
1998 
1999 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2000 					     void *context, int vl, int mode,
2001 					     u64 data)
2002 {
2003 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2004 
2005 	return dd->cce_err_status_cnt[26];
2006 }
2007 
2008 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2009 					    void *context, int vl, int mode,
2010 					    u64 data)
2011 {
2012 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2013 
2014 	return dd->cce_err_status_cnt[25];
2015 }
2016 
2017 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
2018 					      void *context, int vl, int mode,
2019 					      u64 data)
2020 {
2021 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2022 
2023 	return dd->cce_err_status_cnt[24];
2024 }
2025 
2026 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2027 					     void *context, int vl, int mode,
2028 					     u64 data)
2029 {
2030 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2031 
2032 	return dd->cce_err_status_cnt[23];
2033 }
2034 
2035 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2036 						 void *context, int vl,
2037 						 int mode, u64 data)
2038 {
2039 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2040 
2041 	return dd->cce_err_status_cnt[22];
2042 }
2043 
2044 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2045 					 void *context, int vl, int mode,
2046 					 u64 data)
2047 {
2048 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2049 
2050 	return dd->cce_err_status_cnt[21];
2051 }
2052 
2053 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2054 				const struct cntr_entry *entry,
2055 				void *context, int vl, int mode, u64 data)
2056 {
2057 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2058 
2059 	return dd->cce_err_status_cnt[20];
2060 }
2061 
2062 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2063 						 void *context, int vl,
2064 						 int mode, u64 data)
2065 {
2066 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2067 
2068 	return dd->cce_err_status_cnt[19];
2069 }
2070 
2071 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2072 					     void *context, int vl, int mode,
2073 					     u64 data)
2074 {
2075 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2076 
2077 	return dd->cce_err_status_cnt[18];
2078 }
2079 
2080 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2081 					    void *context, int vl, int mode,
2082 					    u64 data)
2083 {
2084 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2085 
2086 	return dd->cce_err_status_cnt[17];
2087 }
2088 
2089 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2090 					      void *context, int vl, int mode,
2091 					      u64 data)
2092 {
2093 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2094 
2095 	return dd->cce_err_status_cnt[16];
2096 }
2097 
2098 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2099 					     void *context, int vl, int mode,
2100 					     u64 data)
2101 {
2102 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2103 
2104 	return dd->cce_err_status_cnt[15];
2105 }
2106 
2107 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2108 						 void *context, int vl,
2109 						 int mode, u64 data)
2110 {
2111 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2112 
2113 	return dd->cce_err_status_cnt[14];
2114 }
2115 
2116 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2117 					     void *context, int vl, int mode,
2118 					     u64 data)
2119 {
2120 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2121 
2122 	return dd->cce_err_status_cnt[13];
2123 }
2124 
2125 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2126 				const struct cntr_entry *entry,
2127 				void *context, int vl, int mode, u64 data)
2128 {
2129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2130 
2131 	return dd->cce_err_status_cnt[12];
2132 }
2133 
2134 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2135 				const struct cntr_entry *entry,
2136 				void *context, int vl, int mode, u64 data)
2137 {
2138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2139 
2140 	return dd->cce_err_status_cnt[11];
2141 }
2142 
2143 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2144 				const struct cntr_entry *entry,
2145 				void *context, int vl, int mode, u64 data)
2146 {
2147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2148 
2149 	return dd->cce_err_status_cnt[10];
2150 }
2151 
2152 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2153 				const struct cntr_entry *entry,
2154 				void *context, int vl, int mode, u64 data)
2155 {
2156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2157 
2158 	return dd->cce_err_status_cnt[9];
2159 }
2160 
2161 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2162 				const struct cntr_entry *entry,
2163 				void *context, int vl, int mode, u64 data)
2164 {
2165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2166 
2167 	return dd->cce_err_status_cnt[8];
2168 }
2169 
2170 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2171 						 void *context, int vl,
2172 						 int mode, u64 data)
2173 {
2174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2175 
2176 	return dd->cce_err_status_cnt[7];
2177 }
2178 
2179 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2180 				const struct cntr_entry *entry,
2181 				void *context, int vl, int mode, u64 data)
2182 {
2183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2184 
2185 	return dd->cce_err_status_cnt[6];
2186 }
2187 
2188 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2189 					       void *context, int vl, int mode,
2190 					       u64 data)
2191 {
2192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2193 
2194 	return dd->cce_err_status_cnt[5];
2195 }
2196 
2197 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2198 					  void *context, int vl, int mode,
2199 					  u64 data)
2200 {
2201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2202 
2203 	return dd->cce_err_status_cnt[4];
2204 }
2205 
2206 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2207 				const struct cntr_entry *entry,
2208 				void *context, int vl, int mode, u64 data)
2209 {
2210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211 
2212 	return dd->cce_err_status_cnt[3];
2213 }
2214 
2215 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2216 						 void *context, int vl,
2217 						 int mode, u64 data)
2218 {
2219 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220 
2221 	return dd->cce_err_status_cnt[2];
2222 }
2223 
2224 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2225 						void *context, int vl,
2226 						int mode, u64 data)
2227 {
2228 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229 
2230 	return dd->cce_err_status_cnt[1];
2231 }
2232 
2233 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2234 					 void *context, int vl, int mode,
2235 					 u64 data)
2236 {
2237 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238 
2239 	return dd->cce_err_status_cnt[0];
2240 }
2241 
2242 /*
2243  * Software counters corresponding to each of the
2244  * error status bits within RcvErrStatus
2245  */
2246 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2247 					void *context, int vl, int mode,
2248 					u64 data)
2249 {
2250 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2251 
2252 	return dd->rcv_err_status_cnt[63];
2253 }
2254 
2255 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2256 						void *context, int vl,
2257 						int mode, u64 data)
2258 {
2259 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2260 
2261 	return dd->rcv_err_status_cnt[62];
2262 }
2263 
2264 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2265 					       void *context, int vl, int mode,
2266 					       u64 data)
2267 {
2268 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2269 
2270 	return dd->rcv_err_status_cnt[61];
2271 }
2272 
2273 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2274 					 void *context, int vl, int mode,
2275 					 u64 data)
2276 {
2277 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2278 
2279 	return dd->rcv_err_status_cnt[60];
2280 }
2281 
2282 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2283 						 void *context, int vl,
2284 						 int mode, u64 data)
2285 {
2286 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2287 
2288 	return dd->rcv_err_status_cnt[59];
2289 }
2290 
2291 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2292 						 void *context, int vl,
2293 						 int mode, u64 data)
2294 {
2295 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2296 
2297 	return dd->rcv_err_status_cnt[58];
2298 }
2299 
2300 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2301 					    void *context, int vl, int mode,
2302 					    u64 data)
2303 {
2304 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2305 
2306 	return dd->rcv_err_status_cnt[57];
2307 }
2308 
2309 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2310 					   void *context, int vl, int mode,
2311 					   u64 data)
2312 {
2313 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2314 
2315 	return dd->rcv_err_status_cnt[56];
2316 }
2317 
2318 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2319 					   void *context, int vl, int mode,
2320 					   u64 data)
2321 {
2322 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2323 
2324 	return dd->rcv_err_status_cnt[55];
2325 }
2326 
2327 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2328 				const struct cntr_entry *entry,
2329 				void *context, int vl, int mode, u64 data)
2330 {
2331 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2332 
2333 	return dd->rcv_err_status_cnt[54];
2334 }
2335 
2336 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2337 				const struct cntr_entry *entry,
2338 				void *context, int vl, int mode, u64 data)
2339 {
2340 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2341 
2342 	return dd->rcv_err_status_cnt[53];
2343 }
2344 
2345 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2346 						 void *context, int vl,
2347 						 int mode, u64 data)
2348 {
2349 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2350 
2351 	return dd->rcv_err_status_cnt[52];
2352 }
2353 
2354 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2355 						 void *context, int vl,
2356 						 int mode, u64 data)
2357 {
2358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2359 
2360 	return dd->rcv_err_status_cnt[51];
2361 }
2362 
2363 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2364 						 void *context, int vl,
2365 						 int mode, u64 data)
2366 {
2367 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2368 
2369 	return dd->rcv_err_status_cnt[50];
2370 }
2371 
2372 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2373 						 void *context, int vl,
2374 						 int mode, u64 data)
2375 {
2376 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2377 
2378 	return dd->rcv_err_status_cnt[49];
2379 }
2380 
2381 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2382 						 void *context, int vl,
2383 						 int mode, u64 data)
2384 {
2385 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2386 
2387 	return dd->rcv_err_status_cnt[48];
2388 }
2389 
2390 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2391 						 void *context, int vl,
2392 						 int mode, u64 data)
2393 {
2394 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2395 
2396 	return dd->rcv_err_status_cnt[47];
2397 }
2398 
2399 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2400 					 void *context, int vl, int mode,
2401 					 u64 data)
2402 {
2403 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2404 
2405 	return dd->rcv_err_status_cnt[46];
2406 }
2407 
2408 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2409 				const struct cntr_entry *entry,
2410 				void *context, int vl, int mode, u64 data)
2411 {
2412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2413 
2414 	return dd->rcv_err_status_cnt[45];
2415 }
2416 
2417 static u64 access_rx_lookup_csr_parity_err_cnt(
2418 				const struct cntr_entry *entry,
2419 				void *context, int vl, int mode, u64 data)
2420 {
2421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2422 
2423 	return dd->rcv_err_status_cnt[44];
2424 }
2425 
2426 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2427 				const struct cntr_entry *entry,
2428 				void *context, int vl, int mode, u64 data)
2429 {
2430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2431 
2432 	return dd->rcv_err_status_cnt[43];
2433 }
2434 
2435 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2436 				const struct cntr_entry *entry,
2437 				void *context, int vl, int mode, u64 data)
2438 {
2439 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2440 
2441 	return dd->rcv_err_status_cnt[42];
2442 }
2443 
2444 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2445 				const struct cntr_entry *entry,
2446 				void *context, int vl, int mode, u64 data)
2447 {
2448 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2449 
2450 	return dd->rcv_err_status_cnt[41];
2451 }
2452 
2453 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2454 				const struct cntr_entry *entry,
2455 				void *context, int vl, int mode, u64 data)
2456 {
2457 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2458 
2459 	return dd->rcv_err_status_cnt[40];
2460 }
2461 
2462 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2463 				const struct cntr_entry *entry,
2464 				void *context, int vl, int mode, u64 data)
2465 {
2466 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2467 
2468 	return dd->rcv_err_status_cnt[39];
2469 }
2470 
2471 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2472 				const struct cntr_entry *entry,
2473 				void *context, int vl, int mode, u64 data)
2474 {
2475 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2476 
2477 	return dd->rcv_err_status_cnt[38];
2478 }
2479 
2480 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2481 				const struct cntr_entry *entry,
2482 				void *context, int vl, int mode, u64 data)
2483 {
2484 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2485 
2486 	return dd->rcv_err_status_cnt[37];
2487 }
2488 
2489 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2490 				const struct cntr_entry *entry,
2491 				void *context, int vl, int mode, u64 data)
2492 {
2493 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2494 
2495 	return dd->rcv_err_status_cnt[36];
2496 }
2497 
2498 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2499 				const struct cntr_entry *entry,
2500 				void *context, int vl, int mode, u64 data)
2501 {
2502 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2503 
2504 	return dd->rcv_err_status_cnt[35];
2505 }
2506 
2507 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2508 				const struct cntr_entry *entry,
2509 				void *context, int vl, int mode, u64 data)
2510 {
2511 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2512 
2513 	return dd->rcv_err_status_cnt[34];
2514 }
2515 
2516 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2517 				const struct cntr_entry *entry,
2518 				void *context, int vl, int mode, u64 data)
2519 {
2520 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2521 
2522 	return dd->rcv_err_status_cnt[33];
2523 }
2524 
2525 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2526 					void *context, int vl, int mode,
2527 					u64 data)
2528 {
2529 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2530 
2531 	return dd->rcv_err_status_cnt[32];
2532 }
2533 
2534 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2535 				       void *context, int vl, int mode,
2536 				       u64 data)
2537 {
2538 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2539 
2540 	return dd->rcv_err_status_cnt[31];
2541 }
2542 
2543 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2544 					  void *context, int vl, int mode,
2545 					  u64 data)
2546 {
2547 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2548 
2549 	return dd->rcv_err_status_cnt[30];
2550 }
2551 
2552 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2553 					     void *context, int vl, int mode,
2554 					     u64 data)
2555 {
2556 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2557 
2558 	return dd->rcv_err_status_cnt[29];
2559 }
2560 
2561 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2562 						 void *context, int vl,
2563 						 int mode, u64 data)
2564 {
2565 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2566 
2567 	return dd->rcv_err_status_cnt[28];
2568 }
2569 
2570 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2571 				const struct cntr_entry *entry,
2572 				void *context, int vl, int mode, u64 data)
2573 {
2574 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2575 
2576 	return dd->rcv_err_status_cnt[27];
2577 }
2578 
2579 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2580 				const struct cntr_entry *entry,
2581 				void *context, int vl, int mode, u64 data)
2582 {
2583 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2584 
2585 	return dd->rcv_err_status_cnt[26];
2586 }
2587 
2588 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2589 				const struct cntr_entry *entry,
2590 				void *context, int vl, int mode, u64 data)
2591 {
2592 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2593 
2594 	return dd->rcv_err_status_cnt[25];
2595 }
2596 
2597 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2598 				const struct cntr_entry *entry,
2599 				void *context, int vl, int mode, u64 data)
2600 {
2601 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2602 
2603 	return dd->rcv_err_status_cnt[24];
2604 }
2605 
2606 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2607 				const struct cntr_entry *entry,
2608 				void *context, int vl, int mode, u64 data)
2609 {
2610 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2611 
2612 	return dd->rcv_err_status_cnt[23];
2613 }
2614 
2615 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2616 				const struct cntr_entry *entry,
2617 				void *context, int vl, int mode, u64 data)
2618 {
2619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2620 
2621 	return dd->rcv_err_status_cnt[22];
2622 }
2623 
2624 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2625 				const struct cntr_entry *entry,
2626 				void *context, int vl, int mode, u64 data)
2627 {
2628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2629 
2630 	return dd->rcv_err_status_cnt[21];
2631 }
2632 
2633 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2634 				const struct cntr_entry *entry,
2635 				void *context, int vl, int mode, u64 data)
2636 {
2637 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2638 
2639 	return dd->rcv_err_status_cnt[20];
2640 }
2641 
2642 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2643 				const struct cntr_entry *entry,
2644 				void *context, int vl, int mode, u64 data)
2645 {
2646 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2647 
2648 	return dd->rcv_err_status_cnt[19];
2649 }
2650 
2651 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2652 						 void *context, int vl,
2653 						 int mode, u64 data)
2654 {
2655 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2656 
2657 	return dd->rcv_err_status_cnt[18];
2658 }
2659 
2660 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2661 						 void *context, int vl,
2662 						 int mode, u64 data)
2663 {
2664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2665 
2666 	return dd->rcv_err_status_cnt[17];
2667 }
2668 
2669 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2670 				const struct cntr_entry *entry,
2671 				void *context, int vl, int mode, u64 data)
2672 {
2673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2674 
2675 	return dd->rcv_err_status_cnt[16];
2676 }
2677 
2678 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2679 				const struct cntr_entry *entry,
2680 				void *context, int vl, int mode, u64 data)
2681 {
2682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2683 
2684 	return dd->rcv_err_status_cnt[15];
2685 }
2686 
2687 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2688 						void *context, int vl,
2689 						int mode, u64 data)
2690 {
2691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2692 
2693 	return dd->rcv_err_status_cnt[14];
2694 }
2695 
2696 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2697 						void *context, int vl,
2698 						int mode, u64 data)
2699 {
2700 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2701 
2702 	return dd->rcv_err_status_cnt[13];
2703 }
2704 
2705 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2706 					      void *context, int vl, int mode,
2707 					      u64 data)
2708 {
2709 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2710 
2711 	return dd->rcv_err_status_cnt[12];
2712 }
2713 
2714 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2715 					  void *context, int vl, int mode,
2716 					  u64 data)
2717 {
2718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2719 
2720 	return dd->rcv_err_status_cnt[11];
2721 }
2722 
2723 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2724 					  void *context, int vl, int mode,
2725 					  u64 data)
2726 {
2727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2728 
2729 	return dd->rcv_err_status_cnt[10];
2730 }
2731 
2732 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2733 					       void *context, int vl, int mode,
2734 					       u64 data)
2735 {
2736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2737 
2738 	return dd->rcv_err_status_cnt[9];
2739 }
2740 
2741 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2742 					    void *context, int vl, int mode,
2743 					    u64 data)
2744 {
2745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2746 
2747 	return dd->rcv_err_status_cnt[8];
2748 }
2749 
2750 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2751 				const struct cntr_entry *entry,
2752 				void *context, int vl, int mode, u64 data)
2753 {
2754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2755 
2756 	return dd->rcv_err_status_cnt[7];
2757 }
2758 
2759 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2760 				const struct cntr_entry *entry,
2761 				void *context, int vl, int mode, u64 data)
2762 {
2763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2764 
2765 	return dd->rcv_err_status_cnt[6];
2766 }
2767 
2768 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2769 					  void *context, int vl, int mode,
2770 					  u64 data)
2771 {
2772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2773 
2774 	return dd->rcv_err_status_cnt[5];
2775 }
2776 
2777 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2778 					  void *context, int vl, int mode,
2779 					  u64 data)
2780 {
2781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2782 
2783 	return dd->rcv_err_status_cnt[4];
2784 }
2785 
2786 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2787 					 void *context, int vl, int mode,
2788 					 u64 data)
2789 {
2790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791 
2792 	return dd->rcv_err_status_cnt[3];
2793 }
2794 
2795 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2796 					 void *context, int vl, int mode,
2797 					 u64 data)
2798 {
2799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800 
2801 	return dd->rcv_err_status_cnt[2];
2802 }
2803 
2804 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2805 					    void *context, int vl, int mode,
2806 					    u64 data)
2807 {
2808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809 
2810 	return dd->rcv_err_status_cnt[1];
2811 }
2812 
2813 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2814 					 void *context, int vl, int mode,
2815 					 u64 data)
2816 {
2817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818 
2819 	return dd->rcv_err_status_cnt[0];
2820 }
2821 
2822 /*
2823  * Software counters corresponding to each of the
2824  * error status bits within SendPioErrStatus
2825  */
2826 static u64 access_pio_pec_sop_head_parity_err_cnt(
2827 				const struct cntr_entry *entry,
2828 				void *context, int vl, int mode, u64 data)
2829 {
2830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2831 
2832 	return dd->send_pio_err_status_cnt[35];
2833 }
2834 
2835 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2836 				const struct cntr_entry *entry,
2837 				void *context, int vl, int mode, u64 data)
2838 {
2839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2840 
2841 	return dd->send_pio_err_status_cnt[34];
2842 }
2843 
2844 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2845 				const struct cntr_entry *entry,
2846 				void *context, int vl, int mode, u64 data)
2847 {
2848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2849 
2850 	return dd->send_pio_err_status_cnt[33];
2851 }
2852 
2853 static u64 access_pio_current_free_cnt_parity_err_cnt(
2854 				const struct cntr_entry *entry,
2855 				void *context, int vl, int mode, u64 data)
2856 {
2857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2858 
2859 	return dd->send_pio_err_status_cnt[32];
2860 }
2861 
2862 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2863 					  void *context, int vl, int mode,
2864 					  u64 data)
2865 {
2866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2867 
2868 	return dd->send_pio_err_status_cnt[31];
2869 }
2870 
2871 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2872 					  void *context, int vl, int mode,
2873 					  u64 data)
2874 {
2875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2876 
2877 	return dd->send_pio_err_status_cnt[30];
2878 }
2879 
2880 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2881 					   void *context, int vl, int mode,
2882 					   u64 data)
2883 {
2884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2885 
2886 	return dd->send_pio_err_status_cnt[29];
2887 }
2888 
2889 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2890 				const struct cntr_entry *entry,
2891 				void *context, int vl, int mode, u64 data)
2892 {
2893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2894 
2895 	return dd->send_pio_err_status_cnt[28];
2896 }
2897 
2898 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2899 					     void *context, int vl, int mode,
2900 					     u64 data)
2901 {
2902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2903 
2904 	return dd->send_pio_err_status_cnt[27];
2905 }
2906 
2907 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2908 					     void *context, int vl, int mode,
2909 					     u64 data)
2910 {
2911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2912 
2913 	return dd->send_pio_err_status_cnt[26];
2914 }
2915 
2916 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2917 						void *context, int vl,
2918 						int mode, u64 data)
2919 {
2920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2921 
2922 	return dd->send_pio_err_status_cnt[25];
2923 }
2924 
2925 static u64 access_pio_block_qw_count_parity_err_cnt(
2926 				const struct cntr_entry *entry,
2927 				void *context, int vl, int mode, u64 data)
2928 {
2929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2930 
2931 	return dd->send_pio_err_status_cnt[24];
2932 }
2933 
2934 static u64 access_pio_write_qw_valid_parity_err_cnt(
2935 				const struct cntr_entry *entry,
2936 				void *context, int vl, int mode, u64 data)
2937 {
2938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2939 
2940 	return dd->send_pio_err_status_cnt[23];
2941 }
2942 
2943 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2944 					    void *context, int vl, int mode,
2945 					    u64 data)
2946 {
2947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2948 
2949 	return dd->send_pio_err_status_cnt[22];
2950 }
2951 
2952 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2953 						void *context, int vl,
2954 						int mode, u64 data)
2955 {
2956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2957 
2958 	return dd->send_pio_err_status_cnt[21];
2959 }
2960 
2961 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2962 						void *context, int vl,
2963 						int mode, u64 data)
2964 {
2965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2966 
2967 	return dd->send_pio_err_status_cnt[20];
2968 }
2969 
2970 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2971 						void *context, int vl,
2972 						int mode, u64 data)
2973 {
2974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2975 
2976 	return dd->send_pio_err_status_cnt[19];
2977 }
2978 
2979 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2980 				const struct cntr_entry *entry,
2981 				void *context, int vl, int mode, u64 data)
2982 {
2983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2984 
2985 	return dd->send_pio_err_status_cnt[18];
2986 }
2987 
2988 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2989 					 void *context, int vl, int mode,
2990 					 u64 data)
2991 {
2992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2993 
2994 	return dd->send_pio_err_status_cnt[17];
2995 }
2996 
2997 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2998 					    void *context, int vl, int mode,
2999 					    u64 data)
3000 {
3001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3002 
3003 	return dd->send_pio_err_status_cnt[16];
3004 }
3005 
3006 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
3007 				const struct cntr_entry *entry,
3008 				void *context, int vl, int mode, u64 data)
3009 {
3010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3011 
3012 	return dd->send_pio_err_status_cnt[15];
3013 }
3014 
3015 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
3016 				const struct cntr_entry *entry,
3017 				void *context, int vl, int mode, u64 data)
3018 {
3019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3020 
3021 	return dd->send_pio_err_status_cnt[14];
3022 }
3023 
3024 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
3025 				const struct cntr_entry *entry,
3026 				void *context, int vl, int mode, u64 data)
3027 {
3028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3029 
3030 	return dd->send_pio_err_status_cnt[13];
3031 }
3032 
3033 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3034 				const struct cntr_entry *entry,
3035 				void *context, int vl, int mode, u64 data)
3036 {
3037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3038 
3039 	return dd->send_pio_err_status_cnt[12];
3040 }
3041 
3042 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3043 				const struct cntr_entry *entry,
3044 				void *context, int vl, int mode, u64 data)
3045 {
3046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3047 
3048 	return dd->send_pio_err_status_cnt[11];
3049 }
3050 
3051 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3052 				const struct cntr_entry *entry,
3053 				void *context, int vl, int mode, u64 data)
3054 {
3055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3056 
3057 	return dd->send_pio_err_status_cnt[10];
3058 }
3059 
3060 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3061 				const struct cntr_entry *entry,
3062 				void *context, int vl, int mode, u64 data)
3063 {
3064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3065 
3066 	return dd->send_pio_err_status_cnt[9];
3067 }
3068 
3069 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3070 				const struct cntr_entry *entry,
3071 				void *context, int vl, int mode, u64 data)
3072 {
3073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3074 
3075 	return dd->send_pio_err_status_cnt[8];
3076 }
3077 
3078 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3079 				const struct cntr_entry *entry,
3080 				void *context, int vl, int mode, u64 data)
3081 {
3082 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3083 
3084 	return dd->send_pio_err_status_cnt[7];
3085 }
3086 
3087 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3088 					      void *context, int vl, int mode,
3089 					      u64 data)
3090 {
3091 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3092 
3093 	return dd->send_pio_err_status_cnt[6];
3094 }
3095 
3096 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3097 					      void *context, int vl, int mode,
3098 					      u64 data)
3099 {
3100 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3101 
3102 	return dd->send_pio_err_status_cnt[5];
3103 }
3104 
3105 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3106 					   void *context, int vl, int mode,
3107 					   u64 data)
3108 {
3109 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3110 
3111 	return dd->send_pio_err_status_cnt[4];
3112 }
3113 
3114 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3115 					   void *context, int vl, int mode,
3116 					   u64 data)
3117 {
3118 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119 
3120 	return dd->send_pio_err_status_cnt[3];
3121 }
3122 
3123 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3124 					 void *context, int vl, int mode,
3125 					 u64 data)
3126 {
3127 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128 
3129 	return dd->send_pio_err_status_cnt[2];
3130 }
3131 
3132 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3133 						void *context, int vl,
3134 						int mode, u64 data)
3135 {
3136 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3137 
3138 	return dd->send_pio_err_status_cnt[1];
3139 }
3140 
3141 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3142 					     void *context, int vl, int mode,
3143 					     u64 data)
3144 {
3145 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3146 
3147 	return dd->send_pio_err_status_cnt[0];
3148 }
3149 
3150 /*
3151  * Software counters corresponding to each of the
3152  * error status bits within SendDmaErrStatus
3153  */
3154 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3155 				const struct cntr_entry *entry,
3156 				void *context, int vl, int mode, u64 data)
3157 {
3158 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159 
3160 	return dd->send_dma_err_status_cnt[3];
3161 }
3162 
3163 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3164 				const struct cntr_entry *entry,
3165 				void *context, int vl, int mode, u64 data)
3166 {
3167 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168 
3169 	return dd->send_dma_err_status_cnt[2];
3170 }
3171 
3172 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3173 					  void *context, int vl, int mode,
3174 					  u64 data)
3175 {
3176 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177 
3178 	return dd->send_dma_err_status_cnt[1];
3179 }
3180 
3181 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3182 				       void *context, int vl, int mode,
3183 				       u64 data)
3184 {
3185 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186 
3187 	return dd->send_dma_err_status_cnt[0];
3188 }
3189 
3190 /*
3191  * Software counters corresponding to each of the
3192  * error status bits within SendEgressErrStatus
3193  */
3194 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3195 				const struct cntr_entry *entry,
3196 				void *context, int vl, int mode, u64 data)
3197 {
3198 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3199 
3200 	return dd->send_egress_err_status_cnt[63];
3201 }
3202 
3203 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3204 				const struct cntr_entry *entry,
3205 				void *context, int vl, int mode, u64 data)
3206 {
3207 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3208 
3209 	return dd->send_egress_err_status_cnt[62];
3210 }
3211 
3212 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3213 					     void *context, int vl, int mode,
3214 					     u64 data)
3215 {
3216 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3217 
3218 	return dd->send_egress_err_status_cnt[61];
3219 }
3220 
3221 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3222 						 void *context, int vl,
3223 						 int mode, u64 data)
3224 {
3225 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3226 
3227 	return dd->send_egress_err_status_cnt[60];
3228 }
3229 
3230 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3231 				const struct cntr_entry *entry,
3232 				void *context, int vl, int mode, u64 data)
3233 {
3234 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3235 
3236 	return dd->send_egress_err_status_cnt[59];
3237 }
3238 
3239 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3240 					void *context, int vl, int mode,
3241 					u64 data)
3242 {
3243 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3244 
3245 	return dd->send_egress_err_status_cnt[58];
3246 }
3247 
3248 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3249 					    void *context, int vl, int mode,
3250 					    u64 data)
3251 {
3252 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3253 
3254 	return dd->send_egress_err_status_cnt[57];
3255 }
3256 
3257 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3258 					      void *context, int vl, int mode,
3259 					      u64 data)
3260 {
3261 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3262 
3263 	return dd->send_egress_err_status_cnt[56];
3264 }
3265 
3266 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3267 					      void *context, int vl, int mode,
3268 					      u64 data)
3269 {
3270 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3271 
3272 	return dd->send_egress_err_status_cnt[55];
3273 }
3274 
3275 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3276 					      void *context, int vl, int mode,
3277 					      u64 data)
3278 {
3279 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3280 
3281 	return dd->send_egress_err_status_cnt[54];
3282 }
3283 
3284 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3285 					      void *context, int vl, int mode,
3286 					      u64 data)
3287 {
3288 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3289 
3290 	return dd->send_egress_err_status_cnt[53];
3291 }
3292 
3293 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3294 					      void *context, int vl, int mode,
3295 					      u64 data)
3296 {
3297 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3298 
3299 	return dd->send_egress_err_status_cnt[52];
3300 }
3301 
3302 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3303 					      void *context, int vl, int mode,
3304 					      u64 data)
3305 {
3306 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3307 
3308 	return dd->send_egress_err_status_cnt[51];
3309 }
3310 
3311 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3312 					      void *context, int vl, int mode,
3313 					      u64 data)
3314 {
3315 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3316 
3317 	return dd->send_egress_err_status_cnt[50];
3318 }
3319 
3320 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3321 					      void *context, int vl, int mode,
3322 					      u64 data)
3323 {
3324 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3325 
3326 	return dd->send_egress_err_status_cnt[49];
3327 }
3328 
3329 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3330 					      void *context, int vl, int mode,
3331 					      u64 data)
3332 {
3333 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3334 
3335 	return dd->send_egress_err_status_cnt[48];
3336 }
3337 
3338 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3339 					      void *context, int vl, int mode,
3340 					      u64 data)
3341 {
3342 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3343 
3344 	return dd->send_egress_err_status_cnt[47];
3345 }
3346 
3347 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3348 					    void *context, int vl, int mode,
3349 					    u64 data)
3350 {
3351 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3352 
3353 	return dd->send_egress_err_status_cnt[46];
3354 }
3355 
3356 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3357 					     void *context, int vl, int mode,
3358 					     u64 data)
3359 {
3360 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3361 
3362 	return dd->send_egress_err_status_cnt[45];
3363 }
3364 
3365 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3366 						 void *context, int vl,
3367 						 int mode, u64 data)
3368 {
3369 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3370 
3371 	return dd->send_egress_err_status_cnt[44];
3372 }
3373 
3374 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3375 				const struct cntr_entry *entry,
3376 				void *context, int vl, int mode, u64 data)
3377 {
3378 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3379 
3380 	return dd->send_egress_err_status_cnt[43];
3381 }
3382 
3383 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3384 					void *context, int vl, int mode,
3385 					u64 data)
3386 {
3387 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3388 
3389 	return dd->send_egress_err_status_cnt[42];
3390 }
3391 
3392 static u64 access_tx_credit_return_partiy_err_cnt(
3393 				const struct cntr_entry *entry,
3394 				void *context, int vl, int mode, u64 data)
3395 {
3396 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3397 
3398 	return dd->send_egress_err_status_cnt[41];
3399 }
3400 
3401 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3402 				const struct cntr_entry *entry,
3403 				void *context, int vl, int mode, u64 data)
3404 {
3405 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3406 
3407 	return dd->send_egress_err_status_cnt[40];
3408 }
3409 
3410 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3411 				const struct cntr_entry *entry,
3412 				void *context, int vl, int mode, u64 data)
3413 {
3414 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3415 
3416 	return dd->send_egress_err_status_cnt[39];
3417 }
3418 
3419 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3420 				const struct cntr_entry *entry,
3421 				void *context, int vl, int mode, u64 data)
3422 {
3423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3424 
3425 	return dd->send_egress_err_status_cnt[38];
3426 }
3427 
3428 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3429 				const struct cntr_entry *entry,
3430 				void *context, int vl, int mode, u64 data)
3431 {
3432 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3433 
3434 	return dd->send_egress_err_status_cnt[37];
3435 }
3436 
3437 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3438 				const struct cntr_entry *entry,
3439 				void *context, int vl, int mode, u64 data)
3440 {
3441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3442 
3443 	return dd->send_egress_err_status_cnt[36];
3444 }
3445 
3446 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3447 				const struct cntr_entry *entry,
3448 				void *context, int vl, int mode, u64 data)
3449 {
3450 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3451 
3452 	return dd->send_egress_err_status_cnt[35];
3453 }
3454 
3455 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3456 				const struct cntr_entry *entry,
3457 				void *context, int vl, int mode, u64 data)
3458 {
3459 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3460 
3461 	return dd->send_egress_err_status_cnt[34];
3462 }
3463 
3464 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3465 				const struct cntr_entry *entry,
3466 				void *context, int vl, int mode, u64 data)
3467 {
3468 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3469 
3470 	return dd->send_egress_err_status_cnt[33];
3471 }
3472 
3473 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3474 				const struct cntr_entry *entry,
3475 				void *context, int vl, int mode, u64 data)
3476 {
3477 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3478 
3479 	return dd->send_egress_err_status_cnt[32];
3480 }
3481 
3482 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3483 				const struct cntr_entry *entry,
3484 				void *context, int vl, int mode, u64 data)
3485 {
3486 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3487 
3488 	return dd->send_egress_err_status_cnt[31];
3489 }
3490 
3491 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3492 				const struct cntr_entry *entry,
3493 				void *context, int vl, int mode, u64 data)
3494 {
3495 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3496 
3497 	return dd->send_egress_err_status_cnt[30];
3498 }
3499 
3500 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3501 				const struct cntr_entry *entry,
3502 				void *context, int vl, int mode, u64 data)
3503 {
3504 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3505 
3506 	return dd->send_egress_err_status_cnt[29];
3507 }
3508 
3509 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3510 				const struct cntr_entry *entry,
3511 				void *context, int vl, int mode, u64 data)
3512 {
3513 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3514 
3515 	return dd->send_egress_err_status_cnt[28];
3516 }
3517 
3518 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3519 				const struct cntr_entry *entry,
3520 				void *context, int vl, int mode, u64 data)
3521 {
3522 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3523 
3524 	return dd->send_egress_err_status_cnt[27];
3525 }
3526 
3527 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3528 				const struct cntr_entry *entry,
3529 				void *context, int vl, int mode, u64 data)
3530 {
3531 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3532 
3533 	return dd->send_egress_err_status_cnt[26];
3534 }
3535 
3536 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3537 				const struct cntr_entry *entry,
3538 				void *context, int vl, int mode, u64 data)
3539 {
3540 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3541 
3542 	return dd->send_egress_err_status_cnt[25];
3543 }
3544 
3545 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3546 				const struct cntr_entry *entry,
3547 				void *context, int vl, int mode, u64 data)
3548 {
3549 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3550 
3551 	return dd->send_egress_err_status_cnt[24];
3552 }
3553 
3554 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3555 				const struct cntr_entry *entry,
3556 				void *context, int vl, int mode, u64 data)
3557 {
3558 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3559 
3560 	return dd->send_egress_err_status_cnt[23];
3561 }
3562 
3563 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3564 				const struct cntr_entry *entry,
3565 				void *context, int vl, int mode, u64 data)
3566 {
3567 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3568 
3569 	return dd->send_egress_err_status_cnt[22];
3570 }
3571 
3572 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3573 				const struct cntr_entry *entry,
3574 				void *context, int vl, int mode, u64 data)
3575 {
3576 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3577 
3578 	return dd->send_egress_err_status_cnt[21];
3579 }
3580 
3581 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3582 				const struct cntr_entry *entry,
3583 				void *context, int vl, int mode, u64 data)
3584 {
3585 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3586 
3587 	return dd->send_egress_err_status_cnt[20];
3588 }
3589 
3590 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3591 				const struct cntr_entry *entry,
3592 				void *context, int vl, int mode, u64 data)
3593 {
3594 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3595 
3596 	return dd->send_egress_err_status_cnt[19];
3597 }
3598 
3599 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3600 				const struct cntr_entry *entry,
3601 				void *context, int vl, int mode, u64 data)
3602 {
3603 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3604 
3605 	return dd->send_egress_err_status_cnt[18];
3606 }
3607 
3608 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3609 				const struct cntr_entry *entry,
3610 				void *context, int vl, int mode, u64 data)
3611 {
3612 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3613 
3614 	return dd->send_egress_err_status_cnt[17];
3615 }
3616 
3617 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3618 				const struct cntr_entry *entry,
3619 				void *context, int vl, int mode, u64 data)
3620 {
3621 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3622 
3623 	return dd->send_egress_err_status_cnt[16];
3624 }
3625 
3626 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3627 					   void *context, int vl, int mode,
3628 					   u64 data)
3629 {
3630 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3631 
3632 	return dd->send_egress_err_status_cnt[15];
3633 }
3634 
3635 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3636 						 void *context, int vl,
3637 						 int mode, u64 data)
3638 {
3639 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3640 
3641 	return dd->send_egress_err_status_cnt[14];
3642 }
3643 
3644 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3645 					       void *context, int vl, int mode,
3646 					       u64 data)
3647 {
3648 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3649 
3650 	return dd->send_egress_err_status_cnt[13];
3651 }
3652 
3653 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3654 					void *context, int vl, int mode,
3655 					u64 data)
3656 {
3657 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3658 
3659 	return dd->send_egress_err_status_cnt[12];
3660 }
3661 
3662 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3663 				const struct cntr_entry *entry,
3664 				void *context, int vl, int mode, u64 data)
3665 {
3666 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3667 
3668 	return dd->send_egress_err_status_cnt[11];
3669 }
3670 
3671 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3672 					     void *context, int vl, int mode,
3673 					     u64 data)
3674 {
3675 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3676 
3677 	return dd->send_egress_err_status_cnt[10];
3678 }
3679 
3680 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3681 					    void *context, int vl, int mode,
3682 					    u64 data)
3683 {
3684 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3685 
3686 	return dd->send_egress_err_status_cnt[9];
3687 }
3688 
3689 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3690 				const struct cntr_entry *entry,
3691 				void *context, int vl, int mode, u64 data)
3692 {
3693 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3694 
3695 	return dd->send_egress_err_status_cnt[8];
3696 }
3697 
3698 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3699 				const struct cntr_entry *entry,
3700 				void *context, int vl, int mode, u64 data)
3701 {
3702 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3703 
3704 	return dd->send_egress_err_status_cnt[7];
3705 }
3706 
3707 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3708 					    void *context, int vl, int mode,
3709 					    u64 data)
3710 {
3711 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3712 
3713 	return dd->send_egress_err_status_cnt[6];
3714 }
3715 
3716 static u64 access_tx_incorrect_link_state_err_cnt(
3717 				const struct cntr_entry *entry,
3718 				void *context, int vl, int mode, u64 data)
3719 {
3720 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3721 
3722 	return dd->send_egress_err_status_cnt[5];
3723 }
3724 
3725 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3726 				      void *context, int vl, int mode,
3727 				      u64 data)
3728 {
3729 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3730 
3731 	return dd->send_egress_err_status_cnt[4];
3732 }
3733 
3734 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3735 				const struct cntr_entry *entry,
3736 				void *context, int vl, int mode, u64 data)
3737 {
3738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739 
3740 	return dd->send_egress_err_status_cnt[3];
3741 }
3742 
3743 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3744 					    void *context, int vl, int mode,
3745 					    u64 data)
3746 {
3747 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748 
3749 	return dd->send_egress_err_status_cnt[2];
3750 }
3751 
3752 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3753 				const struct cntr_entry *entry,
3754 				void *context, int vl, int mode, u64 data)
3755 {
3756 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3757 
3758 	return dd->send_egress_err_status_cnt[1];
3759 }
3760 
3761 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3762 				const struct cntr_entry *entry,
3763 				void *context, int vl, int mode, u64 data)
3764 {
3765 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3766 
3767 	return dd->send_egress_err_status_cnt[0];
3768 }
3769 
3770 /*
3771  * Software counters corresponding to each of the
3772  * error status bits within SendErrStatus
3773  */
3774 static u64 access_send_csr_write_bad_addr_err_cnt(
3775 				const struct cntr_entry *entry,
3776 				void *context, int vl, int mode, u64 data)
3777 {
3778 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779 
3780 	return dd->send_err_status_cnt[2];
3781 }
3782 
3783 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3784 						 void *context, int vl,
3785 						 int mode, u64 data)
3786 {
3787 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3788 
3789 	return dd->send_err_status_cnt[1];
3790 }
3791 
3792 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3793 				      void *context, int vl, int mode,
3794 				      u64 data)
3795 {
3796 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3797 
3798 	return dd->send_err_status_cnt[0];
3799 }
3800 
3801 /*
3802  * Software counters corresponding to each of the
3803  * error status bits within SendCtxtErrStatus
3804  */
3805 static u64 access_pio_write_out_of_bounds_err_cnt(
3806 				const struct cntr_entry *entry,
3807 				void *context, int vl, int mode, u64 data)
3808 {
3809 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3810 
3811 	return dd->sw_ctxt_err_status_cnt[4];
3812 }
3813 
3814 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3815 					     void *context, int vl, int mode,
3816 					     u64 data)
3817 {
3818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819 
3820 	return dd->sw_ctxt_err_status_cnt[3];
3821 }
3822 
3823 static u64 access_pio_write_crosses_boundary_err_cnt(
3824 				const struct cntr_entry *entry,
3825 				void *context, int vl, int mode, u64 data)
3826 {
3827 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828 
3829 	return dd->sw_ctxt_err_status_cnt[2];
3830 }
3831 
3832 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3833 						void *context, int vl,
3834 						int mode, u64 data)
3835 {
3836 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837 
3838 	return dd->sw_ctxt_err_status_cnt[1];
3839 }
3840 
3841 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3842 					       void *context, int vl, int mode,
3843 					       u64 data)
3844 {
3845 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846 
3847 	return dd->sw_ctxt_err_status_cnt[0];
3848 }
3849 
3850 /*
3851  * Software counters corresponding to each of the
3852  * error status bits within SendDmaEngErrStatus
3853  */
3854 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3855 				const struct cntr_entry *entry,
3856 				void *context, int vl, int mode, u64 data)
3857 {
3858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3859 
3860 	return dd->sw_send_dma_eng_err_status_cnt[23];
3861 }
3862 
3863 static u64 access_sdma_header_storage_cor_err_cnt(
3864 				const struct cntr_entry *entry,
3865 				void *context, int vl, int mode, u64 data)
3866 {
3867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3868 
3869 	return dd->sw_send_dma_eng_err_status_cnt[22];
3870 }
3871 
3872 static u64 access_sdma_packet_tracking_cor_err_cnt(
3873 				const struct cntr_entry *entry,
3874 				void *context, int vl, int mode, u64 data)
3875 {
3876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3877 
3878 	return dd->sw_send_dma_eng_err_status_cnt[21];
3879 }
3880 
3881 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3882 					    void *context, int vl, int mode,
3883 					    u64 data)
3884 {
3885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3886 
3887 	return dd->sw_send_dma_eng_err_status_cnt[20];
3888 }
3889 
3890 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3891 					      void *context, int vl, int mode,
3892 					      u64 data)
3893 {
3894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3895 
3896 	return dd->sw_send_dma_eng_err_status_cnt[19];
3897 }
3898 
3899 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3900 				const struct cntr_entry *entry,
3901 				void *context, int vl, int mode, u64 data)
3902 {
3903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3904 
3905 	return dd->sw_send_dma_eng_err_status_cnt[18];
3906 }
3907 
3908 static u64 access_sdma_header_storage_unc_err_cnt(
3909 				const struct cntr_entry *entry,
3910 				void *context, int vl, int mode, u64 data)
3911 {
3912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3913 
3914 	return dd->sw_send_dma_eng_err_status_cnt[17];
3915 }
3916 
3917 static u64 access_sdma_packet_tracking_unc_err_cnt(
3918 				const struct cntr_entry *entry,
3919 				void *context, int vl, int mode, u64 data)
3920 {
3921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3922 
3923 	return dd->sw_send_dma_eng_err_status_cnt[16];
3924 }
3925 
3926 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3927 					    void *context, int vl, int mode,
3928 					    u64 data)
3929 {
3930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3931 
3932 	return dd->sw_send_dma_eng_err_status_cnt[15];
3933 }
3934 
3935 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3936 					      void *context, int vl, int mode,
3937 					      u64 data)
3938 {
3939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3940 
3941 	return dd->sw_send_dma_eng_err_status_cnt[14];
3942 }
3943 
3944 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3945 				       void *context, int vl, int mode,
3946 				       u64 data)
3947 {
3948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3949 
3950 	return dd->sw_send_dma_eng_err_status_cnt[13];
3951 }
3952 
3953 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3954 					     void *context, int vl, int mode,
3955 					     u64 data)
3956 {
3957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3958 
3959 	return dd->sw_send_dma_eng_err_status_cnt[12];
3960 }
3961 
3962 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3963 					      void *context, int vl, int mode,
3964 					      u64 data)
3965 {
3966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3967 
3968 	return dd->sw_send_dma_eng_err_status_cnt[11];
3969 }
3970 
3971 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3972 					     void *context, int vl, int mode,
3973 					     u64 data)
3974 {
3975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3976 
3977 	return dd->sw_send_dma_eng_err_status_cnt[10];
3978 }
3979 
3980 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3981 					  void *context, int vl, int mode,
3982 					  u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[9];
3987 }
3988 
3989 static u64 access_sdma_packet_desc_overflow_err_cnt(
3990 				const struct cntr_entry *entry,
3991 				void *context, int vl, int mode, u64 data)
3992 {
3993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994 
3995 	return dd->sw_send_dma_eng_err_status_cnt[8];
3996 }
3997 
3998 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3999 					       void *context, int vl,
4000 					       int mode, u64 data)
4001 {
4002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003 
4004 	return dd->sw_send_dma_eng_err_status_cnt[7];
4005 }
4006 
4007 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
4008 				    void *context, int vl, int mode, u64 data)
4009 {
4010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4011 
4012 	return dd->sw_send_dma_eng_err_status_cnt[6];
4013 }
4014 
4015 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
4016 					void *context, int vl, int mode,
4017 					u64 data)
4018 {
4019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4020 
4021 	return dd->sw_send_dma_eng_err_status_cnt[5];
4022 }
4023 
4024 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
4025 					  void *context, int vl, int mode,
4026 					  u64 data)
4027 {
4028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4029 
4030 	return dd->sw_send_dma_eng_err_status_cnt[4];
4031 }
4032 
4033 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4034 				const struct cntr_entry *entry,
4035 				void *context, int vl, int mode, u64 data)
4036 {
4037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4038 
4039 	return dd->sw_send_dma_eng_err_status_cnt[3];
4040 }
4041 
4042 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4043 					void *context, int vl, int mode,
4044 					u64 data)
4045 {
4046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4047 
4048 	return dd->sw_send_dma_eng_err_status_cnt[2];
4049 }
4050 
4051 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4052 					    void *context, int vl, int mode,
4053 					    u64 data)
4054 {
4055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4056 
4057 	return dd->sw_send_dma_eng_err_status_cnt[1];
4058 }
4059 
4060 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4061 					void *context, int vl, int mode,
4062 					u64 data)
4063 {
4064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4065 
4066 	return dd->sw_send_dma_eng_err_status_cnt[0];
4067 }
4068 
4069 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4070 				 void *context, int vl, int mode,
4071 				 u64 data)
4072 {
4073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4074 
4075 	u64 val = 0;
4076 	u64 csr = entry->csr;
4077 
4078 	val = read_write_csr(dd, csr, mode, data);
4079 	if (mode == CNTR_MODE_R) {
4080 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4081 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4082 	} else if (mode == CNTR_MODE_W) {
4083 		dd->sw_rcv_bypass_packet_errors = 0;
4084 	} else {
4085 		dd_dev_err(dd, "Invalid cntr register access mode");
4086 		return 0;
4087 	}
4088 	return val;
4089 }
4090 
4091 #define def_access_sw_cpu(cntr) \
4092 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4093 			      void *context, int vl, int mode, u64 data)      \
4094 {									      \
4095 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4096 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4097 			      ppd->ibport_data.rvp.cntr, vl,		      \
4098 			      mode, data);				      \
4099 }
4100 
4101 def_access_sw_cpu(rc_acks);
4102 def_access_sw_cpu(rc_qacks);
4103 def_access_sw_cpu(rc_delayed_comp);
4104 
4105 #define def_access_ibp_counter(cntr) \
4106 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4107 				void *context, int vl, int mode, u64 data)    \
4108 {									      \
4109 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4110 									      \
4111 	if (vl != CNTR_INVALID_VL)					      \
4112 		return 0;						      \
4113 									      \
4114 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4115 			     mode, data);				      \
4116 }
4117 
4118 def_access_ibp_counter(loop_pkts);
4119 def_access_ibp_counter(rc_resends);
4120 def_access_ibp_counter(rnr_naks);
4121 def_access_ibp_counter(other_naks);
4122 def_access_ibp_counter(rc_timeouts);
4123 def_access_ibp_counter(pkt_drops);
4124 def_access_ibp_counter(dmawait);
4125 def_access_ibp_counter(rc_seqnak);
4126 def_access_ibp_counter(rc_dupreq);
4127 def_access_ibp_counter(rdma_seq);
4128 def_access_ibp_counter(unaligned);
4129 def_access_ibp_counter(seq_naks);
4130 def_access_ibp_counter(rc_crwaits);
4131 
4132 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4133 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4134 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4135 [C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4136 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4137 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4138 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4139 			CNTR_NORMAL),
4140 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4141 			CNTR_NORMAL),
4142 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4143 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4144 			CNTR_NORMAL),
4145 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4146 			CNTR_NORMAL),
4147 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4148 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4149 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4150 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4151 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4152 			CNTR_NORMAL),
4153 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4154 			CNTR_NORMAL),
4155 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4156 			CNTR_NORMAL),
4157 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4158 			CNTR_NORMAL),
4159 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4160 			CNTR_NORMAL),
4161 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4162 			CNTR_NORMAL),
4163 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4164 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4165 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4166 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4167 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4168 			      CNTR_SYNTH),
4169 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4170 			    access_dc_rcv_err_cnt),
4171 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4172 				 CNTR_SYNTH),
4173 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4174 				  CNTR_SYNTH),
4175 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4176 				  CNTR_SYNTH),
4177 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4178 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4179 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4180 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4181 				  CNTR_SYNTH),
4182 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4183 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4184 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4185 			       CNTR_SYNTH),
4186 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4187 			      CNTR_SYNTH),
4188 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4189 			       CNTR_SYNTH),
4190 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4191 				 CNTR_SYNTH),
4192 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4193 				CNTR_SYNTH),
4194 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4195 				CNTR_SYNTH),
4196 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4197 			       CNTR_SYNTH),
4198 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4199 				 CNTR_SYNTH | CNTR_VL),
4200 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4201 				CNTR_SYNTH | CNTR_VL),
4202 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4203 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4204 				 CNTR_SYNTH | CNTR_VL),
4205 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4206 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4207 				 CNTR_SYNTH | CNTR_VL),
4208 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4209 			      CNTR_SYNTH),
4210 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4211 				 CNTR_SYNTH | CNTR_VL),
4212 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4213 				CNTR_SYNTH),
4214 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4215 				   CNTR_SYNTH | CNTR_VL),
4216 [C_DC_TOTAL_CRC] =
4217 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4218 			 CNTR_SYNTH),
4219 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4220 				  CNTR_SYNTH),
4221 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4222 				  CNTR_SYNTH),
4223 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4224 				  CNTR_SYNTH),
4225 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4226 				  CNTR_SYNTH),
4227 [C_DC_CRC_MULT_LN] =
4228 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4229 			 CNTR_SYNTH),
4230 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4231 				    CNTR_SYNTH),
4232 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4233 				    CNTR_SYNTH),
4234 [C_DC_SEQ_CRC_CNT] =
4235 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4236 			 CNTR_SYNTH),
4237 [C_DC_ESC0_ONLY_CNT] =
4238 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4239 			 CNTR_SYNTH),
4240 [C_DC_ESC0_PLUS1_CNT] =
4241 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4242 			 CNTR_SYNTH),
4243 [C_DC_ESC0_PLUS2_CNT] =
4244 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4245 			 CNTR_SYNTH),
4246 [C_DC_REINIT_FROM_PEER_CNT] =
4247 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4248 			 CNTR_SYNTH),
4249 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4250 				  CNTR_SYNTH),
4251 [C_DC_MISC_FLG_CNT] =
4252 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4253 			 CNTR_SYNTH),
4254 [C_DC_PRF_GOOD_LTP_CNT] =
4255 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4256 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4257 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4258 			 CNTR_SYNTH),
4259 [C_DC_PRF_RX_FLIT_CNT] =
4260 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4261 [C_DC_PRF_TX_FLIT_CNT] =
4262 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4263 [C_DC_PRF_CLK_CNTR] =
4264 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4265 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4266 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4267 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4268 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4269 			 CNTR_SYNTH),
4270 [C_DC_PG_STS_TX_SBE_CNT] =
4271 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4272 [C_DC_PG_STS_TX_MBE_CNT] =
4273 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4274 			 CNTR_SYNTH),
4275 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4276 			    access_sw_cpu_intr),
4277 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4278 			    access_sw_cpu_rcv_limit),
4279 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4280 			    access_sw_ctx0_seq_drop),
4281 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4282 			    access_sw_vtx_wait),
4283 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4284 			    access_sw_pio_wait),
4285 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4286 			    access_sw_pio_drain),
4287 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4288 			    access_sw_kmem_wait),
4289 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4290 			    hfi1_access_sw_tid_wait),
4291 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4292 			    access_sw_send_schedule),
4293 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4294 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4295 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4296 				      dev_access_u32_csr),
4297 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4298 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4299 			     access_sde_int_cnt),
4300 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4301 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4302 			     access_sde_err_cnt),
4303 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4304 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4305 				  access_sde_idle_int_cnt),
4306 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4307 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4308 				      access_sde_progress_int_cnt),
4309 /* MISC_ERR_STATUS */
4310 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_misc_pll_lock_fail_err_cnt),
4313 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_misc_mbist_fail_err_cnt),
4316 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4317 				CNTR_NORMAL,
4318 				access_misc_invalid_eep_cmd_err_cnt),
4319 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4320 				CNTR_NORMAL,
4321 				access_misc_efuse_done_parity_err_cnt),
4322 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4323 				CNTR_NORMAL,
4324 				access_misc_efuse_write_err_cnt),
4325 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4326 				0, CNTR_NORMAL,
4327 				access_misc_efuse_read_bad_addr_err_cnt),
4328 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4329 				CNTR_NORMAL,
4330 				access_misc_efuse_csr_parity_err_cnt),
4331 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4332 				CNTR_NORMAL,
4333 				access_misc_fw_auth_failed_err_cnt),
4334 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4335 				CNTR_NORMAL,
4336 				access_misc_key_mismatch_err_cnt),
4337 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4338 				CNTR_NORMAL,
4339 				access_misc_sbus_write_failed_err_cnt),
4340 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4341 				CNTR_NORMAL,
4342 				access_misc_csr_write_bad_addr_err_cnt),
4343 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4344 				CNTR_NORMAL,
4345 				access_misc_csr_read_bad_addr_err_cnt),
4346 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4347 				CNTR_NORMAL,
4348 				access_misc_csr_parity_err_cnt),
4349 /* CceErrStatus */
4350 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4351 				CNTR_NORMAL,
4352 				access_sw_cce_err_status_aggregated_cnt),
4353 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4354 				CNTR_NORMAL,
4355 				access_cce_msix_csr_parity_err_cnt),
4356 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4357 				CNTR_NORMAL,
4358 				access_cce_int_map_unc_err_cnt),
4359 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4360 				CNTR_NORMAL,
4361 				access_cce_int_map_cor_err_cnt),
4362 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4363 				CNTR_NORMAL,
4364 				access_cce_msix_table_unc_err_cnt),
4365 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_cce_msix_table_cor_err_cnt),
4368 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4369 				0, CNTR_NORMAL,
4370 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4371 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4372 				0, CNTR_NORMAL,
4373 				access_cce_rcpl_async_fifo_parity_err_cnt),
4374 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4375 				CNTR_NORMAL,
4376 				access_cce_seg_write_bad_addr_err_cnt),
4377 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_cce_seg_read_bad_addr_err_cnt),
4380 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_la_triggered_cnt),
4383 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_cce_trgt_cpl_timeout_err_cnt),
4386 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_receive_parity_err_cnt),
4389 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_transmit_back_parity_err_cnt),
4392 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4393 				0, CNTR_NORMAL,
4394 				access_pcic_transmit_front_parity_err_cnt),
4395 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4396 				CNTR_NORMAL,
4397 				access_pcic_cpl_dat_q_unc_err_cnt),
4398 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4399 				CNTR_NORMAL,
4400 				access_pcic_cpl_hd_q_unc_err_cnt),
4401 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4402 				CNTR_NORMAL,
4403 				access_pcic_post_dat_q_unc_err_cnt),
4404 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4405 				CNTR_NORMAL,
4406 				access_pcic_post_hd_q_unc_err_cnt),
4407 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4408 				CNTR_NORMAL,
4409 				access_pcic_retry_sot_mem_unc_err_cnt),
4410 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4411 				CNTR_NORMAL,
4412 				access_pcic_retry_mem_unc_err),
4413 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4414 				CNTR_NORMAL,
4415 				access_pcic_n_post_dat_q_parity_err_cnt),
4416 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4417 				CNTR_NORMAL,
4418 				access_pcic_n_post_h_q_parity_err_cnt),
4419 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4420 				CNTR_NORMAL,
4421 				access_pcic_cpl_dat_q_cor_err_cnt),
4422 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4423 				CNTR_NORMAL,
4424 				access_pcic_cpl_hd_q_cor_err_cnt),
4425 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4426 				CNTR_NORMAL,
4427 				access_pcic_post_dat_q_cor_err_cnt),
4428 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4429 				CNTR_NORMAL,
4430 				access_pcic_post_hd_q_cor_err_cnt),
4431 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4432 				CNTR_NORMAL,
4433 				access_pcic_retry_sot_mem_cor_err_cnt),
4434 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4435 				CNTR_NORMAL,
4436 				access_pcic_retry_mem_cor_err_cnt),
4437 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4438 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4439 				CNTR_NORMAL,
4440 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4441 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4442 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4443 				CNTR_NORMAL,
4444 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4445 				),
4446 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4447 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4448 			CNTR_NORMAL,
4449 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4450 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4451 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4452 			CNTR_NORMAL,
4453 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4454 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4455 			0, CNTR_NORMAL,
4456 			access_cce_cli2_async_fifo_parity_err_cnt),
4457 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_cce_csr_cfg_bus_parity_err_cnt),
4460 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4461 			0, CNTR_NORMAL,
4462 			access_cce_cli0_async_fifo_parity_err_cnt),
4463 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_cce_rspd_data_parity_err_cnt),
4466 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_cce_trgt_access_err_cnt),
4469 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4470 			0, CNTR_NORMAL,
4471 			access_cce_trgt_async_fifo_parity_err_cnt),
4472 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_cce_csr_write_bad_addr_err_cnt),
4475 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_cce_csr_read_bad_addr_err_cnt),
4478 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4479 			CNTR_NORMAL,
4480 			access_ccs_csr_parity_err_cnt),
4481 
4482 /* RcvErrStatus */
4483 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_csr_parity_err_cnt),
4486 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_csr_write_bad_addr_err_cnt),
4489 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_csr_read_bad_addr_err_cnt),
4492 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_dma_csr_unc_err_cnt),
4495 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_dma_dq_fsm_encoding_err_cnt),
4498 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_dma_eq_fsm_encoding_err_cnt),
4501 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_dma_csr_parity_err_cnt),
4504 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_rbuf_data_cor_err_cnt),
4507 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_rbuf_data_unc_err_cnt),
4510 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4511 			CNTR_NORMAL,
4512 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4513 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4514 			CNTR_NORMAL,
4515 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4516 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4517 			CNTR_NORMAL,
4518 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4519 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4520 			CNTR_NORMAL,
4521 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4522 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4523 			CNTR_NORMAL,
4524 			access_rx_rbuf_desc_part2_cor_err_cnt),
4525 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4526 			CNTR_NORMAL,
4527 			access_rx_rbuf_desc_part2_unc_err_cnt),
4528 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4529 			CNTR_NORMAL,
4530 			access_rx_rbuf_desc_part1_cor_err_cnt),
4531 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4532 			CNTR_NORMAL,
4533 			access_rx_rbuf_desc_part1_unc_err_cnt),
4534 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4535 			CNTR_NORMAL,
4536 			access_rx_hq_intr_fsm_err_cnt),
4537 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4538 			CNTR_NORMAL,
4539 			access_rx_hq_intr_csr_parity_err_cnt),
4540 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4541 			CNTR_NORMAL,
4542 			access_rx_lookup_csr_parity_err_cnt),
4543 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4544 			CNTR_NORMAL,
4545 			access_rx_lookup_rcv_array_cor_err_cnt),
4546 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4547 			CNTR_NORMAL,
4548 			access_rx_lookup_rcv_array_unc_err_cnt),
4549 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4550 			0, CNTR_NORMAL,
4551 			access_rx_lookup_des_part2_parity_err_cnt),
4552 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4553 			0, CNTR_NORMAL,
4554 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4555 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4556 			CNTR_NORMAL,
4557 			access_rx_lookup_des_part1_unc_err_cnt),
4558 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4559 			CNTR_NORMAL,
4560 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4561 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4562 			CNTR_NORMAL,
4563 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4564 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4565 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4566 			CNTR_NORMAL,
4567 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4568 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4569 			0, CNTR_NORMAL,
4570 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4571 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4572 			0, CNTR_NORMAL,
4573 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4574 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4575 			CNTR_NORMAL,
4576 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4577 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4578 			CNTR_NORMAL,
4579 			access_rx_rbuf_empty_err_cnt),
4580 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4581 			CNTR_NORMAL,
4582 			access_rx_rbuf_full_err_cnt),
4583 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4584 			CNTR_NORMAL,
4585 			access_rbuf_bad_lookup_err_cnt),
4586 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4587 			CNTR_NORMAL,
4588 			access_rbuf_ctx_id_parity_err_cnt),
4589 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4590 			CNTR_NORMAL,
4591 			access_rbuf_csr_qeopdw_parity_err_cnt),
4592 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4593 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4596 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4597 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4598 			CNTR_NORMAL,
4599 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4600 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4601 			0, CNTR_NORMAL,
4602 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4603 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4604 			0, CNTR_NORMAL,
4605 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4606 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4607 			0, 0, CNTR_NORMAL,
4608 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4609 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4610 			0, CNTR_NORMAL,
4611 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4612 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4613 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4614 			CNTR_NORMAL,
4615 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4616 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4617 			0, CNTR_NORMAL,
4618 			access_rx_rbuf_block_list_read_cor_err_cnt),
4619 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4620 			0, CNTR_NORMAL,
4621 			access_rx_rbuf_block_list_read_unc_err_cnt),
4622 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4623 			CNTR_NORMAL,
4624 			access_rx_rbuf_lookup_des_cor_err_cnt),
4625 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4626 			CNTR_NORMAL,
4627 			access_rx_rbuf_lookup_des_unc_err_cnt),
4628 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4629 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4632 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4635 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_rbuf_free_list_cor_err_cnt),
4638 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_rx_rbuf_free_list_unc_err_cnt),
4641 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4642 			CNTR_NORMAL,
4643 			access_rx_rcv_fsm_encoding_err_cnt),
4644 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4645 			CNTR_NORMAL,
4646 			access_rx_dma_flag_cor_err_cnt),
4647 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4648 			CNTR_NORMAL,
4649 			access_rx_dma_flag_unc_err_cnt),
4650 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4651 			CNTR_NORMAL,
4652 			access_rx_dc_sop_eop_parity_err_cnt),
4653 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4654 			CNTR_NORMAL,
4655 			access_rx_rcv_csr_parity_err_cnt),
4656 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4657 			CNTR_NORMAL,
4658 			access_rx_rcv_qp_map_table_cor_err_cnt),
4659 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4660 			CNTR_NORMAL,
4661 			access_rx_rcv_qp_map_table_unc_err_cnt),
4662 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4663 			CNTR_NORMAL,
4664 			access_rx_rcv_data_cor_err_cnt),
4665 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4666 			CNTR_NORMAL,
4667 			access_rx_rcv_data_unc_err_cnt),
4668 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4669 			CNTR_NORMAL,
4670 			access_rx_rcv_hdr_cor_err_cnt),
4671 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4672 			CNTR_NORMAL,
4673 			access_rx_rcv_hdr_unc_err_cnt),
4674 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4675 			CNTR_NORMAL,
4676 			access_rx_dc_intf_parity_err_cnt),
4677 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4678 			CNTR_NORMAL,
4679 			access_rx_dma_csr_cor_err_cnt),
4680 /* SendPioErrStatus */
4681 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_pec_sop_head_parity_err_cnt),
4684 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_pcc_sop_head_parity_err_cnt),
4687 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4688 			0, 0, CNTR_NORMAL,
4689 			access_pio_last_returned_cnt_parity_err_cnt),
4690 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4691 			0, CNTR_NORMAL,
4692 			access_pio_current_free_cnt_parity_err_cnt),
4693 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_reserved_31_err_cnt),
4696 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_reserved_30_err_cnt),
4699 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4700 			CNTR_NORMAL,
4701 			access_pio_ppmc_sop_len_err_cnt),
4702 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4705 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4706 			CNTR_NORMAL,
4707 			access_pio_vl_fifo_parity_err_cnt),
4708 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_pio_vlf_sop_parity_err_cnt),
4711 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_pio_vlf_v1_len_parity_err_cnt),
4714 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_block_qw_count_parity_err_cnt),
4717 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_write_qw_valid_parity_err_cnt),
4720 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_pio_state_machine_err_cnt),
4723 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_pio_write_data_parity_err_cnt),
4726 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_pio_host_addr_mem_cor_err_cnt),
4729 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_pio_host_addr_mem_unc_err_cnt),
4732 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4735 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_pio_init_sm_in_err_cnt),
4738 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_pio_ppmc_pbl_fifo_err_cnt),
4741 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4742 			0, CNTR_NORMAL,
4743 			access_pio_credit_ret_fifo_parity_err_cnt),
4744 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4745 			CNTR_NORMAL,
4746 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4747 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4748 			CNTR_NORMAL,
4749 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4750 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4751 			CNTR_NORMAL,
4752 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4753 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4754 			CNTR_NORMAL,
4755 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4756 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4757 			CNTR_NORMAL,
4758 			access_pio_sm_pkt_reset_parity_err_cnt),
4759 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4760 			CNTR_NORMAL,
4761 			access_pio_pkt_evict_fifo_parity_err_cnt),
4762 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4763 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4764 			CNTR_NORMAL,
4765 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4766 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4767 			CNTR_NORMAL,
4768 			access_pio_sbrdctl_crrel_parity_err_cnt),
4769 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4770 			CNTR_NORMAL,
4771 			access_pio_pec_fifo_parity_err_cnt),
4772 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4773 			CNTR_NORMAL,
4774 			access_pio_pcc_fifo_parity_err_cnt),
4775 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4776 			CNTR_NORMAL,
4777 			access_pio_sb_mem_fifo1_err_cnt),
4778 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4779 			CNTR_NORMAL,
4780 			access_pio_sb_mem_fifo0_err_cnt),
4781 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4782 			CNTR_NORMAL,
4783 			access_pio_csr_parity_err_cnt),
4784 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4785 			CNTR_NORMAL,
4786 			access_pio_write_addr_parity_err_cnt),
4787 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4788 			CNTR_NORMAL,
4789 			access_pio_write_bad_ctxt_err_cnt),
4790 /* SendDmaErrStatus */
4791 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4792 			0, CNTR_NORMAL,
4793 			access_sdma_pcie_req_tracking_cor_err_cnt),
4794 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4795 			0, CNTR_NORMAL,
4796 			access_sdma_pcie_req_tracking_unc_err_cnt),
4797 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4798 			CNTR_NORMAL,
4799 			access_sdma_csr_parity_err_cnt),
4800 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4801 			CNTR_NORMAL,
4802 			access_sdma_rpy_tag_err_cnt),
4803 /* SendEgressErrStatus */
4804 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_read_pio_memory_csr_unc_err_cnt),
4807 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4808 			0, CNTR_NORMAL,
4809 			access_tx_read_sdma_memory_csr_err_cnt),
4810 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_egress_fifo_cor_err_cnt),
4813 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_read_pio_memory_cor_err_cnt),
4816 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_read_sdma_memory_cor_err_cnt),
4819 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_sb_hdr_cor_err_cnt),
4822 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_credit_overrun_err_cnt),
4825 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_launch_fifo8_cor_err_cnt),
4828 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_launch_fifo7_cor_err_cnt),
4831 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4832 			CNTR_NORMAL,
4833 			access_tx_launch_fifo6_cor_err_cnt),
4834 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4835 			CNTR_NORMAL,
4836 			access_tx_launch_fifo5_cor_err_cnt),
4837 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4838 			CNTR_NORMAL,
4839 			access_tx_launch_fifo4_cor_err_cnt),
4840 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4841 			CNTR_NORMAL,
4842 			access_tx_launch_fifo3_cor_err_cnt),
4843 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4844 			CNTR_NORMAL,
4845 			access_tx_launch_fifo2_cor_err_cnt),
4846 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4847 			CNTR_NORMAL,
4848 			access_tx_launch_fifo1_cor_err_cnt),
4849 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4850 			CNTR_NORMAL,
4851 			access_tx_launch_fifo0_cor_err_cnt),
4852 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4853 			CNTR_NORMAL,
4854 			access_tx_credit_return_vl_err_cnt),
4855 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4856 			CNTR_NORMAL,
4857 			access_tx_hcrc_insertion_err_cnt),
4858 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4859 			CNTR_NORMAL,
4860 			access_tx_egress_fifo_unc_err_cnt),
4861 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4862 			CNTR_NORMAL,
4863 			access_tx_read_pio_memory_unc_err_cnt),
4864 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4865 			CNTR_NORMAL,
4866 			access_tx_read_sdma_memory_unc_err_cnt),
4867 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4868 			CNTR_NORMAL,
4869 			access_tx_sb_hdr_unc_err_cnt),
4870 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4871 			CNTR_NORMAL,
4872 			access_tx_credit_return_partiy_err_cnt),
4873 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4876 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4879 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4882 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4885 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4888 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4891 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4894 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4897 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4900 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma15_disallowed_packet_err_cnt),
4903 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma14_disallowed_packet_err_cnt),
4906 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4907 			0, 0, CNTR_NORMAL,
4908 			access_tx_sdma13_disallowed_packet_err_cnt),
4909 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4910 			0, 0, CNTR_NORMAL,
4911 			access_tx_sdma12_disallowed_packet_err_cnt),
4912 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4913 			0, 0, CNTR_NORMAL,
4914 			access_tx_sdma11_disallowed_packet_err_cnt),
4915 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4916 			0, 0, CNTR_NORMAL,
4917 			access_tx_sdma10_disallowed_packet_err_cnt),
4918 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4919 			0, 0, CNTR_NORMAL,
4920 			access_tx_sdma9_disallowed_packet_err_cnt),
4921 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4922 			0, 0, CNTR_NORMAL,
4923 			access_tx_sdma8_disallowed_packet_err_cnt),
4924 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4925 			0, 0, CNTR_NORMAL,
4926 			access_tx_sdma7_disallowed_packet_err_cnt),
4927 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4928 			0, 0, CNTR_NORMAL,
4929 			access_tx_sdma6_disallowed_packet_err_cnt),
4930 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4931 			0, 0, CNTR_NORMAL,
4932 			access_tx_sdma5_disallowed_packet_err_cnt),
4933 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4934 			0, 0, CNTR_NORMAL,
4935 			access_tx_sdma4_disallowed_packet_err_cnt),
4936 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4937 			0, 0, CNTR_NORMAL,
4938 			access_tx_sdma3_disallowed_packet_err_cnt),
4939 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4940 			0, 0, CNTR_NORMAL,
4941 			access_tx_sdma2_disallowed_packet_err_cnt),
4942 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4943 			0, 0, CNTR_NORMAL,
4944 			access_tx_sdma1_disallowed_packet_err_cnt),
4945 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4946 			0, 0, CNTR_NORMAL,
4947 			access_tx_sdma0_disallowed_packet_err_cnt),
4948 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4949 			CNTR_NORMAL,
4950 			access_tx_config_parity_err_cnt),
4951 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4952 			CNTR_NORMAL,
4953 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4954 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4955 			CNTR_NORMAL,
4956 			access_tx_launch_csr_parity_err_cnt),
4957 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_tx_illegal_vl_err_cnt),
4960 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4961 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4962 			CNTR_NORMAL,
4963 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4964 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_egress_reserved_10_err_cnt),
4967 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_egress_reserved_9_err_cnt),
4970 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4971 			0, 0, CNTR_NORMAL,
4972 			access_tx_sdma_launch_intf_parity_err_cnt),
4973 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4974 			CNTR_NORMAL,
4975 			access_tx_pio_launch_intf_parity_err_cnt),
4976 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4977 			CNTR_NORMAL,
4978 			access_egress_reserved_6_err_cnt),
4979 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4980 			CNTR_NORMAL,
4981 			access_tx_incorrect_link_state_err_cnt),
4982 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4983 			CNTR_NORMAL,
4984 			access_tx_linkdown_err_cnt),
4985 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4986 			"EgressFifoUnderrunOrParityErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4989 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4990 			CNTR_NORMAL,
4991 			access_egress_reserved_2_err_cnt),
4992 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_tx_pkt_integrity_mem_unc_err_cnt),
4995 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_tx_pkt_integrity_mem_cor_err_cnt),
4998 /* SendErrStatus */
4999 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
5000 			CNTR_NORMAL,
5001 			access_send_csr_write_bad_addr_err_cnt),
5002 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
5003 			CNTR_NORMAL,
5004 			access_send_csr_read_bad_addr_err_cnt),
5005 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
5006 			CNTR_NORMAL,
5007 			access_send_csr_parity_cnt),
5008 /* SendCtxtErrStatus */
5009 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
5010 			CNTR_NORMAL,
5011 			access_pio_write_out_of_bounds_err_cnt),
5012 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
5013 			CNTR_NORMAL,
5014 			access_pio_write_overflow_err_cnt),
5015 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
5016 			0, 0, CNTR_NORMAL,
5017 			access_pio_write_crosses_boundary_err_cnt),
5018 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
5019 			CNTR_NORMAL,
5020 			access_pio_disallowed_packet_err_cnt),
5021 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
5022 			CNTR_NORMAL,
5023 			access_pio_inconsistent_sop_err_cnt),
5024 /* SendDmaEngErrStatus */
5025 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
5026 			0, 0, CNTR_NORMAL,
5027 			access_sdma_header_request_fifo_cor_err_cnt),
5028 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_header_storage_cor_err_cnt),
5031 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_packet_tracking_cor_err_cnt),
5034 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_assembly_cor_err_cnt),
5037 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_desc_table_cor_err_cnt),
5040 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5041 			0, 0, CNTR_NORMAL,
5042 			access_sdma_header_request_fifo_unc_err_cnt),
5043 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_header_storage_unc_err_cnt),
5046 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_packet_tracking_unc_err_cnt),
5049 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_assembly_unc_err_cnt),
5052 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_desc_table_unc_err_cnt),
5055 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5056 			CNTR_NORMAL,
5057 			access_sdma_timeout_err_cnt),
5058 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5059 			CNTR_NORMAL,
5060 			access_sdma_header_length_err_cnt),
5061 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5062 			CNTR_NORMAL,
5063 			access_sdma_header_address_err_cnt),
5064 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5065 			CNTR_NORMAL,
5066 			access_sdma_header_select_err_cnt),
5067 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5068 			CNTR_NORMAL,
5069 			access_sdma_reserved_9_err_cnt),
5070 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5071 			CNTR_NORMAL,
5072 			access_sdma_packet_desc_overflow_err_cnt),
5073 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5074 			CNTR_NORMAL,
5075 			access_sdma_length_mismatch_err_cnt),
5076 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5077 			CNTR_NORMAL,
5078 			access_sdma_halt_err_cnt),
5079 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5080 			CNTR_NORMAL,
5081 			access_sdma_mem_read_err_cnt),
5082 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5083 			CNTR_NORMAL,
5084 			access_sdma_first_desc_err_cnt),
5085 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5086 			CNTR_NORMAL,
5087 			access_sdma_tail_out_of_bounds_err_cnt),
5088 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5089 			CNTR_NORMAL,
5090 			access_sdma_too_long_err_cnt),
5091 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5092 			CNTR_NORMAL,
5093 			access_sdma_gen_mismatch_err_cnt),
5094 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5095 			CNTR_NORMAL,
5096 			access_sdma_wrong_dw_err_cnt),
5097 };
5098 
5099 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5100 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5101 			CNTR_NORMAL),
5102 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5103 			CNTR_NORMAL),
5104 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5105 			CNTR_NORMAL),
5106 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5107 			CNTR_NORMAL),
5108 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5109 			CNTR_NORMAL),
5110 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5111 			CNTR_NORMAL),
5112 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5113 			CNTR_NORMAL),
5114 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5115 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5116 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5117 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5118 				      CNTR_SYNTH | CNTR_VL),
5119 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5120 				     CNTR_SYNTH | CNTR_VL),
5121 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5122 				      CNTR_SYNTH | CNTR_VL),
5123 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5124 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5125 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5126 			     access_sw_link_dn_cnt),
5127 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5128 			   access_sw_link_up_cnt),
5129 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5130 				 access_sw_unknown_frame_cnt),
5131 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5132 			     access_sw_xmit_discards),
5133 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5134 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5135 				access_sw_xmit_discards),
5136 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5137 				 access_xmit_constraint_errs),
5138 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5139 				access_rcv_constraint_errs),
5140 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5141 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5142 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5143 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5144 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5145 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5146 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5147 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5148 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5149 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5150 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5151 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5152 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5153 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5154 			       access_sw_cpu_rc_acks),
5155 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5156 				access_sw_cpu_rc_qacks),
5157 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5158 				       access_sw_cpu_rc_delayed_comp),
5159 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5160 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5161 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5162 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5163 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5164 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5165 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5166 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5167 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5168 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5169 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5170 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5171 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5172 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5173 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5174 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5175 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5176 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5177 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5178 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5179 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5180 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5181 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5182 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5183 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5184 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5185 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5186 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5187 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5188 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5189 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5190 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5191 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5192 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5193 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5194 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5195 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5196 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5197 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5198 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5199 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5200 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5201 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5202 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5203 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5204 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5205 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5206 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5207 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5208 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5209 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5210 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5211 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5212 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5213 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5214 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5215 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5216 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5217 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5218 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5219 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5220 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5221 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5222 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5223 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5224 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5225 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5226 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5227 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5228 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5229 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5230 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5231 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5232 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5233 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5234 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5235 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5236 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5237 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5238 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5239 };
5240 
5241 /* ======================================================================== */
5242 
5243 /* return true if this is chip revision revision a */
5244 int is_ax(struct hfi1_devdata *dd)
5245 {
5246 	u8 chip_rev_minor =
5247 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5248 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5249 	return (chip_rev_minor & 0xf0) == 0;
5250 }
5251 
5252 /* return true if this is chip revision revision b */
5253 int is_bx(struct hfi1_devdata *dd)
5254 {
5255 	u8 chip_rev_minor =
5256 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5257 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5258 	return (chip_rev_minor & 0xF0) == 0x10;
5259 }
5260 
5261 /* return true is kernel urg disabled for rcd */
5262 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5263 {
5264 	u64 mask;
5265 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5266 	u8 bit = is % 64;
5267 
5268 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5269 	return !(mask & BIT_ULL(bit));
5270 }
5271 
5272 /*
5273  * Append string s to buffer buf.  Arguments curp and len are the current
5274  * position and remaining length, respectively.
5275  *
5276  * return 0 on success, 1 on out of room
5277  */
5278 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5279 {
5280 	char *p = *curp;
5281 	int len = *lenp;
5282 	int result = 0; /* success */
5283 	char c;
5284 
5285 	/* add a comma, if first in the buffer */
5286 	if (p != buf) {
5287 		if (len == 0) {
5288 			result = 1; /* out of room */
5289 			goto done;
5290 		}
5291 		*p++ = ',';
5292 		len--;
5293 	}
5294 
5295 	/* copy the string */
5296 	while ((c = *s++) != 0) {
5297 		if (len == 0) {
5298 			result = 1; /* out of room */
5299 			goto done;
5300 		}
5301 		*p++ = c;
5302 		len--;
5303 	}
5304 
5305 done:
5306 	/* write return values */
5307 	*curp = p;
5308 	*lenp = len;
5309 
5310 	return result;
5311 }
5312 
5313 /*
5314  * Using the given flag table, print a comma separated string into
5315  * the buffer.  End in '*' if the buffer is too short.
5316  */
5317 static char *flag_string(char *buf, int buf_len, u64 flags,
5318 			 struct flag_table *table, int table_size)
5319 {
5320 	char extra[32];
5321 	char *p = buf;
5322 	int len = buf_len;
5323 	int no_room = 0;
5324 	int i;
5325 
5326 	/* make sure there is at least 2 so we can form "*" */
5327 	if (len < 2)
5328 		return "";
5329 
5330 	len--;	/* leave room for a nul */
5331 	for (i = 0; i < table_size; i++) {
5332 		if (flags & table[i].flag) {
5333 			no_room = append_str(buf, &p, &len, table[i].str);
5334 			if (no_room)
5335 				break;
5336 			flags &= ~table[i].flag;
5337 		}
5338 	}
5339 
5340 	/* any undocumented bits left? */
5341 	if (!no_room && flags) {
5342 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5343 		no_room = append_str(buf, &p, &len, extra);
5344 	}
5345 
5346 	/* add * if ran out of room */
5347 	if (no_room) {
5348 		/* may need to back up to add space for a '*' */
5349 		if (len == 0)
5350 			--p;
5351 		*p++ = '*';
5352 	}
5353 
5354 	/* add final nul - space already allocated above */
5355 	*p = 0;
5356 	return buf;
5357 }
5358 
5359 /* first 8 CCE error interrupt source names */
5360 static const char * const cce_misc_names[] = {
5361 	"CceErrInt",		/* 0 */
5362 	"RxeErrInt",		/* 1 */
5363 	"MiscErrInt",		/* 2 */
5364 	"Reserved3",		/* 3 */
5365 	"PioErrInt",		/* 4 */
5366 	"SDmaErrInt",		/* 5 */
5367 	"EgressErrInt",		/* 6 */
5368 	"TxeErrInt"		/* 7 */
5369 };
5370 
5371 /*
5372  * Return the miscellaneous error interrupt name.
5373  */
5374 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5375 {
5376 	if (source < ARRAY_SIZE(cce_misc_names))
5377 		strncpy(buf, cce_misc_names[source], bsize);
5378 	else
5379 		snprintf(buf, bsize, "Reserved%u",
5380 			 source + IS_GENERAL_ERR_START);
5381 
5382 	return buf;
5383 }
5384 
5385 /*
5386  * Return the SDMA engine error interrupt name.
5387  */
5388 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5389 {
5390 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5391 	return buf;
5392 }
5393 
5394 /*
5395  * Return the send context error interrupt name.
5396  */
5397 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5398 {
5399 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5400 	return buf;
5401 }
5402 
5403 static const char * const various_names[] = {
5404 	"PbcInt",
5405 	"GpioAssertInt",
5406 	"Qsfp1Int",
5407 	"Qsfp2Int",
5408 	"TCritInt"
5409 };
5410 
5411 /*
5412  * Return the various interrupt name.
5413  */
5414 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5415 {
5416 	if (source < ARRAY_SIZE(various_names))
5417 		strncpy(buf, various_names[source], bsize);
5418 	else
5419 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5420 	return buf;
5421 }
5422 
5423 /*
5424  * Return the DC interrupt name.
5425  */
5426 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5427 {
5428 	static const char * const dc_int_names[] = {
5429 		"common",
5430 		"lcb",
5431 		"8051",
5432 		"lbm"	/* local block merge */
5433 	};
5434 
5435 	if (source < ARRAY_SIZE(dc_int_names))
5436 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5437 	else
5438 		snprintf(buf, bsize, "DCInt%u", source);
5439 	return buf;
5440 }
5441 
5442 static const char * const sdma_int_names[] = {
5443 	"SDmaInt",
5444 	"SdmaIdleInt",
5445 	"SdmaProgressInt",
5446 };
5447 
5448 /*
5449  * Return the SDMA engine interrupt name.
5450  */
5451 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5452 {
5453 	/* what interrupt */
5454 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5455 	/* which engine */
5456 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5457 
5458 	if (likely(what < 3))
5459 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5460 	else
5461 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5462 	return buf;
5463 }
5464 
5465 /*
5466  * Return the receive available interrupt name.
5467  */
5468 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5469 {
5470 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5471 	return buf;
5472 }
5473 
5474 /*
5475  * Return the receive urgent interrupt name.
5476  */
5477 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5478 {
5479 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5480 	return buf;
5481 }
5482 
5483 /*
5484  * Return the send credit interrupt name.
5485  */
5486 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5487 {
5488 	snprintf(buf, bsize, "SendCreditInt%u", source);
5489 	return buf;
5490 }
5491 
5492 /*
5493  * Return the reserved interrupt name.
5494  */
5495 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5496 {
5497 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5498 	return buf;
5499 }
5500 
5501 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5502 {
5503 	return flag_string(buf, buf_len, flags,
5504 			   cce_err_status_flags,
5505 			   ARRAY_SIZE(cce_err_status_flags));
5506 }
5507 
5508 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5509 {
5510 	return flag_string(buf, buf_len, flags,
5511 			   rxe_err_status_flags,
5512 			   ARRAY_SIZE(rxe_err_status_flags));
5513 }
5514 
5515 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5516 {
5517 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5518 			   ARRAY_SIZE(misc_err_status_flags));
5519 }
5520 
5521 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5522 {
5523 	return flag_string(buf, buf_len, flags,
5524 			   pio_err_status_flags,
5525 			   ARRAY_SIZE(pio_err_status_flags));
5526 }
5527 
5528 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5529 {
5530 	return flag_string(buf, buf_len, flags,
5531 			   sdma_err_status_flags,
5532 			   ARRAY_SIZE(sdma_err_status_flags));
5533 }
5534 
5535 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5536 {
5537 	return flag_string(buf, buf_len, flags,
5538 			   egress_err_status_flags,
5539 			   ARRAY_SIZE(egress_err_status_flags));
5540 }
5541 
5542 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5543 {
5544 	return flag_string(buf, buf_len, flags,
5545 			   egress_err_info_flags,
5546 			   ARRAY_SIZE(egress_err_info_flags));
5547 }
5548 
5549 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5550 {
5551 	return flag_string(buf, buf_len, flags,
5552 			   send_err_status_flags,
5553 			   ARRAY_SIZE(send_err_status_flags));
5554 }
5555 
5556 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5557 {
5558 	char buf[96];
5559 	int i = 0;
5560 
5561 	/*
5562 	 * For most these errors, there is nothing that can be done except
5563 	 * report or record it.
5564 	 */
5565 	dd_dev_info(dd, "CCE Error: %s\n",
5566 		    cce_err_status_string(buf, sizeof(buf), reg));
5567 
5568 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5569 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5570 		/* this error requires a manual drop into SPC freeze mode */
5571 		/* then a fix up */
5572 		start_freeze_handling(dd->pport, FREEZE_SELF);
5573 	}
5574 
5575 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5576 		if (reg & (1ull << i)) {
5577 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5578 			/* maintain a counter over all cce_err_status errors */
5579 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5580 		}
5581 	}
5582 }
5583 
5584 /*
5585  * Check counters for receive errors that do not have an interrupt
5586  * associated with them.
5587  */
5588 #define RCVERR_CHECK_TIME 10
5589 static void update_rcverr_timer(struct timer_list *t)
5590 {
5591 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5592 	struct hfi1_pportdata *ppd = dd->pport;
5593 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5594 
5595 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5596 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5597 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5598 		set_link_down_reason(
5599 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5600 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5601 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5602 	}
5603 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5604 
5605 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5606 }
5607 
5608 static int init_rcverr(struct hfi1_devdata *dd)
5609 {
5610 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5611 	/* Assume the hardware counter has been reset */
5612 	dd->rcv_ovfl_cnt = 0;
5613 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5614 }
5615 
5616 static void free_rcverr(struct hfi1_devdata *dd)
5617 {
5618 	if (dd->rcverr_timer.function)
5619 		del_timer_sync(&dd->rcverr_timer);
5620 }
5621 
5622 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5623 {
5624 	char buf[96];
5625 	int i = 0;
5626 
5627 	dd_dev_info(dd, "Receive Error: %s\n",
5628 		    rxe_err_status_string(buf, sizeof(buf), reg));
5629 
5630 	if (reg & ALL_RXE_FREEZE_ERR) {
5631 		int flags = 0;
5632 
5633 		/*
5634 		 * Freeze mode recovery is disabled for the errors
5635 		 * in RXE_FREEZE_ABORT_MASK
5636 		 */
5637 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5638 			flags = FREEZE_ABORT;
5639 
5640 		start_freeze_handling(dd->pport, flags);
5641 	}
5642 
5643 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5644 		if (reg & (1ull << i))
5645 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5646 	}
5647 }
5648 
5649 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5650 {
5651 	char buf[96];
5652 	int i = 0;
5653 
5654 	dd_dev_info(dd, "Misc Error: %s",
5655 		    misc_err_status_string(buf, sizeof(buf), reg));
5656 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5657 		if (reg & (1ull << i))
5658 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5659 	}
5660 }
5661 
5662 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5663 {
5664 	char buf[96];
5665 	int i = 0;
5666 
5667 	dd_dev_info(dd, "PIO Error: %s\n",
5668 		    pio_err_status_string(buf, sizeof(buf), reg));
5669 
5670 	if (reg & ALL_PIO_FREEZE_ERR)
5671 		start_freeze_handling(dd->pport, 0);
5672 
5673 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5674 		if (reg & (1ull << i))
5675 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5676 	}
5677 }
5678 
5679 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5680 {
5681 	char buf[96];
5682 	int i = 0;
5683 
5684 	dd_dev_info(dd, "SDMA Error: %s\n",
5685 		    sdma_err_status_string(buf, sizeof(buf), reg));
5686 
5687 	if (reg & ALL_SDMA_FREEZE_ERR)
5688 		start_freeze_handling(dd->pport, 0);
5689 
5690 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5691 		if (reg & (1ull << i))
5692 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5693 	}
5694 }
5695 
5696 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5697 {
5698 	incr_cntr64(&ppd->port_xmit_discards);
5699 }
5700 
5701 static void count_port_inactive(struct hfi1_devdata *dd)
5702 {
5703 	__count_port_discards(dd->pport);
5704 }
5705 
5706 /*
5707  * We have had a "disallowed packet" error during egress. Determine the
5708  * integrity check which failed, and update relevant error counter, etc.
5709  *
5710  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5711  * bit of state per integrity check, and so we can miss the reason for an
5712  * egress error if more than one packet fails the same integrity check
5713  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5714  */
5715 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5716 					int vl)
5717 {
5718 	struct hfi1_pportdata *ppd = dd->pport;
5719 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5720 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5721 	char buf[96];
5722 
5723 	/* clear down all observed info as quickly as possible after read */
5724 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5725 
5726 	dd_dev_info(dd,
5727 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5728 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5729 
5730 	/* Eventually add other counters for each bit */
5731 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5732 		int weight, i;
5733 
5734 		/*
5735 		 * Count all applicable bits as individual errors and
5736 		 * attribute them to the packet that triggered this handler.
5737 		 * This may not be completely accurate due to limitations
5738 		 * on the available hardware error information.  There is
5739 		 * a single information register and any number of error
5740 		 * packets may have occurred and contributed to it before
5741 		 * this routine is called.  This means that:
5742 		 * a) If multiple packets with the same error occur before
5743 		 *    this routine is called, earlier packets are missed.
5744 		 *    There is only a single bit for each error type.
5745 		 * b) Errors may not be attributed to the correct VL.
5746 		 *    The driver is attributing all bits in the info register
5747 		 *    to the packet that triggered this call, but bits
5748 		 *    could be an accumulation of different packets with
5749 		 *    different VLs.
5750 		 * c) A single error packet may have multiple counts attached
5751 		 *    to it.  There is no way for the driver to know if
5752 		 *    multiple bits set in the info register are due to a
5753 		 *    single packet or multiple packets.  The driver assumes
5754 		 *    multiple packets.
5755 		 */
5756 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5757 		for (i = 0; i < weight; i++) {
5758 			__count_port_discards(ppd);
5759 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5760 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5761 			else if (vl == 15)
5762 				incr_cntr64(&ppd->port_xmit_discards_vl
5763 					    [C_VL_15]);
5764 		}
5765 	}
5766 }
5767 
5768 /*
5769  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5770  * register. Does it represent a 'port inactive' error?
5771  */
5772 static inline int port_inactive_err(u64 posn)
5773 {
5774 	return (posn >= SEES(TX_LINKDOWN) &&
5775 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5776 }
5777 
5778 /*
5779  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5780  * register. Does it represent a 'disallowed packet' error?
5781  */
5782 static inline int disallowed_pkt_err(int posn)
5783 {
5784 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5785 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5786 }
5787 
5788 /*
5789  * Input value is a bit position of one of the SDMA engine disallowed
5790  * packet errors.  Return which engine.  Use of this must be guarded by
5791  * disallowed_pkt_err().
5792  */
5793 static inline int disallowed_pkt_engine(int posn)
5794 {
5795 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5796 }
5797 
5798 /*
5799  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5800  * be done.
5801  */
5802 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5803 {
5804 	struct sdma_vl_map *m;
5805 	int vl;
5806 
5807 	/* range check */
5808 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5809 		return -1;
5810 
5811 	rcu_read_lock();
5812 	m = rcu_dereference(dd->sdma_map);
5813 	vl = m->engine_to_vl[engine];
5814 	rcu_read_unlock();
5815 
5816 	return vl;
5817 }
5818 
5819 /*
5820  * Translate the send context (sofware index) into a VL.  Return -1 if the
5821  * translation cannot be done.
5822  */
5823 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5824 {
5825 	struct send_context_info *sci;
5826 	struct send_context *sc;
5827 	int i;
5828 
5829 	sci = &dd->send_contexts[sw_index];
5830 
5831 	/* there is no information for user (PSM) and ack contexts */
5832 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5833 		return -1;
5834 
5835 	sc = sci->sc;
5836 	if (!sc)
5837 		return -1;
5838 	if (dd->vld[15].sc == sc)
5839 		return 15;
5840 	for (i = 0; i < num_vls; i++)
5841 		if (dd->vld[i].sc == sc)
5842 			return i;
5843 
5844 	return -1;
5845 }
5846 
5847 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5848 {
5849 	u64 reg_copy = reg, handled = 0;
5850 	char buf[96];
5851 	int i = 0;
5852 
5853 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5854 		start_freeze_handling(dd->pport, 0);
5855 	else if (is_ax(dd) &&
5856 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5857 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5858 		start_freeze_handling(dd->pport, 0);
5859 
5860 	while (reg_copy) {
5861 		int posn = fls64(reg_copy);
5862 		/* fls64() returns a 1-based offset, we want it zero based */
5863 		int shift = posn - 1;
5864 		u64 mask = 1ULL << shift;
5865 
5866 		if (port_inactive_err(shift)) {
5867 			count_port_inactive(dd);
5868 			handled |= mask;
5869 		} else if (disallowed_pkt_err(shift)) {
5870 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5871 
5872 			handle_send_egress_err_info(dd, vl);
5873 			handled |= mask;
5874 		}
5875 		reg_copy &= ~mask;
5876 	}
5877 
5878 	reg &= ~handled;
5879 
5880 	if (reg)
5881 		dd_dev_info(dd, "Egress Error: %s\n",
5882 			    egress_err_status_string(buf, sizeof(buf), reg));
5883 
5884 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5885 		if (reg & (1ull << i))
5886 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5887 	}
5888 }
5889 
5890 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5891 {
5892 	char buf[96];
5893 	int i = 0;
5894 
5895 	dd_dev_info(dd, "Send Error: %s\n",
5896 		    send_err_status_string(buf, sizeof(buf), reg));
5897 
5898 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5899 		if (reg & (1ull << i))
5900 			incr_cntr64(&dd->send_err_status_cnt[i]);
5901 	}
5902 }
5903 
5904 /*
5905  * The maximum number of times the error clear down will loop before
5906  * blocking a repeating error.  This value is arbitrary.
5907  */
5908 #define MAX_CLEAR_COUNT 20
5909 
5910 /*
5911  * Clear and handle an error register.  All error interrupts are funneled
5912  * through here to have a central location to correctly handle single-
5913  * or multi-shot errors.
5914  *
5915  * For non per-context registers, call this routine with a context value
5916  * of 0 so the per-context offset is zero.
5917  *
5918  * If the handler loops too many times, assume that something is wrong
5919  * and can't be fixed, so mask the error bits.
5920  */
5921 static void interrupt_clear_down(struct hfi1_devdata *dd,
5922 				 u32 context,
5923 				 const struct err_reg_info *eri)
5924 {
5925 	u64 reg;
5926 	u32 count;
5927 
5928 	/* read in a loop until no more errors are seen */
5929 	count = 0;
5930 	while (1) {
5931 		reg = read_kctxt_csr(dd, context, eri->status);
5932 		if (reg == 0)
5933 			break;
5934 		write_kctxt_csr(dd, context, eri->clear, reg);
5935 		if (likely(eri->handler))
5936 			eri->handler(dd, context, reg);
5937 		count++;
5938 		if (count > MAX_CLEAR_COUNT) {
5939 			u64 mask;
5940 
5941 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5942 				   eri->desc, reg);
5943 			/*
5944 			 * Read-modify-write so any other masked bits
5945 			 * remain masked.
5946 			 */
5947 			mask = read_kctxt_csr(dd, context, eri->mask);
5948 			mask &= ~reg;
5949 			write_kctxt_csr(dd, context, eri->mask, mask);
5950 			break;
5951 		}
5952 	}
5953 }
5954 
5955 /*
5956  * CCE block "misc" interrupt.  Source is < 16.
5957  */
5958 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5959 {
5960 	const struct err_reg_info *eri = &misc_errs[source];
5961 
5962 	if (eri->handler) {
5963 		interrupt_clear_down(dd, 0, eri);
5964 	} else {
5965 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5966 			   source);
5967 	}
5968 }
5969 
5970 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5971 {
5972 	return flag_string(buf, buf_len, flags,
5973 			   sc_err_status_flags,
5974 			   ARRAY_SIZE(sc_err_status_flags));
5975 }
5976 
5977 /*
5978  * Send context error interrupt.  Source (hw_context) is < 160.
5979  *
5980  * All send context errors cause the send context to halt.  The normal
5981  * clear-down mechanism cannot be used because we cannot clear the
5982  * error bits until several other long-running items are done first.
5983  * This is OK because with the context halted, nothing else is going
5984  * to happen on it anyway.
5985  */
5986 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5987 				unsigned int hw_context)
5988 {
5989 	struct send_context_info *sci;
5990 	struct send_context *sc;
5991 	char flags[96];
5992 	u64 status;
5993 	u32 sw_index;
5994 	int i = 0;
5995 	unsigned long irq_flags;
5996 
5997 	sw_index = dd->hw_to_sw[hw_context];
5998 	if (sw_index >= dd->num_send_contexts) {
5999 		dd_dev_err(dd,
6000 			   "out of range sw index %u for send context %u\n",
6001 			   sw_index, hw_context);
6002 		return;
6003 	}
6004 	sci = &dd->send_contexts[sw_index];
6005 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
6006 	sc = sci->sc;
6007 	if (!sc) {
6008 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
6009 			   sw_index, hw_context);
6010 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6011 		return;
6012 	}
6013 
6014 	/* tell the software that a halt has begun */
6015 	sc_stop(sc, SCF_HALTED);
6016 
6017 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
6018 
6019 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
6020 		    send_context_err_status_string(flags, sizeof(flags),
6021 						   status));
6022 
6023 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
6024 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
6025 
6026 	/*
6027 	 * Automatically restart halted kernel contexts out of interrupt
6028 	 * context.  User contexts must ask the driver to restart the context.
6029 	 */
6030 	if (sc->type != SC_USER)
6031 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
6032 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6033 
6034 	/*
6035 	 * Update the counters for the corresponding status bits.
6036 	 * Note that these particular counters are aggregated over all
6037 	 * 160 contexts.
6038 	 */
6039 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6040 		if (status & (1ull << i))
6041 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6042 	}
6043 }
6044 
6045 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6046 				unsigned int source, u64 status)
6047 {
6048 	struct sdma_engine *sde;
6049 	int i = 0;
6050 
6051 	sde = &dd->per_sdma[source];
6052 #ifdef CONFIG_SDMA_VERBOSITY
6053 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6054 		   slashstrip(__FILE__), __LINE__, __func__);
6055 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6056 		   sde->this_idx, source, (unsigned long long)status);
6057 #endif
6058 	sde->err_cnt++;
6059 	sdma_engine_error(sde, status);
6060 
6061 	/*
6062 	* Update the counters for the corresponding status bits.
6063 	* Note that these particular counters are aggregated over
6064 	* all 16 DMA engines.
6065 	*/
6066 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6067 		if (status & (1ull << i))
6068 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6069 	}
6070 }
6071 
6072 /*
6073  * CCE block SDMA error interrupt.  Source is < 16.
6074  */
6075 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6076 {
6077 #ifdef CONFIG_SDMA_VERBOSITY
6078 	struct sdma_engine *sde = &dd->per_sdma[source];
6079 
6080 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6081 		   slashstrip(__FILE__), __LINE__, __func__);
6082 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6083 		   source);
6084 	sdma_dumpstate(sde);
6085 #endif
6086 	interrupt_clear_down(dd, source, &sdma_eng_err);
6087 }
6088 
6089 /*
6090  * CCE block "various" interrupt.  Source is < 8.
6091  */
6092 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6093 {
6094 	const struct err_reg_info *eri = &various_err[source];
6095 
6096 	/*
6097 	 * TCritInt cannot go through interrupt_clear_down()
6098 	 * because it is not a second tier interrupt. The handler
6099 	 * should be called directly.
6100 	 */
6101 	if (source == TCRIT_INT_SOURCE)
6102 		handle_temp_err(dd);
6103 	else if (eri->handler)
6104 		interrupt_clear_down(dd, 0, eri);
6105 	else
6106 		dd_dev_info(dd,
6107 			    "%s: Unimplemented/reserved interrupt %d\n",
6108 			    __func__, source);
6109 }
6110 
6111 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6112 {
6113 	/* src_ctx is always zero */
6114 	struct hfi1_pportdata *ppd = dd->pport;
6115 	unsigned long flags;
6116 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6117 
6118 	if (reg & QSFP_HFI0_MODPRST_N) {
6119 		if (!qsfp_mod_present(ppd)) {
6120 			dd_dev_info(dd, "%s: QSFP module removed\n",
6121 				    __func__);
6122 
6123 			ppd->driver_link_ready = 0;
6124 			/*
6125 			 * Cable removed, reset all our information about the
6126 			 * cache and cable capabilities
6127 			 */
6128 
6129 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6130 			/*
6131 			 * We don't set cache_refresh_required here as we expect
6132 			 * an interrupt when a cable is inserted
6133 			 */
6134 			ppd->qsfp_info.cache_valid = 0;
6135 			ppd->qsfp_info.reset_needed = 0;
6136 			ppd->qsfp_info.limiting_active = 0;
6137 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6138 					       flags);
6139 			/* Invert the ModPresent pin now to detect plug-in */
6140 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6141 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6142 
6143 			if ((ppd->offline_disabled_reason >
6144 			  HFI1_ODR_MASK(
6145 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6146 			  (ppd->offline_disabled_reason ==
6147 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6148 				ppd->offline_disabled_reason =
6149 				HFI1_ODR_MASK(
6150 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6151 
6152 			if (ppd->host_link_state == HLS_DN_POLL) {
6153 				/*
6154 				 * The link is still in POLL. This means
6155 				 * that the normal link down processing
6156 				 * will not happen. We have to do it here
6157 				 * before turning the DC off.
6158 				 */
6159 				queue_work(ppd->link_wq, &ppd->link_down_work);
6160 			}
6161 		} else {
6162 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6163 				    __func__);
6164 
6165 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6166 			ppd->qsfp_info.cache_valid = 0;
6167 			ppd->qsfp_info.cache_refresh_required = 1;
6168 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6169 					       flags);
6170 
6171 			/*
6172 			 * Stop inversion of ModPresent pin to detect
6173 			 * removal of the cable
6174 			 */
6175 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6176 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6177 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6178 
6179 			ppd->offline_disabled_reason =
6180 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6181 		}
6182 	}
6183 
6184 	if (reg & QSFP_HFI0_INT_N) {
6185 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6186 			    __func__);
6187 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6188 		ppd->qsfp_info.check_interrupt_flags = 1;
6189 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6190 	}
6191 
6192 	/* Schedule the QSFP work only if there is a cable attached. */
6193 	if (qsfp_mod_present(ppd))
6194 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6195 }
6196 
6197 static int request_host_lcb_access(struct hfi1_devdata *dd)
6198 {
6199 	int ret;
6200 
6201 	ret = do_8051_command(dd, HCMD_MISC,
6202 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6203 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6204 	if (ret != HCMD_SUCCESS) {
6205 		dd_dev_err(dd, "%s: command failed with error %d\n",
6206 			   __func__, ret);
6207 	}
6208 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6209 }
6210 
6211 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6212 {
6213 	int ret;
6214 
6215 	ret = do_8051_command(dd, HCMD_MISC,
6216 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6217 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6218 	if (ret != HCMD_SUCCESS) {
6219 		dd_dev_err(dd, "%s: command failed with error %d\n",
6220 			   __func__, ret);
6221 	}
6222 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6223 }
6224 
6225 /*
6226  * Set the LCB selector - allow host access.  The DCC selector always
6227  * points to the host.
6228  */
6229 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6230 {
6231 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6232 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6233 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6234 }
6235 
6236 /*
6237  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6238  * points to the host.
6239  */
6240 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6241 {
6242 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6243 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6244 }
6245 
6246 /*
6247  * Acquire LCB access from the 8051.  If the host already has access,
6248  * just increment a counter.  Otherwise, inform the 8051 that the
6249  * host is taking access.
6250  *
6251  * Returns:
6252  *	0 on success
6253  *	-EBUSY if the 8051 has control and cannot be disturbed
6254  *	-errno if unable to acquire access from the 8051
6255  */
6256 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6257 {
6258 	struct hfi1_pportdata *ppd = dd->pport;
6259 	int ret = 0;
6260 
6261 	/*
6262 	 * Use the host link state lock so the operation of this routine
6263 	 * { link state check, selector change, count increment } can occur
6264 	 * as a unit against a link state change.  Otherwise there is a
6265 	 * race between the state change and the count increment.
6266 	 */
6267 	if (sleep_ok) {
6268 		mutex_lock(&ppd->hls_lock);
6269 	} else {
6270 		while (!mutex_trylock(&ppd->hls_lock))
6271 			udelay(1);
6272 	}
6273 
6274 	/* this access is valid only when the link is up */
6275 	if (ppd->host_link_state & HLS_DOWN) {
6276 		dd_dev_info(dd, "%s: link state %s not up\n",
6277 			    __func__, link_state_name(ppd->host_link_state));
6278 		ret = -EBUSY;
6279 		goto done;
6280 	}
6281 
6282 	if (dd->lcb_access_count == 0) {
6283 		ret = request_host_lcb_access(dd);
6284 		if (ret) {
6285 			dd_dev_err(dd,
6286 				   "%s: unable to acquire LCB access, err %d\n",
6287 				   __func__, ret);
6288 			goto done;
6289 		}
6290 		set_host_lcb_access(dd);
6291 	}
6292 	dd->lcb_access_count++;
6293 done:
6294 	mutex_unlock(&ppd->hls_lock);
6295 	return ret;
6296 }
6297 
6298 /*
6299  * Release LCB access by decrementing the use count.  If the count is moving
6300  * from 1 to 0, inform 8051 that it has control back.
6301  *
6302  * Returns:
6303  *	0 on success
6304  *	-errno if unable to release access to the 8051
6305  */
6306 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6307 {
6308 	int ret = 0;
6309 
6310 	/*
6311 	 * Use the host link state lock because the acquire needed it.
6312 	 * Here, we only need to keep { selector change, count decrement }
6313 	 * as a unit.
6314 	 */
6315 	if (sleep_ok) {
6316 		mutex_lock(&dd->pport->hls_lock);
6317 	} else {
6318 		while (!mutex_trylock(&dd->pport->hls_lock))
6319 			udelay(1);
6320 	}
6321 
6322 	if (dd->lcb_access_count == 0) {
6323 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6324 			   __func__);
6325 		goto done;
6326 	}
6327 
6328 	if (dd->lcb_access_count == 1) {
6329 		set_8051_lcb_access(dd);
6330 		ret = request_8051_lcb_access(dd);
6331 		if (ret) {
6332 			dd_dev_err(dd,
6333 				   "%s: unable to release LCB access, err %d\n",
6334 				   __func__, ret);
6335 			/* restore host access if the grant didn't work */
6336 			set_host_lcb_access(dd);
6337 			goto done;
6338 		}
6339 	}
6340 	dd->lcb_access_count--;
6341 done:
6342 	mutex_unlock(&dd->pport->hls_lock);
6343 	return ret;
6344 }
6345 
6346 /*
6347  * Initialize LCB access variables and state.  Called during driver load,
6348  * after most of the initialization is finished.
6349  *
6350  * The DC default is LCB access on for the host.  The driver defaults to
6351  * leaving access to the 8051.  Assign access now - this constrains the call
6352  * to this routine to be after all LCB set-up is done.  In particular, after
6353  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6354  */
6355 static void init_lcb_access(struct hfi1_devdata *dd)
6356 {
6357 	dd->lcb_access_count = 0;
6358 }
6359 
6360 /*
6361  * Write a response back to a 8051 request.
6362  */
6363 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6364 {
6365 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6366 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6367 		  (u64)return_code <<
6368 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6369 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6370 }
6371 
6372 /*
6373  * Handle host requests from the 8051.
6374  */
6375 static void handle_8051_request(struct hfi1_pportdata *ppd)
6376 {
6377 	struct hfi1_devdata *dd = ppd->dd;
6378 	u64 reg;
6379 	u16 data = 0;
6380 	u8 type;
6381 
6382 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6383 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6384 		return;	/* no request */
6385 
6386 	/* zero out COMPLETED so the response is seen */
6387 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6388 
6389 	/* extract request details */
6390 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6391 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6392 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6393 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6394 
6395 	switch (type) {
6396 	case HREQ_LOAD_CONFIG:
6397 	case HREQ_SAVE_CONFIG:
6398 	case HREQ_READ_CONFIG:
6399 	case HREQ_SET_TX_EQ_ABS:
6400 	case HREQ_SET_TX_EQ_REL:
6401 	case HREQ_ENABLE:
6402 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6403 			    type);
6404 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6405 		break;
6406 	case HREQ_LCB_RESET:
6407 		/* Put the LCB, RX FPE and TX FPE into reset */
6408 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6409 		/* Make sure the write completed */
6410 		(void)read_csr(dd, DCC_CFG_RESET);
6411 		/* Hold the reset long enough to take effect */
6412 		udelay(1);
6413 		/* Take the LCB, RX FPE and TX FPE out of reset */
6414 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6415 		hreq_response(dd, HREQ_SUCCESS, 0);
6416 
6417 		break;
6418 	case HREQ_CONFIG_DONE:
6419 		hreq_response(dd, HREQ_SUCCESS, 0);
6420 		break;
6421 
6422 	case HREQ_INTERFACE_TEST:
6423 		hreq_response(dd, HREQ_SUCCESS, data);
6424 		break;
6425 	default:
6426 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6427 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6428 		break;
6429 	}
6430 }
6431 
6432 /*
6433  * Set up allocation unit vaulue.
6434  */
6435 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6436 {
6437 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6438 
6439 	/* do not modify other values in the register */
6440 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6441 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6442 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6443 }
6444 
6445 /*
6446  * Set up initial VL15 credits of the remote.  Assumes the rest of
6447  * the CM credit registers are zero from a previous global or credit reset.
6448  * Shared limit for VL15 will always be 0.
6449  */
6450 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6451 {
6452 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6453 
6454 	/* set initial values for total and shared credit limit */
6455 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6456 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6457 
6458 	/*
6459 	 * Set total limit to be equal to VL15 credits.
6460 	 * Leave shared limit at 0.
6461 	 */
6462 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6463 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6464 
6465 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6466 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6467 }
6468 
6469 /*
6470  * Zero all credit details from the previous connection and
6471  * reset the CM manager's internal counters.
6472  */
6473 void reset_link_credits(struct hfi1_devdata *dd)
6474 {
6475 	int i;
6476 
6477 	/* remove all previous VL credit limits */
6478 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6479 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6480 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6481 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6482 	/* reset the CM block */
6483 	pio_send_control(dd, PSC_CM_RESET);
6484 	/* reset cached value */
6485 	dd->vl15buf_cached = 0;
6486 }
6487 
6488 /* convert a vCU to a CU */
6489 static u32 vcu_to_cu(u8 vcu)
6490 {
6491 	return 1 << vcu;
6492 }
6493 
6494 /* convert a CU to a vCU */
6495 static u8 cu_to_vcu(u32 cu)
6496 {
6497 	return ilog2(cu);
6498 }
6499 
6500 /* convert a vAU to an AU */
6501 static u32 vau_to_au(u8 vau)
6502 {
6503 	return 8 * (1 << vau);
6504 }
6505 
6506 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6507 {
6508 	ppd->sm_trap_qp = 0x0;
6509 	ppd->sa_qp = 0x1;
6510 }
6511 
6512 /*
6513  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6514  */
6515 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6516 {
6517 	u64 reg;
6518 
6519 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6520 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6521 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6522 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6523 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6524 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6525 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6526 	reg = read_csr(dd, DCC_CFG_RESET);
6527 	write_csr(dd, DCC_CFG_RESET, reg |
6528 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6529 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6530 	if (!abort) {
6531 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6532 		write_csr(dd, DCC_CFG_RESET, reg);
6533 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6534 	}
6535 }
6536 
6537 /*
6538  * This routine should be called after the link has been transitioned to
6539  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6540  * reset).
6541  *
6542  * The expectation is that the caller of this routine would have taken
6543  * care of properly transitioning the link into the correct state.
6544  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6545  *       before calling this function.
6546  */
6547 static void _dc_shutdown(struct hfi1_devdata *dd)
6548 {
6549 	lockdep_assert_held(&dd->dc8051_lock);
6550 
6551 	if (dd->dc_shutdown)
6552 		return;
6553 
6554 	dd->dc_shutdown = 1;
6555 	/* Shutdown the LCB */
6556 	lcb_shutdown(dd, 1);
6557 	/*
6558 	 * Going to OFFLINE would have causes the 8051 to put the
6559 	 * SerDes into reset already. Just need to shut down the 8051,
6560 	 * itself.
6561 	 */
6562 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6563 }
6564 
6565 static void dc_shutdown(struct hfi1_devdata *dd)
6566 {
6567 	mutex_lock(&dd->dc8051_lock);
6568 	_dc_shutdown(dd);
6569 	mutex_unlock(&dd->dc8051_lock);
6570 }
6571 
6572 /*
6573  * Calling this after the DC has been brought out of reset should not
6574  * do any damage.
6575  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6576  *       before calling this function.
6577  */
6578 static void _dc_start(struct hfi1_devdata *dd)
6579 {
6580 	lockdep_assert_held(&dd->dc8051_lock);
6581 
6582 	if (!dd->dc_shutdown)
6583 		return;
6584 
6585 	/* Take the 8051 out of reset */
6586 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6587 	/* Wait until 8051 is ready */
6588 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6589 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6590 			   __func__);
6591 
6592 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6593 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6594 	/* lcb_shutdown() with abort=1 does not restore these */
6595 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6596 	dd->dc_shutdown = 0;
6597 }
6598 
6599 static void dc_start(struct hfi1_devdata *dd)
6600 {
6601 	mutex_lock(&dd->dc8051_lock);
6602 	_dc_start(dd);
6603 	mutex_unlock(&dd->dc8051_lock);
6604 }
6605 
6606 /*
6607  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6608  */
6609 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6610 {
6611 	u64 rx_radr, tx_radr;
6612 	u32 version;
6613 
6614 	if (dd->icode != ICODE_FPGA_EMULATION)
6615 		return;
6616 
6617 	/*
6618 	 * These LCB defaults on emulator _s are good, nothing to do here:
6619 	 *	LCB_CFG_TX_FIFOS_RADR
6620 	 *	LCB_CFG_RX_FIFOS_RADR
6621 	 *	LCB_CFG_LN_DCLK
6622 	 *	LCB_CFG_IGNORE_LOST_RCLK
6623 	 */
6624 	if (is_emulator_s(dd))
6625 		return;
6626 	/* else this is _p */
6627 
6628 	version = emulator_rev(dd);
6629 	if (!is_ax(dd))
6630 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6631 
6632 	if (version <= 0x12) {
6633 		/* release 0x12 and below */
6634 
6635 		/*
6636 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6637 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6638 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6639 		 */
6640 		rx_radr =
6641 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6642 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6643 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6644 		/*
6645 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6646 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6647 		 */
6648 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6649 	} else if (version <= 0x18) {
6650 		/* release 0x13 up to 0x18 */
6651 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6652 		rx_radr =
6653 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6654 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6655 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6656 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6657 	} else if (version == 0x19) {
6658 		/* release 0x19 */
6659 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6660 		rx_radr =
6661 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6662 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6663 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6664 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6665 	} else if (version == 0x1a) {
6666 		/* release 0x1a */
6667 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6668 		rx_radr =
6669 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6670 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6671 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6672 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6673 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6674 	} else {
6675 		/* release 0x1b and higher */
6676 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6677 		rx_radr =
6678 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6679 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6680 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6681 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6682 	}
6683 
6684 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6685 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6686 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6687 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6688 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6689 }
6690 
6691 /*
6692  * Handle a SMA idle message
6693  *
6694  * This is a work-queue function outside of the interrupt.
6695  */
6696 void handle_sma_message(struct work_struct *work)
6697 {
6698 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6699 							sma_message_work);
6700 	struct hfi1_devdata *dd = ppd->dd;
6701 	u64 msg;
6702 	int ret;
6703 
6704 	/*
6705 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6706 	 * is stripped off
6707 	 */
6708 	ret = read_idle_sma(dd, &msg);
6709 	if (ret)
6710 		return;
6711 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6712 	/*
6713 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6714 	 */
6715 	switch (msg & 0xff) {
6716 	case SMA_IDLE_ARM:
6717 		/*
6718 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6719 		 * State Transitions
6720 		 *
6721 		 * Only expected in INIT or ARMED, discard otherwise.
6722 		 */
6723 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6724 			ppd->neighbor_normal = 1;
6725 		break;
6726 	case SMA_IDLE_ACTIVE:
6727 		/*
6728 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6729 		 * State Transitions
6730 		 *
6731 		 * Can activate the node.  Discard otherwise.
6732 		 */
6733 		if (ppd->host_link_state == HLS_UP_ARMED &&
6734 		    ppd->is_active_optimize_enabled) {
6735 			ppd->neighbor_normal = 1;
6736 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6737 			if (ret)
6738 				dd_dev_err(
6739 					dd,
6740 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6741 					__func__);
6742 		}
6743 		break;
6744 	default:
6745 		dd_dev_err(dd,
6746 			   "%s: received unexpected SMA idle message 0x%llx\n",
6747 			   __func__, msg);
6748 		break;
6749 	}
6750 }
6751 
6752 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6753 {
6754 	u64 rcvctrl;
6755 	unsigned long flags;
6756 
6757 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6758 	rcvctrl = read_csr(dd, RCV_CTRL);
6759 	rcvctrl |= add;
6760 	rcvctrl &= ~clear;
6761 	write_csr(dd, RCV_CTRL, rcvctrl);
6762 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6763 }
6764 
6765 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6766 {
6767 	adjust_rcvctrl(dd, add, 0);
6768 }
6769 
6770 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6771 {
6772 	adjust_rcvctrl(dd, 0, clear);
6773 }
6774 
6775 /*
6776  * Called from all interrupt handlers to start handling an SPC freeze.
6777  */
6778 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6779 {
6780 	struct hfi1_devdata *dd = ppd->dd;
6781 	struct send_context *sc;
6782 	int i;
6783 	int sc_flags;
6784 
6785 	if (flags & FREEZE_SELF)
6786 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6787 
6788 	/* enter frozen mode */
6789 	dd->flags |= HFI1_FROZEN;
6790 
6791 	/* notify all SDMA engines that they are going into a freeze */
6792 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6793 
6794 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6795 					      SCF_LINK_DOWN : 0);
6796 	/* do halt pre-handling on all enabled send contexts */
6797 	for (i = 0; i < dd->num_send_contexts; i++) {
6798 		sc = dd->send_contexts[i].sc;
6799 		if (sc && (sc->flags & SCF_ENABLED))
6800 			sc_stop(sc, sc_flags);
6801 	}
6802 
6803 	/* Send context are frozen. Notify user space */
6804 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6805 
6806 	if (flags & FREEZE_ABORT) {
6807 		dd_dev_err(dd,
6808 			   "Aborted freeze recovery. Please REBOOT system\n");
6809 		return;
6810 	}
6811 	/* queue non-interrupt handler */
6812 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6813 }
6814 
6815 /*
6816  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6817  * depending on the "freeze" parameter.
6818  *
6819  * No need to return an error if it times out, our only option
6820  * is to proceed anyway.
6821  */
6822 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6823 {
6824 	unsigned long timeout;
6825 	u64 reg;
6826 
6827 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6828 	while (1) {
6829 		reg = read_csr(dd, CCE_STATUS);
6830 		if (freeze) {
6831 			/* waiting until all indicators are set */
6832 			if ((reg & ALL_FROZE) == ALL_FROZE)
6833 				return;	/* all done */
6834 		} else {
6835 			/* waiting until all indicators are clear */
6836 			if ((reg & ALL_FROZE) == 0)
6837 				return; /* all done */
6838 		}
6839 
6840 		if (time_after(jiffies, timeout)) {
6841 			dd_dev_err(dd,
6842 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6843 				   freeze ? "" : "un", reg & ALL_FROZE,
6844 				   freeze ? ALL_FROZE : 0ull);
6845 			return;
6846 		}
6847 		usleep_range(80, 120);
6848 	}
6849 }
6850 
6851 /*
6852  * Do all freeze handling for the RXE block.
6853  */
6854 static void rxe_freeze(struct hfi1_devdata *dd)
6855 {
6856 	int i;
6857 	struct hfi1_ctxtdata *rcd;
6858 
6859 	/* disable port */
6860 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6861 
6862 	/* disable all receive contexts */
6863 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6864 		rcd = hfi1_rcd_get_by_index(dd, i);
6865 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6866 		hfi1_rcd_put(rcd);
6867 	}
6868 }
6869 
6870 /*
6871  * Unfreeze handling for the RXE block - kernel contexts only.
6872  * This will also enable the port.  User contexts will do unfreeze
6873  * handling on a per-context basis as they call into the driver.
6874  *
6875  */
6876 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6877 {
6878 	u32 rcvmask;
6879 	u16 i;
6880 	struct hfi1_ctxtdata *rcd;
6881 
6882 	/* enable all kernel contexts */
6883 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6884 		rcd = hfi1_rcd_get_by_index(dd, i);
6885 
6886 		/* Ensure all non-user contexts(including vnic) are enabled */
6887 		if (!rcd ||
6888 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6889 			hfi1_rcd_put(rcd);
6890 			continue;
6891 		}
6892 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6893 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6894 		rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6895 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6896 		hfi1_rcvctrl(dd, rcvmask, rcd);
6897 		hfi1_rcd_put(rcd);
6898 	}
6899 
6900 	/* enable port */
6901 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6902 }
6903 
6904 /*
6905  * Non-interrupt SPC freeze handling.
6906  *
6907  * This is a work-queue function outside of the triggering interrupt.
6908  */
6909 void handle_freeze(struct work_struct *work)
6910 {
6911 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6912 								freeze_work);
6913 	struct hfi1_devdata *dd = ppd->dd;
6914 
6915 	/* wait for freeze indicators on all affected blocks */
6916 	wait_for_freeze_status(dd, 1);
6917 
6918 	/* SPC is now frozen */
6919 
6920 	/* do send PIO freeze steps */
6921 	pio_freeze(dd);
6922 
6923 	/* do send DMA freeze steps */
6924 	sdma_freeze(dd);
6925 
6926 	/* do send egress freeze steps - nothing to do */
6927 
6928 	/* do receive freeze steps */
6929 	rxe_freeze(dd);
6930 
6931 	/*
6932 	 * Unfreeze the hardware - clear the freeze, wait for each
6933 	 * block's frozen bit to clear, then clear the frozen flag.
6934 	 */
6935 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6936 	wait_for_freeze_status(dd, 0);
6937 
6938 	if (is_ax(dd)) {
6939 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6940 		wait_for_freeze_status(dd, 1);
6941 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6942 		wait_for_freeze_status(dd, 0);
6943 	}
6944 
6945 	/* do send PIO unfreeze steps for kernel contexts */
6946 	pio_kernel_unfreeze(dd);
6947 
6948 	/* do send DMA unfreeze steps */
6949 	sdma_unfreeze(dd);
6950 
6951 	/* do send egress unfreeze steps - nothing to do */
6952 
6953 	/* do receive unfreeze steps for kernel contexts */
6954 	rxe_kernel_unfreeze(dd);
6955 
6956 	/*
6957 	 * The unfreeze procedure touches global device registers when
6958 	 * it disables and re-enables RXE. Mark the device unfrozen
6959 	 * after all that is done so other parts of the driver waiting
6960 	 * for the device to unfreeze don't do things out of order.
6961 	 *
6962 	 * The above implies that the meaning of HFI1_FROZEN flag is
6963 	 * "Device has gone into freeze mode and freeze mode handling
6964 	 * is still in progress."
6965 	 *
6966 	 * The flag will be removed when freeze mode processing has
6967 	 * completed.
6968 	 */
6969 	dd->flags &= ~HFI1_FROZEN;
6970 	wake_up(&dd->event_queue);
6971 
6972 	/* no longer frozen */
6973 }
6974 
6975 /**
6976  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6977  * counters.
6978  * @ppd: info of physical Hfi port
6979  * @link_width: new link width after link up or downgrade
6980  *
6981  * Update the PortXmitWait and PortVlXmitWait counters after
6982  * a link up or downgrade event to reflect a link width change.
6983  */
6984 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6985 {
6986 	int i;
6987 	u16 tx_width;
6988 	u16 link_speed;
6989 
6990 	tx_width = tx_link_width(link_width);
6991 	link_speed = get_link_speed(ppd->link_speed_active);
6992 
6993 	/*
6994 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6995 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6996 	 */
6997 	for (i = 0; i < C_VL_COUNT + 1; i++)
6998 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6999 }
7000 
7001 /*
7002  * Handle a link up interrupt from the 8051.
7003  *
7004  * This is a work-queue function outside of the interrupt.
7005  */
7006 void handle_link_up(struct work_struct *work)
7007 {
7008 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7009 						  link_up_work);
7010 	struct hfi1_devdata *dd = ppd->dd;
7011 
7012 	set_link_state(ppd, HLS_UP_INIT);
7013 
7014 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
7015 	read_ltp_rtt(dd);
7016 	/*
7017 	 * OPA specifies that certain counters are cleared on a transition
7018 	 * to link up, so do that.
7019 	 */
7020 	clear_linkup_counters(dd);
7021 	/*
7022 	 * And (re)set link up default values.
7023 	 */
7024 	set_linkup_defaults(ppd);
7025 
7026 	/*
7027 	 * Set VL15 credits. Use cached value from verify cap interrupt.
7028 	 * In case of quick linkup or simulator, vl15 value will be set by
7029 	 * handle_linkup_change. VerifyCap interrupt handler will not be
7030 	 * called in those scenarios.
7031 	 */
7032 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
7033 		set_up_vl15(dd, dd->vl15buf_cached);
7034 
7035 	/* enforce link speed enabled */
7036 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7037 		/* oops - current speed is not enabled, bounce */
7038 		dd_dev_err(dd,
7039 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7040 			   ppd->link_speed_active, ppd->link_speed_enabled);
7041 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7042 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7043 		set_link_state(ppd, HLS_DN_OFFLINE);
7044 		start_link(ppd);
7045 	}
7046 }
7047 
7048 /*
7049  * Several pieces of LNI information were cached for SMA in ppd.
7050  * Reset these on link down
7051  */
7052 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7053 {
7054 	ppd->neighbor_guid = 0;
7055 	ppd->neighbor_port_number = 0;
7056 	ppd->neighbor_type = 0;
7057 	ppd->neighbor_fm_security = 0;
7058 }
7059 
7060 static const char * const link_down_reason_strs[] = {
7061 	[OPA_LINKDOWN_REASON_NONE] = "None",
7062 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7063 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7064 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7065 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7066 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7067 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7068 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7069 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7070 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7071 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7072 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7073 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7074 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7075 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7076 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7077 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7078 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7079 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7080 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7081 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7082 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7083 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7084 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7085 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7086 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7087 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7088 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7089 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7090 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7091 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7092 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7093 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7094 					"Excessive buffer overrun",
7095 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7096 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7097 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7098 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7099 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7100 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7101 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7102 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7103 					"Local media not installed",
7104 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7105 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7106 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7107 					"End to end not installed",
7108 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7109 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7110 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7111 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7112 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7113 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7114 };
7115 
7116 /* return the neighbor link down reason string */
7117 static const char *link_down_reason_str(u8 reason)
7118 {
7119 	const char *str = NULL;
7120 
7121 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7122 		str = link_down_reason_strs[reason];
7123 	if (!str)
7124 		str = "(invalid)";
7125 
7126 	return str;
7127 }
7128 
7129 /*
7130  * Handle a link down interrupt from the 8051.
7131  *
7132  * This is a work-queue function outside of the interrupt.
7133  */
7134 void handle_link_down(struct work_struct *work)
7135 {
7136 	u8 lcl_reason, neigh_reason = 0;
7137 	u8 link_down_reason;
7138 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7139 						  link_down_work);
7140 	int was_up;
7141 	static const char ldr_str[] = "Link down reason: ";
7142 
7143 	if ((ppd->host_link_state &
7144 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7145 	     ppd->port_type == PORT_TYPE_FIXED)
7146 		ppd->offline_disabled_reason =
7147 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7148 
7149 	/* Go offline first, then deal with reading/writing through 8051 */
7150 	was_up = !!(ppd->host_link_state & HLS_UP);
7151 	set_link_state(ppd, HLS_DN_OFFLINE);
7152 	xchg(&ppd->is_link_down_queued, 0);
7153 
7154 	if (was_up) {
7155 		lcl_reason = 0;
7156 		/* link down reason is only valid if the link was up */
7157 		read_link_down_reason(ppd->dd, &link_down_reason);
7158 		switch (link_down_reason) {
7159 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7160 			/* the link went down, no idle message reason */
7161 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7162 				    ldr_str);
7163 			break;
7164 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7165 			/*
7166 			 * The neighbor reason is only valid if an idle message
7167 			 * was received for it.
7168 			 */
7169 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7170 			dd_dev_info(ppd->dd,
7171 				    "%sNeighbor link down message %d, %s\n",
7172 				    ldr_str, neigh_reason,
7173 				    link_down_reason_str(neigh_reason));
7174 			break;
7175 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7176 			dd_dev_info(ppd->dd,
7177 				    "%sHost requested link to go offline\n",
7178 				    ldr_str);
7179 			break;
7180 		default:
7181 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7182 				    ldr_str, link_down_reason);
7183 			break;
7184 		}
7185 
7186 		/*
7187 		 * If no reason, assume peer-initiated but missed
7188 		 * LinkGoingDown idle flits.
7189 		 */
7190 		if (neigh_reason == 0)
7191 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7192 	} else {
7193 		/* went down while polling or going up */
7194 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7195 	}
7196 
7197 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7198 
7199 	/* inform the SMA when the link transitions from up to down */
7200 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7201 	    ppd->neigh_link_down_reason.sma == 0) {
7202 		ppd->local_link_down_reason.sma =
7203 					ppd->local_link_down_reason.latest;
7204 		ppd->neigh_link_down_reason.sma =
7205 					ppd->neigh_link_down_reason.latest;
7206 	}
7207 
7208 	reset_neighbor_info(ppd);
7209 
7210 	/* disable the port */
7211 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7212 
7213 	/*
7214 	 * If there is no cable attached, turn the DC off. Otherwise,
7215 	 * start the link bring up.
7216 	 */
7217 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7218 		dc_shutdown(ppd->dd);
7219 	else
7220 		start_link(ppd);
7221 }
7222 
7223 void handle_link_bounce(struct work_struct *work)
7224 {
7225 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7226 							link_bounce_work);
7227 
7228 	/*
7229 	 * Only do something if the link is currently up.
7230 	 */
7231 	if (ppd->host_link_state & HLS_UP) {
7232 		set_link_state(ppd, HLS_DN_OFFLINE);
7233 		start_link(ppd);
7234 	} else {
7235 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7236 			    __func__, link_state_name(ppd->host_link_state));
7237 	}
7238 }
7239 
7240 /*
7241  * Mask conversion: Capability exchange to Port LTP.  The capability
7242  * exchange has an implicit 16b CRC that is mandatory.
7243  */
7244 static int cap_to_port_ltp(int cap)
7245 {
7246 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7247 
7248 	if (cap & CAP_CRC_14B)
7249 		port_ltp |= PORT_LTP_CRC_MODE_14;
7250 	if (cap & CAP_CRC_48B)
7251 		port_ltp |= PORT_LTP_CRC_MODE_48;
7252 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7253 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7254 
7255 	return port_ltp;
7256 }
7257 
7258 /*
7259  * Convert an OPA Port LTP mask to capability mask
7260  */
7261 int port_ltp_to_cap(int port_ltp)
7262 {
7263 	int cap_mask = 0;
7264 
7265 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7266 		cap_mask |= CAP_CRC_14B;
7267 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7268 		cap_mask |= CAP_CRC_48B;
7269 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7270 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7271 
7272 	return cap_mask;
7273 }
7274 
7275 /*
7276  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7277  */
7278 static int lcb_to_port_ltp(int lcb_crc)
7279 {
7280 	int port_ltp = 0;
7281 
7282 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7283 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7284 	else if (lcb_crc == LCB_CRC_48B)
7285 		port_ltp = PORT_LTP_CRC_MODE_48;
7286 	else if (lcb_crc == LCB_CRC_14B)
7287 		port_ltp = PORT_LTP_CRC_MODE_14;
7288 	else
7289 		port_ltp = PORT_LTP_CRC_MODE_16;
7290 
7291 	return port_ltp;
7292 }
7293 
7294 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7295 {
7296 	if (ppd->pkeys[2] != 0) {
7297 		ppd->pkeys[2] = 0;
7298 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7299 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7300 	}
7301 }
7302 
7303 /*
7304  * Convert the given link width to the OPA link width bitmask.
7305  */
7306 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7307 {
7308 	switch (width) {
7309 	case 0:
7310 		/*
7311 		 * Simulator and quick linkup do not set the width.
7312 		 * Just set it to 4x without complaint.
7313 		 */
7314 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7315 			return OPA_LINK_WIDTH_4X;
7316 		return 0; /* no lanes up */
7317 	case 1: return OPA_LINK_WIDTH_1X;
7318 	case 2: return OPA_LINK_WIDTH_2X;
7319 	case 3: return OPA_LINK_WIDTH_3X;
7320 	default:
7321 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7322 			    __func__, width);
7323 		/* fall through */
7324 	case 4: return OPA_LINK_WIDTH_4X;
7325 	}
7326 }
7327 
7328 /*
7329  * Do a population count on the bottom nibble.
7330  */
7331 static const u8 bit_counts[16] = {
7332 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7333 };
7334 
7335 static inline u8 nibble_to_count(u8 nibble)
7336 {
7337 	return bit_counts[nibble & 0xf];
7338 }
7339 
7340 /*
7341  * Read the active lane information from the 8051 registers and return
7342  * their widths.
7343  *
7344  * Active lane information is found in these 8051 registers:
7345  *	enable_lane_tx
7346  *	enable_lane_rx
7347  */
7348 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7349 			    u16 *rx_width)
7350 {
7351 	u16 tx, rx;
7352 	u8 enable_lane_rx;
7353 	u8 enable_lane_tx;
7354 	u8 tx_polarity_inversion;
7355 	u8 rx_polarity_inversion;
7356 	u8 max_rate;
7357 
7358 	/* read the active lanes */
7359 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7360 			 &rx_polarity_inversion, &max_rate);
7361 	read_local_lni(dd, &enable_lane_rx);
7362 
7363 	/* convert to counts */
7364 	tx = nibble_to_count(enable_lane_tx);
7365 	rx = nibble_to_count(enable_lane_rx);
7366 
7367 	/*
7368 	 * Set link_speed_active here, overriding what was set in
7369 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7370 	 * set the max_rate field in handle_verify_cap until v0.19.
7371 	 */
7372 	if ((dd->icode == ICODE_RTL_SILICON) &&
7373 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7374 		/* max_rate: 0 = 12.5G, 1 = 25G */
7375 		switch (max_rate) {
7376 		case 0:
7377 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7378 			break;
7379 		default:
7380 			dd_dev_err(dd,
7381 				   "%s: unexpected max rate %d, using 25Gb\n",
7382 				   __func__, (int)max_rate);
7383 			/* fall through */
7384 		case 1:
7385 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7386 			break;
7387 		}
7388 	}
7389 
7390 	dd_dev_info(dd,
7391 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7392 		    enable_lane_tx, tx, enable_lane_rx, rx);
7393 	*tx_width = link_width_to_bits(dd, tx);
7394 	*rx_width = link_width_to_bits(dd, rx);
7395 }
7396 
7397 /*
7398  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7399  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7400  * after link up.  I.e. look elsewhere for downgrade information.
7401  *
7402  * Bits are:
7403  *	+ bits [7:4] contain the number of active transmitters
7404  *	+ bits [3:0] contain the number of active receivers
7405  * These are numbers 1 through 4 and can be different values if the
7406  * link is asymmetric.
7407  *
7408  * verify_cap_local_fm_link_width[0] retains its original value.
7409  */
7410 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7411 			      u16 *rx_width)
7412 {
7413 	u16 widths, tx, rx;
7414 	u8 misc_bits, local_flags;
7415 	u16 active_tx, active_rx;
7416 
7417 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7418 	tx = widths >> 12;
7419 	rx = (widths >> 8) & 0xf;
7420 
7421 	*tx_width = link_width_to_bits(dd, tx);
7422 	*rx_width = link_width_to_bits(dd, rx);
7423 
7424 	/* print the active widths */
7425 	get_link_widths(dd, &active_tx, &active_rx);
7426 }
7427 
7428 /*
7429  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7430  * hardware information when the link first comes up.
7431  *
7432  * The link width is not available until after VerifyCap.AllFramesReceived
7433  * (the trigger for handle_verify_cap), so this is outside that routine
7434  * and should be called when the 8051 signals linkup.
7435  */
7436 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7437 {
7438 	u16 tx_width, rx_width;
7439 
7440 	/* get end-of-LNI link widths */
7441 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7442 
7443 	/* use tx_width as the link is supposed to be symmetric on link up */
7444 	ppd->link_width_active = tx_width;
7445 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7446 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7447 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7448 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7449 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7450 	/* cache the active egress rate (units {10^6 bits/sec]) */
7451 	ppd->current_egress_rate = active_egress_rate(ppd);
7452 }
7453 
7454 /*
7455  * Handle a verify capabilities interrupt from the 8051.
7456  *
7457  * This is a work-queue function outside of the interrupt.
7458  */
7459 void handle_verify_cap(struct work_struct *work)
7460 {
7461 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7462 								link_vc_work);
7463 	struct hfi1_devdata *dd = ppd->dd;
7464 	u64 reg;
7465 	u8 power_management;
7466 	u8 continuous;
7467 	u8 vcu;
7468 	u8 vau;
7469 	u8 z;
7470 	u16 vl15buf;
7471 	u16 link_widths;
7472 	u16 crc_mask;
7473 	u16 crc_val;
7474 	u16 device_id;
7475 	u16 active_tx, active_rx;
7476 	u8 partner_supported_crc;
7477 	u8 remote_tx_rate;
7478 	u8 device_rev;
7479 
7480 	set_link_state(ppd, HLS_VERIFY_CAP);
7481 
7482 	lcb_shutdown(dd, 0);
7483 	adjust_lcb_for_fpga_serdes(dd);
7484 
7485 	read_vc_remote_phy(dd, &power_management, &continuous);
7486 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7487 			      &partner_supported_crc);
7488 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7489 	read_remote_device_id(dd, &device_id, &device_rev);
7490 
7491 	/* print the active widths */
7492 	get_link_widths(dd, &active_tx, &active_rx);
7493 	dd_dev_info(dd,
7494 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7495 		    (int)power_management, (int)continuous);
7496 	dd_dev_info(dd,
7497 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7498 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7499 		    (int)partner_supported_crc);
7500 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7501 		    (u32)remote_tx_rate, (u32)link_widths);
7502 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7503 		    (u32)device_id, (u32)device_rev);
7504 	/*
7505 	 * The peer vAU value just read is the peer receiver value.  HFI does
7506 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7507 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7508 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7509 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7510 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7511 	 * subject to the Z value exception.
7512 	 */
7513 	if (vau == 0)
7514 		vau = 1;
7515 	set_up_vau(dd, vau);
7516 
7517 	/*
7518 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7519 	 * credits value and wait for link-up interrupt ot set it.
7520 	 */
7521 	set_up_vl15(dd, 0);
7522 	dd->vl15buf_cached = vl15buf;
7523 
7524 	/* set up the LCB CRC mode */
7525 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7526 
7527 	/* order is important: use the lowest bit in common */
7528 	if (crc_mask & CAP_CRC_14B)
7529 		crc_val = LCB_CRC_14B;
7530 	else if (crc_mask & CAP_CRC_48B)
7531 		crc_val = LCB_CRC_48B;
7532 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7533 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7534 	else
7535 		crc_val = LCB_CRC_16B;
7536 
7537 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7538 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7539 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7540 
7541 	/* set (14b only) or clear sideband credit */
7542 	reg = read_csr(dd, SEND_CM_CTRL);
7543 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7544 		write_csr(dd, SEND_CM_CTRL,
7545 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7546 	} else {
7547 		write_csr(dd, SEND_CM_CTRL,
7548 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7549 	}
7550 
7551 	ppd->link_speed_active = 0;	/* invalid value */
7552 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7553 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7554 		switch (remote_tx_rate) {
7555 		case 0:
7556 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7557 			break;
7558 		case 1:
7559 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7560 			break;
7561 		}
7562 	} else {
7563 		/* actual rate is highest bit of the ANDed rates */
7564 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7565 
7566 		if (rate & 2)
7567 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7568 		else if (rate & 1)
7569 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7570 	}
7571 	if (ppd->link_speed_active == 0) {
7572 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7573 			   __func__, (int)remote_tx_rate);
7574 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7575 	}
7576 
7577 	/*
7578 	 * Cache the values of the supported, enabled, and active
7579 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7580 	 * flags that are returned in the portinfo query differ from
7581 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7582 	 * variables. Convert these here.
7583 	 */
7584 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7585 		/* supported crc modes */
7586 	ppd->port_ltp_crc_mode |=
7587 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7588 		/* enabled crc modes */
7589 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7590 		/* active crc mode */
7591 
7592 	/* set up the remote credit return table */
7593 	assign_remote_cm_au_table(dd, vcu);
7594 
7595 	/*
7596 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7597 	 * be applied on every link up.
7598 	 *
7599 	 * Adjust LCB error kill enable to kill the link if
7600 	 * these RBUF errors are seen:
7601 	 *	REPLAY_BUF_MBE_SMASK
7602 	 *	FLIT_INPUT_BUF_MBE_SMASK
7603 	 */
7604 	if (is_ax(dd)) {			/* fixed in B0 */
7605 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7606 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7607 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7608 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7609 	}
7610 
7611 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7612 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7613 
7614 	/* give 8051 access to the LCB CSRs */
7615 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7616 	set_8051_lcb_access(dd);
7617 
7618 	/* tell the 8051 to go to LinkUp */
7619 	set_link_state(ppd, HLS_GOING_UP);
7620 }
7621 
7622 /**
7623  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7624  * policy against the current active link widths.
7625  * @ppd: info of physical Hfi port
7626  * @refresh_widths: True indicates link downgrade event
7627  * @return: True indicates a successful link downgrade. False indicates
7628  *	    link downgrade event failed and the link will bounce back to
7629  *	    default link width.
7630  *
7631  * Called when the enabled policy changes or the active link widths
7632  * change.
7633  * Refresh_widths indicates that a link downgrade occurred. The
7634  * link_downgraded variable is set by refresh_widths and
7635  * determines the success/failure of the policy application.
7636  */
7637 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7638 				 bool refresh_widths)
7639 {
7640 	int do_bounce = 0;
7641 	int tries;
7642 	u16 lwde;
7643 	u16 tx, rx;
7644 	bool link_downgraded = refresh_widths;
7645 
7646 	/* use the hls lock to avoid a race with actual link up */
7647 	tries = 0;
7648 retry:
7649 	mutex_lock(&ppd->hls_lock);
7650 	/* only apply if the link is up */
7651 	if (ppd->host_link_state & HLS_DOWN) {
7652 		/* still going up..wait and retry */
7653 		if (ppd->host_link_state & HLS_GOING_UP) {
7654 			if (++tries < 1000) {
7655 				mutex_unlock(&ppd->hls_lock);
7656 				usleep_range(100, 120); /* arbitrary */
7657 				goto retry;
7658 			}
7659 			dd_dev_err(ppd->dd,
7660 				   "%s: giving up waiting for link state change\n",
7661 				   __func__);
7662 		}
7663 		goto done;
7664 	}
7665 
7666 	lwde = ppd->link_width_downgrade_enabled;
7667 
7668 	if (refresh_widths) {
7669 		get_link_widths(ppd->dd, &tx, &rx);
7670 		ppd->link_width_downgrade_tx_active = tx;
7671 		ppd->link_width_downgrade_rx_active = rx;
7672 	}
7673 
7674 	if (ppd->link_width_downgrade_tx_active == 0 ||
7675 	    ppd->link_width_downgrade_rx_active == 0) {
7676 		/* the 8051 reported a dead link as a downgrade */
7677 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7678 		link_downgraded = false;
7679 	} else if (lwde == 0) {
7680 		/* downgrade is disabled */
7681 
7682 		/* bounce if not at starting active width */
7683 		if ((ppd->link_width_active !=
7684 		     ppd->link_width_downgrade_tx_active) ||
7685 		    (ppd->link_width_active !=
7686 		     ppd->link_width_downgrade_rx_active)) {
7687 			dd_dev_err(ppd->dd,
7688 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7689 			dd_dev_err(ppd->dd,
7690 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7691 				   ppd->link_width_active,
7692 				   ppd->link_width_downgrade_tx_active,
7693 				   ppd->link_width_downgrade_rx_active);
7694 			do_bounce = 1;
7695 			link_downgraded = false;
7696 		}
7697 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7698 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7699 		/* Tx or Rx is outside the enabled policy */
7700 		dd_dev_err(ppd->dd,
7701 			   "Link is outside of downgrade allowed, downing link\n");
7702 		dd_dev_err(ppd->dd,
7703 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7704 			   lwde, ppd->link_width_downgrade_tx_active,
7705 			   ppd->link_width_downgrade_rx_active);
7706 		do_bounce = 1;
7707 		link_downgraded = false;
7708 	}
7709 
7710 done:
7711 	mutex_unlock(&ppd->hls_lock);
7712 
7713 	if (do_bounce) {
7714 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7715 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7716 		set_link_state(ppd, HLS_DN_OFFLINE);
7717 		start_link(ppd);
7718 	}
7719 
7720 	return link_downgraded;
7721 }
7722 
7723 /*
7724  * Handle a link downgrade interrupt from the 8051.
7725  *
7726  * This is a work-queue function outside of the interrupt.
7727  */
7728 void handle_link_downgrade(struct work_struct *work)
7729 {
7730 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7731 							link_downgrade_work);
7732 
7733 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7734 	if (apply_link_downgrade_policy(ppd, true))
7735 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7736 }
7737 
7738 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7739 {
7740 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7741 		ARRAY_SIZE(dcc_err_flags));
7742 }
7743 
7744 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7745 {
7746 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7747 		ARRAY_SIZE(lcb_err_flags));
7748 }
7749 
7750 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7751 {
7752 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7753 		ARRAY_SIZE(dc8051_err_flags));
7754 }
7755 
7756 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7757 {
7758 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7759 		ARRAY_SIZE(dc8051_info_err_flags));
7760 }
7761 
7762 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7763 {
7764 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7765 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7766 }
7767 
7768 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7769 {
7770 	struct hfi1_pportdata *ppd = dd->pport;
7771 	u64 info, err, host_msg;
7772 	int queue_link_down = 0;
7773 	char buf[96];
7774 
7775 	/* look at the flags */
7776 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7777 		/* 8051 information set by firmware */
7778 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7779 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7780 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7781 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7782 		host_msg = (info >>
7783 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7784 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7785 
7786 		/*
7787 		 * Handle error flags.
7788 		 */
7789 		if (err & FAILED_LNI) {
7790 			/*
7791 			 * LNI error indications are cleared by the 8051
7792 			 * only when starting polling.  Only pay attention
7793 			 * to them when in the states that occur during
7794 			 * LNI.
7795 			 */
7796 			if (ppd->host_link_state
7797 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7798 				queue_link_down = 1;
7799 				dd_dev_info(dd, "Link error: %s\n",
7800 					    dc8051_info_err_string(buf,
7801 								   sizeof(buf),
7802 								   err &
7803 								   FAILED_LNI));
7804 			}
7805 			err &= ~(u64)FAILED_LNI;
7806 		}
7807 		/* unknown frames can happen durning LNI, just count */
7808 		if (err & UNKNOWN_FRAME) {
7809 			ppd->unknown_frame_count++;
7810 			err &= ~(u64)UNKNOWN_FRAME;
7811 		}
7812 		if (err) {
7813 			/* report remaining errors, but do not do anything */
7814 			dd_dev_err(dd, "8051 info error: %s\n",
7815 				   dc8051_info_err_string(buf, sizeof(buf),
7816 							  err));
7817 		}
7818 
7819 		/*
7820 		 * Handle host message flags.
7821 		 */
7822 		if (host_msg & HOST_REQ_DONE) {
7823 			/*
7824 			 * Presently, the driver does a busy wait for
7825 			 * host requests to complete.  This is only an
7826 			 * informational message.
7827 			 * NOTE: The 8051 clears the host message
7828 			 * information *on the next 8051 command*.
7829 			 * Therefore, when linkup is achieved,
7830 			 * this flag will still be set.
7831 			 */
7832 			host_msg &= ~(u64)HOST_REQ_DONE;
7833 		}
7834 		if (host_msg & BC_SMA_MSG) {
7835 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7836 			host_msg &= ~(u64)BC_SMA_MSG;
7837 		}
7838 		if (host_msg & LINKUP_ACHIEVED) {
7839 			dd_dev_info(dd, "8051: Link up\n");
7840 			queue_work(ppd->link_wq, &ppd->link_up_work);
7841 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7842 		}
7843 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7844 			handle_8051_request(ppd);
7845 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7846 		}
7847 		if (host_msg & VERIFY_CAP_FRAME) {
7848 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7849 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7850 		}
7851 		if (host_msg & LINK_GOING_DOWN) {
7852 			const char *extra = "";
7853 			/* no downgrade action needed if going down */
7854 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7855 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7856 				extra = " (ignoring downgrade)";
7857 			}
7858 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7859 			queue_link_down = 1;
7860 			host_msg &= ~(u64)LINK_GOING_DOWN;
7861 		}
7862 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7863 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7864 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7865 		}
7866 		if (host_msg) {
7867 			/* report remaining messages, but do not do anything */
7868 			dd_dev_info(dd, "8051 info host message: %s\n",
7869 				    dc8051_info_host_msg_string(buf,
7870 								sizeof(buf),
7871 								host_msg));
7872 		}
7873 
7874 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7875 	}
7876 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7877 		/*
7878 		 * Lost the 8051 heartbeat.  If this happens, we
7879 		 * receive constant interrupts about it.  Disable
7880 		 * the interrupt after the first.
7881 		 */
7882 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7883 		write_csr(dd, DC_DC8051_ERR_EN,
7884 			  read_csr(dd, DC_DC8051_ERR_EN) &
7885 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7886 
7887 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7888 	}
7889 	if (reg) {
7890 		/* report the error, but do not do anything */
7891 		dd_dev_err(dd, "8051 error: %s\n",
7892 			   dc8051_err_string(buf, sizeof(buf), reg));
7893 	}
7894 
7895 	if (queue_link_down) {
7896 		/*
7897 		 * if the link is already going down or disabled, do not
7898 		 * queue another. If there's a link down entry already
7899 		 * queued, don't queue another one.
7900 		 */
7901 		if ((ppd->host_link_state &
7902 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7903 		    ppd->link_enabled == 0) {
7904 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7905 				    __func__, ppd->host_link_state,
7906 				    ppd->link_enabled);
7907 		} else {
7908 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7909 				dd_dev_info(dd,
7910 					    "%s: link down request already queued\n",
7911 					    __func__);
7912 			else
7913 				queue_work(ppd->link_wq, &ppd->link_down_work);
7914 		}
7915 	}
7916 }
7917 
7918 static const char * const fm_config_txt[] = {
7919 [0] =
7920 	"BadHeadDist: Distance violation between two head flits",
7921 [1] =
7922 	"BadTailDist: Distance violation between two tail flits",
7923 [2] =
7924 	"BadCtrlDist: Distance violation between two credit control flits",
7925 [3] =
7926 	"BadCrdAck: Credits return for unsupported VL",
7927 [4] =
7928 	"UnsupportedVLMarker: Received VL Marker",
7929 [5] =
7930 	"BadPreempt: Exceeded the preemption nesting level",
7931 [6] =
7932 	"BadControlFlit: Received unsupported control flit",
7933 /* no 7 */
7934 [8] =
7935 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7936 };
7937 
7938 static const char * const port_rcv_txt[] = {
7939 [1] =
7940 	"BadPktLen: Illegal PktLen",
7941 [2] =
7942 	"PktLenTooLong: Packet longer than PktLen",
7943 [3] =
7944 	"PktLenTooShort: Packet shorter than PktLen",
7945 [4] =
7946 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7947 [5] =
7948 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7949 [6] =
7950 	"BadL2: Illegal L2 opcode",
7951 [7] =
7952 	"BadSC: Unsupported SC",
7953 [9] =
7954 	"BadRC: Illegal RC",
7955 [11] =
7956 	"PreemptError: Preempting with same VL",
7957 [12] =
7958 	"PreemptVL15: Preempting a VL15 packet",
7959 };
7960 
7961 #define OPA_LDR_FMCONFIG_OFFSET 16
7962 #define OPA_LDR_PORTRCV_OFFSET 0
7963 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7964 {
7965 	u64 info, hdr0, hdr1;
7966 	const char *extra;
7967 	char buf[96];
7968 	struct hfi1_pportdata *ppd = dd->pport;
7969 	u8 lcl_reason = 0;
7970 	int do_bounce = 0;
7971 
7972 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7973 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7974 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7975 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7976 			/* set status bit */
7977 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7978 		}
7979 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7980 	}
7981 
7982 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7983 		struct hfi1_pportdata *ppd = dd->pport;
7984 		/* this counter saturates at (2^32) - 1 */
7985 		if (ppd->link_downed < (u32)UINT_MAX)
7986 			ppd->link_downed++;
7987 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7988 	}
7989 
7990 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7991 		u8 reason_valid = 1;
7992 
7993 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7994 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7995 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7996 			/* set status bit */
7997 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7998 		}
7999 		switch (info) {
8000 		case 0:
8001 		case 1:
8002 		case 2:
8003 		case 3:
8004 		case 4:
8005 		case 5:
8006 		case 6:
8007 			extra = fm_config_txt[info];
8008 			break;
8009 		case 8:
8010 			extra = fm_config_txt[info];
8011 			if (ppd->port_error_action &
8012 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
8013 				do_bounce = 1;
8014 				/*
8015 				 * lcl_reason cannot be derived from info
8016 				 * for this error
8017 				 */
8018 				lcl_reason =
8019 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
8020 			}
8021 			break;
8022 		default:
8023 			reason_valid = 0;
8024 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8025 			extra = buf;
8026 			break;
8027 		}
8028 
8029 		if (reason_valid && !do_bounce) {
8030 			do_bounce = ppd->port_error_action &
8031 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
8032 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
8033 		}
8034 
8035 		/* just report this */
8036 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8037 					extra);
8038 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8039 	}
8040 
8041 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8042 		u8 reason_valid = 1;
8043 
8044 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8045 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8046 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8047 		if (!(dd->err_info_rcvport.status_and_code &
8048 		      OPA_EI_STATUS_SMASK)) {
8049 			dd->err_info_rcvport.status_and_code =
8050 				info & OPA_EI_CODE_SMASK;
8051 			/* set status bit */
8052 			dd->err_info_rcvport.status_and_code |=
8053 				OPA_EI_STATUS_SMASK;
8054 			/*
8055 			 * save first 2 flits in the packet that caused
8056 			 * the error
8057 			 */
8058 			dd->err_info_rcvport.packet_flit1 = hdr0;
8059 			dd->err_info_rcvport.packet_flit2 = hdr1;
8060 		}
8061 		switch (info) {
8062 		case 1:
8063 		case 2:
8064 		case 3:
8065 		case 4:
8066 		case 5:
8067 		case 6:
8068 		case 7:
8069 		case 9:
8070 		case 11:
8071 		case 12:
8072 			extra = port_rcv_txt[info];
8073 			break;
8074 		default:
8075 			reason_valid = 0;
8076 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8077 			extra = buf;
8078 			break;
8079 		}
8080 
8081 		if (reason_valid && !do_bounce) {
8082 			do_bounce = ppd->port_error_action &
8083 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8084 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8085 		}
8086 
8087 		/* just report this */
8088 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8089 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8090 					extra, hdr0, hdr1);
8091 
8092 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8093 	}
8094 
8095 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8096 		/* informative only */
8097 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8098 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8099 	}
8100 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8101 		/* informative only */
8102 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8103 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8104 	}
8105 
8106 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8107 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8108 
8109 	/* report any remaining errors */
8110 	if (reg)
8111 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8112 					dcc_err_string(buf, sizeof(buf), reg));
8113 
8114 	if (lcl_reason == 0)
8115 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8116 
8117 	if (do_bounce) {
8118 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8119 					__func__);
8120 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8121 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8122 	}
8123 }
8124 
8125 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8126 {
8127 	char buf[96];
8128 
8129 	dd_dev_info(dd, "LCB Error: %s\n",
8130 		    lcb_err_string(buf, sizeof(buf), reg));
8131 }
8132 
8133 /*
8134  * CCE block DC interrupt.  Source is < 8.
8135  */
8136 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8137 {
8138 	const struct err_reg_info *eri = &dc_errs[source];
8139 
8140 	if (eri->handler) {
8141 		interrupt_clear_down(dd, 0, eri);
8142 	} else if (source == 3 /* dc_lbm_int */) {
8143 		/*
8144 		 * This indicates that a parity error has occurred on the
8145 		 * address/control lines presented to the LBM.  The error
8146 		 * is a single pulse, there is no associated error flag,
8147 		 * and it is non-maskable.  This is because if a parity
8148 		 * error occurs on the request the request is dropped.
8149 		 * This should never occur, but it is nice to know if it
8150 		 * ever does.
8151 		 */
8152 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8153 	} else {
8154 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8155 	}
8156 }
8157 
8158 /*
8159  * TX block send credit interrupt.  Source is < 160.
8160  */
8161 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8162 {
8163 	sc_group_release_update(dd, source);
8164 }
8165 
8166 /*
8167  * TX block SDMA interrupt.  Source is < 48.
8168  *
8169  * SDMA interrupts are grouped by type:
8170  *
8171  *	 0 -  N-1 = SDma
8172  *	 N - 2N-1 = SDmaProgress
8173  *	2N - 3N-1 = SDmaIdle
8174  */
8175 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8176 {
8177 	/* what interrupt */
8178 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8179 	/* which engine */
8180 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8181 
8182 #ifdef CONFIG_SDMA_VERBOSITY
8183 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8184 		   slashstrip(__FILE__), __LINE__, __func__);
8185 	sdma_dumpstate(&dd->per_sdma[which]);
8186 #endif
8187 
8188 	if (likely(what < 3 && which < dd->num_sdma)) {
8189 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8190 	} else {
8191 		/* should not happen */
8192 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8193 	}
8194 }
8195 
8196 /**
8197  * is_rcv_avail_int() - User receive context available IRQ handler
8198  * @dd: valid dd
8199  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8200  *
8201  * RX block receive available interrupt.  Source is < 160.
8202  *
8203  * This is the general interrupt handler for user (PSM) receive contexts,
8204  * and can only be used for non-threaded IRQs.
8205  */
8206 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8207 {
8208 	struct hfi1_ctxtdata *rcd;
8209 	char *err_detail;
8210 
8211 	if (likely(source < dd->num_rcv_contexts)) {
8212 		rcd = hfi1_rcd_get_by_index(dd, source);
8213 		if (rcd) {
8214 			handle_user_interrupt(rcd);
8215 			hfi1_rcd_put(rcd);
8216 			return;	/* OK */
8217 		}
8218 		/* received an interrupt, but no rcd */
8219 		err_detail = "dataless";
8220 	} else {
8221 		/* received an interrupt, but are not using that context */
8222 		err_detail = "out of range";
8223 	}
8224 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8225 		   err_detail, source);
8226 }
8227 
8228 /**
8229  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8230  * @dd: valid dd
8231  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8232  *
8233  * RX block receive urgent interrupt.  Source is < 160.
8234  *
8235  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8236  */
8237 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8238 {
8239 	struct hfi1_ctxtdata *rcd;
8240 	char *err_detail;
8241 
8242 	if (likely(source < dd->num_rcv_contexts)) {
8243 		rcd = hfi1_rcd_get_by_index(dd, source);
8244 		if (rcd) {
8245 			handle_user_interrupt(rcd);
8246 			hfi1_rcd_put(rcd);
8247 			return;	/* OK */
8248 		}
8249 		/* received an interrupt, but no rcd */
8250 		err_detail = "dataless";
8251 	} else {
8252 		/* received an interrupt, but are not using that context */
8253 		err_detail = "out of range";
8254 	}
8255 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8256 		   err_detail, source);
8257 }
8258 
8259 /*
8260  * Reserved range interrupt.  Should not be called in normal operation.
8261  */
8262 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8263 {
8264 	char name[64];
8265 
8266 	dd_dev_err(dd, "unexpected %s interrupt\n",
8267 		   is_reserved_name(name, sizeof(name), source));
8268 }
8269 
8270 static const struct is_table is_table[] = {
8271 /*
8272  * start		 end
8273  *				name func		interrupt func
8274  */
8275 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8276 				is_misc_err_name,	is_misc_err_int },
8277 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8278 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8279 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8280 				is_sendctxt_err_name,	is_sendctxt_err_int },
8281 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8282 				is_sdma_eng_name,	is_sdma_eng_int },
8283 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8284 				is_various_name,	is_various_int },
8285 { IS_DC_START,	     IS_DC_END,
8286 				is_dc_name,		is_dc_int },
8287 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8288 				is_rcv_avail_name,	is_rcv_avail_int },
8289 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8290 				is_rcv_urgent_name,	is_rcv_urgent_int },
8291 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8292 				is_send_credit_name,	is_send_credit_int},
8293 { IS_RESERVED_START,     IS_RESERVED_END,
8294 				is_reserved_name,	is_reserved_int},
8295 };
8296 
8297 /*
8298  * Interrupt source interrupt - called when the given source has an interrupt.
8299  * Source is a bit index into an array of 64-bit integers.
8300  */
8301 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8302 {
8303 	const struct is_table *entry;
8304 
8305 	/* avoids a double compare by walking the table in-order */
8306 	for (entry = &is_table[0]; entry->is_name; entry++) {
8307 		if (source <= entry->end) {
8308 			trace_hfi1_interrupt(dd, entry, source);
8309 			entry->is_int(dd, source - entry->start);
8310 			return;
8311 		}
8312 	}
8313 	/* fell off the end */
8314 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8315 }
8316 
8317 /**
8318  * gerneral_interrupt() -  General interrupt handler
8319  * @irq: MSIx IRQ vector
8320  * @data: hfi1 devdata
8321  *
8322  * This is able to correctly handle all non-threaded interrupts.  Receive
8323  * context DATA IRQs are threaded and are not supported by this handler.
8324  *
8325  */
8326 irqreturn_t general_interrupt(int irq, void *data)
8327 {
8328 	struct hfi1_devdata *dd = data;
8329 	u64 regs[CCE_NUM_INT_CSRS];
8330 	u32 bit;
8331 	int i;
8332 	irqreturn_t handled = IRQ_NONE;
8333 
8334 	this_cpu_inc(*dd->int_counter);
8335 
8336 	/* phase 1: scan and clear all handled interrupts */
8337 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8338 		if (dd->gi_mask[i] == 0) {
8339 			regs[i] = 0;	/* used later */
8340 			continue;
8341 		}
8342 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8343 				dd->gi_mask[i];
8344 		/* only clear if anything is set */
8345 		if (regs[i])
8346 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8347 	}
8348 
8349 	/* phase 2: call the appropriate handler */
8350 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8351 			 CCE_NUM_INT_CSRS * 64) {
8352 		is_interrupt(dd, bit);
8353 		handled = IRQ_HANDLED;
8354 	}
8355 
8356 	return handled;
8357 }
8358 
8359 irqreturn_t sdma_interrupt(int irq, void *data)
8360 {
8361 	struct sdma_engine *sde = data;
8362 	struct hfi1_devdata *dd = sde->dd;
8363 	u64 status;
8364 
8365 #ifdef CONFIG_SDMA_VERBOSITY
8366 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8367 		   slashstrip(__FILE__), __LINE__, __func__);
8368 	sdma_dumpstate(sde);
8369 #endif
8370 
8371 	this_cpu_inc(*dd->int_counter);
8372 
8373 	/* This read_csr is really bad in the hot path */
8374 	status = read_csr(dd,
8375 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8376 			  & sde->imask;
8377 	if (likely(status)) {
8378 		/* clear the interrupt(s) */
8379 		write_csr(dd,
8380 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8381 			  status);
8382 
8383 		/* handle the interrupt(s) */
8384 		sdma_engine_interrupt(sde, status);
8385 	} else {
8386 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8387 					sde->this_idx);
8388 	}
8389 	return IRQ_HANDLED;
8390 }
8391 
8392 /*
8393  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8394  * to insure that the write completed.  This does NOT guarantee that
8395  * queued DMA writes to memory from the chip are pushed.
8396  */
8397 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8398 {
8399 	struct hfi1_devdata *dd = rcd->dd;
8400 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8401 
8402 	write_csr(dd, addr, rcd->imask);
8403 	/* force the above write on the chip and get a value back */
8404 	(void)read_csr(dd, addr);
8405 }
8406 
8407 /* force the receive interrupt */
8408 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8409 {
8410 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8411 }
8412 
8413 /*
8414  * Return non-zero if a packet is present.
8415  *
8416  * This routine is called when rechecking for packets after the RcvAvail
8417  * interrupt has been cleared down.  First, do a quick check of memory for
8418  * a packet present.  If not found, use an expensive CSR read of the context
8419  * tail to determine the actual tail.  The CSR read is necessary because there
8420  * is no method to push pending DMAs to memory other than an interrupt and we
8421  * are trying to determine if we need to force an interrupt.
8422  */
8423 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8424 {
8425 	u32 tail;
8426 
8427 	if (hfi1_packet_present(rcd))
8428 		return 1;
8429 
8430 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8431 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8432 	return hfi1_rcd_head(rcd) != tail;
8433 }
8434 
8435 /**
8436  * Common code for receive contexts interrupt handlers.
8437  * Update traces, increment kernel IRQ counter and
8438  * setup ASPM when needed.
8439  */
8440 static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8441 {
8442 	struct hfi1_devdata *dd = rcd->dd;
8443 
8444 	trace_hfi1_receive_interrupt(dd, rcd);
8445 	this_cpu_inc(*dd->int_counter);
8446 	aspm_ctx_disable(rcd);
8447 }
8448 
8449 /**
8450  * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8451  * when there are packets present in the queue. When calling
8452  * with interrupts enabled please use hfi1_rcd_eoi_intr.
8453  *
8454  * @rcd: valid receive context
8455  */
8456 static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8457 {
8458 	clear_recv_intr(rcd);
8459 	if (check_packet_present(rcd))
8460 		force_recv_intr(rcd);
8461 }
8462 
8463 /**
8464  * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8465  *
8466  * @rcd: Ptr to hfi1_ctxtdata of receive context
8467  *
8468  *  Hold IRQs so we can safely clear the interrupt and
8469  *  recheck for a packet that may have arrived after the previous
8470  *  check and the interrupt clear.  If a packet arrived, force another
8471  *  interrupt. This routine can be called at the end of receive packet
8472  *  processing in interrupt service routines, interrupt service thread
8473  *  and softirqs
8474  */
8475 static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8476 {
8477 	unsigned long flags;
8478 
8479 	local_irq_save(flags);
8480 	__hfi1_rcd_eoi_intr(rcd);
8481 	local_irq_restore(flags);
8482 }
8483 
8484 /**
8485  * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8486  * @napi - pointer to napi object
8487  * @budget - netdev budget
8488  */
8489 int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8490 {
8491 	struct hfi1_netdev_rxq *rxq = container_of(napi,
8492 			struct hfi1_netdev_rxq, napi);
8493 	struct hfi1_ctxtdata *rcd = rxq->rcd;
8494 	int work_done = 0;
8495 
8496 	work_done = rcd->do_interrupt(rcd, budget);
8497 
8498 	if (work_done < budget) {
8499 		napi_complete_done(napi, work_done);
8500 		hfi1_rcd_eoi_intr(rcd);
8501 	}
8502 
8503 	return work_done;
8504 }
8505 
8506 /* Receive packet napi handler for netdevs VNIC and AIP  */
8507 irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8508 {
8509 	struct hfi1_ctxtdata *rcd = data;
8510 
8511 	receive_interrupt_common(rcd);
8512 
8513 	if (likely(rcd->napi)) {
8514 		if (likely(napi_schedule_prep(rcd->napi)))
8515 			__napi_schedule_irqoff(rcd->napi);
8516 		else
8517 			__hfi1_rcd_eoi_intr(rcd);
8518 	} else {
8519 		WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8520 			  rcd->ctxt);
8521 		__hfi1_rcd_eoi_intr(rcd);
8522 	}
8523 
8524 	return IRQ_HANDLED;
8525 }
8526 
8527 /*
8528  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8529  * This routine will try to handle packets immediately (latency), but if
8530  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8531  * chip receive interrupt is *not* cleared down until this or the thread (if
8532  * invoked) is finished.  The intent is to avoid extra interrupts while we
8533  * are processing packets anyway.
8534  */
8535 irqreturn_t receive_context_interrupt(int irq, void *data)
8536 {
8537 	struct hfi1_ctxtdata *rcd = data;
8538 	int disposition;
8539 
8540 	receive_interrupt_common(rcd);
8541 
8542 	/* receive interrupt remains blocked while processing packets */
8543 	disposition = rcd->do_interrupt(rcd, 0);
8544 
8545 	/*
8546 	 * Too many packets were seen while processing packets in this
8547 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8548 	 * remains blocked.
8549 	 */
8550 	if (disposition == RCV_PKT_LIMIT)
8551 		return IRQ_WAKE_THREAD;
8552 
8553 	__hfi1_rcd_eoi_intr(rcd);
8554 	return IRQ_HANDLED;
8555 }
8556 
8557 /*
8558  * Receive packet thread handler.  This expects to be invoked with the
8559  * receive interrupt still blocked.
8560  */
8561 irqreturn_t receive_context_thread(int irq, void *data)
8562 {
8563 	struct hfi1_ctxtdata *rcd = data;
8564 
8565 	/* receive interrupt is still blocked from the IRQ handler */
8566 	(void)rcd->do_interrupt(rcd, 1);
8567 
8568 	hfi1_rcd_eoi_intr(rcd);
8569 
8570 	return IRQ_HANDLED;
8571 }
8572 
8573 /* ========================================================================= */
8574 
8575 u32 read_physical_state(struct hfi1_devdata *dd)
8576 {
8577 	u64 reg;
8578 
8579 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8580 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8581 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8582 }
8583 
8584 u32 read_logical_state(struct hfi1_devdata *dd)
8585 {
8586 	u64 reg;
8587 
8588 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8589 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8590 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8591 }
8592 
8593 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8594 {
8595 	u64 reg;
8596 
8597 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8598 	/* clear current state, set new state */
8599 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8600 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8601 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8602 }
8603 
8604 /*
8605  * Use the 8051 to read a LCB CSR.
8606  */
8607 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8608 {
8609 	u32 regno;
8610 	int ret;
8611 
8612 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8613 		if (acquire_lcb_access(dd, 0) == 0) {
8614 			*data = read_csr(dd, addr);
8615 			release_lcb_access(dd, 0);
8616 			return 0;
8617 		}
8618 		return -EBUSY;
8619 	}
8620 
8621 	/* register is an index of LCB registers: (offset - base) / 8 */
8622 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8623 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8624 	if (ret != HCMD_SUCCESS)
8625 		return -EBUSY;
8626 	return 0;
8627 }
8628 
8629 /*
8630  * Provide a cache for some of the LCB registers in case the LCB is
8631  * unavailable.
8632  * (The LCB is unavailable in certain link states, for example.)
8633  */
8634 struct lcb_datum {
8635 	u32 off;
8636 	u64 val;
8637 };
8638 
8639 static struct lcb_datum lcb_cache[] = {
8640 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8641 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8642 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8643 };
8644 
8645 static void update_lcb_cache(struct hfi1_devdata *dd)
8646 {
8647 	int i;
8648 	int ret;
8649 	u64 val;
8650 
8651 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8652 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8653 
8654 		/* Update if we get good data */
8655 		if (likely(ret != -EBUSY))
8656 			lcb_cache[i].val = val;
8657 	}
8658 }
8659 
8660 static int read_lcb_cache(u32 off, u64 *val)
8661 {
8662 	int i;
8663 
8664 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8665 		if (lcb_cache[i].off == off) {
8666 			*val = lcb_cache[i].val;
8667 			return 0;
8668 		}
8669 	}
8670 
8671 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8672 	return -1;
8673 }
8674 
8675 /*
8676  * Read an LCB CSR.  Access may not be in host control, so check.
8677  * Return 0 on success, -EBUSY on failure.
8678  */
8679 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8680 {
8681 	struct hfi1_pportdata *ppd = dd->pport;
8682 
8683 	/* if up, go through the 8051 for the value */
8684 	if (ppd->host_link_state & HLS_UP)
8685 		return read_lcb_via_8051(dd, addr, data);
8686 	/* if going up or down, check the cache, otherwise, no access */
8687 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8688 		if (read_lcb_cache(addr, data))
8689 			return -EBUSY;
8690 		return 0;
8691 	}
8692 
8693 	/* otherwise, host has access */
8694 	*data = read_csr(dd, addr);
8695 	return 0;
8696 }
8697 
8698 /*
8699  * Use the 8051 to write a LCB CSR.
8700  */
8701 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8702 {
8703 	u32 regno;
8704 	int ret;
8705 
8706 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8707 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8708 		if (acquire_lcb_access(dd, 0) == 0) {
8709 			write_csr(dd, addr, data);
8710 			release_lcb_access(dd, 0);
8711 			return 0;
8712 		}
8713 		return -EBUSY;
8714 	}
8715 
8716 	/* register is an index of LCB registers: (offset - base) / 8 */
8717 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8718 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8719 	if (ret != HCMD_SUCCESS)
8720 		return -EBUSY;
8721 	return 0;
8722 }
8723 
8724 /*
8725  * Write an LCB CSR.  Access may not be in host control, so check.
8726  * Return 0 on success, -EBUSY on failure.
8727  */
8728 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8729 {
8730 	struct hfi1_pportdata *ppd = dd->pport;
8731 
8732 	/* if up, go through the 8051 for the value */
8733 	if (ppd->host_link_state & HLS_UP)
8734 		return write_lcb_via_8051(dd, addr, data);
8735 	/* if going up or down, no access */
8736 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8737 		return -EBUSY;
8738 	/* otherwise, host has access */
8739 	write_csr(dd, addr, data);
8740 	return 0;
8741 }
8742 
8743 /*
8744  * Returns:
8745  *	< 0 = Linux error, not able to get access
8746  *	> 0 = 8051 command RETURN_CODE
8747  */
8748 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8749 			   u64 *out_data)
8750 {
8751 	u64 reg, completed;
8752 	int return_code;
8753 	unsigned long timeout;
8754 
8755 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8756 
8757 	mutex_lock(&dd->dc8051_lock);
8758 
8759 	/* We can't send any commands to the 8051 if it's in reset */
8760 	if (dd->dc_shutdown) {
8761 		return_code = -ENODEV;
8762 		goto fail;
8763 	}
8764 
8765 	/*
8766 	 * If an 8051 host command timed out previously, then the 8051 is
8767 	 * stuck.
8768 	 *
8769 	 * On first timeout, attempt to reset and restart the entire DC
8770 	 * block (including 8051). (Is this too big of a hammer?)
8771 	 *
8772 	 * If the 8051 times out a second time, the reset did not bring it
8773 	 * back to healthy life. In that case, fail any subsequent commands.
8774 	 */
8775 	if (dd->dc8051_timed_out) {
8776 		if (dd->dc8051_timed_out > 1) {
8777 			dd_dev_err(dd,
8778 				   "Previous 8051 host command timed out, skipping command %u\n",
8779 				   type);
8780 			return_code = -ENXIO;
8781 			goto fail;
8782 		}
8783 		_dc_shutdown(dd);
8784 		_dc_start(dd);
8785 	}
8786 
8787 	/*
8788 	 * If there is no timeout, then the 8051 command interface is
8789 	 * waiting for a command.
8790 	 */
8791 
8792 	/*
8793 	 * When writing a LCB CSR, out_data contains the full value to
8794 	 * to be written, while in_data contains the relative LCB
8795 	 * address in 7:0.  Do the work here, rather than the caller,
8796 	 * of distrubting the write data to where it needs to go:
8797 	 *
8798 	 * Write data
8799 	 *   39:00 -> in_data[47:8]
8800 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8801 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8802 	 */
8803 	if (type == HCMD_WRITE_LCB_CSR) {
8804 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8805 		/* must preserve COMPLETED - it is tied to hardware */
8806 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8807 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8808 		reg |= ((((*out_data) >> 40) & 0xff) <<
8809 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8810 		      | ((((*out_data) >> 48) & 0xffff) <<
8811 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8812 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8813 	}
8814 
8815 	/*
8816 	 * Do two writes: the first to stabilize the type and req_data, the
8817 	 * second to activate.
8818 	 */
8819 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8820 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8821 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8822 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8823 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8824 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8825 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8826 
8827 	/* wait for completion, alternate: interrupt */
8828 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8829 	while (1) {
8830 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8831 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8832 		if (completed)
8833 			break;
8834 		if (time_after(jiffies, timeout)) {
8835 			dd->dc8051_timed_out++;
8836 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8837 			if (out_data)
8838 				*out_data = 0;
8839 			return_code = -ETIMEDOUT;
8840 			goto fail;
8841 		}
8842 		udelay(2);
8843 	}
8844 
8845 	if (out_data) {
8846 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8847 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8848 		if (type == HCMD_READ_LCB_CSR) {
8849 			/* top 16 bits are in a different register */
8850 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8851 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8852 				<< (48
8853 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8854 		}
8855 	}
8856 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8857 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8858 	dd->dc8051_timed_out = 0;
8859 	/*
8860 	 * Clear command for next user.
8861 	 */
8862 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8863 
8864 fail:
8865 	mutex_unlock(&dd->dc8051_lock);
8866 	return return_code;
8867 }
8868 
8869 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8870 {
8871 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8872 }
8873 
8874 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8875 		     u8 lane_id, u32 config_data)
8876 {
8877 	u64 data;
8878 	int ret;
8879 
8880 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8881 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8882 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8883 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8884 	if (ret != HCMD_SUCCESS) {
8885 		dd_dev_err(dd,
8886 			   "load 8051 config: field id %d, lane %d, err %d\n",
8887 			   (int)field_id, (int)lane_id, ret);
8888 	}
8889 	return ret;
8890 }
8891 
8892 /*
8893  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8894  * set the result, even on error.
8895  * Return 0 on success, -errno on failure
8896  */
8897 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8898 		     u32 *result)
8899 {
8900 	u64 big_data;
8901 	u32 addr;
8902 	int ret;
8903 
8904 	/* address start depends on the lane_id */
8905 	if (lane_id < 4)
8906 		addr = (4 * NUM_GENERAL_FIELDS)
8907 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8908 	else
8909 		addr = 0;
8910 	addr += field_id * 4;
8911 
8912 	/* read is in 8-byte chunks, hardware will truncate the address down */
8913 	ret = read_8051_data(dd, addr, 8, &big_data);
8914 
8915 	if (ret == 0) {
8916 		/* extract the 4 bytes we want */
8917 		if (addr & 0x4)
8918 			*result = (u32)(big_data >> 32);
8919 		else
8920 			*result = (u32)big_data;
8921 	} else {
8922 		*result = 0;
8923 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8924 			   __func__, lane_id, field_id);
8925 	}
8926 
8927 	return ret;
8928 }
8929 
8930 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8931 			      u8 continuous)
8932 {
8933 	u32 frame;
8934 
8935 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8936 		| power_management << POWER_MANAGEMENT_SHIFT;
8937 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8938 				GENERAL_CONFIG, frame);
8939 }
8940 
8941 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8942 				 u16 vl15buf, u8 crc_sizes)
8943 {
8944 	u32 frame;
8945 
8946 	frame = (u32)vau << VAU_SHIFT
8947 		| (u32)z << Z_SHIFT
8948 		| (u32)vcu << VCU_SHIFT
8949 		| (u32)vl15buf << VL15BUF_SHIFT
8950 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8951 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8952 				GENERAL_CONFIG, frame);
8953 }
8954 
8955 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8956 				    u8 *flag_bits, u16 *link_widths)
8957 {
8958 	u32 frame;
8959 
8960 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8961 			 &frame);
8962 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8963 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8964 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8965 }
8966 
8967 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8968 				    u8 misc_bits,
8969 				    u8 flag_bits,
8970 				    u16 link_widths)
8971 {
8972 	u32 frame;
8973 
8974 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8975 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8976 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8977 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8978 		     frame);
8979 }
8980 
8981 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8982 				 u8 device_rev)
8983 {
8984 	u32 frame;
8985 
8986 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8987 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8988 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8989 }
8990 
8991 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8992 				  u8 *device_rev)
8993 {
8994 	u32 frame;
8995 
8996 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8997 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8998 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8999 			& REMOTE_DEVICE_REV_MASK;
9000 }
9001 
9002 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
9003 {
9004 	u32 frame;
9005 	u32 mask;
9006 
9007 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
9008 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
9009 	/* Clear, then set field */
9010 	frame &= ~mask;
9011 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
9012 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
9013 				frame);
9014 }
9015 
9016 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
9017 		      u8 *ver_patch)
9018 {
9019 	u32 frame;
9020 
9021 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
9022 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
9023 		STS_FM_VERSION_MAJOR_MASK;
9024 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
9025 		STS_FM_VERSION_MINOR_MASK;
9026 
9027 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
9028 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
9029 		STS_FM_VERSION_PATCH_MASK;
9030 }
9031 
9032 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
9033 			       u8 *continuous)
9034 {
9035 	u32 frame;
9036 
9037 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
9038 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
9039 					& POWER_MANAGEMENT_MASK;
9040 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9041 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9042 }
9043 
9044 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9045 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9046 {
9047 	u32 frame;
9048 
9049 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9050 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
9051 	*z = (frame >> Z_SHIFT) & Z_MASK;
9052 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9053 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9054 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9055 }
9056 
9057 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9058 				      u8 *remote_tx_rate,
9059 				      u16 *link_widths)
9060 {
9061 	u32 frame;
9062 
9063 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9064 			 &frame);
9065 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9066 				& REMOTE_TX_RATE_MASK;
9067 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9068 }
9069 
9070 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9071 {
9072 	u32 frame;
9073 
9074 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9075 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9076 }
9077 
9078 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9079 {
9080 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9081 }
9082 
9083 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9084 {
9085 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9086 }
9087 
9088 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9089 {
9090 	u32 frame;
9091 	int ret;
9092 
9093 	*link_quality = 0;
9094 	if (dd->pport->host_link_state & HLS_UP) {
9095 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9096 				       &frame);
9097 		if (ret == 0)
9098 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9099 						& LINK_QUALITY_MASK;
9100 	}
9101 }
9102 
9103 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9104 {
9105 	u32 frame;
9106 
9107 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9108 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9109 }
9110 
9111 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9112 {
9113 	u32 frame;
9114 
9115 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9116 	*ldr = (frame & 0xff);
9117 }
9118 
9119 static int read_tx_settings(struct hfi1_devdata *dd,
9120 			    u8 *enable_lane_tx,
9121 			    u8 *tx_polarity_inversion,
9122 			    u8 *rx_polarity_inversion,
9123 			    u8 *max_rate)
9124 {
9125 	u32 frame;
9126 	int ret;
9127 
9128 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9129 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9130 				& ENABLE_LANE_TX_MASK;
9131 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9132 				& TX_POLARITY_INVERSION_MASK;
9133 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9134 				& RX_POLARITY_INVERSION_MASK;
9135 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9136 	return ret;
9137 }
9138 
9139 static int write_tx_settings(struct hfi1_devdata *dd,
9140 			     u8 enable_lane_tx,
9141 			     u8 tx_polarity_inversion,
9142 			     u8 rx_polarity_inversion,
9143 			     u8 max_rate)
9144 {
9145 	u32 frame;
9146 
9147 	/* no need to mask, all variable sizes match field widths */
9148 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9149 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9150 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9151 		| max_rate << MAX_RATE_SHIFT;
9152 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9153 }
9154 
9155 /*
9156  * Read an idle LCB message.
9157  *
9158  * Returns 0 on success, -EINVAL on error
9159  */
9160 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9161 {
9162 	int ret;
9163 
9164 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9165 	if (ret != HCMD_SUCCESS) {
9166 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9167 			   (u32)type, ret);
9168 		return -EINVAL;
9169 	}
9170 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9171 	/* return only the payload as we already know the type */
9172 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9173 	return 0;
9174 }
9175 
9176 /*
9177  * Read an idle SMA message.  To be done in response to a notification from
9178  * the 8051.
9179  *
9180  * Returns 0 on success, -EINVAL on error
9181  */
9182 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9183 {
9184 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9185 				 data);
9186 }
9187 
9188 /*
9189  * Send an idle LCB message.
9190  *
9191  * Returns 0 on success, -EINVAL on error
9192  */
9193 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9194 {
9195 	int ret;
9196 
9197 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9198 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9199 	if (ret != HCMD_SUCCESS) {
9200 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9201 			   data, ret);
9202 		return -EINVAL;
9203 	}
9204 	return 0;
9205 }
9206 
9207 /*
9208  * Send an idle SMA message.
9209  *
9210  * Returns 0 on success, -EINVAL on error
9211  */
9212 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9213 {
9214 	u64 data;
9215 
9216 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9217 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9218 	return send_idle_message(dd, data);
9219 }
9220 
9221 /*
9222  * Initialize the LCB then do a quick link up.  This may or may not be
9223  * in loopback.
9224  *
9225  * return 0 on success, -errno on error
9226  */
9227 static int do_quick_linkup(struct hfi1_devdata *dd)
9228 {
9229 	int ret;
9230 
9231 	lcb_shutdown(dd, 0);
9232 
9233 	if (loopback) {
9234 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9235 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9236 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9237 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9238 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9239 	}
9240 
9241 	/* start the LCBs */
9242 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9243 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9244 
9245 	/* simulator only loopback steps */
9246 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9247 		/* LCB_CFG_RUN.EN = 1 */
9248 		write_csr(dd, DC_LCB_CFG_RUN,
9249 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9250 
9251 		ret = wait_link_transfer_active(dd, 10);
9252 		if (ret)
9253 			return ret;
9254 
9255 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9256 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9257 	}
9258 
9259 	if (!loopback) {
9260 		/*
9261 		 * When doing quick linkup and not in loopback, both
9262 		 * sides must be done with LCB set-up before either
9263 		 * starts the quick linkup.  Put a delay here so that
9264 		 * both sides can be started and have a chance to be
9265 		 * done with LCB set up before resuming.
9266 		 */
9267 		dd_dev_err(dd,
9268 			   "Pausing for peer to be finished with LCB set up\n");
9269 		msleep(5000);
9270 		dd_dev_err(dd, "Continuing with quick linkup\n");
9271 	}
9272 
9273 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9274 	set_8051_lcb_access(dd);
9275 
9276 	/*
9277 	 * State "quick" LinkUp request sets the physical link state to
9278 	 * LinkUp without a verify capability sequence.
9279 	 * This state is in simulator v37 and later.
9280 	 */
9281 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9282 	if (ret != HCMD_SUCCESS) {
9283 		dd_dev_err(dd,
9284 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9285 			   __func__, ret);
9286 
9287 		set_host_lcb_access(dd);
9288 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9289 
9290 		if (ret >= 0)
9291 			ret = -EINVAL;
9292 		return ret;
9293 	}
9294 
9295 	return 0; /* success */
9296 }
9297 
9298 /*
9299  * Do all special steps to set up loopback.
9300  */
9301 static int init_loopback(struct hfi1_devdata *dd)
9302 {
9303 	dd_dev_info(dd, "Entering loopback mode\n");
9304 
9305 	/* all loopbacks should disable self GUID check */
9306 	write_csr(dd, DC_DC8051_CFG_MODE,
9307 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9308 
9309 	/*
9310 	 * The simulator has only one loopback option - LCB.  Switch
9311 	 * to that option, which includes quick link up.
9312 	 *
9313 	 * Accept all valid loopback values.
9314 	 */
9315 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9316 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9317 	     loopback == LOOPBACK_CABLE)) {
9318 		loopback = LOOPBACK_LCB;
9319 		quick_linkup = 1;
9320 		return 0;
9321 	}
9322 
9323 	/*
9324 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9325 	 */
9326 	if (loopback == LOOPBACK_SERDES)
9327 		return 0;
9328 
9329 	/* LCB loopback - handled at poll time */
9330 	if (loopback == LOOPBACK_LCB) {
9331 		quick_linkup = 1; /* LCB is always quick linkup */
9332 
9333 		/* not supported in emulation due to emulation RTL changes */
9334 		if (dd->icode == ICODE_FPGA_EMULATION) {
9335 			dd_dev_err(dd,
9336 				   "LCB loopback not supported in emulation\n");
9337 			return -EINVAL;
9338 		}
9339 		return 0;
9340 	}
9341 
9342 	/* external cable loopback requires no extra steps */
9343 	if (loopback == LOOPBACK_CABLE)
9344 		return 0;
9345 
9346 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9347 	return -EINVAL;
9348 }
9349 
9350 /*
9351  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9352  * used in the Verify Capability link width attribute.
9353  */
9354 static u16 opa_to_vc_link_widths(u16 opa_widths)
9355 {
9356 	int i;
9357 	u16 result = 0;
9358 
9359 	static const struct link_bits {
9360 		u16 from;
9361 		u16 to;
9362 	} opa_link_xlate[] = {
9363 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9364 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9365 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9366 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9367 	};
9368 
9369 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9370 		if (opa_widths & opa_link_xlate[i].from)
9371 			result |= opa_link_xlate[i].to;
9372 	}
9373 	return result;
9374 }
9375 
9376 /*
9377  * Set link attributes before moving to polling.
9378  */
9379 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9380 {
9381 	struct hfi1_devdata *dd = ppd->dd;
9382 	u8 enable_lane_tx;
9383 	u8 tx_polarity_inversion;
9384 	u8 rx_polarity_inversion;
9385 	int ret;
9386 	u32 misc_bits = 0;
9387 	/* reset our fabric serdes to clear any lingering problems */
9388 	fabric_serdes_reset(dd);
9389 
9390 	/* set the local tx rate - need to read-modify-write */
9391 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9392 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9393 	if (ret)
9394 		goto set_local_link_attributes_fail;
9395 
9396 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9397 		/* set the tx rate to the fastest enabled */
9398 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9399 			ppd->local_tx_rate = 1;
9400 		else
9401 			ppd->local_tx_rate = 0;
9402 	} else {
9403 		/* set the tx rate to all enabled */
9404 		ppd->local_tx_rate = 0;
9405 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9406 			ppd->local_tx_rate |= 2;
9407 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9408 			ppd->local_tx_rate |= 1;
9409 	}
9410 
9411 	enable_lane_tx = 0xF; /* enable all four lanes */
9412 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9413 				rx_polarity_inversion, ppd->local_tx_rate);
9414 	if (ret != HCMD_SUCCESS)
9415 		goto set_local_link_attributes_fail;
9416 
9417 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9418 	if (ret != HCMD_SUCCESS) {
9419 		dd_dev_err(dd,
9420 			   "Failed to set host interface version, return 0x%x\n",
9421 			   ret);
9422 		goto set_local_link_attributes_fail;
9423 	}
9424 
9425 	/*
9426 	 * DC supports continuous updates.
9427 	 */
9428 	ret = write_vc_local_phy(dd,
9429 				 0 /* no power management */,
9430 				 1 /* continuous updates */);
9431 	if (ret != HCMD_SUCCESS)
9432 		goto set_local_link_attributes_fail;
9433 
9434 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9435 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9436 				    ppd->port_crc_mode_enabled);
9437 	if (ret != HCMD_SUCCESS)
9438 		goto set_local_link_attributes_fail;
9439 
9440 	/*
9441 	 * SerDes loopback init sequence requires
9442 	 * setting bit 0 of MISC_CONFIG_BITS
9443 	 */
9444 	if (loopback == LOOPBACK_SERDES)
9445 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9446 
9447 	/*
9448 	 * An external device configuration request is used to reset the LCB
9449 	 * to retry to obtain operational lanes when the first attempt is
9450 	 * unsuccesful.
9451 	 */
9452 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9453 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9454 
9455 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9456 				       opa_to_vc_link_widths(
9457 						ppd->link_width_enabled));
9458 	if (ret != HCMD_SUCCESS)
9459 		goto set_local_link_attributes_fail;
9460 
9461 	/* let peer know who we are */
9462 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9463 	if (ret == HCMD_SUCCESS)
9464 		return 0;
9465 
9466 set_local_link_attributes_fail:
9467 	dd_dev_err(dd,
9468 		   "Failed to set local link attributes, return 0x%x\n",
9469 		   ret);
9470 	return ret;
9471 }
9472 
9473 /*
9474  * Call this to start the link.
9475  * Do not do anything if the link is disabled.
9476  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9477  */
9478 int start_link(struct hfi1_pportdata *ppd)
9479 {
9480 	/*
9481 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9482 	 * error rate.  Needs to be done before starting the link.
9483 	 */
9484 	tune_serdes(ppd);
9485 
9486 	if (!ppd->driver_link_ready) {
9487 		dd_dev_info(ppd->dd,
9488 			    "%s: stopping link start because driver is not ready\n",
9489 			    __func__);
9490 		return 0;
9491 	}
9492 
9493 	/*
9494 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9495 	 * pkey table can be configured properly if the HFI unit is connected
9496 	 * to switch port with MgmtAllowed=NO
9497 	 */
9498 	clear_full_mgmt_pkey(ppd);
9499 
9500 	return set_link_state(ppd, HLS_DN_POLL);
9501 }
9502 
9503 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9504 {
9505 	struct hfi1_devdata *dd = ppd->dd;
9506 	u64 mask;
9507 	unsigned long timeout;
9508 
9509 	/*
9510 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9511 	 * effect of power up on plug-in. We ignore this false positive
9512 	 * interrupt until the module has finished powering up by waiting for
9513 	 * a minimum timeout of the module inrush initialization time of
9514 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9515 	 * module have stabilized.
9516 	 */
9517 	msleep(500);
9518 
9519 	/*
9520 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9521 	 */
9522 	timeout = jiffies + msecs_to_jiffies(2000);
9523 	while (1) {
9524 		mask = read_csr(dd, dd->hfi1_id ?
9525 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9526 		if (!(mask & QSFP_HFI0_INT_N))
9527 			break;
9528 		if (time_after(jiffies, timeout)) {
9529 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9530 				    __func__);
9531 			break;
9532 		}
9533 		udelay(2);
9534 	}
9535 }
9536 
9537 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9538 {
9539 	struct hfi1_devdata *dd = ppd->dd;
9540 	u64 mask;
9541 
9542 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9543 	if (enable) {
9544 		/*
9545 		 * Clear the status register to avoid an immediate interrupt
9546 		 * when we re-enable the IntN pin
9547 		 */
9548 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9549 			  QSFP_HFI0_INT_N);
9550 		mask |= (u64)QSFP_HFI0_INT_N;
9551 	} else {
9552 		mask &= ~(u64)QSFP_HFI0_INT_N;
9553 	}
9554 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9555 }
9556 
9557 int reset_qsfp(struct hfi1_pportdata *ppd)
9558 {
9559 	struct hfi1_devdata *dd = ppd->dd;
9560 	u64 mask, qsfp_mask;
9561 
9562 	/* Disable INT_N from triggering QSFP interrupts */
9563 	set_qsfp_int_n(ppd, 0);
9564 
9565 	/* Reset the QSFP */
9566 	mask = (u64)QSFP_HFI0_RESET_N;
9567 
9568 	qsfp_mask = read_csr(dd,
9569 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9570 	qsfp_mask &= ~mask;
9571 	write_csr(dd,
9572 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9573 
9574 	udelay(10);
9575 
9576 	qsfp_mask |= mask;
9577 	write_csr(dd,
9578 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9579 
9580 	wait_for_qsfp_init(ppd);
9581 
9582 	/*
9583 	 * Allow INT_N to trigger the QSFP interrupt to watch
9584 	 * for alarms and warnings
9585 	 */
9586 	set_qsfp_int_n(ppd, 1);
9587 
9588 	/*
9589 	 * After the reset, AOC transmitters are enabled by default. They need
9590 	 * to be turned off to complete the QSFP setup before they can be
9591 	 * enabled again.
9592 	 */
9593 	return set_qsfp_tx(ppd, 0);
9594 }
9595 
9596 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9597 					u8 *qsfp_interrupt_status)
9598 {
9599 	struct hfi1_devdata *dd = ppd->dd;
9600 
9601 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9602 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9603 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9604 			   __func__);
9605 
9606 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9607 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9608 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9609 			   __func__);
9610 
9611 	/*
9612 	 * The remaining alarms/warnings don't matter if the link is down.
9613 	 */
9614 	if (ppd->host_link_state & HLS_DOWN)
9615 		return 0;
9616 
9617 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9618 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9619 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9620 			   __func__);
9621 
9622 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9623 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9624 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9625 			   __func__);
9626 
9627 	/* Byte 2 is vendor specific */
9628 
9629 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9630 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9631 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9632 			   __func__);
9633 
9634 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9635 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9636 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9637 			   __func__);
9638 
9639 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9640 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9641 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9642 			   __func__);
9643 
9644 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9645 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9646 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9647 			   __func__);
9648 
9649 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9650 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9651 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9652 			   __func__);
9653 
9654 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9655 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9656 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9657 			   __func__);
9658 
9659 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9660 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9661 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9662 			   __func__);
9663 
9664 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9665 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9666 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9667 			   __func__);
9668 
9669 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9670 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9671 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9672 			   __func__);
9673 
9674 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9675 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9676 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9677 			   __func__);
9678 
9679 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9680 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9681 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9682 			   __func__);
9683 
9684 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9685 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9686 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9687 			   __func__);
9688 
9689 	/* Bytes 9-10 and 11-12 are reserved */
9690 	/* Bytes 13-15 are vendor specific */
9691 
9692 	return 0;
9693 }
9694 
9695 /* This routine will only be scheduled if the QSFP module present is asserted */
9696 void qsfp_event(struct work_struct *work)
9697 {
9698 	struct qsfp_data *qd;
9699 	struct hfi1_pportdata *ppd;
9700 	struct hfi1_devdata *dd;
9701 
9702 	qd = container_of(work, struct qsfp_data, qsfp_work);
9703 	ppd = qd->ppd;
9704 	dd = ppd->dd;
9705 
9706 	/* Sanity check */
9707 	if (!qsfp_mod_present(ppd))
9708 		return;
9709 
9710 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9711 		dd_dev_info(ppd->dd,
9712 			    "%s: stopping link start because link is disabled\n",
9713 			    __func__);
9714 		return;
9715 	}
9716 
9717 	/*
9718 	 * Turn DC back on after cable has been re-inserted. Up until
9719 	 * now, the DC has been in reset to save power.
9720 	 */
9721 	dc_start(dd);
9722 
9723 	if (qd->cache_refresh_required) {
9724 		set_qsfp_int_n(ppd, 0);
9725 
9726 		wait_for_qsfp_init(ppd);
9727 
9728 		/*
9729 		 * Allow INT_N to trigger the QSFP interrupt to watch
9730 		 * for alarms and warnings
9731 		 */
9732 		set_qsfp_int_n(ppd, 1);
9733 
9734 		start_link(ppd);
9735 	}
9736 
9737 	if (qd->check_interrupt_flags) {
9738 		u8 qsfp_interrupt_status[16] = {0,};
9739 
9740 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9741 				  &qsfp_interrupt_status[0], 16) != 16) {
9742 			dd_dev_info(dd,
9743 				    "%s: Failed to read status of QSFP module\n",
9744 				    __func__);
9745 		} else {
9746 			unsigned long flags;
9747 
9748 			handle_qsfp_error_conditions(
9749 					ppd, qsfp_interrupt_status);
9750 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9751 			ppd->qsfp_info.check_interrupt_flags = 0;
9752 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9753 					       flags);
9754 		}
9755 	}
9756 }
9757 
9758 void init_qsfp_int(struct hfi1_devdata *dd)
9759 {
9760 	struct hfi1_pportdata *ppd = dd->pport;
9761 	u64 qsfp_mask;
9762 
9763 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9764 	/* Clear current status to avoid spurious interrupts */
9765 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9766 		  qsfp_mask);
9767 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9768 		  qsfp_mask);
9769 
9770 	set_qsfp_int_n(ppd, 0);
9771 
9772 	/* Handle active low nature of INT_N and MODPRST_N pins */
9773 	if (qsfp_mod_present(ppd))
9774 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9775 	write_csr(dd,
9776 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9777 		  qsfp_mask);
9778 
9779 	/* Enable the appropriate QSFP IRQ source */
9780 	if (!dd->hfi1_id)
9781 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9782 	else
9783 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9784 }
9785 
9786 /*
9787  * Do a one-time initialize of the LCB block.
9788  */
9789 static void init_lcb(struct hfi1_devdata *dd)
9790 {
9791 	/* simulator does not correctly handle LCB cclk loopback, skip */
9792 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9793 		return;
9794 
9795 	/* the DC has been reset earlier in the driver load */
9796 
9797 	/* set LCB for cclk loopback on the port */
9798 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9799 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9800 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9801 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9802 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9803 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9804 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9805 }
9806 
9807 /*
9808  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9809  * on error.
9810  */
9811 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9812 {
9813 	int ret;
9814 	u8 status;
9815 
9816 	/*
9817 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9818 	 * not present
9819 	 */
9820 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9821 		return 0;
9822 
9823 	/* read byte 2, the status byte */
9824 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9825 	if (ret < 0)
9826 		return ret;
9827 	if (ret != 1)
9828 		return -EIO;
9829 
9830 	return 0; /* success */
9831 }
9832 
9833 /*
9834  * Values for QSFP retry.
9835  *
9836  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9837  * arrived at from experience on a large cluster.
9838  */
9839 #define MAX_QSFP_RETRIES 20
9840 #define QSFP_RETRY_WAIT 500 /* msec */
9841 
9842 /*
9843  * Try a QSFP read.  If it fails, schedule a retry for later.
9844  * Called on first link activation after driver load.
9845  */
9846 static void try_start_link(struct hfi1_pportdata *ppd)
9847 {
9848 	if (test_qsfp_read(ppd)) {
9849 		/* read failed */
9850 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9851 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9852 			return;
9853 		}
9854 		dd_dev_info(ppd->dd,
9855 			    "QSFP not responding, waiting and retrying %d\n",
9856 			    (int)ppd->qsfp_retry_count);
9857 		ppd->qsfp_retry_count++;
9858 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9859 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9860 		return;
9861 	}
9862 	ppd->qsfp_retry_count = 0;
9863 
9864 	start_link(ppd);
9865 }
9866 
9867 /*
9868  * Workqueue function to start the link after a delay.
9869  */
9870 void handle_start_link(struct work_struct *work)
9871 {
9872 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9873 						  start_link_work.work);
9874 	try_start_link(ppd);
9875 }
9876 
9877 int bringup_serdes(struct hfi1_pportdata *ppd)
9878 {
9879 	struct hfi1_devdata *dd = ppd->dd;
9880 	u64 guid;
9881 	int ret;
9882 
9883 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9884 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9885 
9886 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9887 	if (!guid) {
9888 		if (dd->base_guid)
9889 			guid = dd->base_guid + ppd->port - 1;
9890 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9891 	}
9892 
9893 	/* Set linkinit_reason on power up per OPA spec */
9894 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9895 
9896 	/* one-time init of the LCB */
9897 	init_lcb(dd);
9898 
9899 	if (loopback) {
9900 		ret = init_loopback(dd);
9901 		if (ret < 0)
9902 			return ret;
9903 	}
9904 
9905 	get_port_type(ppd);
9906 	if (ppd->port_type == PORT_TYPE_QSFP) {
9907 		set_qsfp_int_n(ppd, 0);
9908 		wait_for_qsfp_init(ppd);
9909 		set_qsfp_int_n(ppd, 1);
9910 	}
9911 
9912 	try_start_link(ppd);
9913 	return 0;
9914 }
9915 
9916 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9917 {
9918 	struct hfi1_devdata *dd = ppd->dd;
9919 
9920 	/*
9921 	 * Shut down the link and keep it down.   First turn off that the
9922 	 * driver wants to allow the link to be up (driver_link_ready).
9923 	 * Then make sure the link is not automatically restarted
9924 	 * (link_enabled).  Cancel any pending restart.  And finally
9925 	 * go offline.
9926 	 */
9927 	ppd->driver_link_ready = 0;
9928 	ppd->link_enabled = 0;
9929 
9930 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9931 	flush_delayed_work(&ppd->start_link_work);
9932 	cancel_delayed_work_sync(&ppd->start_link_work);
9933 
9934 	ppd->offline_disabled_reason =
9935 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9936 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9937 			     OPA_LINKDOWN_REASON_REBOOT);
9938 	set_link_state(ppd, HLS_DN_OFFLINE);
9939 
9940 	/* disable the port */
9941 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9942 	cancel_work_sync(&ppd->freeze_work);
9943 }
9944 
9945 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9946 {
9947 	struct hfi1_pportdata *ppd;
9948 	int i;
9949 
9950 	ppd = (struct hfi1_pportdata *)(dd + 1);
9951 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9952 		ppd->ibport_data.rvp.rc_acks = NULL;
9953 		ppd->ibport_data.rvp.rc_qacks = NULL;
9954 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9955 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9956 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9957 		if (!ppd->ibport_data.rvp.rc_acks ||
9958 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9959 		    !ppd->ibport_data.rvp.rc_qacks)
9960 			return -ENOMEM;
9961 	}
9962 
9963 	return 0;
9964 }
9965 
9966 /*
9967  * index is the index into the receive array
9968  */
9969 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9970 		  u32 type, unsigned long pa, u16 order)
9971 {
9972 	u64 reg;
9973 
9974 	if (!(dd->flags & HFI1_PRESENT))
9975 		goto done;
9976 
9977 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9978 		pa = 0;
9979 		order = 0;
9980 	} else if (type > PT_INVALID) {
9981 		dd_dev_err(dd,
9982 			   "unexpected receive array type %u for index %u, not handled\n",
9983 			   type, index);
9984 		goto done;
9985 	}
9986 	trace_hfi1_put_tid(dd, index, type, pa, order);
9987 
9988 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9989 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9990 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9991 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9992 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9993 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9994 	writeq(reg, dd->rcvarray_wc + (index * 8));
9995 
9996 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9997 		/*
9998 		 * Eager entries are written and flushed
9999 		 *
10000 		 * Expected entries are flushed every 4 writes
10001 		 */
10002 		flush_wc();
10003 done:
10004 	return;
10005 }
10006 
10007 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
10008 {
10009 	struct hfi1_devdata *dd = rcd->dd;
10010 	u32 i;
10011 
10012 	/* this could be optimized */
10013 	for (i = rcd->eager_base; i < rcd->eager_base +
10014 		     rcd->egrbufs.alloced; i++)
10015 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10016 
10017 	for (i = rcd->expected_base;
10018 			i < rcd->expected_base + rcd->expected_count; i++)
10019 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
10020 }
10021 
10022 static const char * const ib_cfg_name_strings[] = {
10023 	"HFI1_IB_CFG_LIDLMC",
10024 	"HFI1_IB_CFG_LWID_DG_ENB",
10025 	"HFI1_IB_CFG_LWID_ENB",
10026 	"HFI1_IB_CFG_LWID",
10027 	"HFI1_IB_CFG_SPD_ENB",
10028 	"HFI1_IB_CFG_SPD",
10029 	"HFI1_IB_CFG_RXPOL_ENB",
10030 	"HFI1_IB_CFG_LREV_ENB",
10031 	"HFI1_IB_CFG_LINKLATENCY",
10032 	"HFI1_IB_CFG_HRTBT",
10033 	"HFI1_IB_CFG_OP_VLS",
10034 	"HFI1_IB_CFG_VL_HIGH_CAP",
10035 	"HFI1_IB_CFG_VL_LOW_CAP",
10036 	"HFI1_IB_CFG_OVERRUN_THRESH",
10037 	"HFI1_IB_CFG_PHYERR_THRESH",
10038 	"HFI1_IB_CFG_LINKDEFAULT",
10039 	"HFI1_IB_CFG_PKEYS",
10040 	"HFI1_IB_CFG_MTU",
10041 	"HFI1_IB_CFG_LSTATE",
10042 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
10043 	"HFI1_IB_CFG_PMA_TICKS",
10044 	"HFI1_IB_CFG_PORT"
10045 };
10046 
10047 static const char *ib_cfg_name(int which)
10048 {
10049 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10050 		return "invalid";
10051 	return ib_cfg_name_strings[which];
10052 }
10053 
10054 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10055 {
10056 	struct hfi1_devdata *dd = ppd->dd;
10057 	int val = 0;
10058 
10059 	switch (which) {
10060 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10061 		val = ppd->link_width_enabled;
10062 		break;
10063 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
10064 		val = ppd->link_width_active;
10065 		break;
10066 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10067 		val = ppd->link_speed_enabled;
10068 		break;
10069 	case HFI1_IB_CFG_SPD: /* current Link speed */
10070 		val = ppd->link_speed_active;
10071 		break;
10072 
10073 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10074 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10075 	case HFI1_IB_CFG_LINKLATENCY:
10076 		goto unimplemented;
10077 
10078 	case HFI1_IB_CFG_OP_VLS:
10079 		val = ppd->actual_vls_operational;
10080 		break;
10081 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10082 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10083 		break;
10084 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10085 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10086 		break;
10087 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10088 		val = ppd->overrun_threshold;
10089 		break;
10090 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10091 		val = ppd->phy_error_threshold;
10092 		break;
10093 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10094 		val = HLS_DEFAULT;
10095 		break;
10096 
10097 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10098 	case HFI1_IB_CFG_PMA_TICKS:
10099 	default:
10100 unimplemented:
10101 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10102 			dd_dev_info(
10103 				dd,
10104 				"%s: which %s: not implemented\n",
10105 				__func__,
10106 				ib_cfg_name(which));
10107 		break;
10108 	}
10109 
10110 	return val;
10111 }
10112 
10113 /*
10114  * The largest MAD packet size.
10115  */
10116 #define MAX_MAD_PACKET 2048
10117 
10118 /*
10119  * Return the maximum header bytes that can go on the _wire_
10120  * for this device. This count includes the ICRC which is
10121  * not part of the packet held in memory but it is appended
10122  * by the HW.
10123  * This is dependent on the device's receive header entry size.
10124  * HFI allows this to be set per-receive context, but the
10125  * driver presently enforces a global value.
10126  */
10127 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10128 {
10129 	/*
10130 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10131 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10132 	 * plus one DW for the ICRC appended by HW.
10133 	 *
10134 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10135 	 * We use rcd[0] as all context will have the same value. Also,
10136 	 * the first kernel context would have been allocated by now so
10137 	 * we are guaranteed a valid value.
10138 	 */
10139 	return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10140 }
10141 
10142 /*
10143  * Set Send Length
10144  * @ppd - per port data
10145  *
10146  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10147  * registers compare against LRH.PktLen, so use the max bytes included
10148  * in the LRH.
10149  *
10150  * This routine changes all VL values except VL15, which it maintains at
10151  * the same value.
10152  */
10153 static void set_send_length(struct hfi1_pportdata *ppd)
10154 {
10155 	struct hfi1_devdata *dd = ppd->dd;
10156 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10157 	u32 maxvlmtu = dd->vld[15].mtu;
10158 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10159 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10160 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10161 	int i, j;
10162 	u32 thres;
10163 
10164 	for (i = 0; i < ppd->vls_supported; i++) {
10165 		if (dd->vld[i].mtu > maxvlmtu)
10166 			maxvlmtu = dd->vld[i].mtu;
10167 		if (i <= 3)
10168 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10169 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10170 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10171 		else
10172 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10173 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10174 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10175 	}
10176 	write_csr(dd, SEND_LEN_CHECK0, len1);
10177 	write_csr(dd, SEND_LEN_CHECK1, len2);
10178 	/* adjust kernel credit return thresholds based on new MTUs */
10179 	/* all kernel receive contexts have the same hdrqentsize */
10180 	for (i = 0; i < ppd->vls_supported; i++) {
10181 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10182 			    sc_mtu_to_threshold(dd->vld[i].sc,
10183 						dd->vld[i].mtu,
10184 						get_hdrqentsize(dd->rcd[0])));
10185 		for (j = 0; j < INIT_SC_PER_VL; j++)
10186 			sc_set_cr_threshold(
10187 					pio_select_send_context_vl(dd, j, i),
10188 					    thres);
10189 	}
10190 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10191 		    sc_mtu_to_threshold(dd->vld[15].sc,
10192 					dd->vld[15].mtu,
10193 					dd->rcd[0]->rcvhdrqentsize));
10194 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10195 
10196 	/* Adjust maximum MTU for the port in DC */
10197 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10198 		(ilog2(maxvlmtu >> 8) + 1);
10199 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10200 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10201 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10202 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10203 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10204 }
10205 
10206 static void set_lidlmc(struct hfi1_pportdata *ppd)
10207 {
10208 	int i;
10209 	u64 sreg = 0;
10210 	struct hfi1_devdata *dd = ppd->dd;
10211 	u32 mask = ~((1U << ppd->lmc) - 1);
10212 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10213 	u32 lid;
10214 
10215 	/*
10216 	 * Program 0 in CSR if port lid is extended. This prevents
10217 	 * 9B packets being sent out for large lids.
10218 	 */
10219 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10220 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10221 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10222 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10223 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10224 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10225 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10226 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10227 
10228 	/*
10229 	 * Iterate over all the send contexts and set their SLID check
10230 	 */
10231 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10232 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10233 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10234 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10235 
10236 	for (i = 0; i < chip_send_contexts(dd); i++) {
10237 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10238 			  i, (u32)sreg);
10239 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10240 	}
10241 
10242 	/* Now we have to do the same thing for the sdma engines */
10243 	sdma_update_lmc(dd, mask, lid);
10244 }
10245 
10246 static const char *state_completed_string(u32 completed)
10247 {
10248 	static const char * const state_completed[] = {
10249 		"EstablishComm",
10250 		"OptimizeEQ",
10251 		"VerifyCap"
10252 	};
10253 
10254 	if (completed < ARRAY_SIZE(state_completed))
10255 		return state_completed[completed];
10256 
10257 	return "unknown";
10258 }
10259 
10260 static const char all_lanes_dead_timeout_expired[] =
10261 	"All lanes were inactive – was the interconnect media removed?";
10262 static const char tx_out_of_policy[] =
10263 	"Passing lanes on local port do not meet the local link width policy";
10264 static const char no_state_complete[] =
10265 	"State timeout occurred before link partner completed the state";
10266 static const char * const state_complete_reasons[] = {
10267 	[0x00] = "Reason unknown",
10268 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10269 	[0x02] = "Link partner reported failure",
10270 	[0x10] = "Unable to achieve frame sync on any lane",
10271 	[0x11] =
10272 	  "Unable to find a common bit rate with the link partner",
10273 	[0x12] =
10274 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10275 	[0x13] =
10276 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10277 	[0x14] = no_state_complete,
10278 	[0x15] =
10279 	  "State timeout occurred before link partner identified equalization presets",
10280 	[0x16] =
10281 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10282 	[0x17] = tx_out_of_policy,
10283 	[0x20] = all_lanes_dead_timeout_expired,
10284 	[0x21] =
10285 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10286 	[0x22] = no_state_complete,
10287 	[0x23] =
10288 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10289 	[0x24] = tx_out_of_policy,
10290 	[0x30] = all_lanes_dead_timeout_expired,
10291 	[0x31] =
10292 	  "State timeout occurred waiting for host to process received frames",
10293 	[0x32] = no_state_complete,
10294 	[0x33] =
10295 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10296 	[0x34] = tx_out_of_policy,
10297 	[0x35] = "Negotiated link width is mutually exclusive",
10298 	[0x36] =
10299 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10300 	[0x37] = "Unable to resolve secure data exchange",
10301 };
10302 
10303 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10304 						     u32 code)
10305 {
10306 	const char *str = NULL;
10307 
10308 	if (code < ARRAY_SIZE(state_complete_reasons))
10309 		str = state_complete_reasons[code];
10310 
10311 	if (str)
10312 		return str;
10313 	return "Reserved";
10314 }
10315 
10316 /* describe the given last state complete frame */
10317 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10318 				  const char *prefix)
10319 {
10320 	struct hfi1_devdata *dd = ppd->dd;
10321 	u32 success;
10322 	u32 state;
10323 	u32 reason;
10324 	u32 lanes;
10325 
10326 	/*
10327 	 * Decode frame:
10328 	 *  [ 0: 0] - success
10329 	 *  [ 3: 1] - state
10330 	 *  [ 7: 4] - next state timeout
10331 	 *  [15: 8] - reason code
10332 	 *  [31:16] - lanes
10333 	 */
10334 	success = frame & 0x1;
10335 	state = (frame >> 1) & 0x7;
10336 	reason = (frame >> 8) & 0xff;
10337 	lanes = (frame >> 16) & 0xffff;
10338 
10339 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10340 		   prefix, frame);
10341 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10342 		   state_completed_string(state), state);
10343 	dd_dev_err(dd, "    state successfully completed: %s\n",
10344 		   success ? "yes" : "no");
10345 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10346 		   reason, state_complete_reason_code_string(ppd, reason));
10347 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10348 }
10349 
10350 /*
10351  * Read the last state complete frames and explain them.  This routine
10352  * expects to be called if the link went down during link negotiation
10353  * and initialization (LNI).  That is, anywhere between polling and link up.
10354  */
10355 static void check_lni_states(struct hfi1_pportdata *ppd)
10356 {
10357 	u32 last_local_state;
10358 	u32 last_remote_state;
10359 
10360 	read_last_local_state(ppd->dd, &last_local_state);
10361 	read_last_remote_state(ppd->dd, &last_remote_state);
10362 
10363 	/*
10364 	 * Don't report anything if there is nothing to report.  A value of
10365 	 * 0 means the link was taken down while polling and there was no
10366 	 * training in-process.
10367 	 */
10368 	if (last_local_state == 0 && last_remote_state == 0)
10369 		return;
10370 
10371 	decode_state_complete(ppd, last_local_state, "transmitted");
10372 	decode_state_complete(ppd, last_remote_state, "received");
10373 }
10374 
10375 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10376 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10377 {
10378 	u64 reg;
10379 	unsigned long timeout;
10380 
10381 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10382 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10383 	while (1) {
10384 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10385 		if (reg)
10386 			break;
10387 		if (time_after(jiffies, timeout)) {
10388 			dd_dev_err(dd,
10389 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10390 			return -ETIMEDOUT;
10391 		}
10392 		udelay(2);
10393 	}
10394 	return 0;
10395 }
10396 
10397 /* called when the logical link state is not down as it should be */
10398 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10399 {
10400 	struct hfi1_devdata *dd = ppd->dd;
10401 
10402 	/*
10403 	 * Bring link up in LCB loopback
10404 	 */
10405 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10406 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10407 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10408 
10409 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10410 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10411 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10412 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10413 
10414 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10415 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10416 	udelay(3);
10417 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10418 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10419 
10420 	wait_link_transfer_active(dd, 100);
10421 
10422 	/*
10423 	 * Bring the link down again.
10424 	 */
10425 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10426 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10427 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10428 
10429 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10430 }
10431 
10432 /*
10433  * Helper for set_link_state().  Do not call except from that routine.
10434  * Expects ppd->hls_mutex to be held.
10435  *
10436  * @rem_reason value to be sent to the neighbor
10437  *
10438  * LinkDownReasons only set if transition succeeds.
10439  */
10440 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10441 {
10442 	struct hfi1_devdata *dd = ppd->dd;
10443 	u32 previous_state;
10444 	int offline_state_ret;
10445 	int ret;
10446 
10447 	update_lcb_cache(dd);
10448 
10449 	previous_state = ppd->host_link_state;
10450 	ppd->host_link_state = HLS_GOING_OFFLINE;
10451 
10452 	/* start offline transition */
10453 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10454 
10455 	if (ret != HCMD_SUCCESS) {
10456 		dd_dev_err(dd,
10457 			   "Failed to transition to Offline link state, return %d\n",
10458 			   ret);
10459 		return -EINVAL;
10460 	}
10461 	if (ppd->offline_disabled_reason ==
10462 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10463 		ppd->offline_disabled_reason =
10464 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10465 
10466 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10467 	if (offline_state_ret < 0)
10468 		return offline_state_ret;
10469 
10470 	/* Disabling AOC transmitters */
10471 	if (ppd->port_type == PORT_TYPE_QSFP &&
10472 	    ppd->qsfp_info.limiting_active &&
10473 	    qsfp_mod_present(ppd)) {
10474 		int ret;
10475 
10476 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10477 		if (ret == 0) {
10478 			set_qsfp_tx(ppd, 0);
10479 			release_chip_resource(dd, qsfp_resource(dd));
10480 		} else {
10481 			/* not fatal, but should warn */
10482 			dd_dev_err(dd,
10483 				   "Unable to acquire lock to turn off QSFP TX\n");
10484 		}
10485 	}
10486 
10487 	/*
10488 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10489 	 * can take a while for the link to go down.
10490 	 */
10491 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10492 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10493 		if (ret < 0)
10494 			return ret;
10495 	}
10496 
10497 	/*
10498 	 * Now in charge of LCB - must be after the physical state is
10499 	 * offline.quiet and before host_link_state is changed.
10500 	 */
10501 	set_host_lcb_access(dd);
10502 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10503 
10504 	/* make sure the logical state is also down */
10505 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10506 	if (ret)
10507 		force_logical_link_state_down(ppd);
10508 
10509 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10510 	update_statusp(ppd, IB_PORT_DOWN);
10511 
10512 	/*
10513 	 * The LNI has a mandatory wait time after the physical state
10514 	 * moves to Offline.Quiet.  The wait time may be different
10515 	 * depending on how the link went down.  The 8051 firmware
10516 	 * will observe the needed wait time and only move to ready
10517 	 * when that is completed.  The largest of the quiet timeouts
10518 	 * is 6s, so wait that long and then at least 0.5s more for
10519 	 * other transitions, and another 0.5s for a buffer.
10520 	 */
10521 	ret = wait_fm_ready(dd, 7000);
10522 	if (ret) {
10523 		dd_dev_err(dd,
10524 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10525 		/* state is really offline, so make it so */
10526 		ppd->host_link_state = HLS_DN_OFFLINE;
10527 		return ret;
10528 	}
10529 
10530 	/*
10531 	 * The state is now offline and the 8051 is ready to accept host
10532 	 * requests.
10533 	 *	- change our state
10534 	 *	- notify others if we were previously in a linkup state
10535 	 */
10536 	ppd->host_link_state = HLS_DN_OFFLINE;
10537 	if (previous_state & HLS_UP) {
10538 		/* went down while link was up */
10539 		handle_linkup_change(dd, 0);
10540 	} else if (previous_state
10541 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10542 		/* went down while attempting link up */
10543 		check_lni_states(ppd);
10544 
10545 		/* The QSFP doesn't need to be reset on LNI failure */
10546 		ppd->qsfp_info.reset_needed = 0;
10547 	}
10548 
10549 	/* the active link width (downgrade) is 0 on link down */
10550 	ppd->link_width_active = 0;
10551 	ppd->link_width_downgrade_tx_active = 0;
10552 	ppd->link_width_downgrade_rx_active = 0;
10553 	ppd->current_egress_rate = 0;
10554 	return 0;
10555 }
10556 
10557 /* return the link state name */
10558 static const char *link_state_name(u32 state)
10559 {
10560 	const char *name;
10561 	int n = ilog2(state);
10562 	static const char * const names[] = {
10563 		[__HLS_UP_INIT_BP]	 = "INIT",
10564 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10565 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10566 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10567 		[__HLS_DN_POLL_BP]	 = "POLL",
10568 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10569 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10570 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10571 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10572 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10573 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10574 	};
10575 
10576 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10577 	return name ? name : "unknown";
10578 }
10579 
10580 /* return the link state reason name */
10581 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10582 {
10583 	if (state == HLS_UP_INIT) {
10584 		switch (ppd->linkinit_reason) {
10585 		case OPA_LINKINIT_REASON_LINKUP:
10586 			return "(LINKUP)";
10587 		case OPA_LINKINIT_REASON_FLAPPING:
10588 			return "(FLAPPING)";
10589 		case OPA_LINKINIT_OUTSIDE_POLICY:
10590 			return "(OUTSIDE_POLICY)";
10591 		case OPA_LINKINIT_QUARANTINED:
10592 			return "(QUARANTINED)";
10593 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10594 			return "(INSUFIC_CAPABILITY)";
10595 		default:
10596 			break;
10597 		}
10598 	}
10599 	return "";
10600 }
10601 
10602 /*
10603  * driver_pstate - convert the driver's notion of a port's
10604  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10605  * Return -1 (converted to a u32) to indicate error.
10606  */
10607 u32 driver_pstate(struct hfi1_pportdata *ppd)
10608 {
10609 	switch (ppd->host_link_state) {
10610 	case HLS_UP_INIT:
10611 	case HLS_UP_ARMED:
10612 	case HLS_UP_ACTIVE:
10613 		return IB_PORTPHYSSTATE_LINKUP;
10614 	case HLS_DN_POLL:
10615 		return IB_PORTPHYSSTATE_POLLING;
10616 	case HLS_DN_DISABLE:
10617 		return IB_PORTPHYSSTATE_DISABLED;
10618 	case HLS_DN_OFFLINE:
10619 		return OPA_PORTPHYSSTATE_OFFLINE;
10620 	case HLS_VERIFY_CAP:
10621 		return IB_PORTPHYSSTATE_TRAINING;
10622 	case HLS_GOING_UP:
10623 		return IB_PORTPHYSSTATE_TRAINING;
10624 	case HLS_GOING_OFFLINE:
10625 		return OPA_PORTPHYSSTATE_OFFLINE;
10626 	case HLS_LINK_COOLDOWN:
10627 		return OPA_PORTPHYSSTATE_OFFLINE;
10628 	case HLS_DN_DOWNDEF:
10629 	default:
10630 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10631 			   ppd->host_link_state);
10632 		return  -1;
10633 	}
10634 }
10635 
10636 /*
10637  * driver_lstate - convert the driver's notion of a port's
10638  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10639  * (converted to a u32) to indicate error.
10640  */
10641 u32 driver_lstate(struct hfi1_pportdata *ppd)
10642 {
10643 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10644 		return IB_PORT_DOWN;
10645 
10646 	switch (ppd->host_link_state & HLS_UP) {
10647 	case HLS_UP_INIT:
10648 		return IB_PORT_INIT;
10649 	case HLS_UP_ARMED:
10650 		return IB_PORT_ARMED;
10651 	case HLS_UP_ACTIVE:
10652 		return IB_PORT_ACTIVE;
10653 	default:
10654 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10655 			   ppd->host_link_state);
10656 	return -1;
10657 	}
10658 }
10659 
10660 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10661 			  u8 neigh_reason, u8 rem_reason)
10662 {
10663 	if (ppd->local_link_down_reason.latest == 0 &&
10664 	    ppd->neigh_link_down_reason.latest == 0) {
10665 		ppd->local_link_down_reason.latest = lcl_reason;
10666 		ppd->neigh_link_down_reason.latest = neigh_reason;
10667 		ppd->remote_link_down_reason = rem_reason;
10668 	}
10669 }
10670 
10671 /**
10672  * data_vls_operational() - Verify if data VL BCT credits and MTU
10673  *			    are both set.
10674  * @ppd: pointer to hfi1_pportdata structure
10675  *
10676  * Return: true - Ok, false -otherwise.
10677  */
10678 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10679 {
10680 	int i;
10681 	u64 reg;
10682 
10683 	if (!ppd->actual_vls_operational)
10684 		return false;
10685 
10686 	for (i = 0; i < ppd->vls_supported; i++) {
10687 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10688 		if ((reg && !ppd->dd->vld[i].mtu) ||
10689 		    (!reg && ppd->dd->vld[i].mtu))
10690 			return false;
10691 	}
10692 
10693 	return true;
10694 }
10695 
10696 /*
10697  * Change the physical and/or logical link state.
10698  *
10699  * Do not call this routine while inside an interrupt.  It contains
10700  * calls to routines that can take multiple seconds to finish.
10701  *
10702  * Returns 0 on success, -errno on failure.
10703  */
10704 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10705 {
10706 	struct hfi1_devdata *dd = ppd->dd;
10707 	struct ib_event event = {.device = NULL};
10708 	int ret1, ret = 0;
10709 	int orig_new_state, poll_bounce;
10710 
10711 	mutex_lock(&ppd->hls_lock);
10712 
10713 	orig_new_state = state;
10714 	if (state == HLS_DN_DOWNDEF)
10715 		state = HLS_DEFAULT;
10716 
10717 	/* interpret poll -> poll as a link bounce */
10718 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10719 		      state == HLS_DN_POLL;
10720 
10721 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10722 		    link_state_name(ppd->host_link_state),
10723 		    link_state_name(orig_new_state),
10724 		    poll_bounce ? "(bounce) " : "",
10725 		    link_state_reason_name(ppd, state));
10726 
10727 	/*
10728 	 * If we're going to a (HLS_*) link state that implies the logical
10729 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10730 	 * reset is_sm_config_started to 0.
10731 	 */
10732 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10733 		ppd->is_sm_config_started = 0;
10734 
10735 	/*
10736 	 * Do nothing if the states match.  Let a poll to poll link bounce
10737 	 * go through.
10738 	 */
10739 	if (ppd->host_link_state == state && !poll_bounce)
10740 		goto done;
10741 
10742 	switch (state) {
10743 	case HLS_UP_INIT:
10744 		if (ppd->host_link_state == HLS_DN_POLL &&
10745 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10746 			/*
10747 			 * Quick link up jumps from polling to here.
10748 			 *
10749 			 * Whether in normal or loopback mode, the
10750 			 * simulator jumps from polling to link up.
10751 			 * Accept that here.
10752 			 */
10753 			/* OK */
10754 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10755 			goto unexpected;
10756 		}
10757 
10758 		/*
10759 		 * Wait for Link_Up physical state.
10760 		 * Physical and Logical states should already be
10761 		 * be transitioned to LinkUp and LinkInit respectively.
10762 		 */
10763 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10764 		if (ret) {
10765 			dd_dev_err(dd,
10766 				   "%s: physical state did not change to LINK-UP\n",
10767 				   __func__);
10768 			break;
10769 		}
10770 
10771 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10772 		if (ret) {
10773 			dd_dev_err(dd,
10774 				   "%s: logical state did not change to INIT\n",
10775 				   __func__);
10776 			break;
10777 		}
10778 
10779 		/* clear old transient LINKINIT_REASON code */
10780 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10781 			ppd->linkinit_reason =
10782 				OPA_LINKINIT_REASON_LINKUP;
10783 
10784 		/* enable the port */
10785 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10786 
10787 		handle_linkup_change(dd, 1);
10788 		pio_kernel_linkup(dd);
10789 
10790 		/*
10791 		 * After link up, a new link width will have been set.
10792 		 * Update the xmit counters with regards to the new
10793 		 * link width.
10794 		 */
10795 		update_xmit_counters(ppd, ppd->link_width_active);
10796 
10797 		ppd->host_link_state = HLS_UP_INIT;
10798 		update_statusp(ppd, IB_PORT_INIT);
10799 		break;
10800 	case HLS_UP_ARMED:
10801 		if (ppd->host_link_state != HLS_UP_INIT)
10802 			goto unexpected;
10803 
10804 		if (!data_vls_operational(ppd)) {
10805 			dd_dev_err(dd,
10806 				   "%s: Invalid data VL credits or mtu\n",
10807 				   __func__);
10808 			ret = -EINVAL;
10809 			break;
10810 		}
10811 
10812 		set_logical_state(dd, LSTATE_ARMED);
10813 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10814 		if (ret) {
10815 			dd_dev_err(dd,
10816 				   "%s: logical state did not change to ARMED\n",
10817 				   __func__);
10818 			break;
10819 		}
10820 		ppd->host_link_state = HLS_UP_ARMED;
10821 		update_statusp(ppd, IB_PORT_ARMED);
10822 		/*
10823 		 * The simulator does not currently implement SMA messages,
10824 		 * so neighbor_normal is not set.  Set it here when we first
10825 		 * move to Armed.
10826 		 */
10827 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10828 			ppd->neighbor_normal = 1;
10829 		break;
10830 	case HLS_UP_ACTIVE:
10831 		if (ppd->host_link_state != HLS_UP_ARMED)
10832 			goto unexpected;
10833 
10834 		set_logical_state(dd, LSTATE_ACTIVE);
10835 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10836 		if (ret) {
10837 			dd_dev_err(dd,
10838 				   "%s: logical state did not change to ACTIVE\n",
10839 				   __func__);
10840 		} else {
10841 			/* tell all engines to go running */
10842 			sdma_all_running(dd);
10843 			ppd->host_link_state = HLS_UP_ACTIVE;
10844 			update_statusp(ppd, IB_PORT_ACTIVE);
10845 
10846 			/* Signal the IB layer that the port has went active */
10847 			event.device = &dd->verbs_dev.rdi.ibdev;
10848 			event.element.port_num = ppd->port;
10849 			event.event = IB_EVENT_PORT_ACTIVE;
10850 		}
10851 		break;
10852 	case HLS_DN_POLL:
10853 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10854 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10855 		    dd->dc_shutdown)
10856 			dc_start(dd);
10857 		/* Hand LED control to the DC */
10858 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10859 
10860 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10861 			u8 tmp = ppd->link_enabled;
10862 
10863 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10864 			if (ret) {
10865 				ppd->link_enabled = tmp;
10866 				break;
10867 			}
10868 			ppd->remote_link_down_reason = 0;
10869 
10870 			if (ppd->driver_link_ready)
10871 				ppd->link_enabled = 1;
10872 		}
10873 
10874 		set_all_slowpath(ppd->dd);
10875 		ret = set_local_link_attributes(ppd);
10876 		if (ret)
10877 			break;
10878 
10879 		ppd->port_error_action = 0;
10880 
10881 		if (quick_linkup) {
10882 			/* quick linkup does not go into polling */
10883 			ret = do_quick_linkup(dd);
10884 		} else {
10885 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10886 			if (!ret1)
10887 				ret1 = wait_phys_link_out_of_offline(ppd,
10888 								     3000);
10889 			if (ret1 != HCMD_SUCCESS) {
10890 				dd_dev_err(dd,
10891 					   "Failed to transition to Polling link state, return 0x%x\n",
10892 					   ret1);
10893 				ret = -EINVAL;
10894 			}
10895 		}
10896 
10897 		/*
10898 		 * Change the host link state after requesting DC8051 to
10899 		 * change its physical state so that we can ignore any
10900 		 * interrupt with stale LNI(XX) error, which will not be
10901 		 * cleared until DC8051 transitions to Polling state.
10902 		 */
10903 		ppd->host_link_state = HLS_DN_POLL;
10904 		ppd->offline_disabled_reason =
10905 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10906 		/*
10907 		 * If an error occurred above, go back to offline.  The
10908 		 * caller may reschedule another attempt.
10909 		 */
10910 		if (ret)
10911 			goto_offline(ppd, 0);
10912 		else
10913 			log_physical_state(ppd, PLS_POLLING);
10914 		break;
10915 	case HLS_DN_DISABLE:
10916 		/* link is disabled */
10917 		ppd->link_enabled = 0;
10918 
10919 		/* allow any state to transition to disabled */
10920 
10921 		/* must transition to offline first */
10922 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10923 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10924 			if (ret)
10925 				break;
10926 			ppd->remote_link_down_reason = 0;
10927 		}
10928 
10929 		if (!dd->dc_shutdown) {
10930 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10931 			if (ret1 != HCMD_SUCCESS) {
10932 				dd_dev_err(dd,
10933 					   "Failed to transition to Disabled link state, return 0x%x\n",
10934 					   ret1);
10935 				ret = -EINVAL;
10936 				break;
10937 			}
10938 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10939 			if (ret) {
10940 				dd_dev_err(dd,
10941 					   "%s: physical state did not change to DISABLED\n",
10942 					   __func__);
10943 				break;
10944 			}
10945 			dc_shutdown(dd);
10946 		}
10947 		ppd->host_link_state = HLS_DN_DISABLE;
10948 		break;
10949 	case HLS_DN_OFFLINE:
10950 		if (ppd->host_link_state == HLS_DN_DISABLE)
10951 			dc_start(dd);
10952 
10953 		/* allow any state to transition to offline */
10954 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10955 		if (!ret)
10956 			ppd->remote_link_down_reason = 0;
10957 		break;
10958 	case HLS_VERIFY_CAP:
10959 		if (ppd->host_link_state != HLS_DN_POLL)
10960 			goto unexpected;
10961 		ppd->host_link_state = HLS_VERIFY_CAP;
10962 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10963 		break;
10964 	case HLS_GOING_UP:
10965 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10966 			goto unexpected;
10967 
10968 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10969 		if (ret1 != HCMD_SUCCESS) {
10970 			dd_dev_err(dd,
10971 				   "Failed to transition to link up state, return 0x%x\n",
10972 				   ret1);
10973 			ret = -EINVAL;
10974 			break;
10975 		}
10976 		ppd->host_link_state = HLS_GOING_UP;
10977 		break;
10978 
10979 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10980 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10981 	default:
10982 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10983 			    __func__, state);
10984 		ret = -EINVAL;
10985 		break;
10986 	}
10987 
10988 	goto done;
10989 
10990 unexpected:
10991 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10992 		   __func__, link_state_name(ppd->host_link_state),
10993 		   link_state_name(state));
10994 	ret = -EINVAL;
10995 
10996 done:
10997 	mutex_unlock(&ppd->hls_lock);
10998 
10999 	if (event.device)
11000 		ib_dispatch_event(&event);
11001 
11002 	return ret;
11003 }
11004 
11005 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
11006 {
11007 	u64 reg;
11008 	int ret = 0;
11009 
11010 	switch (which) {
11011 	case HFI1_IB_CFG_LIDLMC:
11012 		set_lidlmc(ppd);
11013 		break;
11014 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
11015 		/*
11016 		 * The VL Arbitrator high limit is sent in units of 4k
11017 		 * bytes, while HFI stores it in units of 64 bytes.
11018 		 */
11019 		val *= 4096 / 64;
11020 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
11021 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
11022 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
11023 		break;
11024 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
11025 		/* HFI only supports POLL as the default link down state */
11026 		if (val != HLS_DN_POLL)
11027 			ret = -EINVAL;
11028 		break;
11029 	case HFI1_IB_CFG_OP_VLS:
11030 		if (ppd->vls_operational != val) {
11031 			ppd->vls_operational = val;
11032 			if (!ppd->port)
11033 				ret = -EINVAL;
11034 		}
11035 		break;
11036 	/*
11037 	 * For link width, link width downgrade, and speed enable, always AND
11038 	 * the setting with what is actually supported.  This has two benefits.
11039 	 * First, enabled can't have unsupported values, no matter what the
11040 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11041 	 * "fill in with your supported value" have all the bits in the
11042 	 * field set, so simply ANDing with supported has the desired result.
11043 	 */
11044 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11045 		ppd->link_width_enabled = val & ppd->link_width_supported;
11046 		break;
11047 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11048 		ppd->link_width_downgrade_enabled =
11049 				val & ppd->link_width_downgrade_supported;
11050 		break;
11051 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11052 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
11053 		break;
11054 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11055 		/*
11056 		 * HFI does not follow IB specs, save this value
11057 		 * so we can report it, if asked.
11058 		 */
11059 		ppd->overrun_threshold = val;
11060 		break;
11061 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11062 		/*
11063 		 * HFI does not follow IB specs, save this value
11064 		 * so we can report it, if asked.
11065 		 */
11066 		ppd->phy_error_threshold = val;
11067 		break;
11068 
11069 	case HFI1_IB_CFG_MTU:
11070 		set_send_length(ppd);
11071 		break;
11072 
11073 	case HFI1_IB_CFG_PKEYS:
11074 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11075 			set_partition_keys(ppd);
11076 		break;
11077 
11078 	default:
11079 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11080 			dd_dev_info(ppd->dd,
11081 				    "%s: which %s, val 0x%x: not implemented\n",
11082 				    __func__, ib_cfg_name(which), val);
11083 		break;
11084 	}
11085 	return ret;
11086 }
11087 
11088 /* begin functions related to vl arbitration table caching */
11089 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11090 {
11091 	int i;
11092 
11093 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11094 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11095 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11096 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11097 
11098 	/*
11099 	 * Note that we always return values directly from the
11100 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11101 	 * 'Get(VLArbTable)'. This is obviously correct after a
11102 	 * 'Set(VLArbTable)', since the cache will then be up to
11103 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11104 	 * since then both the cache, and the relevant h/w registers
11105 	 * will be zeroed.
11106 	 */
11107 
11108 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11109 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11110 }
11111 
11112 /*
11113  * vl_arb_lock_cache
11114  *
11115  * All other vl_arb_* functions should be called only after locking
11116  * the cache.
11117  */
11118 static inline struct vl_arb_cache *
11119 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11120 {
11121 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11122 		return NULL;
11123 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11124 	return &ppd->vl_arb_cache[idx];
11125 }
11126 
11127 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11128 {
11129 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11130 }
11131 
11132 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11133 			     struct ib_vl_weight_elem *vl)
11134 {
11135 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11136 }
11137 
11138 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11139 			     struct ib_vl_weight_elem *vl)
11140 {
11141 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11142 }
11143 
11144 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11145 			      struct ib_vl_weight_elem *vl)
11146 {
11147 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11148 }
11149 
11150 /* end functions related to vl arbitration table caching */
11151 
11152 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11153 			  u32 size, struct ib_vl_weight_elem *vl)
11154 {
11155 	struct hfi1_devdata *dd = ppd->dd;
11156 	u64 reg;
11157 	unsigned int i, is_up = 0;
11158 	int drain, ret = 0;
11159 
11160 	mutex_lock(&ppd->hls_lock);
11161 
11162 	if (ppd->host_link_state & HLS_UP)
11163 		is_up = 1;
11164 
11165 	drain = !is_ax(dd) && is_up;
11166 
11167 	if (drain)
11168 		/*
11169 		 * Before adjusting VL arbitration weights, empty per-VL
11170 		 * FIFOs, otherwise a packet whose VL weight is being
11171 		 * set to 0 could get stuck in a FIFO with no chance to
11172 		 * egress.
11173 		 */
11174 		ret = stop_drain_data_vls(dd);
11175 
11176 	if (ret) {
11177 		dd_dev_err(
11178 			dd,
11179 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11180 			__func__);
11181 		goto err;
11182 	}
11183 
11184 	for (i = 0; i < size; i++, vl++) {
11185 		/*
11186 		 * NOTE: The low priority shift and mask are used here, but
11187 		 * they are the same for both the low and high registers.
11188 		 */
11189 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11190 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11191 		      | (((u64)vl->weight
11192 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11193 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11194 		write_csr(dd, target + (i * 8), reg);
11195 	}
11196 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11197 
11198 	if (drain)
11199 		open_fill_data_vls(dd); /* reopen all VLs */
11200 
11201 err:
11202 	mutex_unlock(&ppd->hls_lock);
11203 
11204 	return ret;
11205 }
11206 
11207 /*
11208  * Read one credit merge VL register.
11209  */
11210 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11211 			   struct vl_limit *vll)
11212 {
11213 	u64 reg = read_csr(dd, csr);
11214 
11215 	vll->dedicated = cpu_to_be16(
11216 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11217 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11218 	vll->shared = cpu_to_be16(
11219 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11220 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11221 }
11222 
11223 /*
11224  * Read the current credit merge limits.
11225  */
11226 static int get_buffer_control(struct hfi1_devdata *dd,
11227 			      struct buffer_control *bc, u16 *overall_limit)
11228 {
11229 	u64 reg;
11230 	int i;
11231 
11232 	/* not all entries are filled in */
11233 	memset(bc, 0, sizeof(*bc));
11234 
11235 	/* OPA and HFI have a 1-1 mapping */
11236 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11237 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11238 
11239 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11240 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11241 
11242 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11243 	bc->overall_shared_limit = cpu_to_be16(
11244 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11245 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11246 	if (overall_limit)
11247 		*overall_limit = (reg
11248 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11249 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11250 	return sizeof(struct buffer_control);
11251 }
11252 
11253 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11254 {
11255 	u64 reg;
11256 	int i;
11257 
11258 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11259 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11260 	for (i = 0; i < sizeof(u64); i++) {
11261 		u8 byte = *(((u8 *)&reg) + i);
11262 
11263 		dp->vlnt[2 * i] = byte & 0xf;
11264 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11265 	}
11266 
11267 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11268 	for (i = 0; i < sizeof(u64); i++) {
11269 		u8 byte = *(((u8 *)&reg) + i);
11270 
11271 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11272 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11273 	}
11274 	return sizeof(struct sc2vlnt);
11275 }
11276 
11277 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11278 			      struct ib_vl_weight_elem *vl)
11279 {
11280 	unsigned int i;
11281 
11282 	for (i = 0; i < nelems; i++, vl++) {
11283 		vl->vl = 0xf;
11284 		vl->weight = 0;
11285 	}
11286 }
11287 
11288 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11289 {
11290 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11291 		  DC_SC_VL_VAL(15_0,
11292 			       0, dp->vlnt[0] & 0xf,
11293 			       1, dp->vlnt[1] & 0xf,
11294 			       2, dp->vlnt[2] & 0xf,
11295 			       3, dp->vlnt[3] & 0xf,
11296 			       4, dp->vlnt[4] & 0xf,
11297 			       5, dp->vlnt[5] & 0xf,
11298 			       6, dp->vlnt[6] & 0xf,
11299 			       7, dp->vlnt[7] & 0xf,
11300 			       8, dp->vlnt[8] & 0xf,
11301 			       9, dp->vlnt[9] & 0xf,
11302 			       10, dp->vlnt[10] & 0xf,
11303 			       11, dp->vlnt[11] & 0xf,
11304 			       12, dp->vlnt[12] & 0xf,
11305 			       13, dp->vlnt[13] & 0xf,
11306 			       14, dp->vlnt[14] & 0xf,
11307 			       15, dp->vlnt[15] & 0xf));
11308 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11309 		  DC_SC_VL_VAL(31_16,
11310 			       16, dp->vlnt[16] & 0xf,
11311 			       17, dp->vlnt[17] & 0xf,
11312 			       18, dp->vlnt[18] & 0xf,
11313 			       19, dp->vlnt[19] & 0xf,
11314 			       20, dp->vlnt[20] & 0xf,
11315 			       21, dp->vlnt[21] & 0xf,
11316 			       22, dp->vlnt[22] & 0xf,
11317 			       23, dp->vlnt[23] & 0xf,
11318 			       24, dp->vlnt[24] & 0xf,
11319 			       25, dp->vlnt[25] & 0xf,
11320 			       26, dp->vlnt[26] & 0xf,
11321 			       27, dp->vlnt[27] & 0xf,
11322 			       28, dp->vlnt[28] & 0xf,
11323 			       29, dp->vlnt[29] & 0xf,
11324 			       30, dp->vlnt[30] & 0xf,
11325 			       31, dp->vlnt[31] & 0xf));
11326 }
11327 
11328 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11329 			u16 limit)
11330 {
11331 	if (limit != 0)
11332 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11333 			    what, (int)limit, idx);
11334 }
11335 
11336 /* change only the shared limit portion of SendCmGLobalCredit */
11337 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11338 {
11339 	u64 reg;
11340 
11341 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11342 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11343 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11344 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11345 }
11346 
11347 /* change only the total credit limit portion of SendCmGLobalCredit */
11348 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11349 {
11350 	u64 reg;
11351 
11352 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11353 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11354 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11355 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11356 }
11357 
11358 /* set the given per-VL shared limit */
11359 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11360 {
11361 	u64 reg;
11362 	u32 addr;
11363 
11364 	if (vl < TXE_NUM_DATA_VL)
11365 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11366 	else
11367 		addr = SEND_CM_CREDIT_VL15;
11368 
11369 	reg = read_csr(dd, addr);
11370 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11371 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11372 	write_csr(dd, addr, reg);
11373 }
11374 
11375 /* set the given per-VL dedicated limit */
11376 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11377 {
11378 	u64 reg;
11379 	u32 addr;
11380 
11381 	if (vl < TXE_NUM_DATA_VL)
11382 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11383 	else
11384 		addr = SEND_CM_CREDIT_VL15;
11385 
11386 	reg = read_csr(dd, addr);
11387 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11388 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11389 	write_csr(dd, addr, reg);
11390 }
11391 
11392 /* spin until the given per-VL status mask bits clear */
11393 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11394 				     const char *which)
11395 {
11396 	unsigned long timeout;
11397 	u64 reg;
11398 
11399 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11400 	while (1) {
11401 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11402 
11403 		if (reg == 0)
11404 			return;	/* success */
11405 		if (time_after(jiffies, timeout))
11406 			break;		/* timed out */
11407 		udelay(1);
11408 	}
11409 
11410 	dd_dev_err(dd,
11411 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11412 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11413 	/*
11414 	 * If this occurs, it is likely there was a credit loss on the link.
11415 	 * The only recovery from that is a link bounce.
11416 	 */
11417 	dd_dev_err(dd,
11418 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11419 }
11420 
11421 /*
11422  * The number of credits on the VLs may be changed while everything
11423  * is "live", but the following algorithm must be followed due to
11424  * how the hardware is actually implemented.  In particular,
11425  * Return_Credit_Status[] is the only correct status check.
11426  *
11427  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11428  *     set Global_Shared_Credit_Limit = 0
11429  *     use_all_vl = 1
11430  * mask0 = all VLs that are changing either dedicated or shared limits
11431  * set Shared_Limit[mask0] = 0
11432  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11433  * if (changing any dedicated limit)
11434  *     mask1 = all VLs that are lowering dedicated limits
11435  *     lower Dedicated_Limit[mask1]
11436  *     spin until Return_Credit_Status[mask1] == 0
11437  *     raise Dedicated_Limits
11438  * raise Shared_Limits
11439  * raise Global_Shared_Credit_Limit
11440  *
11441  * lower = if the new limit is lower, set the limit to the new value
11442  * raise = if the new limit is higher than the current value (may be changed
11443  *	earlier in the algorithm), set the new limit to the new value
11444  */
11445 int set_buffer_control(struct hfi1_pportdata *ppd,
11446 		       struct buffer_control *new_bc)
11447 {
11448 	struct hfi1_devdata *dd = ppd->dd;
11449 	u64 changing_mask, ld_mask, stat_mask;
11450 	int change_count;
11451 	int i, use_all_mask;
11452 	int this_shared_changing;
11453 	int vl_count = 0, ret;
11454 	/*
11455 	 * A0: add the variable any_shared_limit_changing below and in the
11456 	 * algorithm above.  If removing A0 support, it can be removed.
11457 	 */
11458 	int any_shared_limit_changing;
11459 	struct buffer_control cur_bc;
11460 	u8 changing[OPA_MAX_VLS];
11461 	u8 lowering_dedicated[OPA_MAX_VLS];
11462 	u16 cur_total;
11463 	u32 new_total = 0;
11464 	const u64 all_mask =
11465 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11466 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11467 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11468 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11469 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11470 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11471 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11472 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11473 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11474 
11475 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11476 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11477 
11478 	/* find the new total credits, do sanity check on unused VLs */
11479 	for (i = 0; i < OPA_MAX_VLS; i++) {
11480 		if (valid_vl(i)) {
11481 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11482 			continue;
11483 		}
11484 		nonzero_msg(dd, i, "dedicated",
11485 			    be16_to_cpu(new_bc->vl[i].dedicated));
11486 		nonzero_msg(dd, i, "shared",
11487 			    be16_to_cpu(new_bc->vl[i].shared));
11488 		new_bc->vl[i].dedicated = 0;
11489 		new_bc->vl[i].shared = 0;
11490 	}
11491 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11492 
11493 	/* fetch the current values */
11494 	get_buffer_control(dd, &cur_bc, &cur_total);
11495 
11496 	/*
11497 	 * Create the masks we will use.
11498 	 */
11499 	memset(changing, 0, sizeof(changing));
11500 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11501 	/*
11502 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11503 	 * increasing order
11504 	 */
11505 	stat_mask =
11506 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11507 	changing_mask = 0;
11508 	ld_mask = 0;
11509 	change_count = 0;
11510 	any_shared_limit_changing = 0;
11511 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11512 		if (!valid_vl(i))
11513 			continue;
11514 		this_shared_changing = new_bc->vl[i].shared
11515 						!= cur_bc.vl[i].shared;
11516 		if (this_shared_changing)
11517 			any_shared_limit_changing = 1;
11518 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11519 		    this_shared_changing) {
11520 			changing[i] = 1;
11521 			changing_mask |= stat_mask;
11522 			change_count++;
11523 		}
11524 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11525 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11526 			lowering_dedicated[i] = 1;
11527 			ld_mask |= stat_mask;
11528 		}
11529 	}
11530 
11531 	/* bracket the credit change with a total adjustment */
11532 	if (new_total > cur_total)
11533 		set_global_limit(dd, new_total);
11534 
11535 	/*
11536 	 * Start the credit change algorithm.
11537 	 */
11538 	use_all_mask = 0;
11539 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11540 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11541 	    (is_ax(dd) && any_shared_limit_changing)) {
11542 		set_global_shared(dd, 0);
11543 		cur_bc.overall_shared_limit = 0;
11544 		use_all_mask = 1;
11545 	}
11546 
11547 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11548 		if (!valid_vl(i))
11549 			continue;
11550 
11551 		if (changing[i]) {
11552 			set_vl_shared(dd, i, 0);
11553 			cur_bc.vl[i].shared = 0;
11554 		}
11555 	}
11556 
11557 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11558 				 "shared");
11559 
11560 	if (change_count > 0) {
11561 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11562 			if (!valid_vl(i))
11563 				continue;
11564 
11565 			if (lowering_dedicated[i]) {
11566 				set_vl_dedicated(dd, i,
11567 						 be16_to_cpu(new_bc->
11568 							     vl[i].dedicated));
11569 				cur_bc.vl[i].dedicated =
11570 						new_bc->vl[i].dedicated;
11571 			}
11572 		}
11573 
11574 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11575 
11576 		/* now raise all dedicated that are going up */
11577 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11578 			if (!valid_vl(i))
11579 				continue;
11580 
11581 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11582 					be16_to_cpu(cur_bc.vl[i].dedicated))
11583 				set_vl_dedicated(dd, i,
11584 						 be16_to_cpu(new_bc->
11585 							     vl[i].dedicated));
11586 		}
11587 	}
11588 
11589 	/* next raise all shared that are going up */
11590 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11591 		if (!valid_vl(i))
11592 			continue;
11593 
11594 		if (be16_to_cpu(new_bc->vl[i].shared) >
11595 				be16_to_cpu(cur_bc.vl[i].shared))
11596 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11597 	}
11598 
11599 	/* finally raise the global shared */
11600 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11601 	    be16_to_cpu(cur_bc.overall_shared_limit))
11602 		set_global_shared(dd,
11603 				  be16_to_cpu(new_bc->overall_shared_limit));
11604 
11605 	/* bracket the credit change with a total adjustment */
11606 	if (new_total < cur_total)
11607 		set_global_limit(dd, new_total);
11608 
11609 	/*
11610 	 * Determine the actual number of operational VLS using the number of
11611 	 * dedicated and shared credits for each VL.
11612 	 */
11613 	if (change_count > 0) {
11614 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11615 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11616 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11617 				vl_count++;
11618 		ppd->actual_vls_operational = vl_count;
11619 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11620 				    ppd->actual_vls_operational :
11621 				    ppd->vls_operational,
11622 				    NULL);
11623 		if (ret == 0)
11624 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11625 					   ppd->actual_vls_operational :
11626 					   ppd->vls_operational, NULL);
11627 		if (ret)
11628 			return ret;
11629 	}
11630 	return 0;
11631 }
11632 
11633 /*
11634  * Read the given fabric manager table. Return the size of the
11635  * table (in bytes) on success, and a negative error code on
11636  * failure.
11637  */
11638 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11639 
11640 {
11641 	int size;
11642 	struct vl_arb_cache *vlc;
11643 
11644 	switch (which) {
11645 	case FM_TBL_VL_HIGH_ARB:
11646 		size = 256;
11647 		/*
11648 		 * OPA specifies 128 elements (of 2 bytes each), though
11649 		 * HFI supports only 16 elements in h/w.
11650 		 */
11651 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11652 		vl_arb_get_cache(vlc, t);
11653 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11654 		break;
11655 	case FM_TBL_VL_LOW_ARB:
11656 		size = 256;
11657 		/*
11658 		 * OPA specifies 128 elements (of 2 bytes each), though
11659 		 * HFI supports only 16 elements in h/w.
11660 		 */
11661 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11662 		vl_arb_get_cache(vlc, t);
11663 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11664 		break;
11665 	case FM_TBL_BUFFER_CONTROL:
11666 		size = get_buffer_control(ppd->dd, t, NULL);
11667 		break;
11668 	case FM_TBL_SC2VLNT:
11669 		size = get_sc2vlnt(ppd->dd, t);
11670 		break;
11671 	case FM_TBL_VL_PREEMPT_ELEMS:
11672 		size = 256;
11673 		/* OPA specifies 128 elements, of 2 bytes each */
11674 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11675 		break;
11676 	case FM_TBL_VL_PREEMPT_MATRIX:
11677 		size = 256;
11678 		/*
11679 		 * OPA specifies that this is the same size as the VL
11680 		 * arbitration tables (i.e., 256 bytes).
11681 		 */
11682 		break;
11683 	default:
11684 		return -EINVAL;
11685 	}
11686 	return size;
11687 }
11688 
11689 /*
11690  * Write the given fabric manager table.
11691  */
11692 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11693 {
11694 	int ret = 0;
11695 	struct vl_arb_cache *vlc;
11696 
11697 	switch (which) {
11698 	case FM_TBL_VL_HIGH_ARB:
11699 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11700 		if (vl_arb_match_cache(vlc, t)) {
11701 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11702 			break;
11703 		}
11704 		vl_arb_set_cache(vlc, t);
11705 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11706 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11707 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11708 		break;
11709 	case FM_TBL_VL_LOW_ARB:
11710 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11711 		if (vl_arb_match_cache(vlc, t)) {
11712 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11713 			break;
11714 		}
11715 		vl_arb_set_cache(vlc, t);
11716 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11717 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11718 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11719 		break;
11720 	case FM_TBL_BUFFER_CONTROL:
11721 		ret = set_buffer_control(ppd, t);
11722 		break;
11723 	case FM_TBL_SC2VLNT:
11724 		set_sc2vlnt(ppd->dd, t);
11725 		break;
11726 	default:
11727 		ret = -EINVAL;
11728 	}
11729 	return ret;
11730 }
11731 
11732 /*
11733  * Disable all data VLs.
11734  *
11735  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11736  */
11737 static int disable_data_vls(struct hfi1_devdata *dd)
11738 {
11739 	if (is_ax(dd))
11740 		return 1;
11741 
11742 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11743 
11744 	return 0;
11745 }
11746 
11747 /*
11748  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11749  * Just re-enables all data VLs (the "fill" part happens
11750  * automatically - the name was chosen for symmetry with
11751  * stop_drain_data_vls()).
11752  *
11753  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11754  */
11755 int open_fill_data_vls(struct hfi1_devdata *dd)
11756 {
11757 	if (is_ax(dd))
11758 		return 1;
11759 
11760 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11761 
11762 	return 0;
11763 }
11764 
11765 /*
11766  * drain_data_vls() - assumes that disable_data_vls() has been called,
11767  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11768  * engines to drop to 0.
11769  */
11770 static void drain_data_vls(struct hfi1_devdata *dd)
11771 {
11772 	sc_wait(dd);
11773 	sdma_wait(dd);
11774 	pause_for_credit_return(dd);
11775 }
11776 
11777 /*
11778  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11779  *
11780  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11781  * meant to be used like this:
11782  *
11783  * stop_drain_data_vls(dd);
11784  * // do things with per-VL resources
11785  * open_fill_data_vls(dd);
11786  */
11787 int stop_drain_data_vls(struct hfi1_devdata *dd)
11788 {
11789 	int ret;
11790 
11791 	ret = disable_data_vls(dd);
11792 	if (ret == 0)
11793 		drain_data_vls(dd);
11794 
11795 	return ret;
11796 }
11797 
11798 /*
11799  * Convert a nanosecond time to a cclock count.  No matter how slow
11800  * the cclock, a non-zero ns will always have a non-zero result.
11801  */
11802 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11803 {
11804 	u32 cclocks;
11805 
11806 	if (dd->icode == ICODE_FPGA_EMULATION)
11807 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11808 	else  /* simulation pretends to be ASIC */
11809 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11810 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11811 		cclocks = 1;
11812 	return cclocks;
11813 }
11814 
11815 /*
11816  * Convert a cclock count to nanoseconds. Not matter how slow
11817  * the cclock, a non-zero cclocks will always have a non-zero result.
11818  */
11819 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11820 {
11821 	u32 ns;
11822 
11823 	if (dd->icode == ICODE_FPGA_EMULATION)
11824 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11825 	else  /* simulation pretends to be ASIC */
11826 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11827 	if (cclocks && !ns)
11828 		ns = 1;
11829 	return ns;
11830 }
11831 
11832 /*
11833  * Dynamically adjust the receive interrupt timeout for a context based on
11834  * incoming packet rate.
11835  *
11836  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11837  */
11838 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11839 {
11840 	struct hfi1_devdata *dd = rcd->dd;
11841 	u32 timeout = rcd->rcvavail_timeout;
11842 
11843 	/*
11844 	 * This algorithm doubles or halves the timeout depending on whether
11845 	 * the number of packets received in this interrupt were less than or
11846 	 * greater equal the interrupt count.
11847 	 *
11848 	 * The calculations below do not allow a steady state to be achieved.
11849 	 * Only at the endpoints it is possible to have an unchanging
11850 	 * timeout.
11851 	 */
11852 	if (npkts < rcv_intr_count) {
11853 		/*
11854 		 * Not enough packets arrived before the timeout, adjust
11855 		 * timeout downward.
11856 		 */
11857 		if (timeout < 2) /* already at minimum? */
11858 			return;
11859 		timeout >>= 1;
11860 	} else {
11861 		/*
11862 		 * More than enough packets arrived before the timeout, adjust
11863 		 * timeout upward.
11864 		 */
11865 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11866 			return;
11867 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11868 	}
11869 
11870 	rcd->rcvavail_timeout = timeout;
11871 	/*
11872 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11873 	 * been verified to be in range
11874 	 */
11875 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11876 			(u64)timeout <<
11877 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11878 }
11879 
11880 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11881 		    u32 intr_adjust, u32 npkts)
11882 {
11883 	struct hfi1_devdata *dd = rcd->dd;
11884 	u64 reg;
11885 	u32 ctxt = rcd->ctxt;
11886 
11887 	/*
11888 	 * Need to write timeout register before updating RcvHdrHead to ensure
11889 	 * that a new value is used when the HW decides to restart counting.
11890 	 */
11891 	if (intr_adjust)
11892 		adjust_rcv_timeout(rcd, npkts);
11893 	if (updegr) {
11894 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11895 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11896 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11897 	}
11898 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11899 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11900 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11901 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11902 }
11903 
11904 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11905 {
11906 	u32 head, tail;
11907 
11908 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11909 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11910 
11911 	if (hfi1_rcvhdrtail_kvaddr(rcd))
11912 		tail = get_rcvhdrtail(rcd);
11913 	else
11914 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11915 
11916 	return head == tail;
11917 }
11918 
11919 /*
11920  * Context Control and Receive Array encoding for buffer size:
11921  *	0x0 invalid
11922  *	0x1   4 KB
11923  *	0x2   8 KB
11924  *	0x3  16 KB
11925  *	0x4  32 KB
11926  *	0x5  64 KB
11927  *	0x6 128 KB
11928  *	0x7 256 KB
11929  *	0x8 512 KB (Receive Array only)
11930  *	0x9   1 MB (Receive Array only)
11931  *	0xa   2 MB (Receive Array only)
11932  *
11933  *	0xB-0xF - reserved (Receive Array only)
11934  *
11935  *
11936  * This routine assumes that the value has already been sanity checked.
11937  */
11938 static u32 encoded_size(u32 size)
11939 {
11940 	switch (size) {
11941 	case   4 * 1024: return 0x1;
11942 	case   8 * 1024: return 0x2;
11943 	case  16 * 1024: return 0x3;
11944 	case  32 * 1024: return 0x4;
11945 	case  64 * 1024: return 0x5;
11946 	case 128 * 1024: return 0x6;
11947 	case 256 * 1024: return 0x7;
11948 	case 512 * 1024: return 0x8;
11949 	case   1 * 1024 * 1024: return 0x9;
11950 	case   2 * 1024 * 1024: return 0xa;
11951 	}
11952 	return 0x1;	/* if invalid, go with the minimum size */
11953 }
11954 
11955 /**
11956  * encode_rcv_header_entry_size - return chip specific encoding for size
11957  * @size: size in dwords
11958  *
11959  * Convert a receive header entry size that to the encoding used in the CSR.
11960  *
11961  * Return a zero if the given size is invalid, otherwise the encoding.
11962  */
11963 u8 encode_rcv_header_entry_size(u8 size)
11964 {
11965 	/* there are only 3 valid receive header entry sizes */
11966 	if (size == 2)
11967 		return 1;
11968 	if (size == 16)
11969 		return 2;
11970 	if (size == 32)
11971 		return 4;
11972 	return 0; /* invalid */
11973 }
11974 
11975 /**
11976  * hfi1_validate_rcvhdrcnt - validate hdrcnt
11977  * @dd: the device data
11978  * @thecnt: the header count
11979  */
11980 int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11981 {
11982 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11983 		dd_dev_err(dd, "Receive header queue count too small\n");
11984 		return -EINVAL;
11985 	}
11986 
11987 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11988 		dd_dev_err(dd,
11989 			   "Receive header queue count cannot be greater than %u\n",
11990 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
11991 		return -EINVAL;
11992 	}
11993 
11994 	if (thecnt % HDRQ_INCREMENT) {
11995 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11996 			   thecnt, HDRQ_INCREMENT);
11997 		return -EINVAL;
11998 	}
11999 
12000 	return 0;
12001 }
12002 
12003 /**
12004  * set_hdrq_regs - set header queue registers for context
12005  * @dd: the device data
12006  * @ctxt: the context
12007  * @entsize: the dword entry size
12008  * @hdrcnt: the number of header entries
12009  */
12010 void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
12011 {
12012 	u64 reg;
12013 
12014 	reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
12015 	      RCV_HDR_CNT_CNT_SHIFT;
12016 	write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
12017 	reg = ((u64)encode_rcv_header_entry_size(entsize) &
12018 	       RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
12019 	      RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
12020 	write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
12021 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
12022 	      RCV_HDR_SIZE_HDR_SIZE_SHIFT;
12023 	write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
12024 
12025 	/*
12026 	 * Program dummy tail address for every receive context
12027 	 * before enabling any receive context
12028 	 */
12029 	write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12030 			dd->rcvhdrtail_dummy_dma);
12031 }
12032 
12033 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
12034 		  struct hfi1_ctxtdata *rcd)
12035 {
12036 	u64 rcvctrl, reg;
12037 	int did_enable = 0;
12038 	u16 ctxt;
12039 
12040 	if (!rcd)
12041 		return;
12042 
12043 	ctxt = rcd->ctxt;
12044 
12045 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12046 
12047 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12048 	/* if the context already enabled, don't do the extra steps */
12049 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12050 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12051 		/* reset the tail and hdr addresses, and sequence count */
12052 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12053 				rcd->rcvhdrq_dma);
12054 		if (hfi1_rcvhdrtail_kvaddr(rcd))
12055 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12056 					rcd->rcvhdrqtailaddr_dma);
12057 		hfi1_set_seq_cnt(rcd, 1);
12058 
12059 		/* reset the cached receive header queue head value */
12060 		hfi1_set_rcd_head(rcd, 0);
12061 
12062 		/*
12063 		 * Zero the receive header queue so we don't get false
12064 		 * positives when checking the sequence number.  The
12065 		 * sequence numbers could land exactly on the same spot.
12066 		 * E.g. a rcd restart before the receive header wrapped.
12067 		 */
12068 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12069 
12070 		/* starting timeout */
12071 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12072 
12073 		/* enable the context */
12074 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12075 
12076 		/* clean the egr buffer size first */
12077 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12078 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12079 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12080 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12081 
12082 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12083 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12084 		did_enable = 1;
12085 
12086 		/* zero RcvEgrIndexHead */
12087 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12088 
12089 		/* set eager count and base index */
12090 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12091 			& RCV_EGR_CTRL_EGR_CNT_MASK)
12092 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12093 			(((rcd->eager_base >> RCV_SHIFT)
12094 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12095 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12096 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12097 
12098 		/*
12099 		 * Set TID (expected) count and base index.
12100 		 * rcd->expected_count is set to individual RcvArray entries,
12101 		 * not pairs, and the CSR takes a pair-count in groups of
12102 		 * four, so divide by 8.
12103 		 */
12104 		reg = (((rcd->expected_count >> RCV_SHIFT)
12105 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12106 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12107 		      (((rcd->expected_base >> RCV_SHIFT)
12108 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12109 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12110 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12111 		if (ctxt == HFI1_CTRL_CTXT)
12112 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12113 	}
12114 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
12115 		write_csr(dd, RCV_VL15, 0);
12116 		/*
12117 		 * When receive context is being disabled turn on tail
12118 		 * update with a dummy tail address and then disable
12119 		 * receive context.
12120 		 */
12121 		if (dd->rcvhdrtail_dummy_dma) {
12122 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12123 					dd->rcvhdrtail_dummy_dma);
12124 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12125 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12126 		}
12127 
12128 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12129 	}
12130 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12131 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12132 			      IS_RCVAVAIL_START + rcd->ctxt, true);
12133 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12134 	}
12135 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12136 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12137 			      IS_RCVAVAIL_START + rcd->ctxt, false);
12138 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12139 	}
12140 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12141 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12142 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12143 		/* See comment on RcvCtxtCtrl.TailUpd above */
12144 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12145 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12146 	}
12147 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12148 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12149 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12150 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12151 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12152 		/*
12153 		 * In one-packet-per-eager mode, the size comes from
12154 		 * the RcvArray entry.
12155 		 */
12156 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12157 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12158 	}
12159 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12160 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12161 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12162 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12163 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12164 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12165 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12166 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12167 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12168 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12169 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12170 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12171 			      IS_RCVURGENT_START + rcd->ctxt, true);
12172 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12173 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12174 			      IS_RCVURGENT_START + rcd->ctxt, false);
12175 
12176 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12177 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12178 
12179 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12180 	if (did_enable &&
12181 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12182 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12183 		if (reg != 0) {
12184 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12185 				    ctxt, reg);
12186 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12187 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12188 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12189 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12190 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12191 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12192 				    ctxt, reg, reg == 0 ? "not" : "still");
12193 		}
12194 	}
12195 
12196 	if (did_enable) {
12197 		/*
12198 		 * The interrupt timeout and count must be set after
12199 		 * the context is enabled to take effect.
12200 		 */
12201 		/* set interrupt timeout */
12202 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12203 				(u64)rcd->rcvavail_timeout <<
12204 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12205 
12206 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12207 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12208 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12209 	}
12210 
12211 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12212 		/*
12213 		 * If the context has been disabled and the Tail Update has
12214 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12215 		 * so it doesn't contain an address that is invalid.
12216 		 */
12217 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12218 				dd->rcvhdrtail_dummy_dma);
12219 }
12220 
12221 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12222 {
12223 	int ret;
12224 	u64 val = 0;
12225 
12226 	if (namep) {
12227 		ret = dd->cntrnameslen;
12228 		*namep = dd->cntrnames;
12229 	} else {
12230 		const struct cntr_entry *entry;
12231 		int i, j;
12232 
12233 		ret = (dd->ndevcntrs) * sizeof(u64);
12234 
12235 		/* Get the start of the block of counters */
12236 		*cntrp = dd->cntrs;
12237 
12238 		/*
12239 		 * Now go and fill in each counter in the block.
12240 		 */
12241 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12242 			entry = &dev_cntrs[i];
12243 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12244 			if (entry->flags & CNTR_DISABLED) {
12245 				/* Nothing */
12246 				hfi1_cdbg(CNTR, "\tDisabled\n");
12247 			} else {
12248 				if (entry->flags & CNTR_VL) {
12249 					hfi1_cdbg(CNTR, "\tPer VL\n");
12250 					for (j = 0; j < C_VL_COUNT; j++) {
12251 						val = entry->rw_cntr(entry,
12252 								  dd, j,
12253 								  CNTR_MODE_R,
12254 								  0);
12255 						hfi1_cdbg(
12256 						   CNTR,
12257 						   "\t\tRead 0x%llx for %d\n",
12258 						   val, j);
12259 						dd->cntrs[entry->offset + j] =
12260 									    val;
12261 					}
12262 				} else if (entry->flags & CNTR_SDMA) {
12263 					hfi1_cdbg(CNTR,
12264 						  "\t Per SDMA Engine\n");
12265 					for (j = 0; j < chip_sdma_engines(dd);
12266 					     j++) {
12267 						val =
12268 						entry->rw_cntr(entry, dd, j,
12269 							       CNTR_MODE_R, 0);
12270 						hfi1_cdbg(CNTR,
12271 							  "\t\tRead 0x%llx for %d\n",
12272 							  val, j);
12273 						dd->cntrs[entry->offset + j] =
12274 									val;
12275 					}
12276 				} else {
12277 					val = entry->rw_cntr(entry, dd,
12278 							CNTR_INVALID_VL,
12279 							CNTR_MODE_R, 0);
12280 					dd->cntrs[entry->offset] = val;
12281 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12282 				}
12283 			}
12284 		}
12285 	}
12286 	return ret;
12287 }
12288 
12289 /*
12290  * Used by sysfs to create files for hfi stats to read
12291  */
12292 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12293 {
12294 	int ret;
12295 	u64 val = 0;
12296 
12297 	if (namep) {
12298 		ret = ppd->dd->portcntrnameslen;
12299 		*namep = ppd->dd->portcntrnames;
12300 	} else {
12301 		const struct cntr_entry *entry;
12302 		int i, j;
12303 
12304 		ret = ppd->dd->nportcntrs * sizeof(u64);
12305 		*cntrp = ppd->cntrs;
12306 
12307 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12308 			entry = &port_cntrs[i];
12309 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12310 			if (entry->flags & CNTR_DISABLED) {
12311 				/* Nothing */
12312 				hfi1_cdbg(CNTR, "\tDisabled\n");
12313 				continue;
12314 			}
12315 
12316 			if (entry->flags & CNTR_VL) {
12317 				hfi1_cdbg(CNTR, "\tPer VL");
12318 				for (j = 0; j < C_VL_COUNT; j++) {
12319 					val = entry->rw_cntr(entry, ppd, j,
12320 							       CNTR_MODE_R,
12321 							       0);
12322 					hfi1_cdbg(
12323 					   CNTR,
12324 					   "\t\tRead 0x%llx for %d",
12325 					   val, j);
12326 					ppd->cntrs[entry->offset + j] = val;
12327 				}
12328 			} else {
12329 				val = entry->rw_cntr(entry, ppd,
12330 						       CNTR_INVALID_VL,
12331 						       CNTR_MODE_R,
12332 						       0);
12333 				ppd->cntrs[entry->offset] = val;
12334 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12335 			}
12336 		}
12337 	}
12338 	return ret;
12339 }
12340 
12341 static void free_cntrs(struct hfi1_devdata *dd)
12342 {
12343 	struct hfi1_pportdata *ppd;
12344 	int i;
12345 
12346 	if (dd->synth_stats_timer.function)
12347 		del_timer_sync(&dd->synth_stats_timer);
12348 	ppd = (struct hfi1_pportdata *)(dd + 1);
12349 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12350 		kfree(ppd->cntrs);
12351 		kfree(ppd->scntrs);
12352 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12353 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12354 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12355 		ppd->cntrs = NULL;
12356 		ppd->scntrs = NULL;
12357 		ppd->ibport_data.rvp.rc_acks = NULL;
12358 		ppd->ibport_data.rvp.rc_qacks = NULL;
12359 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12360 	}
12361 	kfree(dd->portcntrnames);
12362 	dd->portcntrnames = NULL;
12363 	kfree(dd->cntrs);
12364 	dd->cntrs = NULL;
12365 	kfree(dd->scntrs);
12366 	dd->scntrs = NULL;
12367 	kfree(dd->cntrnames);
12368 	dd->cntrnames = NULL;
12369 	if (dd->update_cntr_wq) {
12370 		destroy_workqueue(dd->update_cntr_wq);
12371 		dd->update_cntr_wq = NULL;
12372 	}
12373 }
12374 
12375 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12376 			      u64 *psval, void *context, int vl)
12377 {
12378 	u64 val;
12379 	u64 sval = *psval;
12380 
12381 	if (entry->flags & CNTR_DISABLED) {
12382 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12383 		return 0;
12384 	}
12385 
12386 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12387 
12388 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12389 
12390 	/* If its a synthetic counter there is more work we need to do */
12391 	if (entry->flags & CNTR_SYNTH) {
12392 		if (sval == CNTR_MAX) {
12393 			/* No need to read already saturated */
12394 			return CNTR_MAX;
12395 		}
12396 
12397 		if (entry->flags & CNTR_32BIT) {
12398 			/* 32bit counters can wrap multiple times */
12399 			u64 upper = sval >> 32;
12400 			u64 lower = (sval << 32) >> 32;
12401 
12402 			if (lower > val) { /* hw wrapped */
12403 				if (upper == CNTR_32BIT_MAX)
12404 					val = CNTR_MAX;
12405 				else
12406 					upper++;
12407 			}
12408 
12409 			if (val != CNTR_MAX)
12410 				val = (upper << 32) | val;
12411 
12412 		} else {
12413 			/* If we rolled we are saturated */
12414 			if ((val < sval) || (val > CNTR_MAX))
12415 				val = CNTR_MAX;
12416 		}
12417 	}
12418 
12419 	*psval = val;
12420 
12421 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12422 
12423 	return val;
12424 }
12425 
12426 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12427 			       struct cntr_entry *entry,
12428 			       u64 *psval, void *context, int vl, u64 data)
12429 {
12430 	u64 val;
12431 
12432 	if (entry->flags & CNTR_DISABLED) {
12433 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12434 		return 0;
12435 	}
12436 
12437 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12438 
12439 	if (entry->flags & CNTR_SYNTH) {
12440 		*psval = data;
12441 		if (entry->flags & CNTR_32BIT) {
12442 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12443 					     (data << 32) >> 32);
12444 			val = data; /* return the full 64bit value */
12445 		} else {
12446 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12447 					     data);
12448 		}
12449 	} else {
12450 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12451 	}
12452 
12453 	*psval = val;
12454 
12455 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12456 
12457 	return val;
12458 }
12459 
12460 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12461 {
12462 	struct cntr_entry *entry;
12463 	u64 *sval;
12464 
12465 	entry = &dev_cntrs[index];
12466 	sval = dd->scntrs + entry->offset;
12467 
12468 	if (vl != CNTR_INVALID_VL)
12469 		sval += vl;
12470 
12471 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12472 }
12473 
12474 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12475 {
12476 	struct cntr_entry *entry;
12477 	u64 *sval;
12478 
12479 	entry = &dev_cntrs[index];
12480 	sval = dd->scntrs + entry->offset;
12481 
12482 	if (vl != CNTR_INVALID_VL)
12483 		sval += vl;
12484 
12485 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12486 }
12487 
12488 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12489 {
12490 	struct cntr_entry *entry;
12491 	u64 *sval;
12492 
12493 	entry = &port_cntrs[index];
12494 	sval = ppd->scntrs + entry->offset;
12495 
12496 	if (vl != CNTR_INVALID_VL)
12497 		sval += vl;
12498 
12499 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12500 	    (index <= C_RCV_HDR_OVF_LAST)) {
12501 		/* We do not want to bother for disabled contexts */
12502 		return 0;
12503 	}
12504 
12505 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12506 }
12507 
12508 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12509 {
12510 	struct cntr_entry *entry;
12511 	u64 *sval;
12512 
12513 	entry = &port_cntrs[index];
12514 	sval = ppd->scntrs + entry->offset;
12515 
12516 	if (vl != CNTR_INVALID_VL)
12517 		sval += vl;
12518 
12519 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12520 	    (index <= C_RCV_HDR_OVF_LAST)) {
12521 		/* We do not want to bother for disabled contexts */
12522 		return 0;
12523 	}
12524 
12525 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12526 }
12527 
12528 static void do_update_synth_timer(struct work_struct *work)
12529 {
12530 	u64 cur_tx;
12531 	u64 cur_rx;
12532 	u64 total_flits;
12533 	u8 update = 0;
12534 	int i, j, vl;
12535 	struct hfi1_pportdata *ppd;
12536 	struct cntr_entry *entry;
12537 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12538 					       update_cntr_work);
12539 
12540 	/*
12541 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12542 	 * check to watch for potential roll over. We can do this by looking at
12543 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12544 	 * we have to iterate all the counters and update.
12545 	 */
12546 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12547 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12548 
12549 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12550 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12551 
12552 	hfi1_cdbg(
12553 	    CNTR,
12554 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12555 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12556 
12557 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12558 		/*
12559 		 * May not be strictly necessary to update but it won't hurt and
12560 		 * simplifies the logic here.
12561 		 */
12562 		update = 1;
12563 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12564 			  dd->unit);
12565 	} else {
12566 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12567 		hfi1_cdbg(CNTR,
12568 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12569 			  total_flits, (u64)CNTR_32BIT_MAX);
12570 		if (total_flits >= CNTR_32BIT_MAX) {
12571 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12572 				  dd->unit);
12573 			update = 1;
12574 		}
12575 	}
12576 
12577 	if (update) {
12578 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12579 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12580 			entry = &dev_cntrs[i];
12581 			if (entry->flags & CNTR_VL) {
12582 				for (vl = 0; vl < C_VL_COUNT; vl++)
12583 					read_dev_cntr(dd, i, vl);
12584 			} else {
12585 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12586 			}
12587 		}
12588 		ppd = (struct hfi1_pportdata *)(dd + 1);
12589 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12590 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12591 				entry = &port_cntrs[j];
12592 				if (entry->flags & CNTR_VL) {
12593 					for (vl = 0; vl < C_VL_COUNT; vl++)
12594 						read_port_cntr(ppd, j, vl);
12595 				} else {
12596 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12597 				}
12598 			}
12599 		}
12600 
12601 		/*
12602 		 * We want the value in the register. The goal is to keep track
12603 		 * of the number of "ticks" not the counter value. In other
12604 		 * words if the register rolls we want to notice it and go ahead
12605 		 * and force an update.
12606 		 */
12607 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12608 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12609 						CNTR_MODE_R, 0);
12610 
12611 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12612 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12613 						CNTR_MODE_R, 0);
12614 
12615 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12616 			  dd->unit, dd->last_tx, dd->last_rx);
12617 
12618 	} else {
12619 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12620 	}
12621 }
12622 
12623 static void update_synth_timer(struct timer_list *t)
12624 {
12625 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12626 
12627 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12628 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12629 }
12630 
12631 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12632 static int init_cntrs(struct hfi1_devdata *dd)
12633 {
12634 	int i, rcv_ctxts, j;
12635 	size_t sz;
12636 	char *p;
12637 	char name[C_MAX_NAME];
12638 	struct hfi1_pportdata *ppd;
12639 	const char *bit_type_32 = ",32";
12640 	const int bit_type_32_sz = strlen(bit_type_32);
12641 	u32 sdma_engines = chip_sdma_engines(dd);
12642 
12643 	/* set up the stats timer; the add_timer is done at the end */
12644 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12645 
12646 	/***********************/
12647 	/* per device counters */
12648 	/***********************/
12649 
12650 	/* size names and determine how many we have*/
12651 	dd->ndevcntrs = 0;
12652 	sz = 0;
12653 
12654 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12655 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12656 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12657 			continue;
12658 		}
12659 
12660 		if (dev_cntrs[i].flags & CNTR_VL) {
12661 			dev_cntrs[i].offset = dd->ndevcntrs;
12662 			for (j = 0; j < C_VL_COUNT; j++) {
12663 				snprintf(name, C_MAX_NAME, "%s%d",
12664 					 dev_cntrs[i].name, vl_from_idx(j));
12665 				sz += strlen(name);
12666 				/* Add ",32" for 32-bit counters */
12667 				if (dev_cntrs[i].flags & CNTR_32BIT)
12668 					sz += bit_type_32_sz;
12669 				sz++;
12670 				dd->ndevcntrs++;
12671 			}
12672 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12673 			dev_cntrs[i].offset = dd->ndevcntrs;
12674 			for (j = 0; j < sdma_engines; j++) {
12675 				snprintf(name, C_MAX_NAME, "%s%d",
12676 					 dev_cntrs[i].name, j);
12677 				sz += strlen(name);
12678 				/* Add ",32" for 32-bit counters */
12679 				if (dev_cntrs[i].flags & CNTR_32BIT)
12680 					sz += bit_type_32_sz;
12681 				sz++;
12682 				dd->ndevcntrs++;
12683 			}
12684 		} else {
12685 			/* +1 for newline. */
12686 			sz += strlen(dev_cntrs[i].name) + 1;
12687 			/* Add ",32" for 32-bit counters */
12688 			if (dev_cntrs[i].flags & CNTR_32BIT)
12689 				sz += bit_type_32_sz;
12690 			dev_cntrs[i].offset = dd->ndevcntrs;
12691 			dd->ndevcntrs++;
12692 		}
12693 	}
12694 
12695 	/* allocate space for the counter values */
12696 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12697 			    GFP_KERNEL);
12698 	if (!dd->cntrs)
12699 		goto bail;
12700 
12701 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12702 	if (!dd->scntrs)
12703 		goto bail;
12704 
12705 	/* allocate space for the counter names */
12706 	dd->cntrnameslen = sz;
12707 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12708 	if (!dd->cntrnames)
12709 		goto bail;
12710 
12711 	/* fill in the names */
12712 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12713 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12714 			/* Nothing */
12715 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12716 			for (j = 0; j < C_VL_COUNT; j++) {
12717 				snprintf(name, C_MAX_NAME, "%s%d",
12718 					 dev_cntrs[i].name,
12719 					 vl_from_idx(j));
12720 				memcpy(p, name, strlen(name));
12721 				p += strlen(name);
12722 
12723 				/* Counter is 32 bits */
12724 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12725 					memcpy(p, bit_type_32, bit_type_32_sz);
12726 					p += bit_type_32_sz;
12727 				}
12728 
12729 				*p++ = '\n';
12730 			}
12731 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12732 			for (j = 0; j < sdma_engines; j++) {
12733 				snprintf(name, C_MAX_NAME, "%s%d",
12734 					 dev_cntrs[i].name, j);
12735 				memcpy(p, name, strlen(name));
12736 				p += strlen(name);
12737 
12738 				/* Counter is 32 bits */
12739 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12740 					memcpy(p, bit_type_32, bit_type_32_sz);
12741 					p += bit_type_32_sz;
12742 				}
12743 
12744 				*p++ = '\n';
12745 			}
12746 		} else {
12747 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12748 			p += strlen(dev_cntrs[i].name);
12749 
12750 			/* Counter is 32 bits */
12751 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12752 				memcpy(p, bit_type_32, bit_type_32_sz);
12753 				p += bit_type_32_sz;
12754 			}
12755 
12756 			*p++ = '\n';
12757 		}
12758 	}
12759 
12760 	/*********************/
12761 	/* per port counters */
12762 	/*********************/
12763 
12764 	/*
12765 	 * Go through the counters for the overflows and disable the ones we
12766 	 * don't need. This varies based on platform so we need to do it
12767 	 * dynamically here.
12768 	 */
12769 	rcv_ctxts = dd->num_rcv_contexts;
12770 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12771 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12772 		port_cntrs[i].flags |= CNTR_DISABLED;
12773 	}
12774 
12775 	/* size port counter names and determine how many we have*/
12776 	sz = 0;
12777 	dd->nportcntrs = 0;
12778 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12779 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12780 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12781 			continue;
12782 		}
12783 
12784 		if (port_cntrs[i].flags & CNTR_VL) {
12785 			port_cntrs[i].offset = dd->nportcntrs;
12786 			for (j = 0; j < C_VL_COUNT; j++) {
12787 				snprintf(name, C_MAX_NAME, "%s%d",
12788 					 port_cntrs[i].name, vl_from_idx(j));
12789 				sz += strlen(name);
12790 				/* Add ",32" for 32-bit counters */
12791 				if (port_cntrs[i].flags & CNTR_32BIT)
12792 					sz += bit_type_32_sz;
12793 				sz++;
12794 				dd->nportcntrs++;
12795 			}
12796 		} else {
12797 			/* +1 for newline */
12798 			sz += strlen(port_cntrs[i].name) + 1;
12799 			/* Add ",32" for 32-bit counters */
12800 			if (port_cntrs[i].flags & CNTR_32BIT)
12801 				sz += bit_type_32_sz;
12802 			port_cntrs[i].offset = dd->nportcntrs;
12803 			dd->nportcntrs++;
12804 		}
12805 	}
12806 
12807 	/* allocate space for the counter names */
12808 	dd->portcntrnameslen = sz;
12809 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12810 	if (!dd->portcntrnames)
12811 		goto bail;
12812 
12813 	/* fill in port cntr names */
12814 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12815 		if (port_cntrs[i].flags & CNTR_DISABLED)
12816 			continue;
12817 
12818 		if (port_cntrs[i].flags & CNTR_VL) {
12819 			for (j = 0; j < C_VL_COUNT; j++) {
12820 				snprintf(name, C_MAX_NAME, "%s%d",
12821 					 port_cntrs[i].name, vl_from_idx(j));
12822 				memcpy(p, name, strlen(name));
12823 				p += strlen(name);
12824 
12825 				/* Counter is 32 bits */
12826 				if (port_cntrs[i].flags & CNTR_32BIT) {
12827 					memcpy(p, bit_type_32, bit_type_32_sz);
12828 					p += bit_type_32_sz;
12829 				}
12830 
12831 				*p++ = '\n';
12832 			}
12833 		} else {
12834 			memcpy(p, port_cntrs[i].name,
12835 			       strlen(port_cntrs[i].name));
12836 			p += strlen(port_cntrs[i].name);
12837 
12838 			/* Counter is 32 bits */
12839 			if (port_cntrs[i].flags & CNTR_32BIT) {
12840 				memcpy(p, bit_type_32, bit_type_32_sz);
12841 				p += bit_type_32_sz;
12842 			}
12843 
12844 			*p++ = '\n';
12845 		}
12846 	}
12847 
12848 	/* allocate per port storage for counter values */
12849 	ppd = (struct hfi1_pportdata *)(dd + 1);
12850 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12851 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12852 		if (!ppd->cntrs)
12853 			goto bail;
12854 
12855 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12856 		if (!ppd->scntrs)
12857 			goto bail;
12858 	}
12859 
12860 	/* CPU counters need to be allocated and zeroed */
12861 	if (init_cpu_counters(dd))
12862 		goto bail;
12863 
12864 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12865 						     WQ_MEM_RECLAIM, dd->unit);
12866 	if (!dd->update_cntr_wq)
12867 		goto bail;
12868 
12869 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12870 
12871 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12872 	return 0;
12873 bail:
12874 	free_cntrs(dd);
12875 	return -ENOMEM;
12876 }
12877 
12878 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12879 {
12880 	switch (chip_lstate) {
12881 	default:
12882 		dd_dev_err(dd,
12883 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12884 			   chip_lstate);
12885 		/* fall through */
12886 	case LSTATE_DOWN:
12887 		return IB_PORT_DOWN;
12888 	case LSTATE_INIT:
12889 		return IB_PORT_INIT;
12890 	case LSTATE_ARMED:
12891 		return IB_PORT_ARMED;
12892 	case LSTATE_ACTIVE:
12893 		return IB_PORT_ACTIVE;
12894 	}
12895 }
12896 
12897 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12898 {
12899 	/* look at the HFI meta-states only */
12900 	switch (chip_pstate & 0xf0) {
12901 	default:
12902 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12903 			   chip_pstate);
12904 		/* fall through */
12905 	case PLS_DISABLED:
12906 		return IB_PORTPHYSSTATE_DISABLED;
12907 	case PLS_OFFLINE:
12908 		return OPA_PORTPHYSSTATE_OFFLINE;
12909 	case PLS_POLLING:
12910 		return IB_PORTPHYSSTATE_POLLING;
12911 	case PLS_CONFIGPHY:
12912 		return IB_PORTPHYSSTATE_TRAINING;
12913 	case PLS_LINKUP:
12914 		return IB_PORTPHYSSTATE_LINKUP;
12915 	case PLS_PHYTEST:
12916 		return IB_PORTPHYSSTATE_PHY_TEST;
12917 	}
12918 }
12919 
12920 /* return the OPA port logical state name */
12921 const char *opa_lstate_name(u32 lstate)
12922 {
12923 	static const char * const port_logical_names[] = {
12924 		"PORT_NOP",
12925 		"PORT_DOWN",
12926 		"PORT_INIT",
12927 		"PORT_ARMED",
12928 		"PORT_ACTIVE",
12929 		"PORT_ACTIVE_DEFER",
12930 	};
12931 	if (lstate < ARRAY_SIZE(port_logical_names))
12932 		return port_logical_names[lstate];
12933 	return "unknown";
12934 }
12935 
12936 /* return the OPA port physical state name */
12937 const char *opa_pstate_name(u32 pstate)
12938 {
12939 	static const char * const port_physical_names[] = {
12940 		"PHYS_NOP",
12941 		"reserved1",
12942 		"PHYS_POLL",
12943 		"PHYS_DISABLED",
12944 		"PHYS_TRAINING",
12945 		"PHYS_LINKUP",
12946 		"PHYS_LINK_ERR_RECOVER",
12947 		"PHYS_PHY_TEST",
12948 		"reserved8",
12949 		"PHYS_OFFLINE",
12950 		"PHYS_GANGED",
12951 		"PHYS_TEST",
12952 	};
12953 	if (pstate < ARRAY_SIZE(port_physical_names))
12954 		return port_physical_names[pstate];
12955 	return "unknown";
12956 }
12957 
12958 /**
12959  * update_statusp - Update userspace status flag
12960  * @ppd: Port data structure
12961  * @state: port state information
12962  *
12963  * Actual port status is determined by the host_link_state value
12964  * in the ppd.
12965  *
12966  * host_link_state MUST be updated before updating the user space
12967  * statusp.
12968  */
12969 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12970 {
12971 	/*
12972 	 * Set port status flags in the page mapped into userspace
12973 	 * memory. Do it here to ensure a reliable state - this is
12974 	 * the only function called by all state handling code.
12975 	 * Always set the flags due to the fact that the cache value
12976 	 * might have been changed explicitly outside of this
12977 	 * function.
12978 	 */
12979 	if (ppd->statusp) {
12980 		switch (state) {
12981 		case IB_PORT_DOWN:
12982 		case IB_PORT_INIT:
12983 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12984 					   HFI1_STATUS_IB_READY);
12985 			break;
12986 		case IB_PORT_ARMED:
12987 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12988 			break;
12989 		case IB_PORT_ACTIVE:
12990 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12991 			break;
12992 		}
12993 	}
12994 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12995 		    opa_lstate_name(state), state);
12996 }
12997 
12998 /**
12999  * wait_logical_linkstate - wait for an IB link state change to occur
13000  * @ppd: port device
13001  * @state: the state to wait for
13002  * @msecs: the number of milliseconds to wait
13003  *
13004  * Wait up to msecs milliseconds for IB link state change to occur.
13005  * For now, take the easy polling route.
13006  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13007  */
13008 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13009 				  int msecs)
13010 {
13011 	unsigned long timeout;
13012 	u32 new_state;
13013 
13014 	timeout = jiffies + msecs_to_jiffies(msecs);
13015 	while (1) {
13016 		new_state = chip_to_opa_lstate(ppd->dd,
13017 					       read_logical_state(ppd->dd));
13018 		if (new_state == state)
13019 			break;
13020 		if (time_after(jiffies, timeout)) {
13021 			dd_dev_err(ppd->dd,
13022 				   "timeout waiting for link state 0x%x\n",
13023 				   state);
13024 			return -ETIMEDOUT;
13025 		}
13026 		msleep(20);
13027 	}
13028 
13029 	return 0;
13030 }
13031 
13032 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
13033 {
13034 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
13035 
13036 	dd_dev_info(ppd->dd,
13037 		    "physical state changed to %s (0x%x), phy 0x%x\n",
13038 		    opa_pstate_name(ib_pstate), ib_pstate, state);
13039 }
13040 
13041 /*
13042  * Read the physical hardware link state and check if it matches host
13043  * drivers anticipated state.
13044  */
13045 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13046 {
13047 	u32 read_state = read_physical_state(ppd->dd);
13048 
13049 	if (read_state == state) {
13050 		log_state_transition(ppd, state);
13051 	} else {
13052 		dd_dev_err(ppd->dd,
13053 			   "anticipated phy link state 0x%x, read 0x%x\n",
13054 			   state, read_state);
13055 	}
13056 }
13057 
13058 /*
13059  * wait_physical_linkstate - wait for an physical link state change to occur
13060  * @ppd: port device
13061  * @state: the state to wait for
13062  * @msecs: the number of milliseconds to wait
13063  *
13064  * Wait up to msecs milliseconds for physical link state change to occur.
13065  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13066  */
13067 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13068 				   int msecs)
13069 {
13070 	u32 read_state;
13071 	unsigned long timeout;
13072 
13073 	timeout = jiffies + msecs_to_jiffies(msecs);
13074 	while (1) {
13075 		read_state = read_physical_state(ppd->dd);
13076 		if (read_state == state)
13077 			break;
13078 		if (time_after(jiffies, timeout)) {
13079 			dd_dev_err(ppd->dd,
13080 				   "timeout waiting for phy link state 0x%x\n",
13081 				   state);
13082 			return -ETIMEDOUT;
13083 		}
13084 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13085 	}
13086 
13087 	log_state_transition(ppd, state);
13088 	return 0;
13089 }
13090 
13091 /*
13092  * wait_phys_link_offline_quiet_substates - wait for any offline substate
13093  * @ppd: port device
13094  * @msecs: the number of milliseconds to wait
13095  *
13096  * Wait up to msecs milliseconds for any offline physical link
13097  * state change to occur.
13098  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13099  */
13100 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13101 					    int msecs)
13102 {
13103 	u32 read_state;
13104 	unsigned long timeout;
13105 
13106 	timeout = jiffies + msecs_to_jiffies(msecs);
13107 	while (1) {
13108 		read_state = read_physical_state(ppd->dd);
13109 		if ((read_state & 0xF0) == PLS_OFFLINE)
13110 			break;
13111 		if (time_after(jiffies, timeout)) {
13112 			dd_dev_err(ppd->dd,
13113 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13114 				   read_state, msecs);
13115 			return -ETIMEDOUT;
13116 		}
13117 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13118 	}
13119 
13120 	log_state_transition(ppd, read_state);
13121 	return read_state;
13122 }
13123 
13124 /*
13125  * wait_phys_link_out_of_offline - wait for any out of offline state
13126  * @ppd: port device
13127  * @msecs: the number of milliseconds to wait
13128  *
13129  * Wait up to msecs milliseconds for any out of offline physical link
13130  * state change to occur.
13131  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13132  */
13133 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13134 					 int msecs)
13135 {
13136 	u32 read_state;
13137 	unsigned long timeout;
13138 
13139 	timeout = jiffies + msecs_to_jiffies(msecs);
13140 	while (1) {
13141 		read_state = read_physical_state(ppd->dd);
13142 		if ((read_state & 0xF0) != PLS_OFFLINE)
13143 			break;
13144 		if (time_after(jiffies, timeout)) {
13145 			dd_dev_err(ppd->dd,
13146 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13147 				   read_state, msecs);
13148 			return -ETIMEDOUT;
13149 		}
13150 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13151 	}
13152 
13153 	log_state_transition(ppd, read_state);
13154 	return read_state;
13155 }
13156 
13157 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13158 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13159 
13160 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
13161 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13162 
13163 void hfi1_init_ctxt(struct send_context *sc)
13164 {
13165 	if (sc) {
13166 		struct hfi1_devdata *dd = sc->dd;
13167 		u64 reg;
13168 		u8 set = (sc->type == SC_USER ?
13169 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13170 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13171 		reg = read_kctxt_csr(dd, sc->hw_context,
13172 				     SEND_CTXT_CHECK_ENABLE);
13173 		if (set)
13174 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13175 		else
13176 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13177 		write_kctxt_csr(dd, sc->hw_context,
13178 				SEND_CTXT_CHECK_ENABLE, reg);
13179 	}
13180 }
13181 
13182 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13183 {
13184 	int ret = 0;
13185 	u64 reg;
13186 
13187 	if (dd->icode != ICODE_RTL_SILICON) {
13188 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13189 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13190 				    __func__);
13191 		return -EINVAL;
13192 	}
13193 	reg = read_csr(dd, ASIC_STS_THERM);
13194 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13195 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13196 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13197 			ASIC_STS_THERM_LO_TEMP_MASK);
13198 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13199 			ASIC_STS_THERM_HI_TEMP_MASK);
13200 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13201 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13202 	/* triggers is a 3-bit value - 1 bit per trigger. */
13203 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13204 
13205 	return ret;
13206 }
13207 
13208 /* ========================================================================= */
13209 
13210 /**
13211  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13212  * @dd: valid devdata
13213  * @src: IRQ source to determine register index from
13214  * @bits: the bits to set or clear
13215  * @set: true == set the bits, false == clear the bits
13216  *
13217  */
13218 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13219 			   bool set)
13220 {
13221 	u64 reg;
13222 	u16 idx = src / BITS_PER_REGISTER;
13223 
13224 	spin_lock(&dd->irq_src_lock);
13225 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13226 	if (set)
13227 		reg |= bits;
13228 	else
13229 		reg &= ~bits;
13230 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13231 	spin_unlock(&dd->irq_src_lock);
13232 }
13233 
13234 /**
13235  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13236  * @dd: valid devdata
13237  * @first: first IRQ source to set/clear
13238  * @last: last IRQ source (inclusive) to set/clear
13239  * @set: true == set the bits, false == clear the bits
13240  *
13241  * If first == last, set the exact source.
13242  */
13243 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13244 {
13245 	u64 bits = 0;
13246 	u64 bit;
13247 	u16 src;
13248 
13249 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13250 		return -EINVAL;
13251 
13252 	if (last < first)
13253 		return -ERANGE;
13254 
13255 	for (src = first; src <= last; src++) {
13256 		bit = src % BITS_PER_REGISTER;
13257 		/* wrapped to next register? */
13258 		if (!bit && bits) {
13259 			read_mod_write(dd, src - 1, bits, set);
13260 			bits = 0;
13261 		}
13262 		bits |= BIT_ULL(bit);
13263 	}
13264 	read_mod_write(dd, last, bits, set);
13265 
13266 	return 0;
13267 }
13268 
13269 /*
13270  * Clear all interrupt sources on the chip.
13271  */
13272 void clear_all_interrupts(struct hfi1_devdata *dd)
13273 {
13274 	int i;
13275 
13276 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13277 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13278 
13279 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13280 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13281 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13282 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13283 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13284 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13285 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13286 	for (i = 0; i < chip_send_contexts(dd); i++)
13287 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13288 	for (i = 0; i < chip_sdma_engines(dd); i++)
13289 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13290 
13291 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13292 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13293 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13294 }
13295 
13296 /*
13297  * Remap the interrupt source from the general handler to the given MSI-X
13298  * interrupt.
13299  */
13300 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13301 {
13302 	u64 reg;
13303 	int m, n;
13304 
13305 	/* clear from the handled mask of the general interrupt */
13306 	m = isrc / 64;
13307 	n = isrc % 64;
13308 	if (likely(m < CCE_NUM_INT_CSRS)) {
13309 		dd->gi_mask[m] &= ~((u64)1 << n);
13310 	} else {
13311 		dd_dev_err(dd, "remap interrupt err\n");
13312 		return;
13313 	}
13314 
13315 	/* direct the chip source to the given MSI-X interrupt */
13316 	m = isrc / 8;
13317 	n = isrc % 8;
13318 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13319 	reg &= ~((u64)0xff << (8 * n));
13320 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13321 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13322 }
13323 
13324 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13325 {
13326 	/*
13327 	 * SDMA engine interrupt sources grouped by type, rather than
13328 	 * engine.  Per-engine interrupts are as follows:
13329 	 *	SDMA
13330 	 *	SDMAProgress
13331 	 *	SDMAIdle
13332 	 */
13333 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13334 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13335 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13336 }
13337 
13338 /*
13339  * Set the general handler to accept all interrupts, remap all
13340  * chip interrupts back to MSI-X 0.
13341  */
13342 void reset_interrupts(struct hfi1_devdata *dd)
13343 {
13344 	int i;
13345 
13346 	/* all interrupts handled by the general handler */
13347 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13348 		dd->gi_mask[i] = ~(u64)0;
13349 
13350 	/* all chip interrupts map to MSI-X 0 */
13351 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13352 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13353 }
13354 
13355 /**
13356  * set_up_interrupts() - Initialize the IRQ resources and state
13357  * @dd: valid devdata
13358  *
13359  */
13360 static int set_up_interrupts(struct hfi1_devdata *dd)
13361 {
13362 	int ret;
13363 
13364 	/* mask all interrupts */
13365 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13366 
13367 	/* clear all pending interrupts */
13368 	clear_all_interrupts(dd);
13369 
13370 	/* reset general handler mask, chip MSI-X mappings */
13371 	reset_interrupts(dd);
13372 
13373 	/* ask for MSI-X interrupts */
13374 	ret = msix_initialize(dd);
13375 	if (ret)
13376 		return ret;
13377 
13378 	ret = msix_request_irqs(dd);
13379 	if (ret)
13380 		msix_clean_up_interrupts(dd);
13381 
13382 	return ret;
13383 }
13384 
13385 /*
13386  * Set up context values in dd.  Sets:
13387  *
13388  *	num_rcv_contexts - number of contexts being used
13389  *	n_krcv_queues - number of kernel contexts
13390  *	first_dyn_alloc_ctxt - first dynamically allocated context
13391  *                             in array of contexts
13392  *	freectxts  - number of free user contexts
13393  *	num_send_contexts - number of PIO send contexts being used
13394  *	num_netdev_contexts - number of contexts reserved for netdev
13395  */
13396 static int set_up_context_variables(struct hfi1_devdata *dd)
13397 {
13398 	unsigned long num_kernel_contexts;
13399 	u16 num_netdev_contexts;
13400 	int ret;
13401 	unsigned ngroups;
13402 	int rmt_count;
13403 	int user_rmt_reduced;
13404 	u32 n_usr_ctxts;
13405 	u32 send_contexts = chip_send_contexts(dd);
13406 	u32 rcv_contexts = chip_rcv_contexts(dd);
13407 
13408 	/*
13409 	 * Kernel receive contexts:
13410 	 * - Context 0 - control context (VL15/multicast/error)
13411 	 * - Context 1 - first kernel context
13412 	 * - Context 2 - second kernel context
13413 	 * ...
13414 	 */
13415 	if (n_krcvqs)
13416 		/*
13417 		 * n_krcvqs is the sum of module parameter kernel receive
13418 		 * contexts, krcvqs[].  It does not include the control
13419 		 * context, so add that.
13420 		 */
13421 		num_kernel_contexts = n_krcvqs + 1;
13422 	else
13423 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13424 	/*
13425 	 * Every kernel receive context needs an ACK send context.
13426 	 * one send context is allocated for each VL{0-7} and VL15
13427 	 */
13428 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13429 		dd_dev_err(dd,
13430 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13431 			   send_contexts - num_vls - 1,
13432 			   num_kernel_contexts);
13433 		num_kernel_contexts = send_contexts - num_vls - 1;
13434 	}
13435 
13436 	/*
13437 	 * User contexts:
13438 	 *	- default to 1 user context per real (non-HT) CPU core if
13439 	 *	  num_user_contexts is negative
13440 	 */
13441 	if (num_user_contexts < 0)
13442 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13443 	else
13444 		n_usr_ctxts = num_user_contexts;
13445 	/*
13446 	 * Adjust the counts given a global max.
13447 	 */
13448 	if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13449 		dd_dev_err(dd,
13450 			   "Reducing # user receive contexts to: %u, from %u\n",
13451 			   (u32)(rcv_contexts - num_kernel_contexts),
13452 			   n_usr_ctxts);
13453 		/* recalculate */
13454 		n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13455 	}
13456 
13457 	num_netdev_contexts =
13458 		hfi1_num_netdev_contexts(dd, rcv_contexts -
13459 					 (num_kernel_contexts + n_usr_ctxts),
13460 					 &node_affinity.real_cpu_mask);
13461 	/*
13462 	 * The RMT entries are currently allocated as shown below:
13463 	 * 1. QOS (0 to 128 entries);
13464 	 * 2. FECN (num_kernel_context - 1 + num_user_contexts +
13465 	 *    num_netdev_contexts);
13466 	 * 3. netdev (num_netdev_contexts).
13467 	 * It should be noted that FECN oversubscribe num_netdev_contexts
13468 	 * entries of RMT because both netdev and PSM could allocate any receive
13469 	 * context between dd->first_dyn_alloc_text and dd->num_rcv_contexts,
13470 	 * and PSM FECN must reserve an RMT entry for each possible PSM receive
13471 	 * context.
13472 	 */
13473 	rmt_count = qos_rmt_entries(dd, NULL, NULL) + (num_netdev_contexts * 2);
13474 	if (HFI1_CAP_IS_KSET(TID_RDMA))
13475 		rmt_count += num_kernel_contexts - 1;
13476 	if (rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13477 		user_rmt_reduced = NUM_MAP_ENTRIES - rmt_count;
13478 		dd_dev_err(dd,
13479 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13480 			   n_usr_ctxts,
13481 			   user_rmt_reduced);
13482 		/* recalculate */
13483 		n_usr_ctxts = user_rmt_reduced;
13484 	}
13485 
13486 	/* the first N are kernel contexts, the rest are user/netdev contexts */
13487 	dd->num_rcv_contexts =
13488 		num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13489 	dd->n_krcv_queues = num_kernel_contexts;
13490 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13491 	dd->num_netdev_contexts = num_netdev_contexts;
13492 	dd->num_user_contexts = n_usr_ctxts;
13493 	dd->freectxts = n_usr_ctxts;
13494 	dd_dev_info(dd,
13495 		    "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13496 		    rcv_contexts,
13497 		    (int)dd->num_rcv_contexts,
13498 		    (int)dd->n_krcv_queues,
13499 		    dd->num_netdev_contexts,
13500 		    dd->num_user_contexts);
13501 
13502 	/*
13503 	 * Receive array allocation:
13504 	 *   All RcvArray entries are divided into groups of 8. This
13505 	 *   is required by the hardware and will speed up writes to
13506 	 *   consecutive entries by using write-combining of the entire
13507 	 *   cacheline.
13508 	 *
13509 	 *   The number of groups are evenly divided among all contexts.
13510 	 *   any left over groups will be given to the first N user
13511 	 *   contexts.
13512 	 */
13513 	dd->rcv_entries.group_size = RCV_INCREMENT;
13514 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13515 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13516 	dd->rcv_entries.nctxt_extra = ngroups -
13517 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13518 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13519 		    dd->rcv_entries.ngroups,
13520 		    dd->rcv_entries.nctxt_extra);
13521 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13522 	    MAX_EAGER_ENTRIES * 2) {
13523 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13524 			dd->rcv_entries.group_size;
13525 		dd_dev_info(dd,
13526 			    "RcvArray group count too high, change to %u\n",
13527 			    dd->rcv_entries.ngroups);
13528 		dd->rcv_entries.nctxt_extra = 0;
13529 	}
13530 	/*
13531 	 * PIO send contexts
13532 	 */
13533 	ret = init_sc_pools_and_sizes(dd);
13534 	if (ret >= 0) {	/* success */
13535 		dd->num_send_contexts = ret;
13536 		dd_dev_info(
13537 			dd,
13538 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13539 			send_contexts,
13540 			dd->num_send_contexts,
13541 			dd->sc_sizes[SC_KERNEL].count,
13542 			dd->sc_sizes[SC_ACK].count,
13543 			dd->sc_sizes[SC_USER].count,
13544 			dd->sc_sizes[SC_VL15].count);
13545 		ret = 0;	/* success */
13546 	}
13547 
13548 	return ret;
13549 }
13550 
13551 /*
13552  * Set the device/port partition key table. The MAD code
13553  * will ensure that, at least, the partial management
13554  * partition key is present in the table.
13555  */
13556 static void set_partition_keys(struct hfi1_pportdata *ppd)
13557 {
13558 	struct hfi1_devdata *dd = ppd->dd;
13559 	u64 reg = 0;
13560 	int i;
13561 
13562 	dd_dev_info(dd, "Setting partition keys\n");
13563 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13564 		reg |= (ppd->pkeys[i] &
13565 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13566 			((i % 4) *
13567 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13568 		/* Each register holds 4 PKey values. */
13569 		if ((i % 4) == 3) {
13570 			write_csr(dd, RCV_PARTITION_KEY +
13571 				  ((i - 3) * 2), reg);
13572 			reg = 0;
13573 		}
13574 	}
13575 
13576 	/* Always enable HW pkeys check when pkeys table is set */
13577 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13578 }
13579 
13580 /*
13581  * These CSRs and memories are uninitialized on reset and must be
13582  * written before reading to set the ECC/parity bits.
13583  *
13584  * NOTE: All user context CSRs that are not mmaped write-only
13585  * (e.g. the TID flows) must be initialized even if the driver never
13586  * reads them.
13587  */
13588 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13589 {
13590 	int i, j;
13591 
13592 	/* CceIntMap */
13593 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13594 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13595 
13596 	/* SendCtxtCreditReturnAddr */
13597 	for (i = 0; i < chip_send_contexts(dd); i++)
13598 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13599 
13600 	/* PIO Send buffers */
13601 	/* SDMA Send buffers */
13602 	/*
13603 	 * These are not normally read, and (presently) have no method
13604 	 * to be read, so are not pre-initialized
13605 	 */
13606 
13607 	/* RcvHdrAddr */
13608 	/* RcvHdrTailAddr */
13609 	/* RcvTidFlowTable */
13610 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13611 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13612 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13613 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13614 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13615 	}
13616 
13617 	/* RcvArray */
13618 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13619 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13620 
13621 	/* RcvQPMapTable */
13622 	for (i = 0; i < 32; i++)
13623 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13624 }
13625 
13626 /*
13627  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13628  */
13629 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13630 			     u64 ctrl_bits)
13631 {
13632 	unsigned long timeout;
13633 	u64 reg;
13634 
13635 	/* is the condition present? */
13636 	reg = read_csr(dd, CCE_STATUS);
13637 	if ((reg & status_bits) == 0)
13638 		return;
13639 
13640 	/* clear the condition */
13641 	write_csr(dd, CCE_CTRL, ctrl_bits);
13642 
13643 	/* wait for the condition to clear */
13644 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13645 	while (1) {
13646 		reg = read_csr(dd, CCE_STATUS);
13647 		if ((reg & status_bits) == 0)
13648 			return;
13649 		if (time_after(jiffies, timeout)) {
13650 			dd_dev_err(dd,
13651 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13652 				   status_bits, reg & status_bits);
13653 			return;
13654 		}
13655 		udelay(1);
13656 	}
13657 }
13658 
13659 /* set CCE CSRs to chip reset defaults */
13660 static void reset_cce_csrs(struct hfi1_devdata *dd)
13661 {
13662 	int i;
13663 
13664 	/* CCE_REVISION read-only */
13665 	/* CCE_REVISION2 read-only */
13666 	/* CCE_CTRL - bits clear automatically */
13667 	/* CCE_STATUS read-only, use CceCtrl to clear */
13668 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13669 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13670 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13671 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13672 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13673 	/* CCE_ERR_STATUS read-only */
13674 	write_csr(dd, CCE_ERR_MASK, 0);
13675 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13676 	/* CCE_ERR_FORCE leave alone */
13677 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13678 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13679 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13680 	/* CCE_PCIE_CTRL leave alone */
13681 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13682 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13683 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13684 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13685 	}
13686 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13687 		/* CCE_MSIX_PBA read-only */
13688 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13689 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13690 	}
13691 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13692 		write_csr(dd, CCE_INT_MAP, 0);
13693 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13694 		/* CCE_INT_STATUS read-only */
13695 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13696 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13697 		/* CCE_INT_FORCE leave alone */
13698 		/* CCE_INT_BLOCKED read-only */
13699 	}
13700 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13701 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13702 }
13703 
13704 /* set MISC CSRs to chip reset defaults */
13705 static void reset_misc_csrs(struct hfi1_devdata *dd)
13706 {
13707 	int i;
13708 
13709 	for (i = 0; i < 32; i++) {
13710 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13711 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13712 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13713 	}
13714 	/*
13715 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13716 	 * only be written 128-byte chunks
13717 	 */
13718 	/* init RSA engine to clear lingering errors */
13719 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13720 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13721 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13722 	/* MISC_STS_8051_DIGEST read-only */
13723 	/* MISC_STS_SBM_DIGEST read-only */
13724 	/* MISC_STS_PCIE_DIGEST read-only */
13725 	/* MISC_STS_FAB_DIGEST read-only */
13726 	/* MISC_ERR_STATUS read-only */
13727 	write_csr(dd, MISC_ERR_MASK, 0);
13728 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13729 	/* MISC_ERR_FORCE leave alone */
13730 }
13731 
13732 /* set TXE CSRs to chip reset defaults */
13733 static void reset_txe_csrs(struct hfi1_devdata *dd)
13734 {
13735 	int i;
13736 
13737 	/*
13738 	 * TXE Kernel CSRs
13739 	 */
13740 	write_csr(dd, SEND_CTRL, 0);
13741 	__cm_reset(dd, 0);	/* reset CM internal state */
13742 	/* SEND_CONTEXTS read-only */
13743 	/* SEND_DMA_ENGINES read-only */
13744 	/* SEND_PIO_MEM_SIZE read-only */
13745 	/* SEND_DMA_MEM_SIZE read-only */
13746 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13747 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13748 	/* SEND_PIO_ERR_STATUS read-only */
13749 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13750 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13751 	/* SEND_PIO_ERR_FORCE leave alone */
13752 	/* SEND_DMA_ERR_STATUS read-only */
13753 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13754 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13755 	/* SEND_DMA_ERR_FORCE leave alone */
13756 	/* SEND_EGRESS_ERR_STATUS read-only */
13757 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13758 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13759 	/* SEND_EGRESS_ERR_FORCE leave alone */
13760 	write_csr(dd, SEND_BTH_QP, 0);
13761 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13762 	write_csr(dd, SEND_SC2VLT0, 0);
13763 	write_csr(dd, SEND_SC2VLT1, 0);
13764 	write_csr(dd, SEND_SC2VLT2, 0);
13765 	write_csr(dd, SEND_SC2VLT3, 0);
13766 	write_csr(dd, SEND_LEN_CHECK0, 0);
13767 	write_csr(dd, SEND_LEN_CHECK1, 0);
13768 	/* SEND_ERR_STATUS read-only */
13769 	write_csr(dd, SEND_ERR_MASK, 0);
13770 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13771 	/* SEND_ERR_FORCE read-only */
13772 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13773 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13774 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13775 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13776 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13777 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13778 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13779 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13780 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13781 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13782 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13783 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13784 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13785 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13786 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13787 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13788 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13789 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13790 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13791 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13792 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13793 	/* SEND_CM_CREDIT_USED_VL read-only */
13794 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13795 	/* SEND_EGRESS_CTXT_STATUS read-only */
13796 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13797 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13798 	/* SEND_EGRESS_ERR_INFO read-only */
13799 	/* SEND_EGRESS_ERR_SOURCE read-only */
13800 
13801 	/*
13802 	 * TXE Per-Context CSRs
13803 	 */
13804 	for (i = 0; i < chip_send_contexts(dd); i++) {
13805 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13806 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13807 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13808 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13809 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13810 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13811 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13812 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13813 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13814 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13815 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13816 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13817 	}
13818 
13819 	/*
13820 	 * TXE Per-SDMA CSRs
13821 	 */
13822 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13823 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13824 		/* SEND_DMA_STATUS read-only */
13825 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13826 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13827 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13828 		/* SEND_DMA_HEAD read-only */
13829 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13830 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13831 		/* SEND_DMA_IDLE_CNT read-only */
13832 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13833 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13834 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13835 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13836 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13837 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13838 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13839 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13840 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13841 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13842 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13843 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13844 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13845 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13846 	}
13847 }
13848 
13849 /*
13850  * Expect on entry:
13851  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13852  */
13853 static void init_rbufs(struct hfi1_devdata *dd)
13854 {
13855 	u64 reg;
13856 	int count;
13857 
13858 	/*
13859 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13860 	 * clear.
13861 	 */
13862 	count = 0;
13863 	while (1) {
13864 		reg = read_csr(dd, RCV_STATUS);
13865 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13866 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13867 			break;
13868 		/*
13869 		 * Give up after 1ms - maximum wait time.
13870 		 *
13871 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13872 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13873 		 *	136 KB / (66% * 250MB/s) = 844us
13874 		 */
13875 		if (count++ > 500) {
13876 			dd_dev_err(dd,
13877 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13878 				   __func__, reg);
13879 			break;
13880 		}
13881 		udelay(2); /* do not busy-wait the CSR */
13882 	}
13883 
13884 	/* start the init - expect RcvCtrl to be 0 */
13885 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13886 
13887 	/*
13888 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13889 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13890 	 * The delay in the first run through the loop below is sufficient and
13891 	 * required before the first read of RcvStatus.RxRbufInintDone.
13892 	 */
13893 	read_csr(dd, RCV_CTRL);
13894 
13895 	/* wait for the init to finish */
13896 	count = 0;
13897 	while (1) {
13898 		/* delay is required first time through - see above */
13899 		udelay(2); /* do not busy-wait the CSR */
13900 		reg = read_csr(dd, RCV_STATUS);
13901 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13902 			break;
13903 
13904 		/* give up after 100us - slowest possible at 33MHz is 73us */
13905 		if (count++ > 50) {
13906 			dd_dev_err(dd,
13907 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13908 				   __func__);
13909 			break;
13910 		}
13911 	}
13912 }
13913 
13914 /* set RXE CSRs to chip reset defaults */
13915 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13916 {
13917 	int i, j;
13918 
13919 	/*
13920 	 * RXE Kernel CSRs
13921 	 */
13922 	write_csr(dd, RCV_CTRL, 0);
13923 	init_rbufs(dd);
13924 	/* RCV_STATUS read-only */
13925 	/* RCV_CONTEXTS read-only */
13926 	/* RCV_ARRAY_CNT read-only */
13927 	/* RCV_BUF_SIZE read-only */
13928 	write_csr(dd, RCV_BTH_QP, 0);
13929 	write_csr(dd, RCV_MULTICAST, 0);
13930 	write_csr(dd, RCV_BYPASS, 0);
13931 	write_csr(dd, RCV_VL15, 0);
13932 	/* this is a clear-down */
13933 	write_csr(dd, RCV_ERR_INFO,
13934 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13935 	/* RCV_ERR_STATUS read-only */
13936 	write_csr(dd, RCV_ERR_MASK, 0);
13937 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13938 	/* RCV_ERR_FORCE leave alone */
13939 	for (i = 0; i < 32; i++)
13940 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13941 	for (i = 0; i < 4; i++)
13942 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13943 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13944 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13945 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13946 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13947 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13948 		clear_rsm_rule(dd, i);
13949 	for (i = 0; i < 32; i++)
13950 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13951 
13952 	/*
13953 	 * RXE Kernel and User Per-Context CSRs
13954 	 */
13955 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13956 		/* kernel */
13957 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13958 		/* RCV_CTXT_STATUS read-only */
13959 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13960 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13961 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13962 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13963 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13964 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13965 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13966 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13967 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13968 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13969 
13970 		/* user */
13971 		/* RCV_HDR_TAIL read-only */
13972 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13973 		/* RCV_EGR_INDEX_TAIL read-only */
13974 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13975 		/* RCV_EGR_OFFSET_TAIL read-only */
13976 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13977 			write_uctxt_csr(dd, i,
13978 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13979 		}
13980 	}
13981 }
13982 
13983 /*
13984  * Set sc2vl tables.
13985  *
13986  * They power on to zeros, so to avoid send context errors
13987  * they need to be set:
13988  *
13989  * SC 0-7 -> VL 0-7 (respectively)
13990  * SC 15  -> VL 15
13991  * otherwise
13992  *        -> VL 0
13993  */
13994 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13995 {
13996 	int i;
13997 	/* init per architecture spec, constrained by hardware capability */
13998 
13999 	/* HFI maps sent packets */
14000 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
14001 		0,
14002 		0, 0, 1, 1,
14003 		2, 2, 3, 3,
14004 		4, 4, 5, 5,
14005 		6, 6, 7, 7));
14006 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
14007 		1,
14008 		8, 0, 9, 0,
14009 		10, 0, 11, 0,
14010 		12, 0, 13, 0,
14011 		14, 0, 15, 15));
14012 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
14013 		2,
14014 		16, 0, 17, 0,
14015 		18, 0, 19, 0,
14016 		20, 0, 21, 0,
14017 		22, 0, 23, 0));
14018 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
14019 		3,
14020 		24, 0, 25, 0,
14021 		26, 0, 27, 0,
14022 		28, 0, 29, 0,
14023 		30, 0, 31, 0));
14024 
14025 	/* DC maps received packets */
14026 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14027 		15_0,
14028 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14029 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14030 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14031 		31_16,
14032 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14033 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14034 
14035 	/* initialize the cached sc2vl values consistently with h/w */
14036 	for (i = 0; i < 32; i++) {
14037 		if (i < 8 || i == 15)
14038 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14039 		else
14040 			*((u8 *)(dd->sc2vl) + i) = 0;
14041 	}
14042 }
14043 
14044 /*
14045  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14046  * depend on the chip going through a power-on reset - a driver may be loaded
14047  * and unloaded many times.
14048  *
14049  * Do not write any CSR values to the chip in this routine - there may be
14050  * a reset following the (possible) FLR in this routine.
14051  *
14052  */
14053 static int init_chip(struct hfi1_devdata *dd)
14054 {
14055 	int i;
14056 	int ret = 0;
14057 
14058 	/*
14059 	 * Put the HFI CSRs in a known state.
14060 	 * Combine this with a DC reset.
14061 	 *
14062 	 * Stop the device from doing anything while we do a
14063 	 * reset.  We know there are no other active users of
14064 	 * the device since we are now in charge.  Turn off
14065 	 * off all outbound and inbound traffic and make sure
14066 	 * the device does not generate any interrupts.
14067 	 */
14068 
14069 	/* disable send contexts and SDMA engines */
14070 	write_csr(dd, SEND_CTRL, 0);
14071 	for (i = 0; i < chip_send_contexts(dd); i++)
14072 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14073 	for (i = 0; i < chip_sdma_engines(dd); i++)
14074 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14075 	/* disable port (turn off RXE inbound traffic) and contexts */
14076 	write_csr(dd, RCV_CTRL, 0);
14077 	for (i = 0; i < chip_rcv_contexts(dd); i++)
14078 		write_csr(dd, RCV_CTXT_CTRL, 0);
14079 	/* mask all interrupt sources */
14080 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14081 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14082 
14083 	/*
14084 	 * DC Reset: do a full DC reset before the register clear.
14085 	 * A recommended length of time to hold is one CSR read,
14086 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14087 	 * across the clear.
14088 	 */
14089 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14090 	(void)read_csr(dd, CCE_DC_CTRL);
14091 
14092 	if (use_flr) {
14093 		/*
14094 		 * A FLR will reset the SPC core and part of the PCIe.
14095 		 * The parts that need to be restored have already been
14096 		 * saved.
14097 		 */
14098 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14099 
14100 		/* do the FLR, the DC reset will remain */
14101 		pcie_flr(dd->pcidev);
14102 
14103 		/* restore command and BARs */
14104 		ret = restore_pci_variables(dd);
14105 		if (ret) {
14106 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14107 				   __func__);
14108 			return ret;
14109 		}
14110 
14111 		if (is_ax(dd)) {
14112 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14113 			pcie_flr(dd->pcidev);
14114 			ret = restore_pci_variables(dd);
14115 			if (ret) {
14116 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14117 					   __func__);
14118 				return ret;
14119 			}
14120 		}
14121 	} else {
14122 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14123 		reset_cce_csrs(dd);
14124 		reset_txe_csrs(dd);
14125 		reset_rxe_csrs(dd);
14126 		reset_misc_csrs(dd);
14127 	}
14128 	/* clear the DC reset */
14129 	write_csr(dd, CCE_DC_CTRL, 0);
14130 
14131 	/* Set the LED off */
14132 	setextled(dd, 0);
14133 
14134 	/*
14135 	 * Clear the QSFP reset.
14136 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14137 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14138 	 * anything plugged constantly in reset, if it pays attention
14139 	 * to RESET_N.
14140 	 * Prime examples of this are optical cables. Set all pins high.
14141 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14142 	 * MODPRS_N are input only and their value is ignored.
14143 	 */
14144 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14145 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14146 	init_chip_resources(dd);
14147 	return ret;
14148 }
14149 
14150 static void init_early_variables(struct hfi1_devdata *dd)
14151 {
14152 	int i;
14153 
14154 	/* assign link credit variables */
14155 	dd->vau = CM_VAU;
14156 	dd->link_credits = CM_GLOBAL_CREDITS;
14157 	if (is_ax(dd))
14158 		dd->link_credits--;
14159 	dd->vcu = cu_to_vcu(hfi1_cu);
14160 	/* enough room for 8 MAD packets plus header - 17K */
14161 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14162 	if (dd->vl15_init > dd->link_credits)
14163 		dd->vl15_init = dd->link_credits;
14164 
14165 	write_uninitialized_csrs_and_memories(dd);
14166 
14167 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14168 		for (i = 0; i < dd->num_pports; i++) {
14169 			struct hfi1_pportdata *ppd = &dd->pport[i];
14170 
14171 			set_partition_keys(ppd);
14172 		}
14173 	init_sc2vl_tables(dd);
14174 }
14175 
14176 static void init_kdeth_qp(struct hfi1_devdata *dd)
14177 {
14178 	write_csr(dd, SEND_BTH_QP,
14179 		  (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14180 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14181 
14182 	write_csr(dd, RCV_BTH_QP,
14183 		  (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14184 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14185 }
14186 
14187 /**
14188  * hfi1_get_qp_map
14189  * @dd: device data
14190  * @idx: index to read
14191  */
14192 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14193 {
14194 	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14195 
14196 	reg >>= (idx % 8) * 8;
14197 	return reg;
14198 }
14199 
14200 /**
14201  * init_qpmap_table
14202  * @dd - device data
14203  * @first_ctxt - first context
14204  * @last_ctxt - first context
14205  *
14206  * This return sets the qpn mapping table that
14207  * is indexed by qpn[8:1].
14208  *
14209  * The routine will round robin the 256 settings
14210  * from first_ctxt to last_ctxt.
14211  *
14212  * The first/last looks ahead to having specialized
14213  * receive contexts for mgmt and bypass.  Normal
14214  * verbs traffic will assumed to be on a range
14215  * of receive contexts.
14216  */
14217 static void init_qpmap_table(struct hfi1_devdata *dd,
14218 			     u32 first_ctxt,
14219 			     u32 last_ctxt)
14220 {
14221 	u64 reg = 0;
14222 	u64 regno = RCV_QP_MAP_TABLE;
14223 	int i;
14224 	u64 ctxt = first_ctxt;
14225 
14226 	for (i = 0; i < 256; i++) {
14227 		reg |= ctxt << (8 * (i % 8));
14228 		ctxt++;
14229 		if (ctxt > last_ctxt)
14230 			ctxt = first_ctxt;
14231 		if (i % 8 == 7) {
14232 			write_csr(dd, regno, reg);
14233 			reg = 0;
14234 			regno += 8;
14235 		}
14236 	}
14237 
14238 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14239 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14240 }
14241 
14242 struct rsm_map_table {
14243 	u64 map[NUM_MAP_REGS];
14244 	unsigned int used;
14245 };
14246 
14247 struct rsm_rule_data {
14248 	u8 offset;
14249 	u8 pkt_type;
14250 	u32 field1_off;
14251 	u32 field2_off;
14252 	u32 index1_off;
14253 	u32 index1_width;
14254 	u32 index2_off;
14255 	u32 index2_width;
14256 	u32 mask1;
14257 	u32 value1;
14258 	u32 mask2;
14259 	u32 value2;
14260 };
14261 
14262 /*
14263  * Return an initialized RMT map table for users to fill in.  OK if it
14264  * returns NULL, indicating no table.
14265  */
14266 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14267 {
14268 	struct rsm_map_table *rmt;
14269 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14270 
14271 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14272 	if (rmt) {
14273 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14274 		rmt->used = 0;
14275 	}
14276 
14277 	return rmt;
14278 }
14279 
14280 /*
14281  * Write the final RMT map table to the chip and free the table.  OK if
14282  * table is NULL.
14283  */
14284 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14285 				   struct rsm_map_table *rmt)
14286 {
14287 	int i;
14288 
14289 	if (rmt) {
14290 		/* write table to chip */
14291 		for (i = 0; i < NUM_MAP_REGS; i++)
14292 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14293 
14294 		/* enable RSM */
14295 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14296 	}
14297 }
14298 
14299 /* Is a receive side mapping rule */
14300 static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14301 {
14302 	return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14303 }
14304 
14305 /*
14306  * Add a receive side mapping rule.
14307  */
14308 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14309 			 struct rsm_rule_data *rrd)
14310 {
14311 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14312 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14313 		  1ull << rule_index | /* enable bit */
14314 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14315 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14316 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14317 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14318 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14319 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14320 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14321 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14322 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14323 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14324 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14325 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14326 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14327 }
14328 
14329 /*
14330  * Clear a receive side mapping rule.
14331  */
14332 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14333 {
14334 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14335 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14336 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14337 }
14338 
14339 /* return the number of RSM map table entries that will be used for QOS */
14340 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14341 			   unsigned int *np)
14342 {
14343 	int i;
14344 	unsigned int m, n;
14345 	u8 max_by_vl = 0;
14346 
14347 	/* is QOS active at all? */
14348 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14349 	    num_vls == 1 ||
14350 	    krcvqsset <= 1)
14351 		goto no_qos;
14352 
14353 	/* determine bits for qpn */
14354 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14355 		if (krcvqs[i] > max_by_vl)
14356 			max_by_vl = krcvqs[i];
14357 	if (max_by_vl > 32)
14358 		goto no_qos;
14359 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14360 
14361 	/* determine bits for vl */
14362 	n = ilog2(__roundup_pow_of_two(num_vls));
14363 
14364 	/* reject if too much is used */
14365 	if ((m + n) > 7)
14366 		goto no_qos;
14367 
14368 	if (mp)
14369 		*mp = m;
14370 	if (np)
14371 		*np = n;
14372 
14373 	return 1 << (m + n);
14374 
14375 no_qos:
14376 	if (mp)
14377 		*mp = 0;
14378 	if (np)
14379 		*np = 0;
14380 	return 0;
14381 }
14382 
14383 /**
14384  * init_qos - init RX qos
14385  * @dd - device data
14386  * @rmt - RSM map table
14387  *
14388  * This routine initializes Rule 0 and the RSM map table to implement
14389  * quality of service (qos).
14390  *
14391  * If all of the limit tests succeed, qos is applied based on the array
14392  * interpretation of krcvqs where entry 0 is VL0.
14393  *
14394  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14395  * feed both the RSM map table and the single rule.
14396  */
14397 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14398 {
14399 	struct rsm_rule_data rrd;
14400 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14401 	unsigned int rmt_entries;
14402 	u64 reg;
14403 
14404 	if (!rmt)
14405 		goto bail;
14406 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14407 	if (rmt_entries == 0)
14408 		goto bail;
14409 	qpns_per_vl = 1 << m;
14410 
14411 	/* enough room in the map table? */
14412 	rmt_entries = 1 << (m + n);
14413 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14414 		goto bail;
14415 
14416 	/* add qos entries to the the RSM map table */
14417 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14418 		unsigned tctxt;
14419 
14420 		for (qpn = 0, tctxt = ctxt;
14421 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14422 			unsigned idx, regoff, regidx;
14423 
14424 			/* generate the index the hardware will produce */
14425 			idx = rmt->used + ((qpn << n) ^ i);
14426 			regoff = (idx % 8) * 8;
14427 			regidx = idx / 8;
14428 			/* replace default with context number */
14429 			reg = rmt->map[regidx];
14430 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14431 				<< regoff);
14432 			reg |= (u64)(tctxt++) << regoff;
14433 			rmt->map[regidx] = reg;
14434 			if (tctxt == ctxt + krcvqs[i])
14435 				tctxt = ctxt;
14436 		}
14437 		ctxt += krcvqs[i];
14438 	}
14439 
14440 	rrd.offset = rmt->used;
14441 	rrd.pkt_type = 2;
14442 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14443 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14444 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14445 	rrd.index1_width = n;
14446 	rrd.index2_off = QPN_SELECT_OFFSET;
14447 	rrd.index2_width = m + n;
14448 	rrd.mask1 = LRH_BTH_MASK;
14449 	rrd.value1 = LRH_BTH_VALUE;
14450 	rrd.mask2 = LRH_SC_MASK;
14451 	rrd.value2 = LRH_SC_VALUE;
14452 
14453 	/* add rule 0 */
14454 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14455 
14456 	/* mark RSM map entries as used */
14457 	rmt->used += rmt_entries;
14458 	/* map everything else to the mcast/err/vl15 context */
14459 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14460 	dd->qos_shift = n + 1;
14461 	return;
14462 bail:
14463 	dd->qos_shift = 1;
14464 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14465 }
14466 
14467 static void init_fecn_handling(struct hfi1_devdata *dd,
14468 			       struct rsm_map_table *rmt)
14469 {
14470 	struct rsm_rule_data rrd;
14471 	u64 reg;
14472 	int i, idx, regoff, regidx, start;
14473 	u8 offset;
14474 	u32 total_cnt;
14475 
14476 	if (HFI1_CAP_IS_KSET(TID_RDMA))
14477 		/* Exclude context 0 */
14478 		start = 1;
14479 	else
14480 		start = dd->first_dyn_alloc_ctxt;
14481 
14482 	total_cnt = dd->num_rcv_contexts - start;
14483 
14484 	/* there needs to be enough room in the map table */
14485 	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14486 		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14487 		return;
14488 	}
14489 
14490 	/*
14491 	 * RSM will extract the destination context as an index into the
14492 	 * map table.  The destination contexts are a sequential block
14493 	 * in the range start...num_rcv_contexts-1 (inclusive).
14494 	 * Map entries are accessed as offset + extracted value.  Adjust
14495 	 * the added offset so this sequence can be placed anywhere in
14496 	 * the table - as long as the entries themselves do not wrap.
14497 	 * There are only enough bits in offset for the table size, so
14498 	 * start with that to allow for a "negative" offset.
14499 	 */
14500 	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14501 
14502 	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14503 	     i++, idx++) {
14504 		/* replace with identity mapping */
14505 		regoff = (idx % 8) * 8;
14506 		regidx = idx / 8;
14507 		reg = rmt->map[regidx];
14508 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14509 		reg |= (u64)i << regoff;
14510 		rmt->map[regidx] = reg;
14511 	}
14512 
14513 	/*
14514 	 * For RSM intercept of Expected FECN packets:
14515 	 * o packet type 0 - expected
14516 	 * o match on F (bit 95), using select/match 1, and
14517 	 * o match on SH (bit 133), using select/match 2.
14518 	 *
14519 	 * Use index 1 to extract the 8-bit receive context from DestQP
14520 	 * (start at bit 64).  Use that as the RSM map table index.
14521 	 */
14522 	rrd.offset = offset;
14523 	rrd.pkt_type = 0;
14524 	rrd.field1_off = 95;
14525 	rrd.field2_off = 133;
14526 	rrd.index1_off = 64;
14527 	rrd.index1_width = 8;
14528 	rrd.index2_off = 0;
14529 	rrd.index2_width = 0;
14530 	rrd.mask1 = 1;
14531 	rrd.value1 = 1;
14532 	rrd.mask2 = 1;
14533 	rrd.value2 = 1;
14534 
14535 	/* add rule 1 */
14536 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14537 
14538 	rmt->used += total_cnt;
14539 }
14540 
14541 static inline bool hfi1_is_rmt_full(int start, int spare)
14542 {
14543 	return (start + spare) > NUM_MAP_ENTRIES;
14544 }
14545 
14546 static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14547 {
14548 	u8 i, j;
14549 	u8 ctx_id = 0;
14550 	u64 reg;
14551 	u32 regoff;
14552 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14553 	int ctxt_count = hfi1_netdev_ctxt_count(dd);
14554 
14555 	/* We already have contexts mapped in RMT */
14556 	if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14557 		dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14558 		return true;
14559 	}
14560 
14561 	if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14562 		dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14563 			   rmt_start);
14564 		return false;
14565 	}
14566 
14567 	dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14568 		rmt_start,
14569 		rmt_start + NUM_NETDEV_MAP_ENTRIES);
14570 
14571 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14572 	regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14573 	reg = read_csr(dd, regoff);
14574 	for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14575 		/* Update map register with netdev context */
14576 		j = (rmt_start + i) % 8;
14577 		reg &= ~(0xffllu << (j * 8));
14578 		reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14579 		/* Wrap up netdev ctx index */
14580 		ctx_id %= ctxt_count;
14581 		/* Write back map register */
14582 		if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14583 			dev_dbg(&(dd)->pcidev->dev,
14584 				"RMT[%d] =0x%llx\n",
14585 				regoff - RCV_RSM_MAP_TABLE, reg);
14586 
14587 			write_csr(dd, regoff, reg);
14588 			regoff += 8;
14589 			if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14590 				reg = read_csr(dd, regoff);
14591 		}
14592 	}
14593 
14594 	return true;
14595 }
14596 
14597 static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14598 				 int rule, struct rsm_rule_data *rrd)
14599 {
14600 	if (!hfi1_netdev_update_rmt(dd)) {
14601 		dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14602 		return;
14603 	}
14604 
14605 	add_rsm_rule(dd, rule, rrd);
14606 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14607 }
14608 
14609 void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14610 {
14611 	/*
14612 	 * go through with the initialisation only if this rule actually doesn't
14613 	 * exist yet
14614 	 */
14615 	if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14616 		int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14617 		struct rsm_rule_data rrd = {
14618 			.offset = rmt_start,
14619 			.pkt_type = IB_PACKET_TYPE,
14620 			.field1_off = LRH_BTH_MATCH_OFFSET,
14621 			.mask1 = LRH_BTH_MASK,
14622 			.value1 = LRH_BTH_VALUE,
14623 			.field2_off = BTH_DESTQP_MATCH_OFFSET,
14624 			.mask2 = BTH_DESTQP_MASK,
14625 			.value2 = BTH_DESTQP_VALUE,
14626 			.index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14627 					ilog2(NUM_NETDEV_MAP_ENTRIES),
14628 			.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14629 			.index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14630 			.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14631 		};
14632 
14633 		hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14634 	}
14635 }
14636 
14637 /* Initialize RSM for VNIC */
14638 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14639 {
14640 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14641 	struct rsm_rule_data rrd = {
14642 		/* Add rule for vnic */
14643 		.offset = rmt_start,
14644 		.pkt_type = 4,
14645 		/* Match 16B packets */
14646 		.field1_off = L2_TYPE_MATCH_OFFSET,
14647 		.mask1 = L2_TYPE_MASK,
14648 		.value1 = L2_16B_VALUE,
14649 		/* Match ETH L4 packets */
14650 		.field2_off = L4_TYPE_MATCH_OFFSET,
14651 		.mask2 = L4_16B_TYPE_MASK,
14652 		.value2 = L4_16B_ETH_VALUE,
14653 		/* Calc context from veswid and entropy */
14654 		.index1_off = L4_16B_HDR_VESWID_OFFSET,
14655 		.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14656 		.index2_off = L2_16B_ENTROPY_OFFSET,
14657 		.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14658 	};
14659 
14660 	hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14661 }
14662 
14663 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14664 {
14665 	clear_rsm_rule(dd, RSM_INS_VNIC);
14666 }
14667 
14668 void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14669 {
14670 	/* only actually clear the rule if it's the last user asking to do so */
14671 	if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14672 		clear_rsm_rule(dd, RSM_INS_AIP);
14673 }
14674 
14675 static int init_rxe(struct hfi1_devdata *dd)
14676 {
14677 	struct rsm_map_table *rmt;
14678 	u64 val;
14679 
14680 	/* enable all receive errors */
14681 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14682 
14683 	rmt = alloc_rsm_map_table(dd);
14684 	if (!rmt)
14685 		return -ENOMEM;
14686 
14687 	/* set up QOS, including the QPN map table */
14688 	init_qos(dd, rmt);
14689 	init_fecn_handling(dd, rmt);
14690 	complete_rsm_map_table(dd, rmt);
14691 	/* record number of used rsm map entries for netdev */
14692 	hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14693 	kfree(rmt);
14694 
14695 	/*
14696 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14697 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14698 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14699 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14700 	 * Max_PayLoad_Size set to its minimum of 128.
14701 	 *
14702 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14703 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14704 	 * tune_pcie_caps() which is called after this routine.
14705 	 */
14706 
14707 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14708 	val = read_csr(dd, RCV_BYPASS);
14709 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14710 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14711 		RCV_BYPASS_HDR_SIZE_SHIFT);
14712 	write_csr(dd, RCV_BYPASS, val);
14713 	return 0;
14714 }
14715 
14716 static void init_other(struct hfi1_devdata *dd)
14717 {
14718 	/* enable all CCE errors */
14719 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14720 	/* enable *some* Misc errors */
14721 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14722 	/* enable all DC errors, except LCB */
14723 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14724 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14725 }
14726 
14727 /*
14728  * Fill out the given AU table using the given CU.  A CU is defined in terms
14729  * AUs.  The table is a an encoding: given the index, how many AUs does that
14730  * represent?
14731  *
14732  * NOTE: Assumes that the register layout is the same for the
14733  * local and remote tables.
14734  */
14735 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14736 			       u32 csr0to3, u32 csr4to7)
14737 {
14738 	write_csr(dd, csr0to3,
14739 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14740 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14741 		  2ull * cu <<
14742 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14743 		  4ull * cu <<
14744 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14745 	write_csr(dd, csr4to7,
14746 		  8ull * cu <<
14747 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14748 		  16ull * cu <<
14749 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14750 		  32ull * cu <<
14751 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14752 		  64ull * cu <<
14753 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14754 }
14755 
14756 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14757 {
14758 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14759 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14760 }
14761 
14762 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14763 {
14764 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14765 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14766 }
14767 
14768 static void init_txe(struct hfi1_devdata *dd)
14769 {
14770 	int i;
14771 
14772 	/* enable all PIO, SDMA, general, and Egress errors */
14773 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14774 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14775 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14776 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14777 
14778 	/* enable all per-context and per-SDMA engine errors */
14779 	for (i = 0; i < chip_send_contexts(dd); i++)
14780 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14781 	for (i = 0; i < chip_sdma_engines(dd); i++)
14782 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14783 
14784 	/* set the local CU to AU mapping */
14785 	assign_local_cm_au_table(dd, dd->vcu);
14786 
14787 	/*
14788 	 * Set reasonable default for Credit Return Timer
14789 	 * Don't set on Simulator - causes it to choke.
14790 	 */
14791 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14792 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14793 }
14794 
14795 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14796 		       u16 jkey)
14797 {
14798 	u8 hw_ctxt;
14799 	u64 reg;
14800 
14801 	if (!rcd || !rcd->sc)
14802 		return -EINVAL;
14803 
14804 	hw_ctxt = rcd->sc->hw_context;
14805 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14806 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14807 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14808 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14809 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14810 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14811 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14812 	/*
14813 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14814 	 */
14815 	if (!is_ax(dd)) {
14816 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14817 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14818 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14819 	}
14820 
14821 	/* Enable J_KEY check on receive context. */
14822 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14823 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14824 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14825 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14826 
14827 	return 0;
14828 }
14829 
14830 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14831 {
14832 	u8 hw_ctxt;
14833 	u64 reg;
14834 
14835 	if (!rcd || !rcd->sc)
14836 		return -EINVAL;
14837 
14838 	hw_ctxt = rcd->sc->hw_context;
14839 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14840 	/*
14841 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14842 	 * This check would not have been enabled for A0 h/w, see
14843 	 * set_ctxt_jkey().
14844 	 */
14845 	if (!is_ax(dd)) {
14846 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14847 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14848 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14849 	}
14850 	/* Turn off the J_KEY on the receive side */
14851 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14852 
14853 	return 0;
14854 }
14855 
14856 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14857 		       u16 pkey)
14858 {
14859 	u8 hw_ctxt;
14860 	u64 reg;
14861 
14862 	if (!rcd || !rcd->sc)
14863 		return -EINVAL;
14864 
14865 	hw_ctxt = rcd->sc->hw_context;
14866 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14867 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14868 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14869 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14870 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14871 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14872 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14873 
14874 	return 0;
14875 }
14876 
14877 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14878 {
14879 	u8 hw_ctxt;
14880 	u64 reg;
14881 
14882 	if (!ctxt || !ctxt->sc)
14883 		return -EINVAL;
14884 
14885 	hw_ctxt = ctxt->sc->hw_context;
14886 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14887 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14888 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14889 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14890 
14891 	return 0;
14892 }
14893 
14894 /*
14895  * Start doing the clean up the the chip. Our clean up happens in multiple
14896  * stages and this is just the first.
14897  */
14898 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14899 {
14900 	aspm_exit(dd);
14901 	free_cntrs(dd);
14902 	free_rcverr(dd);
14903 	finish_chip_resources(dd);
14904 }
14905 
14906 #define HFI_BASE_GUID(dev) \
14907 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14908 
14909 /*
14910  * Information can be shared between the two HFIs on the same ASIC
14911  * in the same OS.  This function finds the peer device and sets
14912  * up a shared structure.
14913  */
14914 static int init_asic_data(struct hfi1_devdata *dd)
14915 {
14916 	unsigned long index;
14917 	struct hfi1_devdata *peer;
14918 	struct hfi1_asic_data *asic_data;
14919 	int ret = 0;
14920 
14921 	/* pre-allocate the asic structure in case we are the first device */
14922 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14923 	if (!asic_data)
14924 		return -ENOMEM;
14925 
14926 	xa_lock_irq(&hfi1_dev_table);
14927 	/* Find our peer device */
14928 	xa_for_each(&hfi1_dev_table, index, peer) {
14929 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14930 		    dd->unit != peer->unit)
14931 			break;
14932 	}
14933 
14934 	if (peer) {
14935 		/* use already allocated structure */
14936 		dd->asic_data = peer->asic_data;
14937 		kfree(asic_data);
14938 	} else {
14939 		dd->asic_data = asic_data;
14940 		mutex_init(&dd->asic_data->asic_resource_mutex);
14941 	}
14942 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14943 	xa_unlock_irq(&hfi1_dev_table);
14944 
14945 	/* first one through - set up i2c devices */
14946 	if (!peer)
14947 		ret = set_up_i2c(dd, dd->asic_data);
14948 
14949 	return ret;
14950 }
14951 
14952 /*
14953  * Set dd->boardname.  Use a generic name if a name is not returned from
14954  * EFI variable space.
14955  *
14956  * Return 0 on success, -ENOMEM if space could not be allocated.
14957  */
14958 static int obtain_boardname(struct hfi1_devdata *dd)
14959 {
14960 	/* generic board description */
14961 	const char generic[] =
14962 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14963 	unsigned long size;
14964 	int ret;
14965 
14966 	ret = read_hfi1_efi_var(dd, "description", &size,
14967 				(void **)&dd->boardname);
14968 	if (ret) {
14969 		dd_dev_info(dd, "Board description not found\n");
14970 		/* use generic description */
14971 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14972 		if (!dd->boardname)
14973 			return -ENOMEM;
14974 	}
14975 	return 0;
14976 }
14977 
14978 /*
14979  * Check the interrupt registers to make sure that they are mapped correctly.
14980  * It is intended to help user identify any mismapping by VMM when the driver
14981  * is running in a VM. This function should only be called before interrupt
14982  * is set up properly.
14983  *
14984  * Return 0 on success, -EINVAL on failure.
14985  */
14986 static int check_int_registers(struct hfi1_devdata *dd)
14987 {
14988 	u64 reg;
14989 	u64 all_bits = ~(u64)0;
14990 	u64 mask;
14991 
14992 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14993 	mask = read_csr(dd, CCE_INT_MASK);
14994 	write_csr(dd, CCE_INT_MASK, 0ull);
14995 	reg = read_csr(dd, CCE_INT_MASK);
14996 	if (reg)
14997 		goto err_exit;
14998 
14999 	/* Clear all interrupt status bits */
15000 	write_csr(dd, CCE_INT_CLEAR, all_bits);
15001 	reg = read_csr(dd, CCE_INT_STATUS);
15002 	if (reg)
15003 		goto err_exit;
15004 
15005 	/* Set all interrupt status bits */
15006 	write_csr(dd, CCE_INT_FORCE, all_bits);
15007 	reg = read_csr(dd, CCE_INT_STATUS);
15008 	if (reg != all_bits)
15009 		goto err_exit;
15010 
15011 	/* Restore the interrupt mask */
15012 	write_csr(dd, CCE_INT_CLEAR, all_bits);
15013 	write_csr(dd, CCE_INT_MASK, mask);
15014 
15015 	return 0;
15016 err_exit:
15017 	write_csr(dd, CCE_INT_MASK, mask);
15018 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
15019 	return -EINVAL;
15020 }
15021 
15022 /**
15023  * hfi1_init_dd() - Initialize most of the dd structure.
15024  * @dev: the pci_dev for hfi1_ib device
15025  * @ent: pci_device_id struct for this dev
15026  *
15027  * This is global, and is called directly at init to set up the
15028  * chip-specific function pointers for later use.
15029  */
15030 int hfi1_init_dd(struct hfi1_devdata *dd)
15031 {
15032 	struct pci_dev *pdev = dd->pcidev;
15033 	struct hfi1_pportdata *ppd;
15034 	u64 reg;
15035 	int i, ret;
15036 	static const char * const inames[] = { /* implementation names */
15037 		"RTL silicon",
15038 		"RTL VCS simulation",
15039 		"RTL FPGA emulation",
15040 		"Functional simulator"
15041 	};
15042 	struct pci_dev *parent = pdev->bus->self;
15043 	u32 sdma_engines = chip_sdma_engines(dd);
15044 
15045 	ppd = dd->pport;
15046 	for (i = 0; i < dd->num_pports; i++, ppd++) {
15047 		int vl;
15048 		/* init common fields */
15049 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15050 		/* DC supports 4 link widths */
15051 		ppd->link_width_supported =
15052 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15053 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15054 		ppd->link_width_downgrade_supported =
15055 			ppd->link_width_supported;
15056 		/* start out enabling only 4X */
15057 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15058 		ppd->link_width_downgrade_enabled =
15059 					ppd->link_width_downgrade_supported;
15060 		/* link width active is 0 when link is down */
15061 		/* link width downgrade active is 0 when link is down */
15062 
15063 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15064 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15065 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15066 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
15067 			num_vls = HFI1_MAX_VLS_SUPPORTED;
15068 		}
15069 		ppd->vls_supported = num_vls;
15070 		ppd->vls_operational = ppd->vls_supported;
15071 		/* Set the default MTU. */
15072 		for (vl = 0; vl < num_vls; vl++)
15073 			dd->vld[vl].mtu = hfi1_max_mtu;
15074 		dd->vld[15].mtu = MAX_MAD_PACKET;
15075 		/*
15076 		 * Set the initial values to reasonable default, will be set
15077 		 * for real when link is up.
15078 		 */
15079 		ppd->overrun_threshold = 0x4;
15080 		ppd->phy_error_threshold = 0xf;
15081 		ppd->port_crc_mode_enabled = link_crc_mask;
15082 		/* initialize supported LTP CRC mode */
15083 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15084 		/* initialize enabled LTP CRC mode */
15085 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15086 		/* start in offline */
15087 		ppd->host_link_state = HLS_DN_OFFLINE;
15088 		init_vl_arb_caches(ppd);
15089 	}
15090 
15091 	/*
15092 	 * Do remaining PCIe setup and save PCIe values in dd.
15093 	 * Any error printing is already done by the init code.
15094 	 * On return, we have the chip mapped.
15095 	 */
15096 	ret = hfi1_pcie_ddinit(dd, pdev);
15097 	if (ret < 0)
15098 		goto bail_free;
15099 
15100 	/* Save PCI space registers to rewrite after device reset */
15101 	ret = save_pci_variables(dd);
15102 	if (ret < 0)
15103 		goto bail_cleanup;
15104 
15105 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15106 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15107 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15108 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15109 
15110 	/*
15111 	 * Check interrupt registers mapping if the driver has no access to
15112 	 * the upstream component. In this case, it is likely that the driver
15113 	 * is running in a VM.
15114 	 */
15115 	if (!parent) {
15116 		ret = check_int_registers(dd);
15117 		if (ret)
15118 			goto bail_cleanup;
15119 	}
15120 
15121 	/*
15122 	 * obtain the hardware ID - NOT related to unit, which is a
15123 	 * software enumeration
15124 	 */
15125 	reg = read_csr(dd, CCE_REVISION2);
15126 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15127 					& CCE_REVISION2_HFI_ID_MASK;
15128 	/* the variable size will remove unwanted bits */
15129 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15130 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15131 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15132 		    dd->icode < ARRAY_SIZE(inames) ?
15133 		    inames[dd->icode] : "unknown", (int)dd->irev);
15134 
15135 	/* speeds the hardware can support */
15136 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15137 	/* speeds allowed to run at */
15138 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15139 	/* give a reasonable active value, will be set on link up */
15140 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15141 
15142 	/* fix up link widths for emulation _p */
15143 	ppd = dd->pport;
15144 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15145 		ppd->link_width_supported =
15146 			ppd->link_width_enabled =
15147 			ppd->link_width_downgrade_supported =
15148 			ppd->link_width_downgrade_enabled =
15149 				OPA_LINK_WIDTH_1X;
15150 	}
15151 	/* insure num_vls isn't larger than number of sdma engines */
15152 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15153 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15154 			   num_vls, sdma_engines);
15155 		num_vls = sdma_engines;
15156 		ppd->vls_supported = sdma_engines;
15157 		ppd->vls_operational = ppd->vls_supported;
15158 	}
15159 
15160 	/*
15161 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15162 	 * Limit the max if larger than the field holds.  If timeout is
15163 	 * non-zero, then the calculated field will be at least 1.
15164 	 *
15165 	 * Must be after icode is set up - the cclock rate depends
15166 	 * on knowing the hardware being used.
15167 	 */
15168 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15169 	if (dd->rcv_intr_timeout_csr >
15170 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15171 		dd->rcv_intr_timeout_csr =
15172 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15173 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15174 		dd->rcv_intr_timeout_csr = 1;
15175 
15176 	/* needs to be done before we look for the peer device */
15177 	read_guid(dd);
15178 
15179 	/* set up shared ASIC data with peer device */
15180 	ret = init_asic_data(dd);
15181 	if (ret)
15182 		goto bail_cleanup;
15183 
15184 	/* obtain chip sizes, reset chip CSRs */
15185 	ret = init_chip(dd);
15186 	if (ret)
15187 		goto bail_cleanup;
15188 
15189 	/* read in the PCIe link speed information */
15190 	ret = pcie_speeds(dd);
15191 	if (ret)
15192 		goto bail_cleanup;
15193 
15194 	/* call before get_platform_config(), after init_chip_resources() */
15195 	ret = eprom_init(dd);
15196 	if (ret)
15197 		goto bail_free_rcverr;
15198 
15199 	/* Needs to be called before hfi1_firmware_init */
15200 	get_platform_config(dd);
15201 
15202 	/* read in firmware */
15203 	ret = hfi1_firmware_init(dd);
15204 	if (ret)
15205 		goto bail_cleanup;
15206 
15207 	/*
15208 	 * In general, the PCIe Gen3 transition must occur after the
15209 	 * chip has been idled (so it won't initiate any PCIe transactions
15210 	 * e.g. an interrupt) and before the driver changes any registers
15211 	 * (the transition will reset the registers).
15212 	 *
15213 	 * In particular, place this call after:
15214 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15215 	 * - pcie_speeds()   - reads the current link speed
15216 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15217 	 *			    downloaded
15218 	 */
15219 	ret = do_pcie_gen3_transition(dd);
15220 	if (ret)
15221 		goto bail_cleanup;
15222 
15223 	/*
15224 	 * This should probably occur in hfi1_pcie_init(), but historically
15225 	 * occurs after the do_pcie_gen3_transition() code.
15226 	 */
15227 	tune_pcie_caps(dd);
15228 
15229 	/* start setting dd values and adjusting CSRs */
15230 	init_early_variables(dd);
15231 
15232 	parse_platform_config(dd);
15233 
15234 	ret = obtain_boardname(dd);
15235 	if (ret)
15236 		goto bail_cleanup;
15237 
15238 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15239 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15240 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15241 		 (u32)dd->majrev,
15242 		 (u32)dd->minrev,
15243 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15244 		    & CCE_REVISION_SW_MASK);
15245 
15246 	/* alloc netdev data */
15247 	if (hfi1_netdev_alloc(dd))
15248 		goto bail_cleanup;
15249 
15250 	ret = set_up_context_variables(dd);
15251 	if (ret)
15252 		goto bail_cleanup;
15253 
15254 	/* set initial RXE CSRs */
15255 	ret = init_rxe(dd);
15256 	if (ret)
15257 		goto bail_cleanup;
15258 
15259 	/* set initial TXE CSRs */
15260 	init_txe(dd);
15261 	/* set initial non-RXE, non-TXE CSRs */
15262 	init_other(dd);
15263 	/* set up KDETH QP prefix in both RX and TX CSRs */
15264 	init_kdeth_qp(dd);
15265 
15266 	ret = hfi1_dev_affinity_init(dd);
15267 	if (ret)
15268 		goto bail_cleanup;
15269 
15270 	/* send contexts must be set up before receive contexts */
15271 	ret = init_send_contexts(dd);
15272 	if (ret)
15273 		goto bail_cleanup;
15274 
15275 	ret = hfi1_create_kctxts(dd);
15276 	if (ret)
15277 		goto bail_cleanup;
15278 
15279 	/*
15280 	 * Initialize aspm, to be done after gen3 transition and setting up
15281 	 * contexts and before enabling interrupts
15282 	 */
15283 	aspm_init(dd);
15284 
15285 	ret = init_pervl_scs(dd);
15286 	if (ret)
15287 		goto bail_cleanup;
15288 
15289 	/* sdma init */
15290 	for (i = 0; i < dd->num_pports; ++i) {
15291 		ret = sdma_init(dd, i);
15292 		if (ret)
15293 			goto bail_cleanup;
15294 	}
15295 
15296 	/* use contexts created by hfi1_create_kctxts */
15297 	ret = set_up_interrupts(dd);
15298 	if (ret)
15299 		goto bail_cleanup;
15300 
15301 	ret = hfi1_comp_vectors_set_up(dd);
15302 	if (ret)
15303 		goto bail_clear_intr;
15304 
15305 	/* set up LCB access - must be after set_up_interrupts() */
15306 	init_lcb_access(dd);
15307 
15308 	/*
15309 	 * Serial number is created from the base guid:
15310 	 * [27:24] = base guid [38:35]
15311 	 * [23: 0] = base guid [23: 0]
15312 	 */
15313 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15314 		 (dd->base_guid & 0xFFFFFF) |
15315 		     ((dd->base_guid >> 11) & 0xF000000));
15316 
15317 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15318 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15319 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15320 
15321 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15322 	if (ret)
15323 		goto bail_clear_intr;
15324 
15325 	thermal_init(dd);
15326 
15327 	ret = init_cntrs(dd);
15328 	if (ret)
15329 		goto bail_clear_intr;
15330 
15331 	ret = init_rcverr(dd);
15332 	if (ret)
15333 		goto bail_free_cntrs;
15334 
15335 	init_completion(&dd->user_comp);
15336 
15337 	/* The user refcount starts with one to inidicate an active device */
15338 	atomic_set(&dd->user_refcount, 1);
15339 
15340 	goto bail;
15341 
15342 bail_free_rcverr:
15343 	free_rcverr(dd);
15344 bail_free_cntrs:
15345 	free_cntrs(dd);
15346 bail_clear_intr:
15347 	hfi1_comp_vectors_clean_up(dd);
15348 	msix_clean_up_interrupts(dd);
15349 bail_cleanup:
15350 	hfi1_netdev_free(dd);
15351 	hfi1_pcie_ddcleanup(dd);
15352 bail_free:
15353 	hfi1_free_devdata(dd);
15354 bail:
15355 	return ret;
15356 }
15357 
15358 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15359 			u32 dw_len)
15360 {
15361 	u32 delta_cycles;
15362 	u32 current_egress_rate = ppd->current_egress_rate;
15363 	/* rates here are in units of 10^6 bits/sec */
15364 
15365 	if (desired_egress_rate == -1)
15366 		return 0; /* shouldn't happen */
15367 
15368 	if (desired_egress_rate >= current_egress_rate)
15369 		return 0; /* we can't help go faster, only slower */
15370 
15371 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15372 			egress_cycles(dw_len * 4, current_egress_rate);
15373 
15374 	return (u16)delta_cycles;
15375 }
15376 
15377 /**
15378  * create_pbc - build a pbc for transmission
15379  * @flags: special case flags or-ed in built pbc
15380  * @srate: static rate
15381  * @vl: vl
15382  * @dwlen: dword length (header words + data words + pbc words)
15383  *
15384  * Create a PBC with the given flags, rate, VL, and length.
15385  *
15386  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15387  * for verbs, which does not use this PSM feature.  The lone other caller
15388  * is for the diagnostic interface which calls this if the user does not
15389  * supply their own PBC.
15390  */
15391 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15392 	       u32 dw_len)
15393 {
15394 	u64 pbc, delay = 0;
15395 
15396 	if (unlikely(srate_mbs))
15397 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15398 
15399 	pbc = flags
15400 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15401 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15402 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15403 		| (dw_len & PBC_LENGTH_DWS_MASK)
15404 			<< PBC_LENGTH_DWS_SHIFT;
15405 
15406 	return pbc;
15407 }
15408 
15409 #define SBUS_THERMAL    0x4f
15410 #define SBUS_THERM_MONITOR_MODE 0x1
15411 
15412 #define THERM_FAILURE(dev, ret, reason) \
15413 	dd_dev_err((dd),						\
15414 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15415 		   (reason), (ret))
15416 
15417 /*
15418  * Initialize the thermal sensor.
15419  *
15420  * After initialization, enable polling of thermal sensor through
15421  * SBus interface. In order for this to work, the SBus Master
15422  * firmware has to be loaded due to the fact that the HW polling
15423  * logic uses SBus interrupts, which are not supported with
15424  * default firmware. Otherwise, no data will be returned through
15425  * the ASIC_STS_THERM CSR.
15426  */
15427 static int thermal_init(struct hfi1_devdata *dd)
15428 {
15429 	int ret = 0;
15430 
15431 	if (dd->icode != ICODE_RTL_SILICON ||
15432 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15433 		return ret;
15434 
15435 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15436 	if (ret) {
15437 		THERM_FAILURE(dd, ret, "Acquire SBus");
15438 		return ret;
15439 	}
15440 
15441 	dd_dev_info(dd, "Initializing thermal sensor\n");
15442 	/* Disable polling of thermal readings */
15443 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15444 	msleep(100);
15445 	/* Thermal Sensor Initialization */
15446 	/*    Step 1: Reset the Thermal SBus Receiver */
15447 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15448 				RESET_SBUS_RECEIVER, 0);
15449 	if (ret) {
15450 		THERM_FAILURE(dd, ret, "Bus Reset");
15451 		goto done;
15452 	}
15453 	/*    Step 2: Set Reset bit in Thermal block */
15454 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15455 				WRITE_SBUS_RECEIVER, 0x1);
15456 	if (ret) {
15457 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15458 		goto done;
15459 	}
15460 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15461 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15462 				WRITE_SBUS_RECEIVER, 0x32);
15463 	if (ret) {
15464 		THERM_FAILURE(dd, ret, "Write Clock Div");
15465 		goto done;
15466 	}
15467 	/*    Step 4: Select temperature mode */
15468 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15469 				WRITE_SBUS_RECEIVER,
15470 				SBUS_THERM_MONITOR_MODE);
15471 	if (ret) {
15472 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15473 		goto done;
15474 	}
15475 	/*    Step 5: De-assert block reset and start conversion */
15476 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15477 				WRITE_SBUS_RECEIVER, 0x2);
15478 	if (ret) {
15479 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15480 		goto done;
15481 	}
15482 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15483 	msleep(22);
15484 
15485 	/* Enable polling of thermal readings */
15486 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15487 
15488 	/* Set initialized flag */
15489 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15490 	if (ret)
15491 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15492 
15493 done:
15494 	release_chip_resource(dd, CR_SBUS);
15495 	return ret;
15496 }
15497 
15498 static void handle_temp_err(struct hfi1_devdata *dd)
15499 {
15500 	struct hfi1_pportdata *ppd = &dd->pport[0];
15501 	/*
15502 	 * Thermal Critical Interrupt
15503 	 * Put the device into forced freeze mode, take link down to
15504 	 * offline, and put DC into reset.
15505 	 */
15506 	dd_dev_emerg(dd,
15507 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15508 	dd->flags |= HFI1_FORCED_FREEZE;
15509 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15510 	/*
15511 	 * Shut DC down as much and as quickly as possible.
15512 	 *
15513 	 * Step 1: Take the link down to OFFLINE. This will cause the
15514 	 *         8051 to put the Serdes in reset. However, we don't want to
15515 	 *         go through the entire link state machine since we want to
15516 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15517 	 *         but rather an attempt to save the chip.
15518 	 *         Code below is almost the same as quiet_serdes() but avoids
15519 	 *         all the extra work and the sleeps.
15520 	 */
15521 	ppd->driver_link_ready = 0;
15522 	ppd->link_enabled = 0;
15523 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15524 				PLS_OFFLINE);
15525 	/*
15526 	 * Step 2: Shutdown LCB and 8051
15527 	 *         After shutdown, do not restore DC_CFG_RESET value.
15528 	 */
15529 	dc_shutdown(dd);
15530 }
15531