xref: /linux/drivers/infiniband/hw/hfi1/chip.c (revision 6beeaf48db6c548fcfc2ad32739d33af2fef3a5b)
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  */
5 
6 /*
7  * This file contains all of the code that is specific to the HFI chip
8  */
9 
10 #include <linux/pci.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 
15 #include "hfi.h"
16 #include "trace.h"
17 #include "mad.h"
18 #include "pio.h"
19 #include "sdma.h"
20 #include "eprom.h"
21 #include "efivar.h"
22 #include "platform.h"
23 #include "aspm.h"
24 #include "affinity.h"
25 #include "debugfs.h"
26 #include "fault.h"
27 #include "netdev.h"
28 
29 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
30 module_param(num_vls, uint, S_IRUGO);
31 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
32 
33 /*
34  * Default time to aggregate two 10K packets from the idle state
35  * (timer not running). The timer starts at the end of the first packet,
36  * so only the time for one 10K packet and header plus a bit extra is needed.
37  * 10 * 1024 + 64 header byte = 10304 byte
38  * 10304 byte / 12.5 GB/s = 824.32ns
39  */
40 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
41 module_param(rcv_intr_timeout, uint, S_IRUGO);
42 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
43 
44 uint rcv_intr_count = 16; /* same as qib */
45 module_param(rcv_intr_count, uint, S_IRUGO);
46 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
47 
48 ushort link_crc_mask = SUPPORTED_CRCS;
49 module_param(link_crc_mask, ushort, S_IRUGO);
50 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
51 
52 uint loopback;
53 module_param_named(loopback, loopback, uint, S_IRUGO);
54 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
55 
56 /* Other driver tunables */
57 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
58 static ushort crc_14b_sideband = 1;
59 static uint use_flr = 1;
60 uint quick_linkup; /* skip LNI */
61 
62 struct flag_table {
63 	u64 flag;	/* the flag */
64 	char *str;	/* description string */
65 	u16 extra;	/* extra information */
66 	u16 unused0;
67 	u32 unused1;
68 };
69 
70 /* str must be a string constant */
71 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
72 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
73 
74 /* Send Error Consequences */
75 #define SEC_WRITE_DROPPED	0x1
76 #define SEC_PACKET_DROPPED	0x2
77 #define SEC_SC_HALTED		0x4	/* per-context only */
78 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
79 
80 #define DEFAULT_KRCVQS		  2
81 #define MIN_KERNEL_KCTXTS         2
82 #define FIRST_KERNEL_KCTXT        1
83 
84 /*
85  * RSM instance allocation
86  *   0 - User Fecn Handling
87  *   1 - Vnic
88  *   2 - AIP
89  *   3 - Verbs
90  */
91 #define RSM_INS_FECN              0
92 #define RSM_INS_VNIC              1
93 #define RSM_INS_AIP               2
94 #define RSM_INS_VERBS             3
95 
96 /* Bit offset into the GUID which carries HFI id information */
97 #define GUID_HFI_INDEX_SHIFT     39
98 
99 /* extract the emulation revision */
100 #define emulator_rev(dd) ((dd)->irev >> 8)
101 /* parallel and serial emulation versions are 3 and 4 respectively */
102 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
103 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
104 
105 /* RSM fields for Verbs */
106 /* packet type */
107 #define IB_PACKET_TYPE         2ull
108 #define QW_SHIFT               6ull
109 /* QPN[7..1] */
110 #define QPN_WIDTH              7ull
111 
112 /* LRH.BTH: QW 0, OFFSET 48 - for match */
113 #define LRH_BTH_QW             0ull
114 #define LRH_BTH_BIT_OFFSET     48ull
115 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
116 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
117 #define LRH_BTH_SELECT
118 #define LRH_BTH_MASK           3ull
119 #define LRH_BTH_VALUE          2ull
120 
121 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
122 #define LRH_SC_QW              0ull
123 #define LRH_SC_BIT_OFFSET      56ull
124 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
125 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
126 #define LRH_SC_MASK            128ull
127 #define LRH_SC_VALUE           0ull
128 
129 /* SC[n..0] QW 0, OFFSET 60 - for select */
130 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
131 
132 /* QPN[m+n:1] QW 1, OFFSET 1 */
133 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
134 
135 /* RSM fields for AIP */
136 /* LRH.BTH above is reused for this rule */
137 
138 /* BTH.DESTQP: QW 1, OFFSET 16 for match */
139 #define BTH_DESTQP_QW           1ull
140 #define BTH_DESTQP_BIT_OFFSET   16ull
141 #define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
142 #define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
143 #define BTH_DESTQP_MASK         0xFFull
144 #define BTH_DESTQP_VALUE        0x81ull
145 
146 /* DETH.SQPN: QW 1 Offset 56 for select */
147 /* We use 8 most significant Soure QPN bits as entropy fpr AIP */
148 #define DETH_AIP_SQPN_QW 3ull
149 #define DETH_AIP_SQPN_BIT_OFFSET 56ull
150 #define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
151 #define DETH_AIP_SQPN_SELECT_OFFSET \
152 	DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
153 
154 /* RSM fields for Vnic */
155 /* L2_TYPE: QW 0, OFFSET 61 - for match */
156 #define L2_TYPE_QW             0ull
157 #define L2_TYPE_BIT_OFFSET     61ull
158 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
159 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
160 #define L2_TYPE_MASK           3ull
161 #define L2_16B_VALUE           2ull
162 
163 /* L4_TYPE QW 1, OFFSET 0 - for match */
164 #define L4_TYPE_QW              1ull
165 #define L4_TYPE_BIT_OFFSET      0ull
166 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
167 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
168 #define L4_16B_TYPE_MASK        0xFFull
169 #define L4_16B_ETH_VALUE        0x78ull
170 
171 /* 16B VESWID - for select */
172 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
173 /* 16B ENTROPY - for select */
174 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
175 
176 /* defines to build power on SC2VL table */
177 #define SC2VL_VAL( \
178 	num, \
179 	sc0, sc0val, \
180 	sc1, sc1val, \
181 	sc2, sc2val, \
182 	sc3, sc3val, \
183 	sc4, sc4val, \
184 	sc5, sc5val, \
185 	sc6, sc6val, \
186 	sc7, sc7val) \
187 ( \
188 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
189 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
190 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
191 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
192 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
193 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
194 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
195 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
196 )
197 
198 #define DC_SC_VL_VAL( \
199 	range, \
200 	e0, e0val, \
201 	e1, e1val, \
202 	e2, e2val, \
203 	e3, e3val, \
204 	e4, e4val, \
205 	e5, e5val, \
206 	e6, e6val, \
207 	e7, e7val, \
208 	e8, e8val, \
209 	e9, e9val, \
210 	e10, e10val, \
211 	e11, e11val, \
212 	e12, e12val, \
213 	e13, e13val, \
214 	e14, e14val, \
215 	e15, e15val) \
216 ( \
217 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
218 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
219 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
220 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
221 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
222 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
223 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
224 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
225 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
226 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
227 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
228 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
229 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
230 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
231 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
232 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
233 )
234 
235 /* all CceStatus sub-block freeze bits */
236 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
237 			| CCE_STATUS_RXE_FROZE_SMASK \
238 			| CCE_STATUS_TXE_FROZE_SMASK \
239 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
240 /* all CceStatus sub-block TXE pause bits */
241 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
242 			| CCE_STATUS_TXE_PAUSED_SMASK \
243 			| CCE_STATUS_SDMA_PAUSED_SMASK)
244 /* all CceStatus sub-block RXE pause bits */
245 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
246 
247 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
248 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
249 
250 /*
251  * CCE Error flags.
252  */
253 static struct flag_table cce_err_status_flags[] = {
254 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
255 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
256 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
257 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
258 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
259 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
260 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
261 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
262 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
263 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
264 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
265 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
266 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
267 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
268 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
269 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
270 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
271 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
272 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
273 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
274 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
275 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
276 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
277 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
278 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
279 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
280 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
281 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
282 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
283 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
284 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
285 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
286 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
287 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
288 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
289 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
290 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
291 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
292 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
293 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
294 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
295 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
296 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
297 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
298 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
299 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
300 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
301 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
302 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
303 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
304 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
305 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
306 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
307 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
308 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
309 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
310 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
311 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
312 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
313 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
314 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
315 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
316 /*31*/	FLAG_ENTRY0("LATriggered",
317 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
318 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
319 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
320 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
321 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
322 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
323 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
324 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
325 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
326 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
327 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
328 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
329 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
330 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
331 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
332 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
333 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
334 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
335 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
336 /*41-63 reserved*/
337 };
338 
339 /*
340  * Misc Error flags
341  */
342 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
343 static struct flag_table misc_err_status_flags[] = {
344 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
345 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
346 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
347 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
348 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
349 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
350 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
351 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
352 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
353 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
354 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
355 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
356 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
357 };
358 
359 /*
360  * TXE PIO Error flags and consequences
361  */
362 static struct flag_table pio_err_status_flags[] = {
363 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
364 	SEC_WRITE_DROPPED,
365 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
366 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
367 	SEC_SPC_FREEZE,
368 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
369 /* 2*/	FLAG_ENTRY("PioCsrParity",
370 	SEC_SPC_FREEZE,
371 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
372 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
373 	SEC_SPC_FREEZE,
374 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
375 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
376 	SEC_SPC_FREEZE,
377 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
378 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
379 	SEC_SPC_FREEZE,
380 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
381 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
382 	SEC_SPC_FREEZE,
383 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
384 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
385 	SEC_SPC_FREEZE,
386 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
387 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
388 	SEC_SPC_FREEZE,
389 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
390 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
391 	SEC_SPC_FREEZE,
392 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
393 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
394 	SEC_SPC_FREEZE,
395 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
396 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
397 	SEC_SPC_FREEZE,
398 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
399 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
400 	SEC_SPC_FREEZE,
401 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
402 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
403 	0,
404 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
405 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
406 	0,
407 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
408 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
411 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
414 /*17*/	FLAG_ENTRY("PioInitSmIn",
415 	0,
416 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
417 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
420 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
423 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
424 	0,
425 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
426 /*21*/	FLAG_ENTRY("PioWriteDataParity",
427 	SEC_SPC_FREEZE,
428 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
429 /*22*/	FLAG_ENTRY("PioStateMachine",
430 	SEC_SPC_FREEZE,
431 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
432 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
433 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
435 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
436 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
438 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
439 	SEC_SPC_FREEZE,
440 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
441 /*26*/	FLAG_ENTRY("PioVlfSopParity",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
444 /*27*/	FLAG_ENTRY("PioVlFifoParity",
445 	SEC_SPC_FREEZE,
446 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
447 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
448 	SEC_SPC_FREEZE,
449 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
450 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
453 /*30-31 reserved*/
454 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
457 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
458 	SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
460 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
461 	SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
463 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
466 /*36-63 reserved*/
467 };
468 
469 /* TXE PIO errors that cause an SPC freeze */
470 #define ALL_PIO_FREEZE_ERR \
471 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
472 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
473 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
474 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
475 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
476 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
477 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
478 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
479 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
480 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
481 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
482 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
483 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
484 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
485 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
486 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
487 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
488 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
489 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
490 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
491 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
492 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
493 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
494 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
495 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
500 
501 /*
502  * TXE SDMA Error flags
503  */
504 static struct flag_table sdma_err_status_flags[] = {
505 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
506 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
507 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
508 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
509 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
510 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
511 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
512 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
513 /*04-63 reserved*/
514 };
515 
516 /* TXE SDMA errors that cause an SPC freeze */
517 #define ALL_SDMA_FREEZE_ERR  \
518 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
519 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
520 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
521 
522 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
523 #define PORT_DISCARD_EGRESS_ERRS \
524 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
525 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
526 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
527 
528 /*
529  * TXE Egress Error flags
530  */
531 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
532 static struct flag_table egress_err_status_flags[] = {
533 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
534 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
535 /* 2 reserved */
536 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
537 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
538 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
539 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
540 /* 6 reserved */
541 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
542 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
543 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
544 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
545 /* 9-10 reserved */
546 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
547 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
548 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
549 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
550 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
551 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
552 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
553 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
554 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
555 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
556 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
557 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
558 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
559 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
560 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
561 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
562 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
563 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
564 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
565 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
566 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
567 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
568 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
569 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
570 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
571 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
572 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
573 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
574 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
575 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
576 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
577 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
578 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
579 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
580 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
581 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
582 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
583 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
584 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
585 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
586 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
587 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
588 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
589 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
590 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
591 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
592 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
593 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
594 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
595 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
596 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
597 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
598 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
599 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
600 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
601 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
602 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
603 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
604 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
605 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
606 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
607 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
608 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
609 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
610 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
611 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
612 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
613 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
614 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
615 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
616 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
617 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
618 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
619 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
620 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
621 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
622 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
623 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
624 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
625 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
626 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
627 };
628 
629 /*
630  * TXE Egress Error Info flags
631  */
632 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
633 static struct flag_table egress_err_info_flags[] = {
634 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
635 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
636 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
637 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
638 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
639 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
640 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
641 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
642 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
643 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
644 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
645 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
646 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
647 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
648 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
649 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
650 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
651 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
652 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
653 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
654 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
655 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
656 };
657 
658 /* TXE Egress errors that cause an SPC freeze */
659 #define ALL_TXE_EGRESS_FREEZE_ERR \
660 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
661 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
662 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
663 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
664 	| SEES(TX_LAUNCH_CSR_PARITY) \
665 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
666 	| SEES(TX_CONFIG_PARITY) \
667 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
668 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
669 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
670 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
671 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
672 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
673 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
674 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
675 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
676 	| SEES(TX_CREDIT_RETURN_PARITY))
677 
678 /*
679  * TXE Send error flags
680  */
681 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
682 static struct flag_table send_err_status_flags[] = {
683 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
684 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
685 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
686 };
687 
688 /*
689  * TXE Send Context Error flags and consequences
690  */
691 static struct flag_table sc_err_status_flags[] = {
692 /* 0*/	FLAG_ENTRY("InconsistentSop",
693 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
694 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
695 /* 1*/	FLAG_ENTRY("DisallowedPacket",
696 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
697 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
698 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
699 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
700 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
701 /* 3*/	FLAG_ENTRY("WriteOverflow",
702 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
703 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
704 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
705 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
706 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
707 /* 5-63 reserved*/
708 };
709 
710 /*
711  * RXE Receive Error flags
712  */
713 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
714 static struct flag_table rxe_err_status_flags[] = {
715 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
716 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
717 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
718 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
719 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
720 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
721 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
722 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
723 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
724 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
725 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
726 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
727 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
728 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
729 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
730 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
731 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
732 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
733 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
734 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
735 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
736 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
737 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
738 		RXES(RBUF_BLOCK_LIST_READ_COR)),
739 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
740 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
741 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
742 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
743 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
744 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
745 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
746 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
747 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
748 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
749 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
750 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
751 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
752 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
753 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
754 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
755 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
756 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
757 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
758 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
759 		RXES(RBUF_FL_INITDONE_PARITY)),
760 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
761 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
762 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
763 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
764 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
765 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
766 		RXES(LOOKUP_DES_PART1_UNC_COR)),
767 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
768 		RXES(LOOKUP_DES_PART2_PARITY)),
769 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
770 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
771 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
772 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
773 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
774 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
775 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
776 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
777 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
778 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
779 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
780 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
781 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
782 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
783 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
784 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
785 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
786 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
787 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
788 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
789 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
790 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
791 };
792 
793 /* RXE errors that will trigger an SPC freeze */
794 #define ALL_RXE_FREEZE_ERR  \
795 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
796 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
797 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
798 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
799 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
800 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
801 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
802 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
803 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
804 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
805 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
806 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
807 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
808 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
809 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
810 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
811 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
812 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
813 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
814 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
815 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
816 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
817 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
818 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
819 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
839 
840 #define RXE_FREEZE_ABORT_MASK \
841 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
842 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
843 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
844 
845 /*
846  * DCC Error Flags
847  */
848 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
849 static struct flag_table dcc_err_flags[] = {
850 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
851 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
852 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
853 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
854 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
855 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
856 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
857 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
858 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
859 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
860 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
861 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
862 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
863 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
864 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
865 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
866 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
867 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
868 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
869 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
870 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
871 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
872 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
873 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
874 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
875 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
876 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
877 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
878 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
879 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
880 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
881 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
882 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
883 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
884 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
885 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
886 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
887 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
888 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
889 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
890 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
891 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
892 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
893 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
894 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
895 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
896 };
897 
898 /*
899  * LCB error flags
900  */
901 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
902 static struct flag_table lcb_err_flags[] = {
903 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
904 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
905 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
906 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
907 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
908 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
909 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
910 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
911 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
912 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
913 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
914 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
915 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
916 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
917 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
918 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
919 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
920 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
921 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
922 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
923 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
924 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
925 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
926 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
927 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
928 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
929 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
930 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
931 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
932 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
933 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
934 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
935 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
936 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
937 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
938 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
939 };
940 
941 /*
942  * DC8051 Error Flags
943  */
944 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
945 static struct flag_table dc8051_err_flags[] = {
946 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
947 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
948 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
949 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
950 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
951 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
952 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
953 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
954 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
955 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
956 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
957 };
958 
959 /*
960  * DC8051 Information Error flags
961  *
962  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
963  */
964 static struct flag_table dc8051_info_err_flags[] = {
965 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
966 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
967 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
968 	FLAG_ENTRY0("Serdes internal loopback failure",
969 		    FAILED_SERDES_INTERNAL_LOOPBACK),
970 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
971 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
972 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
973 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
974 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
975 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
976 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
977 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
978 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
979 	FLAG_ENTRY0("External Device Request Timeout",
980 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
981 };
982 
983 /*
984  * DC8051 Information Host Information flags
985  *
986  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
987  */
988 static struct flag_table dc8051_info_host_msg_flags[] = {
989 	FLAG_ENTRY0("Host request done", 0x0001),
990 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
991 	FLAG_ENTRY0("BC SMA message", 0x0004),
992 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
993 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
994 	FLAG_ENTRY0("External device config request", 0x0020),
995 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
996 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
997 	FLAG_ENTRY0("Link going down", 0x0100),
998 	FLAG_ENTRY0("Link width downgraded", 0x0200),
999 };
1000 
1001 static u32 encoded_size(u32 size);
1002 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1003 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1004 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1005 			       u8 *continuous);
1006 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1007 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1008 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1009 				      u8 *remote_tx_rate, u16 *link_widths);
1010 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1011 				    u8 *flag_bits, u16 *link_widths);
1012 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1013 				  u8 *device_rev);
1014 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1015 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1016 			    u8 *tx_polarity_inversion,
1017 			    u8 *rx_polarity_inversion, u8 *max_rate);
1018 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1019 				unsigned int context, u64 err_status);
1020 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1021 static void handle_dcc_err(struct hfi1_devdata *dd,
1022 			   unsigned int context, u64 err_status);
1023 static void handle_lcb_err(struct hfi1_devdata *dd,
1024 			   unsigned int context, u64 err_status);
1025 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1026 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1030 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1031 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1032 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1033 static void set_partition_keys(struct hfi1_pportdata *ppd);
1034 static const char *link_state_name(u32 state);
1035 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1036 					  u32 state);
1037 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1038 			   u64 *out_data);
1039 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1040 static int thermal_init(struct hfi1_devdata *dd);
1041 
1042 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1043 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1044 					    int msecs);
1045 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1046 				  int msecs);
1047 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1048 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1049 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1050 				   int msecs);
1051 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1052 					 int msecs);
1053 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1054 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1055 static void handle_temp_err(struct hfi1_devdata *dd);
1056 static void dc_shutdown(struct hfi1_devdata *dd);
1057 static void dc_start(struct hfi1_devdata *dd);
1058 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1059 			   unsigned int *np);
1060 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1061 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1062 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1063 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1064 
1065 /*
1066  * Error interrupt table entry.  This is used as input to the interrupt
1067  * "clear down" routine used for all second tier error interrupt register.
1068  * Second tier interrupt registers have a single bit representing them
1069  * in the top-level CceIntStatus.
1070  */
1071 struct err_reg_info {
1072 	u32 status;		/* status CSR offset */
1073 	u32 clear;		/* clear CSR offset */
1074 	u32 mask;		/* mask CSR offset */
1075 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1076 	const char *desc;
1077 };
1078 
1079 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1080 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1081 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1082 
1083 /*
1084  * Helpers for building HFI and DC error interrupt table entries.  Different
1085  * helpers are needed because of inconsistent register names.
1086  */
1087 #define EE(reg, handler, desc) \
1088 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1089 		handler, desc }
1090 #define DC_EE1(reg, handler, desc) \
1091 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1092 #define DC_EE2(reg, handler, desc) \
1093 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1094 
1095 /*
1096  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1097  * another register containing more information.
1098  */
1099 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1100 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1101 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1102 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1103 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1104 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1105 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1106 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1107 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1108 	/* the rest are reserved */
1109 };
1110 
1111 /*
1112  * Index into the Various section of the interrupt sources
1113  * corresponding to the Critical Temperature interrupt.
1114  */
1115 #define TCRIT_INT_SOURCE 4
1116 
1117 /*
1118  * SDMA error interrupt entry - refers to another register containing more
1119  * information.
1120  */
1121 static const struct err_reg_info sdma_eng_err =
1122 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1123 
1124 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1125 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1126 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1127 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1128 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1129 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1130 	/* rest are reserved */
1131 };
1132 
1133 /*
1134  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1135  * register can not be derived from the MTU value because 10K is not
1136  * a power of 2. Therefore, we need a constant. Everything else can
1137  * be calculated.
1138  */
1139 #define DCC_CFG_PORT_MTU_CAP_10240 7
1140 
1141 /*
1142  * Table of the DC grouping of error interrupts.  Each entry refers to
1143  * another register containing more information.
1144  */
1145 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1146 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1147 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1148 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1149 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1150 	/* the rest are reserved */
1151 };
1152 
1153 struct cntr_entry {
1154 	/*
1155 	 * counter name
1156 	 */
1157 	char *name;
1158 
1159 	/*
1160 	 * csr to read for name (if applicable)
1161 	 */
1162 	u64 csr;
1163 
1164 	/*
1165 	 * offset into dd or ppd to store the counter's value
1166 	 */
1167 	int offset;
1168 
1169 	/*
1170 	 * flags
1171 	 */
1172 	u8 flags;
1173 
1174 	/*
1175 	 * accessor for stat element, context either dd or ppd
1176 	 */
1177 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1178 		       int mode, u64 data);
1179 };
1180 
1181 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1182 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1183 
1184 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1185 { \
1186 	name, \
1187 	csr, \
1188 	offset, \
1189 	flags, \
1190 	accessor \
1191 }
1192 
1193 /* 32bit RXE */
1194 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1195 CNTR_ELEM(#name, \
1196 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1197 	  0, flags | CNTR_32BIT, \
1198 	  port_access_u32_csr)
1199 
1200 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1201 CNTR_ELEM(#name, \
1202 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1203 	  0, flags | CNTR_32BIT, \
1204 	  dev_access_u32_csr)
1205 
1206 /* 64bit RXE */
1207 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1208 CNTR_ELEM(#name, \
1209 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1210 	  0, flags, \
1211 	  port_access_u64_csr)
1212 
1213 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1214 CNTR_ELEM(#name, \
1215 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1216 	  0, flags, \
1217 	  dev_access_u64_csr)
1218 
1219 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1220 #define OVR_ELM(ctx) \
1221 CNTR_ELEM("RcvHdrOvr" #ctx, \
1222 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1223 	  0, CNTR_NORMAL, port_access_u64_csr)
1224 
1225 /* 32bit TXE */
1226 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1227 CNTR_ELEM(#name, \
1228 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1229 	  0, flags | CNTR_32BIT, \
1230 	  port_access_u32_csr)
1231 
1232 /* 64bit TXE */
1233 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1234 CNTR_ELEM(#name, \
1235 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1236 	  0, flags, \
1237 	  port_access_u64_csr)
1238 
1239 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1240 CNTR_ELEM(#name,\
1241 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1242 	  0, \
1243 	  flags, \
1244 	  dev_access_u64_csr)
1245 
1246 /* CCE */
1247 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1248 CNTR_ELEM(#name, \
1249 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1250 	  0, flags | CNTR_32BIT, \
1251 	  dev_access_u32_csr)
1252 
1253 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1254 CNTR_ELEM(#name, \
1255 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1256 	  0, flags | CNTR_32BIT, \
1257 	  dev_access_u32_csr)
1258 
1259 /* DC */
1260 #define DC_PERF_CNTR(name, counter, flags) \
1261 CNTR_ELEM(#name, \
1262 	  counter, \
1263 	  0, \
1264 	  flags, \
1265 	  dev_access_u64_csr)
1266 
1267 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1268 CNTR_ELEM(#name, \
1269 	  counter, \
1270 	  0, \
1271 	  flags, \
1272 	  dc_access_lcb_cntr)
1273 
1274 /* ibp counters */
1275 #define SW_IBP_CNTR(name, cntr) \
1276 CNTR_ELEM(#name, \
1277 	  0, \
1278 	  0, \
1279 	  CNTR_SYNTH, \
1280 	  access_ibp_##cntr)
1281 
1282 /**
1283  * hfi1_addr_from_offset - return addr for readq/writeq
1284  * @dd: the dd device
1285  * @offset: the offset of the CSR within bar0
1286  *
1287  * This routine selects the appropriate base address
1288  * based on the indicated offset.
1289  */
1290 static inline void __iomem *hfi1_addr_from_offset(
1291 	const struct hfi1_devdata *dd,
1292 	u32 offset)
1293 {
1294 	if (offset >= dd->base2_start)
1295 		return dd->kregbase2 + (offset - dd->base2_start);
1296 	return dd->kregbase1 + offset;
1297 }
1298 
1299 /**
1300  * read_csr - read CSR at the indicated offset
1301  * @dd: the dd device
1302  * @offset: the offset of the CSR within bar0
1303  *
1304  * Return: the value read or all FF's if there
1305  * is no mapping
1306  */
1307 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1308 {
1309 	if (dd->flags & HFI1_PRESENT)
1310 		return readq(hfi1_addr_from_offset(dd, offset));
1311 	return -1;
1312 }
1313 
1314 /**
1315  * write_csr - write CSR at the indicated offset
1316  * @dd: the dd device
1317  * @offset: the offset of the CSR within bar0
1318  * @value: value to write
1319  */
1320 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1321 {
1322 	if (dd->flags & HFI1_PRESENT) {
1323 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1324 
1325 		/* avoid write to RcvArray */
1326 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1327 			return;
1328 		writeq(value, base);
1329 	}
1330 }
1331 
1332 /**
1333  * get_csr_addr - return te iomem address for offset
1334  * @dd: the dd device
1335  * @offset: the offset of the CSR within bar0
1336  *
1337  * Return: The iomem address to use in subsequent
1338  * writeq/readq operations.
1339  */
1340 void __iomem *get_csr_addr(
1341 	const struct hfi1_devdata *dd,
1342 	u32 offset)
1343 {
1344 	if (dd->flags & HFI1_PRESENT)
1345 		return hfi1_addr_from_offset(dd, offset);
1346 	return NULL;
1347 }
1348 
1349 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1350 				 int mode, u64 value)
1351 {
1352 	u64 ret;
1353 
1354 	if (mode == CNTR_MODE_R) {
1355 		ret = read_csr(dd, csr);
1356 	} else if (mode == CNTR_MODE_W) {
1357 		write_csr(dd, csr, value);
1358 		ret = value;
1359 	} else {
1360 		dd_dev_err(dd, "Invalid cntr register access mode");
1361 		return 0;
1362 	}
1363 
1364 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1365 	return ret;
1366 }
1367 
1368 /* Dev Access */
1369 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1370 			      void *context, int vl, int mode, u64 data)
1371 {
1372 	struct hfi1_devdata *dd = context;
1373 	u64 csr = entry->csr;
1374 
1375 	if (entry->flags & CNTR_SDMA) {
1376 		if (vl == CNTR_INVALID_VL)
1377 			return 0;
1378 		csr += 0x100 * vl;
1379 	} else {
1380 		if (vl != CNTR_INVALID_VL)
1381 			return 0;
1382 	}
1383 	return read_write_csr(dd, csr, mode, data);
1384 }
1385 
1386 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1387 			      void *context, int idx, int mode, u64 data)
1388 {
1389 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1390 
1391 	if (dd->per_sdma && idx < dd->num_sdma)
1392 		return dd->per_sdma[idx].err_cnt;
1393 	return 0;
1394 }
1395 
1396 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1397 			      void *context, int idx, int mode, u64 data)
1398 {
1399 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1400 
1401 	if (dd->per_sdma && idx < dd->num_sdma)
1402 		return dd->per_sdma[idx].sdma_int_cnt;
1403 	return 0;
1404 }
1405 
1406 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1407 				   void *context, int idx, int mode, u64 data)
1408 {
1409 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1410 
1411 	if (dd->per_sdma && idx < dd->num_sdma)
1412 		return dd->per_sdma[idx].idle_int_cnt;
1413 	return 0;
1414 }
1415 
1416 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1417 				       void *context, int idx, int mode,
1418 				       u64 data)
1419 {
1420 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1421 
1422 	if (dd->per_sdma && idx < dd->num_sdma)
1423 		return dd->per_sdma[idx].progress_int_cnt;
1424 	return 0;
1425 }
1426 
1427 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1428 			      int vl, int mode, u64 data)
1429 {
1430 	struct hfi1_devdata *dd = context;
1431 
1432 	u64 val = 0;
1433 	u64 csr = entry->csr;
1434 
1435 	if (entry->flags & CNTR_VL) {
1436 		if (vl == CNTR_INVALID_VL)
1437 			return 0;
1438 		csr += 8 * vl;
1439 	} else {
1440 		if (vl != CNTR_INVALID_VL)
1441 			return 0;
1442 	}
1443 
1444 	val = read_write_csr(dd, csr, mode, data);
1445 	return val;
1446 }
1447 
1448 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1449 			      int vl, int mode, u64 data)
1450 {
1451 	struct hfi1_devdata *dd = context;
1452 	u32 csr = entry->csr;
1453 	int ret = 0;
1454 
1455 	if (vl != CNTR_INVALID_VL)
1456 		return 0;
1457 	if (mode == CNTR_MODE_R)
1458 		ret = read_lcb_csr(dd, csr, &data);
1459 	else if (mode == CNTR_MODE_W)
1460 		ret = write_lcb_csr(dd, csr, data);
1461 
1462 	if (ret) {
1463 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1464 		return 0;
1465 	}
1466 
1467 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1468 	return data;
1469 }
1470 
1471 /* Port Access */
1472 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1473 			       int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_pportdata *ppd = context;
1476 
1477 	if (vl != CNTR_INVALID_VL)
1478 		return 0;
1479 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1480 }
1481 
1482 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1483 			       void *context, int vl, int mode, u64 data)
1484 {
1485 	struct hfi1_pportdata *ppd = context;
1486 	u64 val;
1487 	u64 csr = entry->csr;
1488 
1489 	if (entry->flags & CNTR_VL) {
1490 		if (vl == CNTR_INVALID_VL)
1491 			return 0;
1492 		csr += 8 * vl;
1493 	} else {
1494 		if (vl != CNTR_INVALID_VL)
1495 			return 0;
1496 	}
1497 	val = read_write_csr(ppd->dd, csr, mode, data);
1498 	return val;
1499 }
1500 
1501 /* Software defined */
1502 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1503 				u64 data)
1504 {
1505 	u64 ret;
1506 
1507 	if (mode == CNTR_MODE_R) {
1508 		ret = *cntr;
1509 	} else if (mode == CNTR_MODE_W) {
1510 		*cntr = data;
1511 		ret = data;
1512 	} else {
1513 		dd_dev_err(dd, "Invalid cntr sw access mode");
1514 		return 0;
1515 	}
1516 
1517 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1518 
1519 	return ret;
1520 }
1521 
1522 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1523 				 int vl, int mode, u64 data)
1524 {
1525 	struct hfi1_pportdata *ppd = context;
1526 
1527 	if (vl != CNTR_INVALID_VL)
1528 		return 0;
1529 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1530 }
1531 
1532 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1533 				 int vl, int mode, u64 data)
1534 {
1535 	struct hfi1_pportdata *ppd = context;
1536 
1537 	if (vl != CNTR_INVALID_VL)
1538 		return 0;
1539 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1540 }
1541 
1542 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1543 				       void *context, int vl, int mode,
1544 				       u64 data)
1545 {
1546 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1547 
1548 	if (vl != CNTR_INVALID_VL)
1549 		return 0;
1550 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1551 }
1552 
1553 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1554 				   void *context, int vl, int mode, u64 data)
1555 {
1556 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1557 	u64 zero = 0;
1558 	u64 *counter;
1559 
1560 	if (vl == CNTR_INVALID_VL)
1561 		counter = &ppd->port_xmit_discards;
1562 	else if (vl >= 0 && vl < C_VL_COUNT)
1563 		counter = &ppd->port_xmit_discards_vl[vl];
1564 	else
1565 		counter = &zero;
1566 
1567 	return read_write_sw(ppd->dd, counter, mode, data);
1568 }
1569 
1570 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1571 				       void *context, int vl, int mode,
1572 				       u64 data)
1573 {
1574 	struct hfi1_pportdata *ppd = context;
1575 
1576 	if (vl != CNTR_INVALID_VL)
1577 		return 0;
1578 
1579 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1580 			     mode, data);
1581 }
1582 
1583 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1584 				      void *context, int vl, int mode, u64 data)
1585 {
1586 	struct hfi1_pportdata *ppd = context;
1587 
1588 	if (vl != CNTR_INVALID_VL)
1589 		return 0;
1590 
1591 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1592 			     mode, data);
1593 }
1594 
1595 u64 get_all_cpu_total(u64 __percpu *cntr)
1596 {
1597 	int cpu;
1598 	u64 counter = 0;
1599 
1600 	for_each_possible_cpu(cpu)
1601 		counter += *per_cpu_ptr(cntr, cpu);
1602 	return counter;
1603 }
1604 
1605 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1606 			  u64 __percpu *cntr,
1607 			  int vl, int mode, u64 data)
1608 {
1609 	u64 ret = 0;
1610 
1611 	if (vl != CNTR_INVALID_VL)
1612 		return 0;
1613 
1614 	if (mode == CNTR_MODE_R) {
1615 		ret = get_all_cpu_total(cntr) - *z_val;
1616 	} else if (mode == CNTR_MODE_W) {
1617 		/* A write can only zero the counter */
1618 		if (data == 0)
1619 			*z_val = get_all_cpu_total(cntr);
1620 		else
1621 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1622 	} else {
1623 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1624 		return 0;
1625 	}
1626 
1627 	return ret;
1628 }
1629 
1630 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1631 			      void *context, int vl, int mode, u64 data)
1632 {
1633 	struct hfi1_devdata *dd = context;
1634 
1635 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1636 			      mode, data);
1637 }
1638 
1639 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1640 				   void *context, int vl, int mode, u64 data)
1641 {
1642 	struct hfi1_devdata *dd = context;
1643 
1644 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1645 			      mode, data);
1646 }
1647 
1648 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1649 			      void *context, int vl, int mode, u64 data)
1650 {
1651 	struct hfi1_devdata *dd = context;
1652 
1653 	return dd->verbs_dev.n_piowait;
1654 }
1655 
1656 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1657 			       void *context, int vl, int mode, u64 data)
1658 {
1659 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1660 
1661 	return dd->verbs_dev.n_piodrain;
1662 }
1663 
1664 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1665 				   void *context, int vl, int mode, u64 data)
1666 {
1667 	struct hfi1_devdata *dd = context;
1668 
1669 	return dd->ctx0_seq_drop;
1670 }
1671 
1672 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_txwait;
1678 }
1679 
1680 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = context;
1684 
1685 	return dd->verbs_dev.n_kmem_wait;
1686 }
1687 
1688 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1689 				   void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1692 
1693 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1694 			      mode, data);
1695 }
1696 
1697 /* Software counters for the error status bits within MISC_ERR_STATUS */
1698 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1699 					     void *context, int vl, int mode,
1700 					     u64 data)
1701 {
1702 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703 
1704 	return dd->misc_err_status_cnt[12];
1705 }
1706 
1707 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1708 					  void *context, int vl, int mode,
1709 					  u64 data)
1710 {
1711 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712 
1713 	return dd->misc_err_status_cnt[11];
1714 }
1715 
1716 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1717 					       void *context, int vl, int mode,
1718 					       u64 data)
1719 {
1720 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721 
1722 	return dd->misc_err_status_cnt[10];
1723 }
1724 
1725 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1726 						 void *context, int vl,
1727 						 int mode, u64 data)
1728 {
1729 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730 
1731 	return dd->misc_err_status_cnt[9];
1732 }
1733 
1734 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1735 					   void *context, int vl, int mode,
1736 					   u64 data)
1737 {
1738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1739 
1740 	return dd->misc_err_status_cnt[8];
1741 }
1742 
1743 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1744 				const struct cntr_entry *entry,
1745 				void *context, int vl, int mode, u64 data)
1746 {
1747 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1748 
1749 	return dd->misc_err_status_cnt[7];
1750 }
1751 
1752 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1753 						void *context, int vl,
1754 						int mode, u64 data)
1755 {
1756 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1757 
1758 	return dd->misc_err_status_cnt[6];
1759 }
1760 
1761 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1762 					      void *context, int vl, int mode,
1763 					      u64 data)
1764 {
1765 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1766 
1767 	return dd->misc_err_status_cnt[5];
1768 }
1769 
1770 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1771 					    void *context, int vl, int mode,
1772 					    u64 data)
1773 {
1774 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1775 
1776 	return dd->misc_err_status_cnt[4];
1777 }
1778 
1779 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1780 						 void *context, int vl,
1781 						 int mode, u64 data)
1782 {
1783 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1784 
1785 	return dd->misc_err_status_cnt[3];
1786 }
1787 
1788 static u64 access_misc_csr_write_bad_addr_err_cnt(
1789 				const struct cntr_entry *entry,
1790 				void *context, int vl, int mode, u64 data)
1791 {
1792 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1793 
1794 	return dd->misc_err_status_cnt[2];
1795 }
1796 
1797 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1798 						 void *context, int vl,
1799 						 int mode, u64 data)
1800 {
1801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1802 
1803 	return dd->misc_err_status_cnt[1];
1804 }
1805 
1806 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1807 					  void *context, int vl, int mode,
1808 					  u64 data)
1809 {
1810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1811 
1812 	return dd->misc_err_status_cnt[0];
1813 }
1814 
1815 /*
1816  * Software counter for the aggregate of
1817  * individual CceErrStatus counters
1818  */
1819 static u64 access_sw_cce_err_status_aggregated_cnt(
1820 				const struct cntr_entry *entry,
1821 				void *context, int vl, int mode, u64 data)
1822 {
1823 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1824 
1825 	return dd->sw_cce_err_status_aggregate;
1826 }
1827 
1828 /*
1829  * Software counters corresponding to each of the
1830  * error status bits within CceErrStatus
1831  */
1832 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1833 					      void *context, int vl, int mode,
1834 					      u64 data)
1835 {
1836 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1837 
1838 	return dd->cce_err_status_cnt[40];
1839 }
1840 
1841 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1842 					  void *context, int vl, int mode,
1843 					  u64 data)
1844 {
1845 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1846 
1847 	return dd->cce_err_status_cnt[39];
1848 }
1849 
1850 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1851 					  void *context, int vl, int mode,
1852 					  u64 data)
1853 {
1854 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1855 
1856 	return dd->cce_err_status_cnt[38];
1857 }
1858 
1859 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1860 					     void *context, int vl, int mode,
1861 					     u64 data)
1862 {
1863 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1864 
1865 	return dd->cce_err_status_cnt[37];
1866 }
1867 
1868 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1869 					     void *context, int vl, int mode,
1870 					     u64 data)
1871 {
1872 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1873 
1874 	return dd->cce_err_status_cnt[36];
1875 }
1876 
1877 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1878 				const struct cntr_entry *entry,
1879 				void *context, int vl, int mode, u64 data)
1880 {
1881 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1882 
1883 	return dd->cce_err_status_cnt[35];
1884 }
1885 
1886 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1887 				const struct cntr_entry *entry,
1888 				void *context, int vl, int mode, u64 data)
1889 {
1890 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1891 
1892 	return dd->cce_err_status_cnt[34];
1893 }
1894 
1895 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1896 						 void *context, int vl,
1897 						 int mode, u64 data)
1898 {
1899 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1900 
1901 	return dd->cce_err_status_cnt[33];
1902 }
1903 
1904 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1905 						void *context, int vl, int mode,
1906 						u64 data)
1907 {
1908 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1909 
1910 	return dd->cce_err_status_cnt[32];
1911 }
1912 
1913 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1914 				   void *context, int vl, int mode, u64 data)
1915 {
1916 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917 
1918 	return dd->cce_err_status_cnt[31];
1919 }
1920 
1921 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1922 					       void *context, int vl, int mode,
1923 					       u64 data)
1924 {
1925 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926 
1927 	return dd->cce_err_status_cnt[30];
1928 }
1929 
1930 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1931 					      void *context, int vl, int mode,
1932 					      u64 data)
1933 {
1934 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935 
1936 	return dd->cce_err_status_cnt[29];
1937 }
1938 
1939 static u64 access_pcic_transmit_back_parity_err_cnt(
1940 				const struct cntr_entry *entry,
1941 				void *context, int vl, int mode, u64 data)
1942 {
1943 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944 
1945 	return dd->cce_err_status_cnt[28];
1946 }
1947 
1948 static u64 access_pcic_transmit_front_parity_err_cnt(
1949 				const struct cntr_entry *entry,
1950 				void *context, int vl, int mode, u64 data)
1951 {
1952 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953 
1954 	return dd->cce_err_status_cnt[27];
1955 }
1956 
1957 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1958 					     void *context, int vl, int mode,
1959 					     u64 data)
1960 {
1961 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962 
1963 	return dd->cce_err_status_cnt[26];
1964 }
1965 
1966 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1967 					    void *context, int vl, int mode,
1968 					    u64 data)
1969 {
1970 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971 
1972 	return dd->cce_err_status_cnt[25];
1973 }
1974 
1975 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1976 					      void *context, int vl, int mode,
1977 					      u64 data)
1978 {
1979 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980 
1981 	return dd->cce_err_status_cnt[24];
1982 }
1983 
1984 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1985 					     void *context, int vl, int mode,
1986 					     u64 data)
1987 {
1988 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989 
1990 	return dd->cce_err_status_cnt[23];
1991 }
1992 
1993 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1994 						 void *context, int vl,
1995 						 int mode, u64 data)
1996 {
1997 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998 
1999 	return dd->cce_err_status_cnt[22];
2000 }
2001 
2002 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2003 					 void *context, int vl, int mode,
2004 					 u64 data)
2005 {
2006 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007 
2008 	return dd->cce_err_status_cnt[21];
2009 }
2010 
2011 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2012 				const struct cntr_entry *entry,
2013 				void *context, int vl, int mode, u64 data)
2014 {
2015 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016 
2017 	return dd->cce_err_status_cnt[20];
2018 }
2019 
2020 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2021 						 void *context, int vl,
2022 						 int mode, u64 data)
2023 {
2024 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025 
2026 	return dd->cce_err_status_cnt[19];
2027 }
2028 
2029 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2030 					     void *context, int vl, int mode,
2031 					     u64 data)
2032 {
2033 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034 
2035 	return dd->cce_err_status_cnt[18];
2036 }
2037 
2038 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2039 					    void *context, int vl, int mode,
2040 					    u64 data)
2041 {
2042 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043 
2044 	return dd->cce_err_status_cnt[17];
2045 }
2046 
2047 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2048 					      void *context, int vl, int mode,
2049 					      u64 data)
2050 {
2051 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052 
2053 	return dd->cce_err_status_cnt[16];
2054 }
2055 
2056 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2057 					     void *context, int vl, int mode,
2058 					     u64 data)
2059 {
2060 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061 
2062 	return dd->cce_err_status_cnt[15];
2063 }
2064 
2065 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2066 						 void *context, int vl,
2067 						 int mode, u64 data)
2068 {
2069 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070 
2071 	return dd->cce_err_status_cnt[14];
2072 }
2073 
2074 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2075 					     void *context, int vl, int mode,
2076 					     u64 data)
2077 {
2078 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079 
2080 	return dd->cce_err_status_cnt[13];
2081 }
2082 
2083 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2084 				const struct cntr_entry *entry,
2085 				void *context, int vl, int mode, u64 data)
2086 {
2087 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088 
2089 	return dd->cce_err_status_cnt[12];
2090 }
2091 
2092 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2093 				const struct cntr_entry *entry,
2094 				void *context, int vl, int mode, u64 data)
2095 {
2096 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097 
2098 	return dd->cce_err_status_cnt[11];
2099 }
2100 
2101 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2102 				const struct cntr_entry *entry,
2103 				void *context, int vl, int mode, u64 data)
2104 {
2105 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106 
2107 	return dd->cce_err_status_cnt[10];
2108 }
2109 
2110 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2111 				const struct cntr_entry *entry,
2112 				void *context, int vl, int mode, u64 data)
2113 {
2114 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115 
2116 	return dd->cce_err_status_cnt[9];
2117 }
2118 
2119 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2120 				const struct cntr_entry *entry,
2121 				void *context, int vl, int mode, u64 data)
2122 {
2123 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2124 
2125 	return dd->cce_err_status_cnt[8];
2126 }
2127 
2128 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2129 						 void *context, int vl,
2130 						 int mode, u64 data)
2131 {
2132 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2133 
2134 	return dd->cce_err_status_cnt[7];
2135 }
2136 
2137 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2138 				const struct cntr_entry *entry,
2139 				void *context, int vl, int mode, u64 data)
2140 {
2141 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2142 
2143 	return dd->cce_err_status_cnt[6];
2144 }
2145 
2146 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2147 					       void *context, int vl, int mode,
2148 					       u64 data)
2149 {
2150 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2151 
2152 	return dd->cce_err_status_cnt[5];
2153 }
2154 
2155 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2156 					  void *context, int vl, int mode,
2157 					  u64 data)
2158 {
2159 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2160 
2161 	return dd->cce_err_status_cnt[4];
2162 }
2163 
2164 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2165 				const struct cntr_entry *entry,
2166 				void *context, int vl, int mode, u64 data)
2167 {
2168 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2169 
2170 	return dd->cce_err_status_cnt[3];
2171 }
2172 
2173 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2174 						 void *context, int vl,
2175 						 int mode, u64 data)
2176 {
2177 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2178 
2179 	return dd->cce_err_status_cnt[2];
2180 }
2181 
2182 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2183 						void *context, int vl,
2184 						int mode, u64 data)
2185 {
2186 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2187 
2188 	return dd->cce_err_status_cnt[1];
2189 }
2190 
2191 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2192 					 void *context, int vl, int mode,
2193 					 u64 data)
2194 {
2195 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2196 
2197 	return dd->cce_err_status_cnt[0];
2198 }
2199 
2200 /*
2201  * Software counters corresponding to each of the
2202  * error status bits within RcvErrStatus
2203  */
2204 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2205 					void *context, int vl, int mode,
2206 					u64 data)
2207 {
2208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209 
2210 	return dd->rcv_err_status_cnt[63];
2211 }
2212 
2213 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2214 						void *context, int vl,
2215 						int mode, u64 data)
2216 {
2217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218 
2219 	return dd->rcv_err_status_cnt[62];
2220 }
2221 
2222 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2223 					       void *context, int vl, int mode,
2224 					       u64 data)
2225 {
2226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227 
2228 	return dd->rcv_err_status_cnt[61];
2229 }
2230 
2231 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2232 					 void *context, int vl, int mode,
2233 					 u64 data)
2234 {
2235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236 
2237 	return dd->rcv_err_status_cnt[60];
2238 }
2239 
2240 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2241 						 void *context, int vl,
2242 						 int mode, u64 data)
2243 {
2244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245 
2246 	return dd->rcv_err_status_cnt[59];
2247 }
2248 
2249 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2250 						 void *context, int vl,
2251 						 int mode, u64 data)
2252 {
2253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254 
2255 	return dd->rcv_err_status_cnt[58];
2256 }
2257 
2258 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2259 					    void *context, int vl, int mode,
2260 					    u64 data)
2261 {
2262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263 
2264 	return dd->rcv_err_status_cnt[57];
2265 }
2266 
2267 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2268 					   void *context, int vl, int mode,
2269 					   u64 data)
2270 {
2271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272 
2273 	return dd->rcv_err_status_cnt[56];
2274 }
2275 
2276 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2277 					   void *context, int vl, int mode,
2278 					   u64 data)
2279 {
2280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281 
2282 	return dd->rcv_err_status_cnt[55];
2283 }
2284 
2285 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2286 				const struct cntr_entry *entry,
2287 				void *context, int vl, int mode, u64 data)
2288 {
2289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290 
2291 	return dd->rcv_err_status_cnt[54];
2292 }
2293 
2294 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2295 				const struct cntr_entry *entry,
2296 				void *context, int vl, int mode, u64 data)
2297 {
2298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299 
2300 	return dd->rcv_err_status_cnt[53];
2301 }
2302 
2303 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2304 						 void *context, int vl,
2305 						 int mode, u64 data)
2306 {
2307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308 
2309 	return dd->rcv_err_status_cnt[52];
2310 }
2311 
2312 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2313 						 void *context, int vl,
2314 						 int mode, u64 data)
2315 {
2316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317 
2318 	return dd->rcv_err_status_cnt[51];
2319 }
2320 
2321 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2322 						 void *context, int vl,
2323 						 int mode, u64 data)
2324 {
2325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326 
2327 	return dd->rcv_err_status_cnt[50];
2328 }
2329 
2330 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2331 						 void *context, int vl,
2332 						 int mode, u64 data)
2333 {
2334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335 
2336 	return dd->rcv_err_status_cnt[49];
2337 }
2338 
2339 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2340 						 void *context, int vl,
2341 						 int mode, u64 data)
2342 {
2343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344 
2345 	return dd->rcv_err_status_cnt[48];
2346 }
2347 
2348 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2349 						 void *context, int vl,
2350 						 int mode, u64 data)
2351 {
2352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353 
2354 	return dd->rcv_err_status_cnt[47];
2355 }
2356 
2357 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2358 					 void *context, int vl, int mode,
2359 					 u64 data)
2360 {
2361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362 
2363 	return dd->rcv_err_status_cnt[46];
2364 }
2365 
2366 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2367 				const struct cntr_entry *entry,
2368 				void *context, int vl, int mode, u64 data)
2369 {
2370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371 
2372 	return dd->rcv_err_status_cnt[45];
2373 }
2374 
2375 static u64 access_rx_lookup_csr_parity_err_cnt(
2376 				const struct cntr_entry *entry,
2377 				void *context, int vl, int mode, u64 data)
2378 {
2379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380 
2381 	return dd->rcv_err_status_cnt[44];
2382 }
2383 
2384 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2385 				const struct cntr_entry *entry,
2386 				void *context, int vl, int mode, u64 data)
2387 {
2388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389 
2390 	return dd->rcv_err_status_cnt[43];
2391 }
2392 
2393 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2394 				const struct cntr_entry *entry,
2395 				void *context, int vl, int mode, u64 data)
2396 {
2397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398 
2399 	return dd->rcv_err_status_cnt[42];
2400 }
2401 
2402 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2403 				const struct cntr_entry *entry,
2404 				void *context, int vl, int mode, u64 data)
2405 {
2406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407 
2408 	return dd->rcv_err_status_cnt[41];
2409 }
2410 
2411 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2412 				const struct cntr_entry *entry,
2413 				void *context, int vl, int mode, u64 data)
2414 {
2415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416 
2417 	return dd->rcv_err_status_cnt[40];
2418 }
2419 
2420 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2421 				const struct cntr_entry *entry,
2422 				void *context, int vl, int mode, u64 data)
2423 {
2424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425 
2426 	return dd->rcv_err_status_cnt[39];
2427 }
2428 
2429 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2430 				const struct cntr_entry *entry,
2431 				void *context, int vl, int mode, u64 data)
2432 {
2433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434 
2435 	return dd->rcv_err_status_cnt[38];
2436 }
2437 
2438 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2439 				const struct cntr_entry *entry,
2440 				void *context, int vl, int mode, u64 data)
2441 {
2442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443 
2444 	return dd->rcv_err_status_cnt[37];
2445 }
2446 
2447 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2448 				const struct cntr_entry *entry,
2449 				void *context, int vl, int mode, u64 data)
2450 {
2451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452 
2453 	return dd->rcv_err_status_cnt[36];
2454 }
2455 
2456 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2457 				const struct cntr_entry *entry,
2458 				void *context, int vl, int mode, u64 data)
2459 {
2460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461 
2462 	return dd->rcv_err_status_cnt[35];
2463 }
2464 
2465 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2466 				const struct cntr_entry *entry,
2467 				void *context, int vl, int mode, u64 data)
2468 {
2469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470 
2471 	return dd->rcv_err_status_cnt[34];
2472 }
2473 
2474 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2475 				const struct cntr_entry *entry,
2476 				void *context, int vl, int mode, u64 data)
2477 {
2478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479 
2480 	return dd->rcv_err_status_cnt[33];
2481 }
2482 
2483 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2484 					void *context, int vl, int mode,
2485 					u64 data)
2486 {
2487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488 
2489 	return dd->rcv_err_status_cnt[32];
2490 }
2491 
2492 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2493 				       void *context, int vl, int mode,
2494 				       u64 data)
2495 {
2496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497 
2498 	return dd->rcv_err_status_cnt[31];
2499 }
2500 
2501 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2502 					  void *context, int vl, int mode,
2503 					  u64 data)
2504 {
2505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506 
2507 	return dd->rcv_err_status_cnt[30];
2508 }
2509 
2510 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2511 					     void *context, int vl, int mode,
2512 					     u64 data)
2513 {
2514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515 
2516 	return dd->rcv_err_status_cnt[29];
2517 }
2518 
2519 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2520 						 void *context, int vl,
2521 						 int mode, u64 data)
2522 {
2523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524 
2525 	return dd->rcv_err_status_cnt[28];
2526 }
2527 
2528 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2529 				const struct cntr_entry *entry,
2530 				void *context, int vl, int mode, u64 data)
2531 {
2532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533 
2534 	return dd->rcv_err_status_cnt[27];
2535 }
2536 
2537 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2538 				const struct cntr_entry *entry,
2539 				void *context, int vl, int mode, u64 data)
2540 {
2541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542 
2543 	return dd->rcv_err_status_cnt[26];
2544 }
2545 
2546 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2547 				const struct cntr_entry *entry,
2548 				void *context, int vl, int mode, u64 data)
2549 {
2550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551 
2552 	return dd->rcv_err_status_cnt[25];
2553 }
2554 
2555 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2556 				const struct cntr_entry *entry,
2557 				void *context, int vl, int mode, u64 data)
2558 {
2559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560 
2561 	return dd->rcv_err_status_cnt[24];
2562 }
2563 
2564 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2565 				const struct cntr_entry *entry,
2566 				void *context, int vl, int mode, u64 data)
2567 {
2568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569 
2570 	return dd->rcv_err_status_cnt[23];
2571 }
2572 
2573 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2574 				const struct cntr_entry *entry,
2575 				void *context, int vl, int mode, u64 data)
2576 {
2577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578 
2579 	return dd->rcv_err_status_cnt[22];
2580 }
2581 
2582 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2583 				const struct cntr_entry *entry,
2584 				void *context, int vl, int mode, u64 data)
2585 {
2586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587 
2588 	return dd->rcv_err_status_cnt[21];
2589 }
2590 
2591 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2592 				const struct cntr_entry *entry,
2593 				void *context, int vl, int mode, u64 data)
2594 {
2595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596 
2597 	return dd->rcv_err_status_cnt[20];
2598 }
2599 
2600 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2601 				const struct cntr_entry *entry,
2602 				void *context, int vl, int mode, u64 data)
2603 {
2604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605 
2606 	return dd->rcv_err_status_cnt[19];
2607 }
2608 
2609 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2610 						 void *context, int vl,
2611 						 int mode, u64 data)
2612 {
2613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614 
2615 	return dd->rcv_err_status_cnt[18];
2616 }
2617 
2618 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2619 						 void *context, int vl,
2620 						 int mode, u64 data)
2621 {
2622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623 
2624 	return dd->rcv_err_status_cnt[17];
2625 }
2626 
2627 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2628 				const struct cntr_entry *entry,
2629 				void *context, int vl, int mode, u64 data)
2630 {
2631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632 
2633 	return dd->rcv_err_status_cnt[16];
2634 }
2635 
2636 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2637 				const struct cntr_entry *entry,
2638 				void *context, int vl, int mode, u64 data)
2639 {
2640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641 
2642 	return dd->rcv_err_status_cnt[15];
2643 }
2644 
2645 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2646 						void *context, int vl,
2647 						int mode, u64 data)
2648 {
2649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650 
2651 	return dd->rcv_err_status_cnt[14];
2652 }
2653 
2654 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2655 						void *context, int vl,
2656 						int mode, u64 data)
2657 {
2658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659 
2660 	return dd->rcv_err_status_cnt[13];
2661 }
2662 
2663 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2664 					      void *context, int vl, int mode,
2665 					      u64 data)
2666 {
2667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668 
2669 	return dd->rcv_err_status_cnt[12];
2670 }
2671 
2672 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2673 					  void *context, int vl, int mode,
2674 					  u64 data)
2675 {
2676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677 
2678 	return dd->rcv_err_status_cnt[11];
2679 }
2680 
2681 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2682 					  void *context, int vl, int mode,
2683 					  u64 data)
2684 {
2685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686 
2687 	return dd->rcv_err_status_cnt[10];
2688 }
2689 
2690 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2691 					       void *context, int vl, int mode,
2692 					       u64 data)
2693 {
2694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695 
2696 	return dd->rcv_err_status_cnt[9];
2697 }
2698 
2699 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2700 					    void *context, int vl, int mode,
2701 					    u64 data)
2702 {
2703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2704 
2705 	return dd->rcv_err_status_cnt[8];
2706 }
2707 
2708 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2709 				const struct cntr_entry *entry,
2710 				void *context, int vl, int mode, u64 data)
2711 {
2712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2713 
2714 	return dd->rcv_err_status_cnt[7];
2715 }
2716 
2717 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2718 				const struct cntr_entry *entry,
2719 				void *context, int vl, int mode, u64 data)
2720 {
2721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2722 
2723 	return dd->rcv_err_status_cnt[6];
2724 }
2725 
2726 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2727 					  void *context, int vl, int mode,
2728 					  u64 data)
2729 {
2730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2731 
2732 	return dd->rcv_err_status_cnt[5];
2733 }
2734 
2735 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2736 					  void *context, int vl, int mode,
2737 					  u64 data)
2738 {
2739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2740 
2741 	return dd->rcv_err_status_cnt[4];
2742 }
2743 
2744 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2745 					 void *context, int vl, int mode,
2746 					 u64 data)
2747 {
2748 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2749 
2750 	return dd->rcv_err_status_cnt[3];
2751 }
2752 
2753 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2754 					 void *context, int vl, int mode,
2755 					 u64 data)
2756 {
2757 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2758 
2759 	return dd->rcv_err_status_cnt[2];
2760 }
2761 
2762 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2763 					    void *context, int vl, int mode,
2764 					    u64 data)
2765 {
2766 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2767 
2768 	return dd->rcv_err_status_cnt[1];
2769 }
2770 
2771 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2772 					 void *context, int vl, int mode,
2773 					 u64 data)
2774 {
2775 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2776 
2777 	return dd->rcv_err_status_cnt[0];
2778 }
2779 
2780 /*
2781  * Software counters corresponding to each of the
2782  * error status bits within SendPioErrStatus
2783  */
2784 static u64 access_pio_pec_sop_head_parity_err_cnt(
2785 				const struct cntr_entry *entry,
2786 				void *context, int vl, int mode, u64 data)
2787 {
2788 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789 
2790 	return dd->send_pio_err_status_cnt[35];
2791 }
2792 
2793 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2794 				const struct cntr_entry *entry,
2795 				void *context, int vl, int mode, u64 data)
2796 {
2797 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798 
2799 	return dd->send_pio_err_status_cnt[34];
2800 }
2801 
2802 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2803 				const struct cntr_entry *entry,
2804 				void *context, int vl, int mode, u64 data)
2805 {
2806 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807 
2808 	return dd->send_pio_err_status_cnt[33];
2809 }
2810 
2811 static u64 access_pio_current_free_cnt_parity_err_cnt(
2812 				const struct cntr_entry *entry,
2813 				void *context, int vl, int mode, u64 data)
2814 {
2815 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816 
2817 	return dd->send_pio_err_status_cnt[32];
2818 }
2819 
2820 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2821 					  void *context, int vl, int mode,
2822 					  u64 data)
2823 {
2824 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825 
2826 	return dd->send_pio_err_status_cnt[31];
2827 }
2828 
2829 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2830 					  void *context, int vl, int mode,
2831 					  u64 data)
2832 {
2833 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834 
2835 	return dd->send_pio_err_status_cnt[30];
2836 }
2837 
2838 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2839 					   void *context, int vl, int mode,
2840 					   u64 data)
2841 {
2842 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843 
2844 	return dd->send_pio_err_status_cnt[29];
2845 }
2846 
2847 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2848 				const struct cntr_entry *entry,
2849 				void *context, int vl, int mode, u64 data)
2850 {
2851 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852 
2853 	return dd->send_pio_err_status_cnt[28];
2854 }
2855 
2856 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2857 					     void *context, int vl, int mode,
2858 					     u64 data)
2859 {
2860 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861 
2862 	return dd->send_pio_err_status_cnt[27];
2863 }
2864 
2865 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2866 					     void *context, int vl, int mode,
2867 					     u64 data)
2868 {
2869 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870 
2871 	return dd->send_pio_err_status_cnt[26];
2872 }
2873 
2874 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2875 						void *context, int vl,
2876 						int mode, u64 data)
2877 {
2878 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879 
2880 	return dd->send_pio_err_status_cnt[25];
2881 }
2882 
2883 static u64 access_pio_block_qw_count_parity_err_cnt(
2884 				const struct cntr_entry *entry,
2885 				void *context, int vl, int mode, u64 data)
2886 {
2887 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888 
2889 	return dd->send_pio_err_status_cnt[24];
2890 }
2891 
2892 static u64 access_pio_write_qw_valid_parity_err_cnt(
2893 				const struct cntr_entry *entry,
2894 				void *context, int vl, int mode, u64 data)
2895 {
2896 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897 
2898 	return dd->send_pio_err_status_cnt[23];
2899 }
2900 
2901 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2902 					    void *context, int vl, int mode,
2903 					    u64 data)
2904 {
2905 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906 
2907 	return dd->send_pio_err_status_cnt[22];
2908 }
2909 
2910 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2911 						void *context, int vl,
2912 						int mode, u64 data)
2913 {
2914 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915 
2916 	return dd->send_pio_err_status_cnt[21];
2917 }
2918 
2919 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2920 						void *context, int vl,
2921 						int mode, u64 data)
2922 {
2923 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924 
2925 	return dd->send_pio_err_status_cnt[20];
2926 }
2927 
2928 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2929 						void *context, int vl,
2930 						int mode, u64 data)
2931 {
2932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933 
2934 	return dd->send_pio_err_status_cnt[19];
2935 }
2936 
2937 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2938 				const struct cntr_entry *entry,
2939 				void *context, int vl, int mode, u64 data)
2940 {
2941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942 
2943 	return dd->send_pio_err_status_cnt[18];
2944 }
2945 
2946 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2947 					 void *context, int vl, int mode,
2948 					 u64 data)
2949 {
2950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951 
2952 	return dd->send_pio_err_status_cnt[17];
2953 }
2954 
2955 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2956 					    void *context, int vl, int mode,
2957 					    u64 data)
2958 {
2959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960 
2961 	return dd->send_pio_err_status_cnt[16];
2962 }
2963 
2964 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2965 				const struct cntr_entry *entry,
2966 				void *context, int vl, int mode, u64 data)
2967 {
2968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969 
2970 	return dd->send_pio_err_status_cnt[15];
2971 }
2972 
2973 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2974 				const struct cntr_entry *entry,
2975 				void *context, int vl, int mode, u64 data)
2976 {
2977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978 
2979 	return dd->send_pio_err_status_cnt[14];
2980 }
2981 
2982 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2983 				const struct cntr_entry *entry,
2984 				void *context, int vl, int mode, u64 data)
2985 {
2986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987 
2988 	return dd->send_pio_err_status_cnt[13];
2989 }
2990 
2991 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2992 				const struct cntr_entry *entry,
2993 				void *context, int vl, int mode, u64 data)
2994 {
2995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996 
2997 	return dd->send_pio_err_status_cnt[12];
2998 }
2999 
3000 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3001 				const struct cntr_entry *entry,
3002 				void *context, int vl, int mode, u64 data)
3003 {
3004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005 
3006 	return dd->send_pio_err_status_cnt[11];
3007 }
3008 
3009 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3010 				const struct cntr_entry *entry,
3011 				void *context, int vl, int mode, u64 data)
3012 {
3013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014 
3015 	return dd->send_pio_err_status_cnt[10];
3016 }
3017 
3018 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3019 				const struct cntr_entry *entry,
3020 				void *context, int vl, int mode, u64 data)
3021 {
3022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023 
3024 	return dd->send_pio_err_status_cnt[9];
3025 }
3026 
3027 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3028 				const struct cntr_entry *entry,
3029 				void *context, int vl, int mode, u64 data)
3030 {
3031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3032 
3033 	return dd->send_pio_err_status_cnt[8];
3034 }
3035 
3036 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3037 				const struct cntr_entry *entry,
3038 				void *context, int vl, int mode, u64 data)
3039 {
3040 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3041 
3042 	return dd->send_pio_err_status_cnt[7];
3043 }
3044 
3045 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3046 					      void *context, int vl, int mode,
3047 					      u64 data)
3048 {
3049 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3050 
3051 	return dd->send_pio_err_status_cnt[6];
3052 }
3053 
3054 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3055 					      void *context, int vl, int mode,
3056 					      u64 data)
3057 {
3058 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3059 
3060 	return dd->send_pio_err_status_cnt[5];
3061 }
3062 
3063 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3064 					   void *context, int vl, int mode,
3065 					   u64 data)
3066 {
3067 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3068 
3069 	return dd->send_pio_err_status_cnt[4];
3070 }
3071 
3072 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3073 					   void *context, int vl, int mode,
3074 					   u64 data)
3075 {
3076 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3077 
3078 	return dd->send_pio_err_status_cnt[3];
3079 }
3080 
3081 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3082 					 void *context, int vl, int mode,
3083 					 u64 data)
3084 {
3085 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3086 
3087 	return dd->send_pio_err_status_cnt[2];
3088 }
3089 
3090 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3091 						void *context, int vl,
3092 						int mode, u64 data)
3093 {
3094 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3095 
3096 	return dd->send_pio_err_status_cnt[1];
3097 }
3098 
3099 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3100 					     void *context, int vl, int mode,
3101 					     u64 data)
3102 {
3103 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3104 
3105 	return dd->send_pio_err_status_cnt[0];
3106 }
3107 
3108 /*
3109  * Software counters corresponding to each of the
3110  * error status bits within SendDmaErrStatus
3111  */
3112 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3113 				const struct cntr_entry *entry,
3114 				void *context, int vl, int mode, u64 data)
3115 {
3116 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3117 
3118 	return dd->send_dma_err_status_cnt[3];
3119 }
3120 
3121 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3122 				const struct cntr_entry *entry,
3123 				void *context, int vl, int mode, u64 data)
3124 {
3125 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3126 
3127 	return dd->send_dma_err_status_cnt[2];
3128 }
3129 
3130 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3131 					  void *context, int vl, int mode,
3132 					  u64 data)
3133 {
3134 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3135 
3136 	return dd->send_dma_err_status_cnt[1];
3137 }
3138 
3139 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3140 				       void *context, int vl, int mode,
3141 				       u64 data)
3142 {
3143 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3144 
3145 	return dd->send_dma_err_status_cnt[0];
3146 }
3147 
3148 /*
3149  * Software counters corresponding to each of the
3150  * error status bits within SendEgressErrStatus
3151  */
3152 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3153 				const struct cntr_entry *entry,
3154 				void *context, int vl, int mode, u64 data)
3155 {
3156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157 
3158 	return dd->send_egress_err_status_cnt[63];
3159 }
3160 
3161 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3162 				const struct cntr_entry *entry,
3163 				void *context, int vl, int mode, u64 data)
3164 {
3165 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166 
3167 	return dd->send_egress_err_status_cnt[62];
3168 }
3169 
3170 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3171 					     void *context, int vl, int mode,
3172 					     u64 data)
3173 {
3174 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175 
3176 	return dd->send_egress_err_status_cnt[61];
3177 }
3178 
3179 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3180 						 void *context, int vl,
3181 						 int mode, u64 data)
3182 {
3183 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184 
3185 	return dd->send_egress_err_status_cnt[60];
3186 }
3187 
3188 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3189 				const struct cntr_entry *entry,
3190 				void *context, int vl, int mode, u64 data)
3191 {
3192 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193 
3194 	return dd->send_egress_err_status_cnt[59];
3195 }
3196 
3197 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3198 					void *context, int vl, int mode,
3199 					u64 data)
3200 {
3201 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202 
3203 	return dd->send_egress_err_status_cnt[58];
3204 }
3205 
3206 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3207 					    void *context, int vl, int mode,
3208 					    u64 data)
3209 {
3210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211 
3212 	return dd->send_egress_err_status_cnt[57];
3213 }
3214 
3215 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3216 					      void *context, int vl, int mode,
3217 					      u64 data)
3218 {
3219 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220 
3221 	return dd->send_egress_err_status_cnt[56];
3222 }
3223 
3224 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3225 					      void *context, int vl, int mode,
3226 					      u64 data)
3227 {
3228 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229 
3230 	return dd->send_egress_err_status_cnt[55];
3231 }
3232 
3233 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3234 					      void *context, int vl, int mode,
3235 					      u64 data)
3236 {
3237 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238 
3239 	return dd->send_egress_err_status_cnt[54];
3240 }
3241 
3242 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3243 					      void *context, int vl, int mode,
3244 					      u64 data)
3245 {
3246 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247 
3248 	return dd->send_egress_err_status_cnt[53];
3249 }
3250 
3251 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3252 					      void *context, int vl, int mode,
3253 					      u64 data)
3254 {
3255 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256 
3257 	return dd->send_egress_err_status_cnt[52];
3258 }
3259 
3260 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3261 					      void *context, int vl, int mode,
3262 					      u64 data)
3263 {
3264 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265 
3266 	return dd->send_egress_err_status_cnt[51];
3267 }
3268 
3269 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3270 					      void *context, int vl, int mode,
3271 					      u64 data)
3272 {
3273 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274 
3275 	return dd->send_egress_err_status_cnt[50];
3276 }
3277 
3278 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3279 					      void *context, int vl, int mode,
3280 					      u64 data)
3281 {
3282 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283 
3284 	return dd->send_egress_err_status_cnt[49];
3285 }
3286 
3287 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3288 					      void *context, int vl, int mode,
3289 					      u64 data)
3290 {
3291 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292 
3293 	return dd->send_egress_err_status_cnt[48];
3294 }
3295 
3296 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3297 					      void *context, int vl, int mode,
3298 					      u64 data)
3299 {
3300 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301 
3302 	return dd->send_egress_err_status_cnt[47];
3303 }
3304 
3305 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3306 					    void *context, int vl, int mode,
3307 					    u64 data)
3308 {
3309 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310 
3311 	return dd->send_egress_err_status_cnt[46];
3312 }
3313 
3314 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3315 					     void *context, int vl, int mode,
3316 					     u64 data)
3317 {
3318 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319 
3320 	return dd->send_egress_err_status_cnt[45];
3321 }
3322 
3323 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3324 						 void *context, int vl,
3325 						 int mode, u64 data)
3326 {
3327 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328 
3329 	return dd->send_egress_err_status_cnt[44];
3330 }
3331 
3332 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3333 				const struct cntr_entry *entry,
3334 				void *context, int vl, int mode, u64 data)
3335 {
3336 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337 
3338 	return dd->send_egress_err_status_cnt[43];
3339 }
3340 
3341 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3342 					void *context, int vl, int mode,
3343 					u64 data)
3344 {
3345 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346 
3347 	return dd->send_egress_err_status_cnt[42];
3348 }
3349 
3350 static u64 access_tx_credit_return_partiy_err_cnt(
3351 				const struct cntr_entry *entry,
3352 				void *context, int vl, int mode, u64 data)
3353 {
3354 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355 
3356 	return dd->send_egress_err_status_cnt[41];
3357 }
3358 
3359 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3360 				const struct cntr_entry *entry,
3361 				void *context, int vl, int mode, u64 data)
3362 {
3363 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364 
3365 	return dd->send_egress_err_status_cnt[40];
3366 }
3367 
3368 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3369 				const struct cntr_entry *entry,
3370 				void *context, int vl, int mode, u64 data)
3371 {
3372 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373 
3374 	return dd->send_egress_err_status_cnt[39];
3375 }
3376 
3377 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3378 				const struct cntr_entry *entry,
3379 				void *context, int vl, int mode, u64 data)
3380 {
3381 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382 
3383 	return dd->send_egress_err_status_cnt[38];
3384 }
3385 
3386 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3387 				const struct cntr_entry *entry,
3388 				void *context, int vl, int mode, u64 data)
3389 {
3390 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391 
3392 	return dd->send_egress_err_status_cnt[37];
3393 }
3394 
3395 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3396 				const struct cntr_entry *entry,
3397 				void *context, int vl, int mode, u64 data)
3398 {
3399 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400 
3401 	return dd->send_egress_err_status_cnt[36];
3402 }
3403 
3404 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3405 				const struct cntr_entry *entry,
3406 				void *context, int vl, int mode, u64 data)
3407 {
3408 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409 
3410 	return dd->send_egress_err_status_cnt[35];
3411 }
3412 
3413 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3414 				const struct cntr_entry *entry,
3415 				void *context, int vl, int mode, u64 data)
3416 {
3417 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418 
3419 	return dd->send_egress_err_status_cnt[34];
3420 }
3421 
3422 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3423 				const struct cntr_entry *entry,
3424 				void *context, int vl, int mode, u64 data)
3425 {
3426 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427 
3428 	return dd->send_egress_err_status_cnt[33];
3429 }
3430 
3431 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3432 				const struct cntr_entry *entry,
3433 				void *context, int vl, int mode, u64 data)
3434 {
3435 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436 
3437 	return dd->send_egress_err_status_cnt[32];
3438 }
3439 
3440 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3441 				const struct cntr_entry *entry,
3442 				void *context, int vl, int mode, u64 data)
3443 {
3444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445 
3446 	return dd->send_egress_err_status_cnt[31];
3447 }
3448 
3449 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3450 				const struct cntr_entry *entry,
3451 				void *context, int vl, int mode, u64 data)
3452 {
3453 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454 
3455 	return dd->send_egress_err_status_cnt[30];
3456 }
3457 
3458 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3459 				const struct cntr_entry *entry,
3460 				void *context, int vl, int mode, u64 data)
3461 {
3462 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463 
3464 	return dd->send_egress_err_status_cnt[29];
3465 }
3466 
3467 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3468 				const struct cntr_entry *entry,
3469 				void *context, int vl, int mode, u64 data)
3470 {
3471 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472 
3473 	return dd->send_egress_err_status_cnt[28];
3474 }
3475 
3476 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3477 				const struct cntr_entry *entry,
3478 				void *context, int vl, int mode, u64 data)
3479 {
3480 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481 
3482 	return dd->send_egress_err_status_cnt[27];
3483 }
3484 
3485 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3486 				const struct cntr_entry *entry,
3487 				void *context, int vl, int mode, u64 data)
3488 {
3489 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490 
3491 	return dd->send_egress_err_status_cnt[26];
3492 }
3493 
3494 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3495 				const struct cntr_entry *entry,
3496 				void *context, int vl, int mode, u64 data)
3497 {
3498 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499 
3500 	return dd->send_egress_err_status_cnt[25];
3501 }
3502 
3503 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3504 				const struct cntr_entry *entry,
3505 				void *context, int vl, int mode, u64 data)
3506 {
3507 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508 
3509 	return dd->send_egress_err_status_cnt[24];
3510 }
3511 
3512 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3513 				const struct cntr_entry *entry,
3514 				void *context, int vl, int mode, u64 data)
3515 {
3516 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517 
3518 	return dd->send_egress_err_status_cnt[23];
3519 }
3520 
3521 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3522 				const struct cntr_entry *entry,
3523 				void *context, int vl, int mode, u64 data)
3524 {
3525 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526 
3527 	return dd->send_egress_err_status_cnt[22];
3528 }
3529 
3530 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3531 				const struct cntr_entry *entry,
3532 				void *context, int vl, int mode, u64 data)
3533 {
3534 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535 
3536 	return dd->send_egress_err_status_cnt[21];
3537 }
3538 
3539 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3540 				const struct cntr_entry *entry,
3541 				void *context, int vl, int mode, u64 data)
3542 {
3543 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544 
3545 	return dd->send_egress_err_status_cnt[20];
3546 }
3547 
3548 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3549 				const struct cntr_entry *entry,
3550 				void *context, int vl, int mode, u64 data)
3551 {
3552 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553 
3554 	return dd->send_egress_err_status_cnt[19];
3555 }
3556 
3557 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3558 				const struct cntr_entry *entry,
3559 				void *context, int vl, int mode, u64 data)
3560 {
3561 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562 
3563 	return dd->send_egress_err_status_cnt[18];
3564 }
3565 
3566 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3567 				const struct cntr_entry *entry,
3568 				void *context, int vl, int mode, u64 data)
3569 {
3570 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571 
3572 	return dd->send_egress_err_status_cnt[17];
3573 }
3574 
3575 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3576 				const struct cntr_entry *entry,
3577 				void *context, int vl, int mode, u64 data)
3578 {
3579 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580 
3581 	return dd->send_egress_err_status_cnt[16];
3582 }
3583 
3584 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3585 					   void *context, int vl, int mode,
3586 					   u64 data)
3587 {
3588 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589 
3590 	return dd->send_egress_err_status_cnt[15];
3591 }
3592 
3593 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3594 						 void *context, int vl,
3595 						 int mode, u64 data)
3596 {
3597 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598 
3599 	return dd->send_egress_err_status_cnt[14];
3600 }
3601 
3602 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3603 					       void *context, int vl, int mode,
3604 					       u64 data)
3605 {
3606 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607 
3608 	return dd->send_egress_err_status_cnt[13];
3609 }
3610 
3611 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3612 					void *context, int vl, int mode,
3613 					u64 data)
3614 {
3615 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616 
3617 	return dd->send_egress_err_status_cnt[12];
3618 }
3619 
3620 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3621 				const struct cntr_entry *entry,
3622 				void *context, int vl, int mode, u64 data)
3623 {
3624 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625 
3626 	return dd->send_egress_err_status_cnt[11];
3627 }
3628 
3629 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3630 					     void *context, int vl, int mode,
3631 					     u64 data)
3632 {
3633 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634 
3635 	return dd->send_egress_err_status_cnt[10];
3636 }
3637 
3638 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3639 					    void *context, int vl, int mode,
3640 					    u64 data)
3641 {
3642 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643 
3644 	return dd->send_egress_err_status_cnt[9];
3645 }
3646 
3647 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3648 				const struct cntr_entry *entry,
3649 				void *context, int vl, int mode, u64 data)
3650 {
3651 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3652 
3653 	return dd->send_egress_err_status_cnt[8];
3654 }
3655 
3656 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3657 				const struct cntr_entry *entry,
3658 				void *context, int vl, int mode, u64 data)
3659 {
3660 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3661 
3662 	return dd->send_egress_err_status_cnt[7];
3663 }
3664 
3665 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3666 					    void *context, int vl, int mode,
3667 					    u64 data)
3668 {
3669 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3670 
3671 	return dd->send_egress_err_status_cnt[6];
3672 }
3673 
3674 static u64 access_tx_incorrect_link_state_err_cnt(
3675 				const struct cntr_entry *entry,
3676 				void *context, int vl, int mode, u64 data)
3677 {
3678 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3679 
3680 	return dd->send_egress_err_status_cnt[5];
3681 }
3682 
3683 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3684 				      void *context, int vl, int mode,
3685 				      u64 data)
3686 {
3687 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3688 
3689 	return dd->send_egress_err_status_cnt[4];
3690 }
3691 
3692 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3693 				const struct cntr_entry *entry,
3694 				void *context, int vl, int mode, u64 data)
3695 {
3696 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3697 
3698 	return dd->send_egress_err_status_cnt[3];
3699 }
3700 
3701 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3702 					    void *context, int vl, int mode,
3703 					    u64 data)
3704 {
3705 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3706 
3707 	return dd->send_egress_err_status_cnt[2];
3708 }
3709 
3710 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3711 				const struct cntr_entry *entry,
3712 				void *context, int vl, int mode, u64 data)
3713 {
3714 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3715 
3716 	return dd->send_egress_err_status_cnt[1];
3717 }
3718 
3719 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3720 				const struct cntr_entry *entry,
3721 				void *context, int vl, int mode, u64 data)
3722 {
3723 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3724 
3725 	return dd->send_egress_err_status_cnt[0];
3726 }
3727 
3728 /*
3729  * Software counters corresponding to each of the
3730  * error status bits within SendErrStatus
3731  */
3732 static u64 access_send_csr_write_bad_addr_err_cnt(
3733 				const struct cntr_entry *entry,
3734 				void *context, int vl, int mode, u64 data)
3735 {
3736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3737 
3738 	return dd->send_err_status_cnt[2];
3739 }
3740 
3741 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3742 						 void *context, int vl,
3743 						 int mode, u64 data)
3744 {
3745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3746 
3747 	return dd->send_err_status_cnt[1];
3748 }
3749 
3750 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3751 				      void *context, int vl, int mode,
3752 				      u64 data)
3753 {
3754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3755 
3756 	return dd->send_err_status_cnt[0];
3757 }
3758 
3759 /*
3760  * Software counters corresponding to each of the
3761  * error status bits within SendCtxtErrStatus
3762  */
3763 static u64 access_pio_write_out_of_bounds_err_cnt(
3764 				const struct cntr_entry *entry,
3765 				void *context, int vl, int mode, u64 data)
3766 {
3767 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3768 
3769 	return dd->sw_ctxt_err_status_cnt[4];
3770 }
3771 
3772 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3773 					     void *context, int vl, int mode,
3774 					     u64 data)
3775 {
3776 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3777 
3778 	return dd->sw_ctxt_err_status_cnt[3];
3779 }
3780 
3781 static u64 access_pio_write_crosses_boundary_err_cnt(
3782 				const struct cntr_entry *entry,
3783 				void *context, int vl, int mode, u64 data)
3784 {
3785 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3786 
3787 	return dd->sw_ctxt_err_status_cnt[2];
3788 }
3789 
3790 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3791 						void *context, int vl,
3792 						int mode, u64 data)
3793 {
3794 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3795 
3796 	return dd->sw_ctxt_err_status_cnt[1];
3797 }
3798 
3799 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3800 					       void *context, int vl, int mode,
3801 					       u64 data)
3802 {
3803 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3804 
3805 	return dd->sw_ctxt_err_status_cnt[0];
3806 }
3807 
3808 /*
3809  * Software counters corresponding to each of the
3810  * error status bits within SendDmaEngErrStatus
3811  */
3812 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3813 				const struct cntr_entry *entry,
3814 				void *context, int vl, int mode, u64 data)
3815 {
3816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817 
3818 	return dd->sw_send_dma_eng_err_status_cnt[23];
3819 }
3820 
3821 static u64 access_sdma_header_storage_cor_err_cnt(
3822 				const struct cntr_entry *entry,
3823 				void *context, int vl, int mode, u64 data)
3824 {
3825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826 
3827 	return dd->sw_send_dma_eng_err_status_cnt[22];
3828 }
3829 
3830 static u64 access_sdma_packet_tracking_cor_err_cnt(
3831 				const struct cntr_entry *entry,
3832 				void *context, int vl, int mode, u64 data)
3833 {
3834 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835 
3836 	return dd->sw_send_dma_eng_err_status_cnt[21];
3837 }
3838 
3839 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3840 					    void *context, int vl, int mode,
3841 					    u64 data)
3842 {
3843 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844 
3845 	return dd->sw_send_dma_eng_err_status_cnt[20];
3846 }
3847 
3848 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3849 					      void *context, int vl, int mode,
3850 					      u64 data)
3851 {
3852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853 
3854 	return dd->sw_send_dma_eng_err_status_cnt[19];
3855 }
3856 
3857 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3858 				const struct cntr_entry *entry,
3859 				void *context, int vl, int mode, u64 data)
3860 {
3861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862 
3863 	return dd->sw_send_dma_eng_err_status_cnt[18];
3864 }
3865 
3866 static u64 access_sdma_header_storage_unc_err_cnt(
3867 				const struct cntr_entry *entry,
3868 				void *context, int vl, int mode, u64 data)
3869 {
3870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871 
3872 	return dd->sw_send_dma_eng_err_status_cnt[17];
3873 }
3874 
3875 static u64 access_sdma_packet_tracking_unc_err_cnt(
3876 				const struct cntr_entry *entry,
3877 				void *context, int vl, int mode, u64 data)
3878 {
3879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880 
3881 	return dd->sw_send_dma_eng_err_status_cnt[16];
3882 }
3883 
3884 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3885 					    void *context, int vl, int mode,
3886 					    u64 data)
3887 {
3888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3889 
3890 	return dd->sw_send_dma_eng_err_status_cnt[15];
3891 }
3892 
3893 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3894 					      void *context, int vl, int mode,
3895 					      u64 data)
3896 {
3897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3898 
3899 	return dd->sw_send_dma_eng_err_status_cnt[14];
3900 }
3901 
3902 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3903 				       void *context, int vl, int mode,
3904 				       u64 data)
3905 {
3906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3907 
3908 	return dd->sw_send_dma_eng_err_status_cnt[13];
3909 }
3910 
3911 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3912 					     void *context, int vl, int mode,
3913 					     u64 data)
3914 {
3915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3916 
3917 	return dd->sw_send_dma_eng_err_status_cnt[12];
3918 }
3919 
3920 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3921 					      void *context, int vl, int mode,
3922 					      u64 data)
3923 {
3924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3925 
3926 	return dd->sw_send_dma_eng_err_status_cnt[11];
3927 }
3928 
3929 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3930 					     void *context, int vl, int mode,
3931 					     u64 data)
3932 {
3933 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3934 
3935 	return dd->sw_send_dma_eng_err_status_cnt[10];
3936 }
3937 
3938 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3939 					  void *context, int vl, int mode,
3940 					  u64 data)
3941 {
3942 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3943 
3944 	return dd->sw_send_dma_eng_err_status_cnt[9];
3945 }
3946 
3947 static u64 access_sdma_packet_desc_overflow_err_cnt(
3948 				const struct cntr_entry *entry,
3949 				void *context, int vl, int mode, u64 data)
3950 {
3951 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3952 
3953 	return dd->sw_send_dma_eng_err_status_cnt[8];
3954 }
3955 
3956 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3957 					       void *context, int vl,
3958 					       int mode, u64 data)
3959 {
3960 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3961 
3962 	return dd->sw_send_dma_eng_err_status_cnt[7];
3963 }
3964 
3965 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3966 				    void *context, int vl, int mode, u64 data)
3967 {
3968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3969 
3970 	return dd->sw_send_dma_eng_err_status_cnt[6];
3971 }
3972 
3973 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3974 					void *context, int vl, int mode,
3975 					u64 data)
3976 {
3977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3978 
3979 	return dd->sw_send_dma_eng_err_status_cnt[5];
3980 }
3981 
3982 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3983 					  void *context, int vl, int mode,
3984 					  u64 data)
3985 {
3986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3987 
3988 	return dd->sw_send_dma_eng_err_status_cnt[4];
3989 }
3990 
3991 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3992 				const struct cntr_entry *entry,
3993 				void *context, int vl, int mode, u64 data)
3994 {
3995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3996 
3997 	return dd->sw_send_dma_eng_err_status_cnt[3];
3998 }
3999 
4000 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4001 					void *context, int vl, int mode,
4002 					u64 data)
4003 {
4004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4005 
4006 	return dd->sw_send_dma_eng_err_status_cnt[2];
4007 }
4008 
4009 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4010 					    void *context, int vl, int mode,
4011 					    u64 data)
4012 {
4013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4014 
4015 	return dd->sw_send_dma_eng_err_status_cnt[1];
4016 }
4017 
4018 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4019 					void *context, int vl, int mode,
4020 					u64 data)
4021 {
4022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4023 
4024 	return dd->sw_send_dma_eng_err_status_cnt[0];
4025 }
4026 
4027 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4028 				 void *context, int vl, int mode,
4029 				 u64 data)
4030 {
4031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4032 
4033 	u64 val = 0;
4034 	u64 csr = entry->csr;
4035 
4036 	val = read_write_csr(dd, csr, mode, data);
4037 	if (mode == CNTR_MODE_R) {
4038 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4039 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4040 	} else if (mode == CNTR_MODE_W) {
4041 		dd->sw_rcv_bypass_packet_errors = 0;
4042 	} else {
4043 		dd_dev_err(dd, "Invalid cntr register access mode");
4044 		return 0;
4045 	}
4046 	return val;
4047 }
4048 
4049 #define def_access_sw_cpu(cntr) \
4050 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4051 			      void *context, int vl, int mode, u64 data)      \
4052 {									      \
4053 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4054 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4055 			      ppd->ibport_data.rvp.cntr, vl,		      \
4056 			      mode, data);				      \
4057 }
4058 
4059 def_access_sw_cpu(rc_acks);
4060 def_access_sw_cpu(rc_qacks);
4061 def_access_sw_cpu(rc_delayed_comp);
4062 
4063 #define def_access_ibp_counter(cntr) \
4064 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4065 				void *context, int vl, int mode, u64 data)    \
4066 {									      \
4067 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4068 									      \
4069 	if (vl != CNTR_INVALID_VL)					      \
4070 		return 0;						      \
4071 									      \
4072 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4073 			     mode, data);				      \
4074 }
4075 
4076 def_access_ibp_counter(loop_pkts);
4077 def_access_ibp_counter(rc_resends);
4078 def_access_ibp_counter(rnr_naks);
4079 def_access_ibp_counter(other_naks);
4080 def_access_ibp_counter(rc_timeouts);
4081 def_access_ibp_counter(pkt_drops);
4082 def_access_ibp_counter(dmawait);
4083 def_access_ibp_counter(rc_seqnak);
4084 def_access_ibp_counter(rc_dupreq);
4085 def_access_ibp_counter(rdma_seq);
4086 def_access_ibp_counter(unaligned);
4087 def_access_ibp_counter(seq_naks);
4088 def_access_ibp_counter(rc_crwaits);
4089 
4090 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4091 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4092 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4093 [C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4094 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4095 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4096 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4097 			CNTR_NORMAL),
4098 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4099 			CNTR_NORMAL),
4100 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4101 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4102 			CNTR_NORMAL),
4103 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4104 			CNTR_NORMAL),
4105 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4106 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4107 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4108 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4109 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4110 			CNTR_NORMAL),
4111 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4112 			CNTR_NORMAL),
4113 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4114 			CNTR_NORMAL),
4115 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4116 			CNTR_NORMAL),
4117 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4118 			CNTR_NORMAL),
4119 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4120 			CNTR_NORMAL),
4121 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4122 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4123 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4124 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4125 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4126 			      CNTR_SYNTH),
4127 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4128 			    access_dc_rcv_err_cnt),
4129 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4130 				 CNTR_SYNTH),
4131 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4132 				  CNTR_SYNTH),
4133 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4134 				  CNTR_SYNTH),
4135 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4136 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4137 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4138 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4139 				  CNTR_SYNTH),
4140 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4141 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4142 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4143 			       CNTR_SYNTH),
4144 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4145 			      CNTR_SYNTH),
4146 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4147 			       CNTR_SYNTH),
4148 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4149 				 CNTR_SYNTH),
4150 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4151 				CNTR_SYNTH),
4152 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4153 				CNTR_SYNTH),
4154 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4155 			       CNTR_SYNTH),
4156 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4157 				 CNTR_SYNTH | CNTR_VL),
4158 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4159 				CNTR_SYNTH | CNTR_VL),
4160 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4161 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4162 				 CNTR_SYNTH | CNTR_VL),
4163 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4164 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4165 				 CNTR_SYNTH | CNTR_VL),
4166 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4167 			      CNTR_SYNTH),
4168 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4169 				 CNTR_SYNTH | CNTR_VL),
4170 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4171 				CNTR_SYNTH),
4172 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4173 				   CNTR_SYNTH | CNTR_VL),
4174 [C_DC_TOTAL_CRC] =
4175 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4176 			 CNTR_SYNTH),
4177 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4178 				  CNTR_SYNTH),
4179 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4180 				  CNTR_SYNTH),
4181 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4182 				  CNTR_SYNTH),
4183 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4184 				  CNTR_SYNTH),
4185 [C_DC_CRC_MULT_LN] =
4186 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4187 			 CNTR_SYNTH),
4188 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4189 				    CNTR_SYNTH),
4190 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4191 				    CNTR_SYNTH),
4192 [C_DC_SEQ_CRC_CNT] =
4193 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4194 			 CNTR_SYNTH),
4195 [C_DC_ESC0_ONLY_CNT] =
4196 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4197 			 CNTR_SYNTH),
4198 [C_DC_ESC0_PLUS1_CNT] =
4199 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4200 			 CNTR_SYNTH),
4201 [C_DC_ESC0_PLUS2_CNT] =
4202 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4203 			 CNTR_SYNTH),
4204 [C_DC_REINIT_FROM_PEER_CNT] =
4205 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4206 			 CNTR_SYNTH),
4207 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4208 				  CNTR_SYNTH),
4209 [C_DC_MISC_FLG_CNT] =
4210 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4211 			 CNTR_SYNTH),
4212 [C_DC_PRF_GOOD_LTP_CNT] =
4213 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4214 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4215 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4216 			 CNTR_SYNTH),
4217 [C_DC_PRF_RX_FLIT_CNT] =
4218 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4219 [C_DC_PRF_TX_FLIT_CNT] =
4220 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4221 [C_DC_PRF_CLK_CNTR] =
4222 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4223 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4224 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4225 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4226 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4227 			 CNTR_SYNTH),
4228 [C_DC_PG_STS_TX_SBE_CNT] =
4229 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4230 [C_DC_PG_STS_TX_MBE_CNT] =
4231 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4232 			 CNTR_SYNTH),
4233 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4234 			    access_sw_cpu_intr),
4235 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4236 			    access_sw_cpu_rcv_limit),
4237 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4238 			    access_sw_ctx0_seq_drop),
4239 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4240 			    access_sw_vtx_wait),
4241 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4242 			    access_sw_pio_wait),
4243 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4244 			    access_sw_pio_drain),
4245 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4246 			    access_sw_kmem_wait),
4247 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4248 			    hfi1_access_sw_tid_wait),
4249 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4250 			    access_sw_send_schedule),
4251 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4252 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4253 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4254 				      dev_access_u32_csr),
4255 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4256 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4257 			     access_sde_int_cnt),
4258 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4259 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4260 			     access_sde_err_cnt),
4261 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4262 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4263 				  access_sde_idle_int_cnt),
4264 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4265 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4266 				      access_sde_progress_int_cnt),
4267 /* MISC_ERR_STATUS */
4268 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4269 				CNTR_NORMAL,
4270 				access_misc_pll_lock_fail_err_cnt),
4271 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4272 				CNTR_NORMAL,
4273 				access_misc_mbist_fail_err_cnt),
4274 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4275 				CNTR_NORMAL,
4276 				access_misc_invalid_eep_cmd_err_cnt),
4277 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4278 				CNTR_NORMAL,
4279 				access_misc_efuse_done_parity_err_cnt),
4280 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4281 				CNTR_NORMAL,
4282 				access_misc_efuse_write_err_cnt),
4283 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4284 				0, CNTR_NORMAL,
4285 				access_misc_efuse_read_bad_addr_err_cnt),
4286 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4287 				CNTR_NORMAL,
4288 				access_misc_efuse_csr_parity_err_cnt),
4289 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4290 				CNTR_NORMAL,
4291 				access_misc_fw_auth_failed_err_cnt),
4292 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4293 				CNTR_NORMAL,
4294 				access_misc_key_mismatch_err_cnt),
4295 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4296 				CNTR_NORMAL,
4297 				access_misc_sbus_write_failed_err_cnt),
4298 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_misc_csr_write_bad_addr_err_cnt),
4301 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_misc_csr_read_bad_addr_err_cnt),
4304 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_misc_csr_parity_err_cnt),
4307 /* CceErrStatus */
4308 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_sw_cce_err_status_aggregated_cnt),
4311 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_cce_msix_csr_parity_err_cnt),
4314 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4315 				CNTR_NORMAL,
4316 				access_cce_int_map_unc_err_cnt),
4317 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_cce_int_map_cor_err_cnt),
4320 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4321 				CNTR_NORMAL,
4322 				access_cce_msix_table_unc_err_cnt),
4323 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4324 				CNTR_NORMAL,
4325 				access_cce_msix_table_cor_err_cnt),
4326 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4327 				0, CNTR_NORMAL,
4328 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4329 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4330 				0, CNTR_NORMAL,
4331 				access_cce_rcpl_async_fifo_parity_err_cnt),
4332 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4333 				CNTR_NORMAL,
4334 				access_cce_seg_write_bad_addr_err_cnt),
4335 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4336 				CNTR_NORMAL,
4337 				access_cce_seg_read_bad_addr_err_cnt),
4338 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4339 				CNTR_NORMAL,
4340 				access_la_triggered_cnt),
4341 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4342 				CNTR_NORMAL,
4343 				access_cce_trgt_cpl_timeout_err_cnt),
4344 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_pcic_receive_parity_err_cnt),
4347 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4348 				CNTR_NORMAL,
4349 				access_pcic_transmit_back_parity_err_cnt),
4350 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4351 				0, CNTR_NORMAL,
4352 				access_pcic_transmit_front_parity_err_cnt),
4353 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4354 				CNTR_NORMAL,
4355 				access_pcic_cpl_dat_q_unc_err_cnt),
4356 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4357 				CNTR_NORMAL,
4358 				access_pcic_cpl_hd_q_unc_err_cnt),
4359 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4360 				CNTR_NORMAL,
4361 				access_pcic_post_dat_q_unc_err_cnt),
4362 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4363 				CNTR_NORMAL,
4364 				access_pcic_post_hd_q_unc_err_cnt),
4365 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_pcic_retry_sot_mem_unc_err_cnt),
4368 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4369 				CNTR_NORMAL,
4370 				access_pcic_retry_mem_unc_err),
4371 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4372 				CNTR_NORMAL,
4373 				access_pcic_n_post_dat_q_parity_err_cnt),
4374 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4375 				CNTR_NORMAL,
4376 				access_pcic_n_post_h_q_parity_err_cnt),
4377 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_pcic_cpl_dat_q_cor_err_cnt),
4380 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_pcic_cpl_hd_q_cor_err_cnt),
4383 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_pcic_post_dat_q_cor_err_cnt),
4386 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_post_hd_q_cor_err_cnt),
4389 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_retry_sot_mem_cor_err_cnt),
4392 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4393 				CNTR_NORMAL,
4394 				access_pcic_retry_mem_cor_err_cnt),
4395 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4396 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4397 				CNTR_NORMAL,
4398 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4399 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4400 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4401 				CNTR_NORMAL,
4402 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4403 				),
4404 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4405 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4406 			CNTR_NORMAL,
4407 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4408 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4409 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4410 			CNTR_NORMAL,
4411 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4412 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4413 			0, CNTR_NORMAL,
4414 			access_cce_cli2_async_fifo_parity_err_cnt),
4415 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4416 			CNTR_NORMAL,
4417 			access_cce_csr_cfg_bus_parity_err_cnt),
4418 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4419 			0, CNTR_NORMAL,
4420 			access_cce_cli0_async_fifo_parity_err_cnt),
4421 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4422 			CNTR_NORMAL,
4423 			access_cce_rspd_data_parity_err_cnt),
4424 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4425 			CNTR_NORMAL,
4426 			access_cce_trgt_access_err_cnt),
4427 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4428 			0, CNTR_NORMAL,
4429 			access_cce_trgt_async_fifo_parity_err_cnt),
4430 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4431 			CNTR_NORMAL,
4432 			access_cce_csr_write_bad_addr_err_cnt),
4433 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4434 			CNTR_NORMAL,
4435 			access_cce_csr_read_bad_addr_err_cnt),
4436 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4437 			CNTR_NORMAL,
4438 			access_ccs_csr_parity_err_cnt),
4439 
4440 /* RcvErrStatus */
4441 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4442 			CNTR_NORMAL,
4443 			access_rx_csr_parity_err_cnt),
4444 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4445 			CNTR_NORMAL,
4446 			access_rx_csr_write_bad_addr_err_cnt),
4447 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4448 			CNTR_NORMAL,
4449 			access_rx_csr_read_bad_addr_err_cnt),
4450 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4451 			CNTR_NORMAL,
4452 			access_rx_dma_csr_unc_err_cnt),
4453 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_dma_dq_fsm_encoding_err_cnt),
4456 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_dma_eq_fsm_encoding_err_cnt),
4459 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4460 			CNTR_NORMAL,
4461 			access_rx_dma_csr_parity_err_cnt),
4462 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4463 			CNTR_NORMAL,
4464 			access_rx_rbuf_data_cor_err_cnt),
4465 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_rbuf_data_unc_err_cnt),
4468 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4471 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4474 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4475 			CNTR_NORMAL,
4476 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4477 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4478 			CNTR_NORMAL,
4479 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4480 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4481 			CNTR_NORMAL,
4482 			access_rx_rbuf_desc_part2_cor_err_cnt),
4483 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_rbuf_desc_part2_unc_err_cnt),
4486 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_rbuf_desc_part1_cor_err_cnt),
4489 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_rbuf_desc_part1_unc_err_cnt),
4492 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_hq_intr_fsm_err_cnt),
4495 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_hq_intr_csr_parity_err_cnt),
4498 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_lookup_csr_parity_err_cnt),
4501 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_lookup_rcv_array_cor_err_cnt),
4504 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_lookup_rcv_array_unc_err_cnt),
4507 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4508 			0, CNTR_NORMAL,
4509 			access_rx_lookup_des_part2_parity_err_cnt),
4510 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4511 			0, CNTR_NORMAL,
4512 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4513 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4514 			CNTR_NORMAL,
4515 			access_rx_lookup_des_part1_unc_err_cnt),
4516 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4517 			CNTR_NORMAL,
4518 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4519 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4520 			CNTR_NORMAL,
4521 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4522 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4523 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4526 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4527 			0, CNTR_NORMAL,
4528 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4529 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4530 			0, CNTR_NORMAL,
4531 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4532 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4533 			CNTR_NORMAL,
4534 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4535 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4536 			CNTR_NORMAL,
4537 			access_rx_rbuf_empty_err_cnt),
4538 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4539 			CNTR_NORMAL,
4540 			access_rx_rbuf_full_err_cnt),
4541 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4542 			CNTR_NORMAL,
4543 			access_rbuf_bad_lookup_err_cnt),
4544 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4545 			CNTR_NORMAL,
4546 			access_rbuf_ctx_id_parity_err_cnt),
4547 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rbuf_csr_qeopdw_parity_err_cnt),
4550 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4551 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4554 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4555 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4556 			CNTR_NORMAL,
4557 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4558 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4559 			0, CNTR_NORMAL,
4560 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4561 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4562 			0, CNTR_NORMAL,
4563 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4564 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4565 			0, 0, CNTR_NORMAL,
4566 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4567 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4568 			0, CNTR_NORMAL,
4569 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4570 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4571 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4572 			CNTR_NORMAL,
4573 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4574 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4575 			0, CNTR_NORMAL,
4576 			access_rx_rbuf_block_list_read_cor_err_cnt),
4577 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4578 			0, CNTR_NORMAL,
4579 			access_rx_rbuf_block_list_read_unc_err_cnt),
4580 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4581 			CNTR_NORMAL,
4582 			access_rx_rbuf_lookup_des_cor_err_cnt),
4583 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4584 			CNTR_NORMAL,
4585 			access_rx_rbuf_lookup_des_unc_err_cnt),
4586 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4587 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4590 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4591 			CNTR_NORMAL,
4592 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4593 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_rx_rbuf_free_list_cor_err_cnt),
4596 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4597 			CNTR_NORMAL,
4598 			access_rx_rbuf_free_list_unc_err_cnt),
4599 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4600 			CNTR_NORMAL,
4601 			access_rx_rcv_fsm_encoding_err_cnt),
4602 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4603 			CNTR_NORMAL,
4604 			access_rx_dma_flag_cor_err_cnt),
4605 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4606 			CNTR_NORMAL,
4607 			access_rx_dma_flag_unc_err_cnt),
4608 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4609 			CNTR_NORMAL,
4610 			access_rx_dc_sop_eop_parity_err_cnt),
4611 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_rx_rcv_csr_parity_err_cnt),
4614 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_rx_rcv_qp_map_table_cor_err_cnt),
4617 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_rx_rcv_qp_map_table_unc_err_cnt),
4620 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4621 			CNTR_NORMAL,
4622 			access_rx_rcv_data_cor_err_cnt),
4623 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_rx_rcv_data_unc_err_cnt),
4626 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_rx_rcv_hdr_cor_err_cnt),
4629 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_rcv_hdr_unc_err_cnt),
4632 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_dc_intf_parity_err_cnt),
4635 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_dma_csr_cor_err_cnt),
4638 /* SendPioErrStatus */
4639 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_pio_pec_sop_head_parity_err_cnt),
4642 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_pio_pcc_sop_head_parity_err_cnt),
4645 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4646 			0, 0, CNTR_NORMAL,
4647 			access_pio_last_returned_cnt_parity_err_cnt),
4648 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4649 			0, CNTR_NORMAL,
4650 			access_pio_current_free_cnt_parity_err_cnt),
4651 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4652 			CNTR_NORMAL,
4653 			access_pio_reserved_31_err_cnt),
4654 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4655 			CNTR_NORMAL,
4656 			access_pio_reserved_30_err_cnt),
4657 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4658 			CNTR_NORMAL,
4659 			access_pio_ppmc_sop_len_err_cnt),
4660 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4663 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_vl_fifo_parity_err_cnt),
4666 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_vlf_sop_parity_err_cnt),
4669 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4670 			CNTR_NORMAL,
4671 			access_pio_vlf_v1_len_parity_err_cnt),
4672 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4673 			CNTR_NORMAL,
4674 			access_pio_block_qw_count_parity_err_cnt),
4675 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4676 			CNTR_NORMAL,
4677 			access_pio_write_qw_valid_parity_err_cnt),
4678 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4679 			CNTR_NORMAL,
4680 			access_pio_state_machine_err_cnt),
4681 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_write_data_parity_err_cnt),
4684 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_host_addr_mem_cor_err_cnt),
4687 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4688 			CNTR_NORMAL,
4689 			access_pio_host_addr_mem_unc_err_cnt),
4690 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4691 			CNTR_NORMAL,
4692 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4693 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_init_sm_in_err_cnt),
4696 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_ppmc_pbl_fifo_err_cnt),
4699 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4700 			0, CNTR_NORMAL,
4701 			access_pio_credit_ret_fifo_parity_err_cnt),
4702 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4705 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4706 			CNTR_NORMAL,
4707 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4708 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4709 			CNTR_NORMAL,
4710 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4711 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4714 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_sm_pkt_reset_parity_err_cnt),
4717 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_pkt_evict_fifo_parity_err_cnt),
4720 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4721 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4722 			CNTR_NORMAL,
4723 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4724 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4725 			CNTR_NORMAL,
4726 			access_pio_sbrdctl_crrel_parity_err_cnt),
4727 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4728 			CNTR_NORMAL,
4729 			access_pio_pec_fifo_parity_err_cnt),
4730 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4731 			CNTR_NORMAL,
4732 			access_pio_pcc_fifo_parity_err_cnt),
4733 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4734 			CNTR_NORMAL,
4735 			access_pio_sb_mem_fifo1_err_cnt),
4736 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4737 			CNTR_NORMAL,
4738 			access_pio_sb_mem_fifo0_err_cnt),
4739 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4740 			CNTR_NORMAL,
4741 			access_pio_csr_parity_err_cnt),
4742 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4743 			CNTR_NORMAL,
4744 			access_pio_write_addr_parity_err_cnt),
4745 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4746 			CNTR_NORMAL,
4747 			access_pio_write_bad_ctxt_err_cnt),
4748 /* SendDmaErrStatus */
4749 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4750 			0, CNTR_NORMAL,
4751 			access_sdma_pcie_req_tracking_cor_err_cnt),
4752 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4753 			0, CNTR_NORMAL,
4754 			access_sdma_pcie_req_tracking_unc_err_cnt),
4755 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4756 			CNTR_NORMAL,
4757 			access_sdma_csr_parity_err_cnt),
4758 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4759 			CNTR_NORMAL,
4760 			access_sdma_rpy_tag_err_cnt),
4761 /* SendEgressErrStatus */
4762 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4763 			CNTR_NORMAL,
4764 			access_tx_read_pio_memory_csr_unc_err_cnt),
4765 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4766 			0, CNTR_NORMAL,
4767 			access_tx_read_sdma_memory_csr_err_cnt),
4768 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4769 			CNTR_NORMAL,
4770 			access_tx_egress_fifo_cor_err_cnt),
4771 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4772 			CNTR_NORMAL,
4773 			access_tx_read_pio_memory_cor_err_cnt),
4774 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4775 			CNTR_NORMAL,
4776 			access_tx_read_sdma_memory_cor_err_cnt),
4777 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4778 			CNTR_NORMAL,
4779 			access_tx_sb_hdr_cor_err_cnt),
4780 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4781 			CNTR_NORMAL,
4782 			access_tx_credit_overrun_err_cnt),
4783 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4784 			CNTR_NORMAL,
4785 			access_tx_launch_fifo8_cor_err_cnt),
4786 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4787 			CNTR_NORMAL,
4788 			access_tx_launch_fifo7_cor_err_cnt),
4789 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4790 			CNTR_NORMAL,
4791 			access_tx_launch_fifo6_cor_err_cnt),
4792 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4793 			CNTR_NORMAL,
4794 			access_tx_launch_fifo5_cor_err_cnt),
4795 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4796 			CNTR_NORMAL,
4797 			access_tx_launch_fifo4_cor_err_cnt),
4798 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4799 			CNTR_NORMAL,
4800 			access_tx_launch_fifo3_cor_err_cnt),
4801 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4802 			CNTR_NORMAL,
4803 			access_tx_launch_fifo2_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_launch_fifo1_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4808 			CNTR_NORMAL,
4809 			access_tx_launch_fifo0_cor_err_cnt),
4810 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_credit_return_vl_err_cnt),
4813 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_hcrc_insertion_err_cnt),
4816 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_egress_fifo_unc_err_cnt),
4819 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_read_pio_memory_unc_err_cnt),
4822 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_read_sdma_memory_unc_err_cnt),
4825 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_sb_hdr_unc_err_cnt),
4828 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_credit_return_partiy_err_cnt),
4831 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4832 			0, 0, CNTR_NORMAL,
4833 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4834 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4835 			0, 0, CNTR_NORMAL,
4836 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4837 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4838 			0, 0, CNTR_NORMAL,
4839 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4840 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4841 			0, 0, CNTR_NORMAL,
4842 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4843 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4844 			0, 0, CNTR_NORMAL,
4845 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4846 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4847 			0, 0, CNTR_NORMAL,
4848 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4849 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4853 			0, 0, CNTR_NORMAL,
4854 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4858 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4859 			0, 0, CNTR_NORMAL,
4860 			access_tx_sdma15_disallowed_packet_err_cnt),
4861 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4862 			0, 0, CNTR_NORMAL,
4863 			access_tx_sdma14_disallowed_packet_err_cnt),
4864 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4865 			0, 0, CNTR_NORMAL,
4866 			access_tx_sdma13_disallowed_packet_err_cnt),
4867 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4868 			0, 0, CNTR_NORMAL,
4869 			access_tx_sdma12_disallowed_packet_err_cnt),
4870 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4871 			0, 0, CNTR_NORMAL,
4872 			access_tx_sdma11_disallowed_packet_err_cnt),
4873 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_sdma10_disallowed_packet_err_cnt),
4876 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_sdma9_disallowed_packet_err_cnt),
4879 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_sdma8_disallowed_packet_err_cnt),
4882 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_sdma7_disallowed_packet_err_cnt),
4885 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_sdma6_disallowed_packet_err_cnt),
4888 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_sdma5_disallowed_packet_err_cnt),
4891 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_sdma4_disallowed_packet_err_cnt),
4894 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_sdma3_disallowed_packet_err_cnt),
4897 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_sdma2_disallowed_packet_err_cnt),
4900 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma1_disallowed_packet_err_cnt),
4903 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma0_disallowed_packet_err_cnt),
4906 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4907 			CNTR_NORMAL,
4908 			access_tx_config_parity_err_cnt),
4909 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4910 			CNTR_NORMAL,
4911 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4912 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4913 			CNTR_NORMAL,
4914 			access_tx_launch_csr_parity_err_cnt),
4915 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4916 			CNTR_NORMAL,
4917 			access_tx_illegal_vl_err_cnt),
4918 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4919 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4922 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_egress_reserved_10_err_cnt),
4925 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4926 			CNTR_NORMAL,
4927 			access_egress_reserved_9_err_cnt),
4928 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4929 			0, 0, CNTR_NORMAL,
4930 			access_tx_sdma_launch_intf_parity_err_cnt),
4931 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_tx_pio_launch_intf_parity_err_cnt),
4934 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4935 			CNTR_NORMAL,
4936 			access_egress_reserved_6_err_cnt),
4937 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4938 			CNTR_NORMAL,
4939 			access_tx_incorrect_link_state_err_cnt),
4940 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4941 			CNTR_NORMAL,
4942 			access_tx_linkdown_err_cnt),
4943 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4944 			"EgressFifoUnderrunOrParityErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4947 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_egress_reserved_2_err_cnt),
4950 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4951 			CNTR_NORMAL,
4952 			access_tx_pkt_integrity_mem_unc_err_cnt),
4953 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_tx_pkt_integrity_mem_cor_err_cnt),
4956 /* SendErrStatus */
4957 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_send_csr_write_bad_addr_err_cnt),
4960 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4961 			CNTR_NORMAL,
4962 			access_send_csr_read_bad_addr_err_cnt),
4963 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4964 			CNTR_NORMAL,
4965 			access_send_csr_parity_cnt),
4966 /* SendCtxtErrStatus */
4967 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_pio_write_out_of_bounds_err_cnt),
4970 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4971 			CNTR_NORMAL,
4972 			access_pio_write_overflow_err_cnt),
4973 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4974 			0, 0, CNTR_NORMAL,
4975 			access_pio_write_crosses_boundary_err_cnt),
4976 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4977 			CNTR_NORMAL,
4978 			access_pio_disallowed_packet_err_cnt),
4979 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4980 			CNTR_NORMAL,
4981 			access_pio_inconsistent_sop_err_cnt),
4982 /* SendDmaEngErrStatus */
4983 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4984 			0, 0, CNTR_NORMAL,
4985 			access_sdma_header_request_fifo_cor_err_cnt),
4986 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_sdma_header_storage_cor_err_cnt),
4989 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4990 			CNTR_NORMAL,
4991 			access_sdma_packet_tracking_cor_err_cnt),
4992 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_sdma_assembly_cor_err_cnt),
4995 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_sdma_desc_table_cor_err_cnt),
4998 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4999 			0, 0, CNTR_NORMAL,
5000 			access_sdma_header_request_fifo_unc_err_cnt),
5001 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5002 			CNTR_NORMAL,
5003 			access_sdma_header_storage_unc_err_cnt),
5004 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5005 			CNTR_NORMAL,
5006 			access_sdma_packet_tracking_unc_err_cnt),
5007 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5008 			CNTR_NORMAL,
5009 			access_sdma_assembly_unc_err_cnt),
5010 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5011 			CNTR_NORMAL,
5012 			access_sdma_desc_table_unc_err_cnt),
5013 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5014 			CNTR_NORMAL,
5015 			access_sdma_timeout_err_cnt),
5016 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5017 			CNTR_NORMAL,
5018 			access_sdma_header_length_err_cnt),
5019 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5020 			CNTR_NORMAL,
5021 			access_sdma_header_address_err_cnt),
5022 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5023 			CNTR_NORMAL,
5024 			access_sdma_header_select_err_cnt),
5025 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5026 			CNTR_NORMAL,
5027 			access_sdma_reserved_9_err_cnt),
5028 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_packet_desc_overflow_err_cnt),
5031 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_length_mismatch_err_cnt),
5034 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_halt_err_cnt),
5037 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_mem_read_err_cnt),
5040 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5041 			CNTR_NORMAL,
5042 			access_sdma_first_desc_err_cnt),
5043 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_tail_out_of_bounds_err_cnt),
5046 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_too_long_err_cnt),
5049 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_gen_mismatch_err_cnt),
5052 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_wrong_dw_err_cnt),
5055 };
5056 
5057 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5058 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5059 			CNTR_NORMAL),
5060 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5061 			CNTR_NORMAL),
5062 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5063 			CNTR_NORMAL),
5064 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5065 			CNTR_NORMAL),
5066 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5067 			CNTR_NORMAL),
5068 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5069 			CNTR_NORMAL),
5070 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5071 			CNTR_NORMAL),
5072 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5073 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5074 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5075 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5076 				      CNTR_SYNTH | CNTR_VL),
5077 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5078 				     CNTR_SYNTH | CNTR_VL),
5079 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5080 				      CNTR_SYNTH | CNTR_VL),
5081 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5082 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5083 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5084 			     access_sw_link_dn_cnt),
5085 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5086 			   access_sw_link_up_cnt),
5087 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5088 				 access_sw_unknown_frame_cnt),
5089 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5090 			     access_sw_xmit_discards),
5091 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5092 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5093 				access_sw_xmit_discards),
5094 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5095 				 access_xmit_constraint_errs),
5096 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5097 				access_rcv_constraint_errs),
5098 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5099 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5100 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5101 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5102 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5103 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5104 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5105 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5106 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5107 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5108 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5109 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5110 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5111 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5112 			       access_sw_cpu_rc_acks),
5113 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5114 				access_sw_cpu_rc_qacks),
5115 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5116 				       access_sw_cpu_rc_delayed_comp),
5117 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5118 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5119 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5120 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5121 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5122 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5123 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5124 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5125 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5126 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5127 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5128 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5129 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5130 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5131 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5132 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5133 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5134 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5135 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5136 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5137 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5138 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5139 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5140 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5141 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5142 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5143 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5144 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5145 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5146 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5147 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5148 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5149 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5150 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5151 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5152 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5153 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5154 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5155 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5156 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5157 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5158 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5159 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5160 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5161 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5162 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5163 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5164 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5165 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5166 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5167 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5168 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5169 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5170 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5171 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5172 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5173 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5174 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5175 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5176 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5177 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5178 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5179 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5180 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5181 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5182 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5183 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5184 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5185 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5186 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5187 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5188 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5189 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5190 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5191 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5192 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5193 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5194 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5195 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5196 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5197 };
5198 
5199 /* ======================================================================== */
5200 
5201 /* return true if this is chip revision revision a */
5202 int is_ax(struct hfi1_devdata *dd)
5203 {
5204 	u8 chip_rev_minor =
5205 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5206 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5207 	return (chip_rev_minor & 0xf0) == 0;
5208 }
5209 
5210 /* return true if this is chip revision revision b */
5211 int is_bx(struct hfi1_devdata *dd)
5212 {
5213 	u8 chip_rev_minor =
5214 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5215 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5216 	return (chip_rev_minor & 0xF0) == 0x10;
5217 }
5218 
5219 /* return true is kernel urg disabled for rcd */
5220 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5221 {
5222 	u64 mask;
5223 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5224 	u8 bit = is % 64;
5225 
5226 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5227 	return !(mask & BIT_ULL(bit));
5228 }
5229 
5230 /*
5231  * Append string s to buffer buf.  Arguments curp and len are the current
5232  * position and remaining length, respectively.
5233  *
5234  * return 0 on success, 1 on out of room
5235  */
5236 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5237 {
5238 	char *p = *curp;
5239 	int len = *lenp;
5240 	int result = 0; /* success */
5241 	char c;
5242 
5243 	/* add a comma, if first in the buffer */
5244 	if (p != buf) {
5245 		if (len == 0) {
5246 			result = 1; /* out of room */
5247 			goto done;
5248 		}
5249 		*p++ = ',';
5250 		len--;
5251 	}
5252 
5253 	/* copy the string */
5254 	while ((c = *s++) != 0) {
5255 		if (len == 0) {
5256 			result = 1; /* out of room */
5257 			goto done;
5258 		}
5259 		*p++ = c;
5260 		len--;
5261 	}
5262 
5263 done:
5264 	/* write return values */
5265 	*curp = p;
5266 	*lenp = len;
5267 
5268 	return result;
5269 }
5270 
5271 /*
5272  * Using the given flag table, print a comma separated string into
5273  * the buffer.  End in '*' if the buffer is too short.
5274  */
5275 static char *flag_string(char *buf, int buf_len, u64 flags,
5276 			 struct flag_table *table, int table_size)
5277 {
5278 	char extra[32];
5279 	char *p = buf;
5280 	int len = buf_len;
5281 	int no_room = 0;
5282 	int i;
5283 
5284 	/* make sure there is at least 2 so we can form "*" */
5285 	if (len < 2)
5286 		return "";
5287 
5288 	len--;	/* leave room for a nul */
5289 	for (i = 0; i < table_size; i++) {
5290 		if (flags & table[i].flag) {
5291 			no_room = append_str(buf, &p, &len, table[i].str);
5292 			if (no_room)
5293 				break;
5294 			flags &= ~table[i].flag;
5295 		}
5296 	}
5297 
5298 	/* any undocumented bits left? */
5299 	if (!no_room && flags) {
5300 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5301 		no_room = append_str(buf, &p, &len, extra);
5302 	}
5303 
5304 	/* add * if ran out of room */
5305 	if (no_room) {
5306 		/* may need to back up to add space for a '*' */
5307 		if (len == 0)
5308 			--p;
5309 		*p++ = '*';
5310 	}
5311 
5312 	/* add final nul - space already allocated above */
5313 	*p = 0;
5314 	return buf;
5315 }
5316 
5317 /* first 8 CCE error interrupt source names */
5318 static const char * const cce_misc_names[] = {
5319 	"CceErrInt",		/* 0 */
5320 	"RxeErrInt",		/* 1 */
5321 	"MiscErrInt",		/* 2 */
5322 	"Reserved3",		/* 3 */
5323 	"PioErrInt",		/* 4 */
5324 	"SDmaErrInt",		/* 5 */
5325 	"EgressErrInt",		/* 6 */
5326 	"TxeErrInt"		/* 7 */
5327 };
5328 
5329 /*
5330  * Return the miscellaneous error interrupt name.
5331  */
5332 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5333 {
5334 	if (source < ARRAY_SIZE(cce_misc_names))
5335 		strncpy(buf, cce_misc_names[source], bsize);
5336 	else
5337 		snprintf(buf, bsize, "Reserved%u",
5338 			 source + IS_GENERAL_ERR_START);
5339 
5340 	return buf;
5341 }
5342 
5343 /*
5344  * Return the SDMA engine error interrupt name.
5345  */
5346 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5347 {
5348 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5349 	return buf;
5350 }
5351 
5352 /*
5353  * Return the send context error interrupt name.
5354  */
5355 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5356 {
5357 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5358 	return buf;
5359 }
5360 
5361 static const char * const various_names[] = {
5362 	"PbcInt",
5363 	"GpioAssertInt",
5364 	"Qsfp1Int",
5365 	"Qsfp2Int",
5366 	"TCritInt"
5367 };
5368 
5369 /*
5370  * Return the various interrupt name.
5371  */
5372 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5373 {
5374 	if (source < ARRAY_SIZE(various_names))
5375 		strncpy(buf, various_names[source], bsize);
5376 	else
5377 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5378 	return buf;
5379 }
5380 
5381 /*
5382  * Return the DC interrupt name.
5383  */
5384 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5385 {
5386 	static const char * const dc_int_names[] = {
5387 		"common",
5388 		"lcb",
5389 		"8051",
5390 		"lbm"	/* local block merge */
5391 	};
5392 
5393 	if (source < ARRAY_SIZE(dc_int_names))
5394 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5395 	else
5396 		snprintf(buf, bsize, "DCInt%u", source);
5397 	return buf;
5398 }
5399 
5400 static const char * const sdma_int_names[] = {
5401 	"SDmaInt",
5402 	"SdmaIdleInt",
5403 	"SdmaProgressInt",
5404 };
5405 
5406 /*
5407  * Return the SDMA engine interrupt name.
5408  */
5409 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5410 {
5411 	/* what interrupt */
5412 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5413 	/* which engine */
5414 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5415 
5416 	if (likely(what < 3))
5417 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5418 	else
5419 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5420 	return buf;
5421 }
5422 
5423 /*
5424  * Return the receive available interrupt name.
5425  */
5426 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5427 {
5428 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5429 	return buf;
5430 }
5431 
5432 /*
5433  * Return the receive urgent interrupt name.
5434  */
5435 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5436 {
5437 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5438 	return buf;
5439 }
5440 
5441 /*
5442  * Return the send credit interrupt name.
5443  */
5444 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5445 {
5446 	snprintf(buf, bsize, "SendCreditInt%u", source);
5447 	return buf;
5448 }
5449 
5450 /*
5451  * Return the reserved interrupt name.
5452  */
5453 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5454 {
5455 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5456 	return buf;
5457 }
5458 
5459 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5460 {
5461 	return flag_string(buf, buf_len, flags,
5462 			   cce_err_status_flags,
5463 			   ARRAY_SIZE(cce_err_status_flags));
5464 }
5465 
5466 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5467 {
5468 	return flag_string(buf, buf_len, flags,
5469 			   rxe_err_status_flags,
5470 			   ARRAY_SIZE(rxe_err_status_flags));
5471 }
5472 
5473 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5474 {
5475 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5476 			   ARRAY_SIZE(misc_err_status_flags));
5477 }
5478 
5479 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5480 {
5481 	return flag_string(buf, buf_len, flags,
5482 			   pio_err_status_flags,
5483 			   ARRAY_SIZE(pio_err_status_flags));
5484 }
5485 
5486 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5487 {
5488 	return flag_string(buf, buf_len, flags,
5489 			   sdma_err_status_flags,
5490 			   ARRAY_SIZE(sdma_err_status_flags));
5491 }
5492 
5493 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5494 {
5495 	return flag_string(buf, buf_len, flags,
5496 			   egress_err_status_flags,
5497 			   ARRAY_SIZE(egress_err_status_flags));
5498 }
5499 
5500 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5501 {
5502 	return flag_string(buf, buf_len, flags,
5503 			   egress_err_info_flags,
5504 			   ARRAY_SIZE(egress_err_info_flags));
5505 }
5506 
5507 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5508 {
5509 	return flag_string(buf, buf_len, flags,
5510 			   send_err_status_flags,
5511 			   ARRAY_SIZE(send_err_status_flags));
5512 }
5513 
5514 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5515 {
5516 	char buf[96];
5517 	int i = 0;
5518 
5519 	/*
5520 	 * For most these errors, there is nothing that can be done except
5521 	 * report or record it.
5522 	 */
5523 	dd_dev_info(dd, "CCE Error: %s\n",
5524 		    cce_err_status_string(buf, sizeof(buf), reg));
5525 
5526 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5527 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5528 		/* this error requires a manual drop into SPC freeze mode */
5529 		/* then a fix up */
5530 		start_freeze_handling(dd->pport, FREEZE_SELF);
5531 	}
5532 
5533 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5534 		if (reg & (1ull << i)) {
5535 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5536 			/* maintain a counter over all cce_err_status errors */
5537 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5538 		}
5539 	}
5540 }
5541 
5542 /*
5543  * Check counters for receive errors that do not have an interrupt
5544  * associated with them.
5545  */
5546 #define RCVERR_CHECK_TIME 10
5547 static void update_rcverr_timer(struct timer_list *t)
5548 {
5549 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5550 	struct hfi1_pportdata *ppd = dd->pport;
5551 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5552 
5553 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5554 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5555 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5556 		set_link_down_reason(
5557 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5558 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5559 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5560 	}
5561 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5562 
5563 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5564 }
5565 
5566 static int init_rcverr(struct hfi1_devdata *dd)
5567 {
5568 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5569 	/* Assume the hardware counter has been reset */
5570 	dd->rcv_ovfl_cnt = 0;
5571 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5572 }
5573 
5574 static void free_rcverr(struct hfi1_devdata *dd)
5575 {
5576 	if (dd->rcverr_timer.function)
5577 		del_timer_sync(&dd->rcverr_timer);
5578 }
5579 
5580 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5581 {
5582 	char buf[96];
5583 	int i = 0;
5584 
5585 	dd_dev_info(dd, "Receive Error: %s\n",
5586 		    rxe_err_status_string(buf, sizeof(buf), reg));
5587 
5588 	if (reg & ALL_RXE_FREEZE_ERR) {
5589 		int flags = 0;
5590 
5591 		/*
5592 		 * Freeze mode recovery is disabled for the errors
5593 		 * in RXE_FREEZE_ABORT_MASK
5594 		 */
5595 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5596 			flags = FREEZE_ABORT;
5597 
5598 		start_freeze_handling(dd->pport, flags);
5599 	}
5600 
5601 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5602 		if (reg & (1ull << i))
5603 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5604 	}
5605 }
5606 
5607 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5608 {
5609 	char buf[96];
5610 	int i = 0;
5611 
5612 	dd_dev_info(dd, "Misc Error: %s",
5613 		    misc_err_status_string(buf, sizeof(buf), reg));
5614 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5615 		if (reg & (1ull << i))
5616 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5617 	}
5618 }
5619 
5620 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5621 {
5622 	char buf[96];
5623 	int i = 0;
5624 
5625 	dd_dev_info(dd, "PIO Error: %s\n",
5626 		    pio_err_status_string(buf, sizeof(buf), reg));
5627 
5628 	if (reg & ALL_PIO_FREEZE_ERR)
5629 		start_freeze_handling(dd->pport, 0);
5630 
5631 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5632 		if (reg & (1ull << i))
5633 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5634 	}
5635 }
5636 
5637 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5638 {
5639 	char buf[96];
5640 	int i = 0;
5641 
5642 	dd_dev_info(dd, "SDMA Error: %s\n",
5643 		    sdma_err_status_string(buf, sizeof(buf), reg));
5644 
5645 	if (reg & ALL_SDMA_FREEZE_ERR)
5646 		start_freeze_handling(dd->pport, 0);
5647 
5648 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5649 		if (reg & (1ull << i))
5650 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5651 	}
5652 }
5653 
5654 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5655 {
5656 	incr_cntr64(&ppd->port_xmit_discards);
5657 }
5658 
5659 static void count_port_inactive(struct hfi1_devdata *dd)
5660 {
5661 	__count_port_discards(dd->pport);
5662 }
5663 
5664 /*
5665  * We have had a "disallowed packet" error during egress. Determine the
5666  * integrity check which failed, and update relevant error counter, etc.
5667  *
5668  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5669  * bit of state per integrity check, and so we can miss the reason for an
5670  * egress error if more than one packet fails the same integrity check
5671  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5672  */
5673 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5674 					int vl)
5675 {
5676 	struct hfi1_pportdata *ppd = dd->pport;
5677 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5678 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5679 	char buf[96];
5680 
5681 	/* clear down all observed info as quickly as possible after read */
5682 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5683 
5684 	dd_dev_info(dd,
5685 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5686 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5687 
5688 	/* Eventually add other counters for each bit */
5689 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5690 		int weight, i;
5691 
5692 		/*
5693 		 * Count all applicable bits as individual errors and
5694 		 * attribute them to the packet that triggered this handler.
5695 		 * This may not be completely accurate due to limitations
5696 		 * on the available hardware error information.  There is
5697 		 * a single information register and any number of error
5698 		 * packets may have occurred and contributed to it before
5699 		 * this routine is called.  This means that:
5700 		 * a) If multiple packets with the same error occur before
5701 		 *    this routine is called, earlier packets are missed.
5702 		 *    There is only a single bit for each error type.
5703 		 * b) Errors may not be attributed to the correct VL.
5704 		 *    The driver is attributing all bits in the info register
5705 		 *    to the packet that triggered this call, but bits
5706 		 *    could be an accumulation of different packets with
5707 		 *    different VLs.
5708 		 * c) A single error packet may have multiple counts attached
5709 		 *    to it.  There is no way for the driver to know if
5710 		 *    multiple bits set in the info register are due to a
5711 		 *    single packet or multiple packets.  The driver assumes
5712 		 *    multiple packets.
5713 		 */
5714 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5715 		for (i = 0; i < weight; i++) {
5716 			__count_port_discards(ppd);
5717 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5718 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5719 			else if (vl == 15)
5720 				incr_cntr64(&ppd->port_xmit_discards_vl
5721 					    [C_VL_15]);
5722 		}
5723 	}
5724 }
5725 
5726 /*
5727  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5728  * register. Does it represent a 'port inactive' error?
5729  */
5730 static inline int port_inactive_err(u64 posn)
5731 {
5732 	return (posn >= SEES(TX_LINKDOWN) &&
5733 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5734 }
5735 
5736 /*
5737  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5738  * register. Does it represent a 'disallowed packet' error?
5739  */
5740 static inline int disallowed_pkt_err(int posn)
5741 {
5742 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5743 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5744 }
5745 
5746 /*
5747  * Input value is a bit position of one of the SDMA engine disallowed
5748  * packet errors.  Return which engine.  Use of this must be guarded by
5749  * disallowed_pkt_err().
5750  */
5751 static inline int disallowed_pkt_engine(int posn)
5752 {
5753 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5754 }
5755 
5756 /*
5757  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5758  * be done.
5759  */
5760 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5761 {
5762 	struct sdma_vl_map *m;
5763 	int vl;
5764 
5765 	/* range check */
5766 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5767 		return -1;
5768 
5769 	rcu_read_lock();
5770 	m = rcu_dereference(dd->sdma_map);
5771 	vl = m->engine_to_vl[engine];
5772 	rcu_read_unlock();
5773 
5774 	return vl;
5775 }
5776 
5777 /*
5778  * Translate the send context (sofware index) into a VL.  Return -1 if the
5779  * translation cannot be done.
5780  */
5781 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5782 {
5783 	struct send_context_info *sci;
5784 	struct send_context *sc;
5785 	int i;
5786 
5787 	sci = &dd->send_contexts[sw_index];
5788 
5789 	/* there is no information for user (PSM) and ack contexts */
5790 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5791 		return -1;
5792 
5793 	sc = sci->sc;
5794 	if (!sc)
5795 		return -1;
5796 	if (dd->vld[15].sc == sc)
5797 		return 15;
5798 	for (i = 0; i < num_vls; i++)
5799 		if (dd->vld[i].sc == sc)
5800 			return i;
5801 
5802 	return -1;
5803 }
5804 
5805 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5806 {
5807 	u64 reg_copy = reg, handled = 0;
5808 	char buf[96];
5809 	int i = 0;
5810 
5811 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5812 		start_freeze_handling(dd->pport, 0);
5813 	else if (is_ax(dd) &&
5814 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5815 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5816 		start_freeze_handling(dd->pport, 0);
5817 
5818 	while (reg_copy) {
5819 		int posn = fls64(reg_copy);
5820 		/* fls64() returns a 1-based offset, we want it zero based */
5821 		int shift = posn - 1;
5822 		u64 mask = 1ULL << shift;
5823 
5824 		if (port_inactive_err(shift)) {
5825 			count_port_inactive(dd);
5826 			handled |= mask;
5827 		} else if (disallowed_pkt_err(shift)) {
5828 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5829 
5830 			handle_send_egress_err_info(dd, vl);
5831 			handled |= mask;
5832 		}
5833 		reg_copy &= ~mask;
5834 	}
5835 
5836 	reg &= ~handled;
5837 
5838 	if (reg)
5839 		dd_dev_info(dd, "Egress Error: %s\n",
5840 			    egress_err_status_string(buf, sizeof(buf), reg));
5841 
5842 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5843 		if (reg & (1ull << i))
5844 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5845 	}
5846 }
5847 
5848 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5849 {
5850 	char buf[96];
5851 	int i = 0;
5852 
5853 	dd_dev_info(dd, "Send Error: %s\n",
5854 		    send_err_status_string(buf, sizeof(buf), reg));
5855 
5856 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5857 		if (reg & (1ull << i))
5858 			incr_cntr64(&dd->send_err_status_cnt[i]);
5859 	}
5860 }
5861 
5862 /*
5863  * The maximum number of times the error clear down will loop before
5864  * blocking a repeating error.  This value is arbitrary.
5865  */
5866 #define MAX_CLEAR_COUNT 20
5867 
5868 /*
5869  * Clear and handle an error register.  All error interrupts are funneled
5870  * through here to have a central location to correctly handle single-
5871  * or multi-shot errors.
5872  *
5873  * For non per-context registers, call this routine with a context value
5874  * of 0 so the per-context offset is zero.
5875  *
5876  * If the handler loops too many times, assume that something is wrong
5877  * and can't be fixed, so mask the error bits.
5878  */
5879 static void interrupt_clear_down(struct hfi1_devdata *dd,
5880 				 u32 context,
5881 				 const struct err_reg_info *eri)
5882 {
5883 	u64 reg;
5884 	u32 count;
5885 
5886 	/* read in a loop until no more errors are seen */
5887 	count = 0;
5888 	while (1) {
5889 		reg = read_kctxt_csr(dd, context, eri->status);
5890 		if (reg == 0)
5891 			break;
5892 		write_kctxt_csr(dd, context, eri->clear, reg);
5893 		if (likely(eri->handler))
5894 			eri->handler(dd, context, reg);
5895 		count++;
5896 		if (count > MAX_CLEAR_COUNT) {
5897 			u64 mask;
5898 
5899 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5900 				   eri->desc, reg);
5901 			/*
5902 			 * Read-modify-write so any other masked bits
5903 			 * remain masked.
5904 			 */
5905 			mask = read_kctxt_csr(dd, context, eri->mask);
5906 			mask &= ~reg;
5907 			write_kctxt_csr(dd, context, eri->mask, mask);
5908 			break;
5909 		}
5910 	}
5911 }
5912 
5913 /*
5914  * CCE block "misc" interrupt.  Source is < 16.
5915  */
5916 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5917 {
5918 	const struct err_reg_info *eri = &misc_errs[source];
5919 
5920 	if (eri->handler) {
5921 		interrupt_clear_down(dd, 0, eri);
5922 	} else {
5923 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5924 			   source);
5925 	}
5926 }
5927 
5928 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5929 {
5930 	return flag_string(buf, buf_len, flags,
5931 			   sc_err_status_flags,
5932 			   ARRAY_SIZE(sc_err_status_flags));
5933 }
5934 
5935 /*
5936  * Send context error interrupt.  Source (hw_context) is < 160.
5937  *
5938  * All send context errors cause the send context to halt.  The normal
5939  * clear-down mechanism cannot be used because we cannot clear the
5940  * error bits until several other long-running items are done first.
5941  * This is OK because with the context halted, nothing else is going
5942  * to happen on it anyway.
5943  */
5944 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5945 				unsigned int hw_context)
5946 {
5947 	struct send_context_info *sci;
5948 	struct send_context *sc;
5949 	char flags[96];
5950 	u64 status;
5951 	u32 sw_index;
5952 	int i = 0;
5953 	unsigned long irq_flags;
5954 
5955 	sw_index = dd->hw_to_sw[hw_context];
5956 	if (sw_index >= dd->num_send_contexts) {
5957 		dd_dev_err(dd,
5958 			   "out of range sw index %u for send context %u\n",
5959 			   sw_index, hw_context);
5960 		return;
5961 	}
5962 	sci = &dd->send_contexts[sw_index];
5963 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5964 	sc = sci->sc;
5965 	if (!sc) {
5966 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5967 			   sw_index, hw_context);
5968 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5969 		return;
5970 	}
5971 
5972 	/* tell the software that a halt has begun */
5973 	sc_stop(sc, SCF_HALTED);
5974 
5975 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5976 
5977 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5978 		    send_context_err_status_string(flags, sizeof(flags),
5979 						   status));
5980 
5981 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5982 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5983 
5984 	/*
5985 	 * Automatically restart halted kernel contexts out of interrupt
5986 	 * context.  User contexts must ask the driver to restart the context.
5987 	 */
5988 	if (sc->type != SC_USER)
5989 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5990 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5991 
5992 	/*
5993 	 * Update the counters for the corresponding status bits.
5994 	 * Note that these particular counters are aggregated over all
5995 	 * 160 contexts.
5996 	 */
5997 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5998 		if (status & (1ull << i))
5999 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6000 	}
6001 }
6002 
6003 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6004 				unsigned int source, u64 status)
6005 {
6006 	struct sdma_engine *sde;
6007 	int i = 0;
6008 
6009 	sde = &dd->per_sdma[source];
6010 #ifdef CONFIG_SDMA_VERBOSITY
6011 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6012 		   slashstrip(__FILE__), __LINE__, __func__);
6013 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6014 		   sde->this_idx, source, (unsigned long long)status);
6015 #endif
6016 	sde->err_cnt++;
6017 	sdma_engine_error(sde, status);
6018 
6019 	/*
6020 	* Update the counters for the corresponding status bits.
6021 	* Note that these particular counters are aggregated over
6022 	* all 16 DMA engines.
6023 	*/
6024 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6025 		if (status & (1ull << i))
6026 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6027 	}
6028 }
6029 
6030 /*
6031  * CCE block SDMA error interrupt.  Source is < 16.
6032  */
6033 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6034 {
6035 #ifdef CONFIG_SDMA_VERBOSITY
6036 	struct sdma_engine *sde = &dd->per_sdma[source];
6037 
6038 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6039 		   slashstrip(__FILE__), __LINE__, __func__);
6040 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6041 		   source);
6042 	sdma_dumpstate(sde);
6043 #endif
6044 	interrupt_clear_down(dd, source, &sdma_eng_err);
6045 }
6046 
6047 /*
6048  * CCE block "various" interrupt.  Source is < 8.
6049  */
6050 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6051 {
6052 	const struct err_reg_info *eri = &various_err[source];
6053 
6054 	/*
6055 	 * TCritInt cannot go through interrupt_clear_down()
6056 	 * because it is not a second tier interrupt. The handler
6057 	 * should be called directly.
6058 	 */
6059 	if (source == TCRIT_INT_SOURCE)
6060 		handle_temp_err(dd);
6061 	else if (eri->handler)
6062 		interrupt_clear_down(dd, 0, eri);
6063 	else
6064 		dd_dev_info(dd,
6065 			    "%s: Unimplemented/reserved interrupt %d\n",
6066 			    __func__, source);
6067 }
6068 
6069 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6070 {
6071 	/* src_ctx is always zero */
6072 	struct hfi1_pportdata *ppd = dd->pport;
6073 	unsigned long flags;
6074 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6075 
6076 	if (reg & QSFP_HFI0_MODPRST_N) {
6077 		if (!qsfp_mod_present(ppd)) {
6078 			dd_dev_info(dd, "%s: QSFP module removed\n",
6079 				    __func__);
6080 
6081 			ppd->driver_link_ready = 0;
6082 			/*
6083 			 * Cable removed, reset all our information about the
6084 			 * cache and cable capabilities
6085 			 */
6086 
6087 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6088 			/*
6089 			 * We don't set cache_refresh_required here as we expect
6090 			 * an interrupt when a cable is inserted
6091 			 */
6092 			ppd->qsfp_info.cache_valid = 0;
6093 			ppd->qsfp_info.reset_needed = 0;
6094 			ppd->qsfp_info.limiting_active = 0;
6095 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6096 					       flags);
6097 			/* Invert the ModPresent pin now to detect plug-in */
6098 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6099 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6100 
6101 			if ((ppd->offline_disabled_reason >
6102 			  HFI1_ODR_MASK(
6103 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6104 			  (ppd->offline_disabled_reason ==
6105 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6106 				ppd->offline_disabled_reason =
6107 				HFI1_ODR_MASK(
6108 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6109 
6110 			if (ppd->host_link_state == HLS_DN_POLL) {
6111 				/*
6112 				 * The link is still in POLL. This means
6113 				 * that the normal link down processing
6114 				 * will not happen. We have to do it here
6115 				 * before turning the DC off.
6116 				 */
6117 				queue_work(ppd->link_wq, &ppd->link_down_work);
6118 			}
6119 		} else {
6120 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6121 				    __func__);
6122 
6123 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6124 			ppd->qsfp_info.cache_valid = 0;
6125 			ppd->qsfp_info.cache_refresh_required = 1;
6126 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6127 					       flags);
6128 
6129 			/*
6130 			 * Stop inversion of ModPresent pin to detect
6131 			 * removal of the cable
6132 			 */
6133 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6134 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6135 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6136 
6137 			ppd->offline_disabled_reason =
6138 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6139 		}
6140 	}
6141 
6142 	if (reg & QSFP_HFI0_INT_N) {
6143 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6144 			    __func__);
6145 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6146 		ppd->qsfp_info.check_interrupt_flags = 1;
6147 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6148 	}
6149 
6150 	/* Schedule the QSFP work only if there is a cable attached. */
6151 	if (qsfp_mod_present(ppd))
6152 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6153 }
6154 
6155 static int request_host_lcb_access(struct hfi1_devdata *dd)
6156 {
6157 	int ret;
6158 
6159 	ret = do_8051_command(dd, HCMD_MISC,
6160 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6161 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6162 	if (ret != HCMD_SUCCESS) {
6163 		dd_dev_err(dd, "%s: command failed with error %d\n",
6164 			   __func__, ret);
6165 	}
6166 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6167 }
6168 
6169 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6170 {
6171 	int ret;
6172 
6173 	ret = do_8051_command(dd, HCMD_MISC,
6174 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6175 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6176 	if (ret != HCMD_SUCCESS) {
6177 		dd_dev_err(dd, "%s: command failed with error %d\n",
6178 			   __func__, ret);
6179 	}
6180 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6181 }
6182 
6183 /*
6184  * Set the LCB selector - allow host access.  The DCC selector always
6185  * points to the host.
6186  */
6187 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6188 {
6189 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6190 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6191 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6192 }
6193 
6194 /*
6195  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6196  * points to the host.
6197  */
6198 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6199 {
6200 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6201 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6202 }
6203 
6204 /*
6205  * Acquire LCB access from the 8051.  If the host already has access,
6206  * just increment a counter.  Otherwise, inform the 8051 that the
6207  * host is taking access.
6208  *
6209  * Returns:
6210  *	0 on success
6211  *	-EBUSY if the 8051 has control and cannot be disturbed
6212  *	-errno if unable to acquire access from the 8051
6213  */
6214 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6215 {
6216 	struct hfi1_pportdata *ppd = dd->pport;
6217 	int ret = 0;
6218 
6219 	/*
6220 	 * Use the host link state lock so the operation of this routine
6221 	 * { link state check, selector change, count increment } can occur
6222 	 * as a unit against a link state change.  Otherwise there is a
6223 	 * race between the state change and the count increment.
6224 	 */
6225 	if (sleep_ok) {
6226 		mutex_lock(&ppd->hls_lock);
6227 	} else {
6228 		while (!mutex_trylock(&ppd->hls_lock))
6229 			udelay(1);
6230 	}
6231 
6232 	/* this access is valid only when the link is up */
6233 	if (ppd->host_link_state & HLS_DOWN) {
6234 		dd_dev_info(dd, "%s: link state %s not up\n",
6235 			    __func__, link_state_name(ppd->host_link_state));
6236 		ret = -EBUSY;
6237 		goto done;
6238 	}
6239 
6240 	if (dd->lcb_access_count == 0) {
6241 		ret = request_host_lcb_access(dd);
6242 		if (ret) {
6243 			dd_dev_err(dd,
6244 				   "%s: unable to acquire LCB access, err %d\n",
6245 				   __func__, ret);
6246 			goto done;
6247 		}
6248 		set_host_lcb_access(dd);
6249 	}
6250 	dd->lcb_access_count++;
6251 done:
6252 	mutex_unlock(&ppd->hls_lock);
6253 	return ret;
6254 }
6255 
6256 /*
6257  * Release LCB access by decrementing the use count.  If the count is moving
6258  * from 1 to 0, inform 8051 that it has control back.
6259  *
6260  * Returns:
6261  *	0 on success
6262  *	-errno if unable to release access to the 8051
6263  */
6264 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6265 {
6266 	int ret = 0;
6267 
6268 	/*
6269 	 * Use the host link state lock because the acquire needed it.
6270 	 * Here, we only need to keep { selector change, count decrement }
6271 	 * as a unit.
6272 	 */
6273 	if (sleep_ok) {
6274 		mutex_lock(&dd->pport->hls_lock);
6275 	} else {
6276 		while (!mutex_trylock(&dd->pport->hls_lock))
6277 			udelay(1);
6278 	}
6279 
6280 	if (dd->lcb_access_count == 0) {
6281 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6282 			   __func__);
6283 		goto done;
6284 	}
6285 
6286 	if (dd->lcb_access_count == 1) {
6287 		set_8051_lcb_access(dd);
6288 		ret = request_8051_lcb_access(dd);
6289 		if (ret) {
6290 			dd_dev_err(dd,
6291 				   "%s: unable to release LCB access, err %d\n",
6292 				   __func__, ret);
6293 			/* restore host access if the grant didn't work */
6294 			set_host_lcb_access(dd);
6295 			goto done;
6296 		}
6297 	}
6298 	dd->lcb_access_count--;
6299 done:
6300 	mutex_unlock(&dd->pport->hls_lock);
6301 	return ret;
6302 }
6303 
6304 /*
6305  * Initialize LCB access variables and state.  Called during driver load,
6306  * after most of the initialization is finished.
6307  *
6308  * The DC default is LCB access on for the host.  The driver defaults to
6309  * leaving access to the 8051.  Assign access now - this constrains the call
6310  * to this routine to be after all LCB set-up is done.  In particular, after
6311  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6312  */
6313 static void init_lcb_access(struct hfi1_devdata *dd)
6314 {
6315 	dd->lcb_access_count = 0;
6316 }
6317 
6318 /*
6319  * Write a response back to a 8051 request.
6320  */
6321 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6322 {
6323 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6324 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6325 		  (u64)return_code <<
6326 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6327 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6328 }
6329 
6330 /*
6331  * Handle host requests from the 8051.
6332  */
6333 static void handle_8051_request(struct hfi1_pportdata *ppd)
6334 {
6335 	struct hfi1_devdata *dd = ppd->dd;
6336 	u64 reg;
6337 	u16 data = 0;
6338 	u8 type;
6339 
6340 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6341 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6342 		return;	/* no request */
6343 
6344 	/* zero out COMPLETED so the response is seen */
6345 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6346 
6347 	/* extract request details */
6348 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6349 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6350 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6351 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6352 
6353 	switch (type) {
6354 	case HREQ_LOAD_CONFIG:
6355 	case HREQ_SAVE_CONFIG:
6356 	case HREQ_READ_CONFIG:
6357 	case HREQ_SET_TX_EQ_ABS:
6358 	case HREQ_SET_TX_EQ_REL:
6359 	case HREQ_ENABLE:
6360 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6361 			    type);
6362 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6363 		break;
6364 	case HREQ_LCB_RESET:
6365 		/* Put the LCB, RX FPE and TX FPE into reset */
6366 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6367 		/* Make sure the write completed */
6368 		(void)read_csr(dd, DCC_CFG_RESET);
6369 		/* Hold the reset long enough to take effect */
6370 		udelay(1);
6371 		/* Take the LCB, RX FPE and TX FPE out of reset */
6372 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6373 		hreq_response(dd, HREQ_SUCCESS, 0);
6374 
6375 		break;
6376 	case HREQ_CONFIG_DONE:
6377 		hreq_response(dd, HREQ_SUCCESS, 0);
6378 		break;
6379 
6380 	case HREQ_INTERFACE_TEST:
6381 		hreq_response(dd, HREQ_SUCCESS, data);
6382 		break;
6383 	default:
6384 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6385 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6386 		break;
6387 	}
6388 }
6389 
6390 /*
6391  * Set up allocation unit vaulue.
6392  */
6393 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6394 {
6395 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6396 
6397 	/* do not modify other values in the register */
6398 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6399 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6400 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6401 }
6402 
6403 /*
6404  * Set up initial VL15 credits of the remote.  Assumes the rest of
6405  * the CM credit registers are zero from a previous global or credit reset.
6406  * Shared limit for VL15 will always be 0.
6407  */
6408 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6409 {
6410 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6411 
6412 	/* set initial values for total and shared credit limit */
6413 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6414 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6415 
6416 	/*
6417 	 * Set total limit to be equal to VL15 credits.
6418 	 * Leave shared limit at 0.
6419 	 */
6420 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6421 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6422 
6423 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6424 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6425 }
6426 
6427 /*
6428  * Zero all credit details from the previous connection and
6429  * reset the CM manager's internal counters.
6430  */
6431 void reset_link_credits(struct hfi1_devdata *dd)
6432 {
6433 	int i;
6434 
6435 	/* remove all previous VL credit limits */
6436 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6437 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6438 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6439 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6440 	/* reset the CM block */
6441 	pio_send_control(dd, PSC_CM_RESET);
6442 	/* reset cached value */
6443 	dd->vl15buf_cached = 0;
6444 }
6445 
6446 /* convert a vCU to a CU */
6447 static u32 vcu_to_cu(u8 vcu)
6448 {
6449 	return 1 << vcu;
6450 }
6451 
6452 /* convert a CU to a vCU */
6453 static u8 cu_to_vcu(u32 cu)
6454 {
6455 	return ilog2(cu);
6456 }
6457 
6458 /* convert a vAU to an AU */
6459 static u32 vau_to_au(u8 vau)
6460 {
6461 	return 8 * (1 << vau);
6462 }
6463 
6464 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6465 {
6466 	ppd->sm_trap_qp = 0x0;
6467 	ppd->sa_qp = 0x1;
6468 }
6469 
6470 /*
6471  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6472  */
6473 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6474 {
6475 	u64 reg;
6476 
6477 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6478 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6479 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6480 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6481 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6482 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6483 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6484 	reg = read_csr(dd, DCC_CFG_RESET);
6485 	write_csr(dd, DCC_CFG_RESET, reg |
6486 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6487 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6488 	if (!abort) {
6489 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6490 		write_csr(dd, DCC_CFG_RESET, reg);
6491 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6492 	}
6493 }
6494 
6495 /*
6496  * This routine should be called after the link has been transitioned to
6497  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6498  * reset).
6499  *
6500  * The expectation is that the caller of this routine would have taken
6501  * care of properly transitioning the link into the correct state.
6502  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6503  *       before calling this function.
6504  */
6505 static void _dc_shutdown(struct hfi1_devdata *dd)
6506 {
6507 	lockdep_assert_held(&dd->dc8051_lock);
6508 
6509 	if (dd->dc_shutdown)
6510 		return;
6511 
6512 	dd->dc_shutdown = 1;
6513 	/* Shutdown the LCB */
6514 	lcb_shutdown(dd, 1);
6515 	/*
6516 	 * Going to OFFLINE would have causes the 8051 to put the
6517 	 * SerDes into reset already. Just need to shut down the 8051,
6518 	 * itself.
6519 	 */
6520 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6521 }
6522 
6523 static void dc_shutdown(struct hfi1_devdata *dd)
6524 {
6525 	mutex_lock(&dd->dc8051_lock);
6526 	_dc_shutdown(dd);
6527 	mutex_unlock(&dd->dc8051_lock);
6528 }
6529 
6530 /*
6531  * Calling this after the DC has been brought out of reset should not
6532  * do any damage.
6533  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6534  *       before calling this function.
6535  */
6536 static void _dc_start(struct hfi1_devdata *dd)
6537 {
6538 	lockdep_assert_held(&dd->dc8051_lock);
6539 
6540 	if (!dd->dc_shutdown)
6541 		return;
6542 
6543 	/* Take the 8051 out of reset */
6544 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6545 	/* Wait until 8051 is ready */
6546 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6547 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6548 			   __func__);
6549 
6550 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6551 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6552 	/* lcb_shutdown() with abort=1 does not restore these */
6553 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6554 	dd->dc_shutdown = 0;
6555 }
6556 
6557 static void dc_start(struct hfi1_devdata *dd)
6558 {
6559 	mutex_lock(&dd->dc8051_lock);
6560 	_dc_start(dd);
6561 	mutex_unlock(&dd->dc8051_lock);
6562 }
6563 
6564 /*
6565  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6566  */
6567 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6568 {
6569 	u64 rx_radr, tx_radr;
6570 	u32 version;
6571 
6572 	if (dd->icode != ICODE_FPGA_EMULATION)
6573 		return;
6574 
6575 	/*
6576 	 * These LCB defaults on emulator _s are good, nothing to do here:
6577 	 *	LCB_CFG_TX_FIFOS_RADR
6578 	 *	LCB_CFG_RX_FIFOS_RADR
6579 	 *	LCB_CFG_LN_DCLK
6580 	 *	LCB_CFG_IGNORE_LOST_RCLK
6581 	 */
6582 	if (is_emulator_s(dd))
6583 		return;
6584 	/* else this is _p */
6585 
6586 	version = emulator_rev(dd);
6587 	if (!is_ax(dd))
6588 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6589 
6590 	if (version <= 0x12) {
6591 		/* release 0x12 and below */
6592 
6593 		/*
6594 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6595 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6596 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6597 		 */
6598 		rx_radr =
6599 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6600 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6601 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6602 		/*
6603 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6604 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6605 		 */
6606 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6607 	} else if (version <= 0x18) {
6608 		/* release 0x13 up to 0x18 */
6609 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6610 		rx_radr =
6611 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6612 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6613 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6614 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6615 	} else if (version == 0x19) {
6616 		/* release 0x19 */
6617 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6618 		rx_radr =
6619 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6620 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6621 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6622 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6623 	} else if (version == 0x1a) {
6624 		/* release 0x1a */
6625 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6626 		rx_radr =
6627 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6628 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6629 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6630 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6631 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6632 	} else {
6633 		/* release 0x1b and higher */
6634 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6635 		rx_radr =
6636 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6637 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6638 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6639 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6640 	}
6641 
6642 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6643 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6644 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6645 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6646 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6647 }
6648 
6649 /*
6650  * Handle a SMA idle message
6651  *
6652  * This is a work-queue function outside of the interrupt.
6653  */
6654 void handle_sma_message(struct work_struct *work)
6655 {
6656 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6657 							sma_message_work);
6658 	struct hfi1_devdata *dd = ppd->dd;
6659 	u64 msg;
6660 	int ret;
6661 
6662 	/*
6663 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6664 	 * is stripped off
6665 	 */
6666 	ret = read_idle_sma(dd, &msg);
6667 	if (ret)
6668 		return;
6669 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6670 	/*
6671 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6672 	 */
6673 	switch (msg & 0xff) {
6674 	case SMA_IDLE_ARM:
6675 		/*
6676 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6677 		 * State Transitions
6678 		 *
6679 		 * Only expected in INIT or ARMED, discard otherwise.
6680 		 */
6681 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6682 			ppd->neighbor_normal = 1;
6683 		break;
6684 	case SMA_IDLE_ACTIVE:
6685 		/*
6686 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6687 		 * State Transitions
6688 		 *
6689 		 * Can activate the node.  Discard otherwise.
6690 		 */
6691 		if (ppd->host_link_state == HLS_UP_ARMED &&
6692 		    ppd->is_active_optimize_enabled) {
6693 			ppd->neighbor_normal = 1;
6694 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6695 			if (ret)
6696 				dd_dev_err(
6697 					dd,
6698 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6699 					__func__);
6700 		}
6701 		break;
6702 	default:
6703 		dd_dev_err(dd,
6704 			   "%s: received unexpected SMA idle message 0x%llx\n",
6705 			   __func__, msg);
6706 		break;
6707 	}
6708 }
6709 
6710 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6711 {
6712 	u64 rcvctrl;
6713 	unsigned long flags;
6714 
6715 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6716 	rcvctrl = read_csr(dd, RCV_CTRL);
6717 	rcvctrl |= add;
6718 	rcvctrl &= ~clear;
6719 	write_csr(dd, RCV_CTRL, rcvctrl);
6720 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6721 }
6722 
6723 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6724 {
6725 	adjust_rcvctrl(dd, add, 0);
6726 }
6727 
6728 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6729 {
6730 	adjust_rcvctrl(dd, 0, clear);
6731 }
6732 
6733 /*
6734  * Called from all interrupt handlers to start handling an SPC freeze.
6735  */
6736 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6737 {
6738 	struct hfi1_devdata *dd = ppd->dd;
6739 	struct send_context *sc;
6740 	int i;
6741 	int sc_flags;
6742 
6743 	if (flags & FREEZE_SELF)
6744 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6745 
6746 	/* enter frozen mode */
6747 	dd->flags |= HFI1_FROZEN;
6748 
6749 	/* notify all SDMA engines that they are going into a freeze */
6750 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6751 
6752 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6753 					      SCF_LINK_DOWN : 0);
6754 	/* do halt pre-handling on all enabled send contexts */
6755 	for (i = 0; i < dd->num_send_contexts; i++) {
6756 		sc = dd->send_contexts[i].sc;
6757 		if (sc && (sc->flags & SCF_ENABLED))
6758 			sc_stop(sc, sc_flags);
6759 	}
6760 
6761 	/* Send context are frozen. Notify user space */
6762 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6763 
6764 	if (flags & FREEZE_ABORT) {
6765 		dd_dev_err(dd,
6766 			   "Aborted freeze recovery. Please REBOOT system\n");
6767 		return;
6768 	}
6769 	/* queue non-interrupt handler */
6770 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6771 }
6772 
6773 /*
6774  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6775  * depending on the "freeze" parameter.
6776  *
6777  * No need to return an error if it times out, our only option
6778  * is to proceed anyway.
6779  */
6780 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6781 {
6782 	unsigned long timeout;
6783 	u64 reg;
6784 
6785 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6786 	while (1) {
6787 		reg = read_csr(dd, CCE_STATUS);
6788 		if (freeze) {
6789 			/* waiting until all indicators are set */
6790 			if ((reg & ALL_FROZE) == ALL_FROZE)
6791 				return;	/* all done */
6792 		} else {
6793 			/* waiting until all indicators are clear */
6794 			if ((reg & ALL_FROZE) == 0)
6795 				return; /* all done */
6796 		}
6797 
6798 		if (time_after(jiffies, timeout)) {
6799 			dd_dev_err(dd,
6800 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6801 				   freeze ? "" : "un", reg & ALL_FROZE,
6802 				   freeze ? ALL_FROZE : 0ull);
6803 			return;
6804 		}
6805 		usleep_range(80, 120);
6806 	}
6807 }
6808 
6809 /*
6810  * Do all freeze handling for the RXE block.
6811  */
6812 static void rxe_freeze(struct hfi1_devdata *dd)
6813 {
6814 	int i;
6815 	struct hfi1_ctxtdata *rcd;
6816 
6817 	/* disable port */
6818 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6819 
6820 	/* disable all receive contexts */
6821 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6822 		rcd = hfi1_rcd_get_by_index(dd, i);
6823 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6824 		hfi1_rcd_put(rcd);
6825 	}
6826 }
6827 
6828 /*
6829  * Unfreeze handling for the RXE block - kernel contexts only.
6830  * This will also enable the port.  User contexts will do unfreeze
6831  * handling on a per-context basis as they call into the driver.
6832  *
6833  */
6834 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6835 {
6836 	u32 rcvmask;
6837 	u16 i;
6838 	struct hfi1_ctxtdata *rcd;
6839 
6840 	/* enable all kernel contexts */
6841 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6842 		rcd = hfi1_rcd_get_by_index(dd, i);
6843 
6844 		/* Ensure all non-user contexts(including vnic) are enabled */
6845 		if (!rcd ||
6846 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6847 			hfi1_rcd_put(rcd);
6848 			continue;
6849 		}
6850 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6851 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6852 		rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6853 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6854 		hfi1_rcvctrl(dd, rcvmask, rcd);
6855 		hfi1_rcd_put(rcd);
6856 	}
6857 
6858 	/* enable port */
6859 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6860 }
6861 
6862 /*
6863  * Non-interrupt SPC freeze handling.
6864  *
6865  * This is a work-queue function outside of the triggering interrupt.
6866  */
6867 void handle_freeze(struct work_struct *work)
6868 {
6869 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6870 								freeze_work);
6871 	struct hfi1_devdata *dd = ppd->dd;
6872 
6873 	/* wait for freeze indicators on all affected blocks */
6874 	wait_for_freeze_status(dd, 1);
6875 
6876 	/* SPC is now frozen */
6877 
6878 	/* do send PIO freeze steps */
6879 	pio_freeze(dd);
6880 
6881 	/* do send DMA freeze steps */
6882 	sdma_freeze(dd);
6883 
6884 	/* do send egress freeze steps - nothing to do */
6885 
6886 	/* do receive freeze steps */
6887 	rxe_freeze(dd);
6888 
6889 	/*
6890 	 * Unfreeze the hardware - clear the freeze, wait for each
6891 	 * block's frozen bit to clear, then clear the frozen flag.
6892 	 */
6893 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6894 	wait_for_freeze_status(dd, 0);
6895 
6896 	if (is_ax(dd)) {
6897 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6898 		wait_for_freeze_status(dd, 1);
6899 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6900 		wait_for_freeze_status(dd, 0);
6901 	}
6902 
6903 	/* do send PIO unfreeze steps for kernel contexts */
6904 	pio_kernel_unfreeze(dd);
6905 
6906 	/* do send DMA unfreeze steps */
6907 	sdma_unfreeze(dd);
6908 
6909 	/* do send egress unfreeze steps - nothing to do */
6910 
6911 	/* do receive unfreeze steps for kernel contexts */
6912 	rxe_kernel_unfreeze(dd);
6913 
6914 	/*
6915 	 * The unfreeze procedure touches global device registers when
6916 	 * it disables and re-enables RXE. Mark the device unfrozen
6917 	 * after all that is done so other parts of the driver waiting
6918 	 * for the device to unfreeze don't do things out of order.
6919 	 *
6920 	 * The above implies that the meaning of HFI1_FROZEN flag is
6921 	 * "Device has gone into freeze mode and freeze mode handling
6922 	 * is still in progress."
6923 	 *
6924 	 * The flag will be removed when freeze mode processing has
6925 	 * completed.
6926 	 */
6927 	dd->flags &= ~HFI1_FROZEN;
6928 	wake_up(&dd->event_queue);
6929 
6930 	/* no longer frozen */
6931 }
6932 
6933 /**
6934  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6935  * counters.
6936  * @ppd: info of physical Hfi port
6937  * @link_width: new link width after link up or downgrade
6938  *
6939  * Update the PortXmitWait and PortVlXmitWait counters after
6940  * a link up or downgrade event to reflect a link width change.
6941  */
6942 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6943 {
6944 	int i;
6945 	u16 tx_width;
6946 	u16 link_speed;
6947 
6948 	tx_width = tx_link_width(link_width);
6949 	link_speed = get_link_speed(ppd->link_speed_active);
6950 
6951 	/*
6952 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6953 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6954 	 */
6955 	for (i = 0; i < C_VL_COUNT + 1; i++)
6956 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6957 }
6958 
6959 /*
6960  * Handle a link up interrupt from the 8051.
6961  *
6962  * This is a work-queue function outside of the interrupt.
6963  */
6964 void handle_link_up(struct work_struct *work)
6965 {
6966 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6967 						  link_up_work);
6968 	struct hfi1_devdata *dd = ppd->dd;
6969 
6970 	set_link_state(ppd, HLS_UP_INIT);
6971 
6972 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6973 	read_ltp_rtt(dd);
6974 	/*
6975 	 * OPA specifies that certain counters are cleared on a transition
6976 	 * to link up, so do that.
6977 	 */
6978 	clear_linkup_counters(dd);
6979 	/*
6980 	 * And (re)set link up default values.
6981 	 */
6982 	set_linkup_defaults(ppd);
6983 
6984 	/*
6985 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6986 	 * In case of quick linkup or simulator, vl15 value will be set by
6987 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6988 	 * called in those scenarios.
6989 	 */
6990 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6991 		set_up_vl15(dd, dd->vl15buf_cached);
6992 
6993 	/* enforce link speed enabled */
6994 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6995 		/* oops - current speed is not enabled, bounce */
6996 		dd_dev_err(dd,
6997 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6998 			   ppd->link_speed_active, ppd->link_speed_enabled);
6999 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7000 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7001 		set_link_state(ppd, HLS_DN_OFFLINE);
7002 		start_link(ppd);
7003 	}
7004 }
7005 
7006 /*
7007  * Several pieces of LNI information were cached for SMA in ppd.
7008  * Reset these on link down
7009  */
7010 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7011 {
7012 	ppd->neighbor_guid = 0;
7013 	ppd->neighbor_port_number = 0;
7014 	ppd->neighbor_type = 0;
7015 	ppd->neighbor_fm_security = 0;
7016 }
7017 
7018 static const char * const link_down_reason_strs[] = {
7019 	[OPA_LINKDOWN_REASON_NONE] = "None",
7020 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7021 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7022 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7023 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7024 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7025 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7026 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7027 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7028 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7029 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7030 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7031 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7032 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7033 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7034 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7035 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7036 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7037 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7038 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7039 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7040 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7041 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7042 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7043 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7044 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7045 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7046 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7047 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7048 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7049 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7050 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7051 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7052 					"Excessive buffer overrun",
7053 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7054 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7055 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7056 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7057 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7058 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7059 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7060 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7061 					"Local media not installed",
7062 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7063 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7064 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7065 					"End to end not installed",
7066 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7067 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7068 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7069 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7070 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7071 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7072 };
7073 
7074 /* return the neighbor link down reason string */
7075 static const char *link_down_reason_str(u8 reason)
7076 {
7077 	const char *str = NULL;
7078 
7079 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7080 		str = link_down_reason_strs[reason];
7081 	if (!str)
7082 		str = "(invalid)";
7083 
7084 	return str;
7085 }
7086 
7087 /*
7088  * Handle a link down interrupt from the 8051.
7089  *
7090  * This is a work-queue function outside of the interrupt.
7091  */
7092 void handle_link_down(struct work_struct *work)
7093 {
7094 	u8 lcl_reason, neigh_reason = 0;
7095 	u8 link_down_reason;
7096 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7097 						  link_down_work);
7098 	int was_up;
7099 	static const char ldr_str[] = "Link down reason: ";
7100 
7101 	if ((ppd->host_link_state &
7102 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7103 	     ppd->port_type == PORT_TYPE_FIXED)
7104 		ppd->offline_disabled_reason =
7105 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7106 
7107 	/* Go offline first, then deal with reading/writing through 8051 */
7108 	was_up = !!(ppd->host_link_state & HLS_UP);
7109 	set_link_state(ppd, HLS_DN_OFFLINE);
7110 	xchg(&ppd->is_link_down_queued, 0);
7111 
7112 	if (was_up) {
7113 		lcl_reason = 0;
7114 		/* link down reason is only valid if the link was up */
7115 		read_link_down_reason(ppd->dd, &link_down_reason);
7116 		switch (link_down_reason) {
7117 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7118 			/* the link went down, no idle message reason */
7119 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7120 				    ldr_str);
7121 			break;
7122 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7123 			/*
7124 			 * The neighbor reason is only valid if an idle message
7125 			 * was received for it.
7126 			 */
7127 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7128 			dd_dev_info(ppd->dd,
7129 				    "%sNeighbor link down message %d, %s\n",
7130 				    ldr_str, neigh_reason,
7131 				    link_down_reason_str(neigh_reason));
7132 			break;
7133 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7134 			dd_dev_info(ppd->dd,
7135 				    "%sHost requested link to go offline\n",
7136 				    ldr_str);
7137 			break;
7138 		default:
7139 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7140 				    ldr_str, link_down_reason);
7141 			break;
7142 		}
7143 
7144 		/*
7145 		 * If no reason, assume peer-initiated but missed
7146 		 * LinkGoingDown idle flits.
7147 		 */
7148 		if (neigh_reason == 0)
7149 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7150 	} else {
7151 		/* went down while polling or going up */
7152 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7153 	}
7154 
7155 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7156 
7157 	/* inform the SMA when the link transitions from up to down */
7158 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7159 	    ppd->neigh_link_down_reason.sma == 0) {
7160 		ppd->local_link_down_reason.sma =
7161 					ppd->local_link_down_reason.latest;
7162 		ppd->neigh_link_down_reason.sma =
7163 					ppd->neigh_link_down_reason.latest;
7164 	}
7165 
7166 	reset_neighbor_info(ppd);
7167 
7168 	/* disable the port */
7169 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7170 
7171 	/*
7172 	 * If there is no cable attached, turn the DC off. Otherwise,
7173 	 * start the link bring up.
7174 	 */
7175 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7176 		dc_shutdown(ppd->dd);
7177 	else
7178 		start_link(ppd);
7179 }
7180 
7181 void handle_link_bounce(struct work_struct *work)
7182 {
7183 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7184 							link_bounce_work);
7185 
7186 	/*
7187 	 * Only do something if the link is currently up.
7188 	 */
7189 	if (ppd->host_link_state & HLS_UP) {
7190 		set_link_state(ppd, HLS_DN_OFFLINE);
7191 		start_link(ppd);
7192 	} else {
7193 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7194 			    __func__, link_state_name(ppd->host_link_state));
7195 	}
7196 }
7197 
7198 /*
7199  * Mask conversion: Capability exchange to Port LTP.  The capability
7200  * exchange has an implicit 16b CRC that is mandatory.
7201  */
7202 static int cap_to_port_ltp(int cap)
7203 {
7204 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7205 
7206 	if (cap & CAP_CRC_14B)
7207 		port_ltp |= PORT_LTP_CRC_MODE_14;
7208 	if (cap & CAP_CRC_48B)
7209 		port_ltp |= PORT_LTP_CRC_MODE_48;
7210 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7211 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7212 
7213 	return port_ltp;
7214 }
7215 
7216 /*
7217  * Convert an OPA Port LTP mask to capability mask
7218  */
7219 int port_ltp_to_cap(int port_ltp)
7220 {
7221 	int cap_mask = 0;
7222 
7223 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7224 		cap_mask |= CAP_CRC_14B;
7225 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7226 		cap_mask |= CAP_CRC_48B;
7227 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7228 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7229 
7230 	return cap_mask;
7231 }
7232 
7233 /*
7234  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7235  */
7236 static int lcb_to_port_ltp(int lcb_crc)
7237 {
7238 	int port_ltp = 0;
7239 
7240 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7241 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7242 	else if (lcb_crc == LCB_CRC_48B)
7243 		port_ltp = PORT_LTP_CRC_MODE_48;
7244 	else if (lcb_crc == LCB_CRC_14B)
7245 		port_ltp = PORT_LTP_CRC_MODE_14;
7246 	else
7247 		port_ltp = PORT_LTP_CRC_MODE_16;
7248 
7249 	return port_ltp;
7250 }
7251 
7252 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7253 {
7254 	if (ppd->pkeys[2] != 0) {
7255 		ppd->pkeys[2] = 0;
7256 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7257 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7258 	}
7259 }
7260 
7261 /*
7262  * Convert the given link width to the OPA link width bitmask.
7263  */
7264 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7265 {
7266 	switch (width) {
7267 	case 0:
7268 		/*
7269 		 * Simulator and quick linkup do not set the width.
7270 		 * Just set it to 4x without complaint.
7271 		 */
7272 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7273 			return OPA_LINK_WIDTH_4X;
7274 		return 0; /* no lanes up */
7275 	case 1: return OPA_LINK_WIDTH_1X;
7276 	case 2: return OPA_LINK_WIDTH_2X;
7277 	case 3: return OPA_LINK_WIDTH_3X;
7278 	case 4: return OPA_LINK_WIDTH_4X;
7279 	default:
7280 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7281 			    __func__, width);
7282 		return OPA_LINK_WIDTH_4X;
7283 	}
7284 }
7285 
7286 /*
7287  * Do a population count on the bottom nibble.
7288  */
7289 static const u8 bit_counts[16] = {
7290 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7291 };
7292 
7293 static inline u8 nibble_to_count(u8 nibble)
7294 {
7295 	return bit_counts[nibble & 0xf];
7296 }
7297 
7298 /*
7299  * Read the active lane information from the 8051 registers and return
7300  * their widths.
7301  *
7302  * Active lane information is found in these 8051 registers:
7303  *	enable_lane_tx
7304  *	enable_lane_rx
7305  */
7306 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7307 			    u16 *rx_width)
7308 {
7309 	u16 tx, rx;
7310 	u8 enable_lane_rx;
7311 	u8 enable_lane_tx;
7312 	u8 tx_polarity_inversion;
7313 	u8 rx_polarity_inversion;
7314 	u8 max_rate;
7315 
7316 	/* read the active lanes */
7317 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7318 			 &rx_polarity_inversion, &max_rate);
7319 	read_local_lni(dd, &enable_lane_rx);
7320 
7321 	/* convert to counts */
7322 	tx = nibble_to_count(enable_lane_tx);
7323 	rx = nibble_to_count(enable_lane_rx);
7324 
7325 	/*
7326 	 * Set link_speed_active here, overriding what was set in
7327 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7328 	 * set the max_rate field in handle_verify_cap until v0.19.
7329 	 */
7330 	if ((dd->icode == ICODE_RTL_SILICON) &&
7331 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7332 		/* max_rate: 0 = 12.5G, 1 = 25G */
7333 		switch (max_rate) {
7334 		case 0:
7335 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7336 			break;
7337 		case 1:
7338 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7339 			break;
7340 		default:
7341 			dd_dev_err(dd,
7342 				   "%s: unexpected max rate %d, using 25Gb\n",
7343 				   __func__, (int)max_rate);
7344 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7345 			break;
7346 		}
7347 	}
7348 
7349 	dd_dev_info(dd,
7350 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7351 		    enable_lane_tx, tx, enable_lane_rx, rx);
7352 	*tx_width = link_width_to_bits(dd, tx);
7353 	*rx_width = link_width_to_bits(dd, rx);
7354 }
7355 
7356 /*
7357  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7358  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7359  * after link up.  I.e. look elsewhere for downgrade information.
7360  *
7361  * Bits are:
7362  *	+ bits [7:4] contain the number of active transmitters
7363  *	+ bits [3:0] contain the number of active receivers
7364  * These are numbers 1 through 4 and can be different values if the
7365  * link is asymmetric.
7366  *
7367  * verify_cap_local_fm_link_width[0] retains its original value.
7368  */
7369 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7370 			      u16 *rx_width)
7371 {
7372 	u16 widths, tx, rx;
7373 	u8 misc_bits, local_flags;
7374 	u16 active_tx, active_rx;
7375 
7376 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7377 	tx = widths >> 12;
7378 	rx = (widths >> 8) & 0xf;
7379 
7380 	*tx_width = link_width_to_bits(dd, tx);
7381 	*rx_width = link_width_to_bits(dd, rx);
7382 
7383 	/* print the active widths */
7384 	get_link_widths(dd, &active_tx, &active_rx);
7385 }
7386 
7387 /*
7388  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7389  * hardware information when the link first comes up.
7390  *
7391  * The link width is not available until after VerifyCap.AllFramesReceived
7392  * (the trigger for handle_verify_cap), so this is outside that routine
7393  * and should be called when the 8051 signals linkup.
7394  */
7395 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7396 {
7397 	u16 tx_width, rx_width;
7398 
7399 	/* get end-of-LNI link widths */
7400 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7401 
7402 	/* use tx_width as the link is supposed to be symmetric on link up */
7403 	ppd->link_width_active = tx_width;
7404 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7405 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7406 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7407 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7408 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7409 	/* cache the active egress rate (units {10^6 bits/sec]) */
7410 	ppd->current_egress_rate = active_egress_rate(ppd);
7411 }
7412 
7413 /*
7414  * Handle a verify capabilities interrupt from the 8051.
7415  *
7416  * This is a work-queue function outside of the interrupt.
7417  */
7418 void handle_verify_cap(struct work_struct *work)
7419 {
7420 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7421 								link_vc_work);
7422 	struct hfi1_devdata *dd = ppd->dd;
7423 	u64 reg;
7424 	u8 power_management;
7425 	u8 continuous;
7426 	u8 vcu;
7427 	u8 vau;
7428 	u8 z;
7429 	u16 vl15buf;
7430 	u16 link_widths;
7431 	u16 crc_mask;
7432 	u16 crc_val;
7433 	u16 device_id;
7434 	u16 active_tx, active_rx;
7435 	u8 partner_supported_crc;
7436 	u8 remote_tx_rate;
7437 	u8 device_rev;
7438 
7439 	set_link_state(ppd, HLS_VERIFY_CAP);
7440 
7441 	lcb_shutdown(dd, 0);
7442 	adjust_lcb_for_fpga_serdes(dd);
7443 
7444 	read_vc_remote_phy(dd, &power_management, &continuous);
7445 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7446 			      &partner_supported_crc);
7447 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7448 	read_remote_device_id(dd, &device_id, &device_rev);
7449 
7450 	/* print the active widths */
7451 	get_link_widths(dd, &active_tx, &active_rx);
7452 	dd_dev_info(dd,
7453 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7454 		    (int)power_management, (int)continuous);
7455 	dd_dev_info(dd,
7456 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7457 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7458 		    (int)partner_supported_crc);
7459 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7460 		    (u32)remote_tx_rate, (u32)link_widths);
7461 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7462 		    (u32)device_id, (u32)device_rev);
7463 	/*
7464 	 * The peer vAU value just read is the peer receiver value.  HFI does
7465 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7466 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7467 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7468 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7469 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7470 	 * subject to the Z value exception.
7471 	 */
7472 	if (vau == 0)
7473 		vau = 1;
7474 	set_up_vau(dd, vau);
7475 
7476 	/*
7477 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7478 	 * credits value and wait for link-up interrupt ot set it.
7479 	 */
7480 	set_up_vl15(dd, 0);
7481 	dd->vl15buf_cached = vl15buf;
7482 
7483 	/* set up the LCB CRC mode */
7484 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7485 
7486 	/* order is important: use the lowest bit in common */
7487 	if (crc_mask & CAP_CRC_14B)
7488 		crc_val = LCB_CRC_14B;
7489 	else if (crc_mask & CAP_CRC_48B)
7490 		crc_val = LCB_CRC_48B;
7491 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7492 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7493 	else
7494 		crc_val = LCB_CRC_16B;
7495 
7496 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7497 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7498 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7499 
7500 	/* set (14b only) or clear sideband credit */
7501 	reg = read_csr(dd, SEND_CM_CTRL);
7502 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7503 		write_csr(dd, SEND_CM_CTRL,
7504 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7505 	} else {
7506 		write_csr(dd, SEND_CM_CTRL,
7507 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7508 	}
7509 
7510 	ppd->link_speed_active = 0;	/* invalid value */
7511 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7512 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7513 		switch (remote_tx_rate) {
7514 		case 0:
7515 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7516 			break;
7517 		case 1:
7518 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7519 			break;
7520 		}
7521 	} else {
7522 		/* actual rate is highest bit of the ANDed rates */
7523 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7524 
7525 		if (rate & 2)
7526 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7527 		else if (rate & 1)
7528 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7529 	}
7530 	if (ppd->link_speed_active == 0) {
7531 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7532 			   __func__, (int)remote_tx_rate);
7533 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7534 	}
7535 
7536 	/*
7537 	 * Cache the values of the supported, enabled, and active
7538 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7539 	 * flags that are returned in the portinfo query differ from
7540 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7541 	 * variables. Convert these here.
7542 	 */
7543 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7544 		/* supported crc modes */
7545 	ppd->port_ltp_crc_mode |=
7546 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7547 		/* enabled crc modes */
7548 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7549 		/* active crc mode */
7550 
7551 	/* set up the remote credit return table */
7552 	assign_remote_cm_au_table(dd, vcu);
7553 
7554 	/*
7555 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7556 	 * be applied on every link up.
7557 	 *
7558 	 * Adjust LCB error kill enable to kill the link if
7559 	 * these RBUF errors are seen:
7560 	 *	REPLAY_BUF_MBE_SMASK
7561 	 *	FLIT_INPUT_BUF_MBE_SMASK
7562 	 */
7563 	if (is_ax(dd)) {			/* fixed in B0 */
7564 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7565 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7566 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7567 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7568 	}
7569 
7570 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7571 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7572 
7573 	/* give 8051 access to the LCB CSRs */
7574 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7575 	set_8051_lcb_access(dd);
7576 
7577 	/* tell the 8051 to go to LinkUp */
7578 	set_link_state(ppd, HLS_GOING_UP);
7579 }
7580 
7581 /**
7582  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7583  * policy against the current active link widths.
7584  * @ppd: info of physical Hfi port
7585  * @refresh_widths: True indicates link downgrade event
7586  * @return: True indicates a successful link downgrade. False indicates
7587  *	    link downgrade event failed and the link will bounce back to
7588  *	    default link width.
7589  *
7590  * Called when the enabled policy changes or the active link widths
7591  * change.
7592  * Refresh_widths indicates that a link downgrade occurred. The
7593  * link_downgraded variable is set by refresh_widths and
7594  * determines the success/failure of the policy application.
7595  */
7596 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7597 				 bool refresh_widths)
7598 {
7599 	int do_bounce = 0;
7600 	int tries;
7601 	u16 lwde;
7602 	u16 tx, rx;
7603 	bool link_downgraded = refresh_widths;
7604 
7605 	/* use the hls lock to avoid a race with actual link up */
7606 	tries = 0;
7607 retry:
7608 	mutex_lock(&ppd->hls_lock);
7609 	/* only apply if the link is up */
7610 	if (ppd->host_link_state & HLS_DOWN) {
7611 		/* still going up..wait and retry */
7612 		if (ppd->host_link_state & HLS_GOING_UP) {
7613 			if (++tries < 1000) {
7614 				mutex_unlock(&ppd->hls_lock);
7615 				usleep_range(100, 120); /* arbitrary */
7616 				goto retry;
7617 			}
7618 			dd_dev_err(ppd->dd,
7619 				   "%s: giving up waiting for link state change\n",
7620 				   __func__);
7621 		}
7622 		goto done;
7623 	}
7624 
7625 	lwde = ppd->link_width_downgrade_enabled;
7626 
7627 	if (refresh_widths) {
7628 		get_link_widths(ppd->dd, &tx, &rx);
7629 		ppd->link_width_downgrade_tx_active = tx;
7630 		ppd->link_width_downgrade_rx_active = rx;
7631 	}
7632 
7633 	if (ppd->link_width_downgrade_tx_active == 0 ||
7634 	    ppd->link_width_downgrade_rx_active == 0) {
7635 		/* the 8051 reported a dead link as a downgrade */
7636 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7637 		link_downgraded = false;
7638 	} else if (lwde == 0) {
7639 		/* downgrade is disabled */
7640 
7641 		/* bounce if not at starting active width */
7642 		if ((ppd->link_width_active !=
7643 		     ppd->link_width_downgrade_tx_active) ||
7644 		    (ppd->link_width_active !=
7645 		     ppd->link_width_downgrade_rx_active)) {
7646 			dd_dev_err(ppd->dd,
7647 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7648 			dd_dev_err(ppd->dd,
7649 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7650 				   ppd->link_width_active,
7651 				   ppd->link_width_downgrade_tx_active,
7652 				   ppd->link_width_downgrade_rx_active);
7653 			do_bounce = 1;
7654 			link_downgraded = false;
7655 		}
7656 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7657 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7658 		/* Tx or Rx is outside the enabled policy */
7659 		dd_dev_err(ppd->dd,
7660 			   "Link is outside of downgrade allowed, downing link\n");
7661 		dd_dev_err(ppd->dd,
7662 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7663 			   lwde, ppd->link_width_downgrade_tx_active,
7664 			   ppd->link_width_downgrade_rx_active);
7665 		do_bounce = 1;
7666 		link_downgraded = false;
7667 	}
7668 
7669 done:
7670 	mutex_unlock(&ppd->hls_lock);
7671 
7672 	if (do_bounce) {
7673 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7674 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7675 		set_link_state(ppd, HLS_DN_OFFLINE);
7676 		start_link(ppd);
7677 	}
7678 
7679 	return link_downgraded;
7680 }
7681 
7682 /*
7683  * Handle a link downgrade interrupt from the 8051.
7684  *
7685  * This is a work-queue function outside of the interrupt.
7686  */
7687 void handle_link_downgrade(struct work_struct *work)
7688 {
7689 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7690 							link_downgrade_work);
7691 
7692 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7693 	if (apply_link_downgrade_policy(ppd, true))
7694 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7695 }
7696 
7697 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7698 {
7699 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7700 		ARRAY_SIZE(dcc_err_flags));
7701 }
7702 
7703 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7704 {
7705 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7706 		ARRAY_SIZE(lcb_err_flags));
7707 }
7708 
7709 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7710 {
7711 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7712 		ARRAY_SIZE(dc8051_err_flags));
7713 }
7714 
7715 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7716 {
7717 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7718 		ARRAY_SIZE(dc8051_info_err_flags));
7719 }
7720 
7721 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7722 {
7723 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7724 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7725 }
7726 
7727 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7728 {
7729 	struct hfi1_pportdata *ppd = dd->pport;
7730 	u64 info, err, host_msg;
7731 	int queue_link_down = 0;
7732 	char buf[96];
7733 
7734 	/* look at the flags */
7735 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7736 		/* 8051 information set by firmware */
7737 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7738 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7739 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7740 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7741 		host_msg = (info >>
7742 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7743 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7744 
7745 		/*
7746 		 * Handle error flags.
7747 		 */
7748 		if (err & FAILED_LNI) {
7749 			/*
7750 			 * LNI error indications are cleared by the 8051
7751 			 * only when starting polling.  Only pay attention
7752 			 * to them when in the states that occur during
7753 			 * LNI.
7754 			 */
7755 			if (ppd->host_link_state
7756 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7757 				queue_link_down = 1;
7758 				dd_dev_info(dd, "Link error: %s\n",
7759 					    dc8051_info_err_string(buf,
7760 								   sizeof(buf),
7761 								   err &
7762 								   FAILED_LNI));
7763 			}
7764 			err &= ~(u64)FAILED_LNI;
7765 		}
7766 		/* unknown frames can happen durning LNI, just count */
7767 		if (err & UNKNOWN_FRAME) {
7768 			ppd->unknown_frame_count++;
7769 			err &= ~(u64)UNKNOWN_FRAME;
7770 		}
7771 		if (err) {
7772 			/* report remaining errors, but do not do anything */
7773 			dd_dev_err(dd, "8051 info error: %s\n",
7774 				   dc8051_info_err_string(buf, sizeof(buf),
7775 							  err));
7776 		}
7777 
7778 		/*
7779 		 * Handle host message flags.
7780 		 */
7781 		if (host_msg & HOST_REQ_DONE) {
7782 			/*
7783 			 * Presently, the driver does a busy wait for
7784 			 * host requests to complete.  This is only an
7785 			 * informational message.
7786 			 * NOTE: The 8051 clears the host message
7787 			 * information *on the next 8051 command*.
7788 			 * Therefore, when linkup is achieved,
7789 			 * this flag will still be set.
7790 			 */
7791 			host_msg &= ~(u64)HOST_REQ_DONE;
7792 		}
7793 		if (host_msg & BC_SMA_MSG) {
7794 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7795 			host_msg &= ~(u64)BC_SMA_MSG;
7796 		}
7797 		if (host_msg & LINKUP_ACHIEVED) {
7798 			dd_dev_info(dd, "8051: Link up\n");
7799 			queue_work(ppd->link_wq, &ppd->link_up_work);
7800 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7801 		}
7802 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7803 			handle_8051_request(ppd);
7804 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7805 		}
7806 		if (host_msg & VERIFY_CAP_FRAME) {
7807 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7808 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7809 		}
7810 		if (host_msg & LINK_GOING_DOWN) {
7811 			const char *extra = "";
7812 			/* no downgrade action needed if going down */
7813 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7814 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7815 				extra = " (ignoring downgrade)";
7816 			}
7817 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7818 			queue_link_down = 1;
7819 			host_msg &= ~(u64)LINK_GOING_DOWN;
7820 		}
7821 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7822 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7823 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7824 		}
7825 		if (host_msg) {
7826 			/* report remaining messages, but do not do anything */
7827 			dd_dev_info(dd, "8051 info host message: %s\n",
7828 				    dc8051_info_host_msg_string(buf,
7829 								sizeof(buf),
7830 								host_msg));
7831 		}
7832 
7833 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7834 	}
7835 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7836 		/*
7837 		 * Lost the 8051 heartbeat.  If this happens, we
7838 		 * receive constant interrupts about it.  Disable
7839 		 * the interrupt after the first.
7840 		 */
7841 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7842 		write_csr(dd, DC_DC8051_ERR_EN,
7843 			  read_csr(dd, DC_DC8051_ERR_EN) &
7844 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7845 
7846 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7847 	}
7848 	if (reg) {
7849 		/* report the error, but do not do anything */
7850 		dd_dev_err(dd, "8051 error: %s\n",
7851 			   dc8051_err_string(buf, sizeof(buf), reg));
7852 	}
7853 
7854 	if (queue_link_down) {
7855 		/*
7856 		 * if the link is already going down or disabled, do not
7857 		 * queue another. If there's a link down entry already
7858 		 * queued, don't queue another one.
7859 		 */
7860 		if ((ppd->host_link_state &
7861 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7862 		    ppd->link_enabled == 0) {
7863 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7864 				    __func__, ppd->host_link_state,
7865 				    ppd->link_enabled);
7866 		} else {
7867 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7868 				dd_dev_info(dd,
7869 					    "%s: link down request already queued\n",
7870 					    __func__);
7871 			else
7872 				queue_work(ppd->link_wq, &ppd->link_down_work);
7873 		}
7874 	}
7875 }
7876 
7877 static const char * const fm_config_txt[] = {
7878 [0] =
7879 	"BadHeadDist: Distance violation between two head flits",
7880 [1] =
7881 	"BadTailDist: Distance violation between two tail flits",
7882 [2] =
7883 	"BadCtrlDist: Distance violation between two credit control flits",
7884 [3] =
7885 	"BadCrdAck: Credits return for unsupported VL",
7886 [4] =
7887 	"UnsupportedVLMarker: Received VL Marker",
7888 [5] =
7889 	"BadPreempt: Exceeded the preemption nesting level",
7890 [6] =
7891 	"BadControlFlit: Received unsupported control flit",
7892 /* no 7 */
7893 [8] =
7894 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7895 };
7896 
7897 static const char * const port_rcv_txt[] = {
7898 [1] =
7899 	"BadPktLen: Illegal PktLen",
7900 [2] =
7901 	"PktLenTooLong: Packet longer than PktLen",
7902 [3] =
7903 	"PktLenTooShort: Packet shorter than PktLen",
7904 [4] =
7905 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7906 [5] =
7907 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7908 [6] =
7909 	"BadL2: Illegal L2 opcode",
7910 [7] =
7911 	"BadSC: Unsupported SC",
7912 [9] =
7913 	"BadRC: Illegal RC",
7914 [11] =
7915 	"PreemptError: Preempting with same VL",
7916 [12] =
7917 	"PreemptVL15: Preempting a VL15 packet",
7918 };
7919 
7920 #define OPA_LDR_FMCONFIG_OFFSET 16
7921 #define OPA_LDR_PORTRCV_OFFSET 0
7922 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7923 {
7924 	u64 info, hdr0, hdr1;
7925 	const char *extra;
7926 	char buf[96];
7927 	struct hfi1_pportdata *ppd = dd->pport;
7928 	u8 lcl_reason = 0;
7929 	int do_bounce = 0;
7930 
7931 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7932 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7933 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7934 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7935 			/* set status bit */
7936 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7937 		}
7938 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7939 	}
7940 
7941 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7942 		struct hfi1_pportdata *ppd = dd->pport;
7943 		/* this counter saturates at (2^32) - 1 */
7944 		if (ppd->link_downed < (u32)UINT_MAX)
7945 			ppd->link_downed++;
7946 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7947 	}
7948 
7949 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7950 		u8 reason_valid = 1;
7951 
7952 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7953 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7954 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7955 			/* set status bit */
7956 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7957 		}
7958 		switch (info) {
7959 		case 0:
7960 		case 1:
7961 		case 2:
7962 		case 3:
7963 		case 4:
7964 		case 5:
7965 		case 6:
7966 			extra = fm_config_txt[info];
7967 			break;
7968 		case 8:
7969 			extra = fm_config_txt[info];
7970 			if (ppd->port_error_action &
7971 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7972 				do_bounce = 1;
7973 				/*
7974 				 * lcl_reason cannot be derived from info
7975 				 * for this error
7976 				 */
7977 				lcl_reason =
7978 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7979 			}
7980 			break;
7981 		default:
7982 			reason_valid = 0;
7983 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7984 			extra = buf;
7985 			break;
7986 		}
7987 
7988 		if (reason_valid && !do_bounce) {
7989 			do_bounce = ppd->port_error_action &
7990 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7991 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7992 		}
7993 
7994 		/* just report this */
7995 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7996 					extra);
7997 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7998 	}
7999 
8000 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8001 		u8 reason_valid = 1;
8002 
8003 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8004 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8005 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8006 		if (!(dd->err_info_rcvport.status_and_code &
8007 		      OPA_EI_STATUS_SMASK)) {
8008 			dd->err_info_rcvport.status_and_code =
8009 				info & OPA_EI_CODE_SMASK;
8010 			/* set status bit */
8011 			dd->err_info_rcvport.status_and_code |=
8012 				OPA_EI_STATUS_SMASK;
8013 			/*
8014 			 * save first 2 flits in the packet that caused
8015 			 * the error
8016 			 */
8017 			dd->err_info_rcvport.packet_flit1 = hdr0;
8018 			dd->err_info_rcvport.packet_flit2 = hdr1;
8019 		}
8020 		switch (info) {
8021 		case 1:
8022 		case 2:
8023 		case 3:
8024 		case 4:
8025 		case 5:
8026 		case 6:
8027 		case 7:
8028 		case 9:
8029 		case 11:
8030 		case 12:
8031 			extra = port_rcv_txt[info];
8032 			break;
8033 		default:
8034 			reason_valid = 0;
8035 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8036 			extra = buf;
8037 			break;
8038 		}
8039 
8040 		if (reason_valid && !do_bounce) {
8041 			do_bounce = ppd->port_error_action &
8042 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8043 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8044 		}
8045 
8046 		/* just report this */
8047 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8048 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8049 					extra, hdr0, hdr1);
8050 
8051 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8052 	}
8053 
8054 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8055 		/* informative only */
8056 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8057 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8058 	}
8059 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8060 		/* informative only */
8061 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8062 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8063 	}
8064 
8065 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8066 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8067 
8068 	/* report any remaining errors */
8069 	if (reg)
8070 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8071 					dcc_err_string(buf, sizeof(buf), reg));
8072 
8073 	if (lcl_reason == 0)
8074 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8075 
8076 	if (do_bounce) {
8077 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8078 					__func__);
8079 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8080 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8081 	}
8082 }
8083 
8084 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8085 {
8086 	char buf[96];
8087 
8088 	dd_dev_info(dd, "LCB Error: %s\n",
8089 		    lcb_err_string(buf, sizeof(buf), reg));
8090 }
8091 
8092 /*
8093  * CCE block DC interrupt.  Source is < 8.
8094  */
8095 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8096 {
8097 	const struct err_reg_info *eri = &dc_errs[source];
8098 
8099 	if (eri->handler) {
8100 		interrupt_clear_down(dd, 0, eri);
8101 	} else if (source == 3 /* dc_lbm_int */) {
8102 		/*
8103 		 * This indicates that a parity error has occurred on the
8104 		 * address/control lines presented to the LBM.  The error
8105 		 * is a single pulse, there is no associated error flag,
8106 		 * and it is non-maskable.  This is because if a parity
8107 		 * error occurs on the request the request is dropped.
8108 		 * This should never occur, but it is nice to know if it
8109 		 * ever does.
8110 		 */
8111 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8112 	} else {
8113 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8114 	}
8115 }
8116 
8117 /*
8118  * TX block send credit interrupt.  Source is < 160.
8119  */
8120 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8121 {
8122 	sc_group_release_update(dd, source);
8123 }
8124 
8125 /*
8126  * TX block SDMA interrupt.  Source is < 48.
8127  *
8128  * SDMA interrupts are grouped by type:
8129  *
8130  *	 0 -  N-1 = SDma
8131  *	 N - 2N-1 = SDmaProgress
8132  *	2N - 3N-1 = SDmaIdle
8133  */
8134 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8135 {
8136 	/* what interrupt */
8137 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8138 	/* which engine */
8139 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8140 
8141 #ifdef CONFIG_SDMA_VERBOSITY
8142 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8143 		   slashstrip(__FILE__), __LINE__, __func__);
8144 	sdma_dumpstate(&dd->per_sdma[which]);
8145 #endif
8146 
8147 	if (likely(what < 3 && which < dd->num_sdma)) {
8148 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8149 	} else {
8150 		/* should not happen */
8151 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8152 	}
8153 }
8154 
8155 /**
8156  * is_rcv_avail_int() - User receive context available IRQ handler
8157  * @dd: valid dd
8158  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8159  *
8160  * RX block receive available interrupt.  Source is < 160.
8161  *
8162  * This is the general interrupt handler for user (PSM) receive contexts,
8163  * and can only be used for non-threaded IRQs.
8164  */
8165 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8166 {
8167 	struct hfi1_ctxtdata *rcd;
8168 	char *err_detail;
8169 
8170 	if (likely(source < dd->num_rcv_contexts)) {
8171 		rcd = hfi1_rcd_get_by_index(dd, source);
8172 		if (rcd) {
8173 			handle_user_interrupt(rcd);
8174 			hfi1_rcd_put(rcd);
8175 			return;	/* OK */
8176 		}
8177 		/* received an interrupt, but no rcd */
8178 		err_detail = "dataless";
8179 	} else {
8180 		/* received an interrupt, but are not using that context */
8181 		err_detail = "out of range";
8182 	}
8183 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8184 		   err_detail, source);
8185 }
8186 
8187 /**
8188  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8189  * @dd: valid dd
8190  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8191  *
8192  * RX block receive urgent interrupt.  Source is < 160.
8193  *
8194  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8195  */
8196 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8197 {
8198 	struct hfi1_ctxtdata *rcd;
8199 	char *err_detail;
8200 
8201 	if (likely(source < dd->num_rcv_contexts)) {
8202 		rcd = hfi1_rcd_get_by_index(dd, source);
8203 		if (rcd) {
8204 			handle_user_interrupt(rcd);
8205 			hfi1_rcd_put(rcd);
8206 			return;	/* OK */
8207 		}
8208 		/* received an interrupt, but no rcd */
8209 		err_detail = "dataless";
8210 	} else {
8211 		/* received an interrupt, but are not using that context */
8212 		err_detail = "out of range";
8213 	}
8214 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8215 		   err_detail, source);
8216 }
8217 
8218 /*
8219  * Reserved range interrupt.  Should not be called in normal operation.
8220  */
8221 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8222 {
8223 	char name[64];
8224 
8225 	dd_dev_err(dd, "unexpected %s interrupt\n",
8226 		   is_reserved_name(name, sizeof(name), source));
8227 }
8228 
8229 static const struct is_table is_table[] = {
8230 /*
8231  * start		 end
8232  *				name func		interrupt func
8233  */
8234 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8235 				is_misc_err_name,	is_misc_err_int },
8236 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8237 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8238 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8239 				is_sendctxt_err_name,	is_sendctxt_err_int },
8240 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8241 				is_sdma_eng_name,	is_sdma_eng_int },
8242 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8243 				is_various_name,	is_various_int },
8244 { IS_DC_START,	     IS_DC_END,
8245 				is_dc_name,		is_dc_int },
8246 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8247 				is_rcv_avail_name,	is_rcv_avail_int },
8248 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8249 				is_rcv_urgent_name,	is_rcv_urgent_int },
8250 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8251 				is_send_credit_name,	is_send_credit_int},
8252 { IS_RESERVED_START,     IS_RESERVED_END,
8253 				is_reserved_name,	is_reserved_int},
8254 };
8255 
8256 /*
8257  * Interrupt source interrupt - called when the given source has an interrupt.
8258  * Source is a bit index into an array of 64-bit integers.
8259  */
8260 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8261 {
8262 	const struct is_table *entry;
8263 
8264 	/* avoids a double compare by walking the table in-order */
8265 	for (entry = &is_table[0]; entry->is_name; entry++) {
8266 		if (source <= entry->end) {
8267 			trace_hfi1_interrupt(dd, entry, source);
8268 			entry->is_int(dd, source - entry->start);
8269 			return;
8270 		}
8271 	}
8272 	/* fell off the end */
8273 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8274 }
8275 
8276 /**
8277  * general_interrupt -  General interrupt handler
8278  * @irq: MSIx IRQ vector
8279  * @data: hfi1 devdata
8280  *
8281  * This is able to correctly handle all non-threaded interrupts.  Receive
8282  * context DATA IRQs are threaded and are not supported by this handler.
8283  *
8284  */
8285 irqreturn_t general_interrupt(int irq, void *data)
8286 {
8287 	struct hfi1_devdata *dd = data;
8288 	u64 regs[CCE_NUM_INT_CSRS];
8289 	u32 bit;
8290 	int i;
8291 	irqreturn_t handled = IRQ_NONE;
8292 
8293 	this_cpu_inc(*dd->int_counter);
8294 
8295 	/* phase 1: scan and clear all handled interrupts */
8296 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8297 		if (dd->gi_mask[i] == 0) {
8298 			regs[i] = 0;	/* used later */
8299 			continue;
8300 		}
8301 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8302 				dd->gi_mask[i];
8303 		/* only clear if anything is set */
8304 		if (regs[i])
8305 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8306 	}
8307 
8308 	/* phase 2: call the appropriate handler */
8309 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8310 			 CCE_NUM_INT_CSRS * 64) {
8311 		is_interrupt(dd, bit);
8312 		handled = IRQ_HANDLED;
8313 	}
8314 
8315 	return handled;
8316 }
8317 
8318 irqreturn_t sdma_interrupt(int irq, void *data)
8319 {
8320 	struct sdma_engine *sde = data;
8321 	struct hfi1_devdata *dd = sde->dd;
8322 	u64 status;
8323 
8324 #ifdef CONFIG_SDMA_VERBOSITY
8325 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8326 		   slashstrip(__FILE__), __LINE__, __func__);
8327 	sdma_dumpstate(sde);
8328 #endif
8329 
8330 	this_cpu_inc(*dd->int_counter);
8331 
8332 	/* This read_csr is really bad in the hot path */
8333 	status = read_csr(dd,
8334 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8335 			  & sde->imask;
8336 	if (likely(status)) {
8337 		/* clear the interrupt(s) */
8338 		write_csr(dd,
8339 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8340 			  status);
8341 
8342 		/* handle the interrupt(s) */
8343 		sdma_engine_interrupt(sde, status);
8344 	} else {
8345 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8346 					sde->this_idx);
8347 	}
8348 	return IRQ_HANDLED;
8349 }
8350 
8351 /*
8352  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8353  * to insure that the write completed.  This does NOT guarantee that
8354  * queued DMA writes to memory from the chip are pushed.
8355  */
8356 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8357 {
8358 	struct hfi1_devdata *dd = rcd->dd;
8359 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8360 
8361 	write_csr(dd, addr, rcd->imask);
8362 	/* force the above write on the chip and get a value back */
8363 	(void)read_csr(dd, addr);
8364 }
8365 
8366 /* force the receive interrupt */
8367 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8368 {
8369 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8370 }
8371 
8372 /*
8373  * Return non-zero if a packet is present.
8374  *
8375  * This routine is called when rechecking for packets after the RcvAvail
8376  * interrupt has been cleared down.  First, do a quick check of memory for
8377  * a packet present.  If not found, use an expensive CSR read of the context
8378  * tail to determine the actual tail.  The CSR read is necessary because there
8379  * is no method to push pending DMAs to memory other than an interrupt and we
8380  * are trying to determine if we need to force an interrupt.
8381  */
8382 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8383 {
8384 	u32 tail;
8385 
8386 	if (hfi1_packet_present(rcd))
8387 		return 1;
8388 
8389 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8390 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8391 	return hfi1_rcd_head(rcd) != tail;
8392 }
8393 
8394 /*
8395  * Common code for receive contexts interrupt handlers.
8396  * Update traces, increment kernel IRQ counter and
8397  * setup ASPM when needed.
8398  */
8399 static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8400 {
8401 	struct hfi1_devdata *dd = rcd->dd;
8402 
8403 	trace_hfi1_receive_interrupt(dd, rcd);
8404 	this_cpu_inc(*dd->int_counter);
8405 	aspm_ctx_disable(rcd);
8406 }
8407 
8408 /*
8409  * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8410  * when there are packets present in the queue. When calling
8411  * with interrupts enabled please use hfi1_rcd_eoi_intr.
8412  *
8413  * @rcd: valid receive context
8414  */
8415 static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8416 {
8417 	clear_recv_intr(rcd);
8418 	if (check_packet_present(rcd))
8419 		force_recv_intr(rcd);
8420 }
8421 
8422 /**
8423  * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8424  *
8425  * @rcd: Ptr to hfi1_ctxtdata of receive context
8426  *
8427  *  Hold IRQs so we can safely clear the interrupt and
8428  *  recheck for a packet that may have arrived after the previous
8429  *  check and the interrupt clear.  If a packet arrived, force another
8430  *  interrupt. This routine can be called at the end of receive packet
8431  *  processing in interrupt service routines, interrupt service thread
8432  *  and softirqs
8433  */
8434 static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8435 {
8436 	unsigned long flags;
8437 
8438 	local_irq_save(flags);
8439 	__hfi1_rcd_eoi_intr(rcd);
8440 	local_irq_restore(flags);
8441 }
8442 
8443 /**
8444  * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8445  * @napi: pointer to napi object
8446  * @budget: netdev budget
8447  */
8448 int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8449 {
8450 	struct hfi1_netdev_rxq *rxq = container_of(napi,
8451 			struct hfi1_netdev_rxq, napi);
8452 	struct hfi1_ctxtdata *rcd = rxq->rcd;
8453 	int work_done = 0;
8454 
8455 	work_done = rcd->do_interrupt(rcd, budget);
8456 
8457 	if (work_done < budget) {
8458 		napi_complete_done(napi, work_done);
8459 		hfi1_rcd_eoi_intr(rcd);
8460 	}
8461 
8462 	return work_done;
8463 }
8464 
8465 /* Receive packet napi handler for netdevs VNIC and AIP  */
8466 irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8467 {
8468 	struct hfi1_ctxtdata *rcd = data;
8469 
8470 	receive_interrupt_common(rcd);
8471 
8472 	if (likely(rcd->napi)) {
8473 		if (likely(napi_schedule_prep(rcd->napi)))
8474 			__napi_schedule_irqoff(rcd->napi);
8475 		else
8476 			__hfi1_rcd_eoi_intr(rcd);
8477 	} else {
8478 		WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8479 			  rcd->ctxt);
8480 		__hfi1_rcd_eoi_intr(rcd);
8481 	}
8482 
8483 	return IRQ_HANDLED;
8484 }
8485 
8486 /*
8487  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8488  * This routine will try to handle packets immediately (latency), but if
8489  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8490  * chip receive interrupt is *not* cleared down until this or the thread (if
8491  * invoked) is finished.  The intent is to avoid extra interrupts while we
8492  * are processing packets anyway.
8493  */
8494 irqreturn_t receive_context_interrupt(int irq, void *data)
8495 {
8496 	struct hfi1_ctxtdata *rcd = data;
8497 	int disposition;
8498 
8499 	receive_interrupt_common(rcd);
8500 
8501 	/* receive interrupt remains blocked while processing packets */
8502 	disposition = rcd->do_interrupt(rcd, 0);
8503 
8504 	/*
8505 	 * Too many packets were seen while processing packets in this
8506 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8507 	 * remains blocked.
8508 	 */
8509 	if (disposition == RCV_PKT_LIMIT)
8510 		return IRQ_WAKE_THREAD;
8511 
8512 	__hfi1_rcd_eoi_intr(rcd);
8513 	return IRQ_HANDLED;
8514 }
8515 
8516 /*
8517  * Receive packet thread handler.  This expects to be invoked with the
8518  * receive interrupt still blocked.
8519  */
8520 irqreturn_t receive_context_thread(int irq, void *data)
8521 {
8522 	struct hfi1_ctxtdata *rcd = data;
8523 
8524 	/* receive interrupt is still blocked from the IRQ handler */
8525 	(void)rcd->do_interrupt(rcd, 1);
8526 
8527 	hfi1_rcd_eoi_intr(rcd);
8528 
8529 	return IRQ_HANDLED;
8530 }
8531 
8532 /* ========================================================================= */
8533 
8534 u32 read_physical_state(struct hfi1_devdata *dd)
8535 {
8536 	u64 reg;
8537 
8538 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8539 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8540 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8541 }
8542 
8543 u32 read_logical_state(struct hfi1_devdata *dd)
8544 {
8545 	u64 reg;
8546 
8547 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8548 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8549 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8550 }
8551 
8552 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8553 {
8554 	u64 reg;
8555 
8556 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8557 	/* clear current state, set new state */
8558 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8559 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8560 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8561 }
8562 
8563 /*
8564  * Use the 8051 to read a LCB CSR.
8565  */
8566 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8567 {
8568 	u32 regno;
8569 	int ret;
8570 
8571 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8572 		if (acquire_lcb_access(dd, 0) == 0) {
8573 			*data = read_csr(dd, addr);
8574 			release_lcb_access(dd, 0);
8575 			return 0;
8576 		}
8577 		return -EBUSY;
8578 	}
8579 
8580 	/* register is an index of LCB registers: (offset - base) / 8 */
8581 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8582 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8583 	if (ret != HCMD_SUCCESS)
8584 		return -EBUSY;
8585 	return 0;
8586 }
8587 
8588 /*
8589  * Provide a cache for some of the LCB registers in case the LCB is
8590  * unavailable.
8591  * (The LCB is unavailable in certain link states, for example.)
8592  */
8593 struct lcb_datum {
8594 	u32 off;
8595 	u64 val;
8596 };
8597 
8598 static struct lcb_datum lcb_cache[] = {
8599 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8600 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8601 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8602 };
8603 
8604 static void update_lcb_cache(struct hfi1_devdata *dd)
8605 {
8606 	int i;
8607 	int ret;
8608 	u64 val;
8609 
8610 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8611 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8612 
8613 		/* Update if we get good data */
8614 		if (likely(ret != -EBUSY))
8615 			lcb_cache[i].val = val;
8616 	}
8617 }
8618 
8619 static int read_lcb_cache(u32 off, u64 *val)
8620 {
8621 	int i;
8622 
8623 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8624 		if (lcb_cache[i].off == off) {
8625 			*val = lcb_cache[i].val;
8626 			return 0;
8627 		}
8628 	}
8629 
8630 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8631 	return -1;
8632 }
8633 
8634 /*
8635  * Read an LCB CSR.  Access may not be in host control, so check.
8636  * Return 0 on success, -EBUSY on failure.
8637  */
8638 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8639 {
8640 	struct hfi1_pportdata *ppd = dd->pport;
8641 
8642 	/* if up, go through the 8051 for the value */
8643 	if (ppd->host_link_state & HLS_UP)
8644 		return read_lcb_via_8051(dd, addr, data);
8645 	/* if going up or down, check the cache, otherwise, no access */
8646 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8647 		if (read_lcb_cache(addr, data))
8648 			return -EBUSY;
8649 		return 0;
8650 	}
8651 
8652 	/* otherwise, host has access */
8653 	*data = read_csr(dd, addr);
8654 	return 0;
8655 }
8656 
8657 /*
8658  * Use the 8051 to write a LCB CSR.
8659  */
8660 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8661 {
8662 	u32 regno;
8663 	int ret;
8664 
8665 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8666 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8667 		if (acquire_lcb_access(dd, 0) == 0) {
8668 			write_csr(dd, addr, data);
8669 			release_lcb_access(dd, 0);
8670 			return 0;
8671 		}
8672 		return -EBUSY;
8673 	}
8674 
8675 	/* register is an index of LCB registers: (offset - base) / 8 */
8676 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8677 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8678 	if (ret != HCMD_SUCCESS)
8679 		return -EBUSY;
8680 	return 0;
8681 }
8682 
8683 /*
8684  * Write an LCB CSR.  Access may not be in host control, so check.
8685  * Return 0 on success, -EBUSY on failure.
8686  */
8687 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8688 {
8689 	struct hfi1_pportdata *ppd = dd->pport;
8690 
8691 	/* if up, go through the 8051 for the value */
8692 	if (ppd->host_link_state & HLS_UP)
8693 		return write_lcb_via_8051(dd, addr, data);
8694 	/* if going up or down, no access */
8695 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8696 		return -EBUSY;
8697 	/* otherwise, host has access */
8698 	write_csr(dd, addr, data);
8699 	return 0;
8700 }
8701 
8702 /*
8703  * Returns:
8704  *	< 0 = Linux error, not able to get access
8705  *	> 0 = 8051 command RETURN_CODE
8706  */
8707 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8708 			   u64 *out_data)
8709 {
8710 	u64 reg, completed;
8711 	int return_code;
8712 	unsigned long timeout;
8713 
8714 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8715 
8716 	mutex_lock(&dd->dc8051_lock);
8717 
8718 	/* We can't send any commands to the 8051 if it's in reset */
8719 	if (dd->dc_shutdown) {
8720 		return_code = -ENODEV;
8721 		goto fail;
8722 	}
8723 
8724 	/*
8725 	 * If an 8051 host command timed out previously, then the 8051 is
8726 	 * stuck.
8727 	 *
8728 	 * On first timeout, attempt to reset and restart the entire DC
8729 	 * block (including 8051). (Is this too big of a hammer?)
8730 	 *
8731 	 * If the 8051 times out a second time, the reset did not bring it
8732 	 * back to healthy life. In that case, fail any subsequent commands.
8733 	 */
8734 	if (dd->dc8051_timed_out) {
8735 		if (dd->dc8051_timed_out > 1) {
8736 			dd_dev_err(dd,
8737 				   "Previous 8051 host command timed out, skipping command %u\n",
8738 				   type);
8739 			return_code = -ENXIO;
8740 			goto fail;
8741 		}
8742 		_dc_shutdown(dd);
8743 		_dc_start(dd);
8744 	}
8745 
8746 	/*
8747 	 * If there is no timeout, then the 8051 command interface is
8748 	 * waiting for a command.
8749 	 */
8750 
8751 	/*
8752 	 * When writing a LCB CSR, out_data contains the full value to
8753 	 * to be written, while in_data contains the relative LCB
8754 	 * address in 7:0.  Do the work here, rather than the caller,
8755 	 * of distrubting the write data to where it needs to go:
8756 	 *
8757 	 * Write data
8758 	 *   39:00 -> in_data[47:8]
8759 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8760 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8761 	 */
8762 	if (type == HCMD_WRITE_LCB_CSR) {
8763 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8764 		/* must preserve COMPLETED - it is tied to hardware */
8765 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8766 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8767 		reg |= ((((*out_data) >> 40) & 0xff) <<
8768 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8769 		      | ((((*out_data) >> 48) & 0xffff) <<
8770 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8771 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8772 	}
8773 
8774 	/*
8775 	 * Do two writes: the first to stabilize the type and req_data, the
8776 	 * second to activate.
8777 	 */
8778 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8779 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8780 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8781 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8782 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8783 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8784 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8785 
8786 	/* wait for completion, alternate: interrupt */
8787 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8788 	while (1) {
8789 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8790 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8791 		if (completed)
8792 			break;
8793 		if (time_after(jiffies, timeout)) {
8794 			dd->dc8051_timed_out++;
8795 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8796 			if (out_data)
8797 				*out_data = 0;
8798 			return_code = -ETIMEDOUT;
8799 			goto fail;
8800 		}
8801 		udelay(2);
8802 	}
8803 
8804 	if (out_data) {
8805 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8806 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8807 		if (type == HCMD_READ_LCB_CSR) {
8808 			/* top 16 bits are in a different register */
8809 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8810 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8811 				<< (48
8812 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8813 		}
8814 	}
8815 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8816 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8817 	dd->dc8051_timed_out = 0;
8818 	/*
8819 	 * Clear command for next user.
8820 	 */
8821 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8822 
8823 fail:
8824 	mutex_unlock(&dd->dc8051_lock);
8825 	return return_code;
8826 }
8827 
8828 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8829 {
8830 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8831 }
8832 
8833 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8834 		     u8 lane_id, u32 config_data)
8835 {
8836 	u64 data;
8837 	int ret;
8838 
8839 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8840 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8841 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8842 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8843 	if (ret != HCMD_SUCCESS) {
8844 		dd_dev_err(dd,
8845 			   "load 8051 config: field id %d, lane %d, err %d\n",
8846 			   (int)field_id, (int)lane_id, ret);
8847 	}
8848 	return ret;
8849 }
8850 
8851 /*
8852  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8853  * set the result, even on error.
8854  * Return 0 on success, -errno on failure
8855  */
8856 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8857 		     u32 *result)
8858 {
8859 	u64 big_data;
8860 	u32 addr;
8861 	int ret;
8862 
8863 	/* address start depends on the lane_id */
8864 	if (lane_id < 4)
8865 		addr = (4 * NUM_GENERAL_FIELDS)
8866 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8867 	else
8868 		addr = 0;
8869 	addr += field_id * 4;
8870 
8871 	/* read is in 8-byte chunks, hardware will truncate the address down */
8872 	ret = read_8051_data(dd, addr, 8, &big_data);
8873 
8874 	if (ret == 0) {
8875 		/* extract the 4 bytes we want */
8876 		if (addr & 0x4)
8877 			*result = (u32)(big_data >> 32);
8878 		else
8879 			*result = (u32)big_data;
8880 	} else {
8881 		*result = 0;
8882 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8883 			   __func__, lane_id, field_id);
8884 	}
8885 
8886 	return ret;
8887 }
8888 
8889 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8890 			      u8 continuous)
8891 {
8892 	u32 frame;
8893 
8894 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8895 		| power_management << POWER_MANAGEMENT_SHIFT;
8896 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8897 				GENERAL_CONFIG, frame);
8898 }
8899 
8900 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8901 				 u16 vl15buf, u8 crc_sizes)
8902 {
8903 	u32 frame;
8904 
8905 	frame = (u32)vau << VAU_SHIFT
8906 		| (u32)z << Z_SHIFT
8907 		| (u32)vcu << VCU_SHIFT
8908 		| (u32)vl15buf << VL15BUF_SHIFT
8909 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8910 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8911 				GENERAL_CONFIG, frame);
8912 }
8913 
8914 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8915 				    u8 *flag_bits, u16 *link_widths)
8916 {
8917 	u32 frame;
8918 
8919 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8920 			 &frame);
8921 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8922 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8923 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8924 }
8925 
8926 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8927 				    u8 misc_bits,
8928 				    u8 flag_bits,
8929 				    u16 link_widths)
8930 {
8931 	u32 frame;
8932 
8933 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8934 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8935 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8936 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8937 		     frame);
8938 }
8939 
8940 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8941 				 u8 device_rev)
8942 {
8943 	u32 frame;
8944 
8945 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8946 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8947 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8948 }
8949 
8950 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8951 				  u8 *device_rev)
8952 {
8953 	u32 frame;
8954 
8955 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8956 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8957 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8958 			& REMOTE_DEVICE_REV_MASK;
8959 }
8960 
8961 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8962 {
8963 	u32 frame;
8964 	u32 mask;
8965 
8966 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8967 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8968 	/* Clear, then set field */
8969 	frame &= ~mask;
8970 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8971 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8972 				frame);
8973 }
8974 
8975 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8976 		      u8 *ver_patch)
8977 {
8978 	u32 frame;
8979 
8980 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8981 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8982 		STS_FM_VERSION_MAJOR_MASK;
8983 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8984 		STS_FM_VERSION_MINOR_MASK;
8985 
8986 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8987 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8988 		STS_FM_VERSION_PATCH_MASK;
8989 }
8990 
8991 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8992 			       u8 *continuous)
8993 {
8994 	u32 frame;
8995 
8996 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8997 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8998 					& POWER_MANAGEMENT_MASK;
8999 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9000 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9001 }
9002 
9003 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9004 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9005 {
9006 	u32 frame;
9007 
9008 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9009 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
9010 	*z = (frame >> Z_SHIFT) & Z_MASK;
9011 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9012 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9013 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9014 }
9015 
9016 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9017 				      u8 *remote_tx_rate,
9018 				      u16 *link_widths)
9019 {
9020 	u32 frame;
9021 
9022 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9023 			 &frame);
9024 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9025 				& REMOTE_TX_RATE_MASK;
9026 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9027 }
9028 
9029 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9030 {
9031 	u32 frame;
9032 
9033 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9034 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9035 }
9036 
9037 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9038 {
9039 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9040 }
9041 
9042 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9043 {
9044 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9045 }
9046 
9047 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9048 {
9049 	u32 frame;
9050 	int ret;
9051 
9052 	*link_quality = 0;
9053 	if (dd->pport->host_link_state & HLS_UP) {
9054 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9055 				       &frame);
9056 		if (ret == 0)
9057 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9058 						& LINK_QUALITY_MASK;
9059 	}
9060 }
9061 
9062 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9063 {
9064 	u32 frame;
9065 
9066 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9067 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9068 }
9069 
9070 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9071 {
9072 	u32 frame;
9073 
9074 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9075 	*ldr = (frame & 0xff);
9076 }
9077 
9078 static int read_tx_settings(struct hfi1_devdata *dd,
9079 			    u8 *enable_lane_tx,
9080 			    u8 *tx_polarity_inversion,
9081 			    u8 *rx_polarity_inversion,
9082 			    u8 *max_rate)
9083 {
9084 	u32 frame;
9085 	int ret;
9086 
9087 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9088 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9089 				& ENABLE_LANE_TX_MASK;
9090 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9091 				& TX_POLARITY_INVERSION_MASK;
9092 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9093 				& RX_POLARITY_INVERSION_MASK;
9094 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9095 	return ret;
9096 }
9097 
9098 static int write_tx_settings(struct hfi1_devdata *dd,
9099 			     u8 enable_lane_tx,
9100 			     u8 tx_polarity_inversion,
9101 			     u8 rx_polarity_inversion,
9102 			     u8 max_rate)
9103 {
9104 	u32 frame;
9105 
9106 	/* no need to mask, all variable sizes match field widths */
9107 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9108 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9109 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9110 		| max_rate << MAX_RATE_SHIFT;
9111 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9112 }
9113 
9114 /*
9115  * Read an idle LCB message.
9116  *
9117  * Returns 0 on success, -EINVAL on error
9118  */
9119 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9120 {
9121 	int ret;
9122 
9123 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9124 	if (ret != HCMD_SUCCESS) {
9125 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9126 			   (u32)type, ret);
9127 		return -EINVAL;
9128 	}
9129 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9130 	/* return only the payload as we already know the type */
9131 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9132 	return 0;
9133 }
9134 
9135 /*
9136  * Read an idle SMA message.  To be done in response to a notification from
9137  * the 8051.
9138  *
9139  * Returns 0 on success, -EINVAL on error
9140  */
9141 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9142 {
9143 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9144 				 data);
9145 }
9146 
9147 /*
9148  * Send an idle LCB message.
9149  *
9150  * Returns 0 on success, -EINVAL on error
9151  */
9152 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9153 {
9154 	int ret;
9155 
9156 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9157 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9158 	if (ret != HCMD_SUCCESS) {
9159 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9160 			   data, ret);
9161 		return -EINVAL;
9162 	}
9163 	return 0;
9164 }
9165 
9166 /*
9167  * Send an idle SMA message.
9168  *
9169  * Returns 0 on success, -EINVAL on error
9170  */
9171 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9172 {
9173 	u64 data;
9174 
9175 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9176 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9177 	return send_idle_message(dd, data);
9178 }
9179 
9180 /*
9181  * Initialize the LCB then do a quick link up.  This may or may not be
9182  * in loopback.
9183  *
9184  * return 0 on success, -errno on error
9185  */
9186 static int do_quick_linkup(struct hfi1_devdata *dd)
9187 {
9188 	int ret;
9189 
9190 	lcb_shutdown(dd, 0);
9191 
9192 	if (loopback) {
9193 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9194 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9195 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9196 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9197 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9198 	}
9199 
9200 	/* start the LCBs */
9201 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9202 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9203 
9204 	/* simulator only loopback steps */
9205 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9206 		/* LCB_CFG_RUN.EN = 1 */
9207 		write_csr(dd, DC_LCB_CFG_RUN,
9208 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9209 
9210 		ret = wait_link_transfer_active(dd, 10);
9211 		if (ret)
9212 			return ret;
9213 
9214 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9215 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9216 	}
9217 
9218 	if (!loopback) {
9219 		/*
9220 		 * When doing quick linkup and not in loopback, both
9221 		 * sides must be done with LCB set-up before either
9222 		 * starts the quick linkup.  Put a delay here so that
9223 		 * both sides can be started and have a chance to be
9224 		 * done with LCB set up before resuming.
9225 		 */
9226 		dd_dev_err(dd,
9227 			   "Pausing for peer to be finished with LCB set up\n");
9228 		msleep(5000);
9229 		dd_dev_err(dd, "Continuing with quick linkup\n");
9230 	}
9231 
9232 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9233 	set_8051_lcb_access(dd);
9234 
9235 	/*
9236 	 * State "quick" LinkUp request sets the physical link state to
9237 	 * LinkUp without a verify capability sequence.
9238 	 * This state is in simulator v37 and later.
9239 	 */
9240 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9241 	if (ret != HCMD_SUCCESS) {
9242 		dd_dev_err(dd,
9243 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9244 			   __func__, ret);
9245 
9246 		set_host_lcb_access(dd);
9247 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9248 
9249 		if (ret >= 0)
9250 			ret = -EINVAL;
9251 		return ret;
9252 	}
9253 
9254 	return 0; /* success */
9255 }
9256 
9257 /*
9258  * Do all special steps to set up loopback.
9259  */
9260 static int init_loopback(struct hfi1_devdata *dd)
9261 {
9262 	dd_dev_info(dd, "Entering loopback mode\n");
9263 
9264 	/* all loopbacks should disable self GUID check */
9265 	write_csr(dd, DC_DC8051_CFG_MODE,
9266 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9267 
9268 	/*
9269 	 * The simulator has only one loopback option - LCB.  Switch
9270 	 * to that option, which includes quick link up.
9271 	 *
9272 	 * Accept all valid loopback values.
9273 	 */
9274 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9275 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9276 	     loopback == LOOPBACK_CABLE)) {
9277 		loopback = LOOPBACK_LCB;
9278 		quick_linkup = 1;
9279 		return 0;
9280 	}
9281 
9282 	/*
9283 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9284 	 */
9285 	if (loopback == LOOPBACK_SERDES)
9286 		return 0;
9287 
9288 	/* LCB loopback - handled at poll time */
9289 	if (loopback == LOOPBACK_LCB) {
9290 		quick_linkup = 1; /* LCB is always quick linkup */
9291 
9292 		/* not supported in emulation due to emulation RTL changes */
9293 		if (dd->icode == ICODE_FPGA_EMULATION) {
9294 			dd_dev_err(dd,
9295 				   "LCB loopback not supported in emulation\n");
9296 			return -EINVAL;
9297 		}
9298 		return 0;
9299 	}
9300 
9301 	/* external cable loopback requires no extra steps */
9302 	if (loopback == LOOPBACK_CABLE)
9303 		return 0;
9304 
9305 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9306 	return -EINVAL;
9307 }
9308 
9309 /*
9310  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9311  * used in the Verify Capability link width attribute.
9312  */
9313 static u16 opa_to_vc_link_widths(u16 opa_widths)
9314 {
9315 	int i;
9316 	u16 result = 0;
9317 
9318 	static const struct link_bits {
9319 		u16 from;
9320 		u16 to;
9321 	} opa_link_xlate[] = {
9322 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9323 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9324 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9325 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9326 	};
9327 
9328 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9329 		if (opa_widths & opa_link_xlate[i].from)
9330 			result |= opa_link_xlate[i].to;
9331 	}
9332 	return result;
9333 }
9334 
9335 /*
9336  * Set link attributes before moving to polling.
9337  */
9338 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9339 {
9340 	struct hfi1_devdata *dd = ppd->dd;
9341 	u8 enable_lane_tx;
9342 	u8 tx_polarity_inversion;
9343 	u8 rx_polarity_inversion;
9344 	int ret;
9345 	u32 misc_bits = 0;
9346 	/* reset our fabric serdes to clear any lingering problems */
9347 	fabric_serdes_reset(dd);
9348 
9349 	/* set the local tx rate - need to read-modify-write */
9350 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9351 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9352 	if (ret)
9353 		goto set_local_link_attributes_fail;
9354 
9355 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9356 		/* set the tx rate to the fastest enabled */
9357 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9358 			ppd->local_tx_rate = 1;
9359 		else
9360 			ppd->local_tx_rate = 0;
9361 	} else {
9362 		/* set the tx rate to all enabled */
9363 		ppd->local_tx_rate = 0;
9364 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9365 			ppd->local_tx_rate |= 2;
9366 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9367 			ppd->local_tx_rate |= 1;
9368 	}
9369 
9370 	enable_lane_tx = 0xF; /* enable all four lanes */
9371 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9372 				rx_polarity_inversion, ppd->local_tx_rate);
9373 	if (ret != HCMD_SUCCESS)
9374 		goto set_local_link_attributes_fail;
9375 
9376 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9377 	if (ret != HCMD_SUCCESS) {
9378 		dd_dev_err(dd,
9379 			   "Failed to set host interface version, return 0x%x\n",
9380 			   ret);
9381 		goto set_local_link_attributes_fail;
9382 	}
9383 
9384 	/*
9385 	 * DC supports continuous updates.
9386 	 */
9387 	ret = write_vc_local_phy(dd,
9388 				 0 /* no power management */,
9389 				 1 /* continuous updates */);
9390 	if (ret != HCMD_SUCCESS)
9391 		goto set_local_link_attributes_fail;
9392 
9393 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9394 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9395 				    ppd->port_crc_mode_enabled);
9396 	if (ret != HCMD_SUCCESS)
9397 		goto set_local_link_attributes_fail;
9398 
9399 	/*
9400 	 * SerDes loopback init sequence requires
9401 	 * setting bit 0 of MISC_CONFIG_BITS
9402 	 */
9403 	if (loopback == LOOPBACK_SERDES)
9404 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9405 
9406 	/*
9407 	 * An external device configuration request is used to reset the LCB
9408 	 * to retry to obtain operational lanes when the first attempt is
9409 	 * unsuccesful.
9410 	 */
9411 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9412 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9413 
9414 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9415 				       opa_to_vc_link_widths(
9416 						ppd->link_width_enabled));
9417 	if (ret != HCMD_SUCCESS)
9418 		goto set_local_link_attributes_fail;
9419 
9420 	/* let peer know who we are */
9421 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9422 	if (ret == HCMD_SUCCESS)
9423 		return 0;
9424 
9425 set_local_link_attributes_fail:
9426 	dd_dev_err(dd,
9427 		   "Failed to set local link attributes, return 0x%x\n",
9428 		   ret);
9429 	return ret;
9430 }
9431 
9432 /*
9433  * Call this to start the link.
9434  * Do not do anything if the link is disabled.
9435  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9436  */
9437 int start_link(struct hfi1_pportdata *ppd)
9438 {
9439 	/*
9440 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9441 	 * error rate.  Needs to be done before starting the link.
9442 	 */
9443 	tune_serdes(ppd);
9444 
9445 	if (!ppd->driver_link_ready) {
9446 		dd_dev_info(ppd->dd,
9447 			    "%s: stopping link start because driver is not ready\n",
9448 			    __func__);
9449 		return 0;
9450 	}
9451 
9452 	/*
9453 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9454 	 * pkey table can be configured properly if the HFI unit is connected
9455 	 * to switch port with MgmtAllowed=NO
9456 	 */
9457 	clear_full_mgmt_pkey(ppd);
9458 
9459 	return set_link_state(ppd, HLS_DN_POLL);
9460 }
9461 
9462 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9463 {
9464 	struct hfi1_devdata *dd = ppd->dd;
9465 	u64 mask;
9466 	unsigned long timeout;
9467 
9468 	/*
9469 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9470 	 * effect of power up on plug-in. We ignore this false positive
9471 	 * interrupt until the module has finished powering up by waiting for
9472 	 * a minimum timeout of the module inrush initialization time of
9473 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9474 	 * module have stabilized.
9475 	 */
9476 	msleep(500);
9477 
9478 	/*
9479 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9480 	 */
9481 	timeout = jiffies + msecs_to_jiffies(2000);
9482 	while (1) {
9483 		mask = read_csr(dd, dd->hfi1_id ?
9484 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9485 		if (!(mask & QSFP_HFI0_INT_N))
9486 			break;
9487 		if (time_after(jiffies, timeout)) {
9488 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9489 				    __func__);
9490 			break;
9491 		}
9492 		udelay(2);
9493 	}
9494 }
9495 
9496 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9497 {
9498 	struct hfi1_devdata *dd = ppd->dd;
9499 	u64 mask;
9500 
9501 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9502 	if (enable) {
9503 		/*
9504 		 * Clear the status register to avoid an immediate interrupt
9505 		 * when we re-enable the IntN pin
9506 		 */
9507 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9508 			  QSFP_HFI0_INT_N);
9509 		mask |= (u64)QSFP_HFI0_INT_N;
9510 	} else {
9511 		mask &= ~(u64)QSFP_HFI0_INT_N;
9512 	}
9513 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9514 }
9515 
9516 int reset_qsfp(struct hfi1_pportdata *ppd)
9517 {
9518 	struct hfi1_devdata *dd = ppd->dd;
9519 	u64 mask, qsfp_mask;
9520 
9521 	/* Disable INT_N from triggering QSFP interrupts */
9522 	set_qsfp_int_n(ppd, 0);
9523 
9524 	/* Reset the QSFP */
9525 	mask = (u64)QSFP_HFI0_RESET_N;
9526 
9527 	qsfp_mask = read_csr(dd,
9528 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9529 	qsfp_mask &= ~mask;
9530 	write_csr(dd,
9531 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9532 
9533 	udelay(10);
9534 
9535 	qsfp_mask |= mask;
9536 	write_csr(dd,
9537 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9538 
9539 	wait_for_qsfp_init(ppd);
9540 
9541 	/*
9542 	 * Allow INT_N to trigger the QSFP interrupt to watch
9543 	 * for alarms and warnings
9544 	 */
9545 	set_qsfp_int_n(ppd, 1);
9546 
9547 	/*
9548 	 * After the reset, AOC transmitters are enabled by default. They need
9549 	 * to be turned off to complete the QSFP setup before they can be
9550 	 * enabled again.
9551 	 */
9552 	return set_qsfp_tx(ppd, 0);
9553 }
9554 
9555 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9556 					u8 *qsfp_interrupt_status)
9557 {
9558 	struct hfi1_devdata *dd = ppd->dd;
9559 
9560 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9561 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9562 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9563 			   __func__);
9564 
9565 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9566 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9567 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9568 			   __func__);
9569 
9570 	/*
9571 	 * The remaining alarms/warnings don't matter if the link is down.
9572 	 */
9573 	if (ppd->host_link_state & HLS_DOWN)
9574 		return 0;
9575 
9576 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9577 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9578 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9579 			   __func__);
9580 
9581 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9582 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9583 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9584 			   __func__);
9585 
9586 	/* Byte 2 is vendor specific */
9587 
9588 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9589 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9590 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9591 			   __func__);
9592 
9593 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9594 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9595 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9596 			   __func__);
9597 
9598 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9599 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9600 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9601 			   __func__);
9602 
9603 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9604 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9605 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9606 			   __func__);
9607 
9608 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9609 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9610 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9611 			   __func__);
9612 
9613 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9614 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9615 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9616 			   __func__);
9617 
9618 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9619 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9620 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9621 			   __func__);
9622 
9623 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9624 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9625 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9626 			   __func__);
9627 
9628 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9629 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9630 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9631 			   __func__);
9632 
9633 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9634 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9635 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9636 			   __func__);
9637 
9638 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9639 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9640 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9641 			   __func__);
9642 
9643 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9644 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9645 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9646 			   __func__);
9647 
9648 	/* Bytes 9-10 and 11-12 are reserved */
9649 	/* Bytes 13-15 are vendor specific */
9650 
9651 	return 0;
9652 }
9653 
9654 /* This routine will only be scheduled if the QSFP module present is asserted */
9655 void qsfp_event(struct work_struct *work)
9656 {
9657 	struct qsfp_data *qd;
9658 	struct hfi1_pportdata *ppd;
9659 	struct hfi1_devdata *dd;
9660 
9661 	qd = container_of(work, struct qsfp_data, qsfp_work);
9662 	ppd = qd->ppd;
9663 	dd = ppd->dd;
9664 
9665 	/* Sanity check */
9666 	if (!qsfp_mod_present(ppd))
9667 		return;
9668 
9669 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9670 		dd_dev_info(ppd->dd,
9671 			    "%s: stopping link start because link is disabled\n",
9672 			    __func__);
9673 		return;
9674 	}
9675 
9676 	/*
9677 	 * Turn DC back on after cable has been re-inserted. Up until
9678 	 * now, the DC has been in reset to save power.
9679 	 */
9680 	dc_start(dd);
9681 
9682 	if (qd->cache_refresh_required) {
9683 		set_qsfp_int_n(ppd, 0);
9684 
9685 		wait_for_qsfp_init(ppd);
9686 
9687 		/*
9688 		 * Allow INT_N to trigger the QSFP interrupt to watch
9689 		 * for alarms and warnings
9690 		 */
9691 		set_qsfp_int_n(ppd, 1);
9692 
9693 		start_link(ppd);
9694 	}
9695 
9696 	if (qd->check_interrupt_flags) {
9697 		u8 qsfp_interrupt_status[16] = {0,};
9698 
9699 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9700 				  &qsfp_interrupt_status[0], 16) != 16) {
9701 			dd_dev_info(dd,
9702 				    "%s: Failed to read status of QSFP module\n",
9703 				    __func__);
9704 		} else {
9705 			unsigned long flags;
9706 
9707 			handle_qsfp_error_conditions(
9708 					ppd, qsfp_interrupt_status);
9709 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9710 			ppd->qsfp_info.check_interrupt_flags = 0;
9711 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9712 					       flags);
9713 		}
9714 	}
9715 }
9716 
9717 void init_qsfp_int(struct hfi1_devdata *dd)
9718 {
9719 	struct hfi1_pportdata *ppd = dd->pport;
9720 	u64 qsfp_mask;
9721 
9722 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9723 	/* Clear current status to avoid spurious interrupts */
9724 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9725 		  qsfp_mask);
9726 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9727 		  qsfp_mask);
9728 
9729 	set_qsfp_int_n(ppd, 0);
9730 
9731 	/* Handle active low nature of INT_N and MODPRST_N pins */
9732 	if (qsfp_mod_present(ppd))
9733 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9734 	write_csr(dd,
9735 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9736 		  qsfp_mask);
9737 
9738 	/* Enable the appropriate QSFP IRQ source */
9739 	if (!dd->hfi1_id)
9740 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9741 	else
9742 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9743 }
9744 
9745 /*
9746  * Do a one-time initialize of the LCB block.
9747  */
9748 static void init_lcb(struct hfi1_devdata *dd)
9749 {
9750 	/* simulator does not correctly handle LCB cclk loopback, skip */
9751 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9752 		return;
9753 
9754 	/* the DC has been reset earlier in the driver load */
9755 
9756 	/* set LCB for cclk loopback on the port */
9757 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9758 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9759 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9760 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9761 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9762 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9763 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9764 }
9765 
9766 /*
9767  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9768  * on error.
9769  */
9770 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9771 {
9772 	int ret;
9773 	u8 status;
9774 
9775 	/*
9776 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9777 	 * not present
9778 	 */
9779 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9780 		return 0;
9781 
9782 	/* read byte 2, the status byte */
9783 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9784 	if (ret < 0)
9785 		return ret;
9786 	if (ret != 1)
9787 		return -EIO;
9788 
9789 	return 0; /* success */
9790 }
9791 
9792 /*
9793  * Values for QSFP retry.
9794  *
9795  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9796  * arrived at from experience on a large cluster.
9797  */
9798 #define MAX_QSFP_RETRIES 20
9799 #define QSFP_RETRY_WAIT 500 /* msec */
9800 
9801 /*
9802  * Try a QSFP read.  If it fails, schedule a retry for later.
9803  * Called on first link activation after driver load.
9804  */
9805 static void try_start_link(struct hfi1_pportdata *ppd)
9806 {
9807 	if (test_qsfp_read(ppd)) {
9808 		/* read failed */
9809 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9810 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9811 			return;
9812 		}
9813 		dd_dev_info(ppd->dd,
9814 			    "QSFP not responding, waiting and retrying %d\n",
9815 			    (int)ppd->qsfp_retry_count);
9816 		ppd->qsfp_retry_count++;
9817 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9818 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9819 		return;
9820 	}
9821 	ppd->qsfp_retry_count = 0;
9822 
9823 	start_link(ppd);
9824 }
9825 
9826 /*
9827  * Workqueue function to start the link after a delay.
9828  */
9829 void handle_start_link(struct work_struct *work)
9830 {
9831 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9832 						  start_link_work.work);
9833 	try_start_link(ppd);
9834 }
9835 
9836 int bringup_serdes(struct hfi1_pportdata *ppd)
9837 {
9838 	struct hfi1_devdata *dd = ppd->dd;
9839 	u64 guid;
9840 	int ret;
9841 
9842 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9843 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9844 
9845 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9846 	if (!guid) {
9847 		if (dd->base_guid)
9848 			guid = dd->base_guid + ppd->port - 1;
9849 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9850 	}
9851 
9852 	/* Set linkinit_reason on power up per OPA spec */
9853 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9854 
9855 	/* one-time init of the LCB */
9856 	init_lcb(dd);
9857 
9858 	if (loopback) {
9859 		ret = init_loopback(dd);
9860 		if (ret < 0)
9861 			return ret;
9862 	}
9863 
9864 	get_port_type(ppd);
9865 	if (ppd->port_type == PORT_TYPE_QSFP) {
9866 		set_qsfp_int_n(ppd, 0);
9867 		wait_for_qsfp_init(ppd);
9868 		set_qsfp_int_n(ppd, 1);
9869 	}
9870 
9871 	try_start_link(ppd);
9872 	return 0;
9873 }
9874 
9875 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9876 {
9877 	struct hfi1_devdata *dd = ppd->dd;
9878 
9879 	/*
9880 	 * Shut down the link and keep it down.   First turn off that the
9881 	 * driver wants to allow the link to be up (driver_link_ready).
9882 	 * Then make sure the link is not automatically restarted
9883 	 * (link_enabled).  Cancel any pending restart.  And finally
9884 	 * go offline.
9885 	 */
9886 	ppd->driver_link_ready = 0;
9887 	ppd->link_enabled = 0;
9888 
9889 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9890 	flush_delayed_work(&ppd->start_link_work);
9891 	cancel_delayed_work_sync(&ppd->start_link_work);
9892 
9893 	ppd->offline_disabled_reason =
9894 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9895 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9896 			     OPA_LINKDOWN_REASON_REBOOT);
9897 	set_link_state(ppd, HLS_DN_OFFLINE);
9898 
9899 	/* disable the port */
9900 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9901 	cancel_work_sync(&ppd->freeze_work);
9902 }
9903 
9904 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9905 {
9906 	struct hfi1_pportdata *ppd;
9907 	int i;
9908 
9909 	ppd = (struct hfi1_pportdata *)(dd + 1);
9910 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9911 		ppd->ibport_data.rvp.rc_acks = NULL;
9912 		ppd->ibport_data.rvp.rc_qacks = NULL;
9913 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9914 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9915 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9916 		if (!ppd->ibport_data.rvp.rc_acks ||
9917 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9918 		    !ppd->ibport_data.rvp.rc_qacks)
9919 			return -ENOMEM;
9920 	}
9921 
9922 	return 0;
9923 }
9924 
9925 /*
9926  * index is the index into the receive array
9927  */
9928 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9929 		  u32 type, unsigned long pa, u16 order)
9930 {
9931 	u64 reg;
9932 
9933 	if (!(dd->flags & HFI1_PRESENT))
9934 		goto done;
9935 
9936 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9937 		pa = 0;
9938 		order = 0;
9939 	} else if (type > PT_INVALID) {
9940 		dd_dev_err(dd,
9941 			   "unexpected receive array type %u for index %u, not handled\n",
9942 			   type, index);
9943 		goto done;
9944 	}
9945 	trace_hfi1_put_tid(dd, index, type, pa, order);
9946 
9947 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9948 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9949 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9950 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9951 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9952 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9953 	writeq(reg, dd->rcvarray_wc + (index * 8));
9954 
9955 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9956 		/*
9957 		 * Eager entries are written and flushed
9958 		 *
9959 		 * Expected entries are flushed every 4 writes
9960 		 */
9961 		flush_wc();
9962 done:
9963 	return;
9964 }
9965 
9966 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9967 {
9968 	struct hfi1_devdata *dd = rcd->dd;
9969 	u32 i;
9970 
9971 	/* this could be optimized */
9972 	for (i = rcd->eager_base; i < rcd->eager_base +
9973 		     rcd->egrbufs.alloced; i++)
9974 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9975 
9976 	for (i = rcd->expected_base;
9977 			i < rcd->expected_base + rcd->expected_count; i++)
9978 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9979 }
9980 
9981 static const char * const ib_cfg_name_strings[] = {
9982 	"HFI1_IB_CFG_LIDLMC",
9983 	"HFI1_IB_CFG_LWID_DG_ENB",
9984 	"HFI1_IB_CFG_LWID_ENB",
9985 	"HFI1_IB_CFG_LWID",
9986 	"HFI1_IB_CFG_SPD_ENB",
9987 	"HFI1_IB_CFG_SPD",
9988 	"HFI1_IB_CFG_RXPOL_ENB",
9989 	"HFI1_IB_CFG_LREV_ENB",
9990 	"HFI1_IB_CFG_LINKLATENCY",
9991 	"HFI1_IB_CFG_HRTBT",
9992 	"HFI1_IB_CFG_OP_VLS",
9993 	"HFI1_IB_CFG_VL_HIGH_CAP",
9994 	"HFI1_IB_CFG_VL_LOW_CAP",
9995 	"HFI1_IB_CFG_OVERRUN_THRESH",
9996 	"HFI1_IB_CFG_PHYERR_THRESH",
9997 	"HFI1_IB_CFG_LINKDEFAULT",
9998 	"HFI1_IB_CFG_PKEYS",
9999 	"HFI1_IB_CFG_MTU",
10000 	"HFI1_IB_CFG_LSTATE",
10001 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
10002 	"HFI1_IB_CFG_PMA_TICKS",
10003 	"HFI1_IB_CFG_PORT"
10004 };
10005 
10006 static const char *ib_cfg_name(int which)
10007 {
10008 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10009 		return "invalid";
10010 	return ib_cfg_name_strings[which];
10011 }
10012 
10013 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10014 {
10015 	struct hfi1_devdata *dd = ppd->dd;
10016 	int val = 0;
10017 
10018 	switch (which) {
10019 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10020 		val = ppd->link_width_enabled;
10021 		break;
10022 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
10023 		val = ppd->link_width_active;
10024 		break;
10025 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10026 		val = ppd->link_speed_enabled;
10027 		break;
10028 	case HFI1_IB_CFG_SPD: /* current Link speed */
10029 		val = ppd->link_speed_active;
10030 		break;
10031 
10032 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10033 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10034 	case HFI1_IB_CFG_LINKLATENCY:
10035 		goto unimplemented;
10036 
10037 	case HFI1_IB_CFG_OP_VLS:
10038 		val = ppd->actual_vls_operational;
10039 		break;
10040 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10041 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10042 		break;
10043 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10044 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10045 		break;
10046 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10047 		val = ppd->overrun_threshold;
10048 		break;
10049 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10050 		val = ppd->phy_error_threshold;
10051 		break;
10052 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10053 		val = HLS_DEFAULT;
10054 		break;
10055 
10056 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10057 	case HFI1_IB_CFG_PMA_TICKS:
10058 	default:
10059 unimplemented:
10060 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10061 			dd_dev_info(
10062 				dd,
10063 				"%s: which %s: not implemented\n",
10064 				__func__,
10065 				ib_cfg_name(which));
10066 		break;
10067 	}
10068 
10069 	return val;
10070 }
10071 
10072 /*
10073  * The largest MAD packet size.
10074  */
10075 #define MAX_MAD_PACKET 2048
10076 
10077 /*
10078  * Return the maximum header bytes that can go on the _wire_
10079  * for this device. This count includes the ICRC which is
10080  * not part of the packet held in memory but it is appended
10081  * by the HW.
10082  * This is dependent on the device's receive header entry size.
10083  * HFI allows this to be set per-receive context, but the
10084  * driver presently enforces a global value.
10085  */
10086 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10087 {
10088 	/*
10089 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10090 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10091 	 * plus one DW for the ICRC appended by HW.
10092 	 *
10093 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10094 	 * We use rcd[0] as all context will have the same value. Also,
10095 	 * the first kernel context would have been allocated by now so
10096 	 * we are guaranteed a valid value.
10097 	 */
10098 	return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10099 }
10100 
10101 /*
10102  * Set Send Length
10103  * @ppd: per port data
10104  *
10105  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10106  * registers compare against LRH.PktLen, so use the max bytes included
10107  * in the LRH.
10108  *
10109  * This routine changes all VL values except VL15, which it maintains at
10110  * the same value.
10111  */
10112 static void set_send_length(struct hfi1_pportdata *ppd)
10113 {
10114 	struct hfi1_devdata *dd = ppd->dd;
10115 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10116 	u32 maxvlmtu = dd->vld[15].mtu;
10117 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10118 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10119 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10120 	int i, j;
10121 	u32 thres;
10122 
10123 	for (i = 0; i < ppd->vls_supported; i++) {
10124 		if (dd->vld[i].mtu > maxvlmtu)
10125 			maxvlmtu = dd->vld[i].mtu;
10126 		if (i <= 3)
10127 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10128 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10129 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10130 		else
10131 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10132 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10133 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10134 	}
10135 	write_csr(dd, SEND_LEN_CHECK0, len1);
10136 	write_csr(dd, SEND_LEN_CHECK1, len2);
10137 	/* adjust kernel credit return thresholds based on new MTUs */
10138 	/* all kernel receive contexts have the same hdrqentsize */
10139 	for (i = 0; i < ppd->vls_supported; i++) {
10140 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10141 			    sc_mtu_to_threshold(dd->vld[i].sc,
10142 						dd->vld[i].mtu,
10143 						get_hdrqentsize(dd->rcd[0])));
10144 		for (j = 0; j < INIT_SC_PER_VL; j++)
10145 			sc_set_cr_threshold(
10146 					pio_select_send_context_vl(dd, j, i),
10147 					    thres);
10148 	}
10149 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10150 		    sc_mtu_to_threshold(dd->vld[15].sc,
10151 					dd->vld[15].mtu,
10152 					dd->rcd[0]->rcvhdrqentsize));
10153 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10154 
10155 	/* Adjust maximum MTU for the port in DC */
10156 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10157 		(ilog2(maxvlmtu >> 8) + 1);
10158 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10159 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10160 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10161 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10162 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10163 }
10164 
10165 static void set_lidlmc(struct hfi1_pportdata *ppd)
10166 {
10167 	int i;
10168 	u64 sreg = 0;
10169 	struct hfi1_devdata *dd = ppd->dd;
10170 	u32 mask = ~((1U << ppd->lmc) - 1);
10171 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10172 	u32 lid;
10173 
10174 	/*
10175 	 * Program 0 in CSR if port lid is extended. This prevents
10176 	 * 9B packets being sent out for large lids.
10177 	 */
10178 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10179 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10180 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10181 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10182 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10183 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10184 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10185 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10186 
10187 	/*
10188 	 * Iterate over all the send contexts and set their SLID check
10189 	 */
10190 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10191 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10192 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10193 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10194 
10195 	for (i = 0; i < chip_send_contexts(dd); i++) {
10196 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10197 			  i, (u32)sreg);
10198 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10199 	}
10200 
10201 	/* Now we have to do the same thing for the sdma engines */
10202 	sdma_update_lmc(dd, mask, lid);
10203 }
10204 
10205 static const char *state_completed_string(u32 completed)
10206 {
10207 	static const char * const state_completed[] = {
10208 		"EstablishComm",
10209 		"OptimizeEQ",
10210 		"VerifyCap"
10211 	};
10212 
10213 	if (completed < ARRAY_SIZE(state_completed))
10214 		return state_completed[completed];
10215 
10216 	return "unknown";
10217 }
10218 
10219 static const char all_lanes_dead_timeout_expired[] =
10220 	"All lanes were inactive – was the interconnect media removed?";
10221 static const char tx_out_of_policy[] =
10222 	"Passing lanes on local port do not meet the local link width policy";
10223 static const char no_state_complete[] =
10224 	"State timeout occurred before link partner completed the state";
10225 static const char * const state_complete_reasons[] = {
10226 	[0x00] = "Reason unknown",
10227 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10228 	[0x02] = "Link partner reported failure",
10229 	[0x10] = "Unable to achieve frame sync on any lane",
10230 	[0x11] =
10231 	  "Unable to find a common bit rate with the link partner",
10232 	[0x12] =
10233 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10234 	[0x13] =
10235 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10236 	[0x14] = no_state_complete,
10237 	[0x15] =
10238 	  "State timeout occurred before link partner identified equalization presets",
10239 	[0x16] =
10240 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10241 	[0x17] = tx_out_of_policy,
10242 	[0x20] = all_lanes_dead_timeout_expired,
10243 	[0x21] =
10244 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10245 	[0x22] = no_state_complete,
10246 	[0x23] =
10247 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10248 	[0x24] = tx_out_of_policy,
10249 	[0x30] = all_lanes_dead_timeout_expired,
10250 	[0x31] =
10251 	  "State timeout occurred waiting for host to process received frames",
10252 	[0x32] = no_state_complete,
10253 	[0x33] =
10254 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10255 	[0x34] = tx_out_of_policy,
10256 	[0x35] = "Negotiated link width is mutually exclusive",
10257 	[0x36] =
10258 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10259 	[0x37] = "Unable to resolve secure data exchange",
10260 };
10261 
10262 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10263 						     u32 code)
10264 {
10265 	const char *str = NULL;
10266 
10267 	if (code < ARRAY_SIZE(state_complete_reasons))
10268 		str = state_complete_reasons[code];
10269 
10270 	if (str)
10271 		return str;
10272 	return "Reserved";
10273 }
10274 
10275 /* describe the given last state complete frame */
10276 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10277 				  const char *prefix)
10278 {
10279 	struct hfi1_devdata *dd = ppd->dd;
10280 	u32 success;
10281 	u32 state;
10282 	u32 reason;
10283 	u32 lanes;
10284 
10285 	/*
10286 	 * Decode frame:
10287 	 *  [ 0: 0] - success
10288 	 *  [ 3: 1] - state
10289 	 *  [ 7: 4] - next state timeout
10290 	 *  [15: 8] - reason code
10291 	 *  [31:16] - lanes
10292 	 */
10293 	success = frame & 0x1;
10294 	state = (frame >> 1) & 0x7;
10295 	reason = (frame >> 8) & 0xff;
10296 	lanes = (frame >> 16) & 0xffff;
10297 
10298 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10299 		   prefix, frame);
10300 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10301 		   state_completed_string(state), state);
10302 	dd_dev_err(dd, "    state successfully completed: %s\n",
10303 		   success ? "yes" : "no");
10304 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10305 		   reason, state_complete_reason_code_string(ppd, reason));
10306 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10307 }
10308 
10309 /*
10310  * Read the last state complete frames and explain them.  This routine
10311  * expects to be called if the link went down during link negotiation
10312  * and initialization (LNI).  That is, anywhere between polling and link up.
10313  */
10314 static void check_lni_states(struct hfi1_pportdata *ppd)
10315 {
10316 	u32 last_local_state;
10317 	u32 last_remote_state;
10318 
10319 	read_last_local_state(ppd->dd, &last_local_state);
10320 	read_last_remote_state(ppd->dd, &last_remote_state);
10321 
10322 	/*
10323 	 * Don't report anything if there is nothing to report.  A value of
10324 	 * 0 means the link was taken down while polling and there was no
10325 	 * training in-process.
10326 	 */
10327 	if (last_local_state == 0 && last_remote_state == 0)
10328 		return;
10329 
10330 	decode_state_complete(ppd, last_local_state, "transmitted");
10331 	decode_state_complete(ppd, last_remote_state, "received");
10332 }
10333 
10334 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10335 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10336 {
10337 	u64 reg;
10338 	unsigned long timeout;
10339 
10340 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10341 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10342 	while (1) {
10343 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10344 		if (reg)
10345 			break;
10346 		if (time_after(jiffies, timeout)) {
10347 			dd_dev_err(dd,
10348 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10349 			return -ETIMEDOUT;
10350 		}
10351 		udelay(2);
10352 	}
10353 	return 0;
10354 }
10355 
10356 /* called when the logical link state is not down as it should be */
10357 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10358 {
10359 	struct hfi1_devdata *dd = ppd->dd;
10360 
10361 	/*
10362 	 * Bring link up in LCB loopback
10363 	 */
10364 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10365 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10366 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10367 
10368 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10369 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10370 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10371 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10372 
10373 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10374 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10375 	udelay(3);
10376 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10377 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10378 
10379 	wait_link_transfer_active(dd, 100);
10380 
10381 	/*
10382 	 * Bring the link down again.
10383 	 */
10384 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10385 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10386 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10387 
10388 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10389 }
10390 
10391 /*
10392  * Helper for set_link_state().  Do not call except from that routine.
10393  * Expects ppd->hls_mutex to be held.
10394  *
10395  * @rem_reason value to be sent to the neighbor
10396  *
10397  * LinkDownReasons only set if transition succeeds.
10398  */
10399 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10400 {
10401 	struct hfi1_devdata *dd = ppd->dd;
10402 	u32 previous_state;
10403 	int offline_state_ret;
10404 	int ret;
10405 
10406 	update_lcb_cache(dd);
10407 
10408 	previous_state = ppd->host_link_state;
10409 	ppd->host_link_state = HLS_GOING_OFFLINE;
10410 
10411 	/* start offline transition */
10412 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10413 
10414 	if (ret != HCMD_SUCCESS) {
10415 		dd_dev_err(dd,
10416 			   "Failed to transition to Offline link state, return %d\n",
10417 			   ret);
10418 		return -EINVAL;
10419 	}
10420 	if (ppd->offline_disabled_reason ==
10421 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10422 		ppd->offline_disabled_reason =
10423 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10424 
10425 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10426 	if (offline_state_ret < 0)
10427 		return offline_state_ret;
10428 
10429 	/* Disabling AOC transmitters */
10430 	if (ppd->port_type == PORT_TYPE_QSFP &&
10431 	    ppd->qsfp_info.limiting_active &&
10432 	    qsfp_mod_present(ppd)) {
10433 		int ret;
10434 
10435 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10436 		if (ret == 0) {
10437 			set_qsfp_tx(ppd, 0);
10438 			release_chip_resource(dd, qsfp_resource(dd));
10439 		} else {
10440 			/* not fatal, but should warn */
10441 			dd_dev_err(dd,
10442 				   "Unable to acquire lock to turn off QSFP TX\n");
10443 		}
10444 	}
10445 
10446 	/*
10447 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10448 	 * can take a while for the link to go down.
10449 	 */
10450 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10451 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10452 		if (ret < 0)
10453 			return ret;
10454 	}
10455 
10456 	/*
10457 	 * Now in charge of LCB - must be after the physical state is
10458 	 * offline.quiet and before host_link_state is changed.
10459 	 */
10460 	set_host_lcb_access(dd);
10461 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10462 
10463 	/* make sure the logical state is also down */
10464 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10465 	if (ret)
10466 		force_logical_link_state_down(ppd);
10467 
10468 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10469 	update_statusp(ppd, IB_PORT_DOWN);
10470 
10471 	/*
10472 	 * The LNI has a mandatory wait time after the physical state
10473 	 * moves to Offline.Quiet.  The wait time may be different
10474 	 * depending on how the link went down.  The 8051 firmware
10475 	 * will observe the needed wait time and only move to ready
10476 	 * when that is completed.  The largest of the quiet timeouts
10477 	 * is 6s, so wait that long and then at least 0.5s more for
10478 	 * other transitions, and another 0.5s for a buffer.
10479 	 */
10480 	ret = wait_fm_ready(dd, 7000);
10481 	if (ret) {
10482 		dd_dev_err(dd,
10483 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10484 		/* state is really offline, so make it so */
10485 		ppd->host_link_state = HLS_DN_OFFLINE;
10486 		return ret;
10487 	}
10488 
10489 	/*
10490 	 * The state is now offline and the 8051 is ready to accept host
10491 	 * requests.
10492 	 *	- change our state
10493 	 *	- notify others if we were previously in a linkup state
10494 	 */
10495 	ppd->host_link_state = HLS_DN_OFFLINE;
10496 	if (previous_state & HLS_UP) {
10497 		/* went down while link was up */
10498 		handle_linkup_change(dd, 0);
10499 	} else if (previous_state
10500 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10501 		/* went down while attempting link up */
10502 		check_lni_states(ppd);
10503 
10504 		/* The QSFP doesn't need to be reset on LNI failure */
10505 		ppd->qsfp_info.reset_needed = 0;
10506 	}
10507 
10508 	/* the active link width (downgrade) is 0 on link down */
10509 	ppd->link_width_active = 0;
10510 	ppd->link_width_downgrade_tx_active = 0;
10511 	ppd->link_width_downgrade_rx_active = 0;
10512 	ppd->current_egress_rate = 0;
10513 	return 0;
10514 }
10515 
10516 /* return the link state name */
10517 static const char *link_state_name(u32 state)
10518 {
10519 	const char *name;
10520 	int n = ilog2(state);
10521 	static const char * const names[] = {
10522 		[__HLS_UP_INIT_BP]	 = "INIT",
10523 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10524 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10525 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10526 		[__HLS_DN_POLL_BP]	 = "POLL",
10527 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10528 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10529 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10530 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10531 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10532 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10533 	};
10534 
10535 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10536 	return name ? name : "unknown";
10537 }
10538 
10539 /* return the link state reason name */
10540 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10541 {
10542 	if (state == HLS_UP_INIT) {
10543 		switch (ppd->linkinit_reason) {
10544 		case OPA_LINKINIT_REASON_LINKUP:
10545 			return "(LINKUP)";
10546 		case OPA_LINKINIT_REASON_FLAPPING:
10547 			return "(FLAPPING)";
10548 		case OPA_LINKINIT_OUTSIDE_POLICY:
10549 			return "(OUTSIDE_POLICY)";
10550 		case OPA_LINKINIT_QUARANTINED:
10551 			return "(QUARANTINED)";
10552 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10553 			return "(INSUFIC_CAPABILITY)";
10554 		default:
10555 			break;
10556 		}
10557 	}
10558 	return "";
10559 }
10560 
10561 /*
10562  * driver_pstate - convert the driver's notion of a port's
10563  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10564  * Return -1 (converted to a u32) to indicate error.
10565  */
10566 u32 driver_pstate(struct hfi1_pportdata *ppd)
10567 {
10568 	switch (ppd->host_link_state) {
10569 	case HLS_UP_INIT:
10570 	case HLS_UP_ARMED:
10571 	case HLS_UP_ACTIVE:
10572 		return IB_PORTPHYSSTATE_LINKUP;
10573 	case HLS_DN_POLL:
10574 		return IB_PORTPHYSSTATE_POLLING;
10575 	case HLS_DN_DISABLE:
10576 		return IB_PORTPHYSSTATE_DISABLED;
10577 	case HLS_DN_OFFLINE:
10578 		return OPA_PORTPHYSSTATE_OFFLINE;
10579 	case HLS_VERIFY_CAP:
10580 		return IB_PORTPHYSSTATE_TRAINING;
10581 	case HLS_GOING_UP:
10582 		return IB_PORTPHYSSTATE_TRAINING;
10583 	case HLS_GOING_OFFLINE:
10584 		return OPA_PORTPHYSSTATE_OFFLINE;
10585 	case HLS_LINK_COOLDOWN:
10586 		return OPA_PORTPHYSSTATE_OFFLINE;
10587 	case HLS_DN_DOWNDEF:
10588 	default:
10589 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10590 			   ppd->host_link_state);
10591 		return  -1;
10592 	}
10593 }
10594 
10595 /*
10596  * driver_lstate - convert the driver's notion of a port's
10597  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10598  * (converted to a u32) to indicate error.
10599  */
10600 u32 driver_lstate(struct hfi1_pportdata *ppd)
10601 {
10602 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10603 		return IB_PORT_DOWN;
10604 
10605 	switch (ppd->host_link_state & HLS_UP) {
10606 	case HLS_UP_INIT:
10607 		return IB_PORT_INIT;
10608 	case HLS_UP_ARMED:
10609 		return IB_PORT_ARMED;
10610 	case HLS_UP_ACTIVE:
10611 		return IB_PORT_ACTIVE;
10612 	default:
10613 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10614 			   ppd->host_link_state);
10615 	return -1;
10616 	}
10617 }
10618 
10619 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10620 			  u8 neigh_reason, u8 rem_reason)
10621 {
10622 	if (ppd->local_link_down_reason.latest == 0 &&
10623 	    ppd->neigh_link_down_reason.latest == 0) {
10624 		ppd->local_link_down_reason.latest = lcl_reason;
10625 		ppd->neigh_link_down_reason.latest = neigh_reason;
10626 		ppd->remote_link_down_reason = rem_reason;
10627 	}
10628 }
10629 
10630 /**
10631  * data_vls_operational() - Verify if data VL BCT credits and MTU
10632  *			    are both set.
10633  * @ppd: pointer to hfi1_pportdata structure
10634  *
10635  * Return: true - Ok, false -otherwise.
10636  */
10637 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10638 {
10639 	int i;
10640 	u64 reg;
10641 
10642 	if (!ppd->actual_vls_operational)
10643 		return false;
10644 
10645 	for (i = 0; i < ppd->vls_supported; i++) {
10646 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10647 		if ((reg && !ppd->dd->vld[i].mtu) ||
10648 		    (!reg && ppd->dd->vld[i].mtu))
10649 			return false;
10650 	}
10651 
10652 	return true;
10653 }
10654 
10655 /*
10656  * Change the physical and/or logical link state.
10657  *
10658  * Do not call this routine while inside an interrupt.  It contains
10659  * calls to routines that can take multiple seconds to finish.
10660  *
10661  * Returns 0 on success, -errno on failure.
10662  */
10663 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10664 {
10665 	struct hfi1_devdata *dd = ppd->dd;
10666 	struct ib_event event = {.device = NULL};
10667 	int ret1, ret = 0;
10668 	int orig_new_state, poll_bounce;
10669 
10670 	mutex_lock(&ppd->hls_lock);
10671 
10672 	orig_new_state = state;
10673 	if (state == HLS_DN_DOWNDEF)
10674 		state = HLS_DEFAULT;
10675 
10676 	/* interpret poll -> poll as a link bounce */
10677 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10678 		      state == HLS_DN_POLL;
10679 
10680 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10681 		    link_state_name(ppd->host_link_state),
10682 		    link_state_name(orig_new_state),
10683 		    poll_bounce ? "(bounce) " : "",
10684 		    link_state_reason_name(ppd, state));
10685 
10686 	/*
10687 	 * If we're going to a (HLS_*) link state that implies the logical
10688 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10689 	 * reset is_sm_config_started to 0.
10690 	 */
10691 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10692 		ppd->is_sm_config_started = 0;
10693 
10694 	/*
10695 	 * Do nothing if the states match.  Let a poll to poll link bounce
10696 	 * go through.
10697 	 */
10698 	if (ppd->host_link_state == state && !poll_bounce)
10699 		goto done;
10700 
10701 	switch (state) {
10702 	case HLS_UP_INIT:
10703 		if (ppd->host_link_state == HLS_DN_POLL &&
10704 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10705 			/*
10706 			 * Quick link up jumps from polling to here.
10707 			 *
10708 			 * Whether in normal or loopback mode, the
10709 			 * simulator jumps from polling to link up.
10710 			 * Accept that here.
10711 			 */
10712 			/* OK */
10713 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10714 			goto unexpected;
10715 		}
10716 
10717 		/*
10718 		 * Wait for Link_Up physical state.
10719 		 * Physical and Logical states should already be
10720 		 * be transitioned to LinkUp and LinkInit respectively.
10721 		 */
10722 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10723 		if (ret) {
10724 			dd_dev_err(dd,
10725 				   "%s: physical state did not change to LINK-UP\n",
10726 				   __func__);
10727 			break;
10728 		}
10729 
10730 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10731 		if (ret) {
10732 			dd_dev_err(dd,
10733 				   "%s: logical state did not change to INIT\n",
10734 				   __func__);
10735 			break;
10736 		}
10737 
10738 		/* clear old transient LINKINIT_REASON code */
10739 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10740 			ppd->linkinit_reason =
10741 				OPA_LINKINIT_REASON_LINKUP;
10742 
10743 		/* enable the port */
10744 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10745 
10746 		handle_linkup_change(dd, 1);
10747 		pio_kernel_linkup(dd);
10748 
10749 		/*
10750 		 * After link up, a new link width will have been set.
10751 		 * Update the xmit counters with regards to the new
10752 		 * link width.
10753 		 */
10754 		update_xmit_counters(ppd, ppd->link_width_active);
10755 
10756 		ppd->host_link_state = HLS_UP_INIT;
10757 		update_statusp(ppd, IB_PORT_INIT);
10758 		break;
10759 	case HLS_UP_ARMED:
10760 		if (ppd->host_link_state != HLS_UP_INIT)
10761 			goto unexpected;
10762 
10763 		if (!data_vls_operational(ppd)) {
10764 			dd_dev_err(dd,
10765 				   "%s: Invalid data VL credits or mtu\n",
10766 				   __func__);
10767 			ret = -EINVAL;
10768 			break;
10769 		}
10770 
10771 		set_logical_state(dd, LSTATE_ARMED);
10772 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10773 		if (ret) {
10774 			dd_dev_err(dd,
10775 				   "%s: logical state did not change to ARMED\n",
10776 				   __func__);
10777 			break;
10778 		}
10779 		ppd->host_link_state = HLS_UP_ARMED;
10780 		update_statusp(ppd, IB_PORT_ARMED);
10781 		/*
10782 		 * The simulator does not currently implement SMA messages,
10783 		 * so neighbor_normal is not set.  Set it here when we first
10784 		 * move to Armed.
10785 		 */
10786 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10787 			ppd->neighbor_normal = 1;
10788 		break;
10789 	case HLS_UP_ACTIVE:
10790 		if (ppd->host_link_state != HLS_UP_ARMED)
10791 			goto unexpected;
10792 
10793 		set_logical_state(dd, LSTATE_ACTIVE);
10794 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10795 		if (ret) {
10796 			dd_dev_err(dd,
10797 				   "%s: logical state did not change to ACTIVE\n",
10798 				   __func__);
10799 		} else {
10800 			/* tell all engines to go running */
10801 			sdma_all_running(dd);
10802 			ppd->host_link_state = HLS_UP_ACTIVE;
10803 			update_statusp(ppd, IB_PORT_ACTIVE);
10804 
10805 			/* Signal the IB layer that the port has went active */
10806 			event.device = &dd->verbs_dev.rdi.ibdev;
10807 			event.element.port_num = ppd->port;
10808 			event.event = IB_EVENT_PORT_ACTIVE;
10809 		}
10810 		break;
10811 	case HLS_DN_POLL:
10812 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10813 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10814 		    dd->dc_shutdown)
10815 			dc_start(dd);
10816 		/* Hand LED control to the DC */
10817 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10818 
10819 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10820 			u8 tmp = ppd->link_enabled;
10821 
10822 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10823 			if (ret) {
10824 				ppd->link_enabled = tmp;
10825 				break;
10826 			}
10827 			ppd->remote_link_down_reason = 0;
10828 
10829 			if (ppd->driver_link_ready)
10830 				ppd->link_enabled = 1;
10831 		}
10832 
10833 		set_all_slowpath(ppd->dd);
10834 		ret = set_local_link_attributes(ppd);
10835 		if (ret)
10836 			break;
10837 
10838 		ppd->port_error_action = 0;
10839 
10840 		if (quick_linkup) {
10841 			/* quick linkup does not go into polling */
10842 			ret = do_quick_linkup(dd);
10843 		} else {
10844 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10845 			if (!ret1)
10846 				ret1 = wait_phys_link_out_of_offline(ppd,
10847 								     3000);
10848 			if (ret1 != HCMD_SUCCESS) {
10849 				dd_dev_err(dd,
10850 					   "Failed to transition to Polling link state, return 0x%x\n",
10851 					   ret1);
10852 				ret = -EINVAL;
10853 			}
10854 		}
10855 
10856 		/*
10857 		 * Change the host link state after requesting DC8051 to
10858 		 * change its physical state so that we can ignore any
10859 		 * interrupt with stale LNI(XX) error, which will not be
10860 		 * cleared until DC8051 transitions to Polling state.
10861 		 */
10862 		ppd->host_link_state = HLS_DN_POLL;
10863 		ppd->offline_disabled_reason =
10864 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10865 		/*
10866 		 * If an error occurred above, go back to offline.  The
10867 		 * caller may reschedule another attempt.
10868 		 */
10869 		if (ret)
10870 			goto_offline(ppd, 0);
10871 		else
10872 			log_physical_state(ppd, PLS_POLLING);
10873 		break;
10874 	case HLS_DN_DISABLE:
10875 		/* link is disabled */
10876 		ppd->link_enabled = 0;
10877 
10878 		/* allow any state to transition to disabled */
10879 
10880 		/* must transition to offline first */
10881 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10882 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10883 			if (ret)
10884 				break;
10885 			ppd->remote_link_down_reason = 0;
10886 		}
10887 
10888 		if (!dd->dc_shutdown) {
10889 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10890 			if (ret1 != HCMD_SUCCESS) {
10891 				dd_dev_err(dd,
10892 					   "Failed to transition to Disabled link state, return 0x%x\n",
10893 					   ret1);
10894 				ret = -EINVAL;
10895 				break;
10896 			}
10897 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10898 			if (ret) {
10899 				dd_dev_err(dd,
10900 					   "%s: physical state did not change to DISABLED\n",
10901 					   __func__);
10902 				break;
10903 			}
10904 			dc_shutdown(dd);
10905 		}
10906 		ppd->host_link_state = HLS_DN_DISABLE;
10907 		break;
10908 	case HLS_DN_OFFLINE:
10909 		if (ppd->host_link_state == HLS_DN_DISABLE)
10910 			dc_start(dd);
10911 
10912 		/* allow any state to transition to offline */
10913 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10914 		if (!ret)
10915 			ppd->remote_link_down_reason = 0;
10916 		break;
10917 	case HLS_VERIFY_CAP:
10918 		if (ppd->host_link_state != HLS_DN_POLL)
10919 			goto unexpected;
10920 		ppd->host_link_state = HLS_VERIFY_CAP;
10921 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10922 		break;
10923 	case HLS_GOING_UP:
10924 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10925 			goto unexpected;
10926 
10927 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10928 		if (ret1 != HCMD_SUCCESS) {
10929 			dd_dev_err(dd,
10930 				   "Failed to transition to link up state, return 0x%x\n",
10931 				   ret1);
10932 			ret = -EINVAL;
10933 			break;
10934 		}
10935 		ppd->host_link_state = HLS_GOING_UP;
10936 		break;
10937 
10938 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10939 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10940 	default:
10941 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10942 			    __func__, state);
10943 		ret = -EINVAL;
10944 		break;
10945 	}
10946 
10947 	goto done;
10948 
10949 unexpected:
10950 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10951 		   __func__, link_state_name(ppd->host_link_state),
10952 		   link_state_name(state));
10953 	ret = -EINVAL;
10954 
10955 done:
10956 	mutex_unlock(&ppd->hls_lock);
10957 
10958 	if (event.device)
10959 		ib_dispatch_event(&event);
10960 
10961 	return ret;
10962 }
10963 
10964 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10965 {
10966 	u64 reg;
10967 	int ret = 0;
10968 
10969 	switch (which) {
10970 	case HFI1_IB_CFG_LIDLMC:
10971 		set_lidlmc(ppd);
10972 		break;
10973 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10974 		/*
10975 		 * The VL Arbitrator high limit is sent in units of 4k
10976 		 * bytes, while HFI stores it in units of 64 bytes.
10977 		 */
10978 		val *= 4096 / 64;
10979 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10980 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10981 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10982 		break;
10983 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10984 		/* HFI only supports POLL as the default link down state */
10985 		if (val != HLS_DN_POLL)
10986 			ret = -EINVAL;
10987 		break;
10988 	case HFI1_IB_CFG_OP_VLS:
10989 		if (ppd->vls_operational != val) {
10990 			ppd->vls_operational = val;
10991 			if (!ppd->port)
10992 				ret = -EINVAL;
10993 		}
10994 		break;
10995 	/*
10996 	 * For link width, link width downgrade, and speed enable, always AND
10997 	 * the setting with what is actually supported.  This has two benefits.
10998 	 * First, enabled can't have unsupported values, no matter what the
10999 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11000 	 * "fill in with your supported value" have all the bits in the
11001 	 * field set, so simply ANDing with supported has the desired result.
11002 	 */
11003 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11004 		ppd->link_width_enabled = val & ppd->link_width_supported;
11005 		break;
11006 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11007 		ppd->link_width_downgrade_enabled =
11008 				val & ppd->link_width_downgrade_supported;
11009 		break;
11010 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11011 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
11012 		break;
11013 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11014 		/*
11015 		 * HFI does not follow IB specs, save this value
11016 		 * so we can report it, if asked.
11017 		 */
11018 		ppd->overrun_threshold = val;
11019 		break;
11020 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11021 		/*
11022 		 * HFI does not follow IB specs, save this value
11023 		 * so we can report it, if asked.
11024 		 */
11025 		ppd->phy_error_threshold = val;
11026 		break;
11027 
11028 	case HFI1_IB_CFG_MTU:
11029 		set_send_length(ppd);
11030 		break;
11031 
11032 	case HFI1_IB_CFG_PKEYS:
11033 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11034 			set_partition_keys(ppd);
11035 		break;
11036 
11037 	default:
11038 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11039 			dd_dev_info(ppd->dd,
11040 				    "%s: which %s, val 0x%x: not implemented\n",
11041 				    __func__, ib_cfg_name(which), val);
11042 		break;
11043 	}
11044 	return ret;
11045 }
11046 
11047 /* begin functions related to vl arbitration table caching */
11048 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11049 {
11050 	int i;
11051 
11052 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11053 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11054 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11055 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11056 
11057 	/*
11058 	 * Note that we always return values directly from the
11059 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11060 	 * 'Get(VLArbTable)'. This is obviously correct after a
11061 	 * 'Set(VLArbTable)', since the cache will then be up to
11062 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11063 	 * since then both the cache, and the relevant h/w registers
11064 	 * will be zeroed.
11065 	 */
11066 
11067 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11068 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11069 }
11070 
11071 /*
11072  * vl_arb_lock_cache
11073  *
11074  * All other vl_arb_* functions should be called only after locking
11075  * the cache.
11076  */
11077 static inline struct vl_arb_cache *
11078 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11079 {
11080 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11081 		return NULL;
11082 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11083 	return &ppd->vl_arb_cache[idx];
11084 }
11085 
11086 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11087 {
11088 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11089 }
11090 
11091 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11092 			     struct ib_vl_weight_elem *vl)
11093 {
11094 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11095 }
11096 
11097 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11098 			     struct ib_vl_weight_elem *vl)
11099 {
11100 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11101 }
11102 
11103 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11104 			      struct ib_vl_weight_elem *vl)
11105 {
11106 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11107 }
11108 
11109 /* end functions related to vl arbitration table caching */
11110 
11111 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11112 			  u32 size, struct ib_vl_weight_elem *vl)
11113 {
11114 	struct hfi1_devdata *dd = ppd->dd;
11115 	u64 reg;
11116 	unsigned int i, is_up = 0;
11117 	int drain, ret = 0;
11118 
11119 	mutex_lock(&ppd->hls_lock);
11120 
11121 	if (ppd->host_link_state & HLS_UP)
11122 		is_up = 1;
11123 
11124 	drain = !is_ax(dd) && is_up;
11125 
11126 	if (drain)
11127 		/*
11128 		 * Before adjusting VL arbitration weights, empty per-VL
11129 		 * FIFOs, otherwise a packet whose VL weight is being
11130 		 * set to 0 could get stuck in a FIFO with no chance to
11131 		 * egress.
11132 		 */
11133 		ret = stop_drain_data_vls(dd);
11134 
11135 	if (ret) {
11136 		dd_dev_err(
11137 			dd,
11138 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11139 			__func__);
11140 		goto err;
11141 	}
11142 
11143 	for (i = 0; i < size; i++, vl++) {
11144 		/*
11145 		 * NOTE: The low priority shift and mask are used here, but
11146 		 * they are the same for both the low and high registers.
11147 		 */
11148 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11149 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11150 		      | (((u64)vl->weight
11151 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11152 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11153 		write_csr(dd, target + (i * 8), reg);
11154 	}
11155 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11156 
11157 	if (drain)
11158 		open_fill_data_vls(dd); /* reopen all VLs */
11159 
11160 err:
11161 	mutex_unlock(&ppd->hls_lock);
11162 
11163 	return ret;
11164 }
11165 
11166 /*
11167  * Read one credit merge VL register.
11168  */
11169 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11170 			   struct vl_limit *vll)
11171 {
11172 	u64 reg = read_csr(dd, csr);
11173 
11174 	vll->dedicated = cpu_to_be16(
11175 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11176 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11177 	vll->shared = cpu_to_be16(
11178 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11179 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11180 }
11181 
11182 /*
11183  * Read the current credit merge limits.
11184  */
11185 static int get_buffer_control(struct hfi1_devdata *dd,
11186 			      struct buffer_control *bc, u16 *overall_limit)
11187 {
11188 	u64 reg;
11189 	int i;
11190 
11191 	/* not all entries are filled in */
11192 	memset(bc, 0, sizeof(*bc));
11193 
11194 	/* OPA and HFI have a 1-1 mapping */
11195 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11196 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11197 
11198 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11199 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11200 
11201 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11202 	bc->overall_shared_limit = cpu_to_be16(
11203 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11204 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11205 	if (overall_limit)
11206 		*overall_limit = (reg
11207 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11208 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11209 	return sizeof(struct buffer_control);
11210 }
11211 
11212 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11213 {
11214 	u64 reg;
11215 	int i;
11216 
11217 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11218 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11219 	for (i = 0; i < sizeof(u64); i++) {
11220 		u8 byte = *(((u8 *)&reg) + i);
11221 
11222 		dp->vlnt[2 * i] = byte & 0xf;
11223 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11224 	}
11225 
11226 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11227 	for (i = 0; i < sizeof(u64); i++) {
11228 		u8 byte = *(((u8 *)&reg) + i);
11229 
11230 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11231 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11232 	}
11233 	return sizeof(struct sc2vlnt);
11234 }
11235 
11236 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11237 			      struct ib_vl_weight_elem *vl)
11238 {
11239 	unsigned int i;
11240 
11241 	for (i = 0; i < nelems; i++, vl++) {
11242 		vl->vl = 0xf;
11243 		vl->weight = 0;
11244 	}
11245 }
11246 
11247 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11248 {
11249 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11250 		  DC_SC_VL_VAL(15_0,
11251 			       0, dp->vlnt[0] & 0xf,
11252 			       1, dp->vlnt[1] & 0xf,
11253 			       2, dp->vlnt[2] & 0xf,
11254 			       3, dp->vlnt[3] & 0xf,
11255 			       4, dp->vlnt[4] & 0xf,
11256 			       5, dp->vlnt[5] & 0xf,
11257 			       6, dp->vlnt[6] & 0xf,
11258 			       7, dp->vlnt[7] & 0xf,
11259 			       8, dp->vlnt[8] & 0xf,
11260 			       9, dp->vlnt[9] & 0xf,
11261 			       10, dp->vlnt[10] & 0xf,
11262 			       11, dp->vlnt[11] & 0xf,
11263 			       12, dp->vlnt[12] & 0xf,
11264 			       13, dp->vlnt[13] & 0xf,
11265 			       14, dp->vlnt[14] & 0xf,
11266 			       15, dp->vlnt[15] & 0xf));
11267 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11268 		  DC_SC_VL_VAL(31_16,
11269 			       16, dp->vlnt[16] & 0xf,
11270 			       17, dp->vlnt[17] & 0xf,
11271 			       18, dp->vlnt[18] & 0xf,
11272 			       19, dp->vlnt[19] & 0xf,
11273 			       20, dp->vlnt[20] & 0xf,
11274 			       21, dp->vlnt[21] & 0xf,
11275 			       22, dp->vlnt[22] & 0xf,
11276 			       23, dp->vlnt[23] & 0xf,
11277 			       24, dp->vlnt[24] & 0xf,
11278 			       25, dp->vlnt[25] & 0xf,
11279 			       26, dp->vlnt[26] & 0xf,
11280 			       27, dp->vlnt[27] & 0xf,
11281 			       28, dp->vlnt[28] & 0xf,
11282 			       29, dp->vlnt[29] & 0xf,
11283 			       30, dp->vlnt[30] & 0xf,
11284 			       31, dp->vlnt[31] & 0xf));
11285 }
11286 
11287 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11288 			u16 limit)
11289 {
11290 	if (limit != 0)
11291 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11292 			    what, (int)limit, idx);
11293 }
11294 
11295 /* change only the shared limit portion of SendCmGLobalCredit */
11296 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11297 {
11298 	u64 reg;
11299 
11300 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11301 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11302 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11303 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11304 }
11305 
11306 /* change only the total credit limit portion of SendCmGLobalCredit */
11307 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11308 {
11309 	u64 reg;
11310 
11311 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11312 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11313 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11314 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11315 }
11316 
11317 /* set the given per-VL shared limit */
11318 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11319 {
11320 	u64 reg;
11321 	u32 addr;
11322 
11323 	if (vl < TXE_NUM_DATA_VL)
11324 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11325 	else
11326 		addr = SEND_CM_CREDIT_VL15;
11327 
11328 	reg = read_csr(dd, addr);
11329 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11330 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11331 	write_csr(dd, addr, reg);
11332 }
11333 
11334 /* set the given per-VL dedicated limit */
11335 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11336 {
11337 	u64 reg;
11338 	u32 addr;
11339 
11340 	if (vl < TXE_NUM_DATA_VL)
11341 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11342 	else
11343 		addr = SEND_CM_CREDIT_VL15;
11344 
11345 	reg = read_csr(dd, addr);
11346 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11347 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11348 	write_csr(dd, addr, reg);
11349 }
11350 
11351 /* spin until the given per-VL status mask bits clear */
11352 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11353 				     const char *which)
11354 {
11355 	unsigned long timeout;
11356 	u64 reg;
11357 
11358 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11359 	while (1) {
11360 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11361 
11362 		if (reg == 0)
11363 			return;	/* success */
11364 		if (time_after(jiffies, timeout))
11365 			break;		/* timed out */
11366 		udelay(1);
11367 	}
11368 
11369 	dd_dev_err(dd,
11370 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11371 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11372 	/*
11373 	 * If this occurs, it is likely there was a credit loss on the link.
11374 	 * The only recovery from that is a link bounce.
11375 	 */
11376 	dd_dev_err(dd,
11377 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11378 }
11379 
11380 /*
11381  * The number of credits on the VLs may be changed while everything
11382  * is "live", but the following algorithm must be followed due to
11383  * how the hardware is actually implemented.  In particular,
11384  * Return_Credit_Status[] is the only correct status check.
11385  *
11386  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11387  *     set Global_Shared_Credit_Limit = 0
11388  *     use_all_vl = 1
11389  * mask0 = all VLs that are changing either dedicated or shared limits
11390  * set Shared_Limit[mask0] = 0
11391  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11392  * if (changing any dedicated limit)
11393  *     mask1 = all VLs that are lowering dedicated limits
11394  *     lower Dedicated_Limit[mask1]
11395  *     spin until Return_Credit_Status[mask1] == 0
11396  *     raise Dedicated_Limits
11397  * raise Shared_Limits
11398  * raise Global_Shared_Credit_Limit
11399  *
11400  * lower = if the new limit is lower, set the limit to the new value
11401  * raise = if the new limit is higher than the current value (may be changed
11402  *	earlier in the algorithm), set the new limit to the new value
11403  */
11404 int set_buffer_control(struct hfi1_pportdata *ppd,
11405 		       struct buffer_control *new_bc)
11406 {
11407 	struct hfi1_devdata *dd = ppd->dd;
11408 	u64 changing_mask, ld_mask, stat_mask;
11409 	int change_count;
11410 	int i, use_all_mask;
11411 	int this_shared_changing;
11412 	int vl_count = 0, ret;
11413 	/*
11414 	 * A0: add the variable any_shared_limit_changing below and in the
11415 	 * algorithm above.  If removing A0 support, it can be removed.
11416 	 */
11417 	int any_shared_limit_changing;
11418 	struct buffer_control cur_bc;
11419 	u8 changing[OPA_MAX_VLS];
11420 	u8 lowering_dedicated[OPA_MAX_VLS];
11421 	u16 cur_total;
11422 	u32 new_total = 0;
11423 	const u64 all_mask =
11424 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11425 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11426 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11427 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11428 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11429 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11430 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11431 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11432 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11433 
11434 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11435 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11436 
11437 	/* find the new total credits, do sanity check on unused VLs */
11438 	for (i = 0; i < OPA_MAX_VLS; i++) {
11439 		if (valid_vl(i)) {
11440 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11441 			continue;
11442 		}
11443 		nonzero_msg(dd, i, "dedicated",
11444 			    be16_to_cpu(new_bc->vl[i].dedicated));
11445 		nonzero_msg(dd, i, "shared",
11446 			    be16_to_cpu(new_bc->vl[i].shared));
11447 		new_bc->vl[i].dedicated = 0;
11448 		new_bc->vl[i].shared = 0;
11449 	}
11450 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11451 
11452 	/* fetch the current values */
11453 	get_buffer_control(dd, &cur_bc, &cur_total);
11454 
11455 	/*
11456 	 * Create the masks we will use.
11457 	 */
11458 	memset(changing, 0, sizeof(changing));
11459 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11460 	/*
11461 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11462 	 * increasing order
11463 	 */
11464 	stat_mask =
11465 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11466 	changing_mask = 0;
11467 	ld_mask = 0;
11468 	change_count = 0;
11469 	any_shared_limit_changing = 0;
11470 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11471 		if (!valid_vl(i))
11472 			continue;
11473 		this_shared_changing = new_bc->vl[i].shared
11474 						!= cur_bc.vl[i].shared;
11475 		if (this_shared_changing)
11476 			any_shared_limit_changing = 1;
11477 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11478 		    this_shared_changing) {
11479 			changing[i] = 1;
11480 			changing_mask |= stat_mask;
11481 			change_count++;
11482 		}
11483 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11484 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11485 			lowering_dedicated[i] = 1;
11486 			ld_mask |= stat_mask;
11487 		}
11488 	}
11489 
11490 	/* bracket the credit change with a total adjustment */
11491 	if (new_total > cur_total)
11492 		set_global_limit(dd, new_total);
11493 
11494 	/*
11495 	 * Start the credit change algorithm.
11496 	 */
11497 	use_all_mask = 0;
11498 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11499 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11500 	    (is_ax(dd) && any_shared_limit_changing)) {
11501 		set_global_shared(dd, 0);
11502 		cur_bc.overall_shared_limit = 0;
11503 		use_all_mask = 1;
11504 	}
11505 
11506 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11507 		if (!valid_vl(i))
11508 			continue;
11509 
11510 		if (changing[i]) {
11511 			set_vl_shared(dd, i, 0);
11512 			cur_bc.vl[i].shared = 0;
11513 		}
11514 	}
11515 
11516 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11517 				 "shared");
11518 
11519 	if (change_count > 0) {
11520 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11521 			if (!valid_vl(i))
11522 				continue;
11523 
11524 			if (lowering_dedicated[i]) {
11525 				set_vl_dedicated(dd, i,
11526 						 be16_to_cpu(new_bc->
11527 							     vl[i].dedicated));
11528 				cur_bc.vl[i].dedicated =
11529 						new_bc->vl[i].dedicated;
11530 			}
11531 		}
11532 
11533 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11534 
11535 		/* now raise all dedicated that are going up */
11536 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11537 			if (!valid_vl(i))
11538 				continue;
11539 
11540 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11541 					be16_to_cpu(cur_bc.vl[i].dedicated))
11542 				set_vl_dedicated(dd, i,
11543 						 be16_to_cpu(new_bc->
11544 							     vl[i].dedicated));
11545 		}
11546 	}
11547 
11548 	/* next raise all shared that are going up */
11549 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11550 		if (!valid_vl(i))
11551 			continue;
11552 
11553 		if (be16_to_cpu(new_bc->vl[i].shared) >
11554 				be16_to_cpu(cur_bc.vl[i].shared))
11555 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11556 	}
11557 
11558 	/* finally raise the global shared */
11559 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11560 	    be16_to_cpu(cur_bc.overall_shared_limit))
11561 		set_global_shared(dd,
11562 				  be16_to_cpu(new_bc->overall_shared_limit));
11563 
11564 	/* bracket the credit change with a total adjustment */
11565 	if (new_total < cur_total)
11566 		set_global_limit(dd, new_total);
11567 
11568 	/*
11569 	 * Determine the actual number of operational VLS using the number of
11570 	 * dedicated and shared credits for each VL.
11571 	 */
11572 	if (change_count > 0) {
11573 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11574 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11575 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11576 				vl_count++;
11577 		ppd->actual_vls_operational = vl_count;
11578 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11579 				    ppd->actual_vls_operational :
11580 				    ppd->vls_operational,
11581 				    NULL);
11582 		if (ret == 0)
11583 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11584 					   ppd->actual_vls_operational :
11585 					   ppd->vls_operational, NULL);
11586 		if (ret)
11587 			return ret;
11588 	}
11589 	return 0;
11590 }
11591 
11592 /*
11593  * Read the given fabric manager table. Return the size of the
11594  * table (in bytes) on success, and a negative error code on
11595  * failure.
11596  */
11597 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11598 
11599 {
11600 	int size;
11601 	struct vl_arb_cache *vlc;
11602 
11603 	switch (which) {
11604 	case FM_TBL_VL_HIGH_ARB:
11605 		size = 256;
11606 		/*
11607 		 * OPA specifies 128 elements (of 2 bytes each), though
11608 		 * HFI supports only 16 elements in h/w.
11609 		 */
11610 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11611 		vl_arb_get_cache(vlc, t);
11612 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11613 		break;
11614 	case FM_TBL_VL_LOW_ARB:
11615 		size = 256;
11616 		/*
11617 		 * OPA specifies 128 elements (of 2 bytes each), though
11618 		 * HFI supports only 16 elements in h/w.
11619 		 */
11620 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11621 		vl_arb_get_cache(vlc, t);
11622 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11623 		break;
11624 	case FM_TBL_BUFFER_CONTROL:
11625 		size = get_buffer_control(ppd->dd, t, NULL);
11626 		break;
11627 	case FM_TBL_SC2VLNT:
11628 		size = get_sc2vlnt(ppd->dd, t);
11629 		break;
11630 	case FM_TBL_VL_PREEMPT_ELEMS:
11631 		size = 256;
11632 		/* OPA specifies 128 elements, of 2 bytes each */
11633 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11634 		break;
11635 	case FM_TBL_VL_PREEMPT_MATRIX:
11636 		size = 256;
11637 		/*
11638 		 * OPA specifies that this is the same size as the VL
11639 		 * arbitration tables (i.e., 256 bytes).
11640 		 */
11641 		break;
11642 	default:
11643 		return -EINVAL;
11644 	}
11645 	return size;
11646 }
11647 
11648 /*
11649  * Write the given fabric manager table.
11650  */
11651 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11652 {
11653 	int ret = 0;
11654 	struct vl_arb_cache *vlc;
11655 
11656 	switch (which) {
11657 	case FM_TBL_VL_HIGH_ARB:
11658 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11659 		if (vl_arb_match_cache(vlc, t)) {
11660 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11661 			break;
11662 		}
11663 		vl_arb_set_cache(vlc, t);
11664 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11665 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11666 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11667 		break;
11668 	case FM_TBL_VL_LOW_ARB:
11669 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11670 		if (vl_arb_match_cache(vlc, t)) {
11671 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11672 			break;
11673 		}
11674 		vl_arb_set_cache(vlc, t);
11675 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11676 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11677 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11678 		break;
11679 	case FM_TBL_BUFFER_CONTROL:
11680 		ret = set_buffer_control(ppd, t);
11681 		break;
11682 	case FM_TBL_SC2VLNT:
11683 		set_sc2vlnt(ppd->dd, t);
11684 		break;
11685 	default:
11686 		ret = -EINVAL;
11687 	}
11688 	return ret;
11689 }
11690 
11691 /*
11692  * Disable all data VLs.
11693  *
11694  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11695  */
11696 static int disable_data_vls(struct hfi1_devdata *dd)
11697 {
11698 	if (is_ax(dd))
11699 		return 1;
11700 
11701 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11702 
11703 	return 0;
11704 }
11705 
11706 /*
11707  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11708  * Just re-enables all data VLs (the "fill" part happens
11709  * automatically - the name was chosen for symmetry with
11710  * stop_drain_data_vls()).
11711  *
11712  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11713  */
11714 int open_fill_data_vls(struct hfi1_devdata *dd)
11715 {
11716 	if (is_ax(dd))
11717 		return 1;
11718 
11719 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11720 
11721 	return 0;
11722 }
11723 
11724 /*
11725  * drain_data_vls() - assumes that disable_data_vls() has been called,
11726  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11727  * engines to drop to 0.
11728  */
11729 static void drain_data_vls(struct hfi1_devdata *dd)
11730 {
11731 	sc_wait(dd);
11732 	sdma_wait(dd);
11733 	pause_for_credit_return(dd);
11734 }
11735 
11736 /*
11737  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11738  *
11739  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11740  * meant to be used like this:
11741  *
11742  * stop_drain_data_vls(dd);
11743  * // do things with per-VL resources
11744  * open_fill_data_vls(dd);
11745  */
11746 int stop_drain_data_vls(struct hfi1_devdata *dd)
11747 {
11748 	int ret;
11749 
11750 	ret = disable_data_vls(dd);
11751 	if (ret == 0)
11752 		drain_data_vls(dd);
11753 
11754 	return ret;
11755 }
11756 
11757 /*
11758  * Convert a nanosecond time to a cclock count.  No matter how slow
11759  * the cclock, a non-zero ns will always have a non-zero result.
11760  */
11761 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11762 {
11763 	u32 cclocks;
11764 
11765 	if (dd->icode == ICODE_FPGA_EMULATION)
11766 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11767 	else  /* simulation pretends to be ASIC */
11768 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11769 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11770 		cclocks = 1;
11771 	return cclocks;
11772 }
11773 
11774 /*
11775  * Convert a cclock count to nanoseconds. Not matter how slow
11776  * the cclock, a non-zero cclocks will always have a non-zero result.
11777  */
11778 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11779 {
11780 	u32 ns;
11781 
11782 	if (dd->icode == ICODE_FPGA_EMULATION)
11783 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11784 	else  /* simulation pretends to be ASIC */
11785 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11786 	if (cclocks && !ns)
11787 		ns = 1;
11788 	return ns;
11789 }
11790 
11791 /*
11792  * Dynamically adjust the receive interrupt timeout for a context based on
11793  * incoming packet rate.
11794  *
11795  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11796  */
11797 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11798 {
11799 	struct hfi1_devdata *dd = rcd->dd;
11800 	u32 timeout = rcd->rcvavail_timeout;
11801 
11802 	/*
11803 	 * This algorithm doubles or halves the timeout depending on whether
11804 	 * the number of packets received in this interrupt were less than or
11805 	 * greater equal the interrupt count.
11806 	 *
11807 	 * The calculations below do not allow a steady state to be achieved.
11808 	 * Only at the endpoints it is possible to have an unchanging
11809 	 * timeout.
11810 	 */
11811 	if (npkts < rcv_intr_count) {
11812 		/*
11813 		 * Not enough packets arrived before the timeout, adjust
11814 		 * timeout downward.
11815 		 */
11816 		if (timeout < 2) /* already at minimum? */
11817 			return;
11818 		timeout >>= 1;
11819 	} else {
11820 		/*
11821 		 * More than enough packets arrived before the timeout, adjust
11822 		 * timeout upward.
11823 		 */
11824 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11825 			return;
11826 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11827 	}
11828 
11829 	rcd->rcvavail_timeout = timeout;
11830 	/*
11831 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11832 	 * been verified to be in range
11833 	 */
11834 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11835 			(u64)timeout <<
11836 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11837 }
11838 
11839 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11840 		    u32 intr_adjust, u32 npkts)
11841 {
11842 	struct hfi1_devdata *dd = rcd->dd;
11843 	u64 reg;
11844 	u32 ctxt = rcd->ctxt;
11845 
11846 	/*
11847 	 * Need to write timeout register before updating RcvHdrHead to ensure
11848 	 * that a new value is used when the HW decides to restart counting.
11849 	 */
11850 	if (intr_adjust)
11851 		adjust_rcv_timeout(rcd, npkts);
11852 	if (updegr) {
11853 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11854 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11855 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11856 	}
11857 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11858 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11859 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11860 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11861 }
11862 
11863 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11864 {
11865 	u32 head, tail;
11866 
11867 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11868 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11869 
11870 	if (hfi1_rcvhdrtail_kvaddr(rcd))
11871 		tail = get_rcvhdrtail(rcd);
11872 	else
11873 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11874 
11875 	return head == tail;
11876 }
11877 
11878 /*
11879  * Context Control and Receive Array encoding for buffer size:
11880  *	0x0 invalid
11881  *	0x1   4 KB
11882  *	0x2   8 KB
11883  *	0x3  16 KB
11884  *	0x4  32 KB
11885  *	0x5  64 KB
11886  *	0x6 128 KB
11887  *	0x7 256 KB
11888  *	0x8 512 KB (Receive Array only)
11889  *	0x9   1 MB (Receive Array only)
11890  *	0xa   2 MB (Receive Array only)
11891  *
11892  *	0xB-0xF - reserved (Receive Array only)
11893  *
11894  *
11895  * This routine assumes that the value has already been sanity checked.
11896  */
11897 static u32 encoded_size(u32 size)
11898 {
11899 	switch (size) {
11900 	case   4 * 1024: return 0x1;
11901 	case   8 * 1024: return 0x2;
11902 	case  16 * 1024: return 0x3;
11903 	case  32 * 1024: return 0x4;
11904 	case  64 * 1024: return 0x5;
11905 	case 128 * 1024: return 0x6;
11906 	case 256 * 1024: return 0x7;
11907 	case 512 * 1024: return 0x8;
11908 	case   1 * 1024 * 1024: return 0x9;
11909 	case   2 * 1024 * 1024: return 0xa;
11910 	}
11911 	return 0x1;	/* if invalid, go with the minimum size */
11912 }
11913 
11914 /**
11915  * encode_rcv_header_entry_size - return chip specific encoding for size
11916  * @size: size in dwords
11917  *
11918  * Convert a receive header entry size that to the encoding used in the CSR.
11919  *
11920  * Return a zero if the given size is invalid, otherwise the encoding.
11921  */
11922 u8 encode_rcv_header_entry_size(u8 size)
11923 {
11924 	/* there are only 3 valid receive header entry sizes */
11925 	if (size == 2)
11926 		return 1;
11927 	if (size == 16)
11928 		return 2;
11929 	if (size == 32)
11930 		return 4;
11931 	return 0; /* invalid */
11932 }
11933 
11934 /**
11935  * hfi1_validate_rcvhdrcnt - validate hdrcnt
11936  * @dd: the device data
11937  * @thecnt: the header count
11938  */
11939 int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11940 {
11941 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11942 		dd_dev_err(dd, "Receive header queue count too small\n");
11943 		return -EINVAL;
11944 	}
11945 
11946 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11947 		dd_dev_err(dd,
11948 			   "Receive header queue count cannot be greater than %u\n",
11949 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
11950 		return -EINVAL;
11951 	}
11952 
11953 	if (thecnt % HDRQ_INCREMENT) {
11954 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11955 			   thecnt, HDRQ_INCREMENT);
11956 		return -EINVAL;
11957 	}
11958 
11959 	return 0;
11960 }
11961 
11962 /**
11963  * set_hdrq_regs - set header queue registers for context
11964  * @dd: the device data
11965  * @ctxt: the context
11966  * @entsize: the dword entry size
11967  * @hdrcnt: the number of header entries
11968  */
11969 void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
11970 {
11971 	u64 reg;
11972 
11973 	reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
11974 	      RCV_HDR_CNT_CNT_SHIFT;
11975 	write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
11976 	reg = ((u64)encode_rcv_header_entry_size(entsize) &
11977 	       RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
11978 	      RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
11979 	write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
11980 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
11981 	      RCV_HDR_SIZE_HDR_SIZE_SHIFT;
11982 	write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
11983 
11984 	/*
11985 	 * Program dummy tail address for every receive context
11986 	 * before enabling any receive context
11987 	 */
11988 	write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11989 			dd->rcvhdrtail_dummy_dma);
11990 }
11991 
11992 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11993 		  struct hfi1_ctxtdata *rcd)
11994 {
11995 	u64 rcvctrl, reg;
11996 	int did_enable = 0;
11997 	u16 ctxt;
11998 
11999 	if (!rcd)
12000 		return;
12001 
12002 	ctxt = rcd->ctxt;
12003 
12004 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12005 
12006 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12007 	/* if the context already enabled, don't do the extra steps */
12008 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12009 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12010 		/* reset the tail and hdr addresses, and sequence count */
12011 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12012 				rcd->rcvhdrq_dma);
12013 		if (hfi1_rcvhdrtail_kvaddr(rcd))
12014 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12015 					rcd->rcvhdrqtailaddr_dma);
12016 		hfi1_set_seq_cnt(rcd, 1);
12017 
12018 		/* reset the cached receive header queue head value */
12019 		hfi1_set_rcd_head(rcd, 0);
12020 
12021 		/*
12022 		 * Zero the receive header queue so we don't get false
12023 		 * positives when checking the sequence number.  The
12024 		 * sequence numbers could land exactly on the same spot.
12025 		 * E.g. a rcd restart before the receive header wrapped.
12026 		 */
12027 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12028 
12029 		/* starting timeout */
12030 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12031 
12032 		/* enable the context */
12033 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12034 
12035 		/* clean the egr buffer size first */
12036 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12037 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12038 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12039 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12040 
12041 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12042 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12043 		did_enable = 1;
12044 
12045 		/* zero RcvEgrIndexHead */
12046 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12047 
12048 		/* set eager count and base index */
12049 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12050 			& RCV_EGR_CTRL_EGR_CNT_MASK)
12051 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12052 			(((rcd->eager_base >> RCV_SHIFT)
12053 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12054 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12055 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12056 
12057 		/*
12058 		 * Set TID (expected) count and base index.
12059 		 * rcd->expected_count is set to individual RcvArray entries,
12060 		 * not pairs, and the CSR takes a pair-count in groups of
12061 		 * four, so divide by 8.
12062 		 */
12063 		reg = (((rcd->expected_count >> RCV_SHIFT)
12064 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12065 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12066 		      (((rcd->expected_base >> RCV_SHIFT)
12067 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12068 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12069 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12070 		if (ctxt == HFI1_CTRL_CTXT)
12071 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12072 	}
12073 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
12074 		write_csr(dd, RCV_VL15, 0);
12075 		/*
12076 		 * When receive context is being disabled turn on tail
12077 		 * update with a dummy tail address and then disable
12078 		 * receive context.
12079 		 */
12080 		if (dd->rcvhdrtail_dummy_dma) {
12081 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12082 					dd->rcvhdrtail_dummy_dma);
12083 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12084 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12085 		}
12086 
12087 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12088 	}
12089 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12090 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12091 			      IS_RCVAVAIL_START + rcd->ctxt, true);
12092 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12093 	}
12094 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12095 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12096 			      IS_RCVAVAIL_START + rcd->ctxt, false);
12097 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12098 	}
12099 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12100 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12101 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12102 		/* See comment on RcvCtxtCtrl.TailUpd above */
12103 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12104 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12105 	}
12106 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12107 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12108 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12109 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12110 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12111 		/*
12112 		 * In one-packet-per-eager mode, the size comes from
12113 		 * the RcvArray entry.
12114 		 */
12115 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12116 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12117 	}
12118 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12119 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12120 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12121 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12122 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12123 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12124 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12125 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12126 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12127 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12128 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12129 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12130 			      IS_RCVURGENT_START + rcd->ctxt, true);
12131 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12132 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12133 			      IS_RCVURGENT_START + rcd->ctxt, false);
12134 
12135 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12136 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12137 
12138 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12139 	if (did_enable &&
12140 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12141 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12142 		if (reg != 0) {
12143 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12144 				    ctxt, reg);
12145 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12146 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12147 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12148 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12149 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12150 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12151 				    ctxt, reg, reg == 0 ? "not" : "still");
12152 		}
12153 	}
12154 
12155 	if (did_enable) {
12156 		/*
12157 		 * The interrupt timeout and count must be set after
12158 		 * the context is enabled to take effect.
12159 		 */
12160 		/* set interrupt timeout */
12161 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12162 				(u64)rcd->rcvavail_timeout <<
12163 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12164 
12165 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12166 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12167 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12168 	}
12169 
12170 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12171 		/*
12172 		 * If the context has been disabled and the Tail Update has
12173 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12174 		 * so it doesn't contain an address that is invalid.
12175 		 */
12176 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12177 				dd->rcvhdrtail_dummy_dma);
12178 }
12179 
12180 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12181 {
12182 	int ret;
12183 	u64 val = 0;
12184 
12185 	if (namep) {
12186 		ret = dd->cntrnameslen;
12187 		*namep = dd->cntrnames;
12188 	} else {
12189 		const struct cntr_entry *entry;
12190 		int i, j;
12191 
12192 		ret = (dd->ndevcntrs) * sizeof(u64);
12193 
12194 		/* Get the start of the block of counters */
12195 		*cntrp = dd->cntrs;
12196 
12197 		/*
12198 		 * Now go and fill in each counter in the block.
12199 		 */
12200 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12201 			entry = &dev_cntrs[i];
12202 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12203 			if (entry->flags & CNTR_DISABLED) {
12204 				/* Nothing */
12205 				hfi1_cdbg(CNTR, "\tDisabled\n");
12206 			} else {
12207 				if (entry->flags & CNTR_VL) {
12208 					hfi1_cdbg(CNTR, "\tPer VL\n");
12209 					for (j = 0; j < C_VL_COUNT; j++) {
12210 						val = entry->rw_cntr(entry,
12211 								  dd, j,
12212 								  CNTR_MODE_R,
12213 								  0);
12214 						hfi1_cdbg(
12215 						   CNTR,
12216 						   "\t\tRead 0x%llx for %d\n",
12217 						   val, j);
12218 						dd->cntrs[entry->offset + j] =
12219 									    val;
12220 					}
12221 				} else if (entry->flags & CNTR_SDMA) {
12222 					hfi1_cdbg(CNTR,
12223 						  "\t Per SDMA Engine\n");
12224 					for (j = 0; j < chip_sdma_engines(dd);
12225 					     j++) {
12226 						val =
12227 						entry->rw_cntr(entry, dd, j,
12228 							       CNTR_MODE_R, 0);
12229 						hfi1_cdbg(CNTR,
12230 							  "\t\tRead 0x%llx for %d\n",
12231 							  val, j);
12232 						dd->cntrs[entry->offset + j] =
12233 									val;
12234 					}
12235 				} else {
12236 					val = entry->rw_cntr(entry, dd,
12237 							CNTR_INVALID_VL,
12238 							CNTR_MODE_R, 0);
12239 					dd->cntrs[entry->offset] = val;
12240 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12241 				}
12242 			}
12243 		}
12244 	}
12245 	return ret;
12246 }
12247 
12248 /*
12249  * Used by sysfs to create files for hfi stats to read
12250  */
12251 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12252 {
12253 	int ret;
12254 	u64 val = 0;
12255 
12256 	if (namep) {
12257 		ret = ppd->dd->portcntrnameslen;
12258 		*namep = ppd->dd->portcntrnames;
12259 	} else {
12260 		const struct cntr_entry *entry;
12261 		int i, j;
12262 
12263 		ret = ppd->dd->nportcntrs * sizeof(u64);
12264 		*cntrp = ppd->cntrs;
12265 
12266 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12267 			entry = &port_cntrs[i];
12268 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12269 			if (entry->flags & CNTR_DISABLED) {
12270 				/* Nothing */
12271 				hfi1_cdbg(CNTR, "\tDisabled\n");
12272 				continue;
12273 			}
12274 
12275 			if (entry->flags & CNTR_VL) {
12276 				hfi1_cdbg(CNTR, "\tPer VL");
12277 				for (j = 0; j < C_VL_COUNT; j++) {
12278 					val = entry->rw_cntr(entry, ppd, j,
12279 							       CNTR_MODE_R,
12280 							       0);
12281 					hfi1_cdbg(
12282 					   CNTR,
12283 					   "\t\tRead 0x%llx for %d",
12284 					   val, j);
12285 					ppd->cntrs[entry->offset + j] = val;
12286 				}
12287 			} else {
12288 				val = entry->rw_cntr(entry, ppd,
12289 						       CNTR_INVALID_VL,
12290 						       CNTR_MODE_R,
12291 						       0);
12292 				ppd->cntrs[entry->offset] = val;
12293 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12294 			}
12295 		}
12296 	}
12297 	return ret;
12298 }
12299 
12300 static void free_cntrs(struct hfi1_devdata *dd)
12301 {
12302 	struct hfi1_pportdata *ppd;
12303 	int i;
12304 
12305 	if (dd->synth_stats_timer.function)
12306 		del_timer_sync(&dd->synth_stats_timer);
12307 	ppd = (struct hfi1_pportdata *)(dd + 1);
12308 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12309 		kfree(ppd->cntrs);
12310 		kfree(ppd->scntrs);
12311 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12312 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12313 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12314 		ppd->cntrs = NULL;
12315 		ppd->scntrs = NULL;
12316 		ppd->ibport_data.rvp.rc_acks = NULL;
12317 		ppd->ibport_data.rvp.rc_qacks = NULL;
12318 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12319 	}
12320 	kfree(dd->portcntrnames);
12321 	dd->portcntrnames = NULL;
12322 	kfree(dd->cntrs);
12323 	dd->cntrs = NULL;
12324 	kfree(dd->scntrs);
12325 	dd->scntrs = NULL;
12326 	kfree(dd->cntrnames);
12327 	dd->cntrnames = NULL;
12328 	if (dd->update_cntr_wq) {
12329 		destroy_workqueue(dd->update_cntr_wq);
12330 		dd->update_cntr_wq = NULL;
12331 	}
12332 }
12333 
12334 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12335 			      u64 *psval, void *context, int vl)
12336 {
12337 	u64 val;
12338 	u64 sval = *psval;
12339 
12340 	if (entry->flags & CNTR_DISABLED) {
12341 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12342 		return 0;
12343 	}
12344 
12345 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12346 
12347 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12348 
12349 	/* If its a synthetic counter there is more work we need to do */
12350 	if (entry->flags & CNTR_SYNTH) {
12351 		if (sval == CNTR_MAX) {
12352 			/* No need to read already saturated */
12353 			return CNTR_MAX;
12354 		}
12355 
12356 		if (entry->flags & CNTR_32BIT) {
12357 			/* 32bit counters can wrap multiple times */
12358 			u64 upper = sval >> 32;
12359 			u64 lower = (sval << 32) >> 32;
12360 
12361 			if (lower > val) { /* hw wrapped */
12362 				if (upper == CNTR_32BIT_MAX)
12363 					val = CNTR_MAX;
12364 				else
12365 					upper++;
12366 			}
12367 
12368 			if (val != CNTR_MAX)
12369 				val = (upper << 32) | val;
12370 
12371 		} else {
12372 			/* If we rolled we are saturated */
12373 			if ((val < sval) || (val > CNTR_MAX))
12374 				val = CNTR_MAX;
12375 		}
12376 	}
12377 
12378 	*psval = val;
12379 
12380 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12381 
12382 	return val;
12383 }
12384 
12385 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12386 			       struct cntr_entry *entry,
12387 			       u64 *psval, void *context, int vl, u64 data)
12388 {
12389 	u64 val;
12390 
12391 	if (entry->flags & CNTR_DISABLED) {
12392 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12393 		return 0;
12394 	}
12395 
12396 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12397 
12398 	if (entry->flags & CNTR_SYNTH) {
12399 		*psval = data;
12400 		if (entry->flags & CNTR_32BIT) {
12401 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12402 					     (data << 32) >> 32);
12403 			val = data; /* return the full 64bit value */
12404 		} else {
12405 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12406 					     data);
12407 		}
12408 	} else {
12409 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12410 	}
12411 
12412 	*psval = val;
12413 
12414 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12415 
12416 	return val;
12417 }
12418 
12419 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12420 {
12421 	struct cntr_entry *entry;
12422 	u64 *sval;
12423 
12424 	entry = &dev_cntrs[index];
12425 	sval = dd->scntrs + entry->offset;
12426 
12427 	if (vl != CNTR_INVALID_VL)
12428 		sval += vl;
12429 
12430 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12431 }
12432 
12433 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12434 {
12435 	struct cntr_entry *entry;
12436 	u64 *sval;
12437 
12438 	entry = &dev_cntrs[index];
12439 	sval = dd->scntrs + entry->offset;
12440 
12441 	if (vl != CNTR_INVALID_VL)
12442 		sval += vl;
12443 
12444 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12445 }
12446 
12447 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12448 {
12449 	struct cntr_entry *entry;
12450 	u64 *sval;
12451 
12452 	entry = &port_cntrs[index];
12453 	sval = ppd->scntrs + entry->offset;
12454 
12455 	if (vl != CNTR_INVALID_VL)
12456 		sval += vl;
12457 
12458 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12459 	    (index <= C_RCV_HDR_OVF_LAST)) {
12460 		/* We do not want to bother for disabled contexts */
12461 		return 0;
12462 	}
12463 
12464 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12465 }
12466 
12467 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12468 {
12469 	struct cntr_entry *entry;
12470 	u64 *sval;
12471 
12472 	entry = &port_cntrs[index];
12473 	sval = ppd->scntrs + entry->offset;
12474 
12475 	if (vl != CNTR_INVALID_VL)
12476 		sval += vl;
12477 
12478 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12479 	    (index <= C_RCV_HDR_OVF_LAST)) {
12480 		/* We do not want to bother for disabled contexts */
12481 		return 0;
12482 	}
12483 
12484 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12485 }
12486 
12487 static void do_update_synth_timer(struct work_struct *work)
12488 {
12489 	u64 cur_tx;
12490 	u64 cur_rx;
12491 	u64 total_flits;
12492 	u8 update = 0;
12493 	int i, j, vl;
12494 	struct hfi1_pportdata *ppd;
12495 	struct cntr_entry *entry;
12496 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12497 					       update_cntr_work);
12498 
12499 	/*
12500 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12501 	 * check to watch for potential roll over. We can do this by looking at
12502 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12503 	 * we have to iterate all the counters and update.
12504 	 */
12505 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12506 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12507 
12508 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12509 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12510 
12511 	hfi1_cdbg(
12512 	    CNTR,
12513 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12514 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12515 
12516 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12517 		/*
12518 		 * May not be strictly necessary to update but it won't hurt and
12519 		 * simplifies the logic here.
12520 		 */
12521 		update = 1;
12522 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12523 			  dd->unit);
12524 	} else {
12525 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12526 		hfi1_cdbg(CNTR,
12527 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12528 			  total_flits, (u64)CNTR_32BIT_MAX);
12529 		if (total_flits >= CNTR_32BIT_MAX) {
12530 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12531 				  dd->unit);
12532 			update = 1;
12533 		}
12534 	}
12535 
12536 	if (update) {
12537 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12538 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12539 			entry = &dev_cntrs[i];
12540 			if (entry->flags & CNTR_VL) {
12541 				for (vl = 0; vl < C_VL_COUNT; vl++)
12542 					read_dev_cntr(dd, i, vl);
12543 			} else {
12544 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12545 			}
12546 		}
12547 		ppd = (struct hfi1_pportdata *)(dd + 1);
12548 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12549 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12550 				entry = &port_cntrs[j];
12551 				if (entry->flags & CNTR_VL) {
12552 					for (vl = 0; vl < C_VL_COUNT; vl++)
12553 						read_port_cntr(ppd, j, vl);
12554 				} else {
12555 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12556 				}
12557 			}
12558 		}
12559 
12560 		/*
12561 		 * We want the value in the register. The goal is to keep track
12562 		 * of the number of "ticks" not the counter value. In other
12563 		 * words if the register rolls we want to notice it and go ahead
12564 		 * and force an update.
12565 		 */
12566 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12567 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12568 						CNTR_MODE_R, 0);
12569 
12570 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12571 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12572 						CNTR_MODE_R, 0);
12573 
12574 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12575 			  dd->unit, dd->last_tx, dd->last_rx);
12576 
12577 	} else {
12578 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12579 	}
12580 }
12581 
12582 static void update_synth_timer(struct timer_list *t)
12583 {
12584 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12585 
12586 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12587 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12588 }
12589 
12590 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12591 static int init_cntrs(struct hfi1_devdata *dd)
12592 {
12593 	int i, rcv_ctxts, j;
12594 	size_t sz;
12595 	char *p;
12596 	char name[C_MAX_NAME];
12597 	struct hfi1_pportdata *ppd;
12598 	const char *bit_type_32 = ",32";
12599 	const int bit_type_32_sz = strlen(bit_type_32);
12600 	u32 sdma_engines = chip_sdma_engines(dd);
12601 
12602 	/* set up the stats timer; the add_timer is done at the end */
12603 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12604 
12605 	/***********************/
12606 	/* per device counters */
12607 	/***********************/
12608 
12609 	/* size names and determine how many we have*/
12610 	dd->ndevcntrs = 0;
12611 	sz = 0;
12612 
12613 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12614 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12615 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12616 			continue;
12617 		}
12618 
12619 		if (dev_cntrs[i].flags & CNTR_VL) {
12620 			dev_cntrs[i].offset = dd->ndevcntrs;
12621 			for (j = 0; j < C_VL_COUNT; j++) {
12622 				snprintf(name, C_MAX_NAME, "%s%d",
12623 					 dev_cntrs[i].name, vl_from_idx(j));
12624 				sz += strlen(name);
12625 				/* Add ",32" for 32-bit counters */
12626 				if (dev_cntrs[i].flags & CNTR_32BIT)
12627 					sz += bit_type_32_sz;
12628 				sz++;
12629 				dd->ndevcntrs++;
12630 			}
12631 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12632 			dev_cntrs[i].offset = dd->ndevcntrs;
12633 			for (j = 0; j < sdma_engines; j++) {
12634 				snprintf(name, C_MAX_NAME, "%s%d",
12635 					 dev_cntrs[i].name, j);
12636 				sz += strlen(name);
12637 				/* Add ",32" for 32-bit counters */
12638 				if (dev_cntrs[i].flags & CNTR_32BIT)
12639 					sz += bit_type_32_sz;
12640 				sz++;
12641 				dd->ndevcntrs++;
12642 			}
12643 		} else {
12644 			/* +1 for newline. */
12645 			sz += strlen(dev_cntrs[i].name) + 1;
12646 			/* Add ",32" for 32-bit counters */
12647 			if (dev_cntrs[i].flags & CNTR_32BIT)
12648 				sz += bit_type_32_sz;
12649 			dev_cntrs[i].offset = dd->ndevcntrs;
12650 			dd->ndevcntrs++;
12651 		}
12652 	}
12653 
12654 	/* allocate space for the counter values */
12655 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12656 			    GFP_KERNEL);
12657 	if (!dd->cntrs)
12658 		goto bail;
12659 
12660 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12661 	if (!dd->scntrs)
12662 		goto bail;
12663 
12664 	/* allocate space for the counter names */
12665 	dd->cntrnameslen = sz;
12666 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12667 	if (!dd->cntrnames)
12668 		goto bail;
12669 
12670 	/* fill in the names */
12671 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12672 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12673 			/* Nothing */
12674 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12675 			for (j = 0; j < C_VL_COUNT; j++) {
12676 				snprintf(name, C_MAX_NAME, "%s%d",
12677 					 dev_cntrs[i].name,
12678 					 vl_from_idx(j));
12679 				memcpy(p, name, strlen(name));
12680 				p += strlen(name);
12681 
12682 				/* Counter is 32 bits */
12683 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12684 					memcpy(p, bit_type_32, bit_type_32_sz);
12685 					p += bit_type_32_sz;
12686 				}
12687 
12688 				*p++ = '\n';
12689 			}
12690 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12691 			for (j = 0; j < sdma_engines; j++) {
12692 				snprintf(name, C_MAX_NAME, "%s%d",
12693 					 dev_cntrs[i].name, j);
12694 				memcpy(p, name, strlen(name));
12695 				p += strlen(name);
12696 
12697 				/* Counter is 32 bits */
12698 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12699 					memcpy(p, bit_type_32, bit_type_32_sz);
12700 					p += bit_type_32_sz;
12701 				}
12702 
12703 				*p++ = '\n';
12704 			}
12705 		} else {
12706 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12707 			p += strlen(dev_cntrs[i].name);
12708 
12709 			/* Counter is 32 bits */
12710 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12711 				memcpy(p, bit_type_32, bit_type_32_sz);
12712 				p += bit_type_32_sz;
12713 			}
12714 
12715 			*p++ = '\n';
12716 		}
12717 	}
12718 
12719 	/*********************/
12720 	/* per port counters */
12721 	/*********************/
12722 
12723 	/*
12724 	 * Go through the counters for the overflows and disable the ones we
12725 	 * don't need. This varies based on platform so we need to do it
12726 	 * dynamically here.
12727 	 */
12728 	rcv_ctxts = dd->num_rcv_contexts;
12729 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12730 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12731 		port_cntrs[i].flags |= CNTR_DISABLED;
12732 	}
12733 
12734 	/* size port counter names and determine how many we have*/
12735 	sz = 0;
12736 	dd->nportcntrs = 0;
12737 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12738 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12739 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12740 			continue;
12741 		}
12742 
12743 		if (port_cntrs[i].flags & CNTR_VL) {
12744 			port_cntrs[i].offset = dd->nportcntrs;
12745 			for (j = 0; j < C_VL_COUNT; j++) {
12746 				snprintf(name, C_MAX_NAME, "%s%d",
12747 					 port_cntrs[i].name, vl_from_idx(j));
12748 				sz += strlen(name);
12749 				/* Add ",32" for 32-bit counters */
12750 				if (port_cntrs[i].flags & CNTR_32BIT)
12751 					sz += bit_type_32_sz;
12752 				sz++;
12753 				dd->nportcntrs++;
12754 			}
12755 		} else {
12756 			/* +1 for newline */
12757 			sz += strlen(port_cntrs[i].name) + 1;
12758 			/* Add ",32" for 32-bit counters */
12759 			if (port_cntrs[i].flags & CNTR_32BIT)
12760 				sz += bit_type_32_sz;
12761 			port_cntrs[i].offset = dd->nportcntrs;
12762 			dd->nportcntrs++;
12763 		}
12764 	}
12765 
12766 	/* allocate space for the counter names */
12767 	dd->portcntrnameslen = sz;
12768 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12769 	if (!dd->portcntrnames)
12770 		goto bail;
12771 
12772 	/* fill in port cntr names */
12773 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12774 		if (port_cntrs[i].flags & CNTR_DISABLED)
12775 			continue;
12776 
12777 		if (port_cntrs[i].flags & CNTR_VL) {
12778 			for (j = 0; j < C_VL_COUNT; j++) {
12779 				snprintf(name, C_MAX_NAME, "%s%d",
12780 					 port_cntrs[i].name, vl_from_idx(j));
12781 				memcpy(p, name, strlen(name));
12782 				p += strlen(name);
12783 
12784 				/* Counter is 32 bits */
12785 				if (port_cntrs[i].flags & CNTR_32BIT) {
12786 					memcpy(p, bit_type_32, bit_type_32_sz);
12787 					p += bit_type_32_sz;
12788 				}
12789 
12790 				*p++ = '\n';
12791 			}
12792 		} else {
12793 			memcpy(p, port_cntrs[i].name,
12794 			       strlen(port_cntrs[i].name));
12795 			p += strlen(port_cntrs[i].name);
12796 
12797 			/* Counter is 32 bits */
12798 			if (port_cntrs[i].flags & CNTR_32BIT) {
12799 				memcpy(p, bit_type_32, bit_type_32_sz);
12800 				p += bit_type_32_sz;
12801 			}
12802 
12803 			*p++ = '\n';
12804 		}
12805 	}
12806 
12807 	/* allocate per port storage for counter values */
12808 	ppd = (struct hfi1_pportdata *)(dd + 1);
12809 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12810 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12811 		if (!ppd->cntrs)
12812 			goto bail;
12813 
12814 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12815 		if (!ppd->scntrs)
12816 			goto bail;
12817 	}
12818 
12819 	/* CPU counters need to be allocated and zeroed */
12820 	if (init_cpu_counters(dd))
12821 		goto bail;
12822 
12823 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12824 						     WQ_MEM_RECLAIM, dd->unit);
12825 	if (!dd->update_cntr_wq)
12826 		goto bail;
12827 
12828 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12829 
12830 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12831 	return 0;
12832 bail:
12833 	free_cntrs(dd);
12834 	return -ENOMEM;
12835 }
12836 
12837 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12838 {
12839 	switch (chip_lstate) {
12840 	case LSTATE_DOWN:
12841 		return IB_PORT_DOWN;
12842 	case LSTATE_INIT:
12843 		return IB_PORT_INIT;
12844 	case LSTATE_ARMED:
12845 		return IB_PORT_ARMED;
12846 	case LSTATE_ACTIVE:
12847 		return IB_PORT_ACTIVE;
12848 	default:
12849 		dd_dev_err(dd,
12850 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12851 			   chip_lstate);
12852 		return IB_PORT_DOWN;
12853 	}
12854 }
12855 
12856 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12857 {
12858 	/* look at the HFI meta-states only */
12859 	switch (chip_pstate & 0xf0) {
12860 	case PLS_DISABLED:
12861 		return IB_PORTPHYSSTATE_DISABLED;
12862 	case PLS_OFFLINE:
12863 		return OPA_PORTPHYSSTATE_OFFLINE;
12864 	case PLS_POLLING:
12865 		return IB_PORTPHYSSTATE_POLLING;
12866 	case PLS_CONFIGPHY:
12867 		return IB_PORTPHYSSTATE_TRAINING;
12868 	case PLS_LINKUP:
12869 		return IB_PORTPHYSSTATE_LINKUP;
12870 	case PLS_PHYTEST:
12871 		return IB_PORTPHYSSTATE_PHY_TEST;
12872 	default:
12873 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12874 			   chip_pstate);
12875 		return IB_PORTPHYSSTATE_DISABLED;
12876 	}
12877 }
12878 
12879 /* return the OPA port logical state name */
12880 const char *opa_lstate_name(u32 lstate)
12881 {
12882 	static const char * const port_logical_names[] = {
12883 		"PORT_NOP",
12884 		"PORT_DOWN",
12885 		"PORT_INIT",
12886 		"PORT_ARMED",
12887 		"PORT_ACTIVE",
12888 		"PORT_ACTIVE_DEFER",
12889 	};
12890 	if (lstate < ARRAY_SIZE(port_logical_names))
12891 		return port_logical_names[lstate];
12892 	return "unknown";
12893 }
12894 
12895 /* return the OPA port physical state name */
12896 const char *opa_pstate_name(u32 pstate)
12897 {
12898 	static const char * const port_physical_names[] = {
12899 		"PHYS_NOP",
12900 		"reserved1",
12901 		"PHYS_POLL",
12902 		"PHYS_DISABLED",
12903 		"PHYS_TRAINING",
12904 		"PHYS_LINKUP",
12905 		"PHYS_LINK_ERR_RECOVER",
12906 		"PHYS_PHY_TEST",
12907 		"reserved8",
12908 		"PHYS_OFFLINE",
12909 		"PHYS_GANGED",
12910 		"PHYS_TEST",
12911 	};
12912 	if (pstate < ARRAY_SIZE(port_physical_names))
12913 		return port_physical_names[pstate];
12914 	return "unknown";
12915 }
12916 
12917 /**
12918  * update_statusp - Update userspace status flag
12919  * @ppd: Port data structure
12920  * @state: port state information
12921  *
12922  * Actual port status is determined by the host_link_state value
12923  * in the ppd.
12924  *
12925  * host_link_state MUST be updated before updating the user space
12926  * statusp.
12927  */
12928 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12929 {
12930 	/*
12931 	 * Set port status flags in the page mapped into userspace
12932 	 * memory. Do it here to ensure a reliable state - this is
12933 	 * the only function called by all state handling code.
12934 	 * Always set the flags due to the fact that the cache value
12935 	 * might have been changed explicitly outside of this
12936 	 * function.
12937 	 */
12938 	if (ppd->statusp) {
12939 		switch (state) {
12940 		case IB_PORT_DOWN:
12941 		case IB_PORT_INIT:
12942 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12943 					   HFI1_STATUS_IB_READY);
12944 			break;
12945 		case IB_PORT_ARMED:
12946 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12947 			break;
12948 		case IB_PORT_ACTIVE:
12949 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12950 			break;
12951 		}
12952 	}
12953 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12954 		    opa_lstate_name(state), state);
12955 }
12956 
12957 /**
12958  * wait_logical_linkstate - wait for an IB link state change to occur
12959  * @ppd: port device
12960  * @state: the state to wait for
12961  * @msecs: the number of milliseconds to wait
12962  *
12963  * Wait up to msecs milliseconds for IB link state change to occur.
12964  * For now, take the easy polling route.
12965  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12966  */
12967 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12968 				  int msecs)
12969 {
12970 	unsigned long timeout;
12971 	u32 new_state;
12972 
12973 	timeout = jiffies + msecs_to_jiffies(msecs);
12974 	while (1) {
12975 		new_state = chip_to_opa_lstate(ppd->dd,
12976 					       read_logical_state(ppd->dd));
12977 		if (new_state == state)
12978 			break;
12979 		if (time_after(jiffies, timeout)) {
12980 			dd_dev_err(ppd->dd,
12981 				   "timeout waiting for link state 0x%x\n",
12982 				   state);
12983 			return -ETIMEDOUT;
12984 		}
12985 		msleep(20);
12986 	}
12987 
12988 	return 0;
12989 }
12990 
12991 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12992 {
12993 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12994 
12995 	dd_dev_info(ppd->dd,
12996 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12997 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12998 }
12999 
13000 /*
13001  * Read the physical hardware link state and check if it matches host
13002  * drivers anticipated state.
13003  */
13004 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13005 {
13006 	u32 read_state = read_physical_state(ppd->dd);
13007 
13008 	if (read_state == state) {
13009 		log_state_transition(ppd, state);
13010 	} else {
13011 		dd_dev_err(ppd->dd,
13012 			   "anticipated phy link state 0x%x, read 0x%x\n",
13013 			   state, read_state);
13014 	}
13015 }
13016 
13017 /*
13018  * wait_physical_linkstate - wait for an physical link state change to occur
13019  * @ppd: port device
13020  * @state: the state to wait for
13021  * @msecs: the number of milliseconds to wait
13022  *
13023  * Wait up to msecs milliseconds for physical link state change to occur.
13024  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13025  */
13026 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13027 				   int msecs)
13028 {
13029 	u32 read_state;
13030 	unsigned long timeout;
13031 
13032 	timeout = jiffies + msecs_to_jiffies(msecs);
13033 	while (1) {
13034 		read_state = read_physical_state(ppd->dd);
13035 		if (read_state == state)
13036 			break;
13037 		if (time_after(jiffies, timeout)) {
13038 			dd_dev_err(ppd->dd,
13039 				   "timeout waiting for phy link state 0x%x\n",
13040 				   state);
13041 			return -ETIMEDOUT;
13042 		}
13043 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13044 	}
13045 
13046 	log_state_transition(ppd, state);
13047 	return 0;
13048 }
13049 
13050 /*
13051  * wait_phys_link_offline_quiet_substates - wait for any offline substate
13052  * @ppd: port device
13053  * @msecs: the number of milliseconds to wait
13054  *
13055  * Wait up to msecs milliseconds for any offline physical link
13056  * state change to occur.
13057  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13058  */
13059 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13060 					    int msecs)
13061 {
13062 	u32 read_state;
13063 	unsigned long timeout;
13064 
13065 	timeout = jiffies + msecs_to_jiffies(msecs);
13066 	while (1) {
13067 		read_state = read_physical_state(ppd->dd);
13068 		if ((read_state & 0xF0) == PLS_OFFLINE)
13069 			break;
13070 		if (time_after(jiffies, timeout)) {
13071 			dd_dev_err(ppd->dd,
13072 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13073 				   read_state, msecs);
13074 			return -ETIMEDOUT;
13075 		}
13076 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13077 	}
13078 
13079 	log_state_transition(ppd, read_state);
13080 	return read_state;
13081 }
13082 
13083 /*
13084  * wait_phys_link_out_of_offline - wait for any out of offline state
13085  * @ppd: port device
13086  * @msecs: the number of milliseconds to wait
13087  *
13088  * Wait up to msecs milliseconds for any out of offline physical link
13089  * state change to occur.
13090  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13091  */
13092 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13093 					 int msecs)
13094 {
13095 	u32 read_state;
13096 	unsigned long timeout;
13097 
13098 	timeout = jiffies + msecs_to_jiffies(msecs);
13099 	while (1) {
13100 		read_state = read_physical_state(ppd->dd);
13101 		if ((read_state & 0xF0) != PLS_OFFLINE)
13102 			break;
13103 		if (time_after(jiffies, timeout)) {
13104 			dd_dev_err(ppd->dd,
13105 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13106 				   read_state, msecs);
13107 			return -ETIMEDOUT;
13108 		}
13109 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13110 	}
13111 
13112 	log_state_transition(ppd, read_state);
13113 	return read_state;
13114 }
13115 
13116 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13117 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13118 
13119 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
13120 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13121 
13122 void hfi1_init_ctxt(struct send_context *sc)
13123 {
13124 	if (sc) {
13125 		struct hfi1_devdata *dd = sc->dd;
13126 		u64 reg;
13127 		u8 set = (sc->type == SC_USER ?
13128 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13129 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13130 		reg = read_kctxt_csr(dd, sc->hw_context,
13131 				     SEND_CTXT_CHECK_ENABLE);
13132 		if (set)
13133 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13134 		else
13135 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13136 		write_kctxt_csr(dd, sc->hw_context,
13137 				SEND_CTXT_CHECK_ENABLE, reg);
13138 	}
13139 }
13140 
13141 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13142 {
13143 	int ret = 0;
13144 	u64 reg;
13145 
13146 	if (dd->icode != ICODE_RTL_SILICON) {
13147 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13148 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13149 				    __func__);
13150 		return -EINVAL;
13151 	}
13152 	reg = read_csr(dd, ASIC_STS_THERM);
13153 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13154 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13155 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13156 			ASIC_STS_THERM_LO_TEMP_MASK);
13157 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13158 			ASIC_STS_THERM_HI_TEMP_MASK);
13159 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13160 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13161 	/* triggers is a 3-bit value - 1 bit per trigger. */
13162 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13163 
13164 	return ret;
13165 }
13166 
13167 /* ========================================================================= */
13168 
13169 /**
13170  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13171  * @dd: valid devdata
13172  * @src: IRQ source to determine register index from
13173  * @bits: the bits to set or clear
13174  * @set: true == set the bits, false == clear the bits
13175  *
13176  */
13177 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13178 			   bool set)
13179 {
13180 	u64 reg;
13181 	u16 idx = src / BITS_PER_REGISTER;
13182 
13183 	spin_lock(&dd->irq_src_lock);
13184 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13185 	if (set)
13186 		reg |= bits;
13187 	else
13188 		reg &= ~bits;
13189 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13190 	spin_unlock(&dd->irq_src_lock);
13191 }
13192 
13193 /**
13194  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13195  * @dd: valid devdata
13196  * @first: first IRQ source to set/clear
13197  * @last: last IRQ source (inclusive) to set/clear
13198  * @set: true == set the bits, false == clear the bits
13199  *
13200  * If first == last, set the exact source.
13201  */
13202 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13203 {
13204 	u64 bits = 0;
13205 	u64 bit;
13206 	u16 src;
13207 
13208 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13209 		return -EINVAL;
13210 
13211 	if (last < first)
13212 		return -ERANGE;
13213 
13214 	for (src = first; src <= last; src++) {
13215 		bit = src % BITS_PER_REGISTER;
13216 		/* wrapped to next register? */
13217 		if (!bit && bits) {
13218 			read_mod_write(dd, src - 1, bits, set);
13219 			bits = 0;
13220 		}
13221 		bits |= BIT_ULL(bit);
13222 	}
13223 	read_mod_write(dd, last, bits, set);
13224 
13225 	return 0;
13226 }
13227 
13228 /*
13229  * Clear all interrupt sources on the chip.
13230  */
13231 void clear_all_interrupts(struct hfi1_devdata *dd)
13232 {
13233 	int i;
13234 
13235 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13236 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13237 
13238 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13239 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13240 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13241 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13242 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13243 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13244 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13245 	for (i = 0; i < chip_send_contexts(dd); i++)
13246 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13247 	for (i = 0; i < chip_sdma_engines(dd); i++)
13248 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13249 
13250 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13251 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13252 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13253 }
13254 
13255 /*
13256  * Remap the interrupt source from the general handler to the given MSI-X
13257  * interrupt.
13258  */
13259 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13260 {
13261 	u64 reg;
13262 	int m, n;
13263 
13264 	/* clear from the handled mask of the general interrupt */
13265 	m = isrc / 64;
13266 	n = isrc % 64;
13267 	if (likely(m < CCE_NUM_INT_CSRS)) {
13268 		dd->gi_mask[m] &= ~((u64)1 << n);
13269 	} else {
13270 		dd_dev_err(dd, "remap interrupt err\n");
13271 		return;
13272 	}
13273 
13274 	/* direct the chip source to the given MSI-X interrupt */
13275 	m = isrc / 8;
13276 	n = isrc % 8;
13277 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13278 	reg &= ~((u64)0xff << (8 * n));
13279 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13280 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13281 }
13282 
13283 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13284 {
13285 	/*
13286 	 * SDMA engine interrupt sources grouped by type, rather than
13287 	 * engine.  Per-engine interrupts are as follows:
13288 	 *	SDMA
13289 	 *	SDMAProgress
13290 	 *	SDMAIdle
13291 	 */
13292 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13293 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13294 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13295 }
13296 
13297 /*
13298  * Set the general handler to accept all interrupts, remap all
13299  * chip interrupts back to MSI-X 0.
13300  */
13301 void reset_interrupts(struct hfi1_devdata *dd)
13302 {
13303 	int i;
13304 
13305 	/* all interrupts handled by the general handler */
13306 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13307 		dd->gi_mask[i] = ~(u64)0;
13308 
13309 	/* all chip interrupts map to MSI-X 0 */
13310 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13311 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13312 }
13313 
13314 /**
13315  * set_up_interrupts() - Initialize the IRQ resources and state
13316  * @dd: valid devdata
13317  *
13318  */
13319 static int set_up_interrupts(struct hfi1_devdata *dd)
13320 {
13321 	int ret;
13322 
13323 	/* mask all interrupts */
13324 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13325 
13326 	/* clear all pending interrupts */
13327 	clear_all_interrupts(dd);
13328 
13329 	/* reset general handler mask, chip MSI-X mappings */
13330 	reset_interrupts(dd);
13331 
13332 	/* ask for MSI-X interrupts */
13333 	ret = msix_initialize(dd);
13334 	if (ret)
13335 		return ret;
13336 
13337 	ret = msix_request_irqs(dd);
13338 	if (ret)
13339 		msix_clean_up_interrupts(dd);
13340 
13341 	return ret;
13342 }
13343 
13344 /*
13345  * Set up context values in dd.  Sets:
13346  *
13347  *	num_rcv_contexts - number of contexts being used
13348  *	n_krcv_queues - number of kernel contexts
13349  *	first_dyn_alloc_ctxt - first dynamically allocated context
13350  *                             in array of contexts
13351  *	freectxts  - number of free user contexts
13352  *	num_send_contexts - number of PIO send contexts being used
13353  *	num_netdev_contexts - number of contexts reserved for netdev
13354  */
13355 static int set_up_context_variables(struct hfi1_devdata *dd)
13356 {
13357 	unsigned long num_kernel_contexts;
13358 	u16 num_netdev_contexts;
13359 	int ret;
13360 	unsigned ngroups;
13361 	int rmt_count;
13362 	int user_rmt_reduced;
13363 	u32 n_usr_ctxts;
13364 	u32 send_contexts = chip_send_contexts(dd);
13365 	u32 rcv_contexts = chip_rcv_contexts(dd);
13366 
13367 	/*
13368 	 * Kernel receive contexts:
13369 	 * - Context 0 - control context (VL15/multicast/error)
13370 	 * - Context 1 - first kernel context
13371 	 * - Context 2 - second kernel context
13372 	 * ...
13373 	 */
13374 	if (n_krcvqs)
13375 		/*
13376 		 * n_krcvqs is the sum of module parameter kernel receive
13377 		 * contexts, krcvqs[].  It does not include the control
13378 		 * context, so add that.
13379 		 */
13380 		num_kernel_contexts = n_krcvqs + 1;
13381 	else
13382 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13383 	/*
13384 	 * Every kernel receive context needs an ACK send context.
13385 	 * one send context is allocated for each VL{0-7} and VL15
13386 	 */
13387 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13388 		dd_dev_err(dd,
13389 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13390 			   send_contexts - num_vls - 1,
13391 			   num_kernel_contexts);
13392 		num_kernel_contexts = send_contexts - num_vls - 1;
13393 	}
13394 
13395 	/*
13396 	 * User contexts:
13397 	 *	- default to 1 user context per real (non-HT) CPU core if
13398 	 *	  num_user_contexts is negative
13399 	 */
13400 	if (num_user_contexts < 0)
13401 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13402 	else
13403 		n_usr_ctxts = num_user_contexts;
13404 	/*
13405 	 * Adjust the counts given a global max.
13406 	 */
13407 	if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13408 		dd_dev_err(dd,
13409 			   "Reducing # user receive contexts to: %u, from %u\n",
13410 			   (u32)(rcv_contexts - num_kernel_contexts),
13411 			   n_usr_ctxts);
13412 		/* recalculate */
13413 		n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13414 	}
13415 
13416 	num_netdev_contexts =
13417 		hfi1_num_netdev_contexts(dd, rcv_contexts -
13418 					 (num_kernel_contexts + n_usr_ctxts),
13419 					 &node_affinity.real_cpu_mask);
13420 	/*
13421 	 * The RMT entries are currently allocated as shown below:
13422 	 * 1. QOS (0 to 128 entries);
13423 	 * 2. FECN (num_kernel_context - 1 + num_user_contexts +
13424 	 *    num_netdev_contexts);
13425 	 * 3. netdev (num_netdev_contexts).
13426 	 * It should be noted that FECN oversubscribe num_netdev_contexts
13427 	 * entries of RMT because both netdev and PSM could allocate any receive
13428 	 * context between dd->first_dyn_alloc_text and dd->num_rcv_contexts,
13429 	 * and PSM FECN must reserve an RMT entry for each possible PSM receive
13430 	 * context.
13431 	 */
13432 	rmt_count = qos_rmt_entries(dd, NULL, NULL) + (num_netdev_contexts * 2);
13433 	if (HFI1_CAP_IS_KSET(TID_RDMA))
13434 		rmt_count += num_kernel_contexts - 1;
13435 	if (rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13436 		user_rmt_reduced = NUM_MAP_ENTRIES - rmt_count;
13437 		dd_dev_err(dd,
13438 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13439 			   n_usr_ctxts,
13440 			   user_rmt_reduced);
13441 		/* recalculate */
13442 		n_usr_ctxts = user_rmt_reduced;
13443 	}
13444 
13445 	/* the first N are kernel contexts, the rest are user/netdev contexts */
13446 	dd->num_rcv_contexts =
13447 		num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13448 	dd->n_krcv_queues = num_kernel_contexts;
13449 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13450 	dd->num_netdev_contexts = num_netdev_contexts;
13451 	dd->num_user_contexts = n_usr_ctxts;
13452 	dd->freectxts = n_usr_ctxts;
13453 	dd_dev_info(dd,
13454 		    "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13455 		    rcv_contexts,
13456 		    (int)dd->num_rcv_contexts,
13457 		    (int)dd->n_krcv_queues,
13458 		    dd->num_netdev_contexts,
13459 		    dd->num_user_contexts);
13460 
13461 	/*
13462 	 * Receive array allocation:
13463 	 *   All RcvArray entries are divided into groups of 8. This
13464 	 *   is required by the hardware and will speed up writes to
13465 	 *   consecutive entries by using write-combining of the entire
13466 	 *   cacheline.
13467 	 *
13468 	 *   The number of groups are evenly divided among all contexts.
13469 	 *   any left over groups will be given to the first N user
13470 	 *   contexts.
13471 	 */
13472 	dd->rcv_entries.group_size = RCV_INCREMENT;
13473 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13474 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13475 	dd->rcv_entries.nctxt_extra = ngroups -
13476 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13477 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13478 		    dd->rcv_entries.ngroups,
13479 		    dd->rcv_entries.nctxt_extra);
13480 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13481 	    MAX_EAGER_ENTRIES * 2) {
13482 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13483 			dd->rcv_entries.group_size;
13484 		dd_dev_info(dd,
13485 			    "RcvArray group count too high, change to %u\n",
13486 			    dd->rcv_entries.ngroups);
13487 		dd->rcv_entries.nctxt_extra = 0;
13488 	}
13489 	/*
13490 	 * PIO send contexts
13491 	 */
13492 	ret = init_sc_pools_and_sizes(dd);
13493 	if (ret >= 0) {	/* success */
13494 		dd->num_send_contexts = ret;
13495 		dd_dev_info(
13496 			dd,
13497 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13498 			send_contexts,
13499 			dd->num_send_contexts,
13500 			dd->sc_sizes[SC_KERNEL].count,
13501 			dd->sc_sizes[SC_ACK].count,
13502 			dd->sc_sizes[SC_USER].count,
13503 			dd->sc_sizes[SC_VL15].count);
13504 		ret = 0;	/* success */
13505 	}
13506 
13507 	return ret;
13508 }
13509 
13510 /*
13511  * Set the device/port partition key table. The MAD code
13512  * will ensure that, at least, the partial management
13513  * partition key is present in the table.
13514  */
13515 static void set_partition_keys(struct hfi1_pportdata *ppd)
13516 {
13517 	struct hfi1_devdata *dd = ppd->dd;
13518 	u64 reg = 0;
13519 	int i;
13520 
13521 	dd_dev_info(dd, "Setting partition keys\n");
13522 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13523 		reg |= (ppd->pkeys[i] &
13524 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13525 			((i % 4) *
13526 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13527 		/* Each register holds 4 PKey values. */
13528 		if ((i % 4) == 3) {
13529 			write_csr(dd, RCV_PARTITION_KEY +
13530 				  ((i - 3) * 2), reg);
13531 			reg = 0;
13532 		}
13533 	}
13534 
13535 	/* Always enable HW pkeys check when pkeys table is set */
13536 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13537 }
13538 
13539 /*
13540  * These CSRs and memories are uninitialized on reset and must be
13541  * written before reading to set the ECC/parity bits.
13542  *
13543  * NOTE: All user context CSRs that are not mmaped write-only
13544  * (e.g. the TID flows) must be initialized even if the driver never
13545  * reads them.
13546  */
13547 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13548 {
13549 	int i, j;
13550 
13551 	/* CceIntMap */
13552 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13553 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13554 
13555 	/* SendCtxtCreditReturnAddr */
13556 	for (i = 0; i < chip_send_contexts(dd); i++)
13557 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13558 
13559 	/* PIO Send buffers */
13560 	/* SDMA Send buffers */
13561 	/*
13562 	 * These are not normally read, and (presently) have no method
13563 	 * to be read, so are not pre-initialized
13564 	 */
13565 
13566 	/* RcvHdrAddr */
13567 	/* RcvHdrTailAddr */
13568 	/* RcvTidFlowTable */
13569 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13570 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13571 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13572 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13573 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13574 	}
13575 
13576 	/* RcvArray */
13577 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13578 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13579 
13580 	/* RcvQPMapTable */
13581 	for (i = 0; i < 32; i++)
13582 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13583 }
13584 
13585 /*
13586  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13587  */
13588 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13589 			     u64 ctrl_bits)
13590 {
13591 	unsigned long timeout;
13592 	u64 reg;
13593 
13594 	/* is the condition present? */
13595 	reg = read_csr(dd, CCE_STATUS);
13596 	if ((reg & status_bits) == 0)
13597 		return;
13598 
13599 	/* clear the condition */
13600 	write_csr(dd, CCE_CTRL, ctrl_bits);
13601 
13602 	/* wait for the condition to clear */
13603 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13604 	while (1) {
13605 		reg = read_csr(dd, CCE_STATUS);
13606 		if ((reg & status_bits) == 0)
13607 			return;
13608 		if (time_after(jiffies, timeout)) {
13609 			dd_dev_err(dd,
13610 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13611 				   status_bits, reg & status_bits);
13612 			return;
13613 		}
13614 		udelay(1);
13615 	}
13616 }
13617 
13618 /* set CCE CSRs to chip reset defaults */
13619 static void reset_cce_csrs(struct hfi1_devdata *dd)
13620 {
13621 	int i;
13622 
13623 	/* CCE_REVISION read-only */
13624 	/* CCE_REVISION2 read-only */
13625 	/* CCE_CTRL - bits clear automatically */
13626 	/* CCE_STATUS read-only, use CceCtrl to clear */
13627 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13628 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13629 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13630 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13631 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13632 	/* CCE_ERR_STATUS read-only */
13633 	write_csr(dd, CCE_ERR_MASK, 0);
13634 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13635 	/* CCE_ERR_FORCE leave alone */
13636 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13637 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13638 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13639 	/* CCE_PCIE_CTRL leave alone */
13640 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13641 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13642 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13643 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13644 	}
13645 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13646 		/* CCE_MSIX_PBA read-only */
13647 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13648 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13649 	}
13650 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13651 		write_csr(dd, CCE_INT_MAP, 0);
13652 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13653 		/* CCE_INT_STATUS read-only */
13654 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13655 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13656 		/* CCE_INT_FORCE leave alone */
13657 		/* CCE_INT_BLOCKED read-only */
13658 	}
13659 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13660 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13661 }
13662 
13663 /* set MISC CSRs to chip reset defaults */
13664 static void reset_misc_csrs(struct hfi1_devdata *dd)
13665 {
13666 	int i;
13667 
13668 	for (i = 0; i < 32; i++) {
13669 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13670 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13671 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13672 	}
13673 	/*
13674 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13675 	 * only be written 128-byte chunks
13676 	 */
13677 	/* init RSA engine to clear lingering errors */
13678 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13679 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13680 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13681 	/* MISC_STS_8051_DIGEST read-only */
13682 	/* MISC_STS_SBM_DIGEST read-only */
13683 	/* MISC_STS_PCIE_DIGEST read-only */
13684 	/* MISC_STS_FAB_DIGEST read-only */
13685 	/* MISC_ERR_STATUS read-only */
13686 	write_csr(dd, MISC_ERR_MASK, 0);
13687 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13688 	/* MISC_ERR_FORCE leave alone */
13689 }
13690 
13691 /* set TXE CSRs to chip reset defaults */
13692 static void reset_txe_csrs(struct hfi1_devdata *dd)
13693 {
13694 	int i;
13695 
13696 	/*
13697 	 * TXE Kernel CSRs
13698 	 */
13699 	write_csr(dd, SEND_CTRL, 0);
13700 	__cm_reset(dd, 0);	/* reset CM internal state */
13701 	/* SEND_CONTEXTS read-only */
13702 	/* SEND_DMA_ENGINES read-only */
13703 	/* SEND_PIO_MEM_SIZE read-only */
13704 	/* SEND_DMA_MEM_SIZE read-only */
13705 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13706 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13707 	/* SEND_PIO_ERR_STATUS read-only */
13708 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13709 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13710 	/* SEND_PIO_ERR_FORCE leave alone */
13711 	/* SEND_DMA_ERR_STATUS read-only */
13712 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13713 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13714 	/* SEND_DMA_ERR_FORCE leave alone */
13715 	/* SEND_EGRESS_ERR_STATUS read-only */
13716 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13717 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13718 	/* SEND_EGRESS_ERR_FORCE leave alone */
13719 	write_csr(dd, SEND_BTH_QP, 0);
13720 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13721 	write_csr(dd, SEND_SC2VLT0, 0);
13722 	write_csr(dd, SEND_SC2VLT1, 0);
13723 	write_csr(dd, SEND_SC2VLT2, 0);
13724 	write_csr(dd, SEND_SC2VLT3, 0);
13725 	write_csr(dd, SEND_LEN_CHECK0, 0);
13726 	write_csr(dd, SEND_LEN_CHECK1, 0);
13727 	/* SEND_ERR_STATUS read-only */
13728 	write_csr(dd, SEND_ERR_MASK, 0);
13729 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13730 	/* SEND_ERR_FORCE read-only */
13731 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13732 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13733 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13734 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13735 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13736 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13737 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13738 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13739 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13740 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13741 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13742 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13743 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13744 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13745 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13746 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13747 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13748 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13749 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13750 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13751 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13752 	/* SEND_CM_CREDIT_USED_VL read-only */
13753 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13754 	/* SEND_EGRESS_CTXT_STATUS read-only */
13755 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13756 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13757 	/* SEND_EGRESS_ERR_INFO read-only */
13758 	/* SEND_EGRESS_ERR_SOURCE read-only */
13759 
13760 	/*
13761 	 * TXE Per-Context CSRs
13762 	 */
13763 	for (i = 0; i < chip_send_contexts(dd); i++) {
13764 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13765 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13766 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13767 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13768 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13769 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13770 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13771 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13772 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13773 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13774 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13775 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13776 	}
13777 
13778 	/*
13779 	 * TXE Per-SDMA CSRs
13780 	 */
13781 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13782 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13783 		/* SEND_DMA_STATUS read-only */
13784 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13785 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13786 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13787 		/* SEND_DMA_HEAD read-only */
13788 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13789 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13790 		/* SEND_DMA_IDLE_CNT read-only */
13791 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13792 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13793 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13794 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13795 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13796 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13797 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13798 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13799 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13800 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13801 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13802 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13803 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13804 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13805 	}
13806 }
13807 
13808 /*
13809  * Expect on entry:
13810  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13811  */
13812 static void init_rbufs(struct hfi1_devdata *dd)
13813 {
13814 	u64 reg;
13815 	int count;
13816 
13817 	/*
13818 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13819 	 * clear.
13820 	 */
13821 	count = 0;
13822 	while (1) {
13823 		reg = read_csr(dd, RCV_STATUS);
13824 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13825 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13826 			break;
13827 		/*
13828 		 * Give up after 1ms - maximum wait time.
13829 		 *
13830 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13831 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13832 		 *	136 KB / (66% * 250MB/s) = 844us
13833 		 */
13834 		if (count++ > 500) {
13835 			dd_dev_err(dd,
13836 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13837 				   __func__, reg);
13838 			break;
13839 		}
13840 		udelay(2); /* do not busy-wait the CSR */
13841 	}
13842 
13843 	/* start the init - expect RcvCtrl to be 0 */
13844 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13845 
13846 	/*
13847 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13848 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13849 	 * The delay in the first run through the loop below is sufficient and
13850 	 * required before the first read of RcvStatus.RxRbufInintDone.
13851 	 */
13852 	read_csr(dd, RCV_CTRL);
13853 
13854 	/* wait for the init to finish */
13855 	count = 0;
13856 	while (1) {
13857 		/* delay is required first time through - see above */
13858 		udelay(2); /* do not busy-wait the CSR */
13859 		reg = read_csr(dd, RCV_STATUS);
13860 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13861 			break;
13862 
13863 		/* give up after 100us - slowest possible at 33MHz is 73us */
13864 		if (count++ > 50) {
13865 			dd_dev_err(dd,
13866 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13867 				   __func__);
13868 			break;
13869 		}
13870 	}
13871 }
13872 
13873 /* set RXE CSRs to chip reset defaults */
13874 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13875 {
13876 	int i, j;
13877 
13878 	/*
13879 	 * RXE Kernel CSRs
13880 	 */
13881 	write_csr(dd, RCV_CTRL, 0);
13882 	init_rbufs(dd);
13883 	/* RCV_STATUS read-only */
13884 	/* RCV_CONTEXTS read-only */
13885 	/* RCV_ARRAY_CNT read-only */
13886 	/* RCV_BUF_SIZE read-only */
13887 	write_csr(dd, RCV_BTH_QP, 0);
13888 	write_csr(dd, RCV_MULTICAST, 0);
13889 	write_csr(dd, RCV_BYPASS, 0);
13890 	write_csr(dd, RCV_VL15, 0);
13891 	/* this is a clear-down */
13892 	write_csr(dd, RCV_ERR_INFO,
13893 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13894 	/* RCV_ERR_STATUS read-only */
13895 	write_csr(dd, RCV_ERR_MASK, 0);
13896 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13897 	/* RCV_ERR_FORCE leave alone */
13898 	for (i = 0; i < 32; i++)
13899 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13900 	for (i = 0; i < 4; i++)
13901 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13902 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13903 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13904 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13905 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13906 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13907 		clear_rsm_rule(dd, i);
13908 	for (i = 0; i < 32; i++)
13909 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13910 
13911 	/*
13912 	 * RXE Kernel and User Per-Context CSRs
13913 	 */
13914 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13915 		/* kernel */
13916 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13917 		/* RCV_CTXT_STATUS read-only */
13918 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13919 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13920 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13921 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13922 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13923 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13924 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13925 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13926 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13927 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13928 
13929 		/* user */
13930 		/* RCV_HDR_TAIL read-only */
13931 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13932 		/* RCV_EGR_INDEX_TAIL read-only */
13933 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13934 		/* RCV_EGR_OFFSET_TAIL read-only */
13935 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13936 			write_uctxt_csr(dd, i,
13937 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13938 		}
13939 	}
13940 }
13941 
13942 /*
13943  * Set sc2vl tables.
13944  *
13945  * They power on to zeros, so to avoid send context errors
13946  * they need to be set:
13947  *
13948  * SC 0-7 -> VL 0-7 (respectively)
13949  * SC 15  -> VL 15
13950  * otherwise
13951  *        -> VL 0
13952  */
13953 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13954 {
13955 	int i;
13956 	/* init per architecture spec, constrained by hardware capability */
13957 
13958 	/* HFI maps sent packets */
13959 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13960 		0,
13961 		0, 0, 1, 1,
13962 		2, 2, 3, 3,
13963 		4, 4, 5, 5,
13964 		6, 6, 7, 7));
13965 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13966 		1,
13967 		8, 0, 9, 0,
13968 		10, 0, 11, 0,
13969 		12, 0, 13, 0,
13970 		14, 0, 15, 15));
13971 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13972 		2,
13973 		16, 0, 17, 0,
13974 		18, 0, 19, 0,
13975 		20, 0, 21, 0,
13976 		22, 0, 23, 0));
13977 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13978 		3,
13979 		24, 0, 25, 0,
13980 		26, 0, 27, 0,
13981 		28, 0, 29, 0,
13982 		30, 0, 31, 0));
13983 
13984 	/* DC maps received packets */
13985 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13986 		15_0,
13987 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13988 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13989 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13990 		31_16,
13991 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13992 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13993 
13994 	/* initialize the cached sc2vl values consistently with h/w */
13995 	for (i = 0; i < 32; i++) {
13996 		if (i < 8 || i == 15)
13997 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13998 		else
13999 			*((u8 *)(dd->sc2vl) + i) = 0;
14000 	}
14001 }
14002 
14003 /*
14004  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14005  * depend on the chip going through a power-on reset - a driver may be loaded
14006  * and unloaded many times.
14007  *
14008  * Do not write any CSR values to the chip in this routine - there may be
14009  * a reset following the (possible) FLR in this routine.
14010  *
14011  */
14012 static int init_chip(struct hfi1_devdata *dd)
14013 {
14014 	int i;
14015 	int ret = 0;
14016 
14017 	/*
14018 	 * Put the HFI CSRs in a known state.
14019 	 * Combine this with a DC reset.
14020 	 *
14021 	 * Stop the device from doing anything while we do a
14022 	 * reset.  We know there are no other active users of
14023 	 * the device since we are now in charge.  Turn off
14024 	 * off all outbound and inbound traffic and make sure
14025 	 * the device does not generate any interrupts.
14026 	 */
14027 
14028 	/* disable send contexts and SDMA engines */
14029 	write_csr(dd, SEND_CTRL, 0);
14030 	for (i = 0; i < chip_send_contexts(dd); i++)
14031 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14032 	for (i = 0; i < chip_sdma_engines(dd); i++)
14033 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14034 	/* disable port (turn off RXE inbound traffic) and contexts */
14035 	write_csr(dd, RCV_CTRL, 0);
14036 	for (i = 0; i < chip_rcv_contexts(dd); i++)
14037 		write_csr(dd, RCV_CTXT_CTRL, 0);
14038 	/* mask all interrupt sources */
14039 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14040 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14041 
14042 	/*
14043 	 * DC Reset: do a full DC reset before the register clear.
14044 	 * A recommended length of time to hold is one CSR read,
14045 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14046 	 * across the clear.
14047 	 */
14048 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14049 	(void)read_csr(dd, CCE_DC_CTRL);
14050 
14051 	if (use_flr) {
14052 		/*
14053 		 * A FLR will reset the SPC core and part of the PCIe.
14054 		 * The parts that need to be restored have already been
14055 		 * saved.
14056 		 */
14057 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14058 
14059 		/* do the FLR, the DC reset will remain */
14060 		pcie_flr(dd->pcidev);
14061 
14062 		/* restore command and BARs */
14063 		ret = restore_pci_variables(dd);
14064 		if (ret) {
14065 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14066 				   __func__);
14067 			return ret;
14068 		}
14069 
14070 		if (is_ax(dd)) {
14071 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14072 			pcie_flr(dd->pcidev);
14073 			ret = restore_pci_variables(dd);
14074 			if (ret) {
14075 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14076 					   __func__);
14077 				return ret;
14078 			}
14079 		}
14080 	} else {
14081 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14082 		reset_cce_csrs(dd);
14083 		reset_txe_csrs(dd);
14084 		reset_rxe_csrs(dd);
14085 		reset_misc_csrs(dd);
14086 	}
14087 	/* clear the DC reset */
14088 	write_csr(dd, CCE_DC_CTRL, 0);
14089 
14090 	/* Set the LED off */
14091 	setextled(dd, 0);
14092 
14093 	/*
14094 	 * Clear the QSFP reset.
14095 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14096 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14097 	 * anything plugged constantly in reset, if it pays attention
14098 	 * to RESET_N.
14099 	 * Prime examples of this are optical cables. Set all pins high.
14100 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14101 	 * MODPRS_N are input only and their value is ignored.
14102 	 */
14103 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14104 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14105 	init_chip_resources(dd);
14106 	return ret;
14107 }
14108 
14109 static void init_early_variables(struct hfi1_devdata *dd)
14110 {
14111 	int i;
14112 
14113 	/* assign link credit variables */
14114 	dd->vau = CM_VAU;
14115 	dd->link_credits = CM_GLOBAL_CREDITS;
14116 	if (is_ax(dd))
14117 		dd->link_credits--;
14118 	dd->vcu = cu_to_vcu(hfi1_cu);
14119 	/* enough room for 8 MAD packets plus header - 17K */
14120 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14121 	if (dd->vl15_init > dd->link_credits)
14122 		dd->vl15_init = dd->link_credits;
14123 
14124 	write_uninitialized_csrs_and_memories(dd);
14125 
14126 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14127 		for (i = 0; i < dd->num_pports; i++) {
14128 			struct hfi1_pportdata *ppd = &dd->pport[i];
14129 
14130 			set_partition_keys(ppd);
14131 		}
14132 	init_sc2vl_tables(dd);
14133 }
14134 
14135 static void init_kdeth_qp(struct hfi1_devdata *dd)
14136 {
14137 	write_csr(dd, SEND_BTH_QP,
14138 		  (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14139 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14140 
14141 	write_csr(dd, RCV_BTH_QP,
14142 		  (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14143 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14144 }
14145 
14146 /**
14147  * hfi1_get_qp_map - get qp map
14148  * @dd: device data
14149  * @idx: index to read
14150  */
14151 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14152 {
14153 	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14154 
14155 	reg >>= (idx % 8) * 8;
14156 	return reg;
14157 }
14158 
14159 /**
14160  * init_qpmap_table - init qp map
14161  * @dd: device data
14162  * @first_ctxt: first context
14163  * @last_ctxt: first context
14164  *
14165  * This return sets the qpn mapping table that
14166  * is indexed by qpn[8:1].
14167  *
14168  * The routine will round robin the 256 settings
14169  * from first_ctxt to last_ctxt.
14170  *
14171  * The first/last looks ahead to having specialized
14172  * receive contexts for mgmt and bypass.  Normal
14173  * verbs traffic will assumed to be on a range
14174  * of receive contexts.
14175  */
14176 static void init_qpmap_table(struct hfi1_devdata *dd,
14177 			     u32 first_ctxt,
14178 			     u32 last_ctxt)
14179 {
14180 	u64 reg = 0;
14181 	u64 regno = RCV_QP_MAP_TABLE;
14182 	int i;
14183 	u64 ctxt = first_ctxt;
14184 
14185 	for (i = 0; i < 256; i++) {
14186 		reg |= ctxt << (8 * (i % 8));
14187 		ctxt++;
14188 		if (ctxt > last_ctxt)
14189 			ctxt = first_ctxt;
14190 		if (i % 8 == 7) {
14191 			write_csr(dd, regno, reg);
14192 			reg = 0;
14193 			regno += 8;
14194 		}
14195 	}
14196 
14197 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14198 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14199 }
14200 
14201 struct rsm_map_table {
14202 	u64 map[NUM_MAP_REGS];
14203 	unsigned int used;
14204 };
14205 
14206 struct rsm_rule_data {
14207 	u8 offset;
14208 	u8 pkt_type;
14209 	u32 field1_off;
14210 	u32 field2_off;
14211 	u32 index1_off;
14212 	u32 index1_width;
14213 	u32 index2_off;
14214 	u32 index2_width;
14215 	u32 mask1;
14216 	u32 value1;
14217 	u32 mask2;
14218 	u32 value2;
14219 };
14220 
14221 /*
14222  * Return an initialized RMT map table for users to fill in.  OK if it
14223  * returns NULL, indicating no table.
14224  */
14225 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14226 {
14227 	struct rsm_map_table *rmt;
14228 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14229 
14230 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14231 	if (rmt) {
14232 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14233 		rmt->used = 0;
14234 	}
14235 
14236 	return rmt;
14237 }
14238 
14239 /*
14240  * Write the final RMT map table to the chip and free the table.  OK if
14241  * table is NULL.
14242  */
14243 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14244 				   struct rsm_map_table *rmt)
14245 {
14246 	int i;
14247 
14248 	if (rmt) {
14249 		/* write table to chip */
14250 		for (i = 0; i < NUM_MAP_REGS; i++)
14251 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14252 
14253 		/* enable RSM */
14254 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14255 	}
14256 }
14257 
14258 /* Is a receive side mapping rule */
14259 static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14260 {
14261 	return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14262 }
14263 
14264 /*
14265  * Add a receive side mapping rule.
14266  */
14267 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14268 			 struct rsm_rule_data *rrd)
14269 {
14270 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14271 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14272 		  1ull << rule_index | /* enable bit */
14273 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14274 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14275 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14276 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14277 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14278 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14279 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14280 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14281 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14282 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14283 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14284 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14285 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14286 }
14287 
14288 /*
14289  * Clear a receive side mapping rule.
14290  */
14291 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14292 {
14293 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14294 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14295 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14296 }
14297 
14298 /* return the number of RSM map table entries that will be used for QOS */
14299 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14300 			   unsigned int *np)
14301 {
14302 	int i;
14303 	unsigned int m, n;
14304 	u8 max_by_vl = 0;
14305 
14306 	/* is QOS active at all? */
14307 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14308 	    num_vls == 1 ||
14309 	    krcvqsset <= 1)
14310 		goto no_qos;
14311 
14312 	/* determine bits for qpn */
14313 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14314 		if (krcvqs[i] > max_by_vl)
14315 			max_by_vl = krcvqs[i];
14316 	if (max_by_vl > 32)
14317 		goto no_qos;
14318 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14319 
14320 	/* determine bits for vl */
14321 	n = ilog2(__roundup_pow_of_two(num_vls));
14322 
14323 	/* reject if too much is used */
14324 	if ((m + n) > 7)
14325 		goto no_qos;
14326 
14327 	if (mp)
14328 		*mp = m;
14329 	if (np)
14330 		*np = n;
14331 
14332 	return 1 << (m + n);
14333 
14334 no_qos:
14335 	if (mp)
14336 		*mp = 0;
14337 	if (np)
14338 		*np = 0;
14339 	return 0;
14340 }
14341 
14342 /**
14343  * init_qos - init RX qos
14344  * @dd: device data
14345  * @rmt: RSM map table
14346  *
14347  * This routine initializes Rule 0 and the RSM map table to implement
14348  * quality of service (qos).
14349  *
14350  * If all of the limit tests succeed, qos is applied based on the array
14351  * interpretation of krcvqs where entry 0 is VL0.
14352  *
14353  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14354  * feed both the RSM map table and the single rule.
14355  */
14356 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14357 {
14358 	struct rsm_rule_data rrd;
14359 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14360 	unsigned int rmt_entries;
14361 	u64 reg;
14362 
14363 	if (!rmt)
14364 		goto bail;
14365 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14366 	if (rmt_entries == 0)
14367 		goto bail;
14368 	qpns_per_vl = 1 << m;
14369 
14370 	/* enough room in the map table? */
14371 	rmt_entries = 1 << (m + n);
14372 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14373 		goto bail;
14374 
14375 	/* add qos entries to the RSM map table */
14376 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14377 		unsigned tctxt;
14378 
14379 		for (qpn = 0, tctxt = ctxt;
14380 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14381 			unsigned idx, regoff, regidx;
14382 
14383 			/* generate the index the hardware will produce */
14384 			idx = rmt->used + ((qpn << n) ^ i);
14385 			regoff = (idx % 8) * 8;
14386 			regidx = idx / 8;
14387 			/* replace default with context number */
14388 			reg = rmt->map[regidx];
14389 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14390 				<< regoff);
14391 			reg |= (u64)(tctxt++) << regoff;
14392 			rmt->map[regidx] = reg;
14393 			if (tctxt == ctxt + krcvqs[i])
14394 				tctxt = ctxt;
14395 		}
14396 		ctxt += krcvqs[i];
14397 	}
14398 
14399 	rrd.offset = rmt->used;
14400 	rrd.pkt_type = 2;
14401 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14402 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14403 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14404 	rrd.index1_width = n;
14405 	rrd.index2_off = QPN_SELECT_OFFSET;
14406 	rrd.index2_width = m + n;
14407 	rrd.mask1 = LRH_BTH_MASK;
14408 	rrd.value1 = LRH_BTH_VALUE;
14409 	rrd.mask2 = LRH_SC_MASK;
14410 	rrd.value2 = LRH_SC_VALUE;
14411 
14412 	/* add rule 0 */
14413 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14414 
14415 	/* mark RSM map entries as used */
14416 	rmt->used += rmt_entries;
14417 	/* map everything else to the mcast/err/vl15 context */
14418 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14419 	dd->qos_shift = n + 1;
14420 	return;
14421 bail:
14422 	dd->qos_shift = 1;
14423 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14424 }
14425 
14426 static void init_fecn_handling(struct hfi1_devdata *dd,
14427 			       struct rsm_map_table *rmt)
14428 {
14429 	struct rsm_rule_data rrd;
14430 	u64 reg;
14431 	int i, idx, regoff, regidx, start;
14432 	u8 offset;
14433 	u32 total_cnt;
14434 
14435 	if (HFI1_CAP_IS_KSET(TID_RDMA))
14436 		/* Exclude context 0 */
14437 		start = 1;
14438 	else
14439 		start = dd->first_dyn_alloc_ctxt;
14440 
14441 	total_cnt = dd->num_rcv_contexts - start;
14442 
14443 	/* there needs to be enough room in the map table */
14444 	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14445 		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14446 		return;
14447 	}
14448 
14449 	/*
14450 	 * RSM will extract the destination context as an index into the
14451 	 * map table.  The destination contexts are a sequential block
14452 	 * in the range start...num_rcv_contexts-1 (inclusive).
14453 	 * Map entries are accessed as offset + extracted value.  Adjust
14454 	 * the added offset so this sequence can be placed anywhere in
14455 	 * the table - as long as the entries themselves do not wrap.
14456 	 * There are only enough bits in offset for the table size, so
14457 	 * start with that to allow for a "negative" offset.
14458 	 */
14459 	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14460 
14461 	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14462 	     i++, idx++) {
14463 		/* replace with identity mapping */
14464 		regoff = (idx % 8) * 8;
14465 		regidx = idx / 8;
14466 		reg = rmt->map[regidx];
14467 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14468 		reg |= (u64)i << regoff;
14469 		rmt->map[regidx] = reg;
14470 	}
14471 
14472 	/*
14473 	 * For RSM intercept of Expected FECN packets:
14474 	 * o packet type 0 - expected
14475 	 * o match on F (bit 95), using select/match 1, and
14476 	 * o match on SH (bit 133), using select/match 2.
14477 	 *
14478 	 * Use index 1 to extract the 8-bit receive context from DestQP
14479 	 * (start at bit 64).  Use that as the RSM map table index.
14480 	 */
14481 	rrd.offset = offset;
14482 	rrd.pkt_type = 0;
14483 	rrd.field1_off = 95;
14484 	rrd.field2_off = 133;
14485 	rrd.index1_off = 64;
14486 	rrd.index1_width = 8;
14487 	rrd.index2_off = 0;
14488 	rrd.index2_width = 0;
14489 	rrd.mask1 = 1;
14490 	rrd.value1 = 1;
14491 	rrd.mask2 = 1;
14492 	rrd.value2 = 1;
14493 
14494 	/* add rule 1 */
14495 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14496 
14497 	rmt->used += total_cnt;
14498 }
14499 
14500 static inline bool hfi1_is_rmt_full(int start, int spare)
14501 {
14502 	return (start + spare) > NUM_MAP_ENTRIES;
14503 }
14504 
14505 static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14506 {
14507 	u8 i, j;
14508 	u8 ctx_id = 0;
14509 	u64 reg;
14510 	u32 regoff;
14511 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14512 	int ctxt_count = hfi1_netdev_ctxt_count(dd);
14513 
14514 	/* We already have contexts mapped in RMT */
14515 	if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14516 		dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14517 		return true;
14518 	}
14519 
14520 	if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14521 		dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14522 			   rmt_start);
14523 		return false;
14524 	}
14525 
14526 	dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14527 		rmt_start,
14528 		rmt_start + NUM_NETDEV_MAP_ENTRIES);
14529 
14530 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14531 	regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14532 	reg = read_csr(dd, regoff);
14533 	for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14534 		/* Update map register with netdev context */
14535 		j = (rmt_start + i) % 8;
14536 		reg &= ~(0xffllu << (j * 8));
14537 		reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14538 		/* Wrap up netdev ctx index */
14539 		ctx_id %= ctxt_count;
14540 		/* Write back map register */
14541 		if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14542 			dev_dbg(&(dd)->pcidev->dev,
14543 				"RMT[%d] =0x%llx\n",
14544 				regoff - RCV_RSM_MAP_TABLE, reg);
14545 
14546 			write_csr(dd, regoff, reg);
14547 			regoff += 8;
14548 			if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14549 				reg = read_csr(dd, regoff);
14550 		}
14551 	}
14552 
14553 	return true;
14554 }
14555 
14556 static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14557 				 int rule, struct rsm_rule_data *rrd)
14558 {
14559 	if (!hfi1_netdev_update_rmt(dd)) {
14560 		dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14561 		return;
14562 	}
14563 
14564 	add_rsm_rule(dd, rule, rrd);
14565 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14566 }
14567 
14568 void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14569 {
14570 	/*
14571 	 * go through with the initialisation only if this rule actually doesn't
14572 	 * exist yet
14573 	 */
14574 	if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14575 		int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14576 		struct rsm_rule_data rrd = {
14577 			.offset = rmt_start,
14578 			.pkt_type = IB_PACKET_TYPE,
14579 			.field1_off = LRH_BTH_MATCH_OFFSET,
14580 			.mask1 = LRH_BTH_MASK,
14581 			.value1 = LRH_BTH_VALUE,
14582 			.field2_off = BTH_DESTQP_MATCH_OFFSET,
14583 			.mask2 = BTH_DESTQP_MASK,
14584 			.value2 = BTH_DESTQP_VALUE,
14585 			.index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14586 					ilog2(NUM_NETDEV_MAP_ENTRIES),
14587 			.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14588 			.index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14589 			.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14590 		};
14591 
14592 		hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14593 	}
14594 }
14595 
14596 /* Initialize RSM for VNIC */
14597 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14598 {
14599 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14600 	struct rsm_rule_data rrd = {
14601 		/* Add rule for vnic */
14602 		.offset = rmt_start,
14603 		.pkt_type = 4,
14604 		/* Match 16B packets */
14605 		.field1_off = L2_TYPE_MATCH_OFFSET,
14606 		.mask1 = L2_TYPE_MASK,
14607 		.value1 = L2_16B_VALUE,
14608 		/* Match ETH L4 packets */
14609 		.field2_off = L4_TYPE_MATCH_OFFSET,
14610 		.mask2 = L4_16B_TYPE_MASK,
14611 		.value2 = L4_16B_ETH_VALUE,
14612 		/* Calc context from veswid and entropy */
14613 		.index1_off = L4_16B_HDR_VESWID_OFFSET,
14614 		.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14615 		.index2_off = L2_16B_ENTROPY_OFFSET,
14616 		.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14617 	};
14618 
14619 	hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14620 }
14621 
14622 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14623 {
14624 	clear_rsm_rule(dd, RSM_INS_VNIC);
14625 }
14626 
14627 void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14628 {
14629 	/* only actually clear the rule if it's the last user asking to do so */
14630 	if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14631 		clear_rsm_rule(dd, RSM_INS_AIP);
14632 }
14633 
14634 static int init_rxe(struct hfi1_devdata *dd)
14635 {
14636 	struct rsm_map_table *rmt;
14637 	u64 val;
14638 
14639 	/* enable all receive errors */
14640 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14641 
14642 	rmt = alloc_rsm_map_table(dd);
14643 	if (!rmt)
14644 		return -ENOMEM;
14645 
14646 	/* set up QOS, including the QPN map table */
14647 	init_qos(dd, rmt);
14648 	init_fecn_handling(dd, rmt);
14649 	complete_rsm_map_table(dd, rmt);
14650 	/* record number of used rsm map entries for netdev */
14651 	hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14652 	kfree(rmt);
14653 
14654 	/*
14655 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14656 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14657 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14658 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14659 	 * Max_PayLoad_Size set to its minimum of 128.
14660 	 *
14661 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14662 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14663 	 * tune_pcie_caps() which is called after this routine.
14664 	 */
14665 
14666 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14667 	val = read_csr(dd, RCV_BYPASS);
14668 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14669 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14670 		RCV_BYPASS_HDR_SIZE_SHIFT);
14671 	write_csr(dd, RCV_BYPASS, val);
14672 	return 0;
14673 }
14674 
14675 static void init_other(struct hfi1_devdata *dd)
14676 {
14677 	/* enable all CCE errors */
14678 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14679 	/* enable *some* Misc errors */
14680 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14681 	/* enable all DC errors, except LCB */
14682 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14683 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14684 }
14685 
14686 /*
14687  * Fill out the given AU table using the given CU.  A CU is defined in terms
14688  * AUs.  The table is a an encoding: given the index, how many AUs does that
14689  * represent?
14690  *
14691  * NOTE: Assumes that the register layout is the same for the
14692  * local and remote tables.
14693  */
14694 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14695 			       u32 csr0to3, u32 csr4to7)
14696 {
14697 	write_csr(dd, csr0to3,
14698 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14699 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14700 		  2ull * cu <<
14701 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14702 		  4ull * cu <<
14703 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14704 	write_csr(dd, csr4to7,
14705 		  8ull * cu <<
14706 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14707 		  16ull * cu <<
14708 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14709 		  32ull * cu <<
14710 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14711 		  64ull * cu <<
14712 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14713 }
14714 
14715 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14716 {
14717 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14718 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14719 }
14720 
14721 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14722 {
14723 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14724 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14725 }
14726 
14727 static void init_txe(struct hfi1_devdata *dd)
14728 {
14729 	int i;
14730 
14731 	/* enable all PIO, SDMA, general, and Egress errors */
14732 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14733 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14734 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14735 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14736 
14737 	/* enable all per-context and per-SDMA engine errors */
14738 	for (i = 0; i < chip_send_contexts(dd); i++)
14739 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14740 	for (i = 0; i < chip_sdma_engines(dd); i++)
14741 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14742 
14743 	/* set the local CU to AU mapping */
14744 	assign_local_cm_au_table(dd, dd->vcu);
14745 
14746 	/*
14747 	 * Set reasonable default for Credit Return Timer
14748 	 * Don't set on Simulator - causes it to choke.
14749 	 */
14750 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14751 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14752 }
14753 
14754 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14755 		       u16 jkey)
14756 {
14757 	u8 hw_ctxt;
14758 	u64 reg;
14759 
14760 	if (!rcd || !rcd->sc)
14761 		return -EINVAL;
14762 
14763 	hw_ctxt = rcd->sc->hw_context;
14764 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14765 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14766 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14767 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14768 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14769 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14770 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14771 	/*
14772 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14773 	 */
14774 	if (!is_ax(dd)) {
14775 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14776 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14777 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14778 	}
14779 
14780 	/* Enable J_KEY check on receive context. */
14781 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14782 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14783 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14784 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14785 
14786 	return 0;
14787 }
14788 
14789 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14790 {
14791 	u8 hw_ctxt;
14792 	u64 reg;
14793 
14794 	if (!rcd || !rcd->sc)
14795 		return -EINVAL;
14796 
14797 	hw_ctxt = rcd->sc->hw_context;
14798 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14799 	/*
14800 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14801 	 * This check would not have been enabled for A0 h/w, see
14802 	 * set_ctxt_jkey().
14803 	 */
14804 	if (!is_ax(dd)) {
14805 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14806 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14807 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14808 	}
14809 	/* Turn off the J_KEY on the receive side */
14810 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14811 
14812 	return 0;
14813 }
14814 
14815 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14816 		       u16 pkey)
14817 {
14818 	u8 hw_ctxt;
14819 	u64 reg;
14820 
14821 	if (!rcd || !rcd->sc)
14822 		return -EINVAL;
14823 
14824 	hw_ctxt = rcd->sc->hw_context;
14825 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14826 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14827 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14828 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14829 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14830 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14831 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14832 
14833 	return 0;
14834 }
14835 
14836 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14837 {
14838 	u8 hw_ctxt;
14839 	u64 reg;
14840 
14841 	if (!ctxt || !ctxt->sc)
14842 		return -EINVAL;
14843 
14844 	hw_ctxt = ctxt->sc->hw_context;
14845 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14846 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14847 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14848 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14849 
14850 	return 0;
14851 }
14852 
14853 /*
14854  * Start doing the clean up the chip. Our clean up happens in multiple
14855  * stages and this is just the first.
14856  */
14857 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14858 {
14859 	aspm_exit(dd);
14860 	free_cntrs(dd);
14861 	free_rcverr(dd);
14862 	finish_chip_resources(dd);
14863 }
14864 
14865 #define HFI_BASE_GUID(dev) \
14866 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14867 
14868 /*
14869  * Information can be shared between the two HFIs on the same ASIC
14870  * in the same OS.  This function finds the peer device and sets
14871  * up a shared structure.
14872  */
14873 static int init_asic_data(struct hfi1_devdata *dd)
14874 {
14875 	unsigned long index;
14876 	struct hfi1_devdata *peer;
14877 	struct hfi1_asic_data *asic_data;
14878 	int ret = 0;
14879 
14880 	/* pre-allocate the asic structure in case we are the first device */
14881 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14882 	if (!asic_data)
14883 		return -ENOMEM;
14884 
14885 	xa_lock_irq(&hfi1_dev_table);
14886 	/* Find our peer device */
14887 	xa_for_each(&hfi1_dev_table, index, peer) {
14888 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14889 		    dd->unit != peer->unit)
14890 			break;
14891 	}
14892 
14893 	if (peer) {
14894 		/* use already allocated structure */
14895 		dd->asic_data = peer->asic_data;
14896 		kfree(asic_data);
14897 	} else {
14898 		dd->asic_data = asic_data;
14899 		mutex_init(&dd->asic_data->asic_resource_mutex);
14900 	}
14901 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14902 	xa_unlock_irq(&hfi1_dev_table);
14903 
14904 	/* first one through - set up i2c devices */
14905 	if (!peer)
14906 		ret = set_up_i2c(dd, dd->asic_data);
14907 
14908 	return ret;
14909 }
14910 
14911 /*
14912  * Set dd->boardname.  Use a generic name if a name is not returned from
14913  * EFI variable space.
14914  *
14915  * Return 0 on success, -ENOMEM if space could not be allocated.
14916  */
14917 static int obtain_boardname(struct hfi1_devdata *dd)
14918 {
14919 	/* generic board description */
14920 	const char generic[] =
14921 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14922 	unsigned long size;
14923 	int ret;
14924 
14925 	ret = read_hfi1_efi_var(dd, "description", &size,
14926 				(void **)&dd->boardname);
14927 	if (ret) {
14928 		dd_dev_info(dd, "Board description not found\n");
14929 		/* use generic description */
14930 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14931 		if (!dd->boardname)
14932 			return -ENOMEM;
14933 	}
14934 	return 0;
14935 }
14936 
14937 /*
14938  * Check the interrupt registers to make sure that they are mapped correctly.
14939  * It is intended to help user identify any mismapping by VMM when the driver
14940  * is running in a VM. This function should only be called before interrupt
14941  * is set up properly.
14942  *
14943  * Return 0 on success, -EINVAL on failure.
14944  */
14945 static int check_int_registers(struct hfi1_devdata *dd)
14946 {
14947 	u64 reg;
14948 	u64 all_bits = ~(u64)0;
14949 	u64 mask;
14950 
14951 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14952 	mask = read_csr(dd, CCE_INT_MASK);
14953 	write_csr(dd, CCE_INT_MASK, 0ull);
14954 	reg = read_csr(dd, CCE_INT_MASK);
14955 	if (reg)
14956 		goto err_exit;
14957 
14958 	/* Clear all interrupt status bits */
14959 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14960 	reg = read_csr(dd, CCE_INT_STATUS);
14961 	if (reg)
14962 		goto err_exit;
14963 
14964 	/* Set all interrupt status bits */
14965 	write_csr(dd, CCE_INT_FORCE, all_bits);
14966 	reg = read_csr(dd, CCE_INT_STATUS);
14967 	if (reg != all_bits)
14968 		goto err_exit;
14969 
14970 	/* Restore the interrupt mask */
14971 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14972 	write_csr(dd, CCE_INT_MASK, mask);
14973 
14974 	return 0;
14975 err_exit:
14976 	write_csr(dd, CCE_INT_MASK, mask);
14977 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14978 	return -EINVAL;
14979 }
14980 
14981 /**
14982  * hfi1_init_dd() - Initialize most of the dd structure.
14983  * @dd: the dd device
14984  *
14985  * This is global, and is called directly at init to set up the
14986  * chip-specific function pointers for later use.
14987  */
14988 int hfi1_init_dd(struct hfi1_devdata *dd)
14989 {
14990 	struct pci_dev *pdev = dd->pcidev;
14991 	struct hfi1_pportdata *ppd;
14992 	u64 reg;
14993 	int i, ret;
14994 	static const char * const inames[] = { /* implementation names */
14995 		"RTL silicon",
14996 		"RTL VCS simulation",
14997 		"RTL FPGA emulation",
14998 		"Functional simulator"
14999 	};
15000 	struct pci_dev *parent = pdev->bus->self;
15001 	u32 sdma_engines = chip_sdma_engines(dd);
15002 
15003 	ppd = dd->pport;
15004 	for (i = 0; i < dd->num_pports; i++, ppd++) {
15005 		int vl;
15006 		/* init common fields */
15007 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15008 		/* DC supports 4 link widths */
15009 		ppd->link_width_supported =
15010 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15011 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15012 		ppd->link_width_downgrade_supported =
15013 			ppd->link_width_supported;
15014 		/* start out enabling only 4X */
15015 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15016 		ppd->link_width_downgrade_enabled =
15017 					ppd->link_width_downgrade_supported;
15018 		/* link width active is 0 when link is down */
15019 		/* link width downgrade active is 0 when link is down */
15020 
15021 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15022 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15023 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15024 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
15025 			num_vls = HFI1_MAX_VLS_SUPPORTED;
15026 		}
15027 		ppd->vls_supported = num_vls;
15028 		ppd->vls_operational = ppd->vls_supported;
15029 		/* Set the default MTU. */
15030 		for (vl = 0; vl < num_vls; vl++)
15031 			dd->vld[vl].mtu = hfi1_max_mtu;
15032 		dd->vld[15].mtu = MAX_MAD_PACKET;
15033 		/*
15034 		 * Set the initial values to reasonable default, will be set
15035 		 * for real when link is up.
15036 		 */
15037 		ppd->overrun_threshold = 0x4;
15038 		ppd->phy_error_threshold = 0xf;
15039 		ppd->port_crc_mode_enabled = link_crc_mask;
15040 		/* initialize supported LTP CRC mode */
15041 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15042 		/* initialize enabled LTP CRC mode */
15043 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15044 		/* start in offline */
15045 		ppd->host_link_state = HLS_DN_OFFLINE;
15046 		init_vl_arb_caches(ppd);
15047 	}
15048 
15049 	/*
15050 	 * Do remaining PCIe setup and save PCIe values in dd.
15051 	 * Any error printing is already done by the init code.
15052 	 * On return, we have the chip mapped.
15053 	 */
15054 	ret = hfi1_pcie_ddinit(dd, pdev);
15055 	if (ret < 0)
15056 		goto bail_free;
15057 
15058 	/* Save PCI space registers to rewrite after device reset */
15059 	ret = save_pci_variables(dd);
15060 	if (ret < 0)
15061 		goto bail_cleanup;
15062 
15063 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15064 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15065 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15066 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15067 
15068 	/*
15069 	 * Check interrupt registers mapping if the driver has no access to
15070 	 * the upstream component. In this case, it is likely that the driver
15071 	 * is running in a VM.
15072 	 */
15073 	if (!parent) {
15074 		ret = check_int_registers(dd);
15075 		if (ret)
15076 			goto bail_cleanup;
15077 	}
15078 
15079 	/*
15080 	 * obtain the hardware ID - NOT related to unit, which is a
15081 	 * software enumeration
15082 	 */
15083 	reg = read_csr(dd, CCE_REVISION2);
15084 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15085 					& CCE_REVISION2_HFI_ID_MASK;
15086 	/* the variable size will remove unwanted bits */
15087 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15088 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15089 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15090 		    dd->icode < ARRAY_SIZE(inames) ?
15091 		    inames[dd->icode] : "unknown", (int)dd->irev);
15092 
15093 	/* speeds the hardware can support */
15094 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15095 	/* speeds allowed to run at */
15096 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15097 	/* give a reasonable active value, will be set on link up */
15098 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15099 
15100 	/* fix up link widths for emulation _p */
15101 	ppd = dd->pport;
15102 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15103 		ppd->link_width_supported =
15104 			ppd->link_width_enabled =
15105 			ppd->link_width_downgrade_supported =
15106 			ppd->link_width_downgrade_enabled =
15107 				OPA_LINK_WIDTH_1X;
15108 	}
15109 	/* insure num_vls isn't larger than number of sdma engines */
15110 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15111 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15112 			   num_vls, sdma_engines);
15113 		num_vls = sdma_engines;
15114 		ppd->vls_supported = sdma_engines;
15115 		ppd->vls_operational = ppd->vls_supported;
15116 	}
15117 
15118 	/*
15119 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15120 	 * Limit the max if larger than the field holds.  If timeout is
15121 	 * non-zero, then the calculated field will be at least 1.
15122 	 *
15123 	 * Must be after icode is set up - the cclock rate depends
15124 	 * on knowing the hardware being used.
15125 	 */
15126 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15127 	if (dd->rcv_intr_timeout_csr >
15128 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15129 		dd->rcv_intr_timeout_csr =
15130 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15131 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15132 		dd->rcv_intr_timeout_csr = 1;
15133 
15134 	/* needs to be done before we look for the peer device */
15135 	read_guid(dd);
15136 
15137 	/* set up shared ASIC data with peer device */
15138 	ret = init_asic_data(dd);
15139 	if (ret)
15140 		goto bail_cleanup;
15141 
15142 	/* obtain chip sizes, reset chip CSRs */
15143 	ret = init_chip(dd);
15144 	if (ret)
15145 		goto bail_cleanup;
15146 
15147 	/* read in the PCIe link speed information */
15148 	ret = pcie_speeds(dd);
15149 	if (ret)
15150 		goto bail_cleanup;
15151 
15152 	/* call before get_platform_config(), after init_chip_resources() */
15153 	ret = eprom_init(dd);
15154 	if (ret)
15155 		goto bail_free_rcverr;
15156 
15157 	/* Needs to be called before hfi1_firmware_init */
15158 	get_platform_config(dd);
15159 
15160 	/* read in firmware */
15161 	ret = hfi1_firmware_init(dd);
15162 	if (ret)
15163 		goto bail_cleanup;
15164 
15165 	/*
15166 	 * In general, the PCIe Gen3 transition must occur after the
15167 	 * chip has been idled (so it won't initiate any PCIe transactions
15168 	 * e.g. an interrupt) and before the driver changes any registers
15169 	 * (the transition will reset the registers).
15170 	 *
15171 	 * In particular, place this call after:
15172 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15173 	 * - pcie_speeds()   - reads the current link speed
15174 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15175 	 *			    downloaded
15176 	 */
15177 	ret = do_pcie_gen3_transition(dd);
15178 	if (ret)
15179 		goto bail_cleanup;
15180 
15181 	/*
15182 	 * This should probably occur in hfi1_pcie_init(), but historically
15183 	 * occurs after the do_pcie_gen3_transition() code.
15184 	 */
15185 	tune_pcie_caps(dd);
15186 
15187 	/* start setting dd values and adjusting CSRs */
15188 	init_early_variables(dd);
15189 
15190 	parse_platform_config(dd);
15191 
15192 	ret = obtain_boardname(dd);
15193 	if (ret)
15194 		goto bail_cleanup;
15195 
15196 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15197 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15198 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15199 		 (u32)dd->majrev,
15200 		 (u32)dd->minrev,
15201 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15202 		    & CCE_REVISION_SW_MASK);
15203 
15204 	/* alloc VNIC/AIP rx data */
15205 	ret = hfi1_alloc_rx(dd);
15206 	if (ret)
15207 		goto bail_cleanup;
15208 
15209 	ret = set_up_context_variables(dd);
15210 	if (ret)
15211 		goto bail_cleanup;
15212 
15213 	/* set initial RXE CSRs */
15214 	ret = init_rxe(dd);
15215 	if (ret)
15216 		goto bail_cleanup;
15217 
15218 	/* set initial TXE CSRs */
15219 	init_txe(dd);
15220 	/* set initial non-RXE, non-TXE CSRs */
15221 	init_other(dd);
15222 	/* set up KDETH QP prefix in both RX and TX CSRs */
15223 	init_kdeth_qp(dd);
15224 
15225 	ret = hfi1_dev_affinity_init(dd);
15226 	if (ret)
15227 		goto bail_cleanup;
15228 
15229 	/* send contexts must be set up before receive contexts */
15230 	ret = init_send_contexts(dd);
15231 	if (ret)
15232 		goto bail_cleanup;
15233 
15234 	ret = hfi1_create_kctxts(dd);
15235 	if (ret)
15236 		goto bail_cleanup;
15237 
15238 	/*
15239 	 * Initialize aspm, to be done after gen3 transition and setting up
15240 	 * contexts and before enabling interrupts
15241 	 */
15242 	aspm_init(dd);
15243 
15244 	ret = init_pervl_scs(dd);
15245 	if (ret)
15246 		goto bail_cleanup;
15247 
15248 	/* sdma init */
15249 	for (i = 0; i < dd->num_pports; ++i) {
15250 		ret = sdma_init(dd, i);
15251 		if (ret)
15252 			goto bail_cleanup;
15253 	}
15254 
15255 	/* use contexts created by hfi1_create_kctxts */
15256 	ret = set_up_interrupts(dd);
15257 	if (ret)
15258 		goto bail_cleanup;
15259 
15260 	ret = hfi1_comp_vectors_set_up(dd);
15261 	if (ret)
15262 		goto bail_clear_intr;
15263 
15264 	/* set up LCB access - must be after set_up_interrupts() */
15265 	init_lcb_access(dd);
15266 
15267 	/*
15268 	 * Serial number is created from the base guid:
15269 	 * [27:24] = base guid [38:35]
15270 	 * [23: 0] = base guid [23: 0]
15271 	 */
15272 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15273 		 (dd->base_guid & 0xFFFFFF) |
15274 		     ((dd->base_guid >> 11) & 0xF000000));
15275 
15276 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15277 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15278 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15279 
15280 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15281 	if (ret)
15282 		goto bail_clear_intr;
15283 
15284 	thermal_init(dd);
15285 
15286 	ret = init_cntrs(dd);
15287 	if (ret)
15288 		goto bail_clear_intr;
15289 
15290 	ret = init_rcverr(dd);
15291 	if (ret)
15292 		goto bail_free_cntrs;
15293 
15294 	init_completion(&dd->user_comp);
15295 
15296 	/* The user refcount starts with one to inidicate an active device */
15297 	refcount_set(&dd->user_refcount, 1);
15298 
15299 	goto bail;
15300 
15301 bail_free_rcverr:
15302 	free_rcverr(dd);
15303 bail_free_cntrs:
15304 	free_cntrs(dd);
15305 bail_clear_intr:
15306 	hfi1_comp_vectors_clean_up(dd);
15307 	msix_clean_up_interrupts(dd);
15308 bail_cleanup:
15309 	hfi1_free_rx(dd);
15310 	hfi1_pcie_ddcleanup(dd);
15311 bail_free:
15312 	hfi1_free_devdata(dd);
15313 bail:
15314 	return ret;
15315 }
15316 
15317 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15318 			u32 dw_len)
15319 {
15320 	u32 delta_cycles;
15321 	u32 current_egress_rate = ppd->current_egress_rate;
15322 	/* rates here are in units of 10^6 bits/sec */
15323 
15324 	if (desired_egress_rate == -1)
15325 		return 0; /* shouldn't happen */
15326 
15327 	if (desired_egress_rate >= current_egress_rate)
15328 		return 0; /* we can't help go faster, only slower */
15329 
15330 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15331 			egress_cycles(dw_len * 4, current_egress_rate);
15332 
15333 	return (u16)delta_cycles;
15334 }
15335 
15336 /**
15337  * create_pbc - build a pbc for transmission
15338  * @ppd: info of physical Hfi port
15339  * @flags: special case flags or-ed in built pbc
15340  * @srate_mbs: static rate
15341  * @vl: vl
15342  * @dw_len: dword length (header words + data words + pbc words)
15343  *
15344  * Create a PBC with the given flags, rate, VL, and length.
15345  *
15346  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15347  * for verbs, which does not use this PSM feature.  The lone other caller
15348  * is for the diagnostic interface which calls this if the user does not
15349  * supply their own PBC.
15350  */
15351 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15352 	       u32 dw_len)
15353 {
15354 	u64 pbc, delay = 0;
15355 
15356 	if (unlikely(srate_mbs))
15357 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15358 
15359 	pbc = flags
15360 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15361 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15362 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15363 		| (dw_len & PBC_LENGTH_DWS_MASK)
15364 			<< PBC_LENGTH_DWS_SHIFT;
15365 
15366 	return pbc;
15367 }
15368 
15369 #define SBUS_THERMAL    0x4f
15370 #define SBUS_THERM_MONITOR_MODE 0x1
15371 
15372 #define THERM_FAILURE(dev, ret, reason) \
15373 	dd_dev_err((dd),						\
15374 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15375 		   (reason), (ret))
15376 
15377 /*
15378  * Initialize the thermal sensor.
15379  *
15380  * After initialization, enable polling of thermal sensor through
15381  * SBus interface. In order for this to work, the SBus Master
15382  * firmware has to be loaded due to the fact that the HW polling
15383  * logic uses SBus interrupts, which are not supported with
15384  * default firmware. Otherwise, no data will be returned through
15385  * the ASIC_STS_THERM CSR.
15386  */
15387 static int thermal_init(struct hfi1_devdata *dd)
15388 {
15389 	int ret = 0;
15390 
15391 	if (dd->icode != ICODE_RTL_SILICON ||
15392 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15393 		return ret;
15394 
15395 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15396 	if (ret) {
15397 		THERM_FAILURE(dd, ret, "Acquire SBus");
15398 		return ret;
15399 	}
15400 
15401 	dd_dev_info(dd, "Initializing thermal sensor\n");
15402 	/* Disable polling of thermal readings */
15403 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15404 	msleep(100);
15405 	/* Thermal Sensor Initialization */
15406 	/*    Step 1: Reset the Thermal SBus Receiver */
15407 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15408 				RESET_SBUS_RECEIVER, 0);
15409 	if (ret) {
15410 		THERM_FAILURE(dd, ret, "Bus Reset");
15411 		goto done;
15412 	}
15413 	/*    Step 2: Set Reset bit in Thermal block */
15414 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15415 				WRITE_SBUS_RECEIVER, 0x1);
15416 	if (ret) {
15417 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15418 		goto done;
15419 	}
15420 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15421 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15422 				WRITE_SBUS_RECEIVER, 0x32);
15423 	if (ret) {
15424 		THERM_FAILURE(dd, ret, "Write Clock Div");
15425 		goto done;
15426 	}
15427 	/*    Step 4: Select temperature mode */
15428 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15429 				WRITE_SBUS_RECEIVER,
15430 				SBUS_THERM_MONITOR_MODE);
15431 	if (ret) {
15432 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15433 		goto done;
15434 	}
15435 	/*    Step 5: De-assert block reset and start conversion */
15436 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15437 				WRITE_SBUS_RECEIVER, 0x2);
15438 	if (ret) {
15439 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15440 		goto done;
15441 	}
15442 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15443 	msleep(22);
15444 
15445 	/* Enable polling of thermal readings */
15446 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15447 
15448 	/* Set initialized flag */
15449 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15450 	if (ret)
15451 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15452 
15453 done:
15454 	release_chip_resource(dd, CR_SBUS);
15455 	return ret;
15456 }
15457 
15458 static void handle_temp_err(struct hfi1_devdata *dd)
15459 {
15460 	struct hfi1_pportdata *ppd = &dd->pport[0];
15461 	/*
15462 	 * Thermal Critical Interrupt
15463 	 * Put the device into forced freeze mode, take link down to
15464 	 * offline, and put DC into reset.
15465 	 */
15466 	dd_dev_emerg(dd,
15467 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15468 	dd->flags |= HFI1_FORCED_FREEZE;
15469 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15470 	/*
15471 	 * Shut DC down as much and as quickly as possible.
15472 	 *
15473 	 * Step 1: Take the link down to OFFLINE. This will cause the
15474 	 *         8051 to put the Serdes in reset. However, we don't want to
15475 	 *         go through the entire link state machine since we want to
15476 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15477 	 *         but rather an attempt to save the chip.
15478 	 *         Code below is almost the same as quiet_serdes() but avoids
15479 	 *         all the extra work and the sleeps.
15480 	 */
15481 	ppd->driver_link_ready = 0;
15482 	ppd->link_enabled = 0;
15483 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15484 				PLS_OFFLINE);
15485 	/*
15486 	 * Step 2: Shutdown LCB and 8051
15487 	 *         After shutdown, do not restore DC_CFG_RESET value.
15488 	 */
15489 	dc_shutdown(dd);
15490 }
15491