xref: /linux/drivers/infiniband/hw/hfi1/chip.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 
69 #define NUM_IB_PORTS 1
70 
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74 
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78 
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89 
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93 
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97 
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101 
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107 
108 struct flag_table {
109 	u64 flag;	/* the flag */
110 	char *str;	/* description string */
111 	u16 extra;	/* extra information */
112 	u16 unused0;
113 	u32 unused1;
114 };
115 
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119 
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED	0x1
122 #define SEC_PACKET_DROPPED	0x2
123 #define SEC_SC_HALTED		0x4	/* per-context only */
124 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
125 
126 #define DEFAULT_KRCVQS		  2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129 
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139 
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142 
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148 
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155 
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164 
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172 
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175 
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178 
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187 
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195 
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200 
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 	num, \
204 	sc0, sc0val, \
205 	sc1, sc1val, \
206 	sc2, sc2val, \
207 	sc3, sc3val, \
208 	sc4, sc4val, \
209 	sc5, sc5val, \
210 	sc6, sc6val, \
211 	sc7, sc7val) \
212 ( \
213 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222 
223 #define DC_SC_VL_VAL( \
224 	range, \
225 	e0, e0val, \
226 	e1, e1val, \
227 	e2, e2val, \
228 	e3, e3val, \
229 	e4, e4val, \
230 	e5, e5val, \
231 	e6, e6val, \
232 	e7, e7val, \
233 	e8, e8val, \
234 	e9, e9val, \
235 	e10, e10val, \
236 	e11, e11val, \
237 	e12, e12val, \
238 	e13, e13val, \
239 	e14, e14val, \
240 	e15, e15val) \
241 ( \
242 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259 
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 			| CCE_STATUS_RXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 			| CCE_STATUS_TXE_PAUSED_SMASK \
268 			| CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271 
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274 
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
280 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
288 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
290 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
306 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
308 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
310 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
312 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
314 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
316 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
318 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
320 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
322 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
326 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
328 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
330 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
332 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
336 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
338 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/	FLAG_ENTRY0("LATriggered",
342 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
344 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
352 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
354 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
356 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
358 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
360 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363 
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383 
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
389 	SEC_WRITE_DROPPED,
390 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/	FLAG_ENTRY("PioCsrParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
404 	SEC_SPC_FREEZE,
405 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
407 	SEC_SPC_FREEZE,
408 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
416 	SEC_SPC_FREEZE,
417 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
425 	SEC_SPC_FREEZE,
426 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
428 	0,
429 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
431 	0,
432 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
434 	SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
437 	SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/	FLAG_ENTRY("PioInitSmIn",
440 	0,
441 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
449 	0,
450 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/	FLAG_ENTRY("PioWriteDataParity",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/	FLAG_ENTRY("PioStateMachine",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
458 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
461 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/	FLAG_ENTRY("PioVlfSopParity",
467 	SEC_SPC_FREEZE,
468 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/	FLAG_ENTRY("PioVlFifoParity",
470 	SEC_SPC_FREEZE,
471 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
473 	SEC_SPC_FREEZE,
474 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
476 	SEC_SPC_FREEZE,
477 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
480 	SEC_SPC_FREEZE,
481 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
483 	SEC_SPC_FREEZE,
484 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
486 	SEC_SPC_FREEZE,
487 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
489 	SEC_SPC_FREEZE,
490 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493 
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525 
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
531 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
533 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540 
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546 
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552 
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653 
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682 
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 	| SEES(TX_LAUNCH_CSR_PARITY) \
690 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
691 	| SEES(TX_CONFIG_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 	| SEES(TX_CREDIT_RETURN_PARITY))
702 
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712 
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/	FLAG_ENTRY("InconsistentSop",
718 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/	FLAG_ENTRY("DisallowedPacket",
721 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
724 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/	FLAG_ENTRY("WriteOverflow",
727 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
730 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734 
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 		RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 		RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 		RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 		RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817 
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864 
865 #define RXE_FREEZE_ABORT_MASK \
866 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869 
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922 
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965 
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983 
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993 	FLAG_ENTRY0("Serdes internal loopback failure",
994 		    FAILED_SERDES_INTERNAL_LOOPBACK),
995 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004 	FLAG_ENTRY0("External Device Request Timeout",
1005 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007 
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 	FLAG_ENTRY0("Host request done", 0x0001),
1015 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016 	FLAG_ENTRY0("BC SMA message", 0x0004),
1017 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 	FLAG_ENTRY0("External device config request", 0x0020),
1020 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 	FLAG_ENTRY0("Link going down", 0x0100),
1023 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025 
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030 			       u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034 				      u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036 				     u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038 				  u8 *device_rev);
1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1041 			    u8 *tx_polarity_inversion,
1042 			    u8 *rx_polarity_inversion, u8 *max_rate);
1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1044 				unsigned int context, u64 err_status);
1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1046 static void handle_dcc_err(struct hfi1_devdata *dd,
1047 			   unsigned int context, u64 err_status);
1048 static void handle_lcb_err(struct hfi1_devdata *dd,
1049 			   unsigned int context, u64 err_status);
1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void set_partition_keys(struct hfi1_pportdata *ppd);
1059 static const char *link_state_name(u32 state);
1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1061 					  u32 state);
1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1063 			   u64 *out_data);
1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1065 static int thermal_init(struct hfi1_devdata *dd);
1066 
1067 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1068 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1069 					    int msecs);
1070 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1071 				  int msecs);
1072 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1073 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1074 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1075 				   int msecs);
1076 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1077 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1078 static void handle_temp_err(struct hfi1_devdata *dd);
1079 static void dc_shutdown(struct hfi1_devdata *dd);
1080 static void dc_start(struct hfi1_devdata *dd);
1081 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1082 			   unsigned int *np);
1083 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1084 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1085 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1086 
1087 /*
1088  * Error interrupt table entry.  This is used as input to the interrupt
1089  * "clear down" routine used for all second tier error interrupt register.
1090  * Second tier interrupt registers have a single bit representing them
1091  * in the top-level CceIntStatus.
1092  */
1093 struct err_reg_info {
1094 	u32 status;		/* status CSR offset */
1095 	u32 clear;		/* clear CSR offset */
1096 	u32 mask;		/* mask CSR offset */
1097 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1098 	const char *desc;
1099 };
1100 
1101 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1102 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1103 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1104 
1105 /*
1106  * Helpers for building HFI and DC error interrupt table entries.  Different
1107  * helpers are needed because of inconsistent register names.
1108  */
1109 #define EE(reg, handler, desc) \
1110 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1111 		handler, desc }
1112 #define DC_EE1(reg, handler, desc) \
1113 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1114 #define DC_EE2(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1116 
1117 /*
1118  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1119  * another register containing more information.
1120  */
1121 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1122 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1123 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1124 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1125 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1126 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1127 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1128 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1129 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1130 	/* the rest are reserved */
1131 };
1132 
1133 /*
1134  * Index into the Various section of the interrupt sources
1135  * corresponding to the Critical Temperature interrupt.
1136  */
1137 #define TCRIT_INT_SOURCE 4
1138 
1139 /*
1140  * SDMA error interrupt entry - refers to another register containing more
1141  * information.
1142  */
1143 static const struct err_reg_info sdma_eng_err =
1144 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1145 
1146 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1147 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1148 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1149 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1150 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1151 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1152 	/* rest are reserved */
1153 };
1154 
1155 /*
1156  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1157  * register can not be derived from the MTU value because 10K is not
1158  * a power of 2. Therefore, we need a constant. Everything else can
1159  * be calculated.
1160  */
1161 #define DCC_CFG_PORT_MTU_CAP_10240 7
1162 
1163 /*
1164  * Table of the DC grouping of error interrupts.  Each entry refers to
1165  * another register containing more information.
1166  */
1167 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1168 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1169 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1170 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1171 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1172 	/* the rest are reserved */
1173 };
1174 
1175 struct cntr_entry {
1176 	/*
1177 	 * counter name
1178 	 */
1179 	char *name;
1180 
1181 	/*
1182 	 * csr to read for name (if applicable)
1183 	 */
1184 	u64 csr;
1185 
1186 	/*
1187 	 * offset into dd or ppd to store the counter's value
1188 	 */
1189 	int offset;
1190 
1191 	/*
1192 	 * flags
1193 	 */
1194 	u8 flags;
1195 
1196 	/*
1197 	 * accessor for stat element, context either dd or ppd
1198 	 */
1199 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1200 		       int mode, u64 data);
1201 };
1202 
1203 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1204 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1205 
1206 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1207 { \
1208 	name, \
1209 	csr, \
1210 	offset, \
1211 	flags, \
1212 	accessor \
1213 }
1214 
1215 /* 32bit RXE */
1216 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1217 CNTR_ELEM(#name, \
1218 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1219 	  0, flags | CNTR_32BIT, \
1220 	  port_access_u32_csr)
1221 
1222 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1223 CNTR_ELEM(#name, \
1224 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1225 	  0, flags | CNTR_32BIT, \
1226 	  dev_access_u32_csr)
1227 
1228 /* 64bit RXE */
1229 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1230 CNTR_ELEM(#name, \
1231 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1232 	  0, flags, \
1233 	  port_access_u64_csr)
1234 
1235 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1236 CNTR_ELEM(#name, \
1237 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1238 	  0, flags, \
1239 	  dev_access_u64_csr)
1240 
1241 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1242 #define OVR_ELM(ctx) \
1243 CNTR_ELEM("RcvHdrOvr" #ctx, \
1244 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1245 	  0, CNTR_NORMAL, port_access_u64_csr)
1246 
1247 /* 32bit TXE */
1248 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1251 	  0, flags | CNTR_32BIT, \
1252 	  port_access_u32_csr)
1253 
1254 /* 64bit TXE */
1255 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1256 CNTR_ELEM(#name, \
1257 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1258 	  0, flags, \
1259 	  port_access_u64_csr)
1260 
1261 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1262 CNTR_ELEM(#name,\
1263 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1264 	  0, \
1265 	  flags, \
1266 	  dev_access_u64_csr)
1267 
1268 /* CCE */
1269 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1270 CNTR_ELEM(#name, \
1271 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1272 	  0, flags | CNTR_32BIT, \
1273 	  dev_access_u32_csr)
1274 
1275 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1278 	  0, flags | CNTR_32BIT, \
1279 	  dev_access_u32_csr)
1280 
1281 /* DC */
1282 #define DC_PERF_CNTR(name, counter, flags) \
1283 CNTR_ELEM(#name, \
1284 	  counter, \
1285 	  0, \
1286 	  flags, \
1287 	  dev_access_u64_csr)
1288 
1289 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1290 CNTR_ELEM(#name, \
1291 	  counter, \
1292 	  0, \
1293 	  flags, \
1294 	  dc_access_lcb_cntr)
1295 
1296 /* ibp counters */
1297 #define SW_IBP_CNTR(name, cntr) \
1298 CNTR_ELEM(#name, \
1299 	  0, \
1300 	  0, \
1301 	  CNTR_SYNTH, \
1302 	  access_ibp_##cntr)
1303 
1304 /**
1305  * hfi_addr_from_offset - return addr for readq/writeq
1306  * @dd - the dd device
1307  * @offset - the offset of the CSR within bar0
1308  *
1309  * This routine selects the appropriate base address
1310  * based on the indicated offset.
1311  */
1312 static inline void __iomem *hfi1_addr_from_offset(
1313 	const struct hfi1_devdata *dd,
1314 	u32 offset)
1315 {
1316 	if (offset >= dd->base2_start)
1317 		return dd->kregbase2 + (offset - dd->base2_start);
1318 	return dd->kregbase1 + offset;
1319 }
1320 
1321 /**
1322  * read_csr - read CSR at the indicated offset
1323  * @dd - the dd device
1324  * @offset - the offset of the CSR within bar0
1325  *
1326  * Return: the value read or all FF's if there
1327  * is no mapping
1328  */
1329 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1330 {
1331 	if (dd->flags & HFI1_PRESENT)
1332 		return readq(hfi1_addr_from_offset(dd, offset));
1333 	return -1;
1334 }
1335 
1336 /**
1337  * write_csr - write CSR at the indicated offset
1338  * @dd - the dd device
1339  * @offset - the offset of the CSR within bar0
1340  * @value - value to write
1341  */
1342 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1343 {
1344 	if (dd->flags & HFI1_PRESENT) {
1345 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1346 
1347 		/* avoid write to RcvArray */
1348 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1349 			return;
1350 		writeq(value, base);
1351 	}
1352 }
1353 
1354 /**
1355  * get_csr_addr - return te iomem address for offset
1356  * @dd - the dd device
1357  * @offset - the offset of the CSR within bar0
1358  *
1359  * Return: The iomem address to use in subsequent
1360  * writeq/readq operations.
1361  */
1362 void __iomem *get_csr_addr(
1363 	const struct hfi1_devdata *dd,
1364 	u32 offset)
1365 {
1366 	if (dd->flags & HFI1_PRESENT)
1367 		return hfi1_addr_from_offset(dd, offset);
1368 	return NULL;
1369 }
1370 
1371 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1372 				 int mode, u64 value)
1373 {
1374 	u64 ret;
1375 
1376 	if (mode == CNTR_MODE_R) {
1377 		ret = read_csr(dd, csr);
1378 	} else if (mode == CNTR_MODE_W) {
1379 		write_csr(dd, csr, value);
1380 		ret = value;
1381 	} else {
1382 		dd_dev_err(dd, "Invalid cntr register access mode");
1383 		return 0;
1384 	}
1385 
1386 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1387 	return ret;
1388 }
1389 
1390 /* Dev Access */
1391 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1392 			      void *context, int vl, int mode, u64 data)
1393 {
1394 	struct hfi1_devdata *dd = context;
1395 	u64 csr = entry->csr;
1396 
1397 	if (entry->flags & CNTR_SDMA) {
1398 		if (vl == CNTR_INVALID_VL)
1399 			return 0;
1400 		csr += 0x100 * vl;
1401 	} else {
1402 		if (vl != CNTR_INVALID_VL)
1403 			return 0;
1404 	}
1405 	return read_write_csr(dd, csr, mode, data);
1406 }
1407 
1408 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1409 			      void *context, int idx, int mode, u64 data)
1410 {
1411 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1412 
1413 	if (dd->per_sdma && idx < dd->num_sdma)
1414 		return dd->per_sdma[idx].err_cnt;
1415 	return 0;
1416 }
1417 
1418 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1419 			      void *context, int idx, int mode, u64 data)
1420 {
1421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1422 
1423 	if (dd->per_sdma && idx < dd->num_sdma)
1424 		return dd->per_sdma[idx].sdma_int_cnt;
1425 	return 0;
1426 }
1427 
1428 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1429 				   void *context, int idx, int mode, u64 data)
1430 {
1431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1432 
1433 	if (dd->per_sdma && idx < dd->num_sdma)
1434 		return dd->per_sdma[idx].idle_int_cnt;
1435 	return 0;
1436 }
1437 
1438 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1439 				       void *context, int idx, int mode,
1440 				       u64 data)
1441 {
1442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1443 
1444 	if (dd->per_sdma && idx < dd->num_sdma)
1445 		return dd->per_sdma[idx].progress_int_cnt;
1446 	return 0;
1447 }
1448 
1449 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1450 			      int vl, int mode, u64 data)
1451 {
1452 	struct hfi1_devdata *dd = context;
1453 
1454 	u64 val = 0;
1455 	u64 csr = entry->csr;
1456 
1457 	if (entry->flags & CNTR_VL) {
1458 		if (vl == CNTR_INVALID_VL)
1459 			return 0;
1460 		csr += 8 * vl;
1461 	} else {
1462 		if (vl != CNTR_INVALID_VL)
1463 			return 0;
1464 	}
1465 
1466 	val = read_write_csr(dd, csr, mode, data);
1467 	return val;
1468 }
1469 
1470 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1471 			      int vl, int mode, u64 data)
1472 {
1473 	struct hfi1_devdata *dd = context;
1474 	u32 csr = entry->csr;
1475 	int ret = 0;
1476 
1477 	if (vl != CNTR_INVALID_VL)
1478 		return 0;
1479 	if (mode == CNTR_MODE_R)
1480 		ret = read_lcb_csr(dd, csr, &data);
1481 	else if (mode == CNTR_MODE_W)
1482 		ret = write_lcb_csr(dd, csr, data);
1483 
1484 	if (ret) {
1485 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1486 		return 0;
1487 	}
1488 
1489 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1490 	return data;
1491 }
1492 
1493 /* Port Access */
1494 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1495 			       int vl, int mode, u64 data)
1496 {
1497 	struct hfi1_pportdata *ppd = context;
1498 
1499 	if (vl != CNTR_INVALID_VL)
1500 		return 0;
1501 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1502 }
1503 
1504 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1505 			       void *context, int vl, int mode, u64 data)
1506 {
1507 	struct hfi1_pportdata *ppd = context;
1508 	u64 val;
1509 	u64 csr = entry->csr;
1510 
1511 	if (entry->flags & CNTR_VL) {
1512 		if (vl == CNTR_INVALID_VL)
1513 			return 0;
1514 		csr += 8 * vl;
1515 	} else {
1516 		if (vl != CNTR_INVALID_VL)
1517 			return 0;
1518 	}
1519 	val = read_write_csr(ppd->dd, csr, mode, data);
1520 	return val;
1521 }
1522 
1523 /* Software defined */
1524 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1525 				u64 data)
1526 {
1527 	u64 ret;
1528 
1529 	if (mode == CNTR_MODE_R) {
1530 		ret = *cntr;
1531 	} else if (mode == CNTR_MODE_W) {
1532 		*cntr = data;
1533 		ret = data;
1534 	} else {
1535 		dd_dev_err(dd, "Invalid cntr sw access mode");
1536 		return 0;
1537 	}
1538 
1539 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1540 
1541 	return ret;
1542 }
1543 
1544 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1545 				 int vl, int mode, u64 data)
1546 {
1547 	struct hfi1_pportdata *ppd = context;
1548 
1549 	if (vl != CNTR_INVALID_VL)
1550 		return 0;
1551 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1552 }
1553 
1554 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1555 				 int vl, int mode, u64 data)
1556 {
1557 	struct hfi1_pportdata *ppd = context;
1558 
1559 	if (vl != CNTR_INVALID_VL)
1560 		return 0;
1561 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1562 }
1563 
1564 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1565 				       void *context, int vl, int mode,
1566 				       u64 data)
1567 {
1568 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1569 
1570 	if (vl != CNTR_INVALID_VL)
1571 		return 0;
1572 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1573 }
1574 
1575 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1576 				   void *context, int vl, int mode, u64 data)
1577 {
1578 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1579 	u64 zero = 0;
1580 	u64 *counter;
1581 
1582 	if (vl == CNTR_INVALID_VL)
1583 		counter = &ppd->port_xmit_discards;
1584 	else if (vl >= 0 && vl < C_VL_COUNT)
1585 		counter = &ppd->port_xmit_discards_vl[vl];
1586 	else
1587 		counter = &zero;
1588 
1589 	return read_write_sw(ppd->dd, counter, mode, data);
1590 }
1591 
1592 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1593 				       void *context, int vl, int mode,
1594 				       u64 data)
1595 {
1596 	struct hfi1_pportdata *ppd = context;
1597 
1598 	if (vl != CNTR_INVALID_VL)
1599 		return 0;
1600 
1601 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1602 			     mode, data);
1603 }
1604 
1605 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1606 				      void *context, int vl, int mode, u64 data)
1607 {
1608 	struct hfi1_pportdata *ppd = context;
1609 
1610 	if (vl != CNTR_INVALID_VL)
1611 		return 0;
1612 
1613 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1614 			     mode, data);
1615 }
1616 
1617 u64 get_all_cpu_total(u64 __percpu *cntr)
1618 {
1619 	int cpu;
1620 	u64 counter = 0;
1621 
1622 	for_each_possible_cpu(cpu)
1623 		counter += *per_cpu_ptr(cntr, cpu);
1624 	return counter;
1625 }
1626 
1627 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1628 			  u64 __percpu *cntr,
1629 			  int vl, int mode, u64 data)
1630 {
1631 	u64 ret = 0;
1632 
1633 	if (vl != CNTR_INVALID_VL)
1634 		return 0;
1635 
1636 	if (mode == CNTR_MODE_R) {
1637 		ret = get_all_cpu_total(cntr) - *z_val;
1638 	} else if (mode == CNTR_MODE_W) {
1639 		/* A write can only zero the counter */
1640 		if (data == 0)
1641 			*z_val = get_all_cpu_total(cntr);
1642 		else
1643 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1644 	} else {
1645 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1646 		return 0;
1647 	}
1648 
1649 	return ret;
1650 }
1651 
1652 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1653 			      void *context, int vl, int mode, u64 data)
1654 {
1655 	struct hfi1_devdata *dd = context;
1656 
1657 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1658 			      mode, data);
1659 }
1660 
1661 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1662 				   void *context, int vl, int mode, u64 data)
1663 {
1664 	struct hfi1_devdata *dd = context;
1665 
1666 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1667 			      mode, data);
1668 }
1669 
1670 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1671 			      void *context, int vl, int mode, u64 data)
1672 {
1673 	struct hfi1_devdata *dd = context;
1674 
1675 	return dd->verbs_dev.n_piowait;
1676 }
1677 
1678 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1679 			       void *context, int vl, int mode, u64 data)
1680 {
1681 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1682 
1683 	return dd->verbs_dev.n_piodrain;
1684 }
1685 
1686 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1687 			      void *context, int vl, int mode, u64 data)
1688 {
1689 	struct hfi1_devdata *dd = context;
1690 
1691 	return dd->verbs_dev.n_txwait;
1692 }
1693 
1694 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1695 			       void *context, int vl, int mode, u64 data)
1696 {
1697 	struct hfi1_devdata *dd = context;
1698 
1699 	return dd->verbs_dev.n_kmem_wait;
1700 }
1701 
1702 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1703 				   void *context, int vl, int mode, u64 data)
1704 {
1705 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1706 
1707 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1708 			      mode, data);
1709 }
1710 
1711 /* Software counters for the error status bits within MISC_ERR_STATUS */
1712 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1713 					     void *context, int vl, int mode,
1714 					     u64 data)
1715 {
1716 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1717 
1718 	return dd->misc_err_status_cnt[12];
1719 }
1720 
1721 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1722 					  void *context, int vl, int mode,
1723 					  u64 data)
1724 {
1725 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1726 
1727 	return dd->misc_err_status_cnt[11];
1728 }
1729 
1730 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1731 					       void *context, int vl, int mode,
1732 					       u64 data)
1733 {
1734 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1735 
1736 	return dd->misc_err_status_cnt[10];
1737 }
1738 
1739 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1740 						 void *context, int vl,
1741 						 int mode, u64 data)
1742 {
1743 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1744 
1745 	return dd->misc_err_status_cnt[9];
1746 }
1747 
1748 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1749 					   void *context, int vl, int mode,
1750 					   u64 data)
1751 {
1752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1753 
1754 	return dd->misc_err_status_cnt[8];
1755 }
1756 
1757 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1758 				const struct cntr_entry *entry,
1759 				void *context, int vl, int mode, u64 data)
1760 {
1761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1762 
1763 	return dd->misc_err_status_cnt[7];
1764 }
1765 
1766 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1767 						void *context, int vl,
1768 						int mode, u64 data)
1769 {
1770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1771 
1772 	return dd->misc_err_status_cnt[6];
1773 }
1774 
1775 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1776 					      void *context, int vl, int mode,
1777 					      u64 data)
1778 {
1779 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1780 
1781 	return dd->misc_err_status_cnt[5];
1782 }
1783 
1784 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1785 					    void *context, int vl, int mode,
1786 					    u64 data)
1787 {
1788 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1789 
1790 	return dd->misc_err_status_cnt[4];
1791 }
1792 
1793 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1794 						 void *context, int vl,
1795 						 int mode, u64 data)
1796 {
1797 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1798 
1799 	return dd->misc_err_status_cnt[3];
1800 }
1801 
1802 static u64 access_misc_csr_write_bad_addr_err_cnt(
1803 				const struct cntr_entry *entry,
1804 				void *context, int vl, int mode, u64 data)
1805 {
1806 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1807 
1808 	return dd->misc_err_status_cnt[2];
1809 }
1810 
1811 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1812 						 void *context, int vl,
1813 						 int mode, u64 data)
1814 {
1815 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1816 
1817 	return dd->misc_err_status_cnt[1];
1818 }
1819 
1820 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1821 					  void *context, int vl, int mode,
1822 					  u64 data)
1823 {
1824 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1825 
1826 	return dd->misc_err_status_cnt[0];
1827 }
1828 
1829 /*
1830  * Software counter for the aggregate of
1831  * individual CceErrStatus counters
1832  */
1833 static u64 access_sw_cce_err_status_aggregated_cnt(
1834 				const struct cntr_entry *entry,
1835 				void *context, int vl, int mode, u64 data)
1836 {
1837 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1838 
1839 	return dd->sw_cce_err_status_aggregate;
1840 }
1841 
1842 /*
1843  * Software counters corresponding to each of the
1844  * error status bits within CceErrStatus
1845  */
1846 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1847 					      void *context, int vl, int mode,
1848 					      u64 data)
1849 {
1850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1851 
1852 	return dd->cce_err_status_cnt[40];
1853 }
1854 
1855 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1856 					  void *context, int vl, int mode,
1857 					  u64 data)
1858 {
1859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1860 
1861 	return dd->cce_err_status_cnt[39];
1862 }
1863 
1864 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1865 					  void *context, int vl, int mode,
1866 					  u64 data)
1867 {
1868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1869 
1870 	return dd->cce_err_status_cnt[38];
1871 }
1872 
1873 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1874 					     void *context, int vl, int mode,
1875 					     u64 data)
1876 {
1877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1878 
1879 	return dd->cce_err_status_cnt[37];
1880 }
1881 
1882 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1883 					     void *context, int vl, int mode,
1884 					     u64 data)
1885 {
1886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1887 
1888 	return dd->cce_err_status_cnt[36];
1889 }
1890 
1891 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1892 				const struct cntr_entry *entry,
1893 				void *context, int vl, int mode, u64 data)
1894 {
1895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1896 
1897 	return dd->cce_err_status_cnt[35];
1898 }
1899 
1900 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1901 				const struct cntr_entry *entry,
1902 				void *context, int vl, int mode, u64 data)
1903 {
1904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1905 
1906 	return dd->cce_err_status_cnt[34];
1907 }
1908 
1909 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1910 						 void *context, int vl,
1911 						 int mode, u64 data)
1912 {
1913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1914 
1915 	return dd->cce_err_status_cnt[33];
1916 }
1917 
1918 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1919 						void *context, int vl, int mode,
1920 						u64 data)
1921 {
1922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1923 
1924 	return dd->cce_err_status_cnt[32];
1925 }
1926 
1927 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1928 				   void *context, int vl, int mode, u64 data)
1929 {
1930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1931 
1932 	return dd->cce_err_status_cnt[31];
1933 }
1934 
1935 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1936 					       void *context, int vl, int mode,
1937 					       u64 data)
1938 {
1939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1940 
1941 	return dd->cce_err_status_cnt[30];
1942 }
1943 
1944 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1945 					      void *context, int vl, int mode,
1946 					      u64 data)
1947 {
1948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1949 
1950 	return dd->cce_err_status_cnt[29];
1951 }
1952 
1953 static u64 access_pcic_transmit_back_parity_err_cnt(
1954 				const struct cntr_entry *entry,
1955 				void *context, int vl, int mode, u64 data)
1956 {
1957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1958 
1959 	return dd->cce_err_status_cnt[28];
1960 }
1961 
1962 static u64 access_pcic_transmit_front_parity_err_cnt(
1963 				const struct cntr_entry *entry,
1964 				void *context, int vl, int mode, u64 data)
1965 {
1966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1967 
1968 	return dd->cce_err_status_cnt[27];
1969 }
1970 
1971 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1972 					     void *context, int vl, int mode,
1973 					     u64 data)
1974 {
1975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1976 
1977 	return dd->cce_err_status_cnt[26];
1978 }
1979 
1980 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1981 					    void *context, int vl, int mode,
1982 					    u64 data)
1983 {
1984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1985 
1986 	return dd->cce_err_status_cnt[25];
1987 }
1988 
1989 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1990 					      void *context, int vl, int mode,
1991 					      u64 data)
1992 {
1993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1994 
1995 	return dd->cce_err_status_cnt[24];
1996 }
1997 
1998 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1999 					     void *context, int vl, int mode,
2000 					     u64 data)
2001 {
2002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2003 
2004 	return dd->cce_err_status_cnt[23];
2005 }
2006 
2007 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2008 						 void *context, int vl,
2009 						 int mode, u64 data)
2010 {
2011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2012 
2013 	return dd->cce_err_status_cnt[22];
2014 }
2015 
2016 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2017 					 void *context, int vl, int mode,
2018 					 u64 data)
2019 {
2020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2021 
2022 	return dd->cce_err_status_cnt[21];
2023 }
2024 
2025 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2026 				const struct cntr_entry *entry,
2027 				void *context, int vl, int mode, u64 data)
2028 {
2029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2030 
2031 	return dd->cce_err_status_cnt[20];
2032 }
2033 
2034 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2035 						 void *context, int vl,
2036 						 int mode, u64 data)
2037 {
2038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2039 
2040 	return dd->cce_err_status_cnt[19];
2041 }
2042 
2043 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2044 					     void *context, int vl, int mode,
2045 					     u64 data)
2046 {
2047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2048 
2049 	return dd->cce_err_status_cnt[18];
2050 }
2051 
2052 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2053 					    void *context, int vl, int mode,
2054 					    u64 data)
2055 {
2056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2057 
2058 	return dd->cce_err_status_cnt[17];
2059 }
2060 
2061 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2062 					      void *context, int vl, int mode,
2063 					      u64 data)
2064 {
2065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2066 
2067 	return dd->cce_err_status_cnt[16];
2068 }
2069 
2070 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2071 					     void *context, int vl, int mode,
2072 					     u64 data)
2073 {
2074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2075 
2076 	return dd->cce_err_status_cnt[15];
2077 }
2078 
2079 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2080 						 void *context, int vl,
2081 						 int mode, u64 data)
2082 {
2083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2084 
2085 	return dd->cce_err_status_cnt[14];
2086 }
2087 
2088 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2089 					     void *context, int vl, int mode,
2090 					     u64 data)
2091 {
2092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2093 
2094 	return dd->cce_err_status_cnt[13];
2095 }
2096 
2097 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2098 				const struct cntr_entry *entry,
2099 				void *context, int vl, int mode, u64 data)
2100 {
2101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2102 
2103 	return dd->cce_err_status_cnt[12];
2104 }
2105 
2106 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2107 				const struct cntr_entry *entry,
2108 				void *context, int vl, int mode, u64 data)
2109 {
2110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2111 
2112 	return dd->cce_err_status_cnt[11];
2113 }
2114 
2115 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2116 				const struct cntr_entry *entry,
2117 				void *context, int vl, int mode, u64 data)
2118 {
2119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2120 
2121 	return dd->cce_err_status_cnt[10];
2122 }
2123 
2124 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2125 				const struct cntr_entry *entry,
2126 				void *context, int vl, int mode, u64 data)
2127 {
2128 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2129 
2130 	return dd->cce_err_status_cnt[9];
2131 }
2132 
2133 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2134 				const struct cntr_entry *entry,
2135 				void *context, int vl, int mode, u64 data)
2136 {
2137 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2138 
2139 	return dd->cce_err_status_cnt[8];
2140 }
2141 
2142 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2143 						 void *context, int vl,
2144 						 int mode, u64 data)
2145 {
2146 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2147 
2148 	return dd->cce_err_status_cnt[7];
2149 }
2150 
2151 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2152 				const struct cntr_entry *entry,
2153 				void *context, int vl, int mode, u64 data)
2154 {
2155 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2156 
2157 	return dd->cce_err_status_cnt[6];
2158 }
2159 
2160 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2161 					       void *context, int vl, int mode,
2162 					       u64 data)
2163 {
2164 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2165 
2166 	return dd->cce_err_status_cnt[5];
2167 }
2168 
2169 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2170 					  void *context, int vl, int mode,
2171 					  u64 data)
2172 {
2173 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2174 
2175 	return dd->cce_err_status_cnt[4];
2176 }
2177 
2178 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2179 				const struct cntr_entry *entry,
2180 				void *context, int vl, int mode, u64 data)
2181 {
2182 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2183 
2184 	return dd->cce_err_status_cnt[3];
2185 }
2186 
2187 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2188 						 void *context, int vl,
2189 						 int mode, u64 data)
2190 {
2191 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2192 
2193 	return dd->cce_err_status_cnt[2];
2194 }
2195 
2196 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2197 						void *context, int vl,
2198 						int mode, u64 data)
2199 {
2200 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2201 
2202 	return dd->cce_err_status_cnt[1];
2203 }
2204 
2205 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2206 					 void *context, int vl, int mode,
2207 					 u64 data)
2208 {
2209 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2210 
2211 	return dd->cce_err_status_cnt[0];
2212 }
2213 
2214 /*
2215  * Software counters corresponding to each of the
2216  * error status bits within RcvErrStatus
2217  */
2218 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2219 					void *context, int vl, int mode,
2220 					u64 data)
2221 {
2222 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2223 
2224 	return dd->rcv_err_status_cnt[63];
2225 }
2226 
2227 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2228 						void *context, int vl,
2229 						int mode, u64 data)
2230 {
2231 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2232 
2233 	return dd->rcv_err_status_cnt[62];
2234 }
2235 
2236 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2237 					       void *context, int vl, int mode,
2238 					       u64 data)
2239 {
2240 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2241 
2242 	return dd->rcv_err_status_cnt[61];
2243 }
2244 
2245 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2246 					 void *context, int vl, int mode,
2247 					 u64 data)
2248 {
2249 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2250 
2251 	return dd->rcv_err_status_cnt[60];
2252 }
2253 
2254 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2255 						 void *context, int vl,
2256 						 int mode, u64 data)
2257 {
2258 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2259 
2260 	return dd->rcv_err_status_cnt[59];
2261 }
2262 
2263 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2264 						 void *context, int vl,
2265 						 int mode, u64 data)
2266 {
2267 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2268 
2269 	return dd->rcv_err_status_cnt[58];
2270 }
2271 
2272 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2273 					    void *context, int vl, int mode,
2274 					    u64 data)
2275 {
2276 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2277 
2278 	return dd->rcv_err_status_cnt[57];
2279 }
2280 
2281 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2282 					   void *context, int vl, int mode,
2283 					   u64 data)
2284 {
2285 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2286 
2287 	return dd->rcv_err_status_cnt[56];
2288 }
2289 
2290 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2291 					   void *context, int vl, int mode,
2292 					   u64 data)
2293 {
2294 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2295 
2296 	return dd->rcv_err_status_cnt[55];
2297 }
2298 
2299 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2300 				const struct cntr_entry *entry,
2301 				void *context, int vl, int mode, u64 data)
2302 {
2303 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2304 
2305 	return dd->rcv_err_status_cnt[54];
2306 }
2307 
2308 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2309 				const struct cntr_entry *entry,
2310 				void *context, int vl, int mode, u64 data)
2311 {
2312 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2313 
2314 	return dd->rcv_err_status_cnt[53];
2315 }
2316 
2317 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2318 						 void *context, int vl,
2319 						 int mode, u64 data)
2320 {
2321 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2322 
2323 	return dd->rcv_err_status_cnt[52];
2324 }
2325 
2326 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2327 						 void *context, int vl,
2328 						 int mode, u64 data)
2329 {
2330 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2331 
2332 	return dd->rcv_err_status_cnt[51];
2333 }
2334 
2335 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2336 						 void *context, int vl,
2337 						 int mode, u64 data)
2338 {
2339 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2340 
2341 	return dd->rcv_err_status_cnt[50];
2342 }
2343 
2344 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2345 						 void *context, int vl,
2346 						 int mode, u64 data)
2347 {
2348 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2349 
2350 	return dd->rcv_err_status_cnt[49];
2351 }
2352 
2353 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2354 						 void *context, int vl,
2355 						 int mode, u64 data)
2356 {
2357 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2358 
2359 	return dd->rcv_err_status_cnt[48];
2360 }
2361 
2362 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2363 						 void *context, int vl,
2364 						 int mode, u64 data)
2365 {
2366 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2367 
2368 	return dd->rcv_err_status_cnt[47];
2369 }
2370 
2371 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2372 					 void *context, int vl, int mode,
2373 					 u64 data)
2374 {
2375 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2376 
2377 	return dd->rcv_err_status_cnt[46];
2378 }
2379 
2380 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2381 				const struct cntr_entry *entry,
2382 				void *context, int vl, int mode, u64 data)
2383 {
2384 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2385 
2386 	return dd->rcv_err_status_cnt[45];
2387 }
2388 
2389 static u64 access_rx_lookup_csr_parity_err_cnt(
2390 				const struct cntr_entry *entry,
2391 				void *context, int vl, int mode, u64 data)
2392 {
2393 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2394 
2395 	return dd->rcv_err_status_cnt[44];
2396 }
2397 
2398 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2399 				const struct cntr_entry *entry,
2400 				void *context, int vl, int mode, u64 data)
2401 {
2402 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2403 
2404 	return dd->rcv_err_status_cnt[43];
2405 }
2406 
2407 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2408 				const struct cntr_entry *entry,
2409 				void *context, int vl, int mode, u64 data)
2410 {
2411 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2412 
2413 	return dd->rcv_err_status_cnt[42];
2414 }
2415 
2416 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2417 				const struct cntr_entry *entry,
2418 				void *context, int vl, int mode, u64 data)
2419 {
2420 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2421 
2422 	return dd->rcv_err_status_cnt[41];
2423 }
2424 
2425 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2426 				const struct cntr_entry *entry,
2427 				void *context, int vl, int mode, u64 data)
2428 {
2429 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2430 
2431 	return dd->rcv_err_status_cnt[40];
2432 }
2433 
2434 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2435 				const struct cntr_entry *entry,
2436 				void *context, int vl, int mode, u64 data)
2437 {
2438 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2439 
2440 	return dd->rcv_err_status_cnt[39];
2441 }
2442 
2443 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2444 				const struct cntr_entry *entry,
2445 				void *context, int vl, int mode, u64 data)
2446 {
2447 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2448 
2449 	return dd->rcv_err_status_cnt[38];
2450 }
2451 
2452 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2453 				const struct cntr_entry *entry,
2454 				void *context, int vl, int mode, u64 data)
2455 {
2456 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2457 
2458 	return dd->rcv_err_status_cnt[37];
2459 }
2460 
2461 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2462 				const struct cntr_entry *entry,
2463 				void *context, int vl, int mode, u64 data)
2464 {
2465 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2466 
2467 	return dd->rcv_err_status_cnt[36];
2468 }
2469 
2470 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2471 				const struct cntr_entry *entry,
2472 				void *context, int vl, int mode, u64 data)
2473 {
2474 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2475 
2476 	return dd->rcv_err_status_cnt[35];
2477 }
2478 
2479 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2480 				const struct cntr_entry *entry,
2481 				void *context, int vl, int mode, u64 data)
2482 {
2483 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2484 
2485 	return dd->rcv_err_status_cnt[34];
2486 }
2487 
2488 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2489 				const struct cntr_entry *entry,
2490 				void *context, int vl, int mode, u64 data)
2491 {
2492 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2493 
2494 	return dd->rcv_err_status_cnt[33];
2495 }
2496 
2497 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2498 					void *context, int vl, int mode,
2499 					u64 data)
2500 {
2501 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2502 
2503 	return dd->rcv_err_status_cnt[32];
2504 }
2505 
2506 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2507 				       void *context, int vl, int mode,
2508 				       u64 data)
2509 {
2510 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2511 
2512 	return dd->rcv_err_status_cnt[31];
2513 }
2514 
2515 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2516 					  void *context, int vl, int mode,
2517 					  u64 data)
2518 {
2519 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2520 
2521 	return dd->rcv_err_status_cnt[30];
2522 }
2523 
2524 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2525 					     void *context, int vl, int mode,
2526 					     u64 data)
2527 {
2528 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2529 
2530 	return dd->rcv_err_status_cnt[29];
2531 }
2532 
2533 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2534 						 void *context, int vl,
2535 						 int mode, u64 data)
2536 {
2537 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2538 
2539 	return dd->rcv_err_status_cnt[28];
2540 }
2541 
2542 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2543 				const struct cntr_entry *entry,
2544 				void *context, int vl, int mode, u64 data)
2545 {
2546 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2547 
2548 	return dd->rcv_err_status_cnt[27];
2549 }
2550 
2551 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2552 				const struct cntr_entry *entry,
2553 				void *context, int vl, int mode, u64 data)
2554 {
2555 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2556 
2557 	return dd->rcv_err_status_cnt[26];
2558 }
2559 
2560 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2561 				const struct cntr_entry *entry,
2562 				void *context, int vl, int mode, u64 data)
2563 {
2564 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2565 
2566 	return dd->rcv_err_status_cnt[25];
2567 }
2568 
2569 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2570 				const struct cntr_entry *entry,
2571 				void *context, int vl, int mode, u64 data)
2572 {
2573 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2574 
2575 	return dd->rcv_err_status_cnt[24];
2576 }
2577 
2578 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2579 				const struct cntr_entry *entry,
2580 				void *context, int vl, int mode, u64 data)
2581 {
2582 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2583 
2584 	return dd->rcv_err_status_cnt[23];
2585 }
2586 
2587 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2588 				const struct cntr_entry *entry,
2589 				void *context, int vl, int mode, u64 data)
2590 {
2591 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2592 
2593 	return dd->rcv_err_status_cnt[22];
2594 }
2595 
2596 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2597 				const struct cntr_entry *entry,
2598 				void *context, int vl, int mode, u64 data)
2599 {
2600 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2601 
2602 	return dd->rcv_err_status_cnt[21];
2603 }
2604 
2605 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2606 				const struct cntr_entry *entry,
2607 				void *context, int vl, int mode, u64 data)
2608 {
2609 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2610 
2611 	return dd->rcv_err_status_cnt[20];
2612 }
2613 
2614 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2615 				const struct cntr_entry *entry,
2616 				void *context, int vl, int mode, u64 data)
2617 {
2618 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2619 
2620 	return dd->rcv_err_status_cnt[19];
2621 }
2622 
2623 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2624 						 void *context, int vl,
2625 						 int mode, u64 data)
2626 {
2627 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2628 
2629 	return dd->rcv_err_status_cnt[18];
2630 }
2631 
2632 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2633 						 void *context, int vl,
2634 						 int mode, u64 data)
2635 {
2636 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2637 
2638 	return dd->rcv_err_status_cnt[17];
2639 }
2640 
2641 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2642 				const struct cntr_entry *entry,
2643 				void *context, int vl, int mode, u64 data)
2644 {
2645 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2646 
2647 	return dd->rcv_err_status_cnt[16];
2648 }
2649 
2650 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2651 				const struct cntr_entry *entry,
2652 				void *context, int vl, int mode, u64 data)
2653 {
2654 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2655 
2656 	return dd->rcv_err_status_cnt[15];
2657 }
2658 
2659 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2660 						void *context, int vl,
2661 						int mode, u64 data)
2662 {
2663 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2664 
2665 	return dd->rcv_err_status_cnt[14];
2666 }
2667 
2668 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2669 						void *context, int vl,
2670 						int mode, u64 data)
2671 {
2672 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2673 
2674 	return dd->rcv_err_status_cnt[13];
2675 }
2676 
2677 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2678 					      void *context, int vl, int mode,
2679 					      u64 data)
2680 {
2681 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2682 
2683 	return dd->rcv_err_status_cnt[12];
2684 }
2685 
2686 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2687 					  void *context, int vl, int mode,
2688 					  u64 data)
2689 {
2690 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2691 
2692 	return dd->rcv_err_status_cnt[11];
2693 }
2694 
2695 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2696 					  void *context, int vl, int mode,
2697 					  u64 data)
2698 {
2699 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2700 
2701 	return dd->rcv_err_status_cnt[10];
2702 }
2703 
2704 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2705 					       void *context, int vl, int mode,
2706 					       u64 data)
2707 {
2708 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2709 
2710 	return dd->rcv_err_status_cnt[9];
2711 }
2712 
2713 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2714 					    void *context, int vl, int mode,
2715 					    u64 data)
2716 {
2717 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2718 
2719 	return dd->rcv_err_status_cnt[8];
2720 }
2721 
2722 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2723 				const struct cntr_entry *entry,
2724 				void *context, int vl, int mode, u64 data)
2725 {
2726 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2727 
2728 	return dd->rcv_err_status_cnt[7];
2729 }
2730 
2731 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2732 				const struct cntr_entry *entry,
2733 				void *context, int vl, int mode, u64 data)
2734 {
2735 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2736 
2737 	return dd->rcv_err_status_cnt[6];
2738 }
2739 
2740 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2741 					  void *context, int vl, int mode,
2742 					  u64 data)
2743 {
2744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2745 
2746 	return dd->rcv_err_status_cnt[5];
2747 }
2748 
2749 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2750 					  void *context, int vl, int mode,
2751 					  u64 data)
2752 {
2753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2754 
2755 	return dd->rcv_err_status_cnt[4];
2756 }
2757 
2758 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2759 					 void *context, int vl, int mode,
2760 					 u64 data)
2761 {
2762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2763 
2764 	return dd->rcv_err_status_cnt[3];
2765 }
2766 
2767 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2768 					 void *context, int vl, int mode,
2769 					 u64 data)
2770 {
2771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2772 
2773 	return dd->rcv_err_status_cnt[2];
2774 }
2775 
2776 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2777 					    void *context, int vl, int mode,
2778 					    u64 data)
2779 {
2780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2781 
2782 	return dd->rcv_err_status_cnt[1];
2783 }
2784 
2785 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2786 					 void *context, int vl, int mode,
2787 					 u64 data)
2788 {
2789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2790 
2791 	return dd->rcv_err_status_cnt[0];
2792 }
2793 
2794 /*
2795  * Software counters corresponding to each of the
2796  * error status bits within SendPioErrStatus
2797  */
2798 static u64 access_pio_pec_sop_head_parity_err_cnt(
2799 				const struct cntr_entry *entry,
2800 				void *context, int vl, int mode, u64 data)
2801 {
2802 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2803 
2804 	return dd->send_pio_err_status_cnt[35];
2805 }
2806 
2807 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2808 				const struct cntr_entry *entry,
2809 				void *context, int vl, int mode, u64 data)
2810 {
2811 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2812 
2813 	return dd->send_pio_err_status_cnt[34];
2814 }
2815 
2816 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2817 				const struct cntr_entry *entry,
2818 				void *context, int vl, int mode, u64 data)
2819 {
2820 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2821 
2822 	return dd->send_pio_err_status_cnt[33];
2823 }
2824 
2825 static u64 access_pio_current_free_cnt_parity_err_cnt(
2826 				const struct cntr_entry *entry,
2827 				void *context, int vl, int mode, u64 data)
2828 {
2829 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2830 
2831 	return dd->send_pio_err_status_cnt[32];
2832 }
2833 
2834 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2835 					  void *context, int vl, int mode,
2836 					  u64 data)
2837 {
2838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2839 
2840 	return dd->send_pio_err_status_cnt[31];
2841 }
2842 
2843 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2844 					  void *context, int vl, int mode,
2845 					  u64 data)
2846 {
2847 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2848 
2849 	return dd->send_pio_err_status_cnt[30];
2850 }
2851 
2852 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2853 					   void *context, int vl, int mode,
2854 					   u64 data)
2855 {
2856 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2857 
2858 	return dd->send_pio_err_status_cnt[29];
2859 }
2860 
2861 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2862 				const struct cntr_entry *entry,
2863 				void *context, int vl, int mode, u64 data)
2864 {
2865 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2866 
2867 	return dd->send_pio_err_status_cnt[28];
2868 }
2869 
2870 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2871 					     void *context, int vl, int mode,
2872 					     u64 data)
2873 {
2874 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2875 
2876 	return dd->send_pio_err_status_cnt[27];
2877 }
2878 
2879 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2880 					     void *context, int vl, int mode,
2881 					     u64 data)
2882 {
2883 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2884 
2885 	return dd->send_pio_err_status_cnt[26];
2886 }
2887 
2888 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2889 						void *context, int vl,
2890 						int mode, u64 data)
2891 {
2892 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2893 
2894 	return dd->send_pio_err_status_cnt[25];
2895 }
2896 
2897 static u64 access_pio_block_qw_count_parity_err_cnt(
2898 				const struct cntr_entry *entry,
2899 				void *context, int vl, int mode, u64 data)
2900 {
2901 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2902 
2903 	return dd->send_pio_err_status_cnt[24];
2904 }
2905 
2906 static u64 access_pio_write_qw_valid_parity_err_cnt(
2907 				const struct cntr_entry *entry,
2908 				void *context, int vl, int mode, u64 data)
2909 {
2910 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2911 
2912 	return dd->send_pio_err_status_cnt[23];
2913 }
2914 
2915 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2916 					    void *context, int vl, int mode,
2917 					    u64 data)
2918 {
2919 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2920 
2921 	return dd->send_pio_err_status_cnt[22];
2922 }
2923 
2924 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2925 						void *context, int vl,
2926 						int mode, u64 data)
2927 {
2928 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2929 
2930 	return dd->send_pio_err_status_cnt[21];
2931 }
2932 
2933 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2934 						void *context, int vl,
2935 						int mode, u64 data)
2936 {
2937 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2938 
2939 	return dd->send_pio_err_status_cnt[20];
2940 }
2941 
2942 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2943 						void *context, int vl,
2944 						int mode, u64 data)
2945 {
2946 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2947 
2948 	return dd->send_pio_err_status_cnt[19];
2949 }
2950 
2951 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2952 				const struct cntr_entry *entry,
2953 				void *context, int vl, int mode, u64 data)
2954 {
2955 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2956 
2957 	return dd->send_pio_err_status_cnt[18];
2958 }
2959 
2960 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2961 					 void *context, int vl, int mode,
2962 					 u64 data)
2963 {
2964 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2965 
2966 	return dd->send_pio_err_status_cnt[17];
2967 }
2968 
2969 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2970 					    void *context, int vl, int mode,
2971 					    u64 data)
2972 {
2973 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2974 
2975 	return dd->send_pio_err_status_cnt[16];
2976 }
2977 
2978 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2979 				const struct cntr_entry *entry,
2980 				void *context, int vl, int mode, u64 data)
2981 {
2982 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2983 
2984 	return dd->send_pio_err_status_cnt[15];
2985 }
2986 
2987 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2988 				const struct cntr_entry *entry,
2989 				void *context, int vl, int mode, u64 data)
2990 {
2991 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2992 
2993 	return dd->send_pio_err_status_cnt[14];
2994 }
2995 
2996 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2997 				const struct cntr_entry *entry,
2998 				void *context, int vl, int mode, u64 data)
2999 {
3000 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3001 
3002 	return dd->send_pio_err_status_cnt[13];
3003 }
3004 
3005 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3006 				const struct cntr_entry *entry,
3007 				void *context, int vl, int mode, u64 data)
3008 {
3009 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3010 
3011 	return dd->send_pio_err_status_cnt[12];
3012 }
3013 
3014 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3015 				const struct cntr_entry *entry,
3016 				void *context, int vl, int mode, u64 data)
3017 {
3018 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3019 
3020 	return dd->send_pio_err_status_cnt[11];
3021 }
3022 
3023 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3024 				const struct cntr_entry *entry,
3025 				void *context, int vl, int mode, u64 data)
3026 {
3027 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3028 
3029 	return dd->send_pio_err_status_cnt[10];
3030 }
3031 
3032 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3033 				const struct cntr_entry *entry,
3034 				void *context, int vl, int mode, u64 data)
3035 {
3036 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3037 
3038 	return dd->send_pio_err_status_cnt[9];
3039 }
3040 
3041 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3042 				const struct cntr_entry *entry,
3043 				void *context, int vl, int mode, u64 data)
3044 {
3045 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3046 
3047 	return dd->send_pio_err_status_cnt[8];
3048 }
3049 
3050 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3051 				const struct cntr_entry *entry,
3052 				void *context, int vl, int mode, u64 data)
3053 {
3054 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3055 
3056 	return dd->send_pio_err_status_cnt[7];
3057 }
3058 
3059 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3060 					      void *context, int vl, int mode,
3061 					      u64 data)
3062 {
3063 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3064 
3065 	return dd->send_pio_err_status_cnt[6];
3066 }
3067 
3068 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3069 					      void *context, int vl, int mode,
3070 					      u64 data)
3071 {
3072 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3073 
3074 	return dd->send_pio_err_status_cnt[5];
3075 }
3076 
3077 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3078 					   void *context, int vl, int mode,
3079 					   u64 data)
3080 {
3081 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3082 
3083 	return dd->send_pio_err_status_cnt[4];
3084 }
3085 
3086 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3087 					   void *context, int vl, int mode,
3088 					   u64 data)
3089 {
3090 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3091 
3092 	return dd->send_pio_err_status_cnt[3];
3093 }
3094 
3095 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3096 					 void *context, int vl, int mode,
3097 					 u64 data)
3098 {
3099 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3100 
3101 	return dd->send_pio_err_status_cnt[2];
3102 }
3103 
3104 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3105 						void *context, int vl,
3106 						int mode, u64 data)
3107 {
3108 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3109 
3110 	return dd->send_pio_err_status_cnt[1];
3111 }
3112 
3113 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3114 					     void *context, int vl, int mode,
3115 					     u64 data)
3116 {
3117 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3118 
3119 	return dd->send_pio_err_status_cnt[0];
3120 }
3121 
3122 /*
3123  * Software counters corresponding to each of the
3124  * error status bits within SendDmaErrStatus
3125  */
3126 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3127 				const struct cntr_entry *entry,
3128 				void *context, int vl, int mode, u64 data)
3129 {
3130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3131 
3132 	return dd->send_dma_err_status_cnt[3];
3133 }
3134 
3135 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3136 				const struct cntr_entry *entry,
3137 				void *context, int vl, int mode, u64 data)
3138 {
3139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3140 
3141 	return dd->send_dma_err_status_cnt[2];
3142 }
3143 
3144 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3145 					  void *context, int vl, int mode,
3146 					  u64 data)
3147 {
3148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3149 
3150 	return dd->send_dma_err_status_cnt[1];
3151 }
3152 
3153 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3154 				       void *context, int vl, int mode,
3155 				       u64 data)
3156 {
3157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3158 
3159 	return dd->send_dma_err_status_cnt[0];
3160 }
3161 
3162 /*
3163  * Software counters corresponding to each of the
3164  * error status bits within SendEgressErrStatus
3165  */
3166 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3167 				const struct cntr_entry *entry,
3168 				void *context, int vl, int mode, u64 data)
3169 {
3170 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3171 
3172 	return dd->send_egress_err_status_cnt[63];
3173 }
3174 
3175 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3176 				const struct cntr_entry *entry,
3177 				void *context, int vl, int mode, u64 data)
3178 {
3179 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3180 
3181 	return dd->send_egress_err_status_cnt[62];
3182 }
3183 
3184 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3185 					     void *context, int vl, int mode,
3186 					     u64 data)
3187 {
3188 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3189 
3190 	return dd->send_egress_err_status_cnt[61];
3191 }
3192 
3193 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3194 						 void *context, int vl,
3195 						 int mode, u64 data)
3196 {
3197 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3198 
3199 	return dd->send_egress_err_status_cnt[60];
3200 }
3201 
3202 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3203 				const struct cntr_entry *entry,
3204 				void *context, int vl, int mode, u64 data)
3205 {
3206 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3207 
3208 	return dd->send_egress_err_status_cnt[59];
3209 }
3210 
3211 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3212 					void *context, int vl, int mode,
3213 					u64 data)
3214 {
3215 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3216 
3217 	return dd->send_egress_err_status_cnt[58];
3218 }
3219 
3220 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3221 					    void *context, int vl, int mode,
3222 					    u64 data)
3223 {
3224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3225 
3226 	return dd->send_egress_err_status_cnt[57];
3227 }
3228 
3229 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3230 					      void *context, int vl, int mode,
3231 					      u64 data)
3232 {
3233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3234 
3235 	return dd->send_egress_err_status_cnt[56];
3236 }
3237 
3238 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3239 					      void *context, int vl, int mode,
3240 					      u64 data)
3241 {
3242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3243 
3244 	return dd->send_egress_err_status_cnt[55];
3245 }
3246 
3247 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3248 					      void *context, int vl, int mode,
3249 					      u64 data)
3250 {
3251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3252 
3253 	return dd->send_egress_err_status_cnt[54];
3254 }
3255 
3256 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3257 					      void *context, int vl, int mode,
3258 					      u64 data)
3259 {
3260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3261 
3262 	return dd->send_egress_err_status_cnt[53];
3263 }
3264 
3265 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3266 					      void *context, int vl, int mode,
3267 					      u64 data)
3268 {
3269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3270 
3271 	return dd->send_egress_err_status_cnt[52];
3272 }
3273 
3274 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3275 					      void *context, int vl, int mode,
3276 					      u64 data)
3277 {
3278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3279 
3280 	return dd->send_egress_err_status_cnt[51];
3281 }
3282 
3283 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3284 					      void *context, int vl, int mode,
3285 					      u64 data)
3286 {
3287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3288 
3289 	return dd->send_egress_err_status_cnt[50];
3290 }
3291 
3292 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3293 					      void *context, int vl, int mode,
3294 					      u64 data)
3295 {
3296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3297 
3298 	return dd->send_egress_err_status_cnt[49];
3299 }
3300 
3301 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3302 					      void *context, int vl, int mode,
3303 					      u64 data)
3304 {
3305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3306 
3307 	return dd->send_egress_err_status_cnt[48];
3308 }
3309 
3310 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3311 					      void *context, int vl, int mode,
3312 					      u64 data)
3313 {
3314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3315 
3316 	return dd->send_egress_err_status_cnt[47];
3317 }
3318 
3319 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3320 					    void *context, int vl, int mode,
3321 					    u64 data)
3322 {
3323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3324 
3325 	return dd->send_egress_err_status_cnt[46];
3326 }
3327 
3328 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3329 					     void *context, int vl, int mode,
3330 					     u64 data)
3331 {
3332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3333 
3334 	return dd->send_egress_err_status_cnt[45];
3335 }
3336 
3337 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3338 						 void *context, int vl,
3339 						 int mode, u64 data)
3340 {
3341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3342 
3343 	return dd->send_egress_err_status_cnt[44];
3344 }
3345 
3346 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3347 				const struct cntr_entry *entry,
3348 				void *context, int vl, int mode, u64 data)
3349 {
3350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3351 
3352 	return dd->send_egress_err_status_cnt[43];
3353 }
3354 
3355 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3356 					void *context, int vl, int mode,
3357 					u64 data)
3358 {
3359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3360 
3361 	return dd->send_egress_err_status_cnt[42];
3362 }
3363 
3364 static u64 access_tx_credit_return_partiy_err_cnt(
3365 				const struct cntr_entry *entry,
3366 				void *context, int vl, int mode, u64 data)
3367 {
3368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3369 
3370 	return dd->send_egress_err_status_cnt[41];
3371 }
3372 
3373 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3374 				const struct cntr_entry *entry,
3375 				void *context, int vl, int mode, u64 data)
3376 {
3377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3378 
3379 	return dd->send_egress_err_status_cnt[40];
3380 }
3381 
3382 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3383 				const struct cntr_entry *entry,
3384 				void *context, int vl, int mode, u64 data)
3385 {
3386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3387 
3388 	return dd->send_egress_err_status_cnt[39];
3389 }
3390 
3391 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3392 				const struct cntr_entry *entry,
3393 				void *context, int vl, int mode, u64 data)
3394 {
3395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3396 
3397 	return dd->send_egress_err_status_cnt[38];
3398 }
3399 
3400 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3401 				const struct cntr_entry *entry,
3402 				void *context, int vl, int mode, u64 data)
3403 {
3404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3405 
3406 	return dd->send_egress_err_status_cnt[37];
3407 }
3408 
3409 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3410 				const struct cntr_entry *entry,
3411 				void *context, int vl, int mode, u64 data)
3412 {
3413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3414 
3415 	return dd->send_egress_err_status_cnt[36];
3416 }
3417 
3418 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3419 				const struct cntr_entry *entry,
3420 				void *context, int vl, int mode, u64 data)
3421 {
3422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3423 
3424 	return dd->send_egress_err_status_cnt[35];
3425 }
3426 
3427 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3428 				const struct cntr_entry *entry,
3429 				void *context, int vl, int mode, u64 data)
3430 {
3431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3432 
3433 	return dd->send_egress_err_status_cnt[34];
3434 }
3435 
3436 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3437 				const struct cntr_entry *entry,
3438 				void *context, int vl, int mode, u64 data)
3439 {
3440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3441 
3442 	return dd->send_egress_err_status_cnt[33];
3443 }
3444 
3445 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3446 				const struct cntr_entry *entry,
3447 				void *context, int vl, int mode, u64 data)
3448 {
3449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3450 
3451 	return dd->send_egress_err_status_cnt[32];
3452 }
3453 
3454 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3455 				const struct cntr_entry *entry,
3456 				void *context, int vl, int mode, u64 data)
3457 {
3458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3459 
3460 	return dd->send_egress_err_status_cnt[31];
3461 }
3462 
3463 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3464 				const struct cntr_entry *entry,
3465 				void *context, int vl, int mode, u64 data)
3466 {
3467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3468 
3469 	return dd->send_egress_err_status_cnt[30];
3470 }
3471 
3472 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3473 				const struct cntr_entry *entry,
3474 				void *context, int vl, int mode, u64 data)
3475 {
3476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3477 
3478 	return dd->send_egress_err_status_cnt[29];
3479 }
3480 
3481 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3482 				const struct cntr_entry *entry,
3483 				void *context, int vl, int mode, u64 data)
3484 {
3485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3486 
3487 	return dd->send_egress_err_status_cnt[28];
3488 }
3489 
3490 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3491 				const struct cntr_entry *entry,
3492 				void *context, int vl, int mode, u64 data)
3493 {
3494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3495 
3496 	return dd->send_egress_err_status_cnt[27];
3497 }
3498 
3499 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3500 				const struct cntr_entry *entry,
3501 				void *context, int vl, int mode, u64 data)
3502 {
3503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3504 
3505 	return dd->send_egress_err_status_cnt[26];
3506 }
3507 
3508 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3509 				const struct cntr_entry *entry,
3510 				void *context, int vl, int mode, u64 data)
3511 {
3512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3513 
3514 	return dd->send_egress_err_status_cnt[25];
3515 }
3516 
3517 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3518 				const struct cntr_entry *entry,
3519 				void *context, int vl, int mode, u64 data)
3520 {
3521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3522 
3523 	return dd->send_egress_err_status_cnt[24];
3524 }
3525 
3526 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3527 				const struct cntr_entry *entry,
3528 				void *context, int vl, int mode, u64 data)
3529 {
3530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3531 
3532 	return dd->send_egress_err_status_cnt[23];
3533 }
3534 
3535 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3536 				const struct cntr_entry *entry,
3537 				void *context, int vl, int mode, u64 data)
3538 {
3539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3540 
3541 	return dd->send_egress_err_status_cnt[22];
3542 }
3543 
3544 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3545 				const struct cntr_entry *entry,
3546 				void *context, int vl, int mode, u64 data)
3547 {
3548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3549 
3550 	return dd->send_egress_err_status_cnt[21];
3551 }
3552 
3553 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3554 				const struct cntr_entry *entry,
3555 				void *context, int vl, int mode, u64 data)
3556 {
3557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3558 
3559 	return dd->send_egress_err_status_cnt[20];
3560 }
3561 
3562 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3563 				const struct cntr_entry *entry,
3564 				void *context, int vl, int mode, u64 data)
3565 {
3566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3567 
3568 	return dd->send_egress_err_status_cnt[19];
3569 }
3570 
3571 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3572 				const struct cntr_entry *entry,
3573 				void *context, int vl, int mode, u64 data)
3574 {
3575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3576 
3577 	return dd->send_egress_err_status_cnt[18];
3578 }
3579 
3580 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3581 				const struct cntr_entry *entry,
3582 				void *context, int vl, int mode, u64 data)
3583 {
3584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3585 
3586 	return dd->send_egress_err_status_cnt[17];
3587 }
3588 
3589 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3590 				const struct cntr_entry *entry,
3591 				void *context, int vl, int mode, u64 data)
3592 {
3593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3594 
3595 	return dd->send_egress_err_status_cnt[16];
3596 }
3597 
3598 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3599 					   void *context, int vl, int mode,
3600 					   u64 data)
3601 {
3602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3603 
3604 	return dd->send_egress_err_status_cnt[15];
3605 }
3606 
3607 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3608 						 void *context, int vl,
3609 						 int mode, u64 data)
3610 {
3611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3612 
3613 	return dd->send_egress_err_status_cnt[14];
3614 }
3615 
3616 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3617 					       void *context, int vl, int mode,
3618 					       u64 data)
3619 {
3620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3621 
3622 	return dd->send_egress_err_status_cnt[13];
3623 }
3624 
3625 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3626 					void *context, int vl, int mode,
3627 					u64 data)
3628 {
3629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3630 
3631 	return dd->send_egress_err_status_cnt[12];
3632 }
3633 
3634 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3635 				const struct cntr_entry *entry,
3636 				void *context, int vl, int mode, u64 data)
3637 {
3638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3639 
3640 	return dd->send_egress_err_status_cnt[11];
3641 }
3642 
3643 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3644 					     void *context, int vl, int mode,
3645 					     u64 data)
3646 {
3647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3648 
3649 	return dd->send_egress_err_status_cnt[10];
3650 }
3651 
3652 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3653 					    void *context, int vl, int mode,
3654 					    u64 data)
3655 {
3656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3657 
3658 	return dd->send_egress_err_status_cnt[9];
3659 }
3660 
3661 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3662 				const struct cntr_entry *entry,
3663 				void *context, int vl, int mode, u64 data)
3664 {
3665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3666 
3667 	return dd->send_egress_err_status_cnt[8];
3668 }
3669 
3670 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3671 				const struct cntr_entry *entry,
3672 				void *context, int vl, int mode, u64 data)
3673 {
3674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3675 
3676 	return dd->send_egress_err_status_cnt[7];
3677 }
3678 
3679 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3680 					    void *context, int vl, int mode,
3681 					    u64 data)
3682 {
3683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3684 
3685 	return dd->send_egress_err_status_cnt[6];
3686 }
3687 
3688 static u64 access_tx_incorrect_link_state_err_cnt(
3689 				const struct cntr_entry *entry,
3690 				void *context, int vl, int mode, u64 data)
3691 {
3692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3693 
3694 	return dd->send_egress_err_status_cnt[5];
3695 }
3696 
3697 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3698 				      void *context, int vl, int mode,
3699 				      u64 data)
3700 {
3701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3702 
3703 	return dd->send_egress_err_status_cnt[4];
3704 }
3705 
3706 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3707 				const struct cntr_entry *entry,
3708 				void *context, int vl, int mode, u64 data)
3709 {
3710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3711 
3712 	return dd->send_egress_err_status_cnt[3];
3713 }
3714 
3715 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3716 					    void *context, int vl, int mode,
3717 					    u64 data)
3718 {
3719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3720 
3721 	return dd->send_egress_err_status_cnt[2];
3722 }
3723 
3724 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3725 				const struct cntr_entry *entry,
3726 				void *context, int vl, int mode, u64 data)
3727 {
3728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3729 
3730 	return dd->send_egress_err_status_cnt[1];
3731 }
3732 
3733 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3734 				const struct cntr_entry *entry,
3735 				void *context, int vl, int mode, u64 data)
3736 {
3737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3738 
3739 	return dd->send_egress_err_status_cnt[0];
3740 }
3741 
3742 /*
3743  * Software counters corresponding to each of the
3744  * error status bits within SendErrStatus
3745  */
3746 static u64 access_send_csr_write_bad_addr_err_cnt(
3747 				const struct cntr_entry *entry,
3748 				void *context, int vl, int mode, u64 data)
3749 {
3750 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3751 
3752 	return dd->send_err_status_cnt[2];
3753 }
3754 
3755 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3756 						 void *context, int vl,
3757 						 int mode, u64 data)
3758 {
3759 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3760 
3761 	return dd->send_err_status_cnt[1];
3762 }
3763 
3764 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3765 				      void *context, int vl, int mode,
3766 				      u64 data)
3767 {
3768 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3769 
3770 	return dd->send_err_status_cnt[0];
3771 }
3772 
3773 /*
3774  * Software counters corresponding to each of the
3775  * error status bits within SendCtxtErrStatus
3776  */
3777 static u64 access_pio_write_out_of_bounds_err_cnt(
3778 				const struct cntr_entry *entry,
3779 				void *context, int vl, int mode, u64 data)
3780 {
3781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3782 
3783 	return dd->sw_ctxt_err_status_cnt[4];
3784 }
3785 
3786 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3787 					     void *context, int vl, int mode,
3788 					     u64 data)
3789 {
3790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3791 
3792 	return dd->sw_ctxt_err_status_cnt[3];
3793 }
3794 
3795 static u64 access_pio_write_crosses_boundary_err_cnt(
3796 				const struct cntr_entry *entry,
3797 				void *context, int vl, int mode, u64 data)
3798 {
3799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3800 
3801 	return dd->sw_ctxt_err_status_cnt[2];
3802 }
3803 
3804 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3805 						void *context, int vl,
3806 						int mode, u64 data)
3807 {
3808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3809 
3810 	return dd->sw_ctxt_err_status_cnt[1];
3811 }
3812 
3813 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3814 					       void *context, int vl, int mode,
3815 					       u64 data)
3816 {
3817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3818 
3819 	return dd->sw_ctxt_err_status_cnt[0];
3820 }
3821 
3822 /*
3823  * Software counters corresponding to each of the
3824  * error status bits within SendDmaEngErrStatus
3825  */
3826 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3827 				const struct cntr_entry *entry,
3828 				void *context, int vl, int mode, u64 data)
3829 {
3830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3831 
3832 	return dd->sw_send_dma_eng_err_status_cnt[23];
3833 }
3834 
3835 static u64 access_sdma_header_storage_cor_err_cnt(
3836 				const struct cntr_entry *entry,
3837 				void *context, int vl, int mode, u64 data)
3838 {
3839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3840 
3841 	return dd->sw_send_dma_eng_err_status_cnt[22];
3842 }
3843 
3844 static u64 access_sdma_packet_tracking_cor_err_cnt(
3845 				const struct cntr_entry *entry,
3846 				void *context, int vl, int mode, u64 data)
3847 {
3848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3849 
3850 	return dd->sw_send_dma_eng_err_status_cnt[21];
3851 }
3852 
3853 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3854 					    void *context, int vl, int mode,
3855 					    u64 data)
3856 {
3857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3858 
3859 	return dd->sw_send_dma_eng_err_status_cnt[20];
3860 }
3861 
3862 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3863 					      void *context, int vl, int mode,
3864 					      u64 data)
3865 {
3866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3867 
3868 	return dd->sw_send_dma_eng_err_status_cnt[19];
3869 }
3870 
3871 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3872 				const struct cntr_entry *entry,
3873 				void *context, int vl, int mode, u64 data)
3874 {
3875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3876 
3877 	return dd->sw_send_dma_eng_err_status_cnt[18];
3878 }
3879 
3880 static u64 access_sdma_header_storage_unc_err_cnt(
3881 				const struct cntr_entry *entry,
3882 				void *context, int vl, int mode, u64 data)
3883 {
3884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3885 
3886 	return dd->sw_send_dma_eng_err_status_cnt[17];
3887 }
3888 
3889 static u64 access_sdma_packet_tracking_unc_err_cnt(
3890 				const struct cntr_entry *entry,
3891 				void *context, int vl, int mode, u64 data)
3892 {
3893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3894 
3895 	return dd->sw_send_dma_eng_err_status_cnt[16];
3896 }
3897 
3898 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3899 					    void *context, int vl, int mode,
3900 					    u64 data)
3901 {
3902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3903 
3904 	return dd->sw_send_dma_eng_err_status_cnt[15];
3905 }
3906 
3907 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3908 					      void *context, int vl, int mode,
3909 					      u64 data)
3910 {
3911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3912 
3913 	return dd->sw_send_dma_eng_err_status_cnt[14];
3914 }
3915 
3916 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3917 				       void *context, int vl, int mode,
3918 				       u64 data)
3919 {
3920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3921 
3922 	return dd->sw_send_dma_eng_err_status_cnt[13];
3923 }
3924 
3925 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3926 					     void *context, int vl, int mode,
3927 					     u64 data)
3928 {
3929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3930 
3931 	return dd->sw_send_dma_eng_err_status_cnt[12];
3932 }
3933 
3934 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3935 					      void *context, int vl, int mode,
3936 					      u64 data)
3937 {
3938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3939 
3940 	return dd->sw_send_dma_eng_err_status_cnt[11];
3941 }
3942 
3943 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3944 					     void *context, int vl, int mode,
3945 					     u64 data)
3946 {
3947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3948 
3949 	return dd->sw_send_dma_eng_err_status_cnt[10];
3950 }
3951 
3952 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3953 					  void *context, int vl, int mode,
3954 					  u64 data)
3955 {
3956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3957 
3958 	return dd->sw_send_dma_eng_err_status_cnt[9];
3959 }
3960 
3961 static u64 access_sdma_packet_desc_overflow_err_cnt(
3962 				const struct cntr_entry *entry,
3963 				void *context, int vl, int mode, u64 data)
3964 {
3965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3966 
3967 	return dd->sw_send_dma_eng_err_status_cnt[8];
3968 }
3969 
3970 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3971 					       void *context, int vl,
3972 					       int mode, u64 data)
3973 {
3974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3975 
3976 	return dd->sw_send_dma_eng_err_status_cnt[7];
3977 }
3978 
3979 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3980 				    void *context, int vl, int mode, u64 data)
3981 {
3982 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3983 
3984 	return dd->sw_send_dma_eng_err_status_cnt[6];
3985 }
3986 
3987 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3988 					void *context, int vl, int mode,
3989 					u64 data)
3990 {
3991 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3992 
3993 	return dd->sw_send_dma_eng_err_status_cnt[5];
3994 }
3995 
3996 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3997 					  void *context, int vl, int mode,
3998 					  u64 data)
3999 {
4000 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4001 
4002 	return dd->sw_send_dma_eng_err_status_cnt[4];
4003 }
4004 
4005 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4006 				const struct cntr_entry *entry,
4007 				void *context, int vl, int mode, u64 data)
4008 {
4009 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4010 
4011 	return dd->sw_send_dma_eng_err_status_cnt[3];
4012 }
4013 
4014 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4015 					void *context, int vl, int mode,
4016 					u64 data)
4017 {
4018 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4019 
4020 	return dd->sw_send_dma_eng_err_status_cnt[2];
4021 }
4022 
4023 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4024 					    void *context, int vl, int mode,
4025 					    u64 data)
4026 {
4027 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4028 
4029 	return dd->sw_send_dma_eng_err_status_cnt[1];
4030 }
4031 
4032 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4033 					void *context, int vl, int mode,
4034 					u64 data)
4035 {
4036 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4037 
4038 	return dd->sw_send_dma_eng_err_status_cnt[0];
4039 }
4040 
4041 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4042 				 void *context, int vl, int mode,
4043 				 u64 data)
4044 {
4045 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4046 
4047 	u64 val = 0;
4048 	u64 csr = entry->csr;
4049 
4050 	val = read_write_csr(dd, csr, mode, data);
4051 	if (mode == CNTR_MODE_R) {
4052 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4053 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4054 	} else if (mode == CNTR_MODE_W) {
4055 		dd->sw_rcv_bypass_packet_errors = 0;
4056 	} else {
4057 		dd_dev_err(dd, "Invalid cntr register access mode");
4058 		return 0;
4059 	}
4060 	return val;
4061 }
4062 
4063 #define def_access_sw_cpu(cntr) \
4064 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4065 			      void *context, int vl, int mode, u64 data)      \
4066 {									      \
4067 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4068 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4069 			      ppd->ibport_data.rvp.cntr, vl,		      \
4070 			      mode, data);				      \
4071 }
4072 
4073 def_access_sw_cpu(rc_acks);
4074 def_access_sw_cpu(rc_qacks);
4075 def_access_sw_cpu(rc_delayed_comp);
4076 
4077 #define def_access_ibp_counter(cntr) \
4078 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4079 				void *context, int vl, int mode, u64 data)    \
4080 {									      \
4081 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4082 									      \
4083 	if (vl != CNTR_INVALID_VL)					      \
4084 		return 0;						      \
4085 									      \
4086 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4087 			     mode, data);				      \
4088 }
4089 
4090 def_access_ibp_counter(loop_pkts);
4091 def_access_ibp_counter(rc_resends);
4092 def_access_ibp_counter(rnr_naks);
4093 def_access_ibp_counter(other_naks);
4094 def_access_ibp_counter(rc_timeouts);
4095 def_access_ibp_counter(pkt_drops);
4096 def_access_ibp_counter(dmawait);
4097 def_access_ibp_counter(rc_seqnak);
4098 def_access_ibp_counter(rc_dupreq);
4099 def_access_ibp_counter(rdma_seq);
4100 def_access_ibp_counter(unaligned);
4101 def_access_ibp_counter(seq_naks);
4102 
4103 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4104 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4105 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4106 			CNTR_NORMAL),
4107 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4108 			CNTR_NORMAL),
4109 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4110 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4111 			CNTR_NORMAL),
4112 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4113 			CNTR_NORMAL),
4114 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4115 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4116 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4117 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4118 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4119 			CNTR_NORMAL),
4120 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4121 			CNTR_NORMAL),
4122 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4123 			CNTR_NORMAL),
4124 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4125 			CNTR_NORMAL),
4126 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4127 			CNTR_NORMAL),
4128 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4129 			CNTR_NORMAL),
4130 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4131 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4132 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4133 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4134 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4135 			      CNTR_SYNTH),
4136 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4137 			    access_dc_rcv_err_cnt),
4138 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4139 				 CNTR_SYNTH),
4140 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4141 				  CNTR_SYNTH),
4142 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4143 				  CNTR_SYNTH),
4144 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4145 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4146 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4147 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4148 				  CNTR_SYNTH),
4149 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4150 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4151 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4152 			       CNTR_SYNTH),
4153 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4154 			      CNTR_SYNTH),
4155 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4156 			       CNTR_SYNTH),
4157 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4158 				 CNTR_SYNTH),
4159 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4160 				CNTR_SYNTH),
4161 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4162 				CNTR_SYNTH),
4163 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4164 			       CNTR_SYNTH),
4165 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4166 				 CNTR_SYNTH | CNTR_VL),
4167 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4168 				CNTR_SYNTH | CNTR_VL),
4169 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4170 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4171 				 CNTR_SYNTH | CNTR_VL),
4172 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4173 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4174 				 CNTR_SYNTH | CNTR_VL),
4175 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4176 			      CNTR_SYNTH),
4177 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4178 				 CNTR_SYNTH | CNTR_VL),
4179 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4180 				CNTR_SYNTH),
4181 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4182 				   CNTR_SYNTH | CNTR_VL),
4183 [C_DC_TOTAL_CRC] =
4184 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4185 			 CNTR_SYNTH),
4186 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4187 				  CNTR_SYNTH),
4188 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4189 				  CNTR_SYNTH),
4190 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4191 				  CNTR_SYNTH),
4192 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4193 				  CNTR_SYNTH),
4194 [C_DC_CRC_MULT_LN] =
4195 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4196 			 CNTR_SYNTH),
4197 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4198 				    CNTR_SYNTH),
4199 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4200 				    CNTR_SYNTH),
4201 [C_DC_SEQ_CRC_CNT] =
4202 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4203 			 CNTR_SYNTH),
4204 [C_DC_ESC0_ONLY_CNT] =
4205 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4206 			 CNTR_SYNTH),
4207 [C_DC_ESC0_PLUS1_CNT] =
4208 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4209 			 CNTR_SYNTH),
4210 [C_DC_ESC0_PLUS2_CNT] =
4211 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4212 			 CNTR_SYNTH),
4213 [C_DC_REINIT_FROM_PEER_CNT] =
4214 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4215 			 CNTR_SYNTH),
4216 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4217 				  CNTR_SYNTH),
4218 [C_DC_MISC_FLG_CNT] =
4219 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4220 			 CNTR_SYNTH),
4221 [C_DC_PRF_GOOD_LTP_CNT] =
4222 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4223 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4224 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4225 			 CNTR_SYNTH),
4226 [C_DC_PRF_RX_FLIT_CNT] =
4227 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4228 [C_DC_PRF_TX_FLIT_CNT] =
4229 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4230 [C_DC_PRF_CLK_CNTR] =
4231 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4232 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4233 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4234 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4235 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4236 			 CNTR_SYNTH),
4237 [C_DC_PG_STS_TX_SBE_CNT] =
4238 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4239 [C_DC_PG_STS_TX_MBE_CNT] =
4240 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4241 			 CNTR_SYNTH),
4242 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4243 			    access_sw_cpu_intr),
4244 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4245 			    access_sw_cpu_rcv_limit),
4246 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4247 			    access_sw_vtx_wait),
4248 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4249 			    access_sw_pio_wait),
4250 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4251 			    access_sw_pio_drain),
4252 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4253 			    access_sw_kmem_wait),
4254 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4255 			    access_sw_send_schedule),
4256 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4257 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4258 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4259 				      dev_access_u32_csr),
4260 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4261 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4262 			     access_sde_int_cnt),
4263 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4264 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4265 			     access_sde_err_cnt),
4266 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4267 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4268 				  access_sde_idle_int_cnt),
4269 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4270 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4271 				      access_sde_progress_int_cnt),
4272 /* MISC_ERR_STATUS */
4273 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4274 				CNTR_NORMAL,
4275 				access_misc_pll_lock_fail_err_cnt),
4276 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4277 				CNTR_NORMAL,
4278 				access_misc_mbist_fail_err_cnt),
4279 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4280 				CNTR_NORMAL,
4281 				access_misc_invalid_eep_cmd_err_cnt),
4282 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4283 				CNTR_NORMAL,
4284 				access_misc_efuse_done_parity_err_cnt),
4285 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4286 				CNTR_NORMAL,
4287 				access_misc_efuse_write_err_cnt),
4288 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4289 				0, CNTR_NORMAL,
4290 				access_misc_efuse_read_bad_addr_err_cnt),
4291 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4292 				CNTR_NORMAL,
4293 				access_misc_efuse_csr_parity_err_cnt),
4294 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4295 				CNTR_NORMAL,
4296 				access_misc_fw_auth_failed_err_cnt),
4297 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4298 				CNTR_NORMAL,
4299 				access_misc_key_mismatch_err_cnt),
4300 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4301 				CNTR_NORMAL,
4302 				access_misc_sbus_write_failed_err_cnt),
4303 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4304 				CNTR_NORMAL,
4305 				access_misc_csr_write_bad_addr_err_cnt),
4306 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4307 				CNTR_NORMAL,
4308 				access_misc_csr_read_bad_addr_err_cnt),
4309 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4310 				CNTR_NORMAL,
4311 				access_misc_csr_parity_err_cnt),
4312 /* CceErrStatus */
4313 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_sw_cce_err_status_aggregated_cnt),
4316 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4317 				CNTR_NORMAL,
4318 				access_cce_msix_csr_parity_err_cnt),
4319 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4320 				CNTR_NORMAL,
4321 				access_cce_int_map_unc_err_cnt),
4322 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4323 				CNTR_NORMAL,
4324 				access_cce_int_map_cor_err_cnt),
4325 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4326 				CNTR_NORMAL,
4327 				access_cce_msix_table_unc_err_cnt),
4328 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4329 				CNTR_NORMAL,
4330 				access_cce_msix_table_cor_err_cnt),
4331 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4332 				0, CNTR_NORMAL,
4333 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4334 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4335 				0, CNTR_NORMAL,
4336 				access_cce_rcpl_async_fifo_parity_err_cnt),
4337 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4338 				CNTR_NORMAL,
4339 				access_cce_seg_write_bad_addr_err_cnt),
4340 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4341 				CNTR_NORMAL,
4342 				access_cce_seg_read_bad_addr_err_cnt),
4343 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4344 				CNTR_NORMAL,
4345 				access_la_triggered_cnt),
4346 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4347 				CNTR_NORMAL,
4348 				access_cce_trgt_cpl_timeout_err_cnt),
4349 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4350 				CNTR_NORMAL,
4351 				access_pcic_receive_parity_err_cnt),
4352 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4353 				CNTR_NORMAL,
4354 				access_pcic_transmit_back_parity_err_cnt),
4355 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4356 				0, CNTR_NORMAL,
4357 				access_pcic_transmit_front_parity_err_cnt),
4358 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4359 				CNTR_NORMAL,
4360 				access_pcic_cpl_dat_q_unc_err_cnt),
4361 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4362 				CNTR_NORMAL,
4363 				access_pcic_cpl_hd_q_unc_err_cnt),
4364 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4365 				CNTR_NORMAL,
4366 				access_pcic_post_dat_q_unc_err_cnt),
4367 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4368 				CNTR_NORMAL,
4369 				access_pcic_post_hd_q_unc_err_cnt),
4370 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4371 				CNTR_NORMAL,
4372 				access_pcic_retry_sot_mem_unc_err_cnt),
4373 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4374 				CNTR_NORMAL,
4375 				access_pcic_retry_mem_unc_err),
4376 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4377 				CNTR_NORMAL,
4378 				access_pcic_n_post_dat_q_parity_err_cnt),
4379 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4380 				CNTR_NORMAL,
4381 				access_pcic_n_post_h_q_parity_err_cnt),
4382 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4383 				CNTR_NORMAL,
4384 				access_pcic_cpl_dat_q_cor_err_cnt),
4385 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4386 				CNTR_NORMAL,
4387 				access_pcic_cpl_hd_q_cor_err_cnt),
4388 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4389 				CNTR_NORMAL,
4390 				access_pcic_post_dat_q_cor_err_cnt),
4391 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4392 				CNTR_NORMAL,
4393 				access_pcic_post_hd_q_cor_err_cnt),
4394 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4395 				CNTR_NORMAL,
4396 				access_pcic_retry_sot_mem_cor_err_cnt),
4397 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4398 				CNTR_NORMAL,
4399 				access_pcic_retry_mem_cor_err_cnt),
4400 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4401 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4402 				CNTR_NORMAL,
4403 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4404 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4405 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4406 				CNTR_NORMAL,
4407 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4408 				),
4409 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4410 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4411 			CNTR_NORMAL,
4412 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4413 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4414 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4415 			CNTR_NORMAL,
4416 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4417 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4418 			0, CNTR_NORMAL,
4419 			access_cce_cli2_async_fifo_parity_err_cnt),
4420 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4421 			CNTR_NORMAL,
4422 			access_cce_csr_cfg_bus_parity_err_cnt),
4423 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4424 			0, CNTR_NORMAL,
4425 			access_cce_cli0_async_fifo_parity_err_cnt),
4426 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4427 			CNTR_NORMAL,
4428 			access_cce_rspd_data_parity_err_cnt),
4429 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4430 			CNTR_NORMAL,
4431 			access_cce_trgt_access_err_cnt),
4432 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4433 			0, CNTR_NORMAL,
4434 			access_cce_trgt_async_fifo_parity_err_cnt),
4435 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4436 			CNTR_NORMAL,
4437 			access_cce_csr_write_bad_addr_err_cnt),
4438 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4439 			CNTR_NORMAL,
4440 			access_cce_csr_read_bad_addr_err_cnt),
4441 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4442 			CNTR_NORMAL,
4443 			access_ccs_csr_parity_err_cnt),
4444 
4445 /* RcvErrStatus */
4446 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4447 			CNTR_NORMAL,
4448 			access_rx_csr_parity_err_cnt),
4449 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4450 			CNTR_NORMAL,
4451 			access_rx_csr_write_bad_addr_err_cnt),
4452 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4453 			CNTR_NORMAL,
4454 			access_rx_csr_read_bad_addr_err_cnt),
4455 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4456 			CNTR_NORMAL,
4457 			access_rx_dma_csr_unc_err_cnt),
4458 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4459 			CNTR_NORMAL,
4460 			access_rx_dma_dq_fsm_encoding_err_cnt),
4461 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4462 			CNTR_NORMAL,
4463 			access_rx_dma_eq_fsm_encoding_err_cnt),
4464 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4465 			CNTR_NORMAL,
4466 			access_rx_dma_csr_parity_err_cnt),
4467 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4468 			CNTR_NORMAL,
4469 			access_rx_rbuf_data_cor_err_cnt),
4470 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4471 			CNTR_NORMAL,
4472 			access_rx_rbuf_data_unc_err_cnt),
4473 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4474 			CNTR_NORMAL,
4475 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4476 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4477 			CNTR_NORMAL,
4478 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4479 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4480 			CNTR_NORMAL,
4481 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4482 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4483 			CNTR_NORMAL,
4484 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4485 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4486 			CNTR_NORMAL,
4487 			access_rx_rbuf_desc_part2_cor_err_cnt),
4488 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4489 			CNTR_NORMAL,
4490 			access_rx_rbuf_desc_part2_unc_err_cnt),
4491 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4492 			CNTR_NORMAL,
4493 			access_rx_rbuf_desc_part1_cor_err_cnt),
4494 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4495 			CNTR_NORMAL,
4496 			access_rx_rbuf_desc_part1_unc_err_cnt),
4497 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4498 			CNTR_NORMAL,
4499 			access_rx_hq_intr_fsm_err_cnt),
4500 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4501 			CNTR_NORMAL,
4502 			access_rx_hq_intr_csr_parity_err_cnt),
4503 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4504 			CNTR_NORMAL,
4505 			access_rx_lookup_csr_parity_err_cnt),
4506 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4507 			CNTR_NORMAL,
4508 			access_rx_lookup_rcv_array_cor_err_cnt),
4509 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4510 			CNTR_NORMAL,
4511 			access_rx_lookup_rcv_array_unc_err_cnt),
4512 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4513 			0, CNTR_NORMAL,
4514 			access_rx_lookup_des_part2_parity_err_cnt),
4515 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4516 			0, CNTR_NORMAL,
4517 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4518 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4519 			CNTR_NORMAL,
4520 			access_rx_lookup_des_part1_unc_err_cnt),
4521 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4522 			CNTR_NORMAL,
4523 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4524 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4525 			CNTR_NORMAL,
4526 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4527 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4528 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4529 			CNTR_NORMAL,
4530 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4531 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4532 			0, CNTR_NORMAL,
4533 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4534 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4535 			0, CNTR_NORMAL,
4536 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4537 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4538 			CNTR_NORMAL,
4539 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4540 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4541 			CNTR_NORMAL,
4542 			access_rx_rbuf_empty_err_cnt),
4543 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4544 			CNTR_NORMAL,
4545 			access_rx_rbuf_full_err_cnt),
4546 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4547 			CNTR_NORMAL,
4548 			access_rbuf_bad_lookup_err_cnt),
4549 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4550 			CNTR_NORMAL,
4551 			access_rbuf_ctx_id_parity_err_cnt),
4552 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4553 			CNTR_NORMAL,
4554 			access_rbuf_csr_qeopdw_parity_err_cnt),
4555 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4556 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4557 			CNTR_NORMAL,
4558 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4559 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4560 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4561 			CNTR_NORMAL,
4562 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4563 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4564 			0, CNTR_NORMAL,
4565 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4566 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4567 			0, CNTR_NORMAL,
4568 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4569 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4570 			0, 0, CNTR_NORMAL,
4571 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4572 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4573 			0, CNTR_NORMAL,
4574 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4575 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4576 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4577 			CNTR_NORMAL,
4578 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4579 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4580 			0, CNTR_NORMAL,
4581 			access_rx_rbuf_block_list_read_cor_err_cnt),
4582 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4583 			0, CNTR_NORMAL,
4584 			access_rx_rbuf_block_list_read_unc_err_cnt),
4585 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4586 			CNTR_NORMAL,
4587 			access_rx_rbuf_lookup_des_cor_err_cnt),
4588 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4589 			CNTR_NORMAL,
4590 			access_rx_rbuf_lookup_des_unc_err_cnt),
4591 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4592 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4593 			CNTR_NORMAL,
4594 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4595 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4596 			CNTR_NORMAL,
4597 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4598 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4599 			CNTR_NORMAL,
4600 			access_rx_rbuf_free_list_cor_err_cnt),
4601 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4602 			CNTR_NORMAL,
4603 			access_rx_rbuf_free_list_unc_err_cnt),
4604 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4605 			CNTR_NORMAL,
4606 			access_rx_rcv_fsm_encoding_err_cnt),
4607 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4608 			CNTR_NORMAL,
4609 			access_rx_dma_flag_cor_err_cnt),
4610 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4611 			CNTR_NORMAL,
4612 			access_rx_dma_flag_unc_err_cnt),
4613 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4614 			CNTR_NORMAL,
4615 			access_rx_dc_sop_eop_parity_err_cnt),
4616 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4617 			CNTR_NORMAL,
4618 			access_rx_rcv_csr_parity_err_cnt),
4619 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4620 			CNTR_NORMAL,
4621 			access_rx_rcv_qp_map_table_cor_err_cnt),
4622 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4623 			CNTR_NORMAL,
4624 			access_rx_rcv_qp_map_table_unc_err_cnt),
4625 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4626 			CNTR_NORMAL,
4627 			access_rx_rcv_data_cor_err_cnt),
4628 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4629 			CNTR_NORMAL,
4630 			access_rx_rcv_data_unc_err_cnt),
4631 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4632 			CNTR_NORMAL,
4633 			access_rx_rcv_hdr_cor_err_cnt),
4634 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4635 			CNTR_NORMAL,
4636 			access_rx_rcv_hdr_unc_err_cnt),
4637 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4638 			CNTR_NORMAL,
4639 			access_rx_dc_intf_parity_err_cnt),
4640 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4641 			CNTR_NORMAL,
4642 			access_rx_dma_csr_cor_err_cnt),
4643 /* SendPioErrStatus */
4644 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4645 			CNTR_NORMAL,
4646 			access_pio_pec_sop_head_parity_err_cnt),
4647 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4648 			CNTR_NORMAL,
4649 			access_pio_pcc_sop_head_parity_err_cnt),
4650 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4651 			0, 0, CNTR_NORMAL,
4652 			access_pio_last_returned_cnt_parity_err_cnt),
4653 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4654 			0, CNTR_NORMAL,
4655 			access_pio_current_free_cnt_parity_err_cnt),
4656 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4657 			CNTR_NORMAL,
4658 			access_pio_reserved_31_err_cnt),
4659 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4660 			CNTR_NORMAL,
4661 			access_pio_reserved_30_err_cnt),
4662 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4663 			CNTR_NORMAL,
4664 			access_pio_ppmc_sop_len_err_cnt),
4665 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4666 			CNTR_NORMAL,
4667 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4668 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4669 			CNTR_NORMAL,
4670 			access_pio_vl_fifo_parity_err_cnt),
4671 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4672 			CNTR_NORMAL,
4673 			access_pio_vlf_sop_parity_err_cnt),
4674 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4675 			CNTR_NORMAL,
4676 			access_pio_vlf_v1_len_parity_err_cnt),
4677 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4678 			CNTR_NORMAL,
4679 			access_pio_block_qw_count_parity_err_cnt),
4680 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4681 			CNTR_NORMAL,
4682 			access_pio_write_qw_valid_parity_err_cnt),
4683 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4684 			CNTR_NORMAL,
4685 			access_pio_state_machine_err_cnt),
4686 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4687 			CNTR_NORMAL,
4688 			access_pio_write_data_parity_err_cnt),
4689 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4690 			CNTR_NORMAL,
4691 			access_pio_host_addr_mem_cor_err_cnt),
4692 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4693 			CNTR_NORMAL,
4694 			access_pio_host_addr_mem_unc_err_cnt),
4695 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4696 			CNTR_NORMAL,
4697 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4698 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4699 			CNTR_NORMAL,
4700 			access_pio_init_sm_in_err_cnt),
4701 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4702 			CNTR_NORMAL,
4703 			access_pio_ppmc_pbl_fifo_err_cnt),
4704 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4705 			0, CNTR_NORMAL,
4706 			access_pio_credit_ret_fifo_parity_err_cnt),
4707 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4708 			CNTR_NORMAL,
4709 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4710 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4711 			CNTR_NORMAL,
4712 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4713 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4714 			CNTR_NORMAL,
4715 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4716 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4717 			CNTR_NORMAL,
4718 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4719 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4720 			CNTR_NORMAL,
4721 			access_pio_sm_pkt_reset_parity_err_cnt),
4722 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4723 			CNTR_NORMAL,
4724 			access_pio_pkt_evict_fifo_parity_err_cnt),
4725 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4726 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4729 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_pio_sbrdctl_crrel_parity_err_cnt),
4732 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_pio_pec_fifo_parity_err_cnt),
4735 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_pio_pcc_fifo_parity_err_cnt),
4738 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_pio_sb_mem_fifo1_err_cnt),
4741 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4742 			CNTR_NORMAL,
4743 			access_pio_sb_mem_fifo0_err_cnt),
4744 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4745 			CNTR_NORMAL,
4746 			access_pio_csr_parity_err_cnt),
4747 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4748 			CNTR_NORMAL,
4749 			access_pio_write_addr_parity_err_cnt),
4750 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4751 			CNTR_NORMAL,
4752 			access_pio_write_bad_ctxt_err_cnt),
4753 /* SendDmaErrStatus */
4754 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4755 			0, CNTR_NORMAL,
4756 			access_sdma_pcie_req_tracking_cor_err_cnt),
4757 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4758 			0, CNTR_NORMAL,
4759 			access_sdma_pcie_req_tracking_unc_err_cnt),
4760 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4761 			CNTR_NORMAL,
4762 			access_sdma_csr_parity_err_cnt),
4763 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4764 			CNTR_NORMAL,
4765 			access_sdma_rpy_tag_err_cnt),
4766 /* SendEgressErrStatus */
4767 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4768 			CNTR_NORMAL,
4769 			access_tx_read_pio_memory_csr_unc_err_cnt),
4770 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4771 			0, CNTR_NORMAL,
4772 			access_tx_read_sdma_memory_csr_err_cnt),
4773 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4774 			CNTR_NORMAL,
4775 			access_tx_egress_fifo_cor_err_cnt),
4776 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4777 			CNTR_NORMAL,
4778 			access_tx_read_pio_memory_cor_err_cnt),
4779 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4780 			CNTR_NORMAL,
4781 			access_tx_read_sdma_memory_cor_err_cnt),
4782 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4783 			CNTR_NORMAL,
4784 			access_tx_sb_hdr_cor_err_cnt),
4785 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4786 			CNTR_NORMAL,
4787 			access_tx_credit_overrun_err_cnt),
4788 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4789 			CNTR_NORMAL,
4790 			access_tx_launch_fifo8_cor_err_cnt),
4791 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4792 			CNTR_NORMAL,
4793 			access_tx_launch_fifo7_cor_err_cnt),
4794 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4795 			CNTR_NORMAL,
4796 			access_tx_launch_fifo6_cor_err_cnt),
4797 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4798 			CNTR_NORMAL,
4799 			access_tx_launch_fifo5_cor_err_cnt),
4800 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4801 			CNTR_NORMAL,
4802 			access_tx_launch_fifo4_cor_err_cnt),
4803 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4804 			CNTR_NORMAL,
4805 			access_tx_launch_fifo3_cor_err_cnt),
4806 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4807 			CNTR_NORMAL,
4808 			access_tx_launch_fifo2_cor_err_cnt),
4809 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4810 			CNTR_NORMAL,
4811 			access_tx_launch_fifo1_cor_err_cnt),
4812 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4813 			CNTR_NORMAL,
4814 			access_tx_launch_fifo0_cor_err_cnt),
4815 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4816 			CNTR_NORMAL,
4817 			access_tx_credit_return_vl_err_cnt),
4818 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4819 			CNTR_NORMAL,
4820 			access_tx_hcrc_insertion_err_cnt),
4821 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4822 			CNTR_NORMAL,
4823 			access_tx_egress_fifo_unc_err_cnt),
4824 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4825 			CNTR_NORMAL,
4826 			access_tx_read_pio_memory_unc_err_cnt),
4827 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4828 			CNTR_NORMAL,
4829 			access_tx_read_sdma_memory_unc_err_cnt),
4830 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4831 			CNTR_NORMAL,
4832 			access_tx_sb_hdr_unc_err_cnt),
4833 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4834 			CNTR_NORMAL,
4835 			access_tx_credit_return_partiy_err_cnt),
4836 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4837 			0, 0, CNTR_NORMAL,
4838 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4839 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4840 			0, 0, CNTR_NORMAL,
4841 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4842 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4843 			0, 0, CNTR_NORMAL,
4844 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4845 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4846 			0, 0, CNTR_NORMAL,
4847 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4848 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4849 			0, 0, CNTR_NORMAL,
4850 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4851 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4852 			0, 0, CNTR_NORMAL,
4853 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4854 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4855 			0, 0, CNTR_NORMAL,
4856 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4857 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4858 			0, 0, CNTR_NORMAL,
4859 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4860 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4861 			0, 0, CNTR_NORMAL,
4862 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4863 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4864 			0, 0, CNTR_NORMAL,
4865 			access_tx_sdma15_disallowed_packet_err_cnt),
4866 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4867 			0, 0, CNTR_NORMAL,
4868 			access_tx_sdma14_disallowed_packet_err_cnt),
4869 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4870 			0, 0, CNTR_NORMAL,
4871 			access_tx_sdma13_disallowed_packet_err_cnt),
4872 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4873 			0, 0, CNTR_NORMAL,
4874 			access_tx_sdma12_disallowed_packet_err_cnt),
4875 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4876 			0, 0, CNTR_NORMAL,
4877 			access_tx_sdma11_disallowed_packet_err_cnt),
4878 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4879 			0, 0, CNTR_NORMAL,
4880 			access_tx_sdma10_disallowed_packet_err_cnt),
4881 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4882 			0, 0, CNTR_NORMAL,
4883 			access_tx_sdma9_disallowed_packet_err_cnt),
4884 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4885 			0, 0, CNTR_NORMAL,
4886 			access_tx_sdma8_disallowed_packet_err_cnt),
4887 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4888 			0, 0, CNTR_NORMAL,
4889 			access_tx_sdma7_disallowed_packet_err_cnt),
4890 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4891 			0, 0, CNTR_NORMAL,
4892 			access_tx_sdma6_disallowed_packet_err_cnt),
4893 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4894 			0, 0, CNTR_NORMAL,
4895 			access_tx_sdma5_disallowed_packet_err_cnt),
4896 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4897 			0, 0, CNTR_NORMAL,
4898 			access_tx_sdma4_disallowed_packet_err_cnt),
4899 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4900 			0, 0, CNTR_NORMAL,
4901 			access_tx_sdma3_disallowed_packet_err_cnt),
4902 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4903 			0, 0, CNTR_NORMAL,
4904 			access_tx_sdma2_disallowed_packet_err_cnt),
4905 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4906 			0, 0, CNTR_NORMAL,
4907 			access_tx_sdma1_disallowed_packet_err_cnt),
4908 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4909 			0, 0, CNTR_NORMAL,
4910 			access_tx_sdma0_disallowed_packet_err_cnt),
4911 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4912 			CNTR_NORMAL,
4913 			access_tx_config_parity_err_cnt),
4914 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4915 			CNTR_NORMAL,
4916 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4917 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4918 			CNTR_NORMAL,
4919 			access_tx_launch_csr_parity_err_cnt),
4920 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4921 			CNTR_NORMAL,
4922 			access_tx_illegal_vl_err_cnt),
4923 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4924 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4925 			CNTR_NORMAL,
4926 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4927 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4928 			CNTR_NORMAL,
4929 			access_egress_reserved_10_err_cnt),
4930 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4931 			CNTR_NORMAL,
4932 			access_egress_reserved_9_err_cnt),
4933 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4934 			0, 0, CNTR_NORMAL,
4935 			access_tx_sdma_launch_intf_parity_err_cnt),
4936 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4937 			CNTR_NORMAL,
4938 			access_tx_pio_launch_intf_parity_err_cnt),
4939 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4940 			CNTR_NORMAL,
4941 			access_egress_reserved_6_err_cnt),
4942 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4943 			CNTR_NORMAL,
4944 			access_tx_incorrect_link_state_err_cnt),
4945 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4946 			CNTR_NORMAL,
4947 			access_tx_linkdown_err_cnt),
4948 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4949 			"EgressFifoUnderrunOrParityErr", 0, 0,
4950 			CNTR_NORMAL,
4951 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4952 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4953 			CNTR_NORMAL,
4954 			access_egress_reserved_2_err_cnt),
4955 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4956 			CNTR_NORMAL,
4957 			access_tx_pkt_integrity_mem_unc_err_cnt),
4958 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4959 			CNTR_NORMAL,
4960 			access_tx_pkt_integrity_mem_cor_err_cnt),
4961 /* SendErrStatus */
4962 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4963 			CNTR_NORMAL,
4964 			access_send_csr_write_bad_addr_err_cnt),
4965 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4966 			CNTR_NORMAL,
4967 			access_send_csr_read_bad_addr_err_cnt),
4968 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4969 			CNTR_NORMAL,
4970 			access_send_csr_parity_cnt),
4971 /* SendCtxtErrStatus */
4972 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4973 			CNTR_NORMAL,
4974 			access_pio_write_out_of_bounds_err_cnt),
4975 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4976 			CNTR_NORMAL,
4977 			access_pio_write_overflow_err_cnt),
4978 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4979 			0, 0, CNTR_NORMAL,
4980 			access_pio_write_crosses_boundary_err_cnt),
4981 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4982 			CNTR_NORMAL,
4983 			access_pio_disallowed_packet_err_cnt),
4984 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4985 			CNTR_NORMAL,
4986 			access_pio_inconsistent_sop_err_cnt),
4987 /* SendDmaEngErrStatus */
4988 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4989 			0, 0, CNTR_NORMAL,
4990 			access_sdma_header_request_fifo_cor_err_cnt),
4991 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4992 			CNTR_NORMAL,
4993 			access_sdma_header_storage_cor_err_cnt),
4994 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4995 			CNTR_NORMAL,
4996 			access_sdma_packet_tracking_cor_err_cnt),
4997 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4998 			CNTR_NORMAL,
4999 			access_sdma_assembly_cor_err_cnt),
5000 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5001 			CNTR_NORMAL,
5002 			access_sdma_desc_table_cor_err_cnt),
5003 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5004 			0, 0, CNTR_NORMAL,
5005 			access_sdma_header_request_fifo_unc_err_cnt),
5006 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5007 			CNTR_NORMAL,
5008 			access_sdma_header_storage_unc_err_cnt),
5009 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5010 			CNTR_NORMAL,
5011 			access_sdma_packet_tracking_unc_err_cnt),
5012 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5013 			CNTR_NORMAL,
5014 			access_sdma_assembly_unc_err_cnt),
5015 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5016 			CNTR_NORMAL,
5017 			access_sdma_desc_table_unc_err_cnt),
5018 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5019 			CNTR_NORMAL,
5020 			access_sdma_timeout_err_cnt),
5021 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5022 			CNTR_NORMAL,
5023 			access_sdma_header_length_err_cnt),
5024 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5025 			CNTR_NORMAL,
5026 			access_sdma_header_address_err_cnt),
5027 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5028 			CNTR_NORMAL,
5029 			access_sdma_header_select_err_cnt),
5030 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5031 			CNTR_NORMAL,
5032 			access_sdma_reserved_9_err_cnt),
5033 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5034 			CNTR_NORMAL,
5035 			access_sdma_packet_desc_overflow_err_cnt),
5036 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5037 			CNTR_NORMAL,
5038 			access_sdma_length_mismatch_err_cnt),
5039 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5040 			CNTR_NORMAL,
5041 			access_sdma_halt_err_cnt),
5042 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5043 			CNTR_NORMAL,
5044 			access_sdma_mem_read_err_cnt),
5045 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5046 			CNTR_NORMAL,
5047 			access_sdma_first_desc_err_cnt),
5048 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5049 			CNTR_NORMAL,
5050 			access_sdma_tail_out_of_bounds_err_cnt),
5051 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5052 			CNTR_NORMAL,
5053 			access_sdma_too_long_err_cnt),
5054 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5055 			CNTR_NORMAL,
5056 			access_sdma_gen_mismatch_err_cnt),
5057 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5058 			CNTR_NORMAL,
5059 			access_sdma_wrong_dw_err_cnt),
5060 };
5061 
5062 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5063 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5064 			CNTR_NORMAL),
5065 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5066 			CNTR_NORMAL),
5067 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5068 			CNTR_NORMAL),
5069 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5070 			CNTR_NORMAL),
5071 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5074 			CNTR_NORMAL),
5075 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5076 			CNTR_NORMAL),
5077 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5078 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5079 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5080 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5081 				      CNTR_SYNTH | CNTR_VL),
5082 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5083 				     CNTR_SYNTH | CNTR_VL),
5084 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5085 				      CNTR_SYNTH | CNTR_VL),
5086 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5087 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5088 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5089 			     access_sw_link_dn_cnt),
5090 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5091 			   access_sw_link_up_cnt),
5092 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5093 				 access_sw_unknown_frame_cnt),
5094 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5095 			     access_sw_xmit_discards),
5096 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5097 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5098 				access_sw_xmit_discards),
5099 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5100 				 access_xmit_constraint_errs),
5101 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5102 				access_rcv_constraint_errs),
5103 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5104 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5105 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5106 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5107 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5108 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5109 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5110 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5111 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5112 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5113 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5114 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5115 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5116 			       access_sw_cpu_rc_acks),
5117 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5118 				access_sw_cpu_rc_qacks),
5119 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5120 				       access_sw_cpu_rc_delayed_comp),
5121 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5122 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5123 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5124 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5125 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5126 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5127 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5128 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5129 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5130 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5131 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5132 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5133 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5134 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5135 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5136 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5137 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5138 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5139 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5140 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5141 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5142 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5143 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5144 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5145 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5146 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5147 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5148 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5149 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5150 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5151 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5152 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5153 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5154 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5155 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5156 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5157 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5158 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5159 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5160 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5161 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5162 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5163 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5164 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5165 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5166 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5167 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5168 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5169 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5170 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5171 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5172 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5173 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5174 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5175 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5176 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5177 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5178 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5179 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5180 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5181 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5182 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5183 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5184 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5185 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5186 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5187 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5188 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5189 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5190 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5191 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5192 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5193 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5194 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5195 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5196 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5197 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5198 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5199 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5200 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5201 };
5202 
5203 /* ======================================================================== */
5204 
5205 /* return true if this is chip revision revision a */
5206 int is_ax(struct hfi1_devdata *dd)
5207 {
5208 	u8 chip_rev_minor =
5209 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5210 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5211 	return (chip_rev_minor & 0xf0) == 0;
5212 }
5213 
5214 /* return true if this is chip revision revision b */
5215 int is_bx(struct hfi1_devdata *dd)
5216 {
5217 	u8 chip_rev_minor =
5218 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5219 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5220 	return (chip_rev_minor & 0xF0) == 0x10;
5221 }
5222 
5223 /*
5224  * Append string s to buffer buf.  Arguments curp and len are the current
5225  * position and remaining length, respectively.
5226  *
5227  * return 0 on success, 1 on out of room
5228  */
5229 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5230 {
5231 	char *p = *curp;
5232 	int len = *lenp;
5233 	int result = 0; /* success */
5234 	char c;
5235 
5236 	/* add a comma, if first in the buffer */
5237 	if (p != buf) {
5238 		if (len == 0) {
5239 			result = 1; /* out of room */
5240 			goto done;
5241 		}
5242 		*p++ = ',';
5243 		len--;
5244 	}
5245 
5246 	/* copy the string */
5247 	while ((c = *s++) != 0) {
5248 		if (len == 0) {
5249 			result = 1; /* out of room */
5250 			goto done;
5251 		}
5252 		*p++ = c;
5253 		len--;
5254 	}
5255 
5256 done:
5257 	/* write return values */
5258 	*curp = p;
5259 	*lenp = len;
5260 
5261 	return result;
5262 }
5263 
5264 /*
5265  * Using the given flag table, print a comma separated string into
5266  * the buffer.  End in '*' if the buffer is too short.
5267  */
5268 static char *flag_string(char *buf, int buf_len, u64 flags,
5269 			 struct flag_table *table, int table_size)
5270 {
5271 	char extra[32];
5272 	char *p = buf;
5273 	int len = buf_len;
5274 	int no_room = 0;
5275 	int i;
5276 
5277 	/* make sure there is at least 2 so we can form "*" */
5278 	if (len < 2)
5279 		return "";
5280 
5281 	len--;	/* leave room for a nul */
5282 	for (i = 0; i < table_size; i++) {
5283 		if (flags & table[i].flag) {
5284 			no_room = append_str(buf, &p, &len, table[i].str);
5285 			if (no_room)
5286 				break;
5287 			flags &= ~table[i].flag;
5288 		}
5289 	}
5290 
5291 	/* any undocumented bits left? */
5292 	if (!no_room && flags) {
5293 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5294 		no_room = append_str(buf, &p, &len, extra);
5295 	}
5296 
5297 	/* add * if ran out of room */
5298 	if (no_room) {
5299 		/* may need to back up to add space for a '*' */
5300 		if (len == 0)
5301 			--p;
5302 		*p++ = '*';
5303 	}
5304 
5305 	/* add final nul - space already allocated above */
5306 	*p = 0;
5307 	return buf;
5308 }
5309 
5310 /* first 8 CCE error interrupt source names */
5311 static const char * const cce_misc_names[] = {
5312 	"CceErrInt",		/* 0 */
5313 	"RxeErrInt",		/* 1 */
5314 	"MiscErrInt",		/* 2 */
5315 	"Reserved3",		/* 3 */
5316 	"PioErrInt",		/* 4 */
5317 	"SDmaErrInt",		/* 5 */
5318 	"EgressErrInt",		/* 6 */
5319 	"TxeErrInt"		/* 7 */
5320 };
5321 
5322 /*
5323  * Return the miscellaneous error interrupt name.
5324  */
5325 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5326 {
5327 	if (source < ARRAY_SIZE(cce_misc_names))
5328 		strncpy(buf, cce_misc_names[source], bsize);
5329 	else
5330 		snprintf(buf, bsize, "Reserved%u",
5331 			 source + IS_GENERAL_ERR_START);
5332 
5333 	return buf;
5334 }
5335 
5336 /*
5337  * Return the SDMA engine error interrupt name.
5338  */
5339 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5340 {
5341 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5342 	return buf;
5343 }
5344 
5345 /*
5346  * Return the send context error interrupt name.
5347  */
5348 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5349 {
5350 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5351 	return buf;
5352 }
5353 
5354 static const char * const various_names[] = {
5355 	"PbcInt",
5356 	"GpioAssertInt",
5357 	"Qsfp1Int",
5358 	"Qsfp2Int",
5359 	"TCritInt"
5360 };
5361 
5362 /*
5363  * Return the various interrupt name.
5364  */
5365 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5366 {
5367 	if (source < ARRAY_SIZE(various_names))
5368 		strncpy(buf, various_names[source], bsize);
5369 	else
5370 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5371 	return buf;
5372 }
5373 
5374 /*
5375  * Return the DC interrupt name.
5376  */
5377 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5378 {
5379 	static const char * const dc_int_names[] = {
5380 		"common",
5381 		"lcb",
5382 		"8051",
5383 		"lbm"	/* local block merge */
5384 	};
5385 
5386 	if (source < ARRAY_SIZE(dc_int_names))
5387 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5388 	else
5389 		snprintf(buf, bsize, "DCInt%u", source);
5390 	return buf;
5391 }
5392 
5393 static const char * const sdma_int_names[] = {
5394 	"SDmaInt",
5395 	"SdmaIdleInt",
5396 	"SdmaProgressInt",
5397 };
5398 
5399 /*
5400  * Return the SDMA engine interrupt name.
5401  */
5402 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5403 {
5404 	/* what interrupt */
5405 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5406 	/* which engine */
5407 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5408 
5409 	if (likely(what < 3))
5410 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5411 	else
5412 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5413 	return buf;
5414 }
5415 
5416 /*
5417  * Return the receive available interrupt name.
5418  */
5419 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5420 {
5421 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5422 	return buf;
5423 }
5424 
5425 /*
5426  * Return the receive urgent interrupt name.
5427  */
5428 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5429 {
5430 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5431 	return buf;
5432 }
5433 
5434 /*
5435  * Return the send credit interrupt name.
5436  */
5437 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5438 {
5439 	snprintf(buf, bsize, "SendCreditInt%u", source);
5440 	return buf;
5441 }
5442 
5443 /*
5444  * Return the reserved interrupt name.
5445  */
5446 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5447 {
5448 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5449 	return buf;
5450 }
5451 
5452 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5453 {
5454 	return flag_string(buf, buf_len, flags,
5455 			   cce_err_status_flags,
5456 			   ARRAY_SIZE(cce_err_status_flags));
5457 }
5458 
5459 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5460 {
5461 	return flag_string(buf, buf_len, flags,
5462 			   rxe_err_status_flags,
5463 			   ARRAY_SIZE(rxe_err_status_flags));
5464 }
5465 
5466 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5467 {
5468 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5469 			   ARRAY_SIZE(misc_err_status_flags));
5470 }
5471 
5472 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5473 {
5474 	return flag_string(buf, buf_len, flags,
5475 			   pio_err_status_flags,
5476 			   ARRAY_SIZE(pio_err_status_flags));
5477 }
5478 
5479 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5480 {
5481 	return flag_string(buf, buf_len, flags,
5482 			   sdma_err_status_flags,
5483 			   ARRAY_SIZE(sdma_err_status_flags));
5484 }
5485 
5486 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5487 {
5488 	return flag_string(buf, buf_len, flags,
5489 			   egress_err_status_flags,
5490 			   ARRAY_SIZE(egress_err_status_flags));
5491 }
5492 
5493 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5494 {
5495 	return flag_string(buf, buf_len, flags,
5496 			   egress_err_info_flags,
5497 			   ARRAY_SIZE(egress_err_info_flags));
5498 }
5499 
5500 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5501 {
5502 	return flag_string(buf, buf_len, flags,
5503 			   send_err_status_flags,
5504 			   ARRAY_SIZE(send_err_status_flags));
5505 }
5506 
5507 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5508 {
5509 	char buf[96];
5510 	int i = 0;
5511 
5512 	/*
5513 	 * For most these errors, there is nothing that can be done except
5514 	 * report or record it.
5515 	 */
5516 	dd_dev_info(dd, "CCE Error: %s\n",
5517 		    cce_err_status_string(buf, sizeof(buf), reg));
5518 
5519 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5520 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5521 		/* this error requires a manual drop into SPC freeze mode */
5522 		/* then a fix up */
5523 		start_freeze_handling(dd->pport, FREEZE_SELF);
5524 	}
5525 
5526 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5527 		if (reg & (1ull << i)) {
5528 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5529 			/* maintain a counter over all cce_err_status errors */
5530 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5531 		}
5532 	}
5533 }
5534 
5535 /*
5536  * Check counters for receive errors that do not have an interrupt
5537  * associated with them.
5538  */
5539 #define RCVERR_CHECK_TIME 10
5540 static void update_rcverr_timer(struct timer_list *t)
5541 {
5542 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5543 	struct hfi1_pportdata *ppd = dd->pport;
5544 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5545 
5546 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5547 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5548 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5549 		set_link_down_reason(
5550 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5551 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5552 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5553 	}
5554 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5555 
5556 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5557 }
5558 
5559 static int init_rcverr(struct hfi1_devdata *dd)
5560 {
5561 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5562 	/* Assume the hardware counter has been reset */
5563 	dd->rcv_ovfl_cnt = 0;
5564 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5565 }
5566 
5567 static void free_rcverr(struct hfi1_devdata *dd)
5568 {
5569 	if (dd->rcverr_timer.function)
5570 		del_timer_sync(&dd->rcverr_timer);
5571 }
5572 
5573 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5574 {
5575 	char buf[96];
5576 	int i = 0;
5577 
5578 	dd_dev_info(dd, "Receive Error: %s\n",
5579 		    rxe_err_status_string(buf, sizeof(buf), reg));
5580 
5581 	if (reg & ALL_RXE_FREEZE_ERR) {
5582 		int flags = 0;
5583 
5584 		/*
5585 		 * Freeze mode recovery is disabled for the errors
5586 		 * in RXE_FREEZE_ABORT_MASK
5587 		 */
5588 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5589 			flags = FREEZE_ABORT;
5590 
5591 		start_freeze_handling(dd->pport, flags);
5592 	}
5593 
5594 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5595 		if (reg & (1ull << i))
5596 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5597 	}
5598 }
5599 
5600 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5601 {
5602 	char buf[96];
5603 	int i = 0;
5604 
5605 	dd_dev_info(dd, "Misc Error: %s",
5606 		    misc_err_status_string(buf, sizeof(buf), reg));
5607 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5608 		if (reg & (1ull << i))
5609 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5610 	}
5611 }
5612 
5613 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5614 {
5615 	char buf[96];
5616 	int i = 0;
5617 
5618 	dd_dev_info(dd, "PIO Error: %s\n",
5619 		    pio_err_status_string(buf, sizeof(buf), reg));
5620 
5621 	if (reg & ALL_PIO_FREEZE_ERR)
5622 		start_freeze_handling(dd->pport, 0);
5623 
5624 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5625 		if (reg & (1ull << i))
5626 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5627 	}
5628 }
5629 
5630 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5631 {
5632 	char buf[96];
5633 	int i = 0;
5634 
5635 	dd_dev_info(dd, "SDMA Error: %s\n",
5636 		    sdma_err_status_string(buf, sizeof(buf), reg));
5637 
5638 	if (reg & ALL_SDMA_FREEZE_ERR)
5639 		start_freeze_handling(dd->pport, 0);
5640 
5641 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5642 		if (reg & (1ull << i))
5643 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5644 	}
5645 }
5646 
5647 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5648 {
5649 	incr_cntr64(&ppd->port_xmit_discards);
5650 }
5651 
5652 static void count_port_inactive(struct hfi1_devdata *dd)
5653 {
5654 	__count_port_discards(dd->pport);
5655 }
5656 
5657 /*
5658  * We have had a "disallowed packet" error during egress. Determine the
5659  * integrity check which failed, and update relevant error counter, etc.
5660  *
5661  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5662  * bit of state per integrity check, and so we can miss the reason for an
5663  * egress error if more than one packet fails the same integrity check
5664  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5665  */
5666 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5667 					int vl)
5668 {
5669 	struct hfi1_pportdata *ppd = dd->pport;
5670 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5671 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5672 	char buf[96];
5673 
5674 	/* clear down all observed info as quickly as possible after read */
5675 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5676 
5677 	dd_dev_info(dd,
5678 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5679 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5680 
5681 	/* Eventually add other counters for each bit */
5682 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5683 		int weight, i;
5684 
5685 		/*
5686 		 * Count all applicable bits as individual errors and
5687 		 * attribute them to the packet that triggered this handler.
5688 		 * This may not be completely accurate due to limitations
5689 		 * on the available hardware error information.  There is
5690 		 * a single information register and any number of error
5691 		 * packets may have occurred and contributed to it before
5692 		 * this routine is called.  This means that:
5693 		 * a) If multiple packets with the same error occur before
5694 		 *    this routine is called, earlier packets are missed.
5695 		 *    There is only a single bit for each error type.
5696 		 * b) Errors may not be attributed to the correct VL.
5697 		 *    The driver is attributing all bits in the info register
5698 		 *    to the packet that triggered this call, but bits
5699 		 *    could be an accumulation of different packets with
5700 		 *    different VLs.
5701 		 * c) A single error packet may have multiple counts attached
5702 		 *    to it.  There is no way for the driver to know if
5703 		 *    multiple bits set in the info register are due to a
5704 		 *    single packet or multiple packets.  The driver assumes
5705 		 *    multiple packets.
5706 		 */
5707 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5708 		for (i = 0; i < weight; i++) {
5709 			__count_port_discards(ppd);
5710 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5711 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5712 			else if (vl == 15)
5713 				incr_cntr64(&ppd->port_xmit_discards_vl
5714 					    [C_VL_15]);
5715 		}
5716 	}
5717 }
5718 
5719 /*
5720  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5721  * register. Does it represent a 'port inactive' error?
5722  */
5723 static inline int port_inactive_err(u64 posn)
5724 {
5725 	return (posn >= SEES(TX_LINKDOWN) &&
5726 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5727 }
5728 
5729 /*
5730  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5731  * register. Does it represent a 'disallowed packet' error?
5732  */
5733 static inline int disallowed_pkt_err(int posn)
5734 {
5735 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5736 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5737 }
5738 
5739 /*
5740  * Input value is a bit position of one of the SDMA engine disallowed
5741  * packet errors.  Return which engine.  Use of this must be guarded by
5742  * disallowed_pkt_err().
5743  */
5744 static inline int disallowed_pkt_engine(int posn)
5745 {
5746 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5747 }
5748 
5749 /*
5750  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5751  * be done.
5752  */
5753 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5754 {
5755 	struct sdma_vl_map *m;
5756 	int vl;
5757 
5758 	/* range check */
5759 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5760 		return -1;
5761 
5762 	rcu_read_lock();
5763 	m = rcu_dereference(dd->sdma_map);
5764 	vl = m->engine_to_vl[engine];
5765 	rcu_read_unlock();
5766 
5767 	return vl;
5768 }
5769 
5770 /*
5771  * Translate the send context (sofware index) into a VL.  Return -1 if the
5772  * translation cannot be done.
5773  */
5774 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5775 {
5776 	struct send_context_info *sci;
5777 	struct send_context *sc;
5778 	int i;
5779 
5780 	sci = &dd->send_contexts[sw_index];
5781 
5782 	/* there is no information for user (PSM) and ack contexts */
5783 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5784 		return -1;
5785 
5786 	sc = sci->sc;
5787 	if (!sc)
5788 		return -1;
5789 	if (dd->vld[15].sc == sc)
5790 		return 15;
5791 	for (i = 0; i < num_vls; i++)
5792 		if (dd->vld[i].sc == sc)
5793 			return i;
5794 
5795 	return -1;
5796 }
5797 
5798 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5799 {
5800 	u64 reg_copy = reg, handled = 0;
5801 	char buf[96];
5802 	int i = 0;
5803 
5804 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5805 		start_freeze_handling(dd->pport, 0);
5806 	else if (is_ax(dd) &&
5807 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5808 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5809 		start_freeze_handling(dd->pport, 0);
5810 
5811 	while (reg_copy) {
5812 		int posn = fls64(reg_copy);
5813 		/* fls64() returns a 1-based offset, we want it zero based */
5814 		int shift = posn - 1;
5815 		u64 mask = 1ULL << shift;
5816 
5817 		if (port_inactive_err(shift)) {
5818 			count_port_inactive(dd);
5819 			handled |= mask;
5820 		} else if (disallowed_pkt_err(shift)) {
5821 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5822 
5823 			handle_send_egress_err_info(dd, vl);
5824 			handled |= mask;
5825 		}
5826 		reg_copy &= ~mask;
5827 	}
5828 
5829 	reg &= ~handled;
5830 
5831 	if (reg)
5832 		dd_dev_info(dd, "Egress Error: %s\n",
5833 			    egress_err_status_string(buf, sizeof(buf), reg));
5834 
5835 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5836 		if (reg & (1ull << i))
5837 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5838 	}
5839 }
5840 
5841 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5842 {
5843 	char buf[96];
5844 	int i = 0;
5845 
5846 	dd_dev_info(dd, "Send Error: %s\n",
5847 		    send_err_status_string(buf, sizeof(buf), reg));
5848 
5849 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5850 		if (reg & (1ull << i))
5851 			incr_cntr64(&dd->send_err_status_cnt[i]);
5852 	}
5853 }
5854 
5855 /*
5856  * The maximum number of times the error clear down will loop before
5857  * blocking a repeating error.  This value is arbitrary.
5858  */
5859 #define MAX_CLEAR_COUNT 20
5860 
5861 /*
5862  * Clear and handle an error register.  All error interrupts are funneled
5863  * through here to have a central location to correctly handle single-
5864  * or multi-shot errors.
5865  *
5866  * For non per-context registers, call this routine with a context value
5867  * of 0 so the per-context offset is zero.
5868  *
5869  * If the handler loops too many times, assume that something is wrong
5870  * and can't be fixed, so mask the error bits.
5871  */
5872 static void interrupt_clear_down(struct hfi1_devdata *dd,
5873 				 u32 context,
5874 				 const struct err_reg_info *eri)
5875 {
5876 	u64 reg;
5877 	u32 count;
5878 
5879 	/* read in a loop until no more errors are seen */
5880 	count = 0;
5881 	while (1) {
5882 		reg = read_kctxt_csr(dd, context, eri->status);
5883 		if (reg == 0)
5884 			break;
5885 		write_kctxt_csr(dd, context, eri->clear, reg);
5886 		if (likely(eri->handler))
5887 			eri->handler(dd, context, reg);
5888 		count++;
5889 		if (count > MAX_CLEAR_COUNT) {
5890 			u64 mask;
5891 
5892 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5893 				   eri->desc, reg);
5894 			/*
5895 			 * Read-modify-write so any other masked bits
5896 			 * remain masked.
5897 			 */
5898 			mask = read_kctxt_csr(dd, context, eri->mask);
5899 			mask &= ~reg;
5900 			write_kctxt_csr(dd, context, eri->mask, mask);
5901 			break;
5902 		}
5903 	}
5904 }
5905 
5906 /*
5907  * CCE block "misc" interrupt.  Source is < 16.
5908  */
5909 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5910 {
5911 	const struct err_reg_info *eri = &misc_errs[source];
5912 
5913 	if (eri->handler) {
5914 		interrupt_clear_down(dd, 0, eri);
5915 	} else {
5916 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5917 			   source);
5918 	}
5919 }
5920 
5921 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5922 {
5923 	return flag_string(buf, buf_len, flags,
5924 			   sc_err_status_flags,
5925 			   ARRAY_SIZE(sc_err_status_flags));
5926 }
5927 
5928 /*
5929  * Send context error interrupt.  Source (hw_context) is < 160.
5930  *
5931  * All send context errors cause the send context to halt.  The normal
5932  * clear-down mechanism cannot be used because we cannot clear the
5933  * error bits until several other long-running items are done first.
5934  * This is OK because with the context halted, nothing else is going
5935  * to happen on it anyway.
5936  */
5937 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5938 				unsigned int hw_context)
5939 {
5940 	struct send_context_info *sci;
5941 	struct send_context *sc;
5942 	char flags[96];
5943 	u64 status;
5944 	u32 sw_index;
5945 	int i = 0;
5946 
5947 	sw_index = dd->hw_to_sw[hw_context];
5948 	if (sw_index >= dd->num_send_contexts) {
5949 		dd_dev_err(dd,
5950 			   "out of range sw index %u for send context %u\n",
5951 			   sw_index, hw_context);
5952 		return;
5953 	}
5954 	sci = &dd->send_contexts[sw_index];
5955 	sc = sci->sc;
5956 	if (!sc) {
5957 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5958 			   sw_index, hw_context);
5959 		return;
5960 	}
5961 
5962 	/* tell the software that a halt has begun */
5963 	sc_stop(sc, SCF_HALTED);
5964 
5965 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5966 
5967 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5968 		    send_context_err_status_string(flags, sizeof(flags),
5969 						   status));
5970 
5971 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5972 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5973 
5974 	/*
5975 	 * Automatically restart halted kernel contexts out of interrupt
5976 	 * context.  User contexts must ask the driver to restart the context.
5977 	 */
5978 	if (sc->type != SC_USER)
5979 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5980 
5981 	/*
5982 	 * Update the counters for the corresponding status bits.
5983 	 * Note that these particular counters are aggregated over all
5984 	 * 160 contexts.
5985 	 */
5986 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5987 		if (status & (1ull << i))
5988 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5989 	}
5990 }
5991 
5992 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5993 				unsigned int source, u64 status)
5994 {
5995 	struct sdma_engine *sde;
5996 	int i = 0;
5997 
5998 	sde = &dd->per_sdma[source];
5999 #ifdef CONFIG_SDMA_VERBOSITY
6000 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6001 		   slashstrip(__FILE__), __LINE__, __func__);
6002 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6003 		   sde->this_idx, source, (unsigned long long)status);
6004 #endif
6005 	sde->err_cnt++;
6006 	sdma_engine_error(sde, status);
6007 
6008 	/*
6009 	* Update the counters for the corresponding status bits.
6010 	* Note that these particular counters are aggregated over
6011 	* all 16 DMA engines.
6012 	*/
6013 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6014 		if (status & (1ull << i))
6015 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6016 	}
6017 }
6018 
6019 /*
6020  * CCE block SDMA error interrupt.  Source is < 16.
6021  */
6022 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6023 {
6024 #ifdef CONFIG_SDMA_VERBOSITY
6025 	struct sdma_engine *sde = &dd->per_sdma[source];
6026 
6027 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6028 		   slashstrip(__FILE__), __LINE__, __func__);
6029 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6030 		   source);
6031 	sdma_dumpstate(sde);
6032 #endif
6033 	interrupt_clear_down(dd, source, &sdma_eng_err);
6034 }
6035 
6036 /*
6037  * CCE block "various" interrupt.  Source is < 8.
6038  */
6039 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6040 {
6041 	const struct err_reg_info *eri = &various_err[source];
6042 
6043 	/*
6044 	 * TCritInt cannot go through interrupt_clear_down()
6045 	 * because it is not a second tier interrupt. The handler
6046 	 * should be called directly.
6047 	 */
6048 	if (source == TCRIT_INT_SOURCE)
6049 		handle_temp_err(dd);
6050 	else if (eri->handler)
6051 		interrupt_clear_down(dd, 0, eri);
6052 	else
6053 		dd_dev_info(dd,
6054 			    "%s: Unimplemented/reserved interrupt %d\n",
6055 			    __func__, source);
6056 }
6057 
6058 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6059 {
6060 	/* src_ctx is always zero */
6061 	struct hfi1_pportdata *ppd = dd->pport;
6062 	unsigned long flags;
6063 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6064 
6065 	if (reg & QSFP_HFI0_MODPRST_N) {
6066 		if (!qsfp_mod_present(ppd)) {
6067 			dd_dev_info(dd, "%s: QSFP module removed\n",
6068 				    __func__);
6069 
6070 			ppd->driver_link_ready = 0;
6071 			/*
6072 			 * Cable removed, reset all our information about the
6073 			 * cache and cable capabilities
6074 			 */
6075 
6076 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6077 			/*
6078 			 * We don't set cache_refresh_required here as we expect
6079 			 * an interrupt when a cable is inserted
6080 			 */
6081 			ppd->qsfp_info.cache_valid = 0;
6082 			ppd->qsfp_info.reset_needed = 0;
6083 			ppd->qsfp_info.limiting_active = 0;
6084 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6085 					       flags);
6086 			/* Invert the ModPresent pin now to detect plug-in */
6087 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6088 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6089 
6090 			if ((ppd->offline_disabled_reason >
6091 			  HFI1_ODR_MASK(
6092 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6093 			  (ppd->offline_disabled_reason ==
6094 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6095 				ppd->offline_disabled_reason =
6096 				HFI1_ODR_MASK(
6097 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6098 
6099 			if (ppd->host_link_state == HLS_DN_POLL) {
6100 				/*
6101 				 * The link is still in POLL. This means
6102 				 * that the normal link down processing
6103 				 * will not happen. We have to do it here
6104 				 * before turning the DC off.
6105 				 */
6106 				queue_work(ppd->link_wq, &ppd->link_down_work);
6107 			}
6108 		} else {
6109 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6110 				    __func__);
6111 
6112 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6113 			ppd->qsfp_info.cache_valid = 0;
6114 			ppd->qsfp_info.cache_refresh_required = 1;
6115 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6116 					       flags);
6117 
6118 			/*
6119 			 * Stop inversion of ModPresent pin to detect
6120 			 * removal of the cable
6121 			 */
6122 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6123 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6124 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6125 
6126 			ppd->offline_disabled_reason =
6127 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6128 		}
6129 	}
6130 
6131 	if (reg & QSFP_HFI0_INT_N) {
6132 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6133 			    __func__);
6134 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6135 		ppd->qsfp_info.check_interrupt_flags = 1;
6136 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6137 	}
6138 
6139 	/* Schedule the QSFP work only if there is a cable attached. */
6140 	if (qsfp_mod_present(ppd))
6141 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6142 }
6143 
6144 static int request_host_lcb_access(struct hfi1_devdata *dd)
6145 {
6146 	int ret;
6147 
6148 	ret = do_8051_command(dd, HCMD_MISC,
6149 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6150 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6151 	if (ret != HCMD_SUCCESS) {
6152 		dd_dev_err(dd, "%s: command failed with error %d\n",
6153 			   __func__, ret);
6154 	}
6155 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6156 }
6157 
6158 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6159 {
6160 	int ret;
6161 
6162 	ret = do_8051_command(dd, HCMD_MISC,
6163 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6164 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6165 	if (ret != HCMD_SUCCESS) {
6166 		dd_dev_err(dd, "%s: command failed with error %d\n",
6167 			   __func__, ret);
6168 	}
6169 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6170 }
6171 
6172 /*
6173  * Set the LCB selector - allow host access.  The DCC selector always
6174  * points to the host.
6175  */
6176 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6177 {
6178 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6179 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6180 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6181 }
6182 
6183 /*
6184  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6185  * points to the host.
6186  */
6187 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6188 {
6189 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6190 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6191 }
6192 
6193 /*
6194  * Acquire LCB access from the 8051.  If the host already has access,
6195  * just increment a counter.  Otherwise, inform the 8051 that the
6196  * host is taking access.
6197  *
6198  * Returns:
6199  *	0 on success
6200  *	-EBUSY if the 8051 has control and cannot be disturbed
6201  *	-errno if unable to acquire access from the 8051
6202  */
6203 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6204 {
6205 	struct hfi1_pportdata *ppd = dd->pport;
6206 	int ret = 0;
6207 
6208 	/*
6209 	 * Use the host link state lock so the operation of this routine
6210 	 * { link state check, selector change, count increment } can occur
6211 	 * as a unit against a link state change.  Otherwise there is a
6212 	 * race between the state change and the count increment.
6213 	 */
6214 	if (sleep_ok) {
6215 		mutex_lock(&ppd->hls_lock);
6216 	} else {
6217 		while (!mutex_trylock(&ppd->hls_lock))
6218 			udelay(1);
6219 	}
6220 
6221 	/* this access is valid only when the link is up */
6222 	if (ppd->host_link_state & HLS_DOWN) {
6223 		dd_dev_info(dd, "%s: link state %s not up\n",
6224 			    __func__, link_state_name(ppd->host_link_state));
6225 		ret = -EBUSY;
6226 		goto done;
6227 	}
6228 
6229 	if (dd->lcb_access_count == 0) {
6230 		ret = request_host_lcb_access(dd);
6231 		if (ret) {
6232 			dd_dev_err(dd,
6233 				   "%s: unable to acquire LCB access, err %d\n",
6234 				   __func__, ret);
6235 			goto done;
6236 		}
6237 		set_host_lcb_access(dd);
6238 	}
6239 	dd->lcb_access_count++;
6240 done:
6241 	mutex_unlock(&ppd->hls_lock);
6242 	return ret;
6243 }
6244 
6245 /*
6246  * Release LCB access by decrementing the use count.  If the count is moving
6247  * from 1 to 0, inform 8051 that it has control back.
6248  *
6249  * Returns:
6250  *	0 on success
6251  *	-errno if unable to release access to the 8051
6252  */
6253 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6254 {
6255 	int ret = 0;
6256 
6257 	/*
6258 	 * Use the host link state lock because the acquire needed it.
6259 	 * Here, we only need to keep { selector change, count decrement }
6260 	 * as a unit.
6261 	 */
6262 	if (sleep_ok) {
6263 		mutex_lock(&dd->pport->hls_lock);
6264 	} else {
6265 		while (!mutex_trylock(&dd->pport->hls_lock))
6266 			udelay(1);
6267 	}
6268 
6269 	if (dd->lcb_access_count == 0) {
6270 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6271 			   __func__);
6272 		goto done;
6273 	}
6274 
6275 	if (dd->lcb_access_count == 1) {
6276 		set_8051_lcb_access(dd);
6277 		ret = request_8051_lcb_access(dd);
6278 		if (ret) {
6279 			dd_dev_err(dd,
6280 				   "%s: unable to release LCB access, err %d\n",
6281 				   __func__, ret);
6282 			/* restore host access if the grant didn't work */
6283 			set_host_lcb_access(dd);
6284 			goto done;
6285 		}
6286 	}
6287 	dd->lcb_access_count--;
6288 done:
6289 	mutex_unlock(&dd->pport->hls_lock);
6290 	return ret;
6291 }
6292 
6293 /*
6294  * Initialize LCB access variables and state.  Called during driver load,
6295  * after most of the initialization is finished.
6296  *
6297  * The DC default is LCB access on for the host.  The driver defaults to
6298  * leaving access to the 8051.  Assign access now - this constrains the call
6299  * to this routine to be after all LCB set-up is done.  In particular, after
6300  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6301  */
6302 static void init_lcb_access(struct hfi1_devdata *dd)
6303 {
6304 	dd->lcb_access_count = 0;
6305 }
6306 
6307 /*
6308  * Write a response back to a 8051 request.
6309  */
6310 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6311 {
6312 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6313 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6314 		  (u64)return_code <<
6315 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6316 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6317 }
6318 
6319 /*
6320  * Handle host requests from the 8051.
6321  */
6322 static void handle_8051_request(struct hfi1_pportdata *ppd)
6323 {
6324 	struct hfi1_devdata *dd = ppd->dd;
6325 	u64 reg;
6326 	u16 data = 0;
6327 	u8 type;
6328 
6329 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6330 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6331 		return;	/* no request */
6332 
6333 	/* zero out COMPLETED so the response is seen */
6334 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6335 
6336 	/* extract request details */
6337 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6338 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6339 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6340 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6341 
6342 	switch (type) {
6343 	case HREQ_LOAD_CONFIG:
6344 	case HREQ_SAVE_CONFIG:
6345 	case HREQ_READ_CONFIG:
6346 	case HREQ_SET_TX_EQ_ABS:
6347 	case HREQ_SET_TX_EQ_REL:
6348 	case HREQ_ENABLE:
6349 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6350 			    type);
6351 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6352 		break;
6353 	case HREQ_CONFIG_DONE:
6354 		hreq_response(dd, HREQ_SUCCESS, 0);
6355 		break;
6356 
6357 	case HREQ_INTERFACE_TEST:
6358 		hreq_response(dd, HREQ_SUCCESS, data);
6359 		break;
6360 	default:
6361 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6362 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6363 		break;
6364 	}
6365 }
6366 
6367 /*
6368  * Set up allocation unit vaulue.
6369  */
6370 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6371 {
6372 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6373 
6374 	/* do not modify other values in the register */
6375 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6376 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6377 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6378 }
6379 
6380 /*
6381  * Set up initial VL15 credits of the remote.  Assumes the rest of
6382  * the CM credit registers are zero from a previous global or credit reset.
6383  * Shared limit for VL15 will always be 0.
6384  */
6385 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6386 {
6387 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6388 
6389 	/* set initial values for total and shared credit limit */
6390 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6391 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6392 
6393 	/*
6394 	 * Set total limit to be equal to VL15 credits.
6395 	 * Leave shared limit at 0.
6396 	 */
6397 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6398 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6399 
6400 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6401 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6402 }
6403 
6404 /*
6405  * Zero all credit details from the previous connection and
6406  * reset the CM manager's internal counters.
6407  */
6408 void reset_link_credits(struct hfi1_devdata *dd)
6409 {
6410 	int i;
6411 
6412 	/* remove all previous VL credit limits */
6413 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6414 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6415 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6416 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6417 	/* reset the CM block */
6418 	pio_send_control(dd, PSC_CM_RESET);
6419 	/* reset cached value */
6420 	dd->vl15buf_cached = 0;
6421 }
6422 
6423 /* convert a vCU to a CU */
6424 static u32 vcu_to_cu(u8 vcu)
6425 {
6426 	return 1 << vcu;
6427 }
6428 
6429 /* convert a CU to a vCU */
6430 static u8 cu_to_vcu(u32 cu)
6431 {
6432 	return ilog2(cu);
6433 }
6434 
6435 /* convert a vAU to an AU */
6436 static u32 vau_to_au(u8 vau)
6437 {
6438 	return 8 * (1 << vau);
6439 }
6440 
6441 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6442 {
6443 	ppd->sm_trap_qp = 0x0;
6444 	ppd->sa_qp = 0x1;
6445 }
6446 
6447 /*
6448  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6449  */
6450 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6451 {
6452 	u64 reg;
6453 
6454 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6455 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6456 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6457 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6458 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6459 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6460 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6461 	reg = read_csr(dd, DCC_CFG_RESET);
6462 	write_csr(dd, DCC_CFG_RESET, reg |
6463 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6464 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6465 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6466 	if (!abort) {
6467 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6468 		write_csr(dd, DCC_CFG_RESET, reg);
6469 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6470 	}
6471 }
6472 
6473 /*
6474  * This routine should be called after the link has been transitioned to
6475  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6476  * reset).
6477  *
6478  * The expectation is that the caller of this routine would have taken
6479  * care of properly transitioning the link into the correct state.
6480  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6481  *       before calling this function.
6482  */
6483 static void _dc_shutdown(struct hfi1_devdata *dd)
6484 {
6485 	lockdep_assert_held(&dd->dc8051_lock);
6486 
6487 	if (dd->dc_shutdown)
6488 		return;
6489 
6490 	dd->dc_shutdown = 1;
6491 	/* Shutdown the LCB */
6492 	lcb_shutdown(dd, 1);
6493 	/*
6494 	 * Going to OFFLINE would have causes the 8051 to put the
6495 	 * SerDes into reset already. Just need to shut down the 8051,
6496 	 * itself.
6497 	 */
6498 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6499 }
6500 
6501 static void dc_shutdown(struct hfi1_devdata *dd)
6502 {
6503 	mutex_lock(&dd->dc8051_lock);
6504 	_dc_shutdown(dd);
6505 	mutex_unlock(&dd->dc8051_lock);
6506 }
6507 
6508 /*
6509  * Calling this after the DC has been brought out of reset should not
6510  * do any damage.
6511  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6512  *       before calling this function.
6513  */
6514 static void _dc_start(struct hfi1_devdata *dd)
6515 {
6516 	lockdep_assert_held(&dd->dc8051_lock);
6517 
6518 	if (!dd->dc_shutdown)
6519 		return;
6520 
6521 	/* Take the 8051 out of reset */
6522 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6523 	/* Wait until 8051 is ready */
6524 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6525 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6526 			   __func__);
6527 
6528 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6529 	write_csr(dd, DCC_CFG_RESET, 0x10);
6530 	/* lcb_shutdown() with abort=1 does not restore these */
6531 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6532 	dd->dc_shutdown = 0;
6533 }
6534 
6535 static void dc_start(struct hfi1_devdata *dd)
6536 {
6537 	mutex_lock(&dd->dc8051_lock);
6538 	_dc_start(dd);
6539 	mutex_unlock(&dd->dc8051_lock);
6540 }
6541 
6542 /*
6543  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6544  */
6545 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6546 {
6547 	u64 rx_radr, tx_radr;
6548 	u32 version;
6549 
6550 	if (dd->icode != ICODE_FPGA_EMULATION)
6551 		return;
6552 
6553 	/*
6554 	 * These LCB defaults on emulator _s are good, nothing to do here:
6555 	 *	LCB_CFG_TX_FIFOS_RADR
6556 	 *	LCB_CFG_RX_FIFOS_RADR
6557 	 *	LCB_CFG_LN_DCLK
6558 	 *	LCB_CFG_IGNORE_LOST_RCLK
6559 	 */
6560 	if (is_emulator_s(dd))
6561 		return;
6562 	/* else this is _p */
6563 
6564 	version = emulator_rev(dd);
6565 	if (!is_ax(dd))
6566 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6567 
6568 	if (version <= 0x12) {
6569 		/* release 0x12 and below */
6570 
6571 		/*
6572 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6573 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6574 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6575 		 */
6576 		rx_radr =
6577 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6578 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6579 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6580 		/*
6581 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6582 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6583 		 */
6584 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6585 	} else if (version <= 0x18) {
6586 		/* release 0x13 up to 0x18 */
6587 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6588 		rx_radr =
6589 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6590 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6591 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6592 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6593 	} else if (version == 0x19) {
6594 		/* release 0x19 */
6595 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6596 		rx_radr =
6597 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6598 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6599 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6600 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6601 	} else if (version == 0x1a) {
6602 		/* release 0x1a */
6603 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6604 		rx_radr =
6605 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6606 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6607 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6608 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6609 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6610 	} else {
6611 		/* release 0x1b and higher */
6612 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6613 		rx_radr =
6614 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618 	}
6619 
6620 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6621 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6622 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6623 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6624 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6625 }
6626 
6627 /*
6628  * Handle a SMA idle message
6629  *
6630  * This is a work-queue function outside of the interrupt.
6631  */
6632 void handle_sma_message(struct work_struct *work)
6633 {
6634 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6635 							sma_message_work);
6636 	struct hfi1_devdata *dd = ppd->dd;
6637 	u64 msg;
6638 	int ret;
6639 
6640 	/*
6641 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6642 	 * is stripped off
6643 	 */
6644 	ret = read_idle_sma(dd, &msg);
6645 	if (ret)
6646 		return;
6647 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6648 	/*
6649 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6650 	 */
6651 	switch (msg & 0xff) {
6652 	case SMA_IDLE_ARM:
6653 		/*
6654 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6655 		 * State Transitions
6656 		 *
6657 		 * Only expected in INIT or ARMED, discard otherwise.
6658 		 */
6659 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6660 			ppd->neighbor_normal = 1;
6661 		break;
6662 	case SMA_IDLE_ACTIVE:
6663 		/*
6664 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6665 		 * State Transitions
6666 		 *
6667 		 * Can activate the node.  Discard otherwise.
6668 		 */
6669 		if (ppd->host_link_state == HLS_UP_ARMED &&
6670 		    ppd->is_active_optimize_enabled) {
6671 			ppd->neighbor_normal = 1;
6672 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6673 			if (ret)
6674 				dd_dev_err(
6675 					dd,
6676 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6677 					__func__);
6678 		}
6679 		break;
6680 	default:
6681 		dd_dev_err(dd,
6682 			   "%s: received unexpected SMA idle message 0x%llx\n",
6683 			   __func__, msg);
6684 		break;
6685 	}
6686 }
6687 
6688 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6689 {
6690 	u64 rcvctrl;
6691 	unsigned long flags;
6692 
6693 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6694 	rcvctrl = read_csr(dd, RCV_CTRL);
6695 	rcvctrl |= add;
6696 	rcvctrl &= ~clear;
6697 	write_csr(dd, RCV_CTRL, rcvctrl);
6698 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6699 }
6700 
6701 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6702 {
6703 	adjust_rcvctrl(dd, add, 0);
6704 }
6705 
6706 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6707 {
6708 	adjust_rcvctrl(dd, 0, clear);
6709 }
6710 
6711 /*
6712  * Called from all interrupt handlers to start handling an SPC freeze.
6713  */
6714 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6715 {
6716 	struct hfi1_devdata *dd = ppd->dd;
6717 	struct send_context *sc;
6718 	int i;
6719 
6720 	if (flags & FREEZE_SELF)
6721 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6722 
6723 	/* enter frozen mode */
6724 	dd->flags |= HFI1_FROZEN;
6725 
6726 	/* notify all SDMA engines that they are going into a freeze */
6727 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6728 
6729 	/* do halt pre-handling on all enabled send contexts */
6730 	for (i = 0; i < dd->num_send_contexts; i++) {
6731 		sc = dd->send_contexts[i].sc;
6732 		if (sc && (sc->flags & SCF_ENABLED))
6733 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6734 	}
6735 
6736 	/* Send context are frozen. Notify user space */
6737 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6738 
6739 	if (flags & FREEZE_ABORT) {
6740 		dd_dev_err(dd,
6741 			   "Aborted freeze recovery. Please REBOOT system\n");
6742 		return;
6743 	}
6744 	/* queue non-interrupt handler */
6745 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6746 }
6747 
6748 /*
6749  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6750  * depending on the "freeze" parameter.
6751  *
6752  * No need to return an error if it times out, our only option
6753  * is to proceed anyway.
6754  */
6755 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6756 {
6757 	unsigned long timeout;
6758 	u64 reg;
6759 
6760 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6761 	while (1) {
6762 		reg = read_csr(dd, CCE_STATUS);
6763 		if (freeze) {
6764 			/* waiting until all indicators are set */
6765 			if ((reg & ALL_FROZE) == ALL_FROZE)
6766 				return;	/* all done */
6767 		} else {
6768 			/* waiting until all indicators are clear */
6769 			if ((reg & ALL_FROZE) == 0)
6770 				return; /* all done */
6771 		}
6772 
6773 		if (time_after(jiffies, timeout)) {
6774 			dd_dev_err(dd,
6775 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6776 				   freeze ? "" : "un", reg & ALL_FROZE,
6777 				   freeze ? ALL_FROZE : 0ull);
6778 			return;
6779 		}
6780 		usleep_range(80, 120);
6781 	}
6782 }
6783 
6784 /*
6785  * Do all freeze handling for the RXE block.
6786  */
6787 static void rxe_freeze(struct hfi1_devdata *dd)
6788 {
6789 	int i;
6790 	struct hfi1_ctxtdata *rcd;
6791 
6792 	/* disable port */
6793 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6794 
6795 	/* disable all receive contexts */
6796 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6797 		rcd = hfi1_rcd_get_by_index(dd, i);
6798 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6799 		hfi1_rcd_put(rcd);
6800 	}
6801 }
6802 
6803 /*
6804  * Unfreeze handling for the RXE block - kernel contexts only.
6805  * This will also enable the port.  User contexts will do unfreeze
6806  * handling on a per-context basis as they call into the driver.
6807  *
6808  */
6809 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6810 {
6811 	u32 rcvmask;
6812 	u16 i;
6813 	struct hfi1_ctxtdata *rcd;
6814 
6815 	/* enable all kernel contexts */
6816 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6817 		rcd = hfi1_rcd_get_by_index(dd, i);
6818 
6819 		/* Ensure all non-user contexts(including vnic) are enabled */
6820 		if (!rcd ||
6821 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6822 			hfi1_rcd_put(rcd);
6823 			continue;
6824 		}
6825 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6826 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6827 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
6828 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6829 		hfi1_rcvctrl(dd, rcvmask, rcd);
6830 		hfi1_rcd_put(rcd);
6831 	}
6832 
6833 	/* enable port */
6834 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6835 }
6836 
6837 /*
6838  * Non-interrupt SPC freeze handling.
6839  *
6840  * This is a work-queue function outside of the triggering interrupt.
6841  */
6842 void handle_freeze(struct work_struct *work)
6843 {
6844 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6845 								freeze_work);
6846 	struct hfi1_devdata *dd = ppd->dd;
6847 
6848 	/* wait for freeze indicators on all affected blocks */
6849 	wait_for_freeze_status(dd, 1);
6850 
6851 	/* SPC is now frozen */
6852 
6853 	/* do send PIO freeze steps */
6854 	pio_freeze(dd);
6855 
6856 	/* do send DMA freeze steps */
6857 	sdma_freeze(dd);
6858 
6859 	/* do send egress freeze steps - nothing to do */
6860 
6861 	/* do receive freeze steps */
6862 	rxe_freeze(dd);
6863 
6864 	/*
6865 	 * Unfreeze the hardware - clear the freeze, wait for each
6866 	 * block's frozen bit to clear, then clear the frozen flag.
6867 	 */
6868 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6869 	wait_for_freeze_status(dd, 0);
6870 
6871 	if (is_ax(dd)) {
6872 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6873 		wait_for_freeze_status(dd, 1);
6874 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6875 		wait_for_freeze_status(dd, 0);
6876 	}
6877 
6878 	/* do send PIO unfreeze steps for kernel contexts */
6879 	pio_kernel_unfreeze(dd);
6880 
6881 	/* do send DMA unfreeze steps */
6882 	sdma_unfreeze(dd);
6883 
6884 	/* do send egress unfreeze steps - nothing to do */
6885 
6886 	/* do receive unfreeze steps for kernel contexts */
6887 	rxe_kernel_unfreeze(dd);
6888 
6889 	/*
6890 	 * The unfreeze procedure touches global device registers when
6891 	 * it disables and re-enables RXE. Mark the device unfrozen
6892 	 * after all that is done so other parts of the driver waiting
6893 	 * for the device to unfreeze don't do things out of order.
6894 	 *
6895 	 * The above implies that the meaning of HFI1_FROZEN flag is
6896 	 * "Device has gone into freeze mode and freeze mode handling
6897 	 * is still in progress."
6898 	 *
6899 	 * The flag will be removed when freeze mode processing has
6900 	 * completed.
6901 	 */
6902 	dd->flags &= ~HFI1_FROZEN;
6903 	wake_up(&dd->event_queue);
6904 
6905 	/* no longer frozen */
6906 }
6907 
6908 /*
6909  * Handle a link up interrupt from the 8051.
6910  *
6911  * This is a work-queue function outside of the interrupt.
6912  */
6913 void handle_link_up(struct work_struct *work)
6914 {
6915 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6916 						  link_up_work);
6917 	struct hfi1_devdata *dd = ppd->dd;
6918 
6919 	set_link_state(ppd, HLS_UP_INIT);
6920 
6921 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6922 	read_ltp_rtt(dd);
6923 	/*
6924 	 * OPA specifies that certain counters are cleared on a transition
6925 	 * to link up, so do that.
6926 	 */
6927 	clear_linkup_counters(dd);
6928 	/*
6929 	 * And (re)set link up default values.
6930 	 */
6931 	set_linkup_defaults(ppd);
6932 
6933 	/*
6934 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6935 	 * In case of quick linkup or simulator, vl15 value will be set by
6936 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6937 	 * called in those scenarios.
6938 	 */
6939 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6940 		set_up_vl15(dd, dd->vl15buf_cached);
6941 
6942 	/* enforce link speed enabled */
6943 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6944 		/* oops - current speed is not enabled, bounce */
6945 		dd_dev_err(dd,
6946 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6947 			   ppd->link_speed_active, ppd->link_speed_enabled);
6948 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6949 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6950 		set_link_state(ppd, HLS_DN_OFFLINE);
6951 		start_link(ppd);
6952 	}
6953 }
6954 
6955 /*
6956  * Several pieces of LNI information were cached for SMA in ppd.
6957  * Reset these on link down
6958  */
6959 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6960 {
6961 	ppd->neighbor_guid = 0;
6962 	ppd->neighbor_port_number = 0;
6963 	ppd->neighbor_type = 0;
6964 	ppd->neighbor_fm_security = 0;
6965 }
6966 
6967 static const char * const link_down_reason_strs[] = {
6968 	[OPA_LINKDOWN_REASON_NONE] = "None",
6969 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6970 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6971 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6972 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6973 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6974 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6975 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6976 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6977 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6978 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6979 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6980 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6981 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6982 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6983 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6984 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6985 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6986 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6987 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6988 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6989 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6990 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6991 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6992 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6993 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6994 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6995 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6996 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6997 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6998 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6999 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7000 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7001 					"Excessive buffer overrun",
7002 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7003 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7004 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7005 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7006 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7007 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7008 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7009 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7010 					"Local media not installed",
7011 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7012 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7013 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7014 					"End to end not installed",
7015 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7016 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7017 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7018 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7019 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7020 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7021 };
7022 
7023 /* return the neighbor link down reason string */
7024 static const char *link_down_reason_str(u8 reason)
7025 {
7026 	const char *str = NULL;
7027 
7028 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7029 		str = link_down_reason_strs[reason];
7030 	if (!str)
7031 		str = "(invalid)";
7032 
7033 	return str;
7034 }
7035 
7036 /*
7037  * Handle a link down interrupt from the 8051.
7038  *
7039  * This is a work-queue function outside of the interrupt.
7040  */
7041 void handle_link_down(struct work_struct *work)
7042 {
7043 	u8 lcl_reason, neigh_reason = 0;
7044 	u8 link_down_reason;
7045 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7046 						  link_down_work);
7047 	int was_up;
7048 	static const char ldr_str[] = "Link down reason: ";
7049 
7050 	if ((ppd->host_link_state &
7051 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7052 	     ppd->port_type == PORT_TYPE_FIXED)
7053 		ppd->offline_disabled_reason =
7054 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7055 
7056 	/* Go offline first, then deal with reading/writing through 8051 */
7057 	was_up = !!(ppd->host_link_state & HLS_UP);
7058 	set_link_state(ppd, HLS_DN_OFFLINE);
7059 	xchg(&ppd->is_link_down_queued, 0);
7060 
7061 	if (was_up) {
7062 		lcl_reason = 0;
7063 		/* link down reason is only valid if the link was up */
7064 		read_link_down_reason(ppd->dd, &link_down_reason);
7065 		switch (link_down_reason) {
7066 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7067 			/* the link went down, no idle message reason */
7068 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7069 				    ldr_str);
7070 			break;
7071 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7072 			/*
7073 			 * The neighbor reason is only valid if an idle message
7074 			 * was received for it.
7075 			 */
7076 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7077 			dd_dev_info(ppd->dd,
7078 				    "%sNeighbor link down message %d, %s\n",
7079 				    ldr_str, neigh_reason,
7080 				    link_down_reason_str(neigh_reason));
7081 			break;
7082 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7083 			dd_dev_info(ppd->dd,
7084 				    "%sHost requested link to go offline\n",
7085 				    ldr_str);
7086 			break;
7087 		default:
7088 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7089 				    ldr_str, link_down_reason);
7090 			break;
7091 		}
7092 
7093 		/*
7094 		 * If no reason, assume peer-initiated but missed
7095 		 * LinkGoingDown idle flits.
7096 		 */
7097 		if (neigh_reason == 0)
7098 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7099 	} else {
7100 		/* went down while polling or going up */
7101 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7102 	}
7103 
7104 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7105 
7106 	/* inform the SMA when the link transitions from up to down */
7107 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7108 	    ppd->neigh_link_down_reason.sma == 0) {
7109 		ppd->local_link_down_reason.sma =
7110 					ppd->local_link_down_reason.latest;
7111 		ppd->neigh_link_down_reason.sma =
7112 					ppd->neigh_link_down_reason.latest;
7113 	}
7114 
7115 	reset_neighbor_info(ppd);
7116 
7117 	/* disable the port */
7118 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7119 
7120 	/*
7121 	 * If there is no cable attached, turn the DC off. Otherwise,
7122 	 * start the link bring up.
7123 	 */
7124 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7125 		dc_shutdown(ppd->dd);
7126 	else
7127 		start_link(ppd);
7128 }
7129 
7130 void handle_link_bounce(struct work_struct *work)
7131 {
7132 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7133 							link_bounce_work);
7134 
7135 	/*
7136 	 * Only do something if the link is currently up.
7137 	 */
7138 	if (ppd->host_link_state & HLS_UP) {
7139 		set_link_state(ppd, HLS_DN_OFFLINE);
7140 		start_link(ppd);
7141 	} else {
7142 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7143 			    __func__, link_state_name(ppd->host_link_state));
7144 	}
7145 }
7146 
7147 /*
7148  * Mask conversion: Capability exchange to Port LTP.  The capability
7149  * exchange has an implicit 16b CRC that is mandatory.
7150  */
7151 static int cap_to_port_ltp(int cap)
7152 {
7153 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7154 
7155 	if (cap & CAP_CRC_14B)
7156 		port_ltp |= PORT_LTP_CRC_MODE_14;
7157 	if (cap & CAP_CRC_48B)
7158 		port_ltp |= PORT_LTP_CRC_MODE_48;
7159 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7160 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7161 
7162 	return port_ltp;
7163 }
7164 
7165 /*
7166  * Convert an OPA Port LTP mask to capability mask
7167  */
7168 int port_ltp_to_cap(int port_ltp)
7169 {
7170 	int cap_mask = 0;
7171 
7172 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7173 		cap_mask |= CAP_CRC_14B;
7174 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7175 		cap_mask |= CAP_CRC_48B;
7176 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7177 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7178 
7179 	return cap_mask;
7180 }
7181 
7182 /*
7183  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7184  */
7185 static int lcb_to_port_ltp(int lcb_crc)
7186 {
7187 	int port_ltp = 0;
7188 
7189 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7190 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7191 	else if (lcb_crc == LCB_CRC_48B)
7192 		port_ltp = PORT_LTP_CRC_MODE_48;
7193 	else if (lcb_crc == LCB_CRC_14B)
7194 		port_ltp = PORT_LTP_CRC_MODE_14;
7195 	else
7196 		port_ltp = PORT_LTP_CRC_MODE_16;
7197 
7198 	return port_ltp;
7199 }
7200 
7201 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7202 {
7203 	if (ppd->pkeys[2] != 0) {
7204 		ppd->pkeys[2] = 0;
7205 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7206 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7207 	}
7208 }
7209 
7210 /*
7211  * Convert the given link width to the OPA link width bitmask.
7212  */
7213 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7214 {
7215 	switch (width) {
7216 	case 0:
7217 		/*
7218 		 * Simulator and quick linkup do not set the width.
7219 		 * Just set it to 4x without complaint.
7220 		 */
7221 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7222 			return OPA_LINK_WIDTH_4X;
7223 		return 0; /* no lanes up */
7224 	case 1: return OPA_LINK_WIDTH_1X;
7225 	case 2: return OPA_LINK_WIDTH_2X;
7226 	case 3: return OPA_LINK_WIDTH_3X;
7227 	default:
7228 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7229 			    __func__, width);
7230 		/* fall through */
7231 	case 4: return OPA_LINK_WIDTH_4X;
7232 	}
7233 }
7234 
7235 /*
7236  * Do a population count on the bottom nibble.
7237  */
7238 static const u8 bit_counts[16] = {
7239 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7240 };
7241 
7242 static inline u8 nibble_to_count(u8 nibble)
7243 {
7244 	return bit_counts[nibble & 0xf];
7245 }
7246 
7247 /*
7248  * Read the active lane information from the 8051 registers and return
7249  * their widths.
7250  *
7251  * Active lane information is found in these 8051 registers:
7252  *	enable_lane_tx
7253  *	enable_lane_rx
7254  */
7255 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7256 			    u16 *rx_width)
7257 {
7258 	u16 tx, rx;
7259 	u8 enable_lane_rx;
7260 	u8 enable_lane_tx;
7261 	u8 tx_polarity_inversion;
7262 	u8 rx_polarity_inversion;
7263 	u8 max_rate;
7264 
7265 	/* read the active lanes */
7266 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7267 			 &rx_polarity_inversion, &max_rate);
7268 	read_local_lni(dd, &enable_lane_rx);
7269 
7270 	/* convert to counts */
7271 	tx = nibble_to_count(enable_lane_tx);
7272 	rx = nibble_to_count(enable_lane_rx);
7273 
7274 	/*
7275 	 * Set link_speed_active here, overriding what was set in
7276 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7277 	 * set the max_rate field in handle_verify_cap until v0.19.
7278 	 */
7279 	if ((dd->icode == ICODE_RTL_SILICON) &&
7280 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7281 		/* max_rate: 0 = 12.5G, 1 = 25G */
7282 		switch (max_rate) {
7283 		case 0:
7284 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7285 			break;
7286 		default:
7287 			dd_dev_err(dd,
7288 				   "%s: unexpected max rate %d, using 25Gb\n",
7289 				   __func__, (int)max_rate);
7290 			/* fall through */
7291 		case 1:
7292 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7293 			break;
7294 		}
7295 	}
7296 
7297 	dd_dev_info(dd,
7298 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7299 		    enable_lane_tx, tx, enable_lane_rx, rx);
7300 	*tx_width = link_width_to_bits(dd, tx);
7301 	*rx_width = link_width_to_bits(dd, rx);
7302 }
7303 
7304 /*
7305  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7306  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7307  * after link up.  I.e. look elsewhere for downgrade information.
7308  *
7309  * Bits are:
7310  *	+ bits [7:4] contain the number of active transmitters
7311  *	+ bits [3:0] contain the number of active receivers
7312  * These are numbers 1 through 4 and can be different values if the
7313  * link is asymmetric.
7314  *
7315  * verify_cap_local_fm_link_width[0] retains its original value.
7316  */
7317 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7318 			      u16 *rx_width)
7319 {
7320 	u16 widths, tx, rx;
7321 	u8 misc_bits, local_flags;
7322 	u16 active_tx, active_rx;
7323 
7324 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7325 	tx = widths >> 12;
7326 	rx = (widths >> 8) & 0xf;
7327 
7328 	*tx_width = link_width_to_bits(dd, tx);
7329 	*rx_width = link_width_to_bits(dd, rx);
7330 
7331 	/* print the active widths */
7332 	get_link_widths(dd, &active_tx, &active_rx);
7333 }
7334 
7335 /*
7336  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7337  * hardware information when the link first comes up.
7338  *
7339  * The link width is not available until after VerifyCap.AllFramesReceived
7340  * (the trigger for handle_verify_cap), so this is outside that routine
7341  * and should be called when the 8051 signals linkup.
7342  */
7343 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7344 {
7345 	u16 tx_width, rx_width;
7346 
7347 	/* get end-of-LNI link widths */
7348 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7349 
7350 	/* use tx_width as the link is supposed to be symmetric on link up */
7351 	ppd->link_width_active = tx_width;
7352 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7353 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7354 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7355 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7356 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7357 	/* cache the active egress rate (units {10^6 bits/sec]) */
7358 	ppd->current_egress_rate = active_egress_rate(ppd);
7359 }
7360 
7361 /*
7362  * Handle a verify capabilities interrupt from the 8051.
7363  *
7364  * This is a work-queue function outside of the interrupt.
7365  */
7366 void handle_verify_cap(struct work_struct *work)
7367 {
7368 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7369 								link_vc_work);
7370 	struct hfi1_devdata *dd = ppd->dd;
7371 	u64 reg;
7372 	u8 power_management;
7373 	u8 continuous;
7374 	u8 vcu;
7375 	u8 vau;
7376 	u8 z;
7377 	u16 vl15buf;
7378 	u16 link_widths;
7379 	u16 crc_mask;
7380 	u16 crc_val;
7381 	u16 device_id;
7382 	u16 active_tx, active_rx;
7383 	u8 partner_supported_crc;
7384 	u8 remote_tx_rate;
7385 	u8 device_rev;
7386 
7387 	set_link_state(ppd, HLS_VERIFY_CAP);
7388 
7389 	lcb_shutdown(dd, 0);
7390 	adjust_lcb_for_fpga_serdes(dd);
7391 
7392 	read_vc_remote_phy(dd, &power_management, &continuous);
7393 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7394 			      &partner_supported_crc);
7395 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7396 	read_remote_device_id(dd, &device_id, &device_rev);
7397 
7398 	/* print the active widths */
7399 	get_link_widths(dd, &active_tx, &active_rx);
7400 	dd_dev_info(dd,
7401 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7402 		    (int)power_management, (int)continuous);
7403 	dd_dev_info(dd,
7404 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7405 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7406 		    (int)partner_supported_crc);
7407 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7408 		    (u32)remote_tx_rate, (u32)link_widths);
7409 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7410 		    (u32)device_id, (u32)device_rev);
7411 	/*
7412 	 * The peer vAU value just read is the peer receiver value.  HFI does
7413 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7414 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7415 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7416 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7417 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7418 	 * subject to the Z value exception.
7419 	 */
7420 	if (vau == 0)
7421 		vau = 1;
7422 	set_up_vau(dd, vau);
7423 
7424 	/*
7425 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7426 	 * credits value and wait for link-up interrupt ot set it.
7427 	 */
7428 	set_up_vl15(dd, 0);
7429 	dd->vl15buf_cached = vl15buf;
7430 
7431 	/* set up the LCB CRC mode */
7432 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7433 
7434 	/* order is important: use the lowest bit in common */
7435 	if (crc_mask & CAP_CRC_14B)
7436 		crc_val = LCB_CRC_14B;
7437 	else if (crc_mask & CAP_CRC_48B)
7438 		crc_val = LCB_CRC_48B;
7439 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7440 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7441 	else
7442 		crc_val = LCB_CRC_16B;
7443 
7444 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7445 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7446 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7447 
7448 	/* set (14b only) or clear sideband credit */
7449 	reg = read_csr(dd, SEND_CM_CTRL);
7450 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7451 		write_csr(dd, SEND_CM_CTRL,
7452 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7453 	} else {
7454 		write_csr(dd, SEND_CM_CTRL,
7455 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7456 	}
7457 
7458 	ppd->link_speed_active = 0;	/* invalid value */
7459 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7460 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7461 		switch (remote_tx_rate) {
7462 		case 0:
7463 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7464 			break;
7465 		case 1:
7466 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7467 			break;
7468 		}
7469 	} else {
7470 		/* actual rate is highest bit of the ANDed rates */
7471 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7472 
7473 		if (rate & 2)
7474 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7475 		else if (rate & 1)
7476 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7477 	}
7478 	if (ppd->link_speed_active == 0) {
7479 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7480 			   __func__, (int)remote_tx_rate);
7481 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7482 	}
7483 
7484 	/*
7485 	 * Cache the values of the supported, enabled, and active
7486 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7487 	 * flags that are returned in the portinfo query differ from
7488 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7489 	 * variables. Convert these here.
7490 	 */
7491 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7492 		/* supported crc modes */
7493 	ppd->port_ltp_crc_mode |=
7494 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7495 		/* enabled crc modes */
7496 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7497 		/* active crc mode */
7498 
7499 	/* set up the remote credit return table */
7500 	assign_remote_cm_au_table(dd, vcu);
7501 
7502 	/*
7503 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7504 	 * be applied on every link up.
7505 	 *
7506 	 * Adjust LCB error kill enable to kill the link if
7507 	 * these RBUF errors are seen:
7508 	 *	REPLAY_BUF_MBE_SMASK
7509 	 *	FLIT_INPUT_BUF_MBE_SMASK
7510 	 */
7511 	if (is_ax(dd)) {			/* fixed in B0 */
7512 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7513 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7514 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7515 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7516 	}
7517 
7518 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7519 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7520 
7521 	/* give 8051 access to the LCB CSRs */
7522 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7523 	set_8051_lcb_access(dd);
7524 
7525 	/* tell the 8051 to go to LinkUp */
7526 	set_link_state(ppd, HLS_GOING_UP);
7527 }
7528 
7529 /*
7530  * Apply the link width downgrade enabled policy against the current active
7531  * link widths.
7532  *
7533  * Called when the enabled policy changes or the active link widths change.
7534  */
7535 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7536 {
7537 	int do_bounce = 0;
7538 	int tries;
7539 	u16 lwde;
7540 	u16 tx, rx;
7541 
7542 	/* use the hls lock to avoid a race with actual link up */
7543 	tries = 0;
7544 retry:
7545 	mutex_lock(&ppd->hls_lock);
7546 	/* only apply if the link is up */
7547 	if (ppd->host_link_state & HLS_DOWN) {
7548 		/* still going up..wait and retry */
7549 		if (ppd->host_link_state & HLS_GOING_UP) {
7550 			if (++tries < 1000) {
7551 				mutex_unlock(&ppd->hls_lock);
7552 				usleep_range(100, 120); /* arbitrary */
7553 				goto retry;
7554 			}
7555 			dd_dev_err(ppd->dd,
7556 				   "%s: giving up waiting for link state change\n",
7557 				   __func__);
7558 		}
7559 		goto done;
7560 	}
7561 
7562 	lwde = ppd->link_width_downgrade_enabled;
7563 
7564 	if (refresh_widths) {
7565 		get_link_widths(ppd->dd, &tx, &rx);
7566 		ppd->link_width_downgrade_tx_active = tx;
7567 		ppd->link_width_downgrade_rx_active = rx;
7568 	}
7569 
7570 	if (ppd->link_width_downgrade_tx_active == 0 ||
7571 	    ppd->link_width_downgrade_rx_active == 0) {
7572 		/* the 8051 reported a dead link as a downgrade */
7573 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7574 	} else if (lwde == 0) {
7575 		/* downgrade is disabled */
7576 
7577 		/* bounce if not at starting active width */
7578 		if ((ppd->link_width_active !=
7579 		     ppd->link_width_downgrade_tx_active) ||
7580 		    (ppd->link_width_active !=
7581 		     ppd->link_width_downgrade_rx_active)) {
7582 			dd_dev_err(ppd->dd,
7583 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7584 			dd_dev_err(ppd->dd,
7585 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7586 				   ppd->link_width_active,
7587 				   ppd->link_width_downgrade_tx_active,
7588 				   ppd->link_width_downgrade_rx_active);
7589 			do_bounce = 1;
7590 		}
7591 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7592 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7593 		/* Tx or Rx is outside the enabled policy */
7594 		dd_dev_err(ppd->dd,
7595 			   "Link is outside of downgrade allowed, downing link\n");
7596 		dd_dev_err(ppd->dd,
7597 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7598 			   lwde, ppd->link_width_downgrade_tx_active,
7599 			   ppd->link_width_downgrade_rx_active);
7600 		do_bounce = 1;
7601 	}
7602 
7603 done:
7604 	mutex_unlock(&ppd->hls_lock);
7605 
7606 	if (do_bounce) {
7607 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7608 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7609 		set_link_state(ppd, HLS_DN_OFFLINE);
7610 		start_link(ppd);
7611 	}
7612 }
7613 
7614 /*
7615  * Handle a link downgrade interrupt from the 8051.
7616  *
7617  * This is a work-queue function outside of the interrupt.
7618  */
7619 void handle_link_downgrade(struct work_struct *work)
7620 {
7621 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7622 							link_downgrade_work);
7623 
7624 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7625 	apply_link_downgrade_policy(ppd, 1);
7626 }
7627 
7628 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7629 {
7630 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7631 		ARRAY_SIZE(dcc_err_flags));
7632 }
7633 
7634 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7635 {
7636 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7637 		ARRAY_SIZE(lcb_err_flags));
7638 }
7639 
7640 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7641 {
7642 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7643 		ARRAY_SIZE(dc8051_err_flags));
7644 }
7645 
7646 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7647 {
7648 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7649 		ARRAY_SIZE(dc8051_info_err_flags));
7650 }
7651 
7652 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7653 {
7654 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7655 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7656 }
7657 
7658 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7659 {
7660 	struct hfi1_pportdata *ppd = dd->pport;
7661 	u64 info, err, host_msg;
7662 	int queue_link_down = 0;
7663 	char buf[96];
7664 
7665 	/* look at the flags */
7666 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7667 		/* 8051 information set by firmware */
7668 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7669 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7670 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7671 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7672 		host_msg = (info >>
7673 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7674 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7675 
7676 		/*
7677 		 * Handle error flags.
7678 		 */
7679 		if (err & FAILED_LNI) {
7680 			/*
7681 			 * LNI error indications are cleared by the 8051
7682 			 * only when starting polling.  Only pay attention
7683 			 * to them when in the states that occur during
7684 			 * LNI.
7685 			 */
7686 			if (ppd->host_link_state
7687 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7688 				queue_link_down = 1;
7689 				dd_dev_info(dd, "Link error: %s\n",
7690 					    dc8051_info_err_string(buf,
7691 								   sizeof(buf),
7692 								   err &
7693 								   FAILED_LNI));
7694 			}
7695 			err &= ~(u64)FAILED_LNI;
7696 		}
7697 		/* unknown frames can happen durning LNI, just count */
7698 		if (err & UNKNOWN_FRAME) {
7699 			ppd->unknown_frame_count++;
7700 			err &= ~(u64)UNKNOWN_FRAME;
7701 		}
7702 		if (err) {
7703 			/* report remaining errors, but do not do anything */
7704 			dd_dev_err(dd, "8051 info error: %s\n",
7705 				   dc8051_info_err_string(buf, sizeof(buf),
7706 							  err));
7707 		}
7708 
7709 		/*
7710 		 * Handle host message flags.
7711 		 */
7712 		if (host_msg & HOST_REQ_DONE) {
7713 			/*
7714 			 * Presently, the driver does a busy wait for
7715 			 * host requests to complete.  This is only an
7716 			 * informational message.
7717 			 * NOTE: The 8051 clears the host message
7718 			 * information *on the next 8051 command*.
7719 			 * Therefore, when linkup is achieved,
7720 			 * this flag will still be set.
7721 			 */
7722 			host_msg &= ~(u64)HOST_REQ_DONE;
7723 		}
7724 		if (host_msg & BC_SMA_MSG) {
7725 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7726 			host_msg &= ~(u64)BC_SMA_MSG;
7727 		}
7728 		if (host_msg & LINKUP_ACHIEVED) {
7729 			dd_dev_info(dd, "8051: Link up\n");
7730 			queue_work(ppd->link_wq, &ppd->link_up_work);
7731 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7732 		}
7733 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7734 			handle_8051_request(ppd);
7735 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7736 		}
7737 		if (host_msg & VERIFY_CAP_FRAME) {
7738 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7739 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7740 		}
7741 		if (host_msg & LINK_GOING_DOWN) {
7742 			const char *extra = "";
7743 			/* no downgrade action needed if going down */
7744 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7745 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7746 				extra = " (ignoring downgrade)";
7747 			}
7748 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7749 			queue_link_down = 1;
7750 			host_msg &= ~(u64)LINK_GOING_DOWN;
7751 		}
7752 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7753 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7754 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7755 		}
7756 		if (host_msg) {
7757 			/* report remaining messages, but do not do anything */
7758 			dd_dev_info(dd, "8051 info host message: %s\n",
7759 				    dc8051_info_host_msg_string(buf,
7760 								sizeof(buf),
7761 								host_msg));
7762 		}
7763 
7764 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7765 	}
7766 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7767 		/*
7768 		 * Lost the 8051 heartbeat.  If this happens, we
7769 		 * receive constant interrupts about it.  Disable
7770 		 * the interrupt after the first.
7771 		 */
7772 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7773 		write_csr(dd, DC_DC8051_ERR_EN,
7774 			  read_csr(dd, DC_DC8051_ERR_EN) &
7775 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7776 
7777 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7778 	}
7779 	if (reg) {
7780 		/* report the error, but do not do anything */
7781 		dd_dev_err(dd, "8051 error: %s\n",
7782 			   dc8051_err_string(buf, sizeof(buf), reg));
7783 	}
7784 
7785 	if (queue_link_down) {
7786 		/*
7787 		 * if the link is already going down or disabled, do not
7788 		 * queue another. If there's a link down entry already
7789 		 * queued, don't queue another one.
7790 		 */
7791 		if ((ppd->host_link_state &
7792 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7793 		    ppd->link_enabled == 0) {
7794 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7795 				    __func__, ppd->host_link_state,
7796 				    ppd->link_enabled);
7797 		} else {
7798 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7799 				dd_dev_info(dd,
7800 					    "%s: link down request already queued\n",
7801 					    __func__);
7802 			else
7803 				queue_work(ppd->link_wq, &ppd->link_down_work);
7804 		}
7805 	}
7806 }
7807 
7808 static const char * const fm_config_txt[] = {
7809 [0] =
7810 	"BadHeadDist: Distance violation between two head flits",
7811 [1] =
7812 	"BadTailDist: Distance violation between two tail flits",
7813 [2] =
7814 	"BadCtrlDist: Distance violation between two credit control flits",
7815 [3] =
7816 	"BadCrdAck: Credits return for unsupported VL",
7817 [4] =
7818 	"UnsupportedVLMarker: Received VL Marker",
7819 [5] =
7820 	"BadPreempt: Exceeded the preemption nesting level",
7821 [6] =
7822 	"BadControlFlit: Received unsupported control flit",
7823 /* no 7 */
7824 [8] =
7825 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7826 };
7827 
7828 static const char * const port_rcv_txt[] = {
7829 [1] =
7830 	"BadPktLen: Illegal PktLen",
7831 [2] =
7832 	"PktLenTooLong: Packet longer than PktLen",
7833 [3] =
7834 	"PktLenTooShort: Packet shorter than PktLen",
7835 [4] =
7836 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7837 [5] =
7838 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7839 [6] =
7840 	"BadL2: Illegal L2 opcode",
7841 [7] =
7842 	"BadSC: Unsupported SC",
7843 [9] =
7844 	"BadRC: Illegal RC",
7845 [11] =
7846 	"PreemptError: Preempting with same VL",
7847 [12] =
7848 	"PreemptVL15: Preempting a VL15 packet",
7849 };
7850 
7851 #define OPA_LDR_FMCONFIG_OFFSET 16
7852 #define OPA_LDR_PORTRCV_OFFSET 0
7853 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7854 {
7855 	u64 info, hdr0, hdr1;
7856 	const char *extra;
7857 	char buf[96];
7858 	struct hfi1_pportdata *ppd = dd->pport;
7859 	u8 lcl_reason = 0;
7860 	int do_bounce = 0;
7861 
7862 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7863 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7864 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7865 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7866 			/* set status bit */
7867 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7868 		}
7869 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7870 	}
7871 
7872 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7873 		struct hfi1_pportdata *ppd = dd->pport;
7874 		/* this counter saturates at (2^32) - 1 */
7875 		if (ppd->link_downed < (u32)UINT_MAX)
7876 			ppd->link_downed++;
7877 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7878 	}
7879 
7880 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7881 		u8 reason_valid = 1;
7882 
7883 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7884 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7885 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7886 			/* set status bit */
7887 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7888 		}
7889 		switch (info) {
7890 		case 0:
7891 		case 1:
7892 		case 2:
7893 		case 3:
7894 		case 4:
7895 		case 5:
7896 		case 6:
7897 			extra = fm_config_txt[info];
7898 			break;
7899 		case 8:
7900 			extra = fm_config_txt[info];
7901 			if (ppd->port_error_action &
7902 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7903 				do_bounce = 1;
7904 				/*
7905 				 * lcl_reason cannot be derived from info
7906 				 * for this error
7907 				 */
7908 				lcl_reason =
7909 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7910 			}
7911 			break;
7912 		default:
7913 			reason_valid = 0;
7914 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7915 			extra = buf;
7916 			break;
7917 		}
7918 
7919 		if (reason_valid && !do_bounce) {
7920 			do_bounce = ppd->port_error_action &
7921 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7922 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7923 		}
7924 
7925 		/* just report this */
7926 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7927 					extra);
7928 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7929 	}
7930 
7931 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7932 		u8 reason_valid = 1;
7933 
7934 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7935 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7936 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7937 		if (!(dd->err_info_rcvport.status_and_code &
7938 		      OPA_EI_STATUS_SMASK)) {
7939 			dd->err_info_rcvport.status_and_code =
7940 				info & OPA_EI_CODE_SMASK;
7941 			/* set status bit */
7942 			dd->err_info_rcvport.status_and_code |=
7943 				OPA_EI_STATUS_SMASK;
7944 			/*
7945 			 * save first 2 flits in the packet that caused
7946 			 * the error
7947 			 */
7948 			dd->err_info_rcvport.packet_flit1 = hdr0;
7949 			dd->err_info_rcvport.packet_flit2 = hdr1;
7950 		}
7951 		switch (info) {
7952 		case 1:
7953 		case 2:
7954 		case 3:
7955 		case 4:
7956 		case 5:
7957 		case 6:
7958 		case 7:
7959 		case 9:
7960 		case 11:
7961 		case 12:
7962 			extra = port_rcv_txt[info];
7963 			break;
7964 		default:
7965 			reason_valid = 0;
7966 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7967 			extra = buf;
7968 			break;
7969 		}
7970 
7971 		if (reason_valid && !do_bounce) {
7972 			do_bounce = ppd->port_error_action &
7973 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
7974 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7975 		}
7976 
7977 		/* just report this */
7978 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
7979 					"               hdr0 0x%llx, hdr1 0x%llx\n",
7980 					extra, hdr0, hdr1);
7981 
7982 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7983 	}
7984 
7985 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7986 		/* informative only */
7987 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
7988 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7989 	}
7990 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7991 		/* informative only */
7992 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
7993 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7994 	}
7995 
7996 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
7997 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
7998 
7999 	/* report any remaining errors */
8000 	if (reg)
8001 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8002 					dcc_err_string(buf, sizeof(buf), reg));
8003 
8004 	if (lcl_reason == 0)
8005 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8006 
8007 	if (do_bounce) {
8008 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8009 					__func__);
8010 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8011 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8012 	}
8013 }
8014 
8015 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8016 {
8017 	char buf[96];
8018 
8019 	dd_dev_info(dd, "LCB Error: %s\n",
8020 		    lcb_err_string(buf, sizeof(buf), reg));
8021 }
8022 
8023 /*
8024  * CCE block DC interrupt.  Source is < 8.
8025  */
8026 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8027 {
8028 	const struct err_reg_info *eri = &dc_errs[source];
8029 
8030 	if (eri->handler) {
8031 		interrupt_clear_down(dd, 0, eri);
8032 	} else if (source == 3 /* dc_lbm_int */) {
8033 		/*
8034 		 * This indicates that a parity error has occurred on the
8035 		 * address/control lines presented to the LBM.  The error
8036 		 * is a single pulse, there is no associated error flag,
8037 		 * and it is non-maskable.  This is because if a parity
8038 		 * error occurs on the request the request is dropped.
8039 		 * This should never occur, but it is nice to know if it
8040 		 * ever does.
8041 		 */
8042 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8043 	} else {
8044 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8045 	}
8046 }
8047 
8048 /*
8049  * TX block send credit interrupt.  Source is < 160.
8050  */
8051 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8052 {
8053 	sc_group_release_update(dd, source);
8054 }
8055 
8056 /*
8057  * TX block SDMA interrupt.  Source is < 48.
8058  *
8059  * SDMA interrupts are grouped by type:
8060  *
8061  *	 0 -  N-1 = SDma
8062  *	 N - 2N-1 = SDmaProgress
8063  *	2N - 3N-1 = SDmaIdle
8064  */
8065 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8066 {
8067 	/* what interrupt */
8068 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8069 	/* which engine */
8070 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8071 
8072 #ifdef CONFIG_SDMA_VERBOSITY
8073 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8074 		   slashstrip(__FILE__), __LINE__, __func__);
8075 	sdma_dumpstate(&dd->per_sdma[which]);
8076 #endif
8077 
8078 	if (likely(what < 3 && which < dd->num_sdma)) {
8079 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8080 	} else {
8081 		/* should not happen */
8082 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8083 	}
8084 }
8085 
8086 /*
8087  * RX block receive available interrupt.  Source is < 160.
8088  */
8089 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8090 {
8091 	struct hfi1_ctxtdata *rcd;
8092 	char *err_detail;
8093 
8094 	if (likely(source < dd->num_rcv_contexts)) {
8095 		rcd = hfi1_rcd_get_by_index(dd, source);
8096 		if (rcd) {
8097 			/* Check for non-user contexts, including vnic */
8098 			if (source < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
8099 				rcd->do_interrupt(rcd, 0);
8100 			else
8101 				handle_user_interrupt(rcd);
8102 
8103 			hfi1_rcd_put(rcd);
8104 			return;	/* OK */
8105 		}
8106 		/* received an interrupt, but no rcd */
8107 		err_detail = "dataless";
8108 	} else {
8109 		/* received an interrupt, but are not using that context */
8110 		err_detail = "out of range";
8111 	}
8112 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8113 		   err_detail, source);
8114 }
8115 
8116 /*
8117  * RX block receive urgent interrupt.  Source is < 160.
8118  */
8119 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8120 {
8121 	struct hfi1_ctxtdata *rcd;
8122 	char *err_detail;
8123 
8124 	if (likely(source < dd->num_rcv_contexts)) {
8125 		rcd = hfi1_rcd_get_by_index(dd, source);
8126 		if (rcd) {
8127 			/* only pay attention to user urgent interrupts */
8128 			if (source >= dd->first_dyn_alloc_ctxt &&
8129 			    !rcd->is_vnic)
8130 				handle_user_interrupt(rcd);
8131 
8132 			hfi1_rcd_put(rcd);
8133 			return;	/* OK */
8134 		}
8135 		/* received an interrupt, but no rcd */
8136 		err_detail = "dataless";
8137 	} else {
8138 		/* received an interrupt, but are not using that context */
8139 		err_detail = "out of range";
8140 	}
8141 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8142 		   err_detail, source);
8143 }
8144 
8145 /*
8146  * Reserved range interrupt.  Should not be called in normal operation.
8147  */
8148 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8149 {
8150 	char name[64];
8151 
8152 	dd_dev_err(dd, "unexpected %s interrupt\n",
8153 		   is_reserved_name(name, sizeof(name), source));
8154 }
8155 
8156 static const struct is_table is_table[] = {
8157 /*
8158  * start		 end
8159  *				name func		interrupt func
8160  */
8161 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8162 				is_misc_err_name,	is_misc_err_int },
8163 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8164 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8165 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8166 				is_sendctxt_err_name,	is_sendctxt_err_int },
8167 { IS_SDMA_START,	     IS_SDMA_END,
8168 				is_sdma_eng_name,	is_sdma_eng_int },
8169 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8170 				is_various_name,	is_various_int },
8171 { IS_DC_START,	     IS_DC_END,
8172 				is_dc_name,		is_dc_int },
8173 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8174 				is_rcv_avail_name,	is_rcv_avail_int },
8175 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8176 				is_rcv_urgent_name,	is_rcv_urgent_int },
8177 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8178 				is_send_credit_name,	is_send_credit_int},
8179 { IS_RESERVED_START,     IS_RESERVED_END,
8180 				is_reserved_name,	is_reserved_int},
8181 };
8182 
8183 /*
8184  * Interrupt source interrupt - called when the given source has an interrupt.
8185  * Source is a bit index into an array of 64-bit integers.
8186  */
8187 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8188 {
8189 	const struct is_table *entry;
8190 
8191 	/* avoids a double compare by walking the table in-order */
8192 	for (entry = &is_table[0]; entry->is_name; entry++) {
8193 		if (source < entry->end) {
8194 			trace_hfi1_interrupt(dd, entry, source);
8195 			entry->is_int(dd, source - entry->start);
8196 			return;
8197 		}
8198 	}
8199 	/* fell off the end */
8200 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8201 }
8202 
8203 /*
8204  * General interrupt handler.  This is able to correctly handle
8205  * all interrupts in case INTx is used.
8206  */
8207 static irqreturn_t general_interrupt(int irq, void *data)
8208 {
8209 	struct hfi1_devdata *dd = data;
8210 	u64 regs[CCE_NUM_INT_CSRS];
8211 	u32 bit;
8212 	int i;
8213 	irqreturn_t handled = IRQ_NONE;
8214 
8215 	this_cpu_inc(*dd->int_counter);
8216 
8217 	/* phase 1: scan and clear all handled interrupts */
8218 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8219 		if (dd->gi_mask[i] == 0) {
8220 			regs[i] = 0;	/* used later */
8221 			continue;
8222 		}
8223 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8224 				dd->gi_mask[i];
8225 		/* only clear if anything is set */
8226 		if (regs[i])
8227 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8228 	}
8229 
8230 	/* phase 2: call the appropriate handler */
8231 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8232 			 CCE_NUM_INT_CSRS * 64) {
8233 		is_interrupt(dd, bit);
8234 		handled = IRQ_HANDLED;
8235 	}
8236 
8237 	return handled;
8238 }
8239 
8240 static irqreturn_t sdma_interrupt(int irq, void *data)
8241 {
8242 	struct sdma_engine *sde = data;
8243 	struct hfi1_devdata *dd = sde->dd;
8244 	u64 status;
8245 
8246 #ifdef CONFIG_SDMA_VERBOSITY
8247 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8248 		   slashstrip(__FILE__), __LINE__, __func__);
8249 	sdma_dumpstate(sde);
8250 #endif
8251 
8252 	this_cpu_inc(*dd->int_counter);
8253 
8254 	/* This read_csr is really bad in the hot path */
8255 	status = read_csr(dd,
8256 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8257 			  & sde->imask;
8258 	if (likely(status)) {
8259 		/* clear the interrupt(s) */
8260 		write_csr(dd,
8261 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8262 			  status);
8263 
8264 		/* handle the interrupt(s) */
8265 		sdma_engine_interrupt(sde, status);
8266 	} else {
8267 		dd_dev_err_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8268 				       sde->this_idx);
8269 	}
8270 	return IRQ_HANDLED;
8271 }
8272 
8273 /*
8274  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8275  * to insure that the write completed.  This does NOT guarantee that
8276  * queued DMA writes to memory from the chip are pushed.
8277  */
8278 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8279 {
8280 	struct hfi1_devdata *dd = rcd->dd;
8281 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8282 
8283 	mmiowb();	/* make sure everything before is written */
8284 	write_csr(dd, addr, rcd->imask);
8285 	/* force the above write on the chip and get a value back */
8286 	(void)read_csr(dd, addr);
8287 }
8288 
8289 /* force the receive interrupt */
8290 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8291 {
8292 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8293 }
8294 
8295 /*
8296  * Return non-zero if a packet is present.
8297  *
8298  * This routine is called when rechecking for packets after the RcvAvail
8299  * interrupt has been cleared down.  First, do a quick check of memory for
8300  * a packet present.  If not found, use an expensive CSR read of the context
8301  * tail to determine the actual tail.  The CSR read is necessary because there
8302  * is no method to push pending DMAs to memory other than an interrupt and we
8303  * are trying to determine if we need to force an interrupt.
8304  */
8305 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8306 {
8307 	u32 tail;
8308 	int present;
8309 
8310 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8311 		present = (rcd->seq_cnt ==
8312 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8313 	else /* is RDMA rtail */
8314 		present = (rcd->head != get_rcvhdrtail(rcd));
8315 
8316 	if (present)
8317 		return 1;
8318 
8319 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8320 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8321 	return rcd->head != tail;
8322 }
8323 
8324 /*
8325  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8326  * This routine will try to handle packets immediately (latency), but if
8327  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8328  * chip receive interrupt is *not* cleared down until this or the thread (if
8329  * invoked) is finished.  The intent is to avoid extra interrupts while we
8330  * are processing packets anyway.
8331  */
8332 static irqreturn_t receive_context_interrupt(int irq, void *data)
8333 {
8334 	struct hfi1_ctxtdata *rcd = data;
8335 	struct hfi1_devdata *dd = rcd->dd;
8336 	int disposition;
8337 	int present;
8338 
8339 	trace_hfi1_receive_interrupt(dd, rcd);
8340 	this_cpu_inc(*dd->int_counter);
8341 	aspm_ctx_disable(rcd);
8342 
8343 	/* receive interrupt remains blocked while processing packets */
8344 	disposition = rcd->do_interrupt(rcd, 0);
8345 
8346 	/*
8347 	 * Too many packets were seen while processing packets in this
8348 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8349 	 * remains blocked.
8350 	 */
8351 	if (disposition == RCV_PKT_LIMIT)
8352 		return IRQ_WAKE_THREAD;
8353 
8354 	/*
8355 	 * The packet processor detected no more packets.  Clear the receive
8356 	 * interrupt and recheck for a packet packet that may have arrived
8357 	 * after the previous check and interrupt clear.  If a packet arrived,
8358 	 * force another interrupt.
8359 	 */
8360 	clear_recv_intr(rcd);
8361 	present = check_packet_present(rcd);
8362 	if (present)
8363 		force_recv_intr(rcd);
8364 
8365 	return IRQ_HANDLED;
8366 }
8367 
8368 /*
8369  * Receive packet thread handler.  This expects to be invoked with the
8370  * receive interrupt still blocked.
8371  */
8372 static irqreturn_t receive_context_thread(int irq, void *data)
8373 {
8374 	struct hfi1_ctxtdata *rcd = data;
8375 	int present;
8376 
8377 	/* receive interrupt is still blocked from the IRQ handler */
8378 	(void)rcd->do_interrupt(rcd, 1);
8379 
8380 	/*
8381 	 * The packet processor will only return if it detected no more
8382 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8383 	 * recheck for a packet that may have arrived after the previous
8384 	 * check and the interrupt clear.  If a packet arrived, force another
8385 	 * interrupt.
8386 	 */
8387 	local_irq_disable();
8388 	clear_recv_intr(rcd);
8389 	present = check_packet_present(rcd);
8390 	if (present)
8391 		force_recv_intr(rcd);
8392 	local_irq_enable();
8393 
8394 	return IRQ_HANDLED;
8395 }
8396 
8397 /* ========================================================================= */
8398 
8399 u32 read_physical_state(struct hfi1_devdata *dd)
8400 {
8401 	u64 reg;
8402 
8403 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8404 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8405 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8406 }
8407 
8408 u32 read_logical_state(struct hfi1_devdata *dd)
8409 {
8410 	u64 reg;
8411 
8412 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8413 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8414 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8415 }
8416 
8417 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8418 {
8419 	u64 reg;
8420 
8421 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8422 	/* clear current state, set new state */
8423 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8424 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8425 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8426 }
8427 
8428 /*
8429  * Use the 8051 to read a LCB CSR.
8430  */
8431 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8432 {
8433 	u32 regno;
8434 	int ret;
8435 
8436 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8437 		if (acquire_lcb_access(dd, 0) == 0) {
8438 			*data = read_csr(dd, addr);
8439 			release_lcb_access(dd, 0);
8440 			return 0;
8441 		}
8442 		return -EBUSY;
8443 	}
8444 
8445 	/* register is an index of LCB registers: (offset - base) / 8 */
8446 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8447 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8448 	if (ret != HCMD_SUCCESS)
8449 		return -EBUSY;
8450 	return 0;
8451 }
8452 
8453 /*
8454  * Provide a cache for some of the LCB registers in case the LCB is
8455  * unavailable.
8456  * (The LCB is unavailable in certain link states, for example.)
8457  */
8458 struct lcb_datum {
8459 	u32 off;
8460 	u64 val;
8461 };
8462 
8463 static struct lcb_datum lcb_cache[] = {
8464 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8465 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8466 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8467 };
8468 
8469 static void update_lcb_cache(struct hfi1_devdata *dd)
8470 {
8471 	int i;
8472 	int ret;
8473 	u64 val;
8474 
8475 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8476 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8477 
8478 		/* Update if we get good data */
8479 		if (likely(ret != -EBUSY))
8480 			lcb_cache[i].val = val;
8481 	}
8482 }
8483 
8484 static int read_lcb_cache(u32 off, u64 *val)
8485 {
8486 	int i;
8487 
8488 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8489 		if (lcb_cache[i].off == off) {
8490 			*val = lcb_cache[i].val;
8491 			return 0;
8492 		}
8493 	}
8494 
8495 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8496 	return -1;
8497 }
8498 
8499 /*
8500  * Read an LCB CSR.  Access may not be in host control, so check.
8501  * Return 0 on success, -EBUSY on failure.
8502  */
8503 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8504 {
8505 	struct hfi1_pportdata *ppd = dd->pport;
8506 
8507 	/* if up, go through the 8051 for the value */
8508 	if (ppd->host_link_state & HLS_UP)
8509 		return read_lcb_via_8051(dd, addr, data);
8510 	/* if going up or down, check the cache, otherwise, no access */
8511 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8512 		if (read_lcb_cache(addr, data))
8513 			return -EBUSY;
8514 		return 0;
8515 	}
8516 
8517 	/* otherwise, host has access */
8518 	*data = read_csr(dd, addr);
8519 	return 0;
8520 }
8521 
8522 /*
8523  * Use the 8051 to write a LCB CSR.
8524  */
8525 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8526 {
8527 	u32 regno;
8528 	int ret;
8529 
8530 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8531 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8532 		if (acquire_lcb_access(dd, 0) == 0) {
8533 			write_csr(dd, addr, data);
8534 			release_lcb_access(dd, 0);
8535 			return 0;
8536 		}
8537 		return -EBUSY;
8538 	}
8539 
8540 	/* register is an index of LCB registers: (offset - base) / 8 */
8541 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8542 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8543 	if (ret != HCMD_SUCCESS)
8544 		return -EBUSY;
8545 	return 0;
8546 }
8547 
8548 /*
8549  * Write an LCB CSR.  Access may not be in host control, so check.
8550  * Return 0 on success, -EBUSY on failure.
8551  */
8552 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8553 {
8554 	struct hfi1_pportdata *ppd = dd->pport;
8555 
8556 	/* if up, go through the 8051 for the value */
8557 	if (ppd->host_link_state & HLS_UP)
8558 		return write_lcb_via_8051(dd, addr, data);
8559 	/* if going up or down, no access */
8560 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8561 		return -EBUSY;
8562 	/* otherwise, host has access */
8563 	write_csr(dd, addr, data);
8564 	return 0;
8565 }
8566 
8567 /*
8568  * Returns:
8569  *	< 0 = Linux error, not able to get access
8570  *	> 0 = 8051 command RETURN_CODE
8571  */
8572 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8573 			   u64 *out_data)
8574 {
8575 	u64 reg, completed;
8576 	int return_code;
8577 	unsigned long timeout;
8578 
8579 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8580 
8581 	mutex_lock(&dd->dc8051_lock);
8582 
8583 	/* We can't send any commands to the 8051 if it's in reset */
8584 	if (dd->dc_shutdown) {
8585 		return_code = -ENODEV;
8586 		goto fail;
8587 	}
8588 
8589 	/*
8590 	 * If an 8051 host command timed out previously, then the 8051 is
8591 	 * stuck.
8592 	 *
8593 	 * On first timeout, attempt to reset and restart the entire DC
8594 	 * block (including 8051). (Is this too big of a hammer?)
8595 	 *
8596 	 * If the 8051 times out a second time, the reset did not bring it
8597 	 * back to healthy life. In that case, fail any subsequent commands.
8598 	 */
8599 	if (dd->dc8051_timed_out) {
8600 		if (dd->dc8051_timed_out > 1) {
8601 			dd_dev_err(dd,
8602 				   "Previous 8051 host command timed out, skipping command %u\n",
8603 				   type);
8604 			return_code = -ENXIO;
8605 			goto fail;
8606 		}
8607 		_dc_shutdown(dd);
8608 		_dc_start(dd);
8609 	}
8610 
8611 	/*
8612 	 * If there is no timeout, then the 8051 command interface is
8613 	 * waiting for a command.
8614 	 */
8615 
8616 	/*
8617 	 * When writing a LCB CSR, out_data contains the full value to
8618 	 * to be written, while in_data contains the relative LCB
8619 	 * address in 7:0.  Do the work here, rather than the caller,
8620 	 * of distrubting the write data to where it needs to go:
8621 	 *
8622 	 * Write data
8623 	 *   39:00 -> in_data[47:8]
8624 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8625 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8626 	 */
8627 	if (type == HCMD_WRITE_LCB_CSR) {
8628 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8629 		/* must preserve COMPLETED - it is tied to hardware */
8630 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8631 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8632 		reg |= ((((*out_data) >> 40) & 0xff) <<
8633 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8634 		      | ((((*out_data) >> 48) & 0xffff) <<
8635 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8636 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8637 	}
8638 
8639 	/*
8640 	 * Do two writes: the first to stabilize the type and req_data, the
8641 	 * second to activate.
8642 	 */
8643 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8644 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8645 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8646 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8647 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8648 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8649 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8650 
8651 	/* wait for completion, alternate: interrupt */
8652 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8653 	while (1) {
8654 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8655 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8656 		if (completed)
8657 			break;
8658 		if (time_after(jiffies, timeout)) {
8659 			dd->dc8051_timed_out++;
8660 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8661 			if (out_data)
8662 				*out_data = 0;
8663 			return_code = -ETIMEDOUT;
8664 			goto fail;
8665 		}
8666 		udelay(2);
8667 	}
8668 
8669 	if (out_data) {
8670 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8671 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8672 		if (type == HCMD_READ_LCB_CSR) {
8673 			/* top 16 bits are in a different register */
8674 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8675 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8676 				<< (48
8677 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8678 		}
8679 	}
8680 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8681 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8682 	dd->dc8051_timed_out = 0;
8683 	/*
8684 	 * Clear command for next user.
8685 	 */
8686 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8687 
8688 fail:
8689 	mutex_unlock(&dd->dc8051_lock);
8690 	return return_code;
8691 }
8692 
8693 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8694 {
8695 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8696 }
8697 
8698 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8699 		     u8 lane_id, u32 config_data)
8700 {
8701 	u64 data;
8702 	int ret;
8703 
8704 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8705 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8706 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8707 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8708 	if (ret != HCMD_SUCCESS) {
8709 		dd_dev_err(dd,
8710 			   "load 8051 config: field id %d, lane %d, err %d\n",
8711 			   (int)field_id, (int)lane_id, ret);
8712 	}
8713 	return ret;
8714 }
8715 
8716 /*
8717  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8718  * set the result, even on error.
8719  * Return 0 on success, -errno on failure
8720  */
8721 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8722 		     u32 *result)
8723 {
8724 	u64 big_data;
8725 	u32 addr;
8726 	int ret;
8727 
8728 	/* address start depends on the lane_id */
8729 	if (lane_id < 4)
8730 		addr = (4 * NUM_GENERAL_FIELDS)
8731 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8732 	else
8733 		addr = 0;
8734 	addr += field_id * 4;
8735 
8736 	/* read is in 8-byte chunks, hardware will truncate the address down */
8737 	ret = read_8051_data(dd, addr, 8, &big_data);
8738 
8739 	if (ret == 0) {
8740 		/* extract the 4 bytes we want */
8741 		if (addr & 0x4)
8742 			*result = (u32)(big_data >> 32);
8743 		else
8744 			*result = (u32)big_data;
8745 	} else {
8746 		*result = 0;
8747 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8748 			   __func__, lane_id, field_id);
8749 	}
8750 
8751 	return ret;
8752 }
8753 
8754 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8755 			      u8 continuous)
8756 {
8757 	u32 frame;
8758 
8759 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8760 		| power_management << POWER_MANAGEMENT_SHIFT;
8761 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8762 				GENERAL_CONFIG, frame);
8763 }
8764 
8765 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8766 				 u16 vl15buf, u8 crc_sizes)
8767 {
8768 	u32 frame;
8769 
8770 	frame = (u32)vau << VAU_SHIFT
8771 		| (u32)z << Z_SHIFT
8772 		| (u32)vcu << VCU_SHIFT
8773 		| (u32)vl15buf << VL15BUF_SHIFT
8774 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8775 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8776 				GENERAL_CONFIG, frame);
8777 }
8778 
8779 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8780 				     u8 *flag_bits, u16 *link_widths)
8781 {
8782 	u32 frame;
8783 
8784 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8785 			 &frame);
8786 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8787 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8788 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8789 }
8790 
8791 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8792 				     u8 misc_bits,
8793 				     u8 flag_bits,
8794 				     u16 link_widths)
8795 {
8796 	u32 frame;
8797 
8798 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8799 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8800 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8801 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8802 		     frame);
8803 }
8804 
8805 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8806 				 u8 device_rev)
8807 {
8808 	u32 frame;
8809 
8810 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8811 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8812 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8813 }
8814 
8815 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8816 				  u8 *device_rev)
8817 {
8818 	u32 frame;
8819 
8820 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8821 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8822 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8823 			& REMOTE_DEVICE_REV_MASK;
8824 }
8825 
8826 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8827 {
8828 	u32 frame;
8829 	u32 mask;
8830 
8831 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8832 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8833 	/* Clear, then set field */
8834 	frame &= ~mask;
8835 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8836 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8837 				frame);
8838 }
8839 
8840 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8841 		      u8 *ver_patch)
8842 {
8843 	u32 frame;
8844 
8845 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8846 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8847 		STS_FM_VERSION_MAJOR_MASK;
8848 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8849 		STS_FM_VERSION_MINOR_MASK;
8850 
8851 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8852 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8853 		STS_FM_VERSION_PATCH_MASK;
8854 }
8855 
8856 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8857 			       u8 *continuous)
8858 {
8859 	u32 frame;
8860 
8861 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8862 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8863 					& POWER_MANAGEMENT_MASK;
8864 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8865 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8866 }
8867 
8868 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8869 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8870 {
8871 	u32 frame;
8872 
8873 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8874 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8875 	*z = (frame >> Z_SHIFT) & Z_MASK;
8876 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8877 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8878 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8879 }
8880 
8881 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8882 				      u8 *remote_tx_rate,
8883 				      u16 *link_widths)
8884 {
8885 	u32 frame;
8886 
8887 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8888 			 &frame);
8889 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8890 				& REMOTE_TX_RATE_MASK;
8891 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8892 }
8893 
8894 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8895 {
8896 	u32 frame;
8897 
8898 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8899 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8900 }
8901 
8902 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8903 {
8904 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8905 }
8906 
8907 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8908 {
8909 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8910 }
8911 
8912 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8913 {
8914 	u32 frame;
8915 	int ret;
8916 
8917 	*link_quality = 0;
8918 	if (dd->pport->host_link_state & HLS_UP) {
8919 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8920 				       &frame);
8921 		if (ret == 0)
8922 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8923 						& LINK_QUALITY_MASK;
8924 	}
8925 }
8926 
8927 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8928 {
8929 	u32 frame;
8930 
8931 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8932 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8933 }
8934 
8935 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8936 {
8937 	u32 frame;
8938 
8939 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8940 	*ldr = (frame & 0xff);
8941 }
8942 
8943 static int read_tx_settings(struct hfi1_devdata *dd,
8944 			    u8 *enable_lane_tx,
8945 			    u8 *tx_polarity_inversion,
8946 			    u8 *rx_polarity_inversion,
8947 			    u8 *max_rate)
8948 {
8949 	u32 frame;
8950 	int ret;
8951 
8952 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8953 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8954 				& ENABLE_LANE_TX_MASK;
8955 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8956 				& TX_POLARITY_INVERSION_MASK;
8957 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8958 				& RX_POLARITY_INVERSION_MASK;
8959 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8960 	return ret;
8961 }
8962 
8963 static int write_tx_settings(struct hfi1_devdata *dd,
8964 			     u8 enable_lane_tx,
8965 			     u8 tx_polarity_inversion,
8966 			     u8 rx_polarity_inversion,
8967 			     u8 max_rate)
8968 {
8969 	u32 frame;
8970 
8971 	/* no need to mask, all variable sizes match field widths */
8972 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8973 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8974 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8975 		| max_rate << MAX_RATE_SHIFT;
8976 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8977 }
8978 
8979 /*
8980  * Read an idle LCB message.
8981  *
8982  * Returns 0 on success, -EINVAL on error
8983  */
8984 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8985 {
8986 	int ret;
8987 
8988 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
8989 	if (ret != HCMD_SUCCESS) {
8990 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
8991 			   (u32)type, ret);
8992 		return -EINVAL;
8993 	}
8994 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8995 	/* return only the payload as we already know the type */
8996 	*data_out >>= IDLE_PAYLOAD_SHIFT;
8997 	return 0;
8998 }
8999 
9000 /*
9001  * Read an idle SMA message.  To be done in response to a notification from
9002  * the 8051.
9003  *
9004  * Returns 0 on success, -EINVAL on error
9005  */
9006 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9007 {
9008 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9009 				 data);
9010 }
9011 
9012 /*
9013  * Send an idle LCB message.
9014  *
9015  * Returns 0 on success, -EINVAL on error
9016  */
9017 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9018 {
9019 	int ret;
9020 
9021 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9022 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9023 	if (ret != HCMD_SUCCESS) {
9024 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9025 			   data, ret);
9026 		return -EINVAL;
9027 	}
9028 	return 0;
9029 }
9030 
9031 /*
9032  * Send an idle SMA message.
9033  *
9034  * Returns 0 on success, -EINVAL on error
9035  */
9036 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9037 {
9038 	u64 data;
9039 
9040 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9041 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9042 	return send_idle_message(dd, data);
9043 }
9044 
9045 /*
9046  * Initialize the LCB then do a quick link up.  This may or may not be
9047  * in loopback.
9048  *
9049  * return 0 on success, -errno on error
9050  */
9051 static int do_quick_linkup(struct hfi1_devdata *dd)
9052 {
9053 	int ret;
9054 
9055 	lcb_shutdown(dd, 0);
9056 
9057 	if (loopback) {
9058 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9059 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9060 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9061 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9062 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9063 	}
9064 
9065 	/* start the LCBs */
9066 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9067 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9068 
9069 	/* simulator only loopback steps */
9070 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9071 		/* LCB_CFG_RUN.EN = 1 */
9072 		write_csr(dd, DC_LCB_CFG_RUN,
9073 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9074 
9075 		ret = wait_link_transfer_active(dd, 10);
9076 		if (ret)
9077 			return ret;
9078 
9079 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9080 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9081 	}
9082 
9083 	if (!loopback) {
9084 		/*
9085 		 * When doing quick linkup and not in loopback, both
9086 		 * sides must be done with LCB set-up before either
9087 		 * starts the quick linkup.  Put a delay here so that
9088 		 * both sides can be started and have a chance to be
9089 		 * done with LCB set up before resuming.
9090 		 */
9091 		dd_dev_err(dd,
9092 			   "Pausing for peer to be finished with LCB set up\n");
9093 		msleep(5000);
9094 		dd_dev_err(dd, "Continuing with quick linkup\n");
9095 	}
9096 
9097 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9098 	set_8051_lcb_access(dd);
9099 
9100 	/*
9101 	 * State "quick" LinkUp request sets the physical link state to
9102 	 * LinkUp without a verify capability sequence.
9103 	 * This state is in simulator v37 and later.
9104 	 */
9105 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9106 	if (ret != HCMD_SUCCESS) {
9107 		dd_dev_err(dd,
9108 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9109 			   __func__, ret);
9110 
9111 		set_host_lcb_access(dd);
9112 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9113 
9114 		if (ret >= 0)
9115 			ret = -EINVAL;
9116 		return ret;
9117 	}
9118 
9119 	return 0; /* success */
9120 }
9121 
9122 /*
9123  * Do all special steps to set up loopback.
9124  */
9125 static int init_loopback(struct hfi1_devdata *dd)
9126 {
9127 	dd_dev_info(dd, "Entering loopback mode\n");
9128 
9129 	/* all loopbacks should disable self GUID check */
9130 	write_csr(dd, DC_DC8051_CFG_MODE,
9131 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9132 
9133 	/*
9134 	 * The simulator has only one loopback option - LCB.  Switch
9135 	 * to that option, which includes quick link up.
9136 	 *
9137 	 * Accept all valid loopback values.
9138 	 */
9139 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9140 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9141 	     loopback == LOOPBACK_CABLE)) {
9142 		loopback = LOOPBACK_LCB;
9143 		quick_linkup = 1;
9144 		return 0;
9145 	}
9146 
9147 	/*
9148 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9149 	 */
9150 	if (loopback == LOOPBACK_SERDES)
9151 		return 0;
9152 
9153 	/* LCB loopback - handled at poll time */
9154 	if (loopback == LOOPBACK_LCB) {
9155 		quick_linkup = 1; /* LCB is always quick linkup */
9156 
9157 		/* not supported in emulation due to emulation RTL changes */
9158 		if (dd->icode == ICODE_FPGA_EMULATION) {
9159 			dd_dev_err(dd,
9160 				   "LCB loopback not supported in emulation\n");
9161 			return -EINVAL;
9162 		}
9163 		return 0;
9164 	}
9165 
9166 	/* external cable loopback requires no extra steps */
9167 	if (loopback == LOOPBACK_CABLE)
9168 		return 0;
9169 
9170 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9171 	return -EINVAL;
9172 }
9173 
9174 /*
9175  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9176  * used in the Verify Capability link width attribute.
9177  */
9178 static u16 opa_to_vc_link_widths(u16 opa_widths)
9179 {
9180 	int i;
9181 	u16 result = 0;
9182 
9183 	static const struct link_bits {
9184 		u16 from;
9185 		u16 to;
9186 	} opa_link_xlate[] = {
9187 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9188 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9189 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9190 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9191 	};
9192 
9193 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9194 		if (opa_widths & opa_link_xlate[i].from)
9195 			result |= opa_link_xlate[i].to;
9196 	}
9197 	return result;
9198 }
9199 
9200 /*
9201  * Set link attributes before moving to polling.
9202  */
9203 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9204 {
9205 	struct hfi1_devdata *dd = ppd->dd;
9206 	u8 enable_lane_tx;
9207 	u8 tx_polarity_inversion;
9208 	u8 rx_polarity_inversion;
9209 	int ret;
9210 	u32 misc_bits = 0;
9211 	/* reset our fabric serdes to clear any lingering problems */
9212 	fabric_serdes_reset(dd);
9213 
9214 	/* set the local tx rate - need to read-modify-write */
9215 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9216 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9217 	if (ret)
9218 		goto set_local_link_attributes_fail;
9219 
9220 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9221 		/* set the tx rate to the fastest enabled */
9222 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9223 			ppd->local_tx_rate = 1;
9224 		else
9225 			ppd->local_tx_rate = 0;
9226 	} else {
9227 		/* set the tx rate to all enabled */
9228 		ppd->local_tx_rate = 0;
9229 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9230 			ppd->local_tx_rate |= 2;
9231 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9232 			ppd->local_tx_rate |= 1;
9233 	}
9234 
9235 	enable_lane_tx = 0xF; /* enable all four lanes */
9236 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9237 				rx_polarity_inversion, ppd->local_tx_rate);
9238 	if (ret != HCMD_SUCCESS)
9239 		goto set_local_link_attributes_fail;
9240 
9241 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9242 	if (ret != HCMD_SUCCESS) {
9243 		dd_dev_err(dd,
9244 			   "Failed to set host interface version, return 0x%x\n",
9245 			   ret);
9246 		goto set_local_link_attributes_fail;
9247 	}
9248 
9249 	/*
9250 	 * DC supports continuous updates.
9251 	 */
9252 	ret = write_vc_local_phy(dd,
9253 				 0 /* no power management */,
9254 				 1 /* continuous updates */);
9255 	if (ret != HCMD_SUCCESS)
9256 		goto set_local_link_attributes_fail;
9257 
9258 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9259 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9260 				    ppd->port_crc_mode_enabled);
9261 	if (ret != HCMD_SUCCESS)
9262 		goto set_local_link_attributes_fail;
9263 
9264 	/*
9265 	 * SerDes loopback init sequence requires
9266 	 * setting bit 0 of MISC_CONFIG_BITS
9267 	 */
9268 	if (loopback == LOOPBACK_SERDES)
9269 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9270 
9271 	ret = write_vc_local_link_width(dd, misc_bits, 0,
9272 					opa_to_vc_link_widths(
9273 						ppd->link_width_enabled));
9274 	if (ret != HCMD_SUCCESS)
9275 		goto set_local_link_attributes_fail;
9276 
9277 	/* let peer know who we are */
9278 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9279 	if (ret == HCMD_SUCCESS)
9280 		return 0;
9281 
9282 set_local_link_attributes_fail:
9283 	dd_dev_err(dd,
9284 		   "Failed to set local link attributes, return 0x%x\n",
9285 		   ret);
9286 	return ret;
9287 }
9288 
9289 /*
9290  * Call this to start the link.
9291  * Do not do anything if the link is disabled.
9292  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9293  */
9294 int start_link(struct hfi1_pportdata *ppd)
9295 {
9296 	/*
9297 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9298 	 * error rate.  Needs to be done before starting the link.
9299 	 */
9300 	tune_serdes(ppd);
9301 
9302 	if (!ppd->driver_link_ready) {
9303 		dd_dev_info(ppd->dd,
9304 			    "%s: stopping link start because driver is not ready\n",
9305 			    __func__);
9306 		return 0;
9307 	}
9308 
9309 	/*
9310 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9311 	 * pkey table can be configured properly if the HFI unit is connected
9312 	 * to switch port with MgmtAllowed=NO
9313 	 */
9314 	clear_full_mgmt_pkey(ppd);
9315 
9316 	return set_link_state(ppd, HLS_DN_POLL);
9317 }
9318 
9319 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9320 {
9321 	struct hfi1_devdata *dd = ppd->dd;
9322 	u64 mask;
9323 	unsigned long timeout;
9324 
9325 	/*
9326 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9327 	 * effect of power up on plug-in. We ignore this false positive
9328 	 * interrupt until the module has finished powering up by waiting for
9329 	 * a minimum timeout of the module inrush initialization time of
9330 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9331 	 * module have stabilized.
9332 	 */
9333 	msleep(500);
9334 
9335 	/*
9336 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9337 	 */
9338 	timeout = jiffies + msecs_to_jiffies(2000);
9339 	while (1) {
9340 		mask = read_csr(dd, dd->hfi1_id ?
9341 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9342 		if (!(mask & QSFP_HFI0_INT_N))
9343 			break;
9344 		if (time_after(jiffies, timeout)) {
9345 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9346 				    __func__);
9347 			break;
9348 		}
9349 		udelay(2);
9350 	}
9351 }
9352 
9353 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9354 {
9355 	struct hfi1_devdata *dd = ppd->dd;
9356 	u64 mask;
9357 
9358 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9359 	if (enable) {
9360 		/*
9361 		 * Clear the status register to avoid an immediate interrupt
9362 		 * when we re-enable the IntN pin
9363 		 */
9364 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9365 			  QSFP_HFI0_INT_N);
9366 		mask |= (u64)QSFP_HFI0_INT_N;
9367 	} else {
9368 		mask &= ~(u64)QSFP_HFI0_INT_N;
9369 	}
9370 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9371 }
9372 
9373 int reset_qsfp(struct hfi1_pportdata *ppd)
9374 {
9375 	struct hfi1_devdata *dd = ppd->dd;
9376 	u64 mask, qsfp_mask;
9377 
9378 	/* Disable INT_N from triggering QSFP interrupts */
9379 	set_qsfp_int_n(ppd, 0);
9380 
9381 	/* Reset the QSFP */
9382 	mask = (u64)QSFP_HFI0_RESET_N;
9383 
9384 	qsfp_mask = read_csr(dd,
9385 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9386 	qsfp_mask &= ~mask;
9387 	write_csr(dd,
9388 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9389 
9390 	udelay(10);
9391 
9392 	qsfp_mask |= mask;
9393 	write_csr(dd,
9394 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9395 
9396 	wait_for_qsfp_init(ppd);
9397 
9398 	/*
9399 	 * Allow INT_N to trigger the QSFP interrupt to watch
9400 	 * for alarms and warnings
9401 	 */
9402 	set_qsfp_int_n(ppd, 1);
9403 
9404 	/*
9405 	 * After the reset, AOC transmitters are enabled by default. They need
9406 	 * to be turned off to complete the QSFP setup before they can be
9407 	 * enabled again.
9408 	 */
9409 	return set_qsfp_tx(ppd, 0);
9410 }
9411 
9412 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9413 					u8 *qsfp_interrupt_status)
9414 {
9415 	struct hfi1_devdata *dd = ppd->dd;
9416 
9417 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9418 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9419 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9420 			   __func__);
9421 
9422 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9423 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9424 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9425 			   __func__);
9426 
9427 	/*
9428 	 * The remaining alarms/warnings don't matter if the link is down.
9429 	 */
9430 	if (ppd->host_link_state & HLS_DOWN)
9431 		return 0;
9432 
9433 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9434 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9435 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9436 			   __func__);
9437 
9438 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9439 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9440 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9441 			   __func__);
9442 
9443 	/* Byte 2 is vendor specific */
9444 
9445 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9446 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9447 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9448 			   __func__);
9449 
9450 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9451 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9452 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9453 			   __func__);
9454 
9455 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9456 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9457 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9458 			   __func__);
9459 
9460 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9461 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9462 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9463 			   __func__);
9464 
9465 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9466 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9467 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9468 			   __func__);
9469 
9470 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9471 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9472 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9473 			   __func__);
9474 
9475 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9476 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9477 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9478 			   __func__);
9479 
9480 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9481 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9482 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9483 			   __func__);
9484 
9485 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9486 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9487 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9488 			   __func__);
9489 
9490 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9491 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9492 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9493 			   __func__);
9494 
9495 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9496 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9497 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9498 			   __func__);
9499 
9500 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9501 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9502 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9503 			   __func__);
9504 
9505 	/* Bytes 9-10 and 11-12 are reserved */
9506 	/* Bytes 13-15 are vendor specific */
9507 
9508 	return 0;
9509 }
9510 
9511 /* This routine will only be scheduled if the QSFP module present is asserted */
9512 void qsfp_event(struct work_struct *work)
9513 {
9514 	struct qsfp_data *qd;
9515 	struct hfi1_pportdata *ppd;
9516 	struct hfi1_devdata *dd;
9517 
9518 	qd = container_of(work, struct qsfp_data, qsfp_work);
9519 	ppd = qd->ppd;
9520 	dd = ppd->dd;
9521 
9522 	/* Sanity check */
9523 	if (!qsfp_mod_present(ppd))
9524 		return;
9525 
9526 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9527 		dd_dev_info(ppd->dd,
9528 			    "%s: stopping link start because link is disabled\n",
9529 			    __func__);
9530 		return;
9531 	}
9532 
9533 	/*
9534 	 * Turn DC back on after cable has been re-inserted. Up until
9535 	 * now, the DC has been in reset to save power.
9536 	 */
9537 	dc_start(dd);
9538 
9539 	if (qd->cache_refresh_required) {
9540 		set_qsfp_int_n(ppd, 0);
9541 
9542 		wait_for_qsfp_init(ppd);
9543 
9544 		/*
9545 		 * Allow INT_N to trigger the QSFP interrupt to watch
9546 		 * for alarms and warnings
9547 		 */
9548 		set_qsfp_int_n(ppd, 1);
9549 
9550 		start_link(ppd);
9551 	}
9552 
9553 	if (qd->check_interrupt_flags) {
9554 		u8 qsfp_interrupt_status[16] = {0,};
9555 
9556 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9557 				  &qsfp_interrupt_status[0], 16) != 16) {
9558 			dd_dev_info(dd,
9559 				    "%s: Failed to read status of QSFP module\n",
9560 				    __func__);
9561 		} else {
9562 			unsigned long flags;
9563 
9564 			handle_qsfp_error_conditions(
9565 					ppd, qsfp_interrupt_status);
9566 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9567 			ppd->qsfp_info.check_interrupt_flags = 0;
9568 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9569 					       flags);
9570 		}
9571 	}
9572 }
9573 
9574 static void init_qsfp_int(struct hfi1_devdata *dd)
9575 {
9576 	struct hfi1_pportdata *ppd = dd->pport;
9577 	u64 qsfp_mask, cce_int_mask;
9578 	const int qsfp1_int_smask = QSFP1_INT % 64;
9579 	const int qsfp2_int_smask = QSFP2_INT % 64;
9580 
9581 	/*
9582 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9583 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9584 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9585 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9586 	 */
9587 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9588 				(8 * (QSFP1_INT / 64)));
9589 	if (dd->hfi1_id) {
9590 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9591 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9592 			  cce_int_mask);
9593 	} else {
9594 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9595 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9596 			  cce_int_mask);
9597 	}
9598 
9599 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9600 	/* Clear current status to avoid spurious interrupts */
9601 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9602 		  qsfp_mask);
9603 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9604 		  qsfp_mask);
9605 
9606 	set_qsfp_int_n(ppd, 0);
9607 
9608 	/* Handle active low nature of INT_N and MODPRST_N pins */
9609 	if (qsfp_mod_present(ppd))
9610 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9611 	write_csr(dd,
9612 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9613 		  qsfp_mask);
9614 }
9615 
9616 /*
9617  * Do a one-time initialize of the LCB block.
9618  */
9619 static void init_lcb(struct hfi1_devdata *dd)
9620 {
9621 	/* simulator does not correctly handle LCB cclk loopback, skip */
9622 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9623 		return;
9624 
9625 	/* the DC has been reset earlier in the driver load */
9626 
9627 	/* set LCB for cclk loopback on the port */
9628 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9629 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9630 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9631 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9632 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9633 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9634 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9635 }
9636 
9637 /*
9638  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9639  * on error.
9640  */
9641 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9642 {
9643 	int ret;
9644 	u8 status;
9645 
9646 	/*
9647 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9648 	 * not present
9649 	 */
9650 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9651 		return 0;
9652 
9653 	/* read byte 2, the status byte */
9654 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9655 	if (ret < 0)
9656 		return ret;
9657 	if (ret != 1)
9658 		return -EIO;
9659 
9660 	return 0; /* success */
9661 }
9662 
9663 /*
9664  * Values for QSFP retry.
9665  *
9666  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9667  * arrived at from experience on a large cluster.
9668  */
9669 #define MAX_QSFP_RETRIES 20
9670 #define QSFP_RETRY_WAIT 500 /* msec */
9671 
9672 /*
9673  * Try a QSFP read.  If it fails, schedule a retry for later.
9674  * Called on first link activation after driver load.
9675  */
9676 static void try_start_link(struct hfi1_pportdata *ppd)
9677 {
9678 	if (test_qsfp_read(ppd)) {
9679 		/* read failed */
9680 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9681 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9682 			return;
9683 		}
9684 		dd_dev_info(ppd->dd,
9685 			    "QSFP not responding, waiting and retrying %d\n",
9686 			    (int)ppd->qsfp_retry_count);
9687 		ppd->qsfp_retry_count++;
9688 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9689 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9690 		return;
9691 	}
9692 	ppd->qsfp_retry_count = 0;
9693 
9694 	start_link(ppd);
9695 }
9696 
9697 /*
9698  * Workqueue function to start the link after a delay.
9699  */
9700 void handle_start_link(struct work_struct *work)
9701 {
9702 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9703 						  start_link_work.work);
9704 	try_start_link(ppd);
9705 }
9706 
9707 int bringup_serdes(struct hfi1_pportdata *ppd)
9708 {
9709 	struct hfi1_devdata *dd = ppd->dd;
9710 	u64 guid;
9711 	int ret;
9712 
9713 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9714 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9715 
9716 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9717 	if (!guid) {
9718 		if (dd->base_guid)
9719 			guid = dd->base_guid + ppd->port - 1;
9720 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9721 	}
9722 
9723 	/* Set linkinit_reason on power up per OPA spec */
9724 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9725 
9726 	/* one-time init of the LCB */
9727 	init_lcb(dd);
9728 
9729 	if (loopback) {
9730 		ret = init_loopback(dd);
9731 		if (ret < 0)
9732 			return ret;
9733 	}
9734 
9735 	get_port_type(ppd);
9736 	if (ppd->port_type == PORT_TYPE_QSFP) {
9737 		set_qsfp_int_n(ppd, 0);
9738 		wait_for_qsfp_init(ppd);
9739 		set_qsfp_int_n(ppd, 1);
9740 	}
9741 
9742 	try_start_link(ppd);
9743 	return 0;
9744 }
9745 
9746 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9747 {
9748 	struct hfi1_devdata *dd = ppd->dd;
9749 
9750 	/*
9751 	 * Shut down the link and keep it down.   First turn off that the
9752 	 * driver wants to allow the link to be up (driver_link_ready).
9753 	 * Then make sure the link is not automatically restarted
9754 	 * (link_enabled).  Cancel any pending restart.  And finally
9755 	 * go offline.
9756 	 */
9757 	ppd->driver_link_ready = 0;
9758 	ppd->link_enabled = 0;
9759 
9760 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9761 	flush_delayed_work(&ppd->start_link_work);
9762 	cancel_delayed_work_sync(&ppd->start_link_work);
9763 
9764 	ppd->offline_disabled_reason =
9765 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9766 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9767 			     OPA_LINKDOWN_REASON_REBOOT);
9768 	set_link_state(ppd, HLS_DN_OFFLINE);
9769 
9770 	/* disable the port */
9771 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9772 }
9773 
9774 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9775 {
9776 	struct hfi1_pportdata *ppd;
9777 	int i;
9778 
9779 	ppd = (struct hfi1_pportdata *)(dd + 1);
9780 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9781 		ppd->ibport_data.rvp.rc_acks = NULL;
9782 		ppd->ibport_data.rvp.rc_qacks = NULL;
9783 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9784 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9785 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9786 		if (!ppd->ibport_data.rvp.rc_acks ||
9787 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9788 		    !ppd->ibport_data.rvp.rc_qacks)
9789 			return -ENOMEM;
9790 	}
9791 
9792 	return 0;
9793 }
9794 
9795 /*
9796  * index is the index into the receive array
9797  */
9798 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9799 		  u32 type, unsigned long pa, u16 order)
9800 {
9801 	u64 reg;
9802 
9803 	if (!(dd->flags & HFI1_PRESENT))
9804 		goto done;
9805 
9806 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9807 		pa = 0;
9808 		order = 0;
9809 	} else if (type > PT_INVALID) {
9810 		dd_dev_err(dd,
9811 			   "unexpected receive array type %u for index %u, not handled\n",
9812 			   type, index);
9813 		goto done;
9814 	}
9815 	trace_hfi1_put_tid(dd, index, type, pa, order);
9816 
9817 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9818 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9819 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9820 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9821 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9822 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9823 	writeq(reg, dd->rcvarray_wc + (index * 8));
9824 
9825 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9826 		/*
9827 		 * Eager entries are written and flushed
9828 		 *
9829 		 * Expected entries are flushed every 4 writes
9830 		 */
9831 		flush_wc();
9832 done:
9833 	return;
9834 }
9835 
9836 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9837 {
9838 	struct hfi1_devdata *dd = rcd->dd;
9839 	u32 i;
9840 
9841 	/* this could be optimized */
9842 	for (i = rcd->eager_base; i < rcd->eager_base +
9843 		     rcd->egrbufs.alloced; i++)
9844 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9845 
9846 	for (i = rcd->expected_base;
9847 			i < rcd->expected_base + rcd->expected_count; i++)
9848 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9849 }
9850 
9851 static const char * const ib_cfg_name_strings[] = {
9852 	"HFI1_IB_CFG_LIDLMC",
9853 	"HFI1_IB_CFG_LWID_DG_ENB",
9854 	"HFI1_IB_CFG_LWID_ENB",
9855 	"HFI1_IB_CFG_LWID",
9856 	"HFI1_IB_CFG_SPD_ENB",
9857 	"HFI1_IB_CFG_SPD",
9858 	"HFI1_IB_CFG_RXPOL_ENB",
9859 	"HFI1_IB_CFG_LREV_ENB",
9860 	"HFI1_IB_CFG_LINKLATENCY",
9861 	"HFI1_IB_CFG_HRTBT",
9862 	"HFI1_IB_CFG_OP_VLS",
9863 	"HFI1_IB_CFG_VL_HIGH_CAP",
9864 	"HFI1_IB_CFG_VL_LOW_CAP",
9865 	"HFI1_IB_CFG_OVERRUN_THRESH",
9866 	"HFI1_IB_CFG_PHYERR_THRESH",
9867 	"HFI1_IB_CFG_LINKDEFAULT",
9868 	"HFI1_IB_CFG_PKEYS",
9869 	"HFI1_IB_CFG_MTU",
9870 	"HFI1_IB_CFG_LSTATE",
9871 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9872 	"HFI1_IB_CFG_PMA_TICKS",
9873 	"HFI1_IB_CFG_PORT"
9874 };
9875 
9876 static const char *ib_cfg_name(int which)
9877 {
9878 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9879 		return "invalid";
9880 	return ib_cfg_name_strings[which];
9881 }
9882 
9883 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9884 {
9885 	struct hfi1_devdata *dd = ppd->dd;
9886 	int val = 0;
9887 
9888 	switch (which) {
9889 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9890 		val = ppd->link_width_enabled;
9891 		break;
9892 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9893 		val = ppd->link_width_active;
9894 		break;
9895 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9896 		val = ppd->link_speed_enabled;
9897 		break;
9898 	case HFI1_IB_CFG_SPD: /* current Link speed */
9899 		val = ppd->link_speed_active;
9900 		break;
9901 
9902 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9903 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9904 	case HFI1_IB_CFG_LINKLATENCY:
9905 		goto unimplemented;
9906 
9907 	case HFI1_IB_CFG_OP_VLS:
9908 		val = ppd->actual_vls_operational;
9909 		break;
9910 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9911 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9912 		break;
9913 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9914 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9915 		break;
9916 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9917 		val = ppd->overrun_threshold;
9918 		break;
9919 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9920 		val = ppd->phy_error_threshold;
9921 		break;
9922 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9923 		val = HLS_DEFAULT;
9924 		break;
9925 
9926 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9927 	case HFI1_IB_CFG_PMA_TICKS:
9928 	default:
9929 unimplemented:
9930 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9931 			dd_dev_info(
9932 				dd,
9933 				"%s: which %s: not implemented\n",
9934 				__func__,
9935 				ib_cfg_name(which));
9936 		break;
9937 	}
9938 
9939 	return val;
9940 }
9941 
9942 /*
9943  * The largest MAD packet size.
9944  */
9945 #define MAX_MAD_PACKET 2048
9946 
9947 /*
9948  * Return the maximum header bytes that can go on the _wire_
9949  * for this device. This count includes the ICRC which is
9950  * not part of the packet held in memory but it is appended
9951  * by the HW.
9952  * This is dependent on the device's receive header entry size.
9953  * HFI allows this to be set per-receive context, but the
9954  * driver presently enforces a global value.
9955  */
9956 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9957 {
9958 	/*
9959 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9960 	 * the Receive Header Entry Size minus the PBC (or RHF) size
9961 	 * plus one DW for the ICRC appended by HW.
9962 	 *
9963 	 * dd->rcd[0].rcvhdrqentsize is in DW.
9964 	 * We use rcd[0] as all context will have the same value. Also,
9965 	 * the first kernel context would have been allocated by now so
9966 	 * we are guaranteed a valid value.
9967 	 */
9968 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9969 }
9970 
9971 /*
9972  * Set Send Length
9973  * @ppd - per port data
9974  *
9975  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
9976  * registers compare against LRH.PktLen, so use the max bytes included
9977  * in the LRH.
9978  *
9979  * This routine changes all VL values except VL15, which it maintains at
9980  * the same value.
9981  */
9982 static void set_send_length(struct hfi1_pportdata *ppd)
9983 {
9984 	struct hfi1_devdata *dd = ppd->dd;
9985 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9986 	u32 maxvlmtu = dd->vld[15].mtu;
9987 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9988 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9989 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9990 	int i, j;
9991 	u32 thres;
9992 
9993 	for (i = 0; i < ppd->vls_supported; i++) {
9994 		if (dd->vld[i].mtu > maxvlmtu)
9995 			maxvlmtu = dd->vld[i].mtu;
9996 		if (i <= 3)
9997 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9998 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9999 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10000 		else
10001 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10002 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10003 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10004 	}
10005 	write_csr(dd, SEND_LEN_CHECK0, len1);
10006 	write_csr(dd, SEND_LEN_CHECK1, len2);
10007 	/* adjust kernel credit return thresholds based on new MTUs */
10008 	/* all kernel receive contexts have the same hdrqentsize */
10009 	for (i = 0; i < ppd->vls_supported; i++) {
10010 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10011 			    sc_mtu_to_threshold(dd->vld[i].sc,
10012 						dd->vld[i].mtu,
10013 						dd->rcd[0]->rcvhdrqentsize));
10014 		for (j = 0; j < INIT_SC_PER_VL; j++)
10015 			sc_set_cr_threshold(
10016 					pio_select_send_context_vl(dd, j, i),
10017 					    thres);
10018 	}
10019 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10020 		    sc_mtu_to_threshold(dd->vld[15].sc,
10021 					dd->vld[15].mtu,
10022 					dd->rcd[0]->rcvhdrqentsize));
10023 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10024 
10025 	/* Adjust maximum MTU for the port in DC */
10026 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10027 		(ilog2(maxvlmtu >> 8) + 1);
10028 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10029 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10030 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10031 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10032 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10033 }
10034 
10035 static void set_lidlmc(struct hfi1_pportdata *ppd)
10036 {
10037 	int i;
10038 	u64 sreg = 0;
10039 	struct hfi1_devdata *dd = ppd->dd;
10040 	u32 mask = ~((1U << ppd->lmc) - 1);
10041 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10042 	u32 lid;
10043 
10044 	/*
10045 	 * Program 0 in CSR if port lid is extended. This prevents
10046 	 * 9B packets being sent out for large lids.
10047 	 */
10048 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10049 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10050 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10051 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10052 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10053 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10054 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10055 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10056 
10057 	/*
10058 	 * Iterate over all the send contexts and set their SLID check
10059 	 */
10060 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10061 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10062 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10063 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10064 
10065 	for (i = 0; i < dd->chip_send_contexts; i++) {
10066 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10067 			  i, (u32)sreg);
10068 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10069 	}
10070 
10071 	/* Now we have to do the same thing for the sdma engines */
10072 	sdma_update_lmc(dd, mask, lid);
10073 }
10074 
10075 static const char *state_completed_string(u32 completed)
10076 {
10077 	static const char * const state_completed[] = {
10078 		"EstablishComm",
10079 		"OptimizeEQ",
10080 		"VerifyCap"
10081 	};
10082 
10083 	if (completed < ARRAY_SIZE(state_completed))
10084 		return state_completed[completed];
10085 
10086 	return "unknown";
10087 }
10088 
10089 static const char all_lanes_dead_timeout_expired[] =
10090 	"All lanes were inactive – was the interconnect media removed?";
10091 static const char tx_out_of_policy[] =
10092 	"Passing lanes on local port do not meet the local link width policy";
10093 static const char no_state_complete[] =
10094 	"State timeout occurred before link partner completed the state";
10095 static const char * const state_complete_reasons[] = {
10096 	[0x00] = "Reason unknown",
10097 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10098 	[0x02] = "Link partner reported failure",
10099 	[0x10] = "Unable to achieve frame sync on any lane",
10100 	[0x11] =
10101 	  "Unable to find a common bit rate with the link partner",
10102 	[0x12] =
10103 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10104 	[0x13] =
10105 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10106 	[0x14] = no_state_complete,
10107 	[0x15] =
10108 	  "State timeout occurred before link partner identified equalization presets",
10109 	[0x16] =
10110 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10111 	[0x17] = tx_out_of_policy,
10112 	[0x20] = all_lanes_dead_timeout_expired,
10113 	[0x21] =
10114 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10115 	[0x22] = no_state_complete,
10116 	[0x23] =
10117 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10118 	[0x24] = tx_out_of_policy,
10119 	[0x30] = all_lanes_dead_timeout_expired,
10120 	[0x31] =
10121 	  "State timeout occurred waiting for host to process received frames",
10122 	[0x32] = no_state_complete,
10123 	[0x33] =
10124 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10125 	[0x34] = tx_out_of_policy,
10126 	[0x35] = "Negotiated link width is mutually exclusive",
10127 	[0x36] =
10128 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10129 	[0x37] = "Unable to resolve secure data exchange",
10130 };
10131 
10132 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10133 						     u32 code)
10134 {
10135 	const char *str = NULL;
10136 
10137 	if (code < ARRAY_SIZE(state_complete_reasons))
10138 		str = state_complete_reasons[code];
10139 
10140 	if (str)
10141 		return str;
10142 	return "Reserved";
10143 }
10144 
10145 /* describe the given last state complete frame */
10146 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10147 				  const char *prefix)
10148 {
10149 	struct hfi1_devdata *dd = ppd->dd;
10150 	u32 success;
10151 	u32 state;
10152 	u32 reason;
10153 	u32 lanes;
10154 
10155 	/*
10156 	 * Decode frame:
10157 	 *  [ 0: 0] - success
10158 	 *  [ 3: 1] - state
10159 	 *  [ 7: 4] - next state timeout
10160 	 *  [15: 8] - reason code
10161 	 *  [31:16] - lanes
10162 	 */
10163 	success = frame & 0x1;
10164 	state = (frame >> 1) & 0x7;
10165 	reason = (frame >> 8) & 0xff;
10166 	lanes = (frame >> 16) & 0xffff;
10167 
10168 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10169 		   prefix, frame);
10170 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10171 		   state_completed_string(state), state);
10172 	dd_dev_err(dd, "    state successfully completed: %s\n",
10173 		   success ? "yes" : "no");
10174 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10175 		   reason, state_complete_reason_code_string(ppd, reason));
10176 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10177 }
10178 
10179 /*
10180  * Read the last state complete frames and explain them.  This routine
10181  * expects to be called if the link went down during link negotiation
10182  * and initialization (LNI).  That is, anywhere between polling and link up.
10183  */
10184 static void check_lni_states(struct hfi1_pportdata *ppd)
10185 {
10186 	u32 last_local_state;
10187 	u32 last_remote_state;
10188 
10189 	read_last_local_state(ppd->dd, &last_local_state);
10190 	read_last_remote_state(ppd->dd, &last_remote_state);
10191 
10192 	/*
10193 	 * Don't report anything if there is nothing to report.  A value of
10194 	 * 0 means the link was taken down while polling and there was no
10195 	 * training in-process.
10196 	 */
10197 	if (last_local_state == 0 && last_remote_state == 0)
10198 		return;
10199 
10200 	decode_state_complete(ppd, last_local_state, "transmitted");
10201 	decode_state_complete(ppd, last_remote_state, "received");
10202 }
10203 
10204 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10205 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10206 {
10207 	u64 reg;
10208 	unsigned long timeout;
10209 
10210 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10211 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10212 	while (1) {
10213 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10214 		if (reg)
10215 			break;
10216 		if (time_after(jiffies, timeout)) {
10217 			dd_dev_err(dd,
10218 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10219 			return -ETIMEDOUT;
10220 		}
10221 		udelay(2);
10222 	}
10223 	return 0;
10224 }
10225 
10226 /* called when the logical link state is not down as it should be */
10227 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10228 {
10229 	struct hfi1_devdata *dd = ppd->dd;
10230 
10231 	/*
10232 	 * Bring link up in LCB loopback
10233 	 */
10234 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10235 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10236 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10237 
10238 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10239 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10240 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10241 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10242 
10243 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10244 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10245 	udelay(3);
10246 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10247 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10248 
10249 	wait_link_transfer_active(dd, 100);
10250 
10251 	/*
10252 	 * Bring the link down again.
10253 	 */
10254 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10255 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10256 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10257 
10258 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10259 }
10260 
10261 /*
10262  * Helper for set_link_state().  Do not call except from that routine.
10263  * Expects ppd->hls_mutex to be held.
10264  *
10265  * @rem_reason value to be sent to the neighbor
10266  *
10267  * LinkDownReasons only set if transition succeeds.
10268  */
10269 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10270 {
10271 	struct hfi1_devdata *dd = ppd->dd;
10272 	u32 previous_state;
10273 	int offline_state_ret;
10274 	int ret;
10275 
10276 	update_lcb_cache(dd);
10277 
10278 	previous_state = ppd->host_link_state;
10279 	ppd->host_link_state = HLS_GOING_OFFLINE;
10280 
10281 	/* start offline transition */
10282 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10283 
10284 	if (ret != HCMD_SUCCESS) {
10285 		dd_dev_err(dd,
10286 			   "Failed to transition to Offline link state, return %d\n",
10287 			   ret);
10288 		return -EINVAL;
10289 	}
10290 	if (ppd->offline_disabled_reason ==
10291 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10292 		ppd->offline_disabled_reason =
10293 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10294 
10295 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10296 	if (offline_state_ret < 0)
10297 		return offline_state_ret;
10298 
10299 	/* Disabling AOC transmitters */
10300 	if (ppd->port_type == PORT_TYPE_QSFP &&
10301 	    ppd->qsfp_info.limiting_active &&
10302 	    qsfp_mod_present(ppd)) {
10303 		int ret;
10304 
10305 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10306 		if (ret == 0) {
10307 			set_qsfp_tx(ppd, 0);
10308 			release_chip_resource(dd, qsfp_resource(dd));
10309 		} else {
10310 			/* not fatal, but should warn */
10311 			dd_dev_err(dd,
10312 				   "Unable to acquire lock to turn off QSFP TX\n");
10313 		}
10314 	}
10315 
10316 	/*
10317 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10318 	 * can take a while for the link to go down.
10319 	 */
10320 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10321 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10322 		if (ret < 0)
10323 			return ret;
10324 	}
10325 
10326 	/*
10327 	 * Now in charge of LCB - must be after the physical state is
10328 	 * offline.quiet and before host_link_state is changed.
10329 	 */
10330 	set_host_lcb_access(dd);
10331 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10332 
10333 	/* make sure the logical state is also down */
10334 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10335 	if (ret)
10336 		force_logical_link_state_down(ppd);
10337 
10338 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10339 	update_statusp(ppd, IB_PORT_DOWN);
10340 
10341 	/*
10342 	 * The LNI has a mandatory wait time after the physical state
10343 	 * moves to Offline.Quiet.  The wait time may be different
10344 	 * depending on how the link went down.  The 8051 firmware
10345 	 * will observe the needed wait time and only move to ready
10346 	 * when that is completed.  The largest of the quiet timeouts
10347 	 * is 6s, so wait that long and then at least 0.5s more for
10348 	 * other transitions, and another 0.5s for a buffer.
10349 	 */
10350 	ret = wait_fm_ready(dd, 7000);
10351 	if (ret) {
10352 		dd_dev_err(dd,
10353 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10354 		/* state is really offline, so make it so */
10355 		ppd->host_link_state = HLS_DN_OFFLINE;
10356 		return ret;
10357 	}
10358 
10359 	/*
10360 	 * The state is now offline and the 8051 is ready to accept host
10361 	 * requests.
10362 	 *	- change our state
10363 	 *	- notify others if we were previously in a linkup state
10364 	 */
10365 	ppd->host_link_state = HLS_DN_OFFLINE;
10366 	if (previous_state & HLS_UP) {
10367 		/* went down while link was up */
10368 		handle_linkup_change(dd, 0);
10369 	} else if (previous_state
10370 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10371 		/* went down while attempting link up */
10372 		check_lni_states(ppd);
10373 
10374 		/* The QSFP doesn't need to be reset on LNI failure */
10375 		ppd->qsfp_info.reset_needed = 0;
10376 	}
10377 
10378 	/* the active link width (downgrade) is 0 on link down */
10379 	ppd->link_width_active = 0;
10380 	ppd->link_width_downgrade_tx_active = 0;
10381 	ppd->link_width_downgrade_rx_active = 0;
10382 	ppd->current_egress_rate = 0;
10383 	return 0;
10384 }
10385 
10386 /* return the link state name */
10387 static const char *link_state_name(u32 state)
10388 {
10389 	const char *name;
10390 	int n = ilog2(state);
10391 	static const char * const names[] = {
10392 		[__HLS_UP_INIT_BP]	 = "INIT",
10393 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10394 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10395 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10396 		[__HLS_DN_POLL_BP]	 = "POLL",
10397 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10398 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10399 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10400 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10401 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10402 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10403 	};
10404 
10405 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10406 	return name ? name : "unknown";
10407 }
10408 
10409 /* return the link state reason name */
10410 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10411 {
10412 	if (state == HLS_UP_INIT) {
10413 		switch (ppd->linkinit_reason) {
10414 		case OPA_LINKINIT_REASON_LINKUP:
10415 			return "(LINKUP)";
10416 		case OPA_LINKINIT_REASON_FLAPPING:
10417 			return "(FLAPPING)";
10418 		case OPA_LINKINIT_OUTSIDE_POLICY:
10419 			return "(OUTSIDE_POLICY)";
10420 		case OPA_LINKINIT_QUARANTINED:
10421 			return "(QUARANTINED)";
10422 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10423 			return "(INSUFIC_CAPABILITY)";
10424 		default:
10425 			break;
10426 		}
10427 	}
10428 	return "";
10429 }
10430 
10431 /*
10432  * driver_pstate - convert the driver's notion of a port's
10433  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10434  * Return -1 (converted to a u32) to indicate error.
10435  */
10436 u32 driver_pstate(struct hfi1_pportdata *ppd)
10437 {
10438 	switch (ppd->host_link_state) {
10439 	case HLS_UP_INIT:
10440 	case HLS_UP_ARMED:
10441 	case HLS_UP_ACTIVE:
10442 		return IB_PORTPHYSSTATE_LINKUP;
10443 	case HLS_DN_POLL:
10444 		return IB_PORTPHYSSTATE_POLLING;
10445 	case HLS_DN_DISABLE:
10446 		return IB_PORTPHYSSTATE_DISABLED;
10447 	case HLS_DN_OFFLINE:
10448 		return OPA_PORTPHYSSTATE_OFFLINE;
10449 	case HLS_VERIFY_CAP:
10450 		return IB_PORTPHYSSTATE_POLLING;
10451 	case HLS_GOING_UP:
10452 		return IB_PORTPHYSSTATE_POLLING;
10453 	case HLS_GOING_OFFLINE:
10454 		return OPA_PORTPHYSSTATE_OFFLINE;
10455 	case HLS_LINK_COOLDOWN:
10456 		return OPA_PORTPHYSSTATE_OFFLINE;
10457 	case HLS_DN_DOWNDEF:
10458 	default:
10459 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10460 			   ppd->host_link_state);
10461 		return  -1;
10462 	}
10463 }
10464 
10465 /*
10466  * driver_lstate - convert the driver's notion of a port's
10467  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10468  * (converted to a u32) to indicate error.
10469  */
10470 u32 driver_lstate(struct hfi1_pportdata *ppd)
10471 {
10472 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10473 		return IB_PORT_DOWN;
10474 
10475 	switch (ppd->host_link_state & HLS_UP) {
10476 	case HLS_UP_INIT:
10477 		return IB_PORT_INIT;
10478 	case HLS_UP_ARMED:
10479 		return IB_PORT_ARMED;
10480 	case HLS_UP_ACTIVE:
10481 		return IB_PORT_ACTIVE;
10482 	default:
10483 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10484 			   ppd->host_link_state);
10485 	return -1;
10486 	}
10487 }
10488 
10489 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10490 			  u8 neigh_reason, u8 rem_reason)
10491 {
10492 	if (ppd->local_link_down_reason.latest == 0 &&
10493 	    ppd->neigh_link_down_reason.latest == 0) {
10494 		ppd->local_link_down_reason.latest = lcl_reason;
10495 		ppd->neigh_link_down_reason.latest = neigh_reason;
10496 		ppd->remote_link_down_reason = rem_reason;
10497 	}
10498 }
10499 
10500 /*
10501  * Verify if BCT for data VLs is non-zero.
10502  */
10503 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10504 {
10505 	return !!ppd->actual_vls_operational;
10506 }
10507 
10508 /*
10509  * Change the physical and/or logical link state.
10510  *
10511  * Do not call this routine while inside an interrupt.  It contains
10512  * calls to routines that can take multiple seconds to finish.
10513  *
10514  * Returns 0 on success, -errno on failure.
10515  */
10516 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10517 {
10518 	struct hfi1_devdata *dd = ppd->dd;
10519 	struct ib_event event = {.device = NULL};
10520 	int ret1, ret = 0;
10521 	int orig_new_state, poll_bounce;
10522 
10523 	mutex_lock(&ppd->hls_lock);
10524 
10525 	orig_new_state = state;
10526 	if (state == HLS_DN_DOWNDEF)
10527 		state = HLS_DEFAULT;
10528 
10529 	/* interpret poll -> poll as a link bounce */
10530 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10531 		      state == HLS_DN_POLL;
10532 
10533 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10534 		    link_state_name(ppd->host_link_state),
10535 		    link_state_name(orig_new_state),
10536 		    poll_bounce ? "(bounce) " : "",
10537 		    link_state_reason_name(ppd, state));
10538 
10539 	/*
10540 	 * If we're going to a (HLS_*) link state that implies the logical
10541 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10542 	 * reset is_sm_config_started to 0.
10543 	 */
10544 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10545 		ppd->is_sm_config_started = 0;
10546 
10547 	/*
10548 	 * Do nothing if the states match.  Let a poll to poll link bounce
10549 	 * go through.
10550 	 */
10551 	if (ppd->host_link_state == state && !poll_bounce)
10552 		goto done;
10553 
10554 	switch (state) {
10555 	case HLS_UP_INIT:
10556 		if (ppd->host_link_state == HLS_DN_POLL &&
10557 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10558 			/*
10559 			 * Quick link up jumps from polling to here.
10560 			 *
10561 			 * Whether in normal or loopback mode, the
10562 			 * simulator jumps from polling to link up.
10563 			 * Accept that here.
10564 			 */
10565 			/* OK */
10566 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10567 			goto unexpected;
10568 		}
10569 
10570 		/*
10571 		 * Wait for Link_Up physical state.
10572 		 * Physical and Logical states should already be
10573 		 * be transitioned to LinkUp and LinkInit respectively.
10574 		 */
10575 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10576 		if (ret) {
10577 			dd_dev_err(dd,
10578 				   "%s: physical state did not change to LINK-UP\n",
10579 				   __func__);
10580 			break;
10581 		}
10582 
10583 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10584 		if (ret) {
10585 			dd_dev_err(dd,
10586 				   "%s: logical state did not change to INIT\n",
10587 				   __func__);
10588 			break;
10589 		}
10590 
10591 		/* clear old transient LINKINIT_REASON code */
10592 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10593 			ppd->linkinit_reason =
10594 				OPA_LINKINIT_REASON_LINKUP;
10595 
10596 		/* enable the port */
10597 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10598 
10599 		handle_linkup_change(dd, 1);
10600 		ppd->host_link_state = HLS_UP_INIT;
10601 		update_statusp(ppd, IB_PORT_INIT);
10602 		break;
10603 	case HLS_UP_ARMED:
10604 		if (ppd->host_link_state != HLS_UP_INIT)
10605 			goto unexpected;
10606 
10607 		if (!data_vls_operational(ppd)) {
10608 			dd_dev_err(dd,
10609 				   "%s: data VLs not operational\n", __func__);
10610 			ret = -EINVAL;
10611 			break;
10612 		}
10613 
10614 		set_logical_state(dd, LSTATE_ARMED);
10615 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10616 		if (ret) {
10617 			dd_dev_err(dd,
10618 				   "%s: logical state did not change to ARMED\n",
10619 				   __func__);
10620 			break;
10621 		}
10622 		ppd->host_link_state = HLS_UP_ARMED;
10623 		update_statusp(ppd, IB_PORT_ARMED);
10624 		/*
10625 		 * The simulator does not currently implement SMA messages,
10626 		 * so neighbor_normal is not set.  Set it here when we first
10627 		 * move to Armed.
10628 		 */
10629 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10630 			ppd->neighbor_normal = 1;
10631 		break;
10632 	case HLS_UP_ACTIVE:
10633 		if (ppd->host_link_state != HLS_UP_ARMED)
10634 			goto unexpected;
10635 
10636 		set_logical_state(dd, LSTATE_ACTIVE);
10637 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10638 		if (ret) {
10639 			dd_dev_err(dd,
10640 				   "%s: logical state did not change to ACTIVE\n",
10641 				   __func__);
10642 		} else {
10643 			/* tell all engines to go running */
10644 			sdma_all_running(dd);
10645 			ppd->host_link_state = HLS_UP_ACTIVE;
10646 			update_statusp(ppd, IB_PORT_ACTIVE);
10647 
10648 			/* Signal the IB layer that the port has went active */
10649 			event.device = &dd->verbs_dev.rdi.ibdev;
10650 			event.element.port_num = ppd->port;
10651 			event.event = IB_EVENT_PORT_ACTIVE;
10652 		}
10653 		break;
10654 	case HLS_DN_POLL:
10655 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10656 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10657 		    dd->dc_shutdown)
10658 			dc_start(dd);
10659 		/* Hand LED control to the DC */
10660 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10661 
10662 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10663 			u8 tmp = ppd->link_enabled;
10664 
10665 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10666 			if (ret) {
10667 				ppd->link_enabled = tmp;
10668 				break;
10669 			}
10670 			ppd->remote_link_down_reason = 0;
10671 
10672 			if (ppd->driver_link_ready)
10673 				ppd->link_enabled = 1;
10674 		}
10675 
10676 		set_all_slowpath(ppd->dd);
10677 		ret = set_local_link_attributes(ppd);
10678 		if (ret)
10679 			break;
10680 
10681 		ppd->port_error_action = 0;
10682 		ppd->host_link_state = HLS_DN_POLL;
10683 
10684 		if (quick_linkup) {
10685 			/* quick linkup does not go into polling */
10686 			ret = do_quick_linkup(dd);
10687 		} else {
10688 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10689 			if (ret1 != HCMD_SUCCESS) {
10690 				dd_dev_err(dd,
10691 					   "Failed to transition to Polling link state, return 0x%x\n",
10692 					   ret1);
10693 				ret = -EINVAL;
10694 			}
10695 		}
10696 		ppd->offline_disabled_reason =
10697 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10698 		/*
10699 		 * If an error occurred above, go back to offline.  The
10700 		 * caller may reschedule another attempt.
10701 		 */
10702 		if (ret)
10703 			goto_offline(ppd, 0);
10704 		else
10705 			log_physical_state(ppd, PLS_POLLING);
10706 		break;
10707 	case HLS_DN_DISABLE:
10708 		/* link is disabled */
10709 		ppd->link_enabled = 0;
10710 
10711 		/* allow any state to transition to disabled */
10712 
10713 		/* must transition to offline first */
10714 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10715 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10716 			if (ret)
10717 				break;
10718 			ppd->remote_link_down_reason = 0;
10719 		}
10720 
10721 		if (!dd->dc_shutdown) {
10722 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10723 			if (ret1 != HCMD_SUCCESS) {
10724 				dd_dev_err(dd,
10725 					   "Failed to transition to Disabled link state, return 0x%x\n",
10726 					   ret1);
10727 				ret = -EINVAL;
10728 				break;
10729 			}
10730 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10731 			if (ret) {
10732 				dd_dev_err(dd,
10733 					   "%s: physical state did not change to DISABLED\n",
10734 					   __func__);
10735 				break;
10736 			}
10737 			dc_shutdown(dd);
10738 		}
10739 		ppd->host_link_state = HLS_DN_DISABLE;
10740 		break;
10741 	case HLS_DN_OFFLINE:
10742 		if (ppd->host_link_state == HLS_DN_DISABLE)
10743 			dc_start(dd);
10744 
10745 		/* allow any state to transition to offline */
10746 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10747 		if (!ret)
10748 			ppd->remote_link_down_reason = 0;
10749 		break;
10750 	case HLS_VERIFY_CAP:
10751 		if (ppd->host_link_state != HLS_DN_POLL)
10752 			goto unexpected;
10753 		ppd->host_link_state = HLS_VERIFY_CAP;
10754 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10755 		break;
10756 	case HLS_GOING_UP:
10757 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10758 			goto unexpected;
10759 
10760 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10761 		if (ret1 != HCMD_SUCCESS) {
10762 			dd_dev_err(dd,
10763 				   "Failed to transition to link up state, return 0x%x\n",
10764 				   ret1);
10765 			ret = -EINVAL;
10766 			break;
10767 		}
10768 		ppd->host_link_state = HLS_GOING_UP;
10769 		break;
10770 
10771 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10772 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10773 	default:
10774 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10775 			    __func__, state);
10776 		ret = -EINVAL;
10777 		break;
10778 	}
10779 
10780 	goto done;
10781 
10782 unexpected:
10783 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10784 		   __func__, link_state_name(ppd->host_link_state),
10785 		   link_state_name(state));
10786 	ret = -EINVAL;
10787 
10788 done:
10789 	mutex_unlock(&ppd->hls_lock);
10790 
10791 	if (event.device)
10792 		ib_dispatch_event(&event);
10793 
10794 	return ret;
10795 }
10796 
10797 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10798 {
10799 	u64 reg;
10800 	int ret = 0;
10801 
10802 	switch (which) {
10803 	case HFI1_IB_CFG_LIDLMC:
10804 		set_lidlmc(ppd);
10805 		break;
10806 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10807 		/*
10808 		 * The VL Arbitrator high limit is sent in units of 4k
10809 		 * bytes, while HFI stores it in units of 64 bytes.
10810 		 */
10811 		val *= 4096 / 64;
10812 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10813 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10814 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10815 		break;
10816 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10817 		/* HFI only supports POLL as the default link down state */
10818 		if (val != HLS_DN_POLL)
10819 			ret = -EINVAL;
10820 		break;
10821 	case HFI1_IB_CFG_OP_VLS:
10822 		if (ppd->vls_operational != val) {
10823 			ppd->vls_operational = val;
10824 			if (!ppd->port)
10825 				ret = -EINVAL;
10826 		}
10827 		break;
10828 	/*
10829 	 * For link width, link width downgrade, and speed enable, always AND
10830 	 * the setting with what is actually supported.  This has two benefits.
10831 	 * First, enabled can't have unsupported values, no matter what the
10832 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10833 	 * "fill in with your supported value" have all the bits in the
10834 	 * field set, so simply ANDing with supported has the desired result.
10835 	 */
10836 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10837 		ppd->link_width_enabled = val & ppd->link_width_supported;
10838 		break;
10839 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10840 		ppd->link_width_downgrade_enabled =
10841 				val & ppd->link_width_downgrade_supported;
10842 		break;
10843 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10844 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10845 		break;
10846 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10847 		/*
10848 		 * HFI does not follow IB specs, save this value
10849 		 * so we can report it, if asked.
10850 		 */
10851 		ppd->overrun_threshold = val;
10852 		break;
10853 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10854 		/*
10855 		 * HFI does not follow IB specs, save this value
10856 		 * so we can report it, if asked.
10857 		 */
10858 		ppd->phy_error_threshold = val;
10859 		break;
10860 
10861 	case HFI1_IB_CFG_MTU:
10862 		set_send_length(ppd);
10863 		break;
10864 
10865 	case HFI1_IB_CFG_PKEYS:
10866 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10867 			set_partition_keys(ppd);
10868 		break;
10869 
10870 	default:
10871 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10872 			dd_dev_info(ppd->dd,
10873 				    "%s: which %s, val 0x%x: not implemented\n",
10874 				    __func__, ib_cfg_name(which), val);
10875 		break;
10876 	}
10877 	return ret;
10878 }
10879 
10880 /* begin functions related to vl arbitration table caching */
10881 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10882 {
10883 	int i;
10884 
10885 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10886 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10887 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10888 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10889 
10890 	/*
10891 	 * Note that we always return values directly from the
10892 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10893 	 * 'Get(VLArbTable)'. This is obviously correct after a
10894 	 * 'Set(VLArbTable)', since the cache will then be up to
10895 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10896 	 * since then both the cache, and the relevant h/w registers
10897 	 * will be zeroed.
10898 	 */
10899 
10900 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10901 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10902 }
10903 
10904 /*
10905  * vl_arb_lock_cache
10906  *
10907  * All other vl_arb_* functions should be called only after locking
10908  * the cache.
10909  */
10910 static inline struct vl_arb_cache *
10911 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10912 {
10913 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10914 		return NULL;
10915 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10916 	return &ppd->vl_arb_cache[idx];
10917 }
10918 
10919 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10920 {
10921 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10922 }
10923 
10924 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10925 			     struct ib_vl_weight_elem *vl)
10926 {
10927 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10928 }
10929 
10930 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10931 			     struct ib_vl_weight_elem *vl)
10932 {
10933 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10934 }
10935 
10936 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10937 			      struct ib_vl_weight_elem *vl)
10938 {
10939 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10940 }
10941 
10942 /* end functions related to vl arbitration table caching */
10943 
10944 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10945 			  u32 size, struct ib_vl_weight_elem *vl)
10946 {
10947 	struct hfi1_devdata *dd = ppd->dd;
10948 	u64 reg;
10949 	unsigned int i, is_up = 0;
10950 	int drain, ret = 0;
10951 
10952 	mutex_lock(&ppd->hls_lock);
10953 
10954 	if (ppd->host_link_state & HLS_UP)
10955 		is_up = 1;
10956 
10957 	drain = !is_ax(dd) && is_up;
10958 
10959 	if (drain)
10960 		/*
10961 		 * Before adjusting VL arbitration weights, empty per-VL
10962 		 * FIFOs, otherwise a packet whose VL weight is being
10963 		 * set to 0 could get stuck in a FIFO with no chance to
10964 		 * egress.
10965 		 */
10966 		ret = stop_drain_data_vls(dd);
10967 
10968 	if (ret) {
10969 		dd_dev_err(
10970 			dd,
10971 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10972 			__func__);
10973 		goto err;
10974 	}
10975 
10976 	for (i = 0; i < size; i++, vl++) {
10977 		/*
10978 		 * NOTE: The low priority shift and mask are used here, but
10979 		 * they are the same for both the low and high registers.
10980 		 */
10981 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10982 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10983 		      | (((u64)vl->weight
10984 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10985 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10986 		write_csr(dd, target + (i * 8), reg);
10987 	}
10988 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10989 
10990 	if (drain)
10991 		open_fill_data_vls(dd); /* reopen all VLs */
10992 
10993 err:
10994 	mutex_unlock(&ppd->hls_lock);
10995 
10996 	return ret;
10997 }
10998 
10999 /*
11000  * Read one credit merge VL register.
11001  */
11002 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11003 			   struct vl_limit *vll)
11004 {
11005 	u64 reg = read_csr(dd, csr);
11006 
11007 	vll->dedicated = cpu_to_be16(
11008 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11009 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11010 	vll->shared = cpu_to_be16(
11011 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11012 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11013 }
11014 
11015 /*
11016  * Read the current credit merge limits.
11017  */
11018 static int get_buffer_control(struct hfi1_devdata *dd,
11019 			      struct buffer_control *bc, u16 *overall_limit)
11020 {
11021 	u64 reg;
11022 	int i;
11023 
11024 	/* not all entries are filled in */
11025 	memset(bc, 0, sizeof(*bc));
11026 
11027 	/* OPA and HFI have a 1-1 mapping */
11028 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11029 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11030 
11031 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11032 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11033 
11034 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11035 	bc->overall_shared_limit = cpu_to_be16(
11036 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11037 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11038 	if (overall_limit)
11039 		*overall_limit = (reg
11040 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11041 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11042 	return sizeof(struct buffer_control);
11043 }
11044 
11045 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11046 {
11047 	u64 reg;
11048 	int i;
11049 
11050 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11051 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11052 	for (i = 0; i < sizeof(u64); i++) {
11053 		u8 byte = *(((u8 *)&reg) + i);
11054 
11055 		dp->vlnt[2 * i] = byte & 0xf;
11056 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11057 	}
11058 
11059 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11060 	for (i = 0; i < sizeof(u64); i++) {
11061 		u8 byte = *(((u8 *)&reg) + i);
11062 
11063 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11064 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11065 	}
11066 	return sizeof(struct sc2vlnt);
11067 }
11068 
11069 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11070 			      struct ib_vl_weight_elem *vl)
11071 {
11072 	unsigned int i;
11073 
11074 	for (i = 0; i < nelems; i++, vl++) {
11075 		vl->vl = 0xf;
11076 		vl->weight = 0;
11077 	}
11078 }
11079 
11080 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11081 {
11082 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11083 		  DC_SC_VL_VAL(15_0,
11084 			       0, dp->vlnt[0] & 0xf,
11085 			       1, dp->vlnt[1] & 0xf,
11086 			       2, dp->vlnt[2] & 0xf,
11087 			       3, dp->vlnt[3] & 0xf,
11088 			       4, dp->vlnt[4] & 0xf,
11089 			       5, dp->vlnt[5] & 0xf,
11090 			       6, dp->vlnt[6] & 0xf,
11091 			       7, dp->vlnt[7] & 0xf,
11092 			       8, dp->vlnt[8] & 0xf,
11093 			       9, dp->vlnt[9] & 0xf,
11094 			       10, dp->vlnt[10] & 0xf,
11095 			       11, dp->vlnt[11] & 0xf,
11096 			       12, dp->vlnt[12] & 0xf,
11097 			       13, dp->vlnt[13] & 0xf,
11098 			       14, dp->vlnt[14] & 0xf,
11099 			       15, dp->vlnt[15] & 0xf));
11100 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11101 		  DC_SC_VL_VAL(31_16,
11102 			       16, dp->vlnt[16] & 0xf,
11103 			       17, dp->vlnt[17] & 0xf,
11104 			       18, dp->vlnt[18] & 0xf,
11105 			       19, dp->vlnt[19] & 0xf,
11106 			       20, dp->vlnt[20] & 0xf,
11107 			       21, dp->vlnt[21] & 0xf,
11108 			       22, dp->vlnt[22] & 0xf,
11109 			       23, dp->vlnt[23] & 0xf,
11110 			       24, dp->vlnt[24] & 0xf,
11111 			       25, dp->vlnt[25] & 0xf,
11112 			       26, dp->vlnt[26] & 0xf,
11113 			       27, dp->vlnt[27] & 0xf,
11114 			       28, dp->vlnt[28] & 0xf,
11115 			       29, dp->vlnt[29] & 0xf,
11116 			       30, dp->vlnt[30] & 0xf,
11117 			       31, dp->vlnt[31] & 0xf));
11118 }
11119 
11120 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11121 			u16 limit)
11122 {
11123 	if (limit != 0)
11124 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11125 			    what, (int)limit, idx);
11126 }
11127 
11128 /* change only the shared limit portion of SendCmGLobalCredit */
11129 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11130 {
11131 	u64 reg;
11132 
11133 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11134 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11135 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11136 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11137 }
11138 
11139 /* change only the total credit limit portion of SendCmGLobalCredit */
11140 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11141 {
11142 	u64 reg;
11143 
11144 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11145 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11146 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11147 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11148 }
11149 
11150 /* set the given per-VL shared limit */
11151 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11152 {
11153 	u64 reg;
11154 	u32 addr;
11155 
11156 	if (vl < TXE_NUM_DATA_VL)
11157 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11158 	else
11159 		addr = SEND_CM_CREDIT_VL15;
11160 
11161 	reg = read_csr(dd, addr);
11162 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11163 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11164 	write_csr(dd, addr, reg);
11165 }
11166 
11167 /* set the given per-VL dedicated limit */
11168 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11169 {
11170 	u64 reg;
11171 	u32 addr;
11172 
11173 	if (vl < TXE_NUM_DATA_VL)
11174 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11175 	else
11176 		addr = SEND_CM_CREDIT_VL15;
11177 
11178 	reg = read_csr(dd, addr);
11179 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11180 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11181 	write_csr(dd, addr, reg);
11182 }
11183 
11184 /* spin until the given per-VL status mask bits clear */
11185 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11186 				     const char *which)
11187 {
11188 	unsigned long timeout;
11189 	u64 reg;
11190 
11191 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11192 	while (1) {
11193 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11194 
11195 		if (reg == 0)
11196 			return;	/* success */
11197 		if (time_after(jiffies, timeout))
11198 			break;		/* timed out */
11199 		udelay(1);
11200 	}
11201 
11202 	dd_dev_err(dd,
11203 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11204 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11205 	/*
11206 	 * If this occurs, it is likely there was a credit loss on the link.
11207 	 * The only recovery from that is a link bounce.
11208 	 */
11209 	dd_dev_err(dd,
11210 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11211 }
11212 
11213 /*
11214  * The number of credits on the VLs may be changed while everything
11215  * is "live", but the following algorithm must be followed due to
11216  * how the hardware is actually implemented.  In particular,
11217  * Return_Credit_Status[] is the only correct status check.
11218  *
11219  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11220  *     set Global_Shared_Credit_Limit = 0
11221  *     use_all_vl = 1
11222  * mask0 = all VLs that are changing either dedicated or shared limits
11223  * set Shared_Limit[mask0] = 0
11224  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11225  * if (changing any dedicated limit)
11226  *     mask1 = all VLs that are lowering dedicated limits
11227  *     lower Dedicated_Limit[mask1]
11228  *     spin until Return_Credit_Status[mask1] == 0
11229  *     raise Dedicated_Limits
11230  * raise Shared_Limits
11231  * raise Global_Shared_Credit_Limit
11232  *
11233  * lower = if the new limit is lower, set the limit to the new value
11234  * raise = if the new limit is higher than the current value (may be changed
11235  *	earlier in the algorithm), set the new limit to the new value
11236  */
11237 int set_buffer_control(struct hfi1_pportdata *ppd,
11238 		       struct buffer_control *new_bc)
11239 {
11240 	struct hfi1_devdata *dd = ppd->dd;
11241 	u64 changing_mask, ld_mask, stat_mask;
11242 	int change_count;
11243 	int i, use_all_mask;
11244 	int this_shared_changing;
11245 	int vl_count = 0, ret;
11246 	/*
11247 	 * A0: add the variable any_shared_limit_changing below and in the
11248 	 * algorithm above.  If removing A0 support, it can be removed.
11249 	 */
11250 	int any_shared_limit_changing;
11251 	struct buffer_control cur_bc;
11252 	u8 changing[OPA_MAX_VLS];
11253 	u8 lowering_dedicated[OPA_MAX_VLS];
11254 	u16 cur_total;
11255 	u32 new_total = 0;
11256 	const u64 all_mask =
11257 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11258 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11259 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11260 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11261 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11262 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11263 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11264 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11265 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11266 
11267 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11268 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11269 
11270 	/* find the new total credits, do sanity check on unused VLs */
11271 	for (i = 0; i < OPA_MAX_VLS; i++) {
11272 		if (valid_vl(i)) {
11273 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11274 			continue;
11275 		}
11276 		nonzero_msg(dd, i, "dedicated",
11277 			    be16_to_cpu(new_bc->vl[i].dedicated));
11278 		nonzero_msg(dd, i, "shared",
11279 			    be16_to_cpu(new_bc->vl[i].shared));
11280 		new_bc->vl[i].dedicated = 0;
11281 		new_bc->vl[i].shared = 0;
11282 	}
11283 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11284 
11285 	/* fetch the current values */
11286 	get_buffer_control(dd, &cur_bc, &cur_total);
11287 
11288 	/*
11289 	 * Create the masks we will use.
11290 	 */
11291 	memset(changing, 0, sizeof(changing));
11292 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11293 	/*
11294 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11295 	 * increasing order
11296 	 */
11297 	stat_mask =
11298 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11299 	changing_mask = 0;
11300 	ld_mask = 0;
11301 	change_count = 0;
11302 	any_shared_limit_changing = 0;
11303 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11304 		if (!valid_vl(i))
11305 			continue;
11306 		this_shared_changing = new_bc->vl[i].shared
11307 						!= cur_bc.vl[i].shared;
11308 		if (this_shared_changing)
11309 			any_shared_limit_changing = 1;
11310 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11311 		    this_shared_changing) {
11312 			changing[i] = 1;
11313 			changing_mask |= stat_mask;
11314 			change_count++;
11315 		}
11316 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11317 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11318 			lowering_dedicated[i] = 1;
11319 			ld_mask |= stat_mask;
11320 		}
11321 	}
11322 
11323 	/* bracket the credit change with a total adjustment */
11324 	if (new_total > cur_total)
11325 		set_global_limit(dd, new_total);
11326 
11327 	/*
11328 	 * Start the credit change algorithm.
11329 	 */
11330 	use_all_mask = 0;
11331 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11332 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11333 	    (is_ax(dd) && any_shared_limit_changing)) {
11334 		set_global_shared(dd, 0);
11335 		cur_bc.overall_shared_limit = 0;
11336 		use_all_mask = 1;
11337 	}
11338 
11339 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11340 		if (!valid_vl(i))
11341 			continue;
11342 
11343 		if (changing[i]) {
11344 			set_vl_shared(dd, i, 0);
11345 			cur_bc.vl[i].shared = 0;
11346 		}
11347 	}
11348 
11349 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11350 				 "shared");
11351 
11352 	if (change_count > 0) {
11353 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11354 			if (!valid_vl(i))
11355 				continue;
11356 
11357 			if (lowering_dedicated[i]) {
11358 				set_vl_dedicated(dd, i,
11359 						 be16_to_cpu(new_bc->
11360 							     vl[i].dedicated));
11361 				cur_bc.vl[i].dedicated =
11362 						new_bc->vl[i].dedicated;
11363 			}
11364 		}
11365 
11366 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11367 
11368 		/* now raise all dedicated that are going up */
11369 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11370 			if (!valid_vl(i))
11371 				continue;
11372 
11373 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11374 					be16_to_cpu(cur_bc.vl[i].dedicated))
11375 				set_vl_dedicated(dd, i,
11376 						 be16_to_cpu(new_bc->
11377 							     vl[i].dedicated));
11378 		}
11379 	}
11380 
11381 	/* next raise all shared that are going up */
11382 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11383 		if (!valid_vl(i))
11384 			continue;
11385 
11386 		if (be16_to_cpu(new_bc->vl[i].shared) >
11387 				be16_to_cpu(cur_bc.vl[i].shared))
11388 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11389 	}
11390 
11391 	/* finally raise the global shared */
11392 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11393 	    be16_to_cpu(cur_bc.overall_shared_limit))
11394 		set_global_shared(dd,
11395 				  be16_to_cpu(new_bc->overall_shared_limit));
11396 
11397 	/* bracket the credit change with a total adjustment */
11398 	if (new_total < cur_total)
11399 		set_global_limit(dd, new_total);
11400 
11401 	/*
11402 	 * Determine the actual number of operational VLS using the number of
11403 	 * dedicated and shared credits for each VL.
11404 	 */
11405 	if (change_count > 0) {
11406 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11407 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11408 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11409 				vl_count++;
11410 		ppd->actual_vls_operational = vl_count;
11411 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11412 				    ppd->actual_vls_operational :
11413 				    ppd->vls_operational,
11414 				    NULL);
11415 		if (ret == 0)
11416 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11417 					   ppd->actual_vls_operational :
11418 					   ppd->vls_operational, NULL);
11419 		if (ret)
11420 			return ret;
11421 	}
11422 	return 0;
11423 }
11424 
11425 /*
11426  * Read the given fabric manager table. Return the size of the
11427  * table (in bytes) on success, and a negative error code on
11428  * failure.
11429  */
11430 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11431 
11432 {
11433 	int size;
11434 	struct vl_arb_cache *vlc;
11435 
11436 	switch (which) {
11437 	case FM_TBL_VL_HIGH_ARB:
11438 		size = 256;
11439 		/*
11440 		 * OPA specifies 128 elements (of 2 bytes each), though
11441 		 * HFI supports only 16 elements in h/w.
11442 		 */
11443 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11444 		vl_arb_get_cache(vlc, t);
11445 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11446 		break;
11447 	case FM_TBL_VL_LOW_ARB:
11448 		size = 256;
11449 		/*
11450 		 * OPA specifies 128 elements (of 2 bytes each), though
11451 		 * HFI supports only 16 elements in h/w.
11452 		 */
11453 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11454 		vl_arb_get_cache(vlc, t);
11455 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11456 		break;
11457 	case FM_TBL_BUFFER_CONTROL:
11458 		size = get_buffer_control(ppd->dd, t, NULL);
11459 		break;
11460 	case FM_TBL_SC2VLNT:
11461 		size = get_sc2vlnt(ppd->dd, t);
11462 		break;
11463 	case FM_TBL_VL_PREEMPT_ELEMS:
11464 		size = 256;
11465 		/* OPA specifies 128 elements, of 2 bytes each */
11466 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11467 		break;
11468 	case FM_TBL_VL_PREEMPT_MATRIX:
11469 		size = 256;
11470 		/*
11471 		 * OPA specifies that this is the same size as the VL
11472 		 * arbitration tables (i.e., 256 bytes).
11473 		 */
11474 		break;
11475 	default:
11476 		return -EINVAL;
11477 	}
11478 	return size;
11479 }
11480 
11481 /*
11482  * Write the given fabric manager table.
11483  */
11484 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11485 {
11486 	int ret = 0;
11487 	struct vl_arb_cache *vlc;
11488 
11489 	switch (which) {
11490 	case FM_TBL_VL_HIGH_ARB:
11491 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11492 		if (vl_arb_match_cache(vlc, t)) {
11493 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11494 			break;
11495 		}
11496 		vl_arb_set_cache(vlc, t);
11497 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11498 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11499 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11500 		break;
11501 	case FM_TBL_VL_LOW_ARB:
11502 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11503 		if (vl_arb_match_cache(vlc, t)) {
11504 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11505 			break;
11506 		}
11507 		vl_arb_set_cache(vlc, t);
11508 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11509 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11510 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11511 		break;
11512 	case FM_TBL_BUFFER_CONTROL:
11513 		ret = set_buffer_control(ppd, t);
11514 		break;
11515 	case FM_TBL_SC2VLNT:
11516 		set_sc2vlnt(ppd->dd, t);
11517 		break;
11518 	default:
11519 		ret = -EINVAL;
11520 	}
11521 	return ret;
11522 }
11523 
11524 /*
11525  * Disable all data VLs.
11526  *
11527  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11528  */
11529 static int disable_data_vls(struct hfi1_devdata *dd)
11530 {
11531 	if (is_ax(dd))
11532 		return 1;
11533 
11534 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11535 
11536 	return 0;
11537 }
11538 
11539 /*
11540  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11541  * Just re-enables all data VLs (the "fill" part happens
11542  * automatically - the name was chosen for symmetry with
11543  * stop_drain_data_vls()).
11544  *
11545  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11546  */
11547 int open_fill_data_vls(struct hfi1_devdata *dd)
11548 {
11549 	if (is_ax(dd))
11550 		return 1;
11551 
11552 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11553 
11554 	return 0;
11555 }
11556 
11557 /*
11558  * drain_data_vls() - assumes that disable_data_vls() has been called,
11559  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11560  * engines to drop to 0.
11561  */
11562 static void drain_data_vls(struct hfi1_devdata *dd)
11563 {
11564 	sc_wait(dd);
11565 	sdma_wait(dd);
11566 	pause_for_credit_return(dd);
11567 }
11568 
11569 /*
11570  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11571  *
11572  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11573  * meant to be used like this:
11574  *
11575  * stop_drain_data_vls(dd);
11576  * // do things with per-VL resources
11577  * open_fill_data_vls(dd);
11578  */
11579 int stop_drain_data_vls(struct hfi1_devdata *dd)
11580 {
11581 	int ret;
11582 
11583 	ret = disable_data_vls(dd);
11584 	if (ret == 0)
11585 		drain_data_vls(dd);
11586 
11587 	return ret;
11588 }
11589 
11590 /*
11591  * Convert a nanosecond time to a cclock count.  No matter how slow
11592  * the cclock, a non-zero ns will always have a non-zero result.
11593  */
11594 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11595 {
11596 	u32 cclocks;
11597 
11598 	if (dd->icode == ICODE_FPGA_EMULATION)
11599 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11600 	else  /* simulation pretends to be ASIC */
11601 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11602 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11603 		cclocks = 1;
11604 	return cclocks;
11605 }
11606 
11607 /*
11608  * Convert a cclock count to nanoseconds. Not matter how slow
11609  * the cclock, a non-zero cclocks will always have a non-zero result.
11610  */
11611 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11612 {
11613 	u32 ns;
11614 
11615 	if (dd->icode == ICODE_FPGA_EMULATION)
11616 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11617 	else  /* simulation pretends to be ASIC */
11618 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11619 	if (cclocks && !ns)
11620 		ns = 1;
11621 	return ns;
11622 }
11623 
11624 /*
11625  * Dynamically adjust the receive interrupt timeout for a context based on
11626  * incoming packet rate.
11627  *
11628  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11629  */
11630 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11631 {
11632 	struct hfi1_devdata *dd = rcd->dd;
11633 	u32 timeout = rcd->rcvavail_timeout;
11634 
11635 	/*
11636 	 * This algorithm doubles or halves the timeout depending on whether
11637 	 * the number of packets received in this interrupt were less than or
11638 	 * greater equal the interrupt count.
11639 	 *
11640 	 * The calculations below do not allow a steady state to be achieved.
11641 	 * Only at the endpoints it is possible to have an unchanging
11642 	 * timeout.
11643 	 */
11644 	if (npkts < rcv_intr_count) {
11645 		/*
11646 		 * Not enough packets arrived before the timeout, adjust
11647 		 * timeout downward.
11648 		 */
11649 		if (timeout < 2) /* already at minimum? */
11650 			return;
11651 		timeout >>= 1;
11652 	} else {
11653 		/*
11654 		 * More than enough packets arrived before the timeout, adjust
11655 		 * timeout upward.
11656 		 */
11657 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11658 			return;
11659 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11660 	}
11661 
11662 	rcd->rcvavail_timeout = timeout;
11663 	/*
11664 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11665 	 * been verified to be in range
11666 	 */
11667 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11668 			(u64)timeout <<
11669 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11670 }
11671 
11672 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11673 		    u32 intr_adjust, u32 npkts)
11674 {
11675 	struct hfi1_devdata *dd = rcd->dd;
11676 	u64 reg;
11677 	u32 ctxt = rcd->ctxt;
11678 
11679 	/*
11680 	 * Need to write timeout register before updating RcvHdrHead to ensure
11681 	 * that a new value is used when the HW decides to restart counting.
11682 	 */
11683 	if (intr_adjust)
11684 		adjust_rcv_timeout(rcd, npkts);
11685 	if (updegr) {
11686 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11687 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11688 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11689 	}
11690 	mmiowb();
11691 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11692 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11693 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11694 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11695 	mmiowb();
11696 }
11697 
11698 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11699 {
11700 	u32 head, tail;
11701 
11702 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11703 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11704 
11705 	if (rcd->rcvhdrtail_kvaddr)
11706 		tail = get_rcvhdrtail(rcd);
11707 	else
11708 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11709 
11710 	return head == tail;
11711 }
11712 
11713 /*
11714  * Context Control and Receive Array encoding for buffer size:
11715  *	0x0 invalid
11716  *	0x1   4 KB
11717  *	0x2   8 KB
11718  *	0x3  16 KB
11719  *	0x4  32 KB
11720  *	0x5  64 KB
11721  *	0x6 128 KB
11722  *	0x7 256 KB
11723  *	0x8 512 KB (Receive Array only)
11724  *	0x9   1 MB (Receive Array only)
11725  *	0xa   2 MB (Receive Array only)
11726  *
11727  *	0xB-0xF - reserved (Receive Array only)
11728  *
11729  *
11730  * This routine assumes that the value has already been sanity checked.
11731  */
11732 static u32 encoded_size(u32 size)
11733 {
11734 	switch (size) {
11735 	case   4 * 1024: return 0x1;
11736 	case   8 * 1024: return 0x2;
11737 	case  16 * 1024: return 0x3;
11738 	case  32 * 1024: return 0x4;
11739 	case  64 * 1024: return 0x5;
11740 	case 128 * 1024: return 0x6;
11741 	case 256 * 1024: return 0x7;
11742 	case 512 * 1024: return 0x8;
11743 	case   1 * 1024 * 1024: return 0x9;
11744 	case   2 * 1024 * 1024: return 0xa;
11745 	}
11746 	return 0x1;	/* if invalid, go with the minimum size */
11747 }
11748 
11749 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11750 		  struct hfi1_ctxtdata *rcd)
11751 {
11752 	u64 rcvctrl, reg;
11753 	int did_enable = 0;
11754 	u16 ctxt;
11755 
11756 	if (!rcd)
11757 		return;
11758 
11759 	ctxt = rcd->ctxt;
11760 
11761 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11762 
11763 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11764 	/* if the context already enabled, don't do the extra steps */
11765 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11766 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11767 		/* reset the tail and hdr addresses, and sequence count */
11768 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11769 				rcd->rcvhdrq_dma);
11770 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11771 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11772 					rcd->rcvhdrqtailaddr_dma);
11773 		rcd->seq_cnt = 1;
11774 
11775 		/* reset the cached receive header queue head value */
11776 		rcd->head = 0;
11777 
11778 		/*
11779 		 * Zero the receive header queue so we don't get false
11780 		 * positives when checking the sequence number.  The
11781 		 * sequence numbers could land exactly on the same spot.
11782 		 * E.g. a rcd restart before the receive header wrapped.
11783 		 */
11784 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11785 
11786 		/* starting timeout */
11787 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11788 
11789 		/* enable the context */
11790 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11791 
11792 		/* clean the egr buffer size first */
11793 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11794 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11795 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11796 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11797 
11798 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11799 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11800 		did_enable = 1;
11801 
11802 		/* zero RcvEgrIndexHead */
11803 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11804 
11805 		/* set eager count and base index */
11806 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11807 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11808 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11809 			(((rcd->eager_base >> RCV_SHIFT)
11810 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11811 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11812 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11813 
11814 		/*
11815 		 * Set TID (expected) count and base index.
11816 		 * rcd->expected_count is set to individual RcvArray entries,
11817 		 * not pairs, and the CSR takes a pair-count in groups of
11818 		 * four, so divide by 8.
11819 		 */
11820 		reg = (((rcd->expected_count >> RCV_SHIFT)
11821 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11822 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11823 		      (((rcd->expected_base >> RCV_SHIFT)
11824 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11825 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11826 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11827 		if (ctxt == HFI1_CTRL_CTXT)
11828 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11829 	}
11830 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11831 		write_csr(dd, RCV_VL15, 0);
11832 		/*
11833 		 * When receive context is being disabled turn on tail
11834 		 * update with a dummy tail address and then disable
11835 		 * receive context.
11836 		 */
11837 		if (dd->rcvhdrtail_dummy_dma) {
11838 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11839 					dd->rcvhdrtail_dummy_dma);
11840 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11841 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11842 		}
11843 
11844 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11845 	}
11846 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11847 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11848 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11849 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11850 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11851 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11852 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11853 		/* See comment on RcvCtxtCtrl.TailUpd above */
11854 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11855 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11856 	}
11857 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11858 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11859 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11860 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11861 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11862 		/*
11863 		 * In one-packet-per-eager mode, the size comes from
11864 		 * the RcvArray entry.
11865 		 */
11866 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11867 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11868 	}
11869 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11870 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11871 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11872 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11873 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11874 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11875 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11876 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11877 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11878 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11879 	rcd->rcvctrl = rcvctrl;
11880 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11881 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11882 
11883 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11884 	if (did_enable &&
11885 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11886 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11887 		if (reg != 0) {
11888 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11889 				    ctxt, reg);
11890 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11891 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11892 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11893 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11894 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11895 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11896 				    ctxt, reg, reg == 0 ? "not" : "still");
11897 		}
11898 	}
11899 
11900 	if (did_enable) {
11901 		/*
11902 		 * The interrupt timeout and count must be set after
11903 		 * the context is enabled to take effect.
11904 		 */
11905 		/* set interrupt timeout */
11906 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11907 				(u64)rcd->rcvavail_timeout <<
11908 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11909 
11910 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11911 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11912 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11913 	}
11914 
11915 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11916 		/*
11917 		 * If the context has been disabled and the Tail Update has
11918 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11919 		 * so it doesn't contain an address that is invalid.
11920 		 */
11921 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11922 				dd->rcvhdrtail_dummy_dma);
11923 }
11924 
11925 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11926 {
11927 	int ret;
11928 	u64 val = 0;
11929 
11930 	if (namep) {
11931 		ret = dd->cntrnameslen;
11932 		*namep = dd->cntrnames;
11933 	} else {
11934 		const struct cntr_entry *entry;
11935 		int i, j;
11936 
11937 		ret = (dd->ndevcntrs) * sizeof(u64);
11938 
11939 		/* Get the start of the block of counters */
11940 		*cntrp = dd->cntrs;
11941 
11942 		/*
11943 		 * Now go and fill in each counter in the block.
11944 		 */
11945 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11946 			entry = &dev_cntrs[i];
11947 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11948 			if (entry->flags & CNTR_DISABLED) {
11949 				/* Nothing */
11950 				hfi1_cdbg(CNTR, "\tDisabled\n");
11951 			} else {
11952 				if (entry->flags & CNTR_VL) {
11953 					hfi1_cdbg(CNTR, "\tPer VL\n");
11954 					for (j = 0; j < C_VL_COUNT; j++) {
11955 						val = entry->rw_cntr(entry,
11956 								  dd, j,
11957 								  CNTR_MODE_R,
11958 								  0);
11959 						hfi1_cdbg(
11960 						   CNTR,
11961 						   "\t\tRead 0x%llx for %d\n",
11962 						   val, j);
11963 						dd->cntrs[entry->offset + j] =
11964 									    val;
11965 					}
11966 				} else if (entry->flags & CNTR_SDMA) {
11967 					hfi1_cdbg(CNTR,
11968 						  "\t Per SDMA Engine\n");
11969 					for (j = 0; j < dd->chip_sdma_engines;
11970 					     j++) {
11971 						val =
11972 						entry->rw_cntr(entry, dd, j,
11973 							       CNTR_MODE_R, 0);
11974 						hfi1_cdbg(CNTR,
11975 							  "\t\tRead 0x%llx for %d\n",
11976 							  val, j);
11977 						dd->cntrs[entry->offset + j] =
11978 									val;
11979 					}
11980 				} else {
11981 					val = entry->rw_cntr(entry, dd,
11982 							CNTR_INVALID_VL,
11983 							CNTR_MODE_R, 0);
11984 					dd->cntrs[entry->offset] = val;
11985 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11986 				}
11987 			}
11988 		}
11989 	}
11990 	return ret;
11991 }
11992 
11993 /*
11994  * Used by sysfs to create files for hfi stats to read
11995  */
11996 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
11997 {
11998 	int ret;
11999 	u64 val = 0;
12000 
12001 	if (namep) {
12002 		ret = ppd->dd->portcntrnameslen;
12003 		*namep = ppd->dd->portcntrnames;
12004 	} else {
12005 		const struct cntr_entry *entry;
12006 		int i, j;
12007 
12008 		ret = ppd->dd->nportcntrs * sizeof(u64);
12009 		*cntrp = ppd->cntrs;
12010 
12011 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12012 			entry = &port_cntrs[i];
12013 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12014 			if (entry->flags & CNTR_DISABLED) {
12015 				/* Nothing */
12016 				hfi1_cdbg(CNTR, "\tDisabled\n");
12017 				continue;
12018 			}
12019 
12020 			if (entry->flags & CNTR_VL) {
12021 				hfi1_cdbg(CNTR, "\tPer VL");
12022 				for (j = 0; j < C_VL_COUNT; j++) {
12023 					val = entry->rw_cntr(entry, ppd, j,
12024 							       CNTR_MODE_R,
12025 							       0);
12026 					hfi1_cdbg(
12027 					   CNTR,
12028 					   "\t\tRead 0x%llx for %d",
12029 					   val, j);
12030 					ppd->cntrs[entry->offset + j] = val;
12031 				}
12032 			} else {
12033 				val = entry->rw_cntr(entry, ppd,
12034 						       CNTR_INVALID_VL,
12035 						       CNTR_MODE_R,
12036 						       0);
12037 				ppd->cntrs[entry->offset] = val;
12038 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12039 			}
12040 		}
12041 	}
12042 	return ret;
12043 }
12044 
12045 static void free_cntrs(struct hfi1_devdata *dd)
12046 {
12047 	struct hfi1_pportdata *ppd;
12048 	int i;
12049 
12050 	if (dd->synth_stats_timer.function)
12051 		del_timer_sync(&dd->synth_stats_timer);
12052 	ppd = (struct hfi1_pportdata *)(dd + 1);
12053 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12054 		kfree(ppd->cntrs);
12055 		kfree(ppd->scntrs);
12056 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12057 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12058 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12059 		ppd->cntrs = NULL;
12060 		ppd->scntrs = NULL;
12061 		ppd->ibport_data.rvp.rc_acks = NULL;
12062 		ppd->ibport_data.rvp.rc_qacks = NULL;
12063 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12064 	}
12065 	kfree(dd->portcntrnames);
12066 	dd->portcntrnames = NULL;
12067 	kfree(dd->cntrs);
12068 	dd->cntrs = NULL;
12069 	kfree(dd->scntrs);
12070 	dd->scntrs = NULL;
12071 	kfree(dd->cntrnames);
12072 	dd->cntrnames = NULL;
12073 	if (dd->update_cntr_wq) {
12074 		destroy_workqueue(dd->update_cntr_wq);
12075 		dd->update_cntr_wq = NULL;
12076 	}
12077 }
12078 
12079 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12080 			      u64 *psval, void *context, int vl)
12081 {
12082 	u64 val;
12083 	u64 sval = *psval;
12084 
12085 	if (entry->flags & CNTR_DISABLED) {
12086 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12087 		return 0;
12088 	}
12089 
12090 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12091 
12092 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12093 
12094 	/* If its a synthetic counter there is more work we need to do */
12095 	if (entry->flags & CNTR_SYNTH) {
12096 		if (sval == CNTR_MAX) {
12097 			/* No need to read already saturated */
12098 			return CNTR_MAX;
12099 		}
12100 
12101 		if (entry->flags & CNTR_32BIT) {
12102 			/* 32bit counters can wrap multiple times */
12103 			u64 upper = sval >> 32;
12104 			u64 lower = (sval << 32) >> 32;
12105 
12106 			if (lower > val) { /* hw wrapped */
12107 				if (upper == CNTR_32BIT_MAX)
12108 					val = CNTR_MAX;
12109 				else
12110 					upper++;
12111 			}
12112 
12113 			if (val != CNTR_MAX)
12114 				val = (upper << 32) | val;
12115 
12116 		} else {
12117 			/* If we rolled we are saturated */
12118 			if ((val < sval) || (val > CNTR_MAX))
12119 				val = CNTR_MAX;
12120 		}
12121 	}
12122 
12123 	*psval = val;
12124 
12125 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12126 
12127 	return val;
12128 }
12129 
12130 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12131 			       struct cntr_entry *entry,
12132 			       u64 *psval, void *context, int vl, u64 data)
12133 {
12134 	u64 val;
12135 
12136 	if (entry->flags & CNTR_DISABLED) {
12137 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12138 		return 0;
12139 	}
12140 
12141 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12142 
12143 	if (entry->flags & CNTR_SYNTH) {
12144 		*psval = data;
12145 		if (entry->flags & CNTR_32BIT) {
12146 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12147 					     (data << 32) >> 32);
12148 			val = data; /* return the full 64bit value */
12149 		} else {
12150 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12151 					     data);
12152 		}
12153 	} else {
12154 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12155 	}
12156 
12157 	*psval = val;
12158 
12159 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12160 
12161 	return val;
12162 }
12163 
12164 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12165 {
12166 	struct cntr_entry *entry;
12167 	u64 *sval;
12168 
12169 	entry = &dev_cntrs[index];
12170 	sval = dd->scntrs + entry->offset;
12171 
12172 	if (vl != CNTR_INVALID_VL)
12173 		sval += vl;
12174 
12175 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12176 }
12177 
12178 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12179 {
12180 	struct cntr_entry *entry;
12181 	u64 *sval;
12182 
12183 	entry = &dev_cntrs[index];
12184 	sval = dd->scntrs + entry->offset;
12185 
12186 	if (vl != CNTR_INVALID_VL)
12187 		sval += vl;
12188 
12189 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12190 }
12191 
12192 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12193 {
12194 	struct cntr_entry *entry;
12195 	u64 *sval;
12196 
12197 	entry = &port_cntrs[index];
12198 	sval = ppd->scntrs + entry->offset;
12199 
12200 	if (vl != CNTR_INVALID_VL)
12201 		sval += vl;
12202 
12203 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12204 	    (index <= C_RCV_HDR_OVF_LAST)) {
12205 		/* We do not want to bother for disabled contexts */
12206 		return 0;
12207 	}
12208 
12209 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12210 }
12211 
12212 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12213 {
12214 	struct cntr_entry *entry;
12215 	u64 *sval;
12216 
12217 	entry = &port_cntrs[index];
12218 	sval = ppd->scntrs + entry->offset;
12219 
12220 	if (vl != CNTR_INVALID_VL)
12221 		sval += vl;
12222 
12223 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12224 	    (index <= C_RCV_HDR_OVF_LAST)) {
12225 		/* We do not want to bother for disabled contexts */
12226 		return 0;
12227 	}
12228 
12229 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12230 }
12231 
12232 static void do_update_synth_timer(struct work_struct *work)
12233 {
12234 	u64 cur_tx;
12235 	u64 cur_rx;
12236 	u64 total_flits;
12237 	u8 update = 0;
12238 	int i, j, vl;
12239 	struct hfi1_pportdata *ppd;
12240 	struct cntr_entry *entry;
12241 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12242 					       update_cntr_work);
12243 
12244 	/*
12245 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12246 	 * check to watch for potential roll over. We can do this by looking at
12247 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12248 	 * we have to iterate all the counters and update.
12249 	 */
12250 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12251 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12252 
12253 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12254 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12255 
12256 	hfi1_cdbg(
12257 	    CNTR,
12258 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12259 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12260 
12261 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12262 		/*
12263 		 * May not be strictly necessary to update but it won't hurt and
12264 		 * simplifies the logic here.
12265 		 */
12266 		update = 1;
12267 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12268 			  dd->unit);
12269 	} else {
12270 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12271 		hfi1_cdbg(CNTR,
12272 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12273 			  total_flits, (u64)CNTR_32BIT_MAX);
12274 		if (total_flits >= CNTR_32BIT_MAX) {
12275 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12276 				  dd->unit);
12277 			update = 1;
12278 		}
12279 	}
12280 
12281 	if (update) {
12282 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12283 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12284 			entry = &dev_cntrs[i];
12285 			if (entry->flags & CNTR_VL) {
12286 				for (vl = 0; vl < C_VL_COUNT; vl++)
12287 					read_dev_cntr(dd, i, vl);
12288 			} else {
12289 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12290 			}
12291 		}
12292 		ppd = (struct hfi1_pportdata *)(dd + 1);
12293 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12294 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12295 				entry = &port_cntrs[j];
12296 				if (entry->flags & CNTR_VL) {
12297 					for (vl = 0; vl < C_VL_COUNT; vl++)
12298 						read_port_cntr(ppd, j, vl);
12299 				} else {
12300 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12301 				}
12302 			}
12303 		}
12304 
12305 		/*
12306 		 * We want the value in the register. The goal is to keep track
12307 		 * of the number of "ticks" not the counter value. In other
12308 		 * words if the register rolls we want to notice it and go ahead
12309 		 * and force an update.
12310 		 */
12311 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12312 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12313 						CNTR_MODE_R, 0);
12314 
12315 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12316 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12317 						CNTR_MODE_R, 0);
12318 
12319 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12320 			  dd->unit, dd->last_tx, dd->last_rx);
12321 
12322 	} else {
12323 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12324 	}
12325 }
12326 
12327 static void update_synth_timer(struct timer_list *t)
12328 {
12329 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12330 
12331 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12332 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12333 }
12334 
12335 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12336 static int init_cntrs(struct hfi1_devdata *dd)
12337 {
12338 	int i, rcv_ctxts, j;
12339 	size_t sz;
12340 	char *p;
12341 	char name[C_MAX_NAME];
12342 	struct hfi1_pportdata *ppd;
12343 	const char *bit_type_32 = ",32";
12344 	const int bit_type_32_sz = strlen(bit_type_32);
12345 
12346 	/* set up the stats timer; the add_timer is done at the end */
12347 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12348 
12349 	/***********************/
12350 	/* per device counters */
12351 	/***********************/
12352 
12353 	/* size names and determine how many we have*/
12354 	dd->ndevcntrs = 0;
12355 	sz = 0;
12356 
12357 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12358 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12359 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12360 			continue;
12361 		}
12362 
12363 		if (dev_cntrs[i].flags & CNTR_VL) {
12364 			dev_cntrs[i].offset = dd->ndevcntrs;
12365 			for (j = 0; j < C_VL_COUNT; j++) {
12366 				snprintf(name, C_MAX_NAME, "%s%d",
12367 					 dev_cntrs[i].name, vl_from_idx(j));
12368 				sz += strlen(name);
12369 				/* Add ",32" for 32-bit counters */
12370 				if (dev_cntrs[i].flags & CNTR_32BIT)
12371 					sz += bit_type_32_sz;
12372 				sz++;
12373 				dd->ndevcntrs++;
12374 			}
12375 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12376 			dev_cntrs[i].offset = dd->ndevcntrs;
12377 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12378 				snprintf(name, C_MAX_NAME, "%s%d",
12379 					 dev_cntrs[i].name, j);
12380 				sz += strlen(name);
12381 				/* Add ",32" for 32-bit counters */
12382 				if (dev_cntrs[i].flags & CNTR_32BIT)
12383 					sz += bit_type_32_sz;
12384 				sz++;
12385 				dd->ndevcntrs++;
12386 			}
12387 		} else {
12388 			/* +1 for newline. */
12389 			sz += strlen(dev_cntrs[i].name) + 1;
12390 			/* Add ",32" for 32-bit counters */
12391 			if (dev_cntrs[i].flags & CNTR_32BIT)
12392 				sz += bit_type_32_sz;
12393 			dev_cntrs[i].offset = dd->ndevcntrs;
12394 			dd->ndevcntrs++;
12395 		}
12396 	}
12397 
12398 	/* allocate space for the counter values */
12399 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12400 	if (!dd->cntrs)
12401 		goto bail;
12402 
12403 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12404 	if (!dd->scntrs)
12405 		goto bail;
12406 
12407 	/* allocate space for the counter names */
12408 	dd->cntrnameslen = sz;
12409 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12410 	if (!dd->cntrnames)
12411 		goto bail;
12412 
12413 	/* fill in the names */
12414 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12415 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12416 			/* Nothing */
12417 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12418 			for (j = 0; j < C_VL_COUNT; j++) {
12419 				snprintf(name, C_MAX_NAME, "%s%d",
12420 					 dev_cntrs[i].name,
12421 					 vl_from_idx(j));
12422 				memcpy(p, name, strlen(name));
12423 				p += strlen(name);
12424 
12425 				/* Counter is 32 bits */
12426 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12427 					memcpy(p, bit_type_32, bit_type_32_sz);
12428 					p += bit_type_32_sz;
12429 				}
12430 
12431 				*p++ = '\n';
12432 			}
12433 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12434 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12435 				snprintf(name, C_MAX_NAME, "%s%d",
12436 					 dev_cntrs[i].name, j);
12437 				memcpy(p, name, strlen(name));
12438 				p += strlen(name);
12439 
12440 				/* Counter is 32 bits */
12441 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12442 					memcpy(p, bit_type_32, bit_type_32_sz);
12443 					p += bit_type_32_sz;
12444 				}
12445 
12446 				*p++ = '\n';
12447 			}
12448 		} else {
12449 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12450 			p += strlen(dev_cntrs[i].name);
12451 
12452 			/* Counter is 32 bits */
12453 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12454 				memcpy(p, bit_type_32, bit_type_32_sz);
12455 				p += bit_type_32_sz;
12456 			}
12457 
12458 			*p++ = '\n';
12459 		}
12460 	}
12461 
12462 	/*********************/
12463 	/* per port counters */
12464 	/*********************/
12465 
12466 	/*
12467 	 * Go through the counters for the overflows and disable the ones we
12468 	 * don't need. This varies based on platform so we need to do it
12469 	 * dynamically here.
12470 	 */
12471 	rcv_ctxts = dd->num_rcv_contexts;
12472 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12473 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12474 		port_cntrs[i].flags |= CNTR_DISABLED;
12475 	}
12476 
12477 	/* size port counter names and determine how many we have*/
12478 	sz = 0;
12479 	dd->nportcntrs = 0;
12480 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12481 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12482 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12483 			continue;
12484 		}
12485 
12486 		if (port_cntrs[i].flags & CNTR_VL) {
12487 			port_cntrs[i].offset = dd->nportcntrs;
12488 			for (j = 0; j < C_VL_COUNT; j++) {
12489 				snprintf(name, C_MAX_NAME, "%s%d",
12490 					 port_cntrs[i].name, vl_from_idx(j));
12491 				sz += strlen(name);
12492 				/* Add ",32" for 32-bit counters */
12493 				if (port_cntrs[i].flags & CNTR_32BIT)
12494 					sz += bit_type_32_sz;
12495 				sz++;
12496 				dd->nportcntrs++;
12497 			}
12498 		} else {
12499 			/* +1 for newline */
12500 			sz += strlen(port_cntrs[i].name) + 1;
12501 			/* Add ",32" for 32-bit counters */
12502 			if (port_cntrs[i].flags & CNTR_32BIT)
12503 				sz += bit_type_32_sz;
12504 			port_cntrs[i].offset = dd->nportcntrs;
12505 			dd->nportcntrs++;
12506 		}
12507 	}
12508 
12509 	/* allocate space for the counter names */
12510 	dd->portcntrnameslen = sz;
12511 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12512 	if (!dd->portcntrnames)
12513 		goto bail;
12514 
12515 	/* fill in port cntr names */
12516 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12517 		if (port_cntrs[i].flags & CNTR_DISABLED)
12518 			continue;
12519 
12520 		if (port_cntrs[i].flags & CNTR_VL) {
12521 			for (j = 0; j < C_VL_COUNT; j++) {
12522 				snprintf(name, C_MAX_NAME, "%s%d",
12523 					 port_cntrs[i].name, vl_from_idx(j));
12524 				memcpy(p, name, strlen(name));
12525 				p += strlen(name);
12526 
12527 				/* Counter is 32 bits */
12528 				if (port_cntrs[i].flags & CNTR_32BIT) {
12529 					memcpy(p, bit_type_32, bit_type_32_sz);
12530 					p += bit_type_32_sz;
12531 				}
12532 
12533 				*p++ = '\n';
12534 			}
12535 		} else {
12536 			memcpy(p, port_cntrs[i].name,
12537 			       strlen(port_cntrs[i].name));
12538 			p += strlen(port_cntrs[i].name);
12539 
12540 			/* Counter is 32 bits */
12541 			if (port_cntrs[i].flags & CNTR_32BIT) {
12542 				memcpy(p, bit_type_32, bit_type_32_sz);
12543 				p += bit_type_32_sz;
12544 			}
12545 
12546 			*p++ = '\n';
12547 		}
12548 	}
12549 
12550 	/* allocate per port storage for counter values */
12551 	ppd = (struct hfi1_pportdata *)(dd + 1);
12552 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12553 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12554 		if (!ppd->cntrs)
12555 			goto bail;
12556 
12557 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12558 		if (!ppd->scntrs)
12559 			goto bail;
12560 	}
12561 
12562 	/* CPU counters need to be allocated and zeroed */
12563 	if (init_cpu_counters(dd))
12564 		goto bail;
12565 
12566 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12567 						     WQ_MEM_RECLAIM, dd->unit);
12568 	if (!dd->update_cntr_wq)
12569 		goto bail;
12570 
12571 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12572 
12573 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12574 	return 0;
12575 bail:
12576 	free_cntrs(dd);
12577 	return -ENOMEM;
12578 }
12579 
12580 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12581 {
12582 	switch (chip_lstate) {
12583 	default:
12584 		dd_dev_err(dd,
12585 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12586 			   chip_lstate);
12587 		/* fall through */
12588 	case LSTATE_DOWN:
12589 		return IB_PORT_DOWN;
12590 	case LSTATE_INIT:
12591 		return IB_PORT_INIT;
12592 	case LSTATE_ARMED:
12593 		return IB_PORT_ARMED;
12594 	case LSTATE_ACTIVE:
12595 		return IB_PORT_ACTIVE;
12596 	}
12597 }
12598 
12599 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12600 {
12601 	/* look at the HFI meta-states only */
12602 	switch (chip_pstate & 0xf0) {
12603 	default:
12604 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12605 			   chip_pstate);
12606 		/* fall through */
12607 	case PLS_DISABLED:
12608 		return IB_PORTPHYSSTATE_DISABLED;
12609 	case PLS_OFFLINE:
12610 		return OPA_PORTPHYSSTATE_OFFLINE;
12611 	case PLS_POLLING:
12612 		return IB_PORTPHYSSTATE_POLLING;
12613 	case PLS_CONFIGPHY:
12614 		return IB_PORTPHYSSTATE_TRAINING;
12615 	case PLS_LINKUP:
12616 		return IB_PORTPHYSSTATE_LINKUP;
12617 	case PLS_PHYTEST:
12618 		return IB_PORTPHYSSTATE_PHY_TEST;
12619 	}
12620 }
12621 
12622 /* return the OPA port logical state name */
12623 const char *opa_lstate_name(u32 lstate)
12624 {
12625 	static const char * const port_logical_names[] = {
12626 		"PORT_NOP",
12627 		"PORT_DOWN",
12628 		"PORT_INIT",
12629 		"PORT_ARMED",
12630 		"PORT_ACTIVE",
12631 		"PORT_ACTIVE_DEFER",
12632 	};
12633 	if (lstate < ARRAY_SIZE(port_logical_names))
12634 		return port_logical_names[lstate];
12635 	return "unknown";
12636 }
12637 
12638 /* return the OPA port physical state name */
12639 const char *opa_pstate_name(u32 pstate)
12640 {
12641 	static const char * const port_physical_names[] = {
12642 		"PHYS_NOP",
12643 		"reserved1",
12644 		"PHYS_POLL",
12645 		"PHYS_DISABLED",
12646 		"PHYS_TRAINING",
12647 		"PHYS_LINKUP",
12648 		"PHYS_LINK_ERR_RECOVER",
12649 		"PHYS_PHY_TEST",
12650 		"reserved8",
12651 		"PHYS_OFFLINE",
12652 		"PHYS_GANGED",
12653 		"PHYS_TEST",
12654 	};
12655 	if (pstate < ARRAY_SIZE(port_physical_names))
12656 		return port_physical_names[pstate];
12657 	return "unknown";
12658 }
12659 
12660 /**
12661  * update_statusp - Update userspace status flag
12662  * @ppd: Port data structure
12663  * @state: port state information
12664  *
12665  * Actual port status is determined by the host_link_state value
12666  * in the ppd.
12667  *
12668  * host_link_state MUST be updated before updating the user space
12669  * statusp.
12670  */
12671 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12672 {
12673 	/*
12674 	 * Set port status flags in the page mapped into userspace
12675 	 * memory. Do it here to ensure a reliable state - this is
12676 	 * the only function called by all state handling code.
12677 	 * Always set the flags due to the fact that the cache value
12678 	 * might have been changed explicitly outside of this
12679 	 * function.
12680 	 */
12681 	if (ppd->statusp) {
12682 		switch (state) {
12683 		case IB_PORT_DOWN:
12684 		case IB_PORT_INIT:
12685 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12686 					   HFI1_STATUS_IB_READY);
12687 			break;
12688 		case IB_PORT_ARMED:
12689 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12690 			break;
12691 		case IB_PORT_ACTIVE:
12692 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12693 			break;
12694 		}
12695 	}
12696 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12697 		    opa_lstate_name(state), state);
12698 }
12699 
12700 /**
12701  * wait_logical_linkstate - wait for an IB link state change to occur
12702  * @ppd: port device
12703  * @state: the state to wait for
12704  * @msecs: the number of milliseconds to wait
12705  *
12706  * Wait up to msecs milliseconds for IB link state change to occur.
12707  * For now, take the easy polling route.
12708  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12709  */
12710 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12711 				  int msecs)
12712 {
12713 	unsigned long timeout;
12714 	u32 new_state;
12715 
12716 	timeout = jiffies + msecs_to_jiffies(msecs);
12717 	while (1) {
12718 		new_state = chip_to_opa_lstate(ppd->dd,
12719 					       read_logical_state(ppd->dd));
12720 		if (new_state == state)
12721 			break;
12722 		if (time_after(jiffies, timeout)) {
12723 			dd_dev_err(ppd->dd,
12724 				   "timeout waiting for link state 0x%x\n",
12725 				   state);
12726 			return -ETIMEDOUT;
12727 		}
12728 		msleep(20);
12729 	}
12730 
12731 	return 0;
12732 }
12733 
12734 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12735 {
12736 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12737 
12738 	dd_dev_info(ppd->dd,
12739 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12740 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12741 }
12742 
12743 /*
12744  * Read the physical hardware link state and check if it matches host
12745  * drivers anticipated state.
12746  */
12747 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12748 {
12749 	u32 read_state = read_physical_state(ppd->dd);
12750 
12751 	if (read_state == state) {
12752 		log_state_transition(ppd, state);
12753 	} else {
12754 		dd_dev_err(ppd->dd,
12755 			   "anticipated phy link state 0x%x, read 0x%x\n",
12756 			   state, read_state);
12757 	}
12758 }
12759 
12760 /*
12761  * wait_physical_linkstate - wait for an physical link state change to occur
12762  * @ppd: port device
12763  * @state: the state to wait for
12764  * @msecs: the number of milliseconds to wait
12765  *
12766  * Wait up to msecs milliseconds for physical link state change to occur.
12767  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12768  */
12769 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12770 				   int msecs)
12771 {
12772 	u32 read_state;
12773 	unsigned long timeout;
12774 
12775 	timeout = jiffies + msecs_to_jiffies(msecs);
12776 	while (1) {
12777 		read_state = read_physical_state(ppd->dd);
12778 		if (read_state == state)
12779 			break;
12780 		if (time_after(jiffies, timeout)) {
12781 			dd_dev_err(ppd->dd,
12782 				   "timeout waiting for phy link state 0x%x\n",
12783 				   state);
12784 			return -ETIMEDOUT;
12785 		}
12786 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12787 	}
12788 
12789 	log_state_transition(ppd, state);
12790 	return 0;
12791 }
12792 
12793 /*
12794  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12795  * @ppd: port device
12796  * @msecs: the number of milliseconds to wait
12797  *
12798  * Wait up to msecs milliseconds for any offline physical link
12799  * state change to occur.
12800  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12801  */
12802 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12803 					    int msecs)
12804 {
12805 	u32 read_state;
12806 	unsigned long timeout;
12807 
12808 	timeout = jiffies + msecs_to_jiffies(msecs);
12809 	while (1) {
12810 		read_state = read_physical_state(ppd->dd);
12811 		if ((read_state & 0xF0) == PLS_OFFLINE)
12812 			break;
12813 		if (time_after(jiffies, timeout)) {
12814 			dd_dev_err(ppd->dd,
12815 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12816 				   read_state, msecs);
12817 			return -ETIMEDOUT;
12818 		}
12819 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12820 	}
12821 
12822 	log_state_transition(ppd, read_state);
12823 	return read_state;
12824 }
12825 
12826 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12827 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12828 
12829 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12830 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12831 
12832 void hfi1_init_ctxt(struct send_context *sc)
12833 {
12834 	if (sc) {
12835 		struct hfi1_devdata *dd = sc->dd;
12836 		u64 reg;
12837 		u8 set = (sc->type == SC_USER ?
12838 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12839 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12840 		reg = read_kctxt_csr(dd, sc->hw_context,
12841 				     SEND_CTXT_CHECK_ENABLE);
12842 		if (set)
12843 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12844 		else
12845 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12846 		write_kctxt_csr(dd, sc->hw_context,
12847 				SEND_CTXT_CHECK_ENABLE, reg);
12848 	}
12849 }
12850 
12851 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12852 {
12853 	int ret = 0;
12854 	u64 reg;
12855 
12856 	if (dd->icode != ICODE_RTL_SILICON) {
12857 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12858 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12859 				    __func__);
12860 		return -EINVAL;
12861 	}
12862 	reg = read_csr(dd, ASIC_STS_THERM);
12863 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12864 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12865 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12866 			ASIC_STS_THERM_LO_TEMP_MASK);
12867 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12868 			ASIC_STS_THERM_HI_TEMP_MASK);
12869 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12870 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12871 	/* triggers is a 3-bit value - 1 bit per trigger. */
12872 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12873 
12874 	return ret;
12875 }
12876 
12877 /**
12878  * get_int_mask - get 64 bit int mask
12879  * @dd - the devdata
12880  * @i - the csr (relative to CCE_INT_MASK)
12881  *
12882  * Returns the mask with the urgent interrupt mask
12883  * bit clear for kernel receive contexts.
12884  */
12885 static u64 get_int_mask(struct hfi1_devdata *dd, u32 i)
12886 {
12887 	u64 mask = U64_MAX; /* default to no change */
12888 
12889 	if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) {
12890 		int j = (i - (IS_RCVURGENT_START / 64)) * 64;
12891 		int k = !j ? IS_RCVURGENT_START % 64 : 0;
12892 
12893 		if (j)
12894 			j -= IS_RCVURGENT_START % 64;
12895 		/* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */
12896 		for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++)
12897 			/* convert to bit in mask and clear */
12898 			mask &= ~BIT_ULL(k);
12899 	}
12900 	return mask;
12901 }
12902 
12903 /* ========================================================================= */
12904 
12905 /*
12906  * Enable/disable chip from delivering interrupts.
12907  */
12908 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12909 {
12910 	int i;
12911 
12912 	/*
12913 	 * In HFI, the mask needs to be 1 to allow interrupts.
12914 	 */
12915 	if (enable) {
12916 		/* enable all interrupts but urgent on kernel contexts */
12917 		for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12918 			u64 mask = get_int_mask(dd, i);
12919 
12920 			write_csr(dd, CCE_INT_MASK + (8 * i), mask);
12921 		}
12922 
12923 		init_qsfp_int(dd);
12924 	} else {
12925 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12926 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12927 	}
12928 }
12929 
12930 /*
12931  * Clear all interrupt sources on the chip.
12932  */
12933 static void clear_all_interrupts(struct hfi1_devdata *dd)
12934 {
12935 	int i;
12936 
12937 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12938 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12939 
12940 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12941 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12942 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12943 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12944 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12945 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12946 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12947 	for (i = 0; i < dd->chip_send_contexts; i++)
12948 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12949 	for (i = 0; i < dd->chip_sdma_engines; i++)
12950 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12951 
12952 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12953 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12954 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12955 }
12956 
12957 /* Move to pcie.c? */
12958 static void disable_intx(struct pci_dev *pdev)
12959 {
12960 	pci_intx(pdev, 0);
12961 }
12962 
12963 static void clean_up_interrupts(struct hfi1_devdata *dd)
12964 {
12965 	int i;
12966 
12967 	/* remove irqs - must happen before disabling/turning off */
12968 	if (dd->num_msix_entries) {
12969 		/* MSI-X */
12970 		struct hfi1_msix_entry *me = dd->msix_entries;
12971 
12972 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
12973 			if (!me->arg) /* => no irq, no affinity */
12974 				continue;
12975 			hfi1_put_irq_affinity(dd, me);
12976 			pci_free_irq(dd->pcidev, i, me->arg);
12977 		}
12978 
12979 		/* clean structures */
12980 		kfree(dd->msix_entries);
12981 		dd->msix_entries = NULL;
12982 		dd->num_msix_entries = 0;
12983 	} else {
12984 		/* INTx */
12985 		if (dd->requested_intx_irq) {
12986 			pci_free_irq(dd->pcidev, 0, dd);
12987 			dd->requested_intx_irq = 0;
12988 		}
12989 		disable_intx(dd->pcidev);
12990 	}
12991 
12992 	pci_free_irq_vectors(dd->pcidev);
12993 }
12994 
12995 /*
12996  * Remap the interrupt source from the general handler to the given MSI-X
12997  * interrupt.
12998  */
12999 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13000 {
13001 	u64 reg;
13002 	int m, n;
13003 
13004 	/* clear from the handled mask of the general interrupt */
13005 	m = isrc / 64;
13006 	n = isrc % 64;
13007 	if (likely(m < CCE_NUM_INT_CSRS)) {
13008 		dd->gi_mask[m] &= ~((u64)1 << n);
13009 	} else {
13010 		dd_dev_err(dd, "remap interrupt err\n");
13011 		return;
13012 	}
13013 
13014 	/* direct the chip source to the given MSI-X interrupt */
13015 	m = isrc / 8;
13016 	n = isrc % 8;
13017 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13018 	reg &= ~((u64)0xff << (8 * n));
13019 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13020 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13021 }
13022 
13023 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13024 				  int engine, int msix_intr)
13025 {
13026 	/*
13027 	 * SDMA engine interrupt sources grouped by type, rather than
13028 	 * engine.  Per-engine interrupts are as follows:
13029 	 *	SDMA
13030 	 *	SDMAProgress
13031 	 *	SDMAIdle
13032 	 */
13033 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13034 		   msix_intr);
13035 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13036 		   msix_intr);
13037 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13038 		   msix_intr);
13039 }
13040 
13041 static int request_intx_irq(struct hfi1_devdata *dd)
13042 {
13043 	int ret;
13044 
13045 	ret = pci_request_irq(dd->pcidev, 0, general_interrupt, NULL, dd,
13046 			      DRIVER_NAME "_%d", dd->unit);
13047 	if (ret)
13048 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13049 			   ret);
13050 	else
13051 		dd->requested_intx_irq = 1;
13052 	return ret;
13053 }
13054 
13055 static int request_msix_irqs(struct hfi1_devdata *dd)
13056 {
13057 	int first_general, last_general;
13058 	int first_sdma, last_sdma;
13059 	int first_rx, last_rx;
13060 	int i, ret = 0;
13061 
13062 	/* calculate the ranges we are going to use */
13063 	first_general = 0;
13064 	last_general = first_general + 1;
13065 	first_sdma = last_general;
13066 	last_sdma = first_sdma + dd->num_sdma;
13067 	first_rx = last_sdma;
13068 	last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13069 
13070 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13071 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13072 
13073 	/*
13074 	 * Sanity check - the code expects all SDMA chip source
13075 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
13076 	 * that this is true by checking the bit location of the start.
13077 	 */
13078 	BUILD_BUG_ON(IS_SDMA_START % 64);
13079 
13080 	for (i = 0; i < dd->num_msix_entries; i++) {
13081 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
13082 		const char *err_info;
13083 		irq_handler_t handler;
13084 		irq_handler_t thread = NULL;
13085 		void *arg = NULL;
13086 		int idx;
13087 		struct hfi1_ctxtdata *rcd = NULL;
13088 		struct sdma_engine *sde = NULL;
13089 		char name[MAX_NAME_SIZE];
13090 
13091 		/* obtain the arguments to pci_request_irq */
13092 		if (first_general <= i && i < last_general) {
13093 			idx = i - first_general;
13094 			handler = general_interrupt;
13095 			arg = dd;
13096 			snprintf(name, sizeof(name),
13097 				 DRIVER_NAME "_%d", dd->unit);
13098 			err_info = "general";
13099 			me->type = IRQ_GENERAL;
13100 		} else if (first_sdma <= i && i < last_sdma) {
13101 			idx = i - first_sdma;
13102 			sde = &dd->per_sdma[idx];
13103 			handler = sdma_interrupt;
13104 			arg = sde;
13105 			snprintf(name, sizeof(name),
13106 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13107 			err_info = "sdma";
13108 			remap_sdma_interrupts(dd, idx, i);
13109 			me->type = IRQ_SDMA;
13110 		} else if (first_rx <= i && i < last_rx) {
13111 			idx = i - first_rx;
13112 			rcd = hfi1_rcd_get_by_index_safe(dd, idx);
13113 			if (rcd) {
13114 				/*
13115 				 * Set the interrupt register and mask for this
13116 				 * context's interrupt.
13117 				 */
13118 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13119 				rcd->imask = ((u64)1) <<
13120 					  ((IS_RCVAVAIL_START + idx) % 64);
13121 				handler = receive_context_interrupt;
13122 				thread = receive_context_thread;
13123 				arg = rcd;
13124 				snprintf(name, sizeof(name),
13125 					 DRIVER_NAME "_%d kctxt%d",
13126 					 dd->unit, idx);
13127 				err_info = "receive context";
13128 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13129 				me->type = IRQ_RCVCTXT;
13130 				rcd->msix_intr = i;
13131 				hfi1_rcd_put(rcd);
13132 			}
13133 		} else {
13134 			/* not in our expected range - complain, then
13135 			 * ignore it
13136 			 */
13137 			dd_dev_err(dd,
13138 				   "Unexpected extra MSI-X interrupt %d\n", i);
13139 			continue;
13140 		}
13141 		/* no argument, no interrupt */
13142 		if (!arg)
13143 			continue;
13144 		/* make sure the name is terminated */
13145 		name[sizeof(name) - 1] = 0;
13146 		me->irq = pci_irq_vector(dd->pcidev, i);
13147 		ret = pci_request_irq(dd->pcidev, i, handler, thread, arg,
13148 				      name);
13149 		if (ret) {
13150 			dd_dev_err(dd,
13151 				   "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13152 				   err_info, me->irq, idx, ret);
13153 			return ret;
13154 		}
13155 		/*
13156 		 * assign arg after pci_request_irq call, so it will be
13157 		 * cleaned up
13158 		 */
13159 		me->arg = arg;
13160 
13161 		ret = hfi1_get_irq_affinity(dd, me);
13162 		if (ret)
13163 			dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13164 	}
13165 
13166 	return ret;
13167 }
13168 
13169 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13170 {
13171 	int i;
13172 
13173 	if (!dd->num_msix_entries) {
13174 		synchronize_irq(pci_irq_vector(dd->pcidev, 0));
13175 		return;
13176 	}
13177 
13178 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13179 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13180 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13181 
13182 		synchronize_irq(me->irq);
13183 	}
13184 }
13185 
13186 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13187 {
13188 	struct hfi1_devdata *dd = rcd->dd;
13189 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13190 
13191 	if (!me->arg) /* => no irq, no affinity */
13192 		return;
13193 
13194 	hfi1_put_irq_affinity(dd, me);
13195 	pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13196 
13197 	me->arg = NULL;
13198 }
13199 
13200 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13201 {
13202 	struct hfi1_devdata *dd = rcd->dd;
13203 	struct hfi1_msix_entry *me;
13204 	int idx = rcd->ctxt;
13205 	void *arg = rcd;
13206 	int ret;
13207 
13208 	rcd->msix_intr = dd->vnic.msix_idx++;
13209 	me = &dd->msix_entries[rcd->msix_intr];
13210 
13211 	/*
13212 	 * Set the interrupt register and mask for this
13213 	 * context's interrupt.
13214 	 */
13215 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13216 	rcd->imask = ((u64)1) <<
13217 		  ((IS_RCVAVAIL_START + idx) % 64);
13218 	me->type = IRQ_RCVCTXT;
13219 	me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13220 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13221 
13222 	ret = pci_request_irq(dd->pcidev, rcd->msix_intr,
13223 			      receive_context_interrupt,
13224 			      receive_context_thread, arg,
13225 			      DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13226 	if (ret) {
13227 		dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13228 			   me->irq, idx, ret);
13229 		return;
13230 	}
13231 	/*
13232 	 * assign arg after pci_request_irq call, so it will be
13233 	 * cleaned up
13234 	 */
13235 	me->arg = arg;
13236 
13237 	ret = hfi1_get_irq_affinity(dd, me);
13238 	if (ret) {
13239 		dd_dev_err(dd,
13240 			   "unable to pin IRQ %d\n", ret);
13241 		pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13242 	}
13243 }
13244 
13245 /*
13246  * Set the general handler to accept all interrupts, remap all
13247  * chip interrupts back to MSI-X 0.
13248  */
13249 static void reset_interrupts(struct hfi1_devdata *dd)
13250 {
13251 	int i;
13252 
13253 	/* all interrupts handled by the general handler */
13254 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13255 		dd->gi_mask[i] = ~(u64)0;
13256 
13257 	/* all chip interrupts map to MSI-X 0 */
13258 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13259 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13260 }
13261 
13262 static int set_up_interrupts(struct hfi1_devdata *dd)
13263 {
13264 	u32 total;
13265 	int ret, request;
13266 	int single_interrupt = 0; /* we expect to have all the interrupts */
13267 
13268 	/*
13269 	 * Interrupt count:
13270 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13271 	 *		slow source, SDMACleanupDone)
13272 	 *	N interrupts - one per used SDMA engine
13273 	 *	M interrupt - one per kernel receive context
13274 	 *	V interrupt - one for each VNIC context
13275 	 */
13276 	total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13277 
13278 	/* ask for MSI-X interrupts */
13279 	request = request_msix(dd, total);
13280 	if (request < 0) {
13281 		ret = request;
13282 		goto fail;
13283 	} else if (request == 0) {
13284 		/* using INTx */
13285 		/* dd->num_msix_entries already zero */
13286 		single_interrupt = 1;
13287 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13288 	} else if (request < total) {
13289 		/* using MSI-X, with reduced interrupts */
13290 		dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13291 			   total, request);
13292 		ret = -EINVAL;
13293 		goto fail;
13294 	} else {
13295 		dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13296 					   GFP_KERNEL);
13297 		if (!dd->msix_entries) {
13298 			ret = -ENOMEM;
13299 			goto fail;
13300 		}
13301 		/* using MSI-X */
13302 		dd->num_msix_entries = total;
13303 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13304 	}
13305 
13306 	/* mask all interrupts */
13307 	set_intr_state(dd, 0);
13308 	/* clear all pending interrupts */
13309 	clear_all_interrupts(dd);
13310 
13311 	/* reset general handler mask, chip MSI-X mappings */
13312 	reset_interrupts(dd);
13313 
13314 	if (single_interrupt)
13315 		ret = request_intx_irq(dd);
13316 	else
13317 		ret = request_msix_irqs(dd);
13318 	if (ret)
13319 		goto fail;
13320 
13321 	return 0;
13322 
13323 fail:
13324 	clean_up_interrupts(dd);
13325 	return ret;
13326 }
13327 
13328 /*
13329  * Set up context values in dd.  Sets:
13330  *
13331  *	num_rcv_contexts - number of contexts being used
13332  *	n_krcv_queues - number of kernel contexts
13333  *	first_dyn_alloc_ctxt - first dynamically allocated context
13334  *                             in array of contexts
13335  *	freectxts  - number of free user contexts
13336  *	num_send_contexts - number of PIO send contexts being used
13337  *	num_vnic_contexts - number of contexts reserved for VNIC
13338  */
13339 static int set_up_context_variables(struct hfi1_devdata *dd)
13340 {
13341 	unsigned long num_kernel_contexts;
13342 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13343 	int total_contexts;
13344 	int ret;
13345 	unsigned ngroups;
13346 	int qos_rmt_count;
13347 	int user_rmt_reduced;
13348 	u32 n_usr_ctxts;
13349 
13350 	/*
13351 	 * Kernel receive contexts:
13352 	 * - Context 0 - control context (VL15/multicast/error)
13353 	 * - Context 1 - first kernel context
13354 	 * - Context 2 - second kernel context
13355 	 * ...
13356 	 */
13357 	if (n_krcvqs)
13358 		/*
13359 		 * n_krcvqs is the sum of module parameter kernel receive
13360 		 * contexts, krcvqs[].  It does not include the control
13361 		 * context, so add that.
13362 		 */
13363 		num_kernel_contexts = n_krcvqs + 1;
13364 	else
13365 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13366 	/*
13367 	 * Every kernel receive context needs an ACK send context.
13368 	 * one send context is allocated for each VL{0-7} and VL15
13369 	 */
13370 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13371 		dd_dev_err(dd,
13372 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13373 			   (int)(dd->chip_send_contexts - num_vls - 1),
13374 			   num_kernel_contexts);
13375 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13376 	}
13377 
13378 	/* Accommodate VNIC contexts if possible */
13379 	if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) {
13380 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13381 		num_vnic_contexts = 0;
13382 	}
13383 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13384 
13385 	/*
13386 	 * User contexts:
13387 	 *	- default to 1 user context per real (non-HT) CPU core if
13388 	 *	  num_user_contexts is negative
13389 	 */
13390 	if (num_user_contexts < 0)
13391 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13392 	else
13393 		n_usr_ctxts = num_user_contexts;
13394 	/*
13395 	 * Adjust the counts given a global max.
13396 	 */
13397 	if (total_contexts + n_usr_ctxts > dd->chip_rcv_contexts) {
13398 		dd_dev_err(dd,
13399 			   "Reducing # user receive contexts to: %d, from %u\n",
13400 			   (int)(dd->chip_rcv_contexts - total_contexts),
13401 			   n_usr_ctxts);
13402 		/* recalculate */
13403 		n_usr_ctxts = dd->chip_rcv_contexts - total_contexts;
13404 	}
13405 
13406 	/* each user context requires an entry in the RMT */
13407 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13408 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13409 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13410 		dd_dev_err(dd,
13411 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13412 			   n_usr_ctxts,
13413 			   user_rmt_reduced);
13414 		/* recalculate */
13415 		n_usr_ctxts = user_rmt_reduced;
13416 	}
13417 
13418 	total_contexts += n_usr_ctxts;
13419 
13420 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13421 	dd->num_rcv_contexts = total_contexts;
13422 	dd->n_krcv_queues = num_kernel_contexts;
13423 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13424 	dd->num_vnic_contexts = num_vnic_contexts;
13425 	dd->num_user_contexts = n_usr_ctxts;
13426 	dd->freectxts = n_usr_ctxts;
13427 	dd_dev_info(dd,
13428 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13429 		    (int)dd->chip_rcv_contexts,
13430 		    (int)dd->num_rcv_contexts,
13431 		    (int)dd->n_krcv_queues,
13432 		    dd->num_vnic_contexts,
13433 		    dd->num_user_contexts);
13434 
13435 	/*
13436 	 * Receive array allocation:
13437 	 *   All RcvArray entries are divided into groups of 8. This
13438 	 *   is required by the hardware and will speed up writes to
13439 	 *   consecutive entries by using write-combining of the entire
13440 	 *   cacheline.
13441 	 *
13442 	 *   The number of groups are evenly divided among all contexts.
13443 	 *   any left over groups will be given to the first N user
13444 	 *   contexts.
13445 	 */
13446 	dd->rcv_entries.group_size = RCV_INCREMENT;
13447 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13448 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13449 	dd->rcv_entries.nctxt_extra = ngroups -
13450 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13451 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13452 		    dd->rcv_entries.ngroups,
13453 		    dd->rcv_entries.nctxt_extra);
13454 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13455 	    MAX_EAGER_ENTRIES * 2) {
13456 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13457 			dd->rcv_entries.group_size;
13458 		dd_dev_info(dd,
13459 			    "RcvArray group count too high, change to %u\n",
13460 			    dd->rcv_entries.ngroups);
13461 		dd->rcv_entries.nctxt_extra = 0;
13462 	}
13463 	/*
13464 	 * PIO send contexts
13465 	 */
13466 	ret = init_sc_pools_and_sizes(dd);
13467 	if (ret >= 0) {	/* success */
13468 		dd->num_send_contexts = ret;
13469 		dd_dev_info(
13470 			dd,
13471 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13472 			dd->chip_send_contexts,
13473 			dd->num_send_contexts,
13474 			dd->sc_sizes[SC_KERNEL].count,
13475 			dd->sc_sizes[SC_ACK].count,
13476 			dd->sc_sizes[SC_USER].count,
13477 			dd->sc_sizes[SC_VL15].count);
13478 		ret = 0;	/* success */
13479 	}
13480 
13481 	return ret;
13482 }
13483 
13484 /*
13485  * Set the device/port partition key table. The MAD code
13486  * will ensure that, at least, the partial management
13487  * partition key is present in the table.
13488  */
13489 static void set_partition_keys(struct hfi1_pportdata *ppd)
13490 {
13491 	struct hfi1_devdata *dd = ppd->dd;
13492 	u64 reg = 0;
13493 	int i;
13494 
13495 	dd_dev_info(dd, "Setting partition keys\n");
13496 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13497 		reg |= (ppd->pkeys[i] &
13498 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13499 			((i % 4) *
13500 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13501 		/* Each register holds 4 PKey values. */
13502 		if ((i % 4) == 3) {
13503 			write_csr(dd, RCV_PARTITION_KEY +
13504 				  ((i - 3) * 2), reg);
13505 			reg = 0;
13506 		}
13507 	}
13508 
13509 	/* Always enable HW pkeys check when pkeys table is set */
13510 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13511 }
13512 
13513 /*
13514  * These CSRs and memories are uninitialized on reset and must be
13515  * written before reading to set the ECC/parity bits.
13516  *
13517  * NOTE: All user context CSRs that are not mmaped write-only
13518  * (e.g. the TID flows) must be initialized even if the driver never
13519  * reads them.
13520  */
13521 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13522 {
13523 	int i, j;
13524 
13525 	/* CceIntMap */
13526 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13527 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13528 
13529 	/* SendCtxtCreditReturnAddr */
13530 	for (i = 0; i < dd->chip_send_contexts; i++)
13531 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13532 
13533 	/* PIO Send buffers */
13534 	/* SDMA Send buffers */
13535 	/*
13536 	 * These are not normally read, and (presently) have no method
13537 	 * to be read, so are not pre-initialized
13538 	 */
13539 
13540 	/* RcvHdrAddr */
13541 	/* RcvHdrTailAddr */
13542 	/* RcvTidFlowTable */
13543 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13544 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13545 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13546 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13547 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13548 	}
13549 
13550 	/* RcvArray */
13551 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13552 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13553 
13554 	/* RcvQPMapTable */
13555 	for (i = 0; i < 32; i++)
13556 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13557 }
13558 
13559 /*
13560  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13561  */
13562 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13563 			     u64 ctrl_bits)
13564 {
13565 	unsigned long timeout;
13566 	u64 reg;
13567 
13568 	/* is the condition present? */
13569 	reg = read_csr(dd, CCE_STATUS);
13570 	if ((reg & status_bits) == 0)
13571 		return;
13572 
13573 	/* clear the condition */
13574 	write_csr(dd, CCE_CTRL, ctrl_bits);
13575 
13576 	/* wait for the condition to clear */
13577 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13578 	while (1) {
13579 		reg = read_csr(dd, CCE_STATUS);
13580 		if ((reg & status_bits) == 0)
13581 			return;
13582 		if (time_after(jiffies, timeout)) {
13583 			dd_dev_err(dd,
13584 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13585 				   status_bits, reg & status_bits);
13586 			return;
13587 		}
13588 		udelay(1);
13589 	}
13590 }
13591 
13592 /* set CCE CSRs to chip reset defaults */
13593 static void reset_cce_csrs(struct hfi1_devdata *dd)
13594 {
13595 	int i;
13596 
13597 	/* CCE_REVISION read-only */
13598 	/* CCE_REVISION2 read-only */
13599 	/* CCE_CTRL - bits clear automatically */
13600 	/* CCE_STATUS read-only, use CceCtrl to clear */
13601 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13602 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13603 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13604 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13605 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13606 	/* CCE_ERR_STATUS read-only */
13607 	write_csr(dd, CCE_ERR_MASK, 0);
13608 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13609 	/* CCE_ERR_FORCE leave alone */
13610 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13611 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13612 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13613 	/* CCE_PCIE_CTRL leave alone */
13614 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13615 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13616 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13617 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13618 	}
13619 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13620 		/* CCE_MSIX_PBA read-only */
13621 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13622 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13623 	}
13624 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13625 		write_csr(dd, CCE_INT_MAP, 0);
13626 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13627 		/* CCE_INT_STATUS read-only */
13628 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13629 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13630 		/* CCE_INT_FORCE leave alone */
13631 		/* CCE_INT_BLOCKED read-only */
13632 	}
13633 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13634 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13635 }
13636 
13637 /* set MISC CSRs to chip reset defaults */
13638 static void reset_misc_csrs(struct hfi1_devdata *dd)
13639 {
13640 	int i;
13641 
13642 	for (i = 0; i < 32; i++) {
13643 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13644 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13645 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13646 	}
13647 	/*
13648 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13649 	 * only be written 128-byte chunks
13650 	 */
13651 	/* init RSA engine to clear lingering errors */
13652 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13653 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13654 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13655 	/* MISC_STS_8051_DIGEST read-only */
13656 	/* MISC_STS_SBM_DIGEST read-only */
13657 	/* MISC_STS_PCIE_DIGEST read-only */
13658 	/* MISC_STS_FAB_DIGEST read-only */
13659 	/* MISC_ERR_STATUS read-only */
13660 	write_csr(dd, MISC_ERR_MASK, 0);
13661 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13662 	/* MISC_ERR_FORCE leave alone */
13663 }
13664 
13665 /* set TXE CSRs to chip reset defaults */
13666 static void reset_txe_csrs(struct hfi1_devdata *dd)
13667 {
13668 	int i;
13669 
13670 	/*
13671 	 * TXE Kernel CSRs
13672 	 */
13673 	write_csr(dd, SEND_CTRL, 0);
13674 	__cm_reset(dd, 0);	/* reset CM internal state */
13675 	/* SEND_CONTEXTS read-only */
13676 	/* SEND_DMA_ENGINES read-only */
13677 	/* SEND_PIO_MEM_SIZE read-only */
13678 	/* SEND_DMA_MEM_SIZE read-only */
13679 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13680 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13681 	/* SEND_PIO_ERR_STATUS read-only */
13682 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13683 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13684 	/* SEND_PIO_ERR_FORCE leave alone */
13685 	/* SEND_DMA_ERR_STATUS read-only */
13686 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13687 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13688 	/* SEND_DMA_ERR_FORCE leave alone */
13689 	/* SEND_EGRESS_ERR_STATUS read-only */
13690 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13691 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13692 	/* SEND_EGRESS_ERR_FORCE leave alone */
13693 	write_csr(dd, SEND_BTH_QP, 0);
13694 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13695 	write_csr(dd, SEND_SC2VLT0, 0);
13696 	write_csr(dd, SEND_SC2VLT1, 0);
13697 	write_csr(dd, SEND_SC2VLT2, 0);
13698 	write_csr(dd, SEND_SC2VLT3, 0);
13699 	write_csr(dd, SEND_LEN_CHECK0, 0);
13700 	write_csr(dd, SEND_LEN_CHECK1, 0);
13701 	/* SEND_ERR_STATUS read-only */
13702 	write_csr(dd, SEND_ERR_MASK, 0);
13703 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13704 	/* SEND_ERR_FORCE read-only */
13705 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13706 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13707 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13708 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13709 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13710 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13711 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13712 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13713 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13714 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13715 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13716 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13717 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13718 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13719 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13720 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13721 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13722 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13723 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13724 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13725 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13726 	/* SEND_CM_CREDIT_USED_VL read-only */
13727 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13728 	/* SEND_EGRESS_CTXT_STATUS read-only */
13729 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13730 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13731 	/* SEND_EGRESS_ERR_INFO read-only */
13732 	/* SEND_EGRESS_ERR_SOURCE read-only */
13733 
13734 	/*
13735 	 * TXE Per-Context CSRs
13736 	 */
13737 	for (i = 0; i < dd->chip_send_contexts; i++) {
13738 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13739 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13740 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13741 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13742 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13743 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13744 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13745 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13746 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13747 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13748 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13749 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13750 	}
13751 
13752 	/*
13753 	 * TXE Per-SDMA CSRs
13754 	 */
13755 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13756 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13757 		/* SEND_DMA_STATUS read-only */
13758 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13759 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13760 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13761 		/* SEND_DMA_HEAD read-only */
13762 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13763 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13764 		/* SEND_DMA_IDLE_CNT read-only */
13765 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13766 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13767 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13768 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13769 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13770 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13771 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13772 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13773 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13774 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13775 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13776 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13777 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13778 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13779 	}
13780 }
13781 
13782 /*
13783  * Expect on entry:
13784  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13785  */
13786 static void init_rbufs(struct hfi1_devdata *dd)
13787 {
13788 	u64 reg;
13789 	int count;
13790 
13791 	/*
13792 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13793 	 * clear.
13794 	 */
13795 	count = 0;
13796 	while (1) {
13797 		reg = read_csr(dd, RCV_STATUS);
13798 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13799 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13800 			break;
13801 		/*
13802 		 * Give up after 1ms - maximum wait time.
13803 		 *
13804 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13805 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13806 		 *	136 KB / (66% * 250MB/s) = 844us
13807 		 */
13808 		if (count++ > 500) {
13809 			dd_dev_err(dd,
13810 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13811 				   __func__, reg);
13812 			break;
13813 		}
13814 		udelay(2); /* do not busy-wait the CSR */
13815 	}
13816 
13817 	/* start the init - expect RcvCtrl to be 0 */
13818 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13819 
13820 	/*
13821 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13822 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13823 	 * The delay in the first run through the loop below is sufficient and
13824 	 * required before the first read of RcvStatus.RxRbufInintDone.
13825 	 */
13826 	read_csr(dd, RCV_CTRL);
13827 
13828 	/* wait for the init to finish */
13829 	count = 0;
13830 	while (1) {
13831 		/* delay is required first time through - see above */
13832 		udelay(2); /* do not busy-wait the CSR */
13833 		reg = read_csr(dd, RCV_STATUS);
13834 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13835 			break;
13836 
13837 		/* give up after 100us - slowest possible at 33MHz is 73us */
13838 		if (count++ > 50) {
13839 			dd_dev_err(dd,
13840 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13841 				   __func__);
13842 			break;
13843 		}
13844 	}
13845 }
13846 
13847 /* set RXE CSRs to chip reset defaults */
13848 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13849 {
13850 	int i, j;
13851 
13852 	/*
13853 	 * RXE Kernel CSRs
13854 	 */
13855 	write_csr(dd, RCV_CTRL, 0);
13856 	init_rbufs(dd);
13857 	/* RCV_STATUS read-only */
13858 	/* RCV_CONTEXTS read-only */
13859 	/* RCV_ARRAY_CNT read-only */
13860 	/* RCV_BUF_SIZE read-only */
13861 	write_csr(dd, RCV_BTH_QP, 0);
13862 	write_csr(dd, RCV_MULTICAST, 0);
13863 	write_csr(dd, RCV_BYPASS, 0);
13864 	write_csr(dd, RCV_VL15, 0);
13865 	/* this is a clear-down */
13866 	write_csr(dd, RCV_ERR_INFO,
13867 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13868 	/* RCV_ERR_STATUS read-only */
13869 	write_csr(dd, RCV_ERR_MASK, 0);
13870 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13871 	/* RCV_ERR_FORCE leave alone */
13872 	for (i = 0; i < 32; i++)
13873 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13874 	for (i = 0; i < 4; i++)
13875 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13876 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13877 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13878 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13879 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13880 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13881 		clear_rsm_rule(dd, i);
13882 	for (i = 0; i < 32; i++)
13883 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13884 
13885 	/*
13886 	 * RXE Kernel and User Per-Context CSRs
13887 	 */
13888 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13889 		/* kernel */
13890 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13891 		/* RCV_CTXT_STATUS read-only */
13892 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13893 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13894 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13895 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13896 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13897 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13898 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13899 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13900 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13901 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13902 
13903 		/* user */
13904 		/* RCV_HDR_TAIL read-only */
13905 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13906 		/* RCV_EGR_INDEX_TAIL read-only */
13907 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13908 		/* RCV_EGR_OFFSET_TAIL read-only */
13909 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13910 			write_uctxt_csr(dd, i,
13911 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13912 		}
13913 	}
13914 }
13915 
13916 /*
13917  * Set sc2vl tables.
13918  *
13919  * They power on to zeros, so to avoid send context errors
13920  * they need to be set:
13921  *
13922  * SC 0-7 -> VL 0-7 (respectively)
13923  * SC 15  -> VL 15
13924  * otherwise
13925  *        -> VL 0
13926  */
13927 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13928 {
13929 	int i;
13930 	/* init per architecture spec, constrained by hardware capability */
13931 
13932 	/* HFI maps sent packets */
13933 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13934 		0,
13935 		0, 0, 1, 1,
13936 		2, 2, 3, 3,
13937 		4, 4, 5, 5,
13938 		6, 6, 7, 7));
13939 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13940 		1,
13941 		8, 0, 9, 0,
13942 		10, 0, 11, 0,
13943 		12, 0, 13, 0,
13944 		14, 0, 15, 15));
13945 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13946 		2,
13947 		16, 0, 17, 0,
13948 		18, 0, 19, 0,
13949 		20, 0, 21, 0,
13950 		22, 0, 23, 0));
13951 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13952 		3,
13953 		24, 0, 25, 0,
13954 		26, 0, 27, 0,
13955 		28, 0, 29, 0,
13956 		30, 0, 31, 0));
13957 
13958 	/* DC maps received packets */
13959 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13960 		15_0,
13961 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13962 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13963 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13964 		31_16,
13965 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13966 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13967 
13968 	/* initialize the cached sc2vl values consistently with h/w */
13969 	for (i = 0; i < 32; i++) {
13970 		if (i < 8 || i == 15)
13971 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13972 		else
13973 			*((u8 *)(dd->sc2vl) + i) = 0;
13974 	}
13975 }
13976 
13977 /*
13978  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13979  * depend on the chip going through a power-on reset - a driver may be loaded
13980  * and unloaded many times.
13981  *
13982  * Do not write any CSR values to the chip in this routine - there may be
13983  * a reset following the (possible) FLR in this routine.
13984  *
13985  */
13986 static int init_chip(struct hfi1_devdata *dd)
13987 {
13988 	int i;
13989 	int ret = 0;
13990 
13991 	/*
13992 	 * Put the HFI CSRs in a known state.
13993 	 * Combine this with a DC reset.
13994 	 *
13995 	 * Stop the device from doing anything while we do a
13996 	 * reset.  We know there are no other active users of
13997 	 * the device since we are now in charge.  Turn off
13998 	 * off all outbound and inbound traffic and make sure
13999 	 * the device does not generate any interrupts.
14000 	 */
14001 
14002 	/* disable send contexts and SDMA engines */
14003 	write_csr(dd, SEND_CTRL, 0);
14004 	for (i = 0; i < dd->chip_send_contexts; i++)
14005 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14006 	for (i = 0; i < dd->chip_sdma_engines; i++)
14007 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14008 	/* disable port (turn off RXE inbound traffic) and contexts */
14009 	write_csr(dd, RCV_CTRL, 0);
14010 	for (i = 0; i < dd->chip_rcv_contexts; i++)
14011 		write_csr(dd, RCV_CTXT_CTRL, 0);
14012 	/* mask all interrupt sources */
14013 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14014 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14015 
14016 	/*
14017 	 * DC Reset: do a full DC reset before the register clear.
14018 	 * A recommended length of time to hold is one CSR read,
14019 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14020 	 * across the clear.
14021 	 */
14022 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14023 	(void)read_csr(dd, CCE_DC_CTRL);
14024 
14025 	if (use_flr) {
14026 		/*
14027 		 * A FLR will reset the SPC core and part of the PCIe.
14028 		 * The parts that need to be restored have already been
14029 		 * saved.
14030 		 */
14031 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14032 
14033 		/* do the FLR, the DC reset will remain */
14034 		pcie_flr(dd->pcidev);
14035 
14036 		/* restore command and BARs */
14037 		ret = restore_pci_variables(dd);
14038 		if (ret) {
14039 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14040 				   __func__);
14041 			return ret;
14042 		}
14043 
14044 		if (is_ax(dd)) {
14045 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14046 			pcie_flr(dd->pcidev);
14047 			ret = restore_pci_variables(dd);
14048 			if (ret) {
14049 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14050 					   __func__);
14051 				return ret;
14052 			}
14053 		}
14054 	} else {
14055 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14056 		reset_cce_csrs(dd);
14057 		reset_txe_csrs(dd);
14058 		reset_rxe_csrs(dd);
14059 		reset_misc_csrs(dd);
14060 	}
14061 	/* clear the DC reset */
14062 	write_csr(dd, CCE_DC_CTRL, 0);
14063 
14064 	/* Set the LED off */
14065 	setextled(dd, 0);
14066 
14067 	/*
14068 	 * Clear the QSFP reset.
14069 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14070 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14071 	 * anything plugged constantly in reset, if it pays attention
14072 	 * to RESET_N.
14073 	 * Prime examples of this are optical cables. Set all pins high.
14074 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14075 	 * MODPRS_N are input only and their value is ignored.
14076 	 */
14077 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14078 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14079 	init_chip_resources(dd);
14080 	return ret;
14081 }
14082 
14083 static void init_early_variables(struct hfi1_devdata *dd)
14084 {
14085 	int i;
14086 
14087 	/* assign link credit variables */
14088 	dd->vau = CM_VAU;
14089 	dd->link_credits = CM_GLOBAL_CREDITS;
14090 	if (is_ax(dd))
14091 		dd->link_credits--;
14092 	dd->vcu = cu_to_vcu(hfi1_cu);
14093 	/* enough room for 8 MAD packets plus header - 17K */
14094 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14095 	if (dd->vl15_init > dd->link_credits)
14096 		dd->vl15_init = dd->link_credits;
14097 
14098 	write_uninitialized_csrs_and_memories(dd);
14099 
14100 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14101 		for (i = 0; i < dd->num_pports; i++) {
14102 			struct hfi1_pportdata *ppd = &dd->pport[i];
14103 
14104 			set_partition_keys(ppd);
14105 		}
14106 	init_sc2vl_tables(dd);
14107 }
14108 
14109 static void init_kdeth_qp(struct hfi1_devdata *dd)
14110 {
14111 	/* user changed the KDETH_QP */
14112 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14113 		/* out of range or illegal value */
14114 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14115 		kdeth_qp = 0;
14116 	}
14117 	if (kdeth_qp == 0)	/* not set, or failed range check */
14118 		kdeth_qp = DEFAULT_KDETH_QP;
14119 
14120 	write_csr(dd, SEND_BTH_QP,
14121 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14122 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14123 
14124 	write_csr(dd, RCV_BTH_QP,
14125 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14126 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14127 }
14128 
14129 /**
14130  * init_qpmap_table
14131  * @dd - device data
14132  * @first_ctxt - first context
14133  * @last_ctxt - first context
14134  *
14135  * This return sets the qpn mapping table that
14136  * is indexed by qpn[8:1].
14137  *
14138  * The routine will round robin the 256 settings
14139  * from first_ctxt to last_ctxt.
14140  *
14141  * The first/last looks ahead to having specialized
14142  * receive contexts for mgmt and bypass.  Normal
14143  * verbs traffic will assumed to be on a range
14144  * of receive contexts.
14145  */
14146 static void init_qpmap_table(struct hfi1_devdata *dd,
14147 			     u32 first_ctxt,
14148 			     u32 last_ctxt)
14149 {
14150 	u64 reg = 0;
14151 	u64 regno = RCV_QP_MAP_TABLE;
14152 	int i;
14153 	u64 ctxt = first_ctxt;
14154 
14155 	for (i = 0; i < 256; i++) {
14156 		reg |= ctxt << (8 * (i % 8));
14157 		ctxt++;
14158 		if (ctxt > last_ctxt)
14159 			ctxt = first_ctxt;
14160 		if (i % 8 == 7) {
14161 			write_csr(dd, regno, reg);
14162 			reg = 0;
14163 			regno += 8;
14164 		}
14165 	}
14166 
14167 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14168 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14169 }
14170 
14171 struct rsm_map_table {
14172 	u64 map[NUM_MAP_REGS];
14173 	unsigned int used;
14174 };
14175 
14176 struct rsm_rule_data {
14177 	u8 offset;
14178 	u8 pkt_type;
14179 	u32 field1_off;
14180 	u32 field2_off;
14181 	u32 index1_off;
14182 	u32 index1_width;
14183 	u32 index2_off;
14184 	u32 index2_width;
14185 	u32 mask1;
14186 	u32 value1;
14187 	u32 mask2;
14188 	u32 value2;
14189 };
14190 
14191 /*
14192  * Return an initialized RMT map table for users to fill in.  OK if it
14193  * returns NULL, indicating no table.
14194  */
14195 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14196 {
14197 	struct rsm_map_table *rmt;
14198 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14199 
14200 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14201 	if (rmt) {
14202 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14203 		rmt->used = 0;
14204 	}
14205 
14206 	return rmt;
14207 }
14208 
14209 /*
14210  * Write the final RMT map table to the chip and free the table.  OK if
14211  * table is NULL.
14212  */
14213 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14214 				   struct rsm_map_table *rmt)
14215 {
14216 	int i;
14217 
14218 	if (rmt) {
14219 		/* write table to chip */
14220 		for (i = 0; i < NUM_MAP_REGS; i++)
14221 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14222 
14223 		/* enable RSM */
14224 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14225 	}
14226 }
14227 
14228 /*
14229  * Add a receive side mapping rule.
14230  */
14231 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14232 			 struct rsm_rule_data *rrd)
14233 {
14234 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14235 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14236 		  1ull << rule_index | /* enable bit */
14237 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14238 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14239 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14240 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14241 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14242 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14243 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14244 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14245 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14246 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14247 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14248 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14249 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14250 }
14251 
14252 /*
14253  * Clear a receive side mapping rule.
14254  */
14255 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14256 {
14257 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14258 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14259 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14260 }
14261 
14262 /* return the number of RSM map table entries that will be used for QOS */
14263 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14264 			   unsigned int *np)
14265 {
14266 	int i;
14267 	unsigned int m, n;
14268 	u8 max_by_vl = 0;
14269 
14270 	/* is QOS active at all? */
14271 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14272 	    num_vls == 1 ||
14273 	    krcvqsset <= 1)
14274 		goto no_qos;
14275 
14276 	/* determine bits for qpn */
14277 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14278 		if (krcvqs[i] > max_by_vl)
14279 			max_by_vl = krcvqs[i];
14280 	if (max_by_vl > 32)
14281 		goto no_qos;
14282 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14283 
14284 	/* determine bits for vl */
14285 	n = ilog2(__roundup_pow_of_two(num_vls));
14286 
14287 	/* reject if too much is used */
14288 	if ((m + n) > 7)
14289 		goto no_qos;
14290 
14291 	if (mp)
14292 		*mp = m;
14293 	if (np)
14294 		*np = n;
14295 
14296 	return 1 << (m + n);
14297 
14298 no_qos:
14299 	if (mp)
14300 		*mp = 0;
14301 	if (np)
14302 		*np = 0;
14303 	return 0;
14304 }
14305 
14306 /**
14307  * init_qos - init RX qos
14308  * @dd - device data
14309  * @rmt - RSM map table
14310  *
14311  * This routine initializes Rule 0 and the RSM map table to implement
14312  * quality of service (qos).
14313  *
14314  * If all of the limit tests succeed, qos is applied based on the array
14315  * interpretation of krcvqs where entry 0 is VL0.
14316  *
14317  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14318  * feed both the RSM map table and the single rule.
14319  */
14320 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14321 {
14322 	struct rsm_rule_data rrd;
14323 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14324 	unsigned int rmt_entries;
14325 	u64 reg;
14326 
14327 	if (!rmt)
14328 		goto bail;
14329 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14330 	if (rmt_entries == 0)
14331 		goto bail;
14332 	qpns_per_vl = 1 << m;
14333 
14334 	/* enough room in the map table? */
14335 	rmt_entries = 1 << (m + n);
14336 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14337 		goto bail;
14338 
14339 	/* add qos entries to the the RSM map table */
14340 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14341 		unsigned tctxt;
14342 
14343 		for (qpn = 0, tctxt = ctxt;
14344 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14345 			unsigned idx, regoff, regidx;
14346 
14347 			/* generate the index the hardware will produce */
14348 			idx = rmt->used + ((qpn << n) ^ i);
14349 			regoff = (idx % 8) * 8;
14350 			regidx = idx / 8;
14351 			/* replace default with context number */
14352 			reg = rmt->map[regidx];
14353 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14354 				<< regoff);
14355 			reg |= (u64)(tctxt++) << regoff;
14356 			rmt->map[regidx] = reg;
14357 			if (tctxt == ctxt + krcvqs[i])
14358 				tctxt = ctxt;
14359 		}
14360 		ctxt += krcvqs[i];
14361 	}
14362 
14363 	rrd.offset = rmt->used;
14364 	rrd.pkt_type = 2;
14365 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14366 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14367 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14368 	rrd.index1_width = n;
14369 	rrd.index2_off = QPN_SELECT_OFFSET;
14370 	rrd.index2_width = m + n;
14371 	rrd.mask1 = LRH_BTH_MASK;
14372 	rrd.value1 = LRH_BTH_VALUE;
14373 	rrd.mask2 = LRH_SC_MASK;
14374 	rrd.value2 = LRH_SC_VALUE;
14375 
14376 	/* add rule 0 */
14377 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14378 
14379 	/* mark RSM map entries as used */
14380 	rmt->used += rmt_entries;
14381 	/* map everything else to the mcast/err/vl15 context */
14382 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14383 	dd->qos_shift = n + 1;
14384 	return;
14385 bail:
14386 	dd->qos_shift = 1;
14387 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14388 }
14389 
14390 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14391 				    struct rsm_map_table *rmt)
14392 {
14393 	struct rsm_rule_data rrd;
14394 	u64 reg;
14395 	int i, idx, regoff, regidx;
14396 	u8 offset;
14397 
14398 	/* there needs to be enough room in the map table */
14399 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14400 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14401 		return;
14402 	}
14403 
14404 	/*
14405 	 * RSM will extract the destination context as an index into the
14406 	 * map table.  The destination contexts are a sequential block
14407 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14408 	 * Map entries are accessed as offset + extracted value.  Adjust
14409 	 * the added offset so this sequence can be placed anywhere in
14410 	 * the table - as long as the entries themselves do not wrap.
14411 	 * There are only enough bits in offset for the table size, so
14412 	 * start with that to allow for a "negative" offset.
14413 	 */
14414 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14415 						(int)dd->first_dyn_alloc_ctxt);
14416 
14417 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14418 				i < dd->num_rcv_contexts; i++, idx++) {
14419 		/* replace with identity mapping */
14420 		regoff = (idx % 8) * 8;
14421 		regidx = idx / 8;
14422 		reg = rmt->map[regidx];
14423 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14424 		reg |= (u64)i << regoff;
14425 		rmt->map[regidx] = reg;
14426 	}
14427 
14428 	/*
14429 	 * For RSM intercept of Expected FECN packets:
14430 	 * o packet type 0 - expected
14431 	 * o match on F (bit 95), using select/match 1, and
14432 	 * o match on SH (bit 133), using select/match 2.
14433 	 *
14434 	 * Use index 1 to extract the 8-bit receive context from DestQP
14435 	 * (start at bit 64).  Use that as the RSM map table index.
14436 	 */
14437 	rrd.offset = offset;
14438 	rrd.pkt_type = 0;
14439 	rrd.field1_off = 95;
14440 	rrd.field2_off = 133;
14441 	rrd.index1_off = 64;
14442 	rrd.index1_width = 8;
14443 	rrd.index2_off = 0;
14444 	rrd.index2_width = 0;
14445 	rrd.mask1 = 1;
14446 	rrd.value1 = 1;
14447 	rrd.mask2 = 1;
14448 	rrd.value2 = 1;
14449 
14450 	/* add rule 1 */
14451 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14452 
14453 	rmt->used += dd->num_user_contexts;
14454 }
14455 
14456 /* Initialize RSM for VNIC */
14457 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14458 {
14459 	u8 i, j;
14460 	u8 ctx_id = 0;
14461 	u64 reg;
14462 	u32 regoff;
14463 	struct rsm_rule_data rrd;
14464 
14465 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14466 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14467 			   dd->vnic.rmt_start);
14468 		return;
14469 	}
14470 
14471 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14472 		dd->vnic.rmt_start,
14473 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14474 
14475 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14476 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14477 	reg = read_csr(dd, regoff);
14478 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14479 		/* Update map register with vnic context */
14480 		j = (dd->vnic.rmt_start + i) % 8;
14481 		reg &= ~(0xffllu << (j * 8));
14482 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14483 		/* Wrap up vnic ctx index */
14484 		ctx_id %= dd->vnic.num_ctxt;
14485 		/* Write back map register */
14486 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14487 			dev_dbg(&(dd)->pcidev->dev,
14488 				"Vnic rsm map reg[%d] =0x%llx\n",
14489 				regoff - RCV_RSM_MAP_TABLE, reg);
14490 
14491 			write_csr(dd, regoff, reg);
14492 			regoff += 8;
14493 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14494 				reg = read_csr(dd, regoff);
14495 		}
14496 	}
14497 
14498 	/* Add rule for vnic */
14499 	rrd.offset = dd->vnic.rmt_start;
14500 	rrd.pkt_type = 4;
14501 	/* Match 16B packets */
14502 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14503 	rrd.mask1 = L2_TYPE_MASK;
14504 	rrd.value1 = L2_16B_VALUE;
14505 	/* Match ETH L4 packets */
14506 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14507 	rrd.mask2 = L4_16B_TYPE_MASK;
14508 	rrd.value2 = L4_16B_ETH_VALUE;
14509 	/* Calc context from veswid and entropy */
14510 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14511 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14512 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14513 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14514 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14515 
14516 	/* Enable RSM if not already enabled */
14517 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14518 }
14519 
14520 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14521 {
14522 	clear_rsm_rule(dd, RSM_INS_VNIC);
14523 
14524 	/* Disable RSM if used only by vnic */
14525 	if (dd->vnic.rmt_start == 0)
14526 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14527 }
14528 
14529 static void init_rxe(struct hfi1_devdata *dd)
14530 {
14531 	struct rsm_map_table *rmt;
14532 	u64 val;
14533 
14534 	/* enable all receive errors */
14535 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14536 
14537 	rmt = alloc_rsm_map_table(dd);
14538 	/* set up QOS, including the QPN map table */
14539 	init_qos(dd, rmt);
14540 	init_user_fecn_handling(dd, rmt);
14541 	complete_rsm_map_table(dd, rmt);
14542 	/* record number of used rsm map entries for vnic */
14543 	dd->vnic.rmt_start = rmt->used;
14544 	kfree(rmt);
14545 
14546 	/*
14547 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14548 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14549 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14550 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14551 	 * Max_PayLoad_Size set to its minimum of 128.
14552 	 *
14553 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14554 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14555 	 * tune_pcie_caps() which is called after this routine.
14556 	 */
14557 
14558 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14559 	val = read_csr(dd, RCV_BYPASS);
14560 	val |= (4ull << 16);
14561 	write_csr(dd, RCV_BYPASS, val);
14562 }
14563 
14564 static void init_other(struct hfi1_devdata *dd)
14565 {
14566 	/* enable all CCE errors */
14567 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14568 	/* enable *some* Misc errors */
14569 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14570 	/* enable all DC errors, except LCB */
14571 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14572 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14573 }
14574 
14575 /*
14576  * Fill out the given AU table using the given CU.  A CU is defined in terms
14577  * AUs.  The table is a an encoding: given the index, how many AUs does that
14578  * represent?
14579  *
14580  * NOTE: Assumes that the register layout is the same for the
14581  * local and remote tables.
14582  */
14583 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14584 			       u32 csr0to3, u32 csr4to7)
14585 {
14586 	write_csr(dd, csr0to3,
14587 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14588 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14589 		  2ull * cu <<
14590 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14591 		  4ull * cu <<
14592 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14593 	write_csr(dd, csr4to7,
14594 		  8ull * cu <<
14595 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14596 		  16ull * cu <<
14597 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14598 		  32ull * cu <<
14599 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14600 		  64ull * cu <<
14601 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14602 }
14603 
14604 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14605 {
14606 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14607 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14608 }
14609 
14610 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14611 {
14612 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14613 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14614 }
14615 
14616 static void init_txe(struct hfi1_devdata *dd)
14617 {
14618 	int i;
14619 
14620 	/* enable all PIO, SDMA, general, and Egress errors */
14621 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14622 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14623 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14624 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14625 
14626 	/* enable all per-context and per-SDMA engine errors */
14627 	for (i = 0; i < dd->chip_send_contexts; i++)
14628 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14629 	for (i = 0; i < dd->chip_sdma_engines; i++)
14630 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14631 
14632 	/* set the local CU to AU mapping */
14633 	assign_local_cm_au_table(dd, dd->vcu);
14634 
14635 	/*
14636 	 * Set reasonable default for Credit Return Timer
14637 	 * Don't set on Simulator - causes it to choke.
14638 	 */
14639 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14640 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14641 }
14642 
14643 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14644 		       u16 jkey)
14645 {
14646 	u8 hw_ctxt;
14647 	u64 reg;
14648 
14649 	if (!rcd || !rcd->sc)
14650 		return -EINVAL;
14651 
14652 	hw_ctxt = rcd->sc->hw_context;
14653 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14654 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14655 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14656 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14657 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14658 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14659 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14660 	/*
14661 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14662 	 */
14663 	if (!is_ax(dd)) {
14664 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14665 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14666 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14667 	}
14668 
14669 	/* Enable J_KEY check on receive context. */
14670 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14671 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14672 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14673 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14674 
14675 	return 0;
14676 }
14677 
14678 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14679 {
14680 	u8 hw_ctxt;
14681 	u64 reg;
14682 
14683 	if (!rcd || !rcd->sc)
14684 		return -EINVAL;
14685 
14686 	hw_ctxt = rcd->sc->hw_context;
14687 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14688 	/*
14689 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14690 	 * This check would not have been enabled for A0 h/w, see
14691 	 * set_ctxt_jkey().
14692 	 */
14693 	if (!is_ax(dd)) {
14694 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14695 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14696 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14697 	}
14698 	/* Turn off the J_KEY on the receive side */
14699 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14700 
14701 	return 0;
14702 }
14703 
14704 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14705 		       u16 pkey)
14706 {
14707 	u8 hw_ctxt;
14708 	u64 reg;
14709 
14710 	if (!rcd || !rcd->sc)
14711 		return -EINVAL;
14712 
14713 	hw_ctxt = rcd->sc->hw_context;
14714 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14715 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14716 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14717 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14718 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14719 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14720 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14721 
14722 	return 0;
14723 }
14724 
14725 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14726 {
14727 	u8 hw_ctxt;
14728 	u64 reg;
14729 
14730 	if (!ctxt || !ctxt->sc)
14731 		return -EINVAL;
14732 
14733 	hw_ctxt = ctxt->sc->hw_context;
14734 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14735 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14736 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14737 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14738 
14739 	return 0;
14740 }
14741 
14742 /*
14743  * Start doing the clean up the the chip. Our clean up happens in multiple
14744  * stages and this is just the first.
14745  */
14746 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14747 {
14748 	aspm_exit(dd);
14749 	free_cntrs(dd);
14750 	free_rcverr(dd);
14751 	clean_up_interrupts(dd);
14752 	finish_chip_resources(dd);
14753 }
14754 
14755 #define HFI_BASE_GUID(dev) \
14756 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14757 
14758 /*
14759  * Information can be shared between the two HFIs on the same ASIC
14760  * in the same OS.  This function finds the peer device and sets
14761  * up a shared structure.
14762  */
14763 static int init_asic_data(struct hfi1_devdata *dd)
14764 {
14765 	unsigned long flags;
14766 	struct hfi1_devdata *tmp, *peer = NULL;
14767 	struct hfi1_asic_data *asic_data;
14768 	int ret = 0;
14769 
14770 	/* pre-allocate the asic structure in case we are the first device */
14771 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14772 	if (!asic_data)
14773 		return -ENOMEM;
14774 
14775 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14776 	/* Find our peer device */
14777 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14778 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14779 		    dd->unit != tmp->unit) {
14780 			peer = tmp;
14781 			break;
14782 		}
14783 	}
14784 
14785 	if (peer) {
14786 		/* use already allocated structure */
14787 		dd->asic_data = peer->asic_data;
14788 		kfree(asic_data);
14789 	} else {
14790 		dd->asic_data = asic_data;
14791 		mutex_init(&dd->asic_data->asic_resource_mutex);
14792 	}
14793 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14794 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14795 
14796 	/* first one through - set up i2c devices */
14797 	if (!peer)
14798 		ret = set_up_i2c(dd, dd->asic_data);
14799 
14800 	return ret;
14801 }
14802 
14803 /*
14804  * Set dd->boardname.  Use a generic name if a name is not returned from
14805  * EFI variable space.
14806  *
14807  * Return 0 on success, -ENOMEM if space could not be allocated.
14808  */
14809 static int obtain_boardname(struct hfi1_devdata *dd)
14810 {
14811 	/* generic board description */
14812 	const char generic[] =
14813 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14814 	unsigned long size;
14815 	int ret;
14816 
14817 	ret = read_hfi1_efi_var(dd, "description", &size,
14818 				(void **)&dd->boardname);
14819 	if (ret) {
14820 		dd_dev_info(dd, "Board description not found\n");
14821 		/* use generic description */
14822 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14823 		if (!dd->boardname)
14824 			return -ENOMEM;
14825 	}
14826 	return 0;
14827 }
14828 
14829 /*
14830  * Check the interrupt registers to make sure that they are mapped correctly.
14831  * It is intended to help user identify any mismapping by VMM when the driver
14832  * is running in a VM. This function should only be called before interrupt
14833  * is set up properly.
14834  *
14835  * Return 0 on success, -EINVAL on failure.
14836  */
14837 static int check_int_registers(struct hfi1_devdata *dd)
14838 {
14839 	u64 reg;
14840 	u64 all_bits = ~(u64)0;
14841 	u64 mask;
14842 
14843 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14844 	mask = read_csr(dd, CCE_INT_MASK);
14845 	write_csr(dd, CCE_INT_MASK, 0ull);
14846 	reg = read_csr(dd, CCE_INT_MASK);
14847 	if (reg)
14848 		goto err_exit;
14849 
14850 	/* Clear all interrupt status bits */
14851 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14852 	reg = read_csr(dd, CCE_INT_STATUS);
14853 	if (reg)
14854 		goto err_exit;
14855 
14856 	/* Set all interrupt status bits */
14857 	write_csr(dd, CCE_INT_FORCE, all_bits);
14858 	reg = read_csr(dd, CCE_INT_STATUS);
14859 	if (reg != all_bits)
14860 		goto err_exit;
14861 
14862 	/* Restore the interrupt mask */
14863 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14864 	write_csr(dd, CCE_INT_MASK, mask);
14865 
14866 	return 0;
14867 err_exit:
14868 	write_csr(dd, CCE_INT_MASK, mask);
14869 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14870 	return -EINVAL;
14871 }
14872 
14873 /**
14874  * Allocate and initialize the device structure for the hfi.
14875  * @dev: the pci_dev for hfi1_ib device
14876  * @ent: pci_device_id struct for this dev
14877  *
14878  * Also allocates, initializes, and returns the devdata struct for this
14879  * device instance
14880  *
14881  * This is global, and is called directly at init to set up the
14882  * chip-specific function pointers for later use.
14883  */
14884 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14885 				  const struct pci_device_id *ent)
14886 {
14887 	struct hfi1_devdata *dd;
14888 	struct hfi1_pportdata *ppd;
14889 	u64 reg;
14890 	int i, ret;
14891 	static const char * const inames[] = { /* implementation names */
14892 		"RTL silicon",
14893 		"RTL VCS simulation",
14894 		"RTL FPGA emulation",
14895 		"Functional simulator"
14896 	};
14897 	struct pci_dev *parent = pdev->bus->self;
14898 
14899 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14900 				sizeof(struct hfi1_pportdata));
14901 	if (IS_ERR(dd))
14902 		goto bail;
14903 	ppd = dd->pport;
14904 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14905 		int vl;
14906 		/* init common fields */
14907 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14908 		/* DC supports 4 link widths */
14909 		ppd->link_width_supported =
14910 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14911 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14912 		ppd->link_width_downgrade_supported =
14913 			ppd->link_width_supported;
14914 		/* start out enabling only 4X */
14915 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14916 		ppd->link_width_downgrade_enabled =
14917 					ppd->link_width_downgrade_supported;
14918 		/* link width active is 0 when link is down */
14919 		/* link width downgrade active is 0 when link is down */
14920 
14921 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14922 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14923 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14924 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14925 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14926 		}
14927 		ppd->vls_supported = num_vls;
14928 		ppd->vls_operational = ppd->vls_supported;
14929 		/* Set the default MTU. */
14930 		for (vl = 0; vl < num_vls; vl++)
14931 			dd->vld[vl].mtu = hfi1_max_mtu;
14932 		dd->vld[15].mtu = MAX_MAD_PACKET;
14933 		/*
14934 		 * Set the initial values to reasonable default, will be set
14935 		 * for real when link is up.
14936 		 */
14937 		ppd->overrun_threshold = 0x4;
14938 		ppd->phy_error_threshold = 0xf;
14939 		ppd->port_crc_mode_enabled = link_crc_mask;
14940 		/* initialize supported LTP CRC mode */
14941 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14942 		/* initialize enabled LTP CRC mode */
14943 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14944 		/* start in offline */
14945 		ppd->host_link_state = HLS_DN_OFFLINE;
14946 		init_vl_arb_caches(ppd);
14947 	}
14948 
14949 	/*
14950 	 * Do remaining PCIe setup and save PCIe values in dd.
14951 	 * Any error printing is already done by the init code.
14952 	 * On return, we have the chip mapped.
14953 	 */
14954 	ret = hfi1_pcie_ddinit(dd, pdev);
14955 	if (ret < 0)
14956 		goto bail_free;
14957 
14958 	/* Save PCI space registers to rewrite after device reset */
14959 	ret = save_pci_variables(dd);
14960 	if (ret < 0)
14961 		goto bail_cleanup;
14962 
14963 	/* verify that reads actually work, save revision for reset check */
14964 	dd->revision = read_csr(dd, CCE_REVISION);
14965 	if (dd->revision == ~(u64)0) {
14966 		dd_dev_err(dd, "cannot read chip CSRs\n");
14967 		ret = -EINVAL;
14968 		goto bail_cleanup;
14969 	}
14970 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14971 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14972 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14973 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14974 
14975 	/*
14976 	 * Check interrupt registers mapping if the driver has no access to
14977 	 * the upstream component. In this case, it is likely that the driver
14978 	 * is running in a VM.
14979 	 */
14980 	if (!parent) {
14981 		ret = check_int_registers(dd);
14982 		if (ret)
14983 			goto bail_cleanup;
14984 	}
14985 
14986 	/*
14987 	 * obtain the hardware ID - NOT related to unit, which is a
14988 	 * software enumeration
14989 	 */
14990 	reg = read_csr(dd, CCE_REVISION2);
14991 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14992 					& CCE_REVISION2_HFI_ID_MASK;
14993 	/* the variable size will remove unwanted bits */
14994 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14995 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14996 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14997 		    dd->icode < ARRAY_SIZE(inames) ?
14998 		    inames[dd->icode] : "unknown", (int)dd->irev);
14999 
15000 	/* speeds the hardware can support */
15001 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15002 	/* speeds allowed to run at */
15003 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15004 	/* give a reasonable active value, will be set on link up */
15005 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15006 
15007 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
15008 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
15009 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
15010 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
15011 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
15012 	/* fix up link widths for emulation _p */
15013 	ppd = dd->pport;
15014 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15015 		ppd->link_width_supported =
15016 			ppd->link_width_enabled =
15017 			ppd->link_width_downgrade_supported =
15018 			ppd->link_width_downgrade_enabled =
15019 				OPA_LINK_WIDTH_1X;
15020 	}
15021 	/* insure num_vls isn't larger than number of sdma engines */
15022 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
15023 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15024 			   num_vls, dd->chip_sdma_engines);
15025 		num_vls = dd->chip_sdma_engines;
15026 		ppd->vls_supported = dd->chip_sdma_engines;
15027 		ppd->vls_operational = ppd->vls_supported;
15028 	}
15029 
15030 	/*
15031 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15032 	 * Limit the max if larger than the field holds.  If timeout is
15033 	 * non-zero, then the calculated field will be at least 1.
15034 	 *
15035 	 * Must be after icode is set up - the cclock rate depends
15036 	 * on knowing the hardware being used.
15037 	 */
15038 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15039 	if (dd->rcv_intr_timeout_csr >
15040 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15041 		dd->rcv_intr_timeout_csr =
15042 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15043 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15044 		dd->rcv_intr_timeout_csr = 1;
15045 
15046 	/* needs to be done before we look for the peer device */
15047 	read_guid(dd);
15048 
15049 	/* set up shared ASIC data with peer device */
15050 	ret = init_asic_data(dd);
15051 	if (ret)
15052 		goto bail_cleanup;
15053 
15054 	/* obtain chip sizes, reset chip CSRs */
15055 	ret = init_chip(dd);
15056 	if (ret)
15057 		goto bail_cleanup;
15058 
15059 	/* read in the PCIe link speed information */
15060 	ret = pcie_speeds(dd);
15061 	if (ret)
15062 		goto bail_cleanup;
15063 
15064 	/* call before get_platform_config(), after init_chip_resources() */
15065 	ret = eprom_init(dd);
15066 	if (ret)
15067 		goto bail_free_rcverr;
15068 
15069 	/* Needs to be called before hfi1_firmware_init */
15070 	get_platform_config(dd);
15071 
15072 	/* read in firmware */
15073 	ret = hfi1_firmware_init(dd);
15074 	if (ret)
15075 		goto bail_cleanup;
15076 
15077 	/*
15078 	 * In general, the PCIe Gen3 transition must occur after the
15079 	 * chip has been idled (so it won't initiate any PCIe transactions
15080 	 * e.g. an interrupt) and before the driver changes any registers
15081 	 * (the transition will reset the registers).
15082 	 *
15083 	 * In particular, place this call after:
15084 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15085 	 * - pcie_speeds()   - reads the current link speed
15086 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15087 	 *			    downloaded
15088 	 */
15089 	ret = do_pcie_gen3_transition(dd);
15090 	if (ret)
15091 		goto bail_cleanup;
15092 
15093 	/* start setting dd values and adjusting CSRs */
15094 	init_early_variables(dd);
15095 
15096 	parse_platform_config(dd);
15097 
15098 	ret = obtain_boardname(dd);
15099 	if (ret)
15100 		goto bail_cleanup;
15101 
15102 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15103 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15104 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15105 		 (u32)dd->majrev,
15106 		 (u32)dd->minrev,
15107 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15108 		    & CCE_REVISION_SW_MASK);
15109 
15110 	ret = set_up_context_variables(dd);
15111 	if (ret)
15112 		goto bail_cleanup;
15113 
15114 	/* set initial RXE CSRs */
15115 	init_rxe(dd);
15116 	/* set initial TXE CSRs */
15117 	init_txe(dd);
15118 	/* set initial non-RXE, non-TXE CSRs */
15119 	init_other(dd);
15120 	/* set up KDETH QP prefix in both RX and TX CSRs */
15121 	init_kdeth_qp(dd);
15122 
15123 	ret = hfi1_dev_affinity_init(dd);
15124 	if (ret)
15125 		goto bail_cleanup;
15126 
15127 	/* send contexts must be set up before receive contexts */
15128 	ret = init_send_contexts(dd);
15129 	if (ret)
15130 		goto bail_cleanup;
15131 
15132 	ret = hfi1_create_kctxts(dd);
15133 	if (ret)
15134 		goto bail_cleanup;
15135 
15136 	/*
15137 	 * Initialize aspm, to be done after gen3 transition and setting up
15138 	 * contexts and before enabling interrupts
15139 	 */
15140 	aspm_init(dd);
15141 
15142 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15143 	/*
15144 	 * rcd[0] is guaranteed to be valid by this point. Also, all
15145 	 * context are using the same value, as per the module parameter.
15146 	 */
15147 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15148 
15149 	ret = init_pervl_scs(dd);
15150 	if (ret)
15151 		goto bail_cleanup;
15152 
15153 	/* sdma init */
15154 	for (i = 0; i < dd->num_pports; ++i) {
15155 		ret = sdma_init(dd, i);
15156 		if (ret)
15157 			goto bail_cleanup;
15158 	}
15159 
15160 	/* use contexts created by hfi1_create_kctxts */
15161 	ret = set_up_interrupts(dd);
15162 	if (ret)
15163 		goto bail_cleanup;
15164 
15165 	/* set up LCB access - must be after set_up_interrupts() */
15166 	init_lcb_access(dd);
15167 
15168 	/*
15169 	 * Serial number is created from the base guid:
15170 	 * [27:24] = base guid [38:35]
15171 	 * [23: 0] = base guid [23: 0]
15172 	 */
15173 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15174 		 (dd->base_guid & 0xFFFFFF) |
15175 		     ((dd->base_guid >> 11) & 0xF000000));
15176 
15177 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15178 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15179 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15180 
15181 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15182 	if (ret)
15183 		goto bail_clear_intr;
15184 
15185 	thermal_init(dd);
15186 
15187 	ret = init_cntrs(dd);
15188 	if (ret)
15189 		goto bail_clear_intr;
15190 
15191 	ret = init_rcverr(dd);
15192 	if (ret)
15193 		goto bail_free_cntrs;
15194 
15195 	init_completion(&dd->user_comp);
15196 
15197 	/* The user refcount starts with one to inidicate an active device */
15198 	atomic_set(&dd->user_refcount, 1);
15199 
15200 	goto bail;
15201 
15202 bail_free_rcverr:
15203 	free_rcverr(dd);
15204 bail_free_cntrs:
15205 	free_cntrs(dd);
15206 bail_clear_intr:
15207 	clean_up_interrupts(dd);
15208 bail_cleanup:
15209 	hfi1_pcie_ddcleanup(dd);
15210 bail_free:
15211 	hfi1_free_devdata(dd);
15212 	dd = ERR_PTR(ret);
15213 bail:
15214 	return dd;
15215 }
15216 
15217 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15218 			u32 dw_len)
15219 {
15220 	u32 delta_cycles;
15221 	u32 current_egress_rate = ppd->current_egress_rate;
15222 	/* rates here are in units of 10^6 bits/sec */
15223 
15224 	if (desired_egress_rate == -1)
15225 		return 0; /* shouldn't happen */
15226 
15227 	if (desired_egress_rate >= current_egress_rate)
15228 		return 0; /* we can't help go faster, only slower */
15229 
15230 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15231 			egress_cycles(dw_len * 4, current_egress_rate);
15232 
15233 	return (u16)delta_cycles;
15234 }
15235 
15236 /**
15237  * create_pbc - build a pbc for transmission
15238  * @flags: special case flags or-ed in built pbc
15239  * @srate: static rate
15240  * @vl: vl
15241  * @dwlen: dword length (header words + data words + pbc words)
15242  *
15243  * Create a PBC with the given flags, rate, VL, and length.
15244  *
15245  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15246  * for verbs, which does not use this PSM feature.  The lone other caller
15247  * is for the diagnostic interface which calls this if the user does not
15248  * supply their own PBC.
15249  */
15250 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15251 	       u32 dw_len)
15252 {
15253 	u64 pbc, delay = 0;
15254 
15255 	if (unlikely(srate_mbs))
15256 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15257 
15258 	pbc = flags
15259 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15260 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15261 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15262 		| (dw_len & PBC_LENGTH_DWS_MASK)
15263 			<< PBC_LENGTH_DWS_SHIFT;
15264 
15265 	return pbc;
15266 }
15267 
15268 #define SBUS_THERMAL    0x4f
15269 #define SBUS_THERM_MONITOR_MODE 0x1
15270 
15271 #define THERM_FAILURE(dev, ret, reason) \
15272 	dd_dev_err((dd),						\
15273 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15274 		   (reason), (ret))
15275 
15276 /*
15277  * Initialize the thermal sensor.
15278  *
15279  * After initialization, enable polling of thermal sensor through
15280  * SBus interface. In order for this to work, the SBus Master
15281  * firmware has to be loaded due to the fact that the HW polling
15282  * logic uses SBus interrupts, which are not supported with
15283  * default firmware. Otherwise, no data will be returned through
15284  * the ASIC_STS_THERM CSR.
15285  */
15286 static int thermal_init(struct hfi1_devdata *dd)
15287 {
15288 	int ret = 0;
15289 
15290 	if (dd->icode != ICODE_RTL_SILICON ||
15291 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15292 		return ret;
15293 
15294 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15295 	if (ret) {
15296 		THERM_FAILURE(dd, ret, "Acquire SBus");
15297 		return ret;
15298 	}
15299 
15300 	dd_dev_info(dd, "Initializing thermal sensor\n");
15301 	/* Disable polling of thermal readings */
15302 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15303 	msleep(100);
15304 	/* Thermal Sensor Initialization */
15305 	/*    Step 1: Reset the Thermal SBus Receiver */
15306 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15307 				RESET_SBUS_RECEIVER, 0);
15308 	if (ret) {
15309 		THERM_FAILURE(dd, ret, "Bus Reset");
15310 		goto done;
15311 	}
15312 	/*    Step 2: Set Reset bit in Thermal block */
15313 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15314 				WRITE_SBUS_RECEIVER, 0x1);
15315 	if (ret) {
15316 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15317 		goto done;
15318 	}
15319 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15320 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15321 				WRITE_SBUS_RECEIVER, 0x32);
15322 	if (ret) {
15323 		THERM_FAILURE(dd, ret, "Write Clock Div");
15324 		goto done;
15325 	}
15326 	/*    Step 4: Select temperature mode */
15327 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15328 				WRITE_SBUS_RECEIVER,
15329 				SBUS_THERM_MONITOR_MODE);
15330 	if (ret) {
15331 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15332 		goto done;
15333 	}
15334 	/*    Step 5: De-assert block reset and start conversion */
15335 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15336 				WRITE_SBUS_RECEIVER, 0x2);
15337 	if (ret) {
15338 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15339 		goto done;
15340 	}
15341 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15342 	msleep(22);
15343 
15344 	/* Enable polling of thermal readings */
15345 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15346 
15347 	/* Set initialized flag */
15348 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15349 	if (ret)
15350 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15351 
15352 done:
15353 	release_chip_resource(dd, CR_SBUS);
15354 	return ret;
15355 }
15356 
15357 static void handle_temp_err(struct hfi1_devdata *dd)
15358 {
15359 	struct hfi1_pportdata *ppd = &dd->pport[0];
15360 	/*
15361 	 * Thermal Critical Interrupt
15362 	 * Put the device into forced freeze mode, take link down to
15363 	 * offline, and put DC into reset.
15364 	 */
15365 	dd_dev_emerg(dd,
15366 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15367 	dd->flags |= HFI1_FORCED_FREEZE;
15368 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15369 	/*
15370 	 * Shut DC down as much and as quickly as possible.
15371 	 *
15372 	 * Step 1: Take the link down to OFFLINE. This will cause the
15373 	 *         8051 to put the Serdes in reset. However, we don't want to
15374 	 *         go through the entire link state machine since we want to
15375 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15376 	 *         but rather an attempt to save the chip.
15377 	 *         Code below is almost the same as quiet_serdes() but avoids
15378 	 *         all the extra work and the sleeps.
15379 	 */
15380 	ppd->driver_link_ready = 0;
15381 	ppd->link_enabled = 0;
15382 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15383 				PLS_OFFLINE);
15384 	/*
15385 	 * Step 2: Shutdown LCB and 8051
15386 	 *         After shutdown, do not restore DC_CFG_RESET value.
15387 	 */
15388 	dc_shutdown(dd);
15389 }
15390