1 /* 2 * Copyright(c) 2015 - 2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 /* 49 * This file contains all of the code that is specific to the HFI chip 50 */ 51 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/interrupt.h> 55 #include <linux/module.h> 56 57 #include "hfi.h" 58 #include "trace.h" 59 #include "mad.h" 60 #include "pio.h" 61 #include "sdma.h" 62 #include "eprom.h" 63 #include "efivar.h" 64 #include "platform.h" 65 #include "aspm.h" 66 #include "affinity.h" 67 #include "debugfs.h" 68 69 #define NUM_IB_PORTS 1 70 71 uint kdeth_qp; 72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO); 73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix"); 74 75 uint num_vls = HFI1_MAX_VLS_SUPPORTED; 76 module_param(num_vls, uint, S_IRUGO); 77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)"); 78 79 /* 80 * Default time to aggregate two 10K packets from the idle state 81 * (timer not running). The timer starts at the end of the first packet, 82 * so only the time for one 10K packet and header plus a bit extra is needed. 83 * 10 * 1024 + 64 header byte = 10304 byte 84 * 10304 byte / 12.5 GB/s = 824.32ns 85 */ 86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */ 87 module_param(rcv_intr_timeout, uint, S_IRUGO); 88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns"); 89 90 uint rcv_intr_count = 16; /* same as qib */ 91 module_param(rcv_intr_count, uint, S_IRUGO); 92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count"); 93 94 ushort link_crc_mask = SUPPORTED_CRCS; 95 module_param(link_crc_mask, ushort, S_IRUGO); 96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link"); 97 98 uint loopback; 99 module_param_named(loopback, loopback, uint, S_IRUGO); 100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable"); 101 102 /* Other driver tunables */ 103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/ 104 static ushort crc_14b_sideband = 1; 105 static uint use_flr = 1; 106 uint quick_linkup; /* skip LNI */ 107 108 struct flag_table { 109 u64 flag; /* the flag */ 110 char *str; /* description string */ 111 u16 extra; /* extra information */ 112 u16 unused0; 113 u32 unused1; 114 }; 115 116 /* str must be a string constant */ 117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra} 118 #define FLAG_ENTRY0(str, flag) {flag, str, 0} 119 120 /* Send Error Consequences */ 121 #define SEC_WRITE_DROPPED 0x1 122 #define SEC_PACKET_DROPPED 0x2 123 #define SEC_SC_HALTED 0x4 /* per-context only */ 124 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */ 125 126 #define DEFAULT_KRCVQS 2 127 #define MIN_KERNEL_KCTXTS 2 128 #define FIRST_KERNEL_KCTXT 1 129 130 /* 131 * RSM instance allocation 132 * 0 - Verbs 133 * 1 - User Fecn Handling 134 * 2 - Vnic 135 */ 136 #define RSM_INS_VERBS 0 137 #define RSM_INS_FECN 1 138 #define RSM_INS_VNIC 2 139 140 /* Bit offset into the GUID which carries HFI id information */ 141 #define GUID_HFI_INDEX_SHIFT 39 142 143 /* extract the emulation revision */ 144 #define emulator_rev(dd) ((dd)->irev >> 8) 145 /* parallel and serial emulation versions are 3 and 4 respectively */ 146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3) 147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4) 148 149 /* RSM fields for Verbs */ 150 /* packet type */ 151 #define IB_PACKET_TYPE 2ull 152 #define QW_SHIFT 6ull 153 /* QPN[7..1] */ 154 #define QPN_WIDTH 7ull 155 156 /* LRH.BTH: QW 0, OFFSET 48 - for match */ 157 #define LRH_BTH_QW 0ull 158 #define LRH_BTH_BIT_OFFSET 48ull 159 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off)) 160 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET) 161 #define LRH_BTH_SELECT 162 #define LRH_BTH_MASK 3ull 163 #define LRH_BTH_VALUE 2ull 164 165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */ 166 #define LRH_SC_QW 0ull 167 #define LRH_SC_BIT_OFFSET 56ull 168 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off)) 169 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET) 170 #define LRH_SC_MASK 128ull 171 #define LRH_SC_VALUE 0ull 172 173 /* SC[n..0] QW 0, OFFSET 60 - for select */ 174 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull)) 175 176 /* QPN[m+n:1] QW 1, OFFSET 1 */ 177 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull)) 178 179 /* RSM fields for Vnic */ 180 /* L2_TYPE: QW 0, OFFSET 61 - for match */ 181 #define L2_TYPE_QW 0ull 182 #define L2_TYPE_BIT_OFFSET 61ull 183 #define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off)) 184 #define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET) 185 #define L2_TYPE_MASK 3ull 186 #define L2_16B_VALUE 2ull 187 188 /* L4_TYPE QW 1, OFFSET 0 - for match */ 189 #define L4_TYPE_QW 1ull 190 #define L4_TYPE_BIT_OFFSET 0ull 191 #define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off)) 192 #define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET) 193 #define L4_16B_TYPE_MASK 0xFFull 194 #define L4_16B_ETH_VALUE 0x78ull 195 196 /* 16B VESWID - for select */ 197 #define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull)) 198 /* 16B ENTROPY - for select */ 199 #define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull)) 200 201 /* defines to build power on SC2VL table */ 202 #define SC2VL_VAL( \ 203 num, \ 204 sc0, sc0val, \ 205 sc1, sc1val, \ 206 sc2, sc2val, \ 207 sc3, sc3val, \ 208 sc4, sc4val, \ 209 sc5, sc5val, \ 210 sc6, sc6val, \ 211 sc7, sc7val) \ 212 ( \ 213 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \ 214 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \ 215 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \ 216 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \ 217 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \ 218 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \ 219 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \ 220 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \ 221 ) 222 223 #define DC_SC_VL_VAL( \ 224 range, \ 225 e0, e0val, \ 226 e1, e1val, \ 227 e2, e2val, \ 228 e3, e3val, \ 229 e4, e4val, \ 230 e5, e5val, \ 231 e6, e6val, \ 232 e7, e7val, \ 233 e8, e8val, \ 234 e9, e9val, \ 235 e10, e10val, \ 236 e11, e11val, \ 237 e12, e12val, \ 238 e13, e13val, \ 239 e14, e14val, \ 240 e15, e15val) \ 241 ( \ 242 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \ 243 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \ 244 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \ 245 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \ 246 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \ 247 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \ 248 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \ 249 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \ 250 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \ 251 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \ 252 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \ 253 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \ 254 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \ 255 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \ 256 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \ 257 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \ 258 ) 259 260 /* all CceStatus sub-block freeze bits */ 261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \ 262 | CCE_STATUS_RXE_FROZE_SMASK \ 263 | CCE_STATUS_TXE_FROZE_SMASK \ 264 | CCE_STATUS_TXE_PIO_FROZE_SMASK) 265 /* all CceStatus sub-block TXE pause bits */ 266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \ 267 | CCE_STATUS_TXE_PAUSED_SMASK \ 268 | CCE_STATUS_SDMA_PAUSED_SMASK) 269 /* all CceStatus sub-block RXE pause bits */ 270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK 271 272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL 273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF 274 275 /* 276 * CCE Error flags. 277 */ 278 static struct flag_table cce_err_status_flags[] = { 279 /* 0*/ FLAG_ENTRY0("CceCsrParityErr", 280 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK), 281 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr", 282 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK), 283 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr", 284 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK), 285 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr", 286 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK), 287 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr", 288 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK), 289 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr", 290 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK), 291 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr", 292 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK), 293 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr", 294 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK), 295 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr", 296 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK), 297 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 298 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK), 299 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 300 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK), 301 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError", 302 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK), 303 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError", 304 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK), 305 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr", 306 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK), 307 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr", 308 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK), 309 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr", 310 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK), 311 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr", 312 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK), 313 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr", 314 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK), 315 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr", 316 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK), 317 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr", 318 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK), 319 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr", 320 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK), 321 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr", 322 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK), 323 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr", 324 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK), 325 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr", 326 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK), 327 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr", 328 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK), 329 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr", 330 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK), 331 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr", 332 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK), 333 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr", 334 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK), 335 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr", 336 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK), 337 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr", 338 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK), 339 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr", 340 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK), 341 /*31*/ FLAG_ENTRY0("LATriggered", 342 CCE_ERR_STATUS_LA_TRIGGERED_SMASK), 343 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr", 344 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK), 345 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr", 346 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK), 347 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr", 348 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK), 349 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr", 350 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK), 351 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr", 352 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK), 353 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr", 354 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK), 355 /*38*/ FLAG_ENTRY0("CceIntMapCorErr", 356 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK), 357 /*39*/ FLAG_ENTRY0("CceIntMapUncErr", 358 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK), 359 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr", 360 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK), 361 /*41-63 reserved*/ 362 }; 363 364 /* 365 * Misc Error flags 366 */ 367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK 368 static struct flag_table misc_err_status_flags[] = { 369 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)), 370 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)), 371 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)), 372 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)), 373 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)), 374 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)), 375 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)), 376 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)), 377 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)), 378 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)), 379 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)), 380 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)), 381 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL)) 382 }; 383 384 /* 385 * TXE PIO Error flags and consequences 386 */ 387 static struct flag_table pio_err_status_flags[] = { 388 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt", 389 SEC_WRITE_DROPPED, 390 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK), 391 /* 1*/ FLAG_ENTRY("PioWriteAddrParity", 392 SEC_SPC_FREEZE, 393 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK), 394 /* 2*/ FLAG_ENTRY("PioCsrParity", 395 SEC_SPC_FREEZE, 396 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK), 397 /* 3*/ FLAG_ENTRY("PioSbMemFifo0", 398 SEC_SPC_FREEZE, 399 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK), 400 /* 4*/ FLAG_ENTRY("PioSbMemFifo1", 401 SEC_SPC_FREEZE, 402 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK), 403 /* 5*/ FLAG_ENTRY("PioPccFifoParity", 404 SEC_SPC_FREEZE, 405 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK), 406 /* 6*/ FLAG_ENTRY("PioPecFifoParity", 407 SEC_SPC_FREEZE, 408 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK), 409 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity", 410 SEC_SPC_FREEZE, 411 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK), 412 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity", 413 SEC_SPC_FREEZE, 414 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK), 415 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr", 416 SEC_SPC_FREEZE, 417 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK), 418 /*10*/ FLAG_ENTRY("PioSmPktResetParity", 419 SEC_SPC_FREEZE, 420 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK), 421 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc", 422 SEC_SPC_FREEZE, 423 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK), 424 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc", 425 SEC_SPC_FREEZE, 426 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK), 427 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor", 428 0, 429 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK), 430 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor", 431 0, 432 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK), 433 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity", 434 SEC_SPC_FREEZE, 435 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK), 436 /*16*/ FLAG_ENTRY("PioPpmcPblFifo", 437 SEC_SPC_FREEZE, 438 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK), 439 /*17*/ FLAG_ENTRY("PioInitSmIn", 440 0, 441 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK), 442 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm", 443 SEC_SPC_FREEZE, 444 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK), 445 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc", 446 SEC_SPC_FREEZE, 447 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK), 448 /*20*/ FLAG_ENTRY("PioHostAddrMemCor", 449 0, 450 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK), 451 /*21*/ FLAG_ENTRY("PioWriteDataParity", 452 SEC_SPC_FREEZE, 453 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK), 454 /*22*/ FLAG_ENTRY("PioStateMachine", 455 SEC_SPC_FREEZE, 456 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK), 457 /*23*/ FLAG_ENTRY("PioWriteQwValidParity", 458 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 459 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK), 460 /*24*/ FLAG_ENTRY("PioBlockQwCountParity", 461 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 462 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK), 463 /*25*/ FLAG_ENTRY("PioVlfVlLenParity", 464 SEC_SPC_FREEZE, 465 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK), 466 /*26*/ FLAG_ENTRY("PioVlfSopParity", 467 SEC_SPC_FREEZE, 468 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK), 469 /*27*/ FLAG_ENTRY("PioVlFifoParity", 470 SEC_SPC_FREEZE, 471 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK), 472 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity", 473 SEC_SPC_FREEZE, 474 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK), 475 /*29*/ FLAG_ENTRY("PioPpmcSopLen", 476 SEC_SPC_FREEZE, 477 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK), 478 /*30-31 reserved*/ 479 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity", 480 SEC_SPC_FREEZE, 481 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK), 482 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity", 483 SEC_SPC_FREEZE, 484 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK), 485 /*34*/ FLAG_ENTRY("PioPccSopHeadParity", 486 SEC_SPC_FREEZE, 487 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK), 488 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr", 489 SEC_SPC_FREEZE, 490 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK), 491 /*36-63 reserved*/ 492 }; 493 494 /* TXE PIO errors that cause an SPC freeze */ 495 #define ALL_PIO_FREEZE_ERR \ 496 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \ 497 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \ 498 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \ 499 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \ 500 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \ 501 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \ 502 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \ 503 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \ 504 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \ 505 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \ 506 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \ 507 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \ 508 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \ 509 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \ 510 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \ 511 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \ 512 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \ 513 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \ 514 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \ 515 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \ 516 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \ 517 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \ 518 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \ 519 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \ 520 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \ 521 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \ 522 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \ 523 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \ 524 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK) 525 526 /* 527 * TXE SDMA Error flags 528 */ 529 static struct flag_table sdma_err_status_flags[] = { 530 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", 531 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK), 532 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr", 533 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK), 534 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr", 535 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK), 536 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr", 537 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK), 538 /*04-63 reserved*/ 539 }; 540 541 /* TXE SDMA errors that cause an SPC freeze */ 542 #define ALL_SDMA_FREEZE_ERR \ 543 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \ 544 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \ 545 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK) 546 547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */ 548 #define PORT_DISCARD_EGRESS_ERRS \ 549 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \ 550 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \ 551 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK) 552 553 /* 554 * TXE Egress Error flags 555 */ 556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK 557 static struct flag_table egress_err_status_flags[] = { 558 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)), 559 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)), 560 /* 2 reserved */ 561 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr", 562 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)), 563 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)), 564 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)), 565 /* 6 reserved */ 566 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr", 567 SEES(TX_PIO_LAUNCH_INTF_PARITY)), 568 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr", 569 SEES(TX_SDMA_LAUNCH_INTF_PARITY)), 570 /* 9-10 reserved */ 571 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr", 572 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)), 573 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)), 574 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)), 575 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)), 576 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)), 577 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr", 578 SEES(TX_SDMA0_DISALLOWED_PACKET)), 579 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr", 580 SEES(TX_SDMA1_DISALLOWED_PACKET)), 581 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr", 582 SEES(TX_SDMA2_DISALLOWED_PACKET)), 583 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr", 584 SEES(TX_SDMA3_DISALLOWED_PACKET)), 585 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr", 586 SEES(TX_SDMA4_DISALLOWED_PACKET)), 587 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr", 588 SEES(TX_SDMA5_DISALLOWED_PACKET)), 589 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr", 590 SEES(TX_SDMA6_DISALLOWED_PACKET)), 591 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr", 592 SEES(TX_SDMA7_DISALLOWED_PACKET)), 593 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr", 594 SEES(TX_SDMA8_DISALLOWED_PACKET)), 595 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr", 596 SEES(TX_SDMA9_DISALLOWED_PACKET)), 597 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr", 598 SEES(TX_SDMA10_DISALLOWED_PACKET)), 599 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr", 600 SEES(TX_SDMA11_DISALLOWED_PACKET)), 601 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr", 602 SEES(TX_SDMA12_DISALLOWED_PACKET)), 603 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr", 604 SEES(TX_SDMA13_DISALLOWED_PACKET)), 605 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr", 606 SEES(TX_SDMA14_DISALLOWED_PACKET)), 607 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr", 608 SEES(TX_SDMA15_DISALLOWED_PACKET)), 609 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr", 610 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)), 611 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr", 612 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)), 613 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr", 614 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)), 615 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr", 616 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)), 617 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr", 618 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)), 619 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr", 620 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)), 621 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr", 622 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)), 623 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr", 624 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)), 625 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr", 626 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)), 627 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)), 628 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)), 629 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)), 630 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)), 631 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)), 632 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)), 633 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)), 634 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)), 635 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)), 636 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)), 637 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)), 638 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)), 639 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)), 640 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)), 641 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)), 642 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)), 643 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)), 644 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)), 645 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)), 646 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)), 647 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)), 648 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr", 649 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)), 650 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr", 651 SEES(TX_READ_PIO_MEMORY_CSR_UNC)), 652 }; 653 654 /* 655 * TXE Egress Error Info flags 656 */ 657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK 658 static struct flag_table egress_err_info_flags[] = { 659 /* 0*/ FLAG_ENTRY0("Reserved", 0ull), 660 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)), 661 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 662 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 663 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)), 664 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)), 665 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)), 666 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)), 667 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)), 668 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)), 669 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)), 670 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)), 671 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)), 672 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)), 673 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)), 674 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)), 675 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)), 676 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)), 677 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)), 678 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)), 679 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)), 680 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)), 681 }; 682 683 /* TXE Egress errors that cause an SPC freeze */ 684 #define ALL_TXE_EGRESS_FREEZE_ERR \ 685 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \ 686 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \ 687 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \ 688 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \ 689 | SEES(TX_LAUNCH_CSR_PARITY) \ 690 | SEES(TX_SBRD_CTL_CSR_PARITY) \ 691 | SEES(TX_CONFIG_PARITY) \ 692 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \ 693 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \ 694 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \ 695 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \ 696 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \ 697 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \ 698 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \ 699 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \ 700 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \ 701 | SEES(TX_CREDIT_RETURN_PARITY)) 702 703 /* 704 * TXE Send error flags 705 */ 706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK 707 static struct flag_table send_err_status_flags[] = { 708 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)), 709 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)), 710 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR)) 711 }; 712 713 /* 714 * TXE Send Context Error flags and consequences 715 */ 716 static struct flag_table sc_err_status_flags[] = { 717 /* 0*/ FLAG_ENTRY("InconsistentSop", 718 SEC_PACKET_DROPPED | SEC_SC_HALTED, 719 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK), 720 /* 1*/ FLAG_ENTRY("DisallowedPacket", 721 SEC_PACKET_DROPPED | SEC_SC_HALTED, 722 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK), 723 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary", 724 SEC_WRITE_DROPPED | SEC_SC_HALTED, 725 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK), 726 /* 3*/ FLAG_ENTRY("WriteOverflow", 727 SEC_WRITE_DROPPED | SEC_SC_HALTED, 728 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK), 729 /* 4*/ FLAG_ENTRY("WriteOutOfBounds", 730 SEC_WRITE_DROPPED | SEC_SC_HALTED, 731 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK), 732 /* 5-63 reserved*/ 733 }; 734 735 /* 736 * RXE Receive Error flags 737 */ 738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK 739 static struct flag_table rxe_err_status_flags[] = { 740 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)), 741 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)), 742 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)), 743 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)), 744 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)), 745 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)), 746 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)), 747 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)), 748 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)), 749 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)), 750 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)), 751 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)), 752 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)), 753 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)), 754 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)), 755 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)), 756 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr", 757 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)), 758 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)), 759 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)), 760 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr", 761 RXES(RBUF_BLOCK_LIST_READ_UNC)), 762 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr", 763 RXES(RBUF_BLOCK_LIST_READ_COR)), 764 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr", 765 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)), 766 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr", 767 RXES(RBUF_CSR_QENT_CNT_PARITY)), 768 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr", 769 RXES(RBUF_CSR_QNEXT_BUF_PARITY)), 770 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr", 771 RXES(RBUF_CSR_QVLD_BIT_PARITY)), 772 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)), 773 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)), 774 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr", 775 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)), 776 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)), 777 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)), 778 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)), 779 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)), 780 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)), 781 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)), 782 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)), 783 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr", 784 RXES(RBUF_FL_INITDONE_PARITY)), 785 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr", 786 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)), 787 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)), 788 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)), 789 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)), 790 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr", 791 RXES(LOOKUP_DES_PART1_UNC_COR)), 792 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr", 793 RXES(LOOKUP_DES_PART2_PARITY)), 794 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)), 795 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)), 796 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)), 797 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)), 798 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)), 799 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)), 800 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)), 801 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)), 802 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)), 803 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)), 804 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)), 805 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)), 806 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)), 807 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)), 808 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)), 809 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)), 810 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)), 811 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)), 812 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)), 813 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)), 814 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)), 815 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY)) 816 }; 817 818 /* RXE errors that will trigger an SPC freeze */ 819 #define ALL_RXE_FREEZE_ERR \ 820 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \ 821 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \ 822 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \ 823 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \ 824 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \ 825 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \ 826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \ 827 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \ 828 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \ 829 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \ 830 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \ 831 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \ 832 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \ 833 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \ 834 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \ 835 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \ 836 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \ 837 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \ 838 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \ 839 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \ 840 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \ 841 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \ 842 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \ 843 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \ 844 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \ 845 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \ 846 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \ 847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \ 848 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \ 849 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \ 850 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \ 851 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \ 852 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \ 853 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \ 854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \ 855 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \ 856 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \ 857 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \ 858 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \ 859 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \ 860 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \ 861 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \ 862 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \ 863 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK) 864 865 #define RXE_FREEZE_ABORT_MASK \ 866 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \ 867 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \ 868 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK) 869 870 /* 871 * DCC Error Flags 872 */ 873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK 874 static struct flag_table dcc_err_flags[] = { 875 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)), 876 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)), 877 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)), 878 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)), 879 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)), 880 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)), 881 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)), 882 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)), 883 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)), 884 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)), 885 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)), 886 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)), 887 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)), 888 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)), 889 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)), 890 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)), 891 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)), 892 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)), 893 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)), 894 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)), 895 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)), 896 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)), 897 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)), 898 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)), 899 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)), 900 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)), 901 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)), 902 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)), 903 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)), 904 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)), 905 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)), 906 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)), 907 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)), 908 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)), 909 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)), 910 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)), 911 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)), 912 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)), 913 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)), 914 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)), 915 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)), 916 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)), 917 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)), 918 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)), 919 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)), 920 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)), 921 }; 922 923 /* 924 * LCB error flags 925 */ 926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK 927 static struct flag_table lcb_err_flags[] = { 928 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)), 929 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)), 930 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)), 931 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST", 932 LCBE(ALL_LNS_FAILED_REINIT_TEST)), 933 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)), 934 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)), 935 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)), 936 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)), 937 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)), 938 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)), 939 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)), 940 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)), 941 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)), 942 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER", 943 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)), 944 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)), 945 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)), 946 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)), 947 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)), 948 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)), 949 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE", 950 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)), 951 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)), 952 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)), 953 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)), 954 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)), 955 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)), 956 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)), 957 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP", 958 LCBE(RST_FOR_INCOMPLT_RND_TRIP)), 959 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)), 960 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE", 961 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)), 962 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR", 963 LCBE(REDUNDANT_FLIT_PARITY_ERR)) 964 }; 965 966 /* 967 * DC8051 Error Flags 968 */ 969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK 970 static struct flag_table dc8051_err_flags[] = { 971 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)), 972 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)), 973 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)), 974 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)), 975 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)), 976 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)), 977 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)), 978 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)), 979 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES", 980 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)), 981 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)), 982 }; 983 984 /* 985 * DC8051 Information Error flags 986 * 987 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field. 988 */ 989 static struct flag_table dc8051_info_err_flags[] = { 990 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED), 991 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME), 992 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET), 993 FLAG_ENTRY0("Serdes internal loopback failure", 994 FAILED_SERDES_INTERNAL_LOOPBACK), 995 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT), 996 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING), 997 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE), 998 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM), 999 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ), 1000 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1), 1001 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2), 1002 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT), 1003 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT), 1004 FLAG_ENTRY0("External Device Request Timeout", 1005 EXTERNAL_DEVICE_REQ_TIMEOUT), 1006 }; 1007 1008 /* 1009 * DC8051 Information Host Information flags 1010 * 1011 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field. 1012 */ 1013 static struct flag_table dc8051_info_host_msg_flags[] = { 1014 FLAG_ENTRY0("Host request done", 0x0001), 1015 FLAG_ENTRY0("BC PWR_MGM message", 0x0002), 1016 FLAG_ENTRY0("BC SMA message", 0x0004), 1017 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008), 1018 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010), 1019 FLAG_ENTRY0("External device config request", 0x0020), 1020 FLAG_ENTRY0("VerifyCap all frames received", 0x0040), 1021 FLAG_ENTRY0("LinkUp achieved", 0x0080), 1022 FLAG_ENTRY0("Link going down", 0x0100), 1023 FLAG_ENTRY0("Link width downgraded", 0x0200), 1024 }; 1025 1026 static u32 encoded_size(u32 size); 1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate); 1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state); 1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 1030 u8 *continuous); 1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 1032 u8 *vcu, u16 *vl15buf, u8 *crc_sizes); 1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 1034 u8 *remote_tx_rate, u16 *link_widths); 1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 1036 u8 *flag_bits, u16 *link_widths); 1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 1038 u8 *device_rev); 1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx); 1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx, 1041 u8 *tx_polarity_inversion, 1042 u8 *rx_polarity_inversion, u8 *max_rate); 1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 1044 unsigned int context, u64 err_status); 1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg); 1046 static void handle_dcc_err(struct hfi1_devdata *dd, 1047 unsigned int context, u64 err_status); 1048 static void handle_lcb_err(struct hfi1_devdata *dd, 1049 unsigned int context, u64 err_status); 1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg); 1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1058 static void set_partition_keys(struct hfi1_pportdata *ppd); 1059 static const char *link_state_name(u32 state); 1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, 1061 u32 state); 1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 1063 u64 *out_data); 1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data); 1065 static int thermal_init(struct hfi1_devdata *dd); 1066 1067 static void update_statusp(struct hfi1_pportdata *ppd, u32 state); 1068 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd, 1069 int msecs); 1070 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1071 int msecs); 1072 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state); 1073 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state); 1074 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1075 int msecs); 1076 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc); 1077 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr); 1078 static void handle_temp_err(struct hfi1_devdata *dd); 1079 static void dc_shutdown(struct hfi1_devdata *dd); 1080 static void dc_start(struct hfi1_devdata *dd); 1081 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 1082 unsigned int *np); 1083 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd); 1084 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms); 1085 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index); 1086 1087 /* 1088 * Error interrupt table entry. This is used as input to the interrupt 1089 * "clear down" routine used for all second tier error interrupt register. 1090 * Second tier interrupt registers have a single bit representing them 1091 * in the top-level CceIntStatus. 1092 */ 1093 struct err_reg_info { 1094 u32 status; /* status CSR offset */ 1095 u32 clear; /* clear CSR offset */ 1096 u32 mask; /* mask CSR offset */ 1097 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg); 1098 const char *desc; 1099 }; 1100 1101 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START) 1102 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START) 1103 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START) 1104 1105 /* 1106 * Helpers for building HFI and DC error interrupt table entries. Different 1107 * helpers are needed because of inconsistent register names. 1108 */ 1109 #define EE(reg, handler, desc) \ 1110 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \ 1111 handler, desc } 1112 #define DC_EE1(reg, handler, desc) \ 1113 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc } 1114 #define DC_EE2(reg, handler, desc) \ 1115 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc } 1116 1117 /* 1118 * Table of the "misc" grouping of error interrupts. Each entry refers to 1119 * another register containing more information. 1120 */ 1121 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = { 1122 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"), 1123 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"), 1124 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"), 1125 /* 3*/ { 0, 0, 0, NULL }, /* reserved */ 1126 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"), 1127 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"), 1128 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"), 1129 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr") 1130 /* the rest are reserved */ 1131 }; 1132 1133 /* 1134 * Index into the Various section of the interrupt sources 1135 * corresponding to the Critical Temperature interrupt. 1136 */ 1137 #define TCRIT_INT_SOURCE 4 1138 1139 /* 1140 * SDMA error interrupt entry - refers to another register containing more 1141 * information. 1142 */ 1143 static const struct err_reg_info sdma_eng_err = 1144 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr"); 1145 1146 static const struct err_reg_info various_err[NUM_VARIOUS] = { 1147 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */ 1148 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */ 1149 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"), 1150 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"), 1151 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */ 1152 /* rest are reserved */ 1153 }; 1154 1155 /* 1156 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG 1157 * register can not be derived from the MTU value because 10K is not 1158 * a power of 2. Therefore, we need a constant. Everything else can 1159 * be calculated. 1160 */ 1161 #define DCC_CFG_PORT_MTU_CAP_10240 7 1162 1163 /* 1164 * Table of the DC grouping of error interrupts. Each entry refers to 1165 * another register containing more information. 1166 */ 1167 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = { 1168 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"), 1169 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"), 1170 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"), 1171 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */ 1172 /* the rest are reserved */ 1173 }; 1174 1175 struct cntr_entry { 1176 /* 1177 * counter name 1178 */ 1179 char *name; 1180 1181 /* 1182 * csr to read for name (if applicable) 1183 */ 1184 u64 csr; 1185 1186 /* 1187 * offset into dd or ppd to store the counter's value 1188 */ 1189 int offset; 1190 1191 /* 1192 * flags 1193 */ 1194 u8 flags; 1195 1196 /* 1197 * accessor for stat element, context either dd or ppd 1198 */ 1199 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl, 1200 int mode, u64 data); 1201 }; 1202 1203 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0 1204 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159 1205 1206 #define CNTR_ELEM(name, csr, offset, flags, accessor) \ 1207 { \ 1208 name, \ 1209 csr, \ 1210 offset, \ 1211 flags, \ 1212 accessor \ 1213 } 1214 1215 /* 32bit RXE */ 1216 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1217 CNTR_ELEM(#name, \ 1218 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1219 0, flags | CNTR_32BIT, \ 1220 port_access_u32_csr) 1221 1222 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \ 1223 CNTR_ELEM(#name, \ 1224 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1225 0, flags | CNTR_32BIT, \ 1226 dev_access_u32_csr) 1227 1228 /* 64bit RXE */ 1229 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1230 CNTR_ELEM(#name, \ 1231 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1232 0, flags, \ 1233 port_access_u64_csr) 1234 1235 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \ 1236 CNTR_ELEM(#name, \ 1237 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1238 0, flags, \ 1239 dev_access_u64_csr) 1240 1241 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx 1242 #define OVR_ELM(ctx) \ 1243 CNTR_ELEM("RcvHdrOvr" #ctx, \ 1244 (RCV_HDR_OVFL_CNT + ctx * 0x100), \ 1245 0, CNTR_NORMAL, port_access_u64_csr) 1246 1247 /* 32bit TXE */ 1248 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1249 CNTR_ELEM(#name, \ 1250 (counter * 8 + SEND_COUNTER_ARRAY32), \ 1251 0, flags | CNTR_32BIT, \ 1252 port_access_u32_csr) 1253 1254 /* 64bit TXE */ 1255 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1256 CNTR_ELEM(#name, \ 1257 (counter * 8 + SEND_COUNTER_ARRAY64), \ 1258 0, flags, \ 1259 port_access_u64_csr) 1260 1261 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \ 1262 CNTR_ELEM(#name,\ 1263 counter * 8 + SEND_COUNTER_ARRAY64, \ 1264 0, \ 1265 flags, \ 1266 dev_access_u64_csr) 1267 1268 /* CCE */ 1269 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \ 1270 CNTR_ELEM(#name, \ 1271 (counter * 8 + CCE_COUNTER_ARRAY32), \ 1272 0, flags | CNTR_32BIT, \ 1273 dev_access_u32_csr) 1274 1275 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \ 1276 CNTR_ELEM(#name, \ 1277 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \ 1278 0, flags | CNTR_32BIT, \ 1279 dev_access_u32_csr) 1280 1281 /* DC */ 1282 #define DC_PERF_CNTR(name, counter, flags) \ 1283 CNTR_ELEM(#name, \ 1284 counter, \ 1285 0, \ 1286 flags, \ 1287 dev_access_u64_csr) 1288 1289 #define DC_PERF_CNTR_LCB(name, counter, flags) \ 1290 CNTR_ELEM(#name, \ 1291 counter, \ 1292 0, \ 1293 flags, \ 1294 dc_access_lcb_cntr) 1295 1296 /* ibp counters */ 1297 #define SW_IBP_CNTR(name, cntr) \ 1298 CNTR_ELEM(#name, \ 1299 0, \ 1300 0, \ 1301 CNTR_SYNTH, \ 1302 access_ibp_##cntr) 1303 1304 /** 1305 * hfi_addr_from_offset - return addr for readq/writeq 1306 * @dd - the dd device 1307 * @offset - the offset of the CSR within bar0 1308 * 1309 * This routine selects the appropriate base address 1310 * based on the indicated offset. 1311 */ 1312 static inline void __iomem *hfi1_addr_from_offset( 1313 const struct hfi1_devdata *dd, 1314 u32 offset) 1315 { 1316 if (offset >= dd->base2_start) 1317 return dd->kregbase2 + (offset - dd->base2_start); 1318 return dd->kregbase1 + offset; 1319 } 1320 1321 /** 1322 * read_csr - read CSR at the indicated offset 1323 * @dd - the dd device 1324 * @offset - the offset of the CSR within bar0 1325 * 1326 * Return: the value read or all FF's if there 1327 * is no mapping 1328 */ 1329 u64 read_csr(const struct hfi1_devdata *dd, u32 offset) 1330 { 1331 if (dd->flags & HFI1_PRESENT) 1332 return readq(hfi1_addr_from_offset(dd, offset)); 1333 return -1; 1334 } 1335 1336 /** 1337 * write_csr - write CSR at the indicated offset 1338 * @dd - the dd device 1339 * @offset - the offset of the CSR within bar0 1340 * @value - value to write 1341 */ 1342 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value) 1343 { 1344 if (dd->flags & HFI1_PRESENT) { 1345 void __iomem *base = hfi1_addr_from_offset(dd, offset); 1346 1347 /* avoid write to RcvArray */ 1348 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start)) 1349 return; 1350 writeq(value, base); 1351 } 1352 } 1353 1354 /** 1355 * get_csr_addr - return te iomem address for offset 1356 * @dd - the dd device 1357 * @offset - the offset of the CSR within bar0 1358 * 1359 * Return: The iomem address to use in subsequent 1360 * writeq/readq operations. 1361 */ 1362 void __iomem *get_csr_addr( 1363 const struct hfi1_devdata *dd, 1364 u32 offset) 1365 { 1366 if (dd->flags & HFI1_PRESENT) 1367 return hfi1_addr_from_offset(dd, offset); 1368 return NULL; 1369 } 1370 1371 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr, 1372 int mode, u64 value) 1373 { 1374 u64 ret; 1375 1376 if (mode == CNTR_MODE_R) { 1377 ret = read_csr(dd, csr); 1378 } else if (mode == CNTR_MODE_W) { 1379 write_csr(dd, csr, value); 1380 ret = value; 1381 } else { 1382 dd_dev_err(dd, "Invalid cntr register access mode"); 1383 return 0; 1384 } 1385 1386 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode); 1387 return ret; 1388 } 1389 1390 /* Dev Access */ 1391 static u64 dev_access_u32_csr(const struct cntr_entry *entry, 1392 void *context, int vl, int mode, u64 data) 1393 { 1394 struct hfi1_devdata *dd = context; 1395 u64 csr = entry->csr; 1396 1397 if (entry->flags & CNTR_SDMA) { 1398 if (vl == CNTR_INVALID_VL) 1399 return 0; 1400 csr += 0x100 * vl; 1401 } else { 1402 if (vl != CNTR_INVALID_VL) 1403 return 0; 1404 } 1405 return read_write_csr(dd, csr, mode, data); 1406 } 1407 1408 static u64 access_sde_err_cnt(const struct cntr_entry *entry, 1409 void *context, int idx, int mode, u64 data) 1410 { 1411 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1412 1413 if (dd->per_sdma && idx < dd->num_sdma) 1414 return dd->per_sdma[idx].err_cnt; 1415 return 0; 1416 } 1417 1418 static u64 access_sde_int_cnt(const struct cntr_entry *entry, 1419 void *context, int idx, int mode, u64 data) 1420 { 1421 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1422 1423 if (dd->per_sdma && idx < dd->num_sdma) 1424 return dd->per_sdma[idx].sdma_int_cnt; 1425 return 0; 1426 } 1427 1428 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry, 1429 void *context, int idx, int mode, u64 data) 1430 { 1431 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1432 1433 if (dd->per_sdma && idx < dd->num_sdma) 1434 return dd->per_sdma[idx].idle_int_cnt; 1435 return 0; 1436 } 1437 1438 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry, 1439 void *context, int idx, int mode, 1440 u64 data) 1441 { 1442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1443 1444 if (dd->per_sdma && idx < dd->num_sdma) 1445 return dd->per_sdma[idx].progress_int_cnt; 1446 return 0; 1447 } 1448 1449 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context, 1450 int vl, int mode, u64 data) 1451 { 1452 struct hfi1_devdata *dd = context; 1453 1454 u64 val = 0; 1455 u64 csr = entry->csr; 1456 1457 if (entry->flags & CNTR_VL) { 1458 if (vl == CNTR_INVALID_VL) 1459 return 0; 1460 csr += 8 * vl; 1461 } else { 1462 if (vl != CNTR_INVALID_VL) 1463 return 0; 1464 } 1465 1466 val = read_write_csr(dd, csr, mode, data); 1467 return val; 1468 } 1469 1470 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context, 1471 int vl, int mode, u64 data) 1472 { 1473 struct hfi1_devdata *dd = context; 1474 u32 csr = entry->csr; 1475 int ret = 0; 1476 1477 if (vl != CNTR_INVALID_VL) 1478 return 0; 1479 if (mode == CNTR_MODE_R) 1480 ret = read_lcb_csr(dd, csr, &data); 1481 else if (mode == CNTR_MODE_W) 1482 ret = write_lcb_csr(dd, csr, data); 1483 1484 if (ret) { 1485 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr); 1486 return 0; 1487 } 1488 1489 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode); 1490 return data; 1491 } 1492 1493 /* Port Access */ 1494 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context, 1495 int vl, int mode, u64 data) 1496 { 1497 struct hfi1_pportdata *ppd = context; 1498 1499 if (vl != CNTR_INVALID_VL) 1500 return 0; 1501 return read_write_csr(ppd->dd, entry->csr, mode, data); 1502 } 1503 1504 static u64 port_access_u64_csr(const struct cntr_entry *entry, 1505 void *context, int vl, int mode, u64 data) 1506 { 1507 struct hfi1_pportdata *ppd = context; 1508 u64 val; 1509 u64 csr = entry->csr; 1510 1511 if (entry->flags & CNTR_VL) { 1512 if (vl == CNTR_INVALID_VL) 1513 return 0; 1514 csr += 8 * vl; 1515 } else { 1516 if (vl != CNTR_INVALID_VL) 1517 return 0; 1518 } 1519 val = read_write_csr(ppd->dd, csr, mode, data); 1520 return val; 1521 } 1522 1523 /* Software defined */ 1524 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode, 1525 u64 data) 1526 { 1527 u64 ret; 1528 1529 if (mode == CNTR_MODE_R) { 1530 ret = *cntr; 1531 } else if (mode == CNTR_MODE_W) { 1532 *cntr = data; 1533 ret = data; 1534 } else { 1535 dd_dev_err(dd, "Invalid cntr sw access mode"); 1536 return 0; 1537 } 1538 1539 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode); 1540 1541 return ret; 1542 } 1543 1544 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context, 1545 int vl, int mode, u64 data) 1546 { 1547 struct hfi1_pportdata *ppd = context; 1548 1549 if (vl != CNTR_INVALID_VL) 1550 return 0; 1551 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data); 1552 } 1553 1554 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context, 1555 int vl, int mode, u64 data) 1556 { 1557 struct hfi1_pportdata *ppd = context; 1558 1559 if (vl != CNTR_INVALID_VL) 1560 return 0; 1561 return read_write_sw(ppd->dd, &ppd->link_up, mode, data); 1562 } 1563 1564 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry, 1565 void *context, int vl, int mode, 1566 u64 data) 1567 { 1568 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1569 1570 if (vl != CNTR_INVALID_VL) 1571 return 0; 1572 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data); 1573 } 1574 1575 static u64 access_sw_xmit_discards(const struct cntr_entry *entry, 1576 void *context, int vl, int mode, u64 data) 1577 { 1578 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1579 u64 zero = 0; 1580 u64 *counter; 1581 1582 if (vl == CNTR_INVALID_VL) 1583 counter = &ppd->port_xmit_discards; 1584 else if (vl >= 0 && vl < C_VL_COUNT) 1585 counter = &ppd->port_xmit_discards_vl[vl]; 1586 else 1587 counter = &zero; 1588 1589 return read_write_sw(ppd->dd, counter, mode, data); 1590 } 1591 1592 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry, 1593 void *context, int vl, int mode, 1594 u64 data) 1595 { 1596 struct hfi1_pportdata *ppd = context; 1597 1598 if (vl != CNTR_INVALID_VL) 1599 return 0; 1600 1601 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors, 1602 mode, data); 1603 } 1604 1605 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry, 1606 void *context, int vl, int mode, u64 data) 1607 { 1608 struct hfi1_pportdata *ppd = context; 1609 1610 if (vl != CNTR_INVALID_VL) 1611 return 0; 1612 1613 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors, 1614 mode, data); 1615 } 1616 1617 u64 get_all_cpu_total(u64 __percpu *cntr) 1618 { 1619 int cpu; 1620 u64 counter = 0; 1621 1622 for_each_possible_cpu(cpu) 1623 counter += *per_cpu_ptr(cntr, cpu); 1624 return counter; 1625 } 1626 1627 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val, 1628 u64 __percpu *cntr, 1629 int vl, int mode, u64 data) 1630 { 1631 u64 ret = 0; 1632 1633 if (vl != CNTR_INVALID_VL) 1634 return 0; 1635 1636 if (mode == CNTR_MODE_R) { 1637 ret = get_all_cpu_total(cntr) - *z_val; 1638 } else if (mode == CNTR_MODE_W) { 1639 /* A write can only zero the counter */ 1640 if (data == 0) 1641 *z_val = get_all_cpu_total(cntr); 1642 else 1643 dd_dev_err(dd, "Per CPU cntrs can only be zeroed"); 1644 } else { 1645 dd_dev_err(dd, "Invalid cntr sw cpu access mode"); 1646 return 0; 1647 } 1648 1649 return ret; 1650 } 1651 1652 static u64 access_sw_cpu_intr(const struct cntr_entry *entry, 1653 void *context, int vl, int mode, u64 data) 1654 { 1655 struct hfi1_devdata *dd = context; 1656 1657 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl, 1658 mode, data); 1659 } 1660 1661 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry, 1662 void *context, int vl, int mode, u64 data) 1663 { 1664 struct hfi1_devdata *dd = context; 1665 1666 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl, 1667 mode, data); 1668 } 1669 1670 static u64 access_sw_pio_wait(const struct cntr_entry *entry, 1671 void *context, int vl, int mode, u64 data) 1672 { 1673 struct hfi1_devdata *dd = context; 1674 1675 return dd->verbs_dev.n_piowait; 1676 } 1677 1678 static u64 access_sw_pio_drain(const struct cntr_entry *entry, 1679 void *context, int vl, int mode, u64 data) 1680 { 1681 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1682 1683 return dd->verbs_dev.n_piodrain; 1684 } 1685 1686 static u64 access_sw_vtx_wait(const struct cntr_entry *entry, 1687 void *context, int vl, int mode, u64 data) 1688 { 1689 struct hfi1_devdata *dd = context; 1690 1691 return dd->verbs_dev.n_txwait; 1692 } 1693 1694 static u64 access_sw_kmem_wait(const struct cntr_entry *entry, 1695 void *context, int vl, int mode, u64 data) 1696 { 1697 struct hfi1_devdata *dd = context; 1698 1699 return dd->verbs_dev.n_kmem_wait; 1700 } 1701 1702 static u64 access_sw_send_schedule(const struct cntr_entry *entry, 1703 void *context, int vl, int mode, u64 data) 1704 { 1705 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1706 1707 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl, 1708 mode, data); 1709 } 1710 1711 /* Software counters for the error status bits within MISC_ERR_STATUS */ 1712 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry, 1713 void *context, int vl, int mode, 1714 u64 data) 1715 { 1716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1717 1718 return dd->misc_err_status_cnt[12]; 1719 } 1720 1721 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry, 1722 void *context, int vl, int mode, 1723 u64 data) 1724 { 1725 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1726 1727 return dd->misc_err_status_cnt[11]; 1728 } 1729 1730 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry, 1731 void *context, int vl, int mode, 1732 u64 data) 1733 { 1734 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1735 1736 return dd->misc_err_status_cnt[10]; 1737 } 1738 1739 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry, 1740 void *context, int vl, 1741 int mode, u64 data) 1742 { 1743 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1744 1745 return dd->misc_err_status_cnt[9]; 1746 } 1747 1748 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry, 1749 void *context, int vl, int mode, 1750 u64 data) 1751 { 1752 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1753 1754 return dd->misc_err_status_cnt[8]; 1755 } 1756 1757 static u64 access_misc_efuse_read_bad_addr_err_cnt( 1758 const struct cntr_entry *entry, 1759 void *context, int vl, int mode, u64 data) 1760 { 1761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1762 1763 return dd->misc_err_status_cnt[7]; 1764 } 1765 1766 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry, 1767 void *context, int vl, 1768 int mode, u64 data) 1769 { 1770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1771 1772 return dd->misc_err_status_cnt[6]; 1773 } 1774 1775 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry, 1776 void *context, int vl, int mode, 1777 u64 data) 1778 { 1779 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1780 1781 return dd->misc_err_status_cnt[5]; 1782 } 1783 1784 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry, 1785 void *context, int vl, int mode, 1786 u64 data) 1787 { 1788 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1789 1790 return dd->misc_err_status_cnt[4]; 1791 } 1792 1793 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry, 1794 void *context, int vl, 1795 int mode, u64 data) 1796 { 1797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1798 1799 return dd->misc_err_status_cnt[3]; 1800 } 1801 1802 static u64 access_misc_csr_write_bad_addr_err_cnt( 1803 const struct cntr_entry *entry, 1804 void *context, int vl, int mode, u64 data) 1805 { 1806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1807 1808 return dd->misc_err_status_cnt[2]; 1809 } 1810 1811 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1812 void *context, int vl, 1813 int mode, u64 data) 1814 { 1815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1816 1817 return dd->misc_err_status_cnt[1]; 1818 } 1819 1820 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry, 1821 void *context, int vl, int mode, 1822 u64 data) 1823 { 1824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1825 1826 return dd->misc_err_status_cnt[0]; 1827 } 1828 1829 /* 1830 * Software counter for the aggregate of 1831 * individual CceErrStatus counters 1832 */ 1833 static u64 access_sw_cce_err_status_aggregated_cnt( 1834 const struct cntr_entry *entry, 1835 void *context, int vl, int mode, u64 data) 1836 { 1837 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1838 1839 return dd->sw_cce_err_status_aggregate; 1840 } 1841 1842 /* 1843 * Software counters corresponding to each of the 1844 * error status bits within CceErrStatus 1845 */ 1846 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry, 1847 void *context, int vl, int mode, 1848 u64 data) 1849 { 1850 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1851 1852 return dd->cce_err_status_cnt[40]; 1853 } 1854 1855 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry, 1856 void *context, int vl, int mode, 1857 u64 data) 1858 { 1859 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1860 1861 return dd->cce_err_status_cnt[39]; 1862 } 1863 1864 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry, 1865 void *context, int vl, int mode, 1866 u64 data) 1867 { 1868 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1869 1870 return dd->cce_err_status_cnt[38]; 1871 } 1872 1873 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry, 1874 void *context, int vl, int mode, 1875 u64 data) 1876 { 1877 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1878 1879 return dd->cce_err_status_cnt[37]; 1880 } 1881 1882 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry, 1883 void *context, int vl, int mode, 1884 u64 data) 1885 { 1886 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1887 1888 return dd->cce_err_status_cnt[36]; 1889 } 1890 1891 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt( 1892 const struct cntr_entry *entry, 1893 void *context, int vl, int mode, u64 data) 1894 { 1895 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1896 1897 return dd->cce_err_status_cnt[35]; 1898 } 1899 1900 static u64 access_cce_rcpl_async_fifo_parity_err_cnt( 1901 const struct cntr_entry *entry, 1902 void *context, int vl, int mode, u64 data) 1903 { 1904 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1905 1906 return dd->cce_err_status_cnt[34]; 1907 } 1908 1909 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry, 1910 void *context, int vl, 1911 int mode, u64 data) 1912 { 1913 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1914 1915 return dd->cce_err_status_cnt[33]; 1916 } 1917 1918 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1919 void *context, int vl, int mode, 1920 u64 data) 1921 { 1922 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1923 1924 return dd->cce_err_status_cnt[32]; 1925 } 1926 1927 static u64 access_la_triggered_cnt(const struct cntr_entry *entry, 1928 void *context, int vl, int mode, u64 data) 1929 { 1930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1931 1932 return dd->cce_err_status_cnt[31]; 1933 } 1934 1935 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry, 1936 void *context, int vl, int mode, 1937 u64 data) 1938 { 1939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1940 1941 return dd->cce_err_status_cnt[30]; 1942 } 1943 1944 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry, 1945 void *context, int vl, int mode, 1946 u64 data) 1947 { 1948 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1949 1950 return dd->cce_err_status_cnt[29]; 1951 } 1952 1953 static u64 access_pcic_transmit_back_parity_err_cnt( 1954 const struct cntr_entry *entry, 1955 void *context, int vl, int mode, u64 data) 1956 { 1957 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1958 1959 return dd->cce_err_status_cnt[28]; 1960 } 1961 1962 static u64 access_pcic_transmit_front_parity_err_cnt( 1963 const struct cntr_entry *entry, 1964 void *context, int vl, int mode, u64 data) 1965 { 1966 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1967 1968 return dd->cce_err_status_cnt[27]; 1969 } 1970 1971 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1972 void *context, int vl, int mode, 1973 u64 data) 1974 { 1975 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1976 1977 return dd->cce_err_status_cnt[26]; 1978 } 1979 1980 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1981 void *context, int vl, int mode, 1982 u64 data) 1983 { 1984 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1985 1986 return dd->cce_err_status_cnt[25]; 1987 } 1988 1989 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1990 void *context, int vl, int mode, 1991 u64 data) 1992 { 1993 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1994 1995 return dd->cce_err_status_cnt[24]; 1996 } 1997 1998 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1999 void *context, int vl, int mode, 2000 u64 data) 2001 { 2002 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2003 2004 return dd->cce_err_status_cnt[23]; 2005 } 2006 2007 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry, 2008 void *context, int vl, 2009 int mode, u64 data) 2010 { 2011 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2012 2013 return dd->cce_err_status_cnt[22]; 2014 } 2015 2016 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry, 2017 void *context, int vl, int mode, 2018 u64 data) 2019 { 2020 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2021 2022 return dd->cce_err_status_cnt[21]; 2023 } 2024 2025 static u64 access_pcic_n_post_dat_q_parity_err_cnt( 2026 const struct cntr_entry *entry, 2027 void *context, int vl, int mode, u64 data) 2028 { 2029 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2030 2031 return dd->cce_err_status_cnt[20]; 2032 } 2033 2034 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry, 2035 void *context, int vl, 2036 int mode, u64 data) 2037 { 2038 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2039 2040 return dd->cce_err_status_cnt[19]; 2041 } 2042 2043 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry, 2044 void *context, int vl, int mode, 2045 u64 data) 2046 { 2047 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2048 2049 return dd->cce_err_status_cnt[18]; 2050 } 2051 2052 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry, 2053 void *context, int vl, int mode, 2054 u64 data) 2055 { 2056 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2057 2058 return dd->cce_err_status_cnt[17]; 2059 } 2060 2061 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry, 2062 void *context, int vl, int mode, 2063 u64 data) 2064 { 2065 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2066 2067 return dd->cce_err_status_cnt[16]; 2068 } 2069 2070 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry, 2071 void *context, int vl, int mode, 2072 u64 data) 2073 { 2074 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2075 2076 return dd->cce_err_status_cnt[15]; 2077 } 2078 2079 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry, 2080 void *context, int vl, 2081 int mode, u64 data) 2082 { 2083 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2084 2085 return dd->cce_err_status_cnt[14]; 2086 } 2087 2088 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry, 2089 void *context, int vl, int mode, 2090 u64 data) 2091 { 2092 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2093 2094 return dd->cce_err_status_cnt[13]; 2095 } 2096 2097 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt( 2098 const struct cntr_entry *entry, 2099 void *context, int vl, int mode, u64 data) 2100 { 2101 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2102 2103 return dd->cce_err_status_cnt[12]; 2104 } 2105 2106 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt( 2107 const struct cntr_entry *entry, 2108 void *context, int vl, int mode, u64 data) 2109 { 2110 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2111 2112 return dd->cce_err_status_cnt[11]; 2113 } 2114 2115 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt( 2116 const struct cntr_entry *entry, 2117 void *context, int vl, int mode, u64 data) 2118 { 2119 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2120 2121 return dd->cce_err_status_cnt[10]; 2122 } 2123 2124 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt( 2125 const struct cntr_entry *entry, 2126 void *context, int vl, int mode, u64 data) 2127 { 2128 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2129 2130 return dd->cce_err_status_cnt[9]; 2131 } 2132 2133 static u64 access_cce_cli2_async_fifo_parity_err_cnt( 2134 const struct cntr_entry *entry, 2135 void *context, int vl, int mode, u64 data) 2136 { 2137 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2138 2139 return dd->cce_err_status_cnt[8]; 2140 } 2141 2142 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry, 2143 void *context, int vl, 2144 int mode, u64 data) 2145 { 2146 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2147 2148 return dd->cce_err_status_cnt[7]; 2149 } 2150 2151 static u64 access_cce_cli0_async_fifo_parity_err_cnt( 2152 const struct cntr_entry *entry, 2153 void *context, int vl, int mode, u64 data) 2154 { 2155 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2156 2157 return dd->cce_err_status_cnt[6]; 2158 } 2159 2160 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry, 2161 void *context, int vl, int mode, 2162 u64 data) 2163 { 2164 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2165 2166 return dd->cce_err_status_cnt[5]; 2167 } 2168 2169 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry, 2170 void *context, int vl, int mode, 2171 u64 data) 2172 { 2173 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2174 2175 return dd->cce_err_status_cnt[4]; 2176 } 2177 2178 static u64 access_cce_trgt_async_fifo_parity_err_cnt( 2179 const struct cntr_entry *entry, 2180 void *context, int vl, int mode, u64 data) 2181 { 2182 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2183 2184 return dd->cce_err_status_cnt[3]; 2185 } 2186 2187 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2188 void *context, int vl, 2189 int mode, u64 data) 2190 { 2191 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2192 2193 return dd->cce_err_status_cnt[2]; 2194 } 2195 2196 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2197 void *context, int vl, 2198 int mode, u64 data) 2199 { 2200 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2201 2202 return dd->cce_err_status_cnt[1]; 2203 } 2204 2205 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry, 2206 void *context, int vl, int mode, 2207 u64 data) 2208 { 2209 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2210 2211 return dd->cce_err_status_cnt[0]; 2212 } 2213 2214 /* 2215 * Software counters corresponding to each of the 2216 * error status bits within RcvErrStatus 2217 */ 2218 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry, 2219 void *context, int vl, int mode, 2220 u64 data) 2221 { 2222 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2223 2224 return dd->rcv_err_status_cnt[63]; 2225 } 2226 2227 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2228 void *context, int vl, 2229 int mode, u64 data) 2230 { 2231 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2232 2233 return dd->rcv_err_status_cnt[62]; 2234 } 2235 2236 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2237 void *context, int vl, int mode, 2238 u64 data) 2239 { 2240 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2241 2242 return dd->rcv_err_status_cnt[61]; 2243 } 2244 2245 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry, 2246 void *context, int vl, int mode, 2247 u64 data) 2248 { 2249 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2250 2251 return dd->rcv_err_status_cnt[60]; 2252 } 2253 2254 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2255 void *context, int vl, 2256 int mode, u64 data) 2257 { 2258 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2259 2260 return dd->rcv_err_status_cnt[59]; 2261 } 2262 2263 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2264 void *context, int vl, 2265 int mode, u64 data) 2266 { 2267 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2268 2269 return dd->rcv_err_status_cnt[58]; 2270 } 2271 2272 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry, 2273 void *context, int vl, int mode, 2274 u64 data) 2275 { 2276 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2277 2278 return dd->rcv_err_status_cnt[57]; 2279 } 2280 2281 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry, 2282 void *context, int vl, int mode, 2283 u64 data) 2284 { 2285 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2286 2287 return dd->rcv_err_status_cnt[56]; 2288 } 2289 2290 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry, 2291 void *context, int vl, int mode, 2292 u64 data) 2293 { 2294 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2295 2296 return dd->rcv_err_status_cnt[55]; 2297 } 2298 2299 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt( 2300 const struct cntr_entry *entry, 2301 void *context, int vl, int mode, u64 data) 2302 { 2303 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2304 2305 return dd->rcv_err_status_cnt[54]; 2306 } 2307 2308 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt( 2309 const struct cntr_entry *entry, 2310 void *context, int vl, int mode, u64 data) 2311 { 2312 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2313 2314 return dd->rcv_err_status_cnt[53]; 2315 } 2316 2317 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry, 2318 void *context, int vl, 2319 int mode, u64 data) 2320 { 2321 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2322 2323 return dd->rcv_err_status_cnt[52]; 2324 } 2325 2326 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry, 2327 void *context, int vl, 2328 int mode, u64 data) 2329 { 2330 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2331 2332 return dd->rcv_err_status_cnt[51]; 2333 } 2334 2335 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry, 2336 void *context, int vl, 2337 int mode, u64 data) 2338 { 2339 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2340 2341 return dd->rcv_err_status_cnt[50]; 2342 } 2343 2344 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry, 2345 void *context, int vl, 2346 int mode, u64 data) 2347 { 2348 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2349 2350 return dd->rcv_err_status_cnt[49]; 2351 } 2352 2353 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry, 2354 void *context, int vl, 2355 int mode, u64 data) 2356 { 2357 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2358 2359 return dd->rcv_err_status_cnt[48]; 2360 } 2361 2362 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry, 2363 void *context, int vl, 2364 int mode, u64 data) 2365 { 2366 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2367 2368 return dd->rcv_err_status_cnt[47]; 2369 } 2370 2371 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry, 2372 void *context, int vl, int mode, 2373 u64 data) 2374 { 2375 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2376 2377 return dd->rcv_err_status_cnt[46]; 2378 } 2379 2380 static u64 access_rx_hq_intr_csr_parity_err_cnt( 2381 const struct cntr_entry *entry, 2382 void *context, int vl, int mode, u64 data) 2383 { 2384 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2385 2386 return dd->rcv_err_status_cnt[45]; 2387 } 2388 2389 static u64 access_rx_lookup_csr_parity_err_cnt( 2390 const struct cntr_entry *entry, 2391 void *context, int vl, int mode, u64 data) 2392 { 2393 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2394 2395 return dd->rcv_err_status_cnt[44]; 2396 } 2397 2398 static u64 access_rx_lookup_rcv_array_cor_err_cnt( 2399 const struct cntr_entry *entry, 2400 void *context, int vl, int mode, u64 data) 2401 { 2402 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2403 2404 return dd->rcv_err_status_cnt[43]; 2405 } 2406 2407 static u64 access_rx_lookup_rcv_array_unc_err_cnt( 2408 const struct cntr_entry *entry, 2409 void *context, int vl, int mode, u64 data) 2410 { 2411 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2412 2413 return dd->rcv_err_status_cnt[42]; 2414 } 2415 2416 static u64 access_rx_lookup_des_part2_parity_err_cnt( 2417 const struct cntr_entry *entry, 2418 void *context, int vl, int mode, u64 data) 2419 { 2420 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2421 2422 return dd->rcv_err_status_cnt[41]; 2423 } 2424 2425 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt( 2426 const struct cntr_entry *entry, 2427 void *context, int vl, int mode, u64 data) 2428 { 2429 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2430 2431 return dd->rcv_err_status_cnt[40]; 2432 } 2433 2434 static u64 access_rx_lookup_des_part1_unc_err_cnt( 2435 const struct cntr_entry *entry, 2436 void *context, int vl, int mode, u64 data) 2437 { 2438 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2439 2440 return dd->rcv_err_status_cnt[39]; 2441 } 2442 2443 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt( 2444 const struct cntr_entry *entry, 2445 void *context, int vl, int mode, u64 data) 2446 { 2447 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2448 2449 return dd->rcv_err_status_cnt[38]; 2450 } 2451 2452 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt( 2453 const struct cntr_entry *entry, 2454 void *context, int vl, int mode, u64 data) 2455 { 2456 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2457 2458 return dd->rcv_err_status_cnt[37]; 2459 } 2460 2461 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt( 2462 const struct cntr_entry *entry, 2463 void *context, int vl, int mode, u64 data) 2464 { 2465 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2466 2467 return dd->rcv_err_status_cnt[36]; 2468 } 2469 2470 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt( 2471 const struct cntr_entry *entry, 2472 void *context, int vl, int mode, u64 data) 2473 { 2474 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2475 2476 return dd->rcv_err_status_cnt[35]; 2477 } 2478 2479 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt( 2480 const struct cntr_entry *entry, 2481 void *context, int vl, int mode, u64 data) 2482 { 2483 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2484 2485 return dd->rcv_err_status_cnt[34]; 2486 } 2487 2488 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt( 2489 const struct cntr_entry *entry, 2490 void *context, int vl, int mode, u64 data) 2491 { 2492 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2493 2494 return dd->rcv_err_status_cnt[33]; 2495 } 2496 2497 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry, 2498 void *context, int vl, int mode, 2499 u64 data) 2500 { 2501 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2502 2503 return dd->rcv_err_status_cnt[32]; 2504 } 2505 2506 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry, 2507 void *context, int vl, int mode, 2508 u64 data) 2509 { 2510 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2511 2512 return dd->rcv_err_status_cnt[31]; 2513 } 2514 2515 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry, 2516 void *context, int vl, int mode, 2517 u64 data) 2518 { 2519 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2520 2521 return dd->rcv_err_status_cnt[30]; 2522 } 2523 2524 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry, 2525 void *context, int vl, int mode, 2526 u64 data) 2527 { 2528 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2529 2530 return dd->rcv_err_status_cnt[29]; 2531 } 2532 2533 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry, 2534 void *context, int vl, 2535 int mode, u64 data) 2536 { 2537 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2538 2539 return dd->rcv_err_status_cnt[28]; 2540 } 2541 2542 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt( 2543 const struct cntr_entry *entry, 2544 void *context, int vl, int mode, u64 data) 2545 { 2546 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2547 2548 return dd->rcv_err_status_cnt[27]; 2549 } 2550 2551 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt( 2552 const struct cntr_entry *entry, 2553 void *context, int vl, int mode, u64 data) 2554 { 2555 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2556 2557 return dd->rcv_err_status_cnt[26]; 2558 } 2559 2560 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt( 2561 const struct cntr_entry *entry, 2562 void *context, int vl, int mode, u64 data) 2563 { 2564 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2565 2566 return dd->rcv_err_status_cnt[25]; 2567 } 2568 2569 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt( 2570 const struct cntr_entry *entry, 2571 void *context, int vl, int mode, u64 data) 2572 { 2573 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2574 2575 return dd->rcv_err_status_cnt[24]; 2576 } 2577 2578 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt( 2579 const struct cntr_entry *entry, 2580 void *context, int vl, int mode, u64 data) 2581 { 2582 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2583 2584 return dd->rcv_err_status_cnt[23]; 2585 } 2586 2587 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt( 2588 const struct cntr_entry *entry, 2589 void *context, int vl, int mode, u64 data) 2590 { 2591 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2592 2593 return dd->rcv_err_status_cnt[22]; 2594 } 2595 2596 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt( 2597 const struct cntr_entry *entry, 2598 void *context, int vl, int mode, u64 data) 2599 { 2600 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2601 2602 return dd->rcv_err_status_cnt[21]; 2603 } 2604 2605 static u64 access_rx_rbuf_block_list_read_cor_err_cnt( 2606 const struct cntr_entry *entry, 2607 void *context, int vl, int mode, u64 data) 2608 { 2609 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2610 2611 return dd->rcv_err_status_cnt[20]; 2612 } 2613 2614 static u64 access_rx_rbuf_block_list_read_unc_err_cnt( 2615 const struct cntr_entry *entry, 2616 void *context, int vl, int mode, u64 data) 2617 { 2618 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2619 2620 return dd->rcv_err_status_cnt[19]; 2621 } 2622 2623 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry, 2624 void *context, int vl, 2625 int mode, u64 data) 2626 { 2627 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2628 2629 return dd->rcv_err_status_cnt[18]; 2630 } 2631 2632 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry, 2633 void *context, int vl, 2634 int mode, u64 data) 2635 { 2636 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2637 2638 return dd->rcv_err_status_cnt[17]; 2639 } 2640 2641 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt( 2642 const struct cntr_entry *entry, 2643 void *context, int vl, int mode, u64 data) 2644 { 2645 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2646 2647 return dd->rcv_err_status_cnt[16]; 2648 } 2649 2650 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt( 2651 const struct cntr_entry *entry, 2652 void *context, int vl, int mode, u64 data) 2653 { 2654 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2655 2656 return dd->rcv_err_status_cnt[15]; 2657 } 2658 2659 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry, 2660 void *context, int vl, 2661 int mode, u64 data) 2662 { 2663 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2664 2665 return dd->rcv_err_status_cnt[14]; 2666 } 2667 2668 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry, 2669 void *context, int vl, 2670 int mode, u64 data) 2671 { 2672 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2673 2674 return dd->rcv_err_status_cnt[13]; 2675 } 2676 2677 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2678 void *context, int vl, int mode, 2679 u64 data) 2680 { 2681 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2682 2683 return dd->rcv_err_status_cnt[12]; 2684 } 2685 2686 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry, 2687 void *context, int vl, int mode, 2688 u64 data) 2689 { 2690 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2691 2692 return dd->rcv_err_status_cnt[11]; 2693 } 2694 2695 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry, 2696 void *context, int vl, int mode, 2697 u64 data) 2698 { 2699 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2700 2701 return dd->rcv_err_status_cnt[10]; 2702 } 2703 2704 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry, 2705 void *context, int vl, int mode, 2706 u64 data) 2707 { 2708 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2709 2710 return dd->rcv_err_status_cnt[9]; 2711 } 2712 2713 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry, 2714 void *context, int vl, int mode, 2715 u64 data) 2716 { 2717 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2718 2719 return dd->rcv_err_status_cnt[8]; 2720 } 2721 2722 static u64 access_rx_rcv_qp_map_table_cor_err_cnt( 2723 const struct cntr_entry *entry, 2724 void *context, int vl, int mode, u64 data) 2725 { 2726 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2727 2728 return dd->rcv_err_status_cnt[7]; 2729 } 2730 2731 static u64 access_rx_rcv_qp_map_table_unc_err_cnt( 2732 const struct cntr_entry *entry, 2733 void *context, int vl, int mode, u64 data) 2734 { 2735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2736 2737 return dd->rcv_err_status_cnt[6]; 2738 } 2739 2740 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry, 2741 void *context, int vl, int mode, 2742 u64 data) 2743 { 2744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2745 2746 return dd->rcv_err_status_cnt[5]; 2747 } 2748 2749 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry, 2750 void *context, int vl, int mode, 2751 u64 data) 2752 { 2753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2754 2755 return dd->rcv_err_status_cnt[4]; 2756 } 2757 2758 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry, 2759 void *context, int vl, int mode, 2760 u64 data) 2761 { 2762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2763 2764 return dd->rcv_err_status_cnt[3]; 2765 } 2766 2767 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry, 2768 void *context, int vl, int mode, 2769 u64 data) 2770 { 2771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2772 2773 return dd->rcv_err_status_cnt[2]; 2774 } 2775 2776 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry, 2777 void *context, int vl, int mode, 2778 u64 data) 2779 { 2780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2781 2782 return dd->rcv_err_status_cnt[1]; 2783 } 2784 2785 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry, 2786 void *context, int vl, int mode, 2787 u64 data) 2788 { 2789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2790 2791 return dd->rcv_err_status_cnt[0]; 2792 } 2793 2794 /* 2795 * Software counters corresponding to each of the 2796 * error status bits within SendPioErrStatus 2797 */ 2798 static u64 access_pio_pec_sop_head_parity_err_cnt( 2799 const struct cntr_entry *entry, 2800 void *context, int vl, int mode, u64 data) 2801 { 2802 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2803 2804 return dd->send_pio_err_status_cnt[35]; 2805 } 2806 2807 static u64 access_pio_pcc_sop_head_parity_err_cnt( 2808 const struct cntr_entry *entry, 2809 void *context, int vl, int mode, u64 data) 2810 { 2811 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2812 2813 return dd->send_pio_err_status_cnt[34]; 2814 } 2815 2816 static u64 access_pio_last_returned_cnt_parity_err_cnt( 2817 const struct cntr_entry *entry, 2818 void *context, int vl, int mode, u64 data) 2819 { 2820 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2821 2822 return dd->send_pio_err_status_cnt[33]; 2823 } 2824 2825 static u64 access_pio_current_free_cnt_parity_err_cnt( 2826 const struct cntr_entry *entry, 2827 void *context, int vl, int mode, u64 data) 2828 { 2829 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2830 2831 return dd->send_pio_err_status_cnt[32]; 2832 } 2833 2834 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry, 2835 void *context, int vl, int mode, 2836 u64 data) 2837 { 2838 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2839 2840 return dd->send_pio_err_status_cnt[31]; 2841 } 2842 2843 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry, 2844 void *context, int vl, int mode, 2845 u64 data) 2846 { 2847 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2848 2849 return dd->send_pio_err_status_cnt[30]; 2850 } 2851 2852 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry, 2853 void *context, int vl, int mode, 2854 u64 data) 2855 { 2856 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2857 2858 return dd->send_pio_err_status_cnt[29]; 2859 } 2860 2861 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt( 2862 const struct cntr_entry *entry, 2863 void *context, int vl, int mode, u64 data) 2864 { 2865 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2866 2867 return dd->send_pio_err_status_cnt[28]; 2868 } 2869 2870 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry, 2871 void *context, int vl, int mode, 2872 u64 data) 2873 { 2874 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2875 2876 return dd->send_pio_err_status_cnt[27]; 2877 } 2878 2879 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry, 2880 void *context, int vl, int mode, 2881 u64 data) 2882 { 2883 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2884 2885 return dd->send_pio_err_status_cnt[26]; 2886 } 2887 2888 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry, 2889 void *context, int vl, 2890 int mode, u64 data) 2891 { 2892 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2893 2894 return dd->send_pio_err_status_cnt[25]; 2895 } 2896 2897 static u64 access_pio_block_qw_count_parity_err_cnt( 2898 const struct cntr_entry *entry, 2899 void *context, int vl, int mode, u64 data) 2900 { 2901 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2902 2903 return dd->send_pio_err_status_cnt[24]; 2904 } 2905 2906 static u64 access_pio_write_qw_valid_parity_err_cnt( 2907 const struct cntr_entry *entry, 2908 void *context, int vl, int mode, u64 data) 2909 { 2910 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2911 2912 return dd->send_pio_err_status_cnt[23]; 2913 } 2914 2915 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry, 2916 void *context, int vl, int mode, 2917 u64 data) 2918 { 2919 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2920 2921 return dd->send_pio_err_status_cnt[22]; 2922 } 2923 2924 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry, 2925 void *context, int vl, 2926 int mode, u64 data) 2927 { 2928 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2929 2930 return dd->send_pio_err_status_cnt[21]; 2931 } 2932 2933 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry, 2934 void *context, int vl, 2935 int mode, u64 data) 2936 { 2937 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2938 2939 return dd->send_pio_err_status_cnt[20]; 2940 } 2941 2942 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry, 2943 void *context, int vl, 2944 int mode, u64 data) 2945 { 2946 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2947 2948 return dd->send_pio_err_status_cnt[19]; 2949 } 2950 2951 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt( 2952 const struct cntr_entry *entry, 2953 void *context, int vl, int mode, u64 data) 2954 { 2955 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2956 2957 return dd->send_pio_err_status_cnt[18]; 2958 } 2959 2960 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry, 2961 void *context, int vl, int mode, 2962 u64 data) 2963 { 2964 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2965 2966 return dd->send_pio_err_status_cnt[17]; 2967 } 2968 2969 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry, 2970 void *context, int vl, int mode, 2971 u64 data) 2972 { 2973 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2974 2975 return dd->send_pio_err_status_cnt[16]; 2976 } 2977 2978 static u64 access_pio_credit_ret_fifo_parity_err_cnt( 2979 const struct cntr_entry *entry, 2980 void *context, int vl, int mode, u64 data) 2981 { 2982 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2983 2984 return dd->send_pio_err_status_cnt[15]; 2985 } 2986 2987 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt( 2988 const struct cntr_entry *entry, 2989 void *context, int vl, int mode, u64 data) 2990 { 2991 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2992 2993 return dd->send_pio_err_status_cnt[14]; 2994 } 2995 2996 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt( 2997 const struct cntr_entry *entry, 2998 void *context, int vl, int mode, u64 data) 2999 { 3000 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3001 3002 return dd->send_pio_err_status_cnt[13]; 3003 } 3004 3005 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt( 3006 const struct cntr_entry *entry, 3007 void *context, int vl, int mode, u64 data) 3008 { 3009 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3010 3011 return dd->send_pio_err_status_cnt[12]; 3012 } 3013 3014 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt( 3015 const struct cntr_entry *entry, 3016 void *context, int vl, int mode, u64 data) 3017 { 3018 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3019 3020 return dd->send_pio_err_status_cnt[11]; 3021 } 3022 3023 static u64 access_pio_sm_pkt_reset_parity_err_cnt( 3024 const struct cntr_entry *entry, 3025 void *context, int vl, int mode, u64 data) 3026 { 3027 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3028 3029 return dd->send_pio_err_status_cnt[10]; 3030 } 3031 3032 static u64 access_pio_pkt_evict_fifo_parity_err_cnt( 3033 const struct cntr_entry *entry, 3034 void *context, int vl, int mode, u64 data) 3035 { 3036 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3037 3038 return dd->send_pio_err_status_cnt[9]; 3039 } 3040 3041 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt( 3042 const struct cntr_entry *entry, 3043 void *context, int vl, int mode, u64 data) 3044 { 3045 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3046 3047 return dd->send_pio_err_status_cnt[8]; 3048 } 3049 3050 static u64 access_pio_sbrdctl_crrel_parity_err_cnt( 3051 const struct cntr_entry *entry, 3052 void *context, int vl, int mode, u64 data) 3053 { 3054 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3055 3056 return dd->send_pio_err_status_cnt[7]; 3057 } 3058 3059 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry, 3060 void *context, int vl, int mode, 3061 u64 data) 3062 { 3063 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3064 3065 return dd->send_pio_err_status_cnt[6]; 3066 } 3067 3068 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry, 3069 void *context, int vl, int mode, 3070 u64 data) 3071 { 3072 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3073 3074 return dd->send_pio_err_status_cnt[5]; 3075 } 3076 3077 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry, 3078 void *context, int vl, int mode, 3079 u64 data) 3080 { 3081 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3082 3083 return dd->send_pio_err_status_cnt[4]; 3084 } 3085 3086 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry, 3087 void *context, int vl, int mode, 3088 u64 data) 3089 { 3090 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3091 3092 return dd->send_pio_err_status_cnt[3]; 3093 } 3094 3095 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry, 3096 void *context, int vl, int mode, 3097 u64 data) 3098 { 3099 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3100 3101 return dd->send_pio_err_status_cnt[2]; 3102 } 3103 3104 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry, 3105 void *context, int vl, 3106 int mode, u64 data) 3107 { 3108 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3109 3110 return dd->send_pio_err_status_cnt[1]; 3111 } 3112 3113 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry, 3114 void *context, int vl, int mode, 3115 u64 data) 3116 { 3117 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3118 3119 return dd->send_pio_err_status_cnt[0]; 3120 } 3121 3122 /* 3123 * Software counters corresponding to each of the 3124 * error status bits within SendDmaErrStatus 3125 */ 3126 static u64 access_sdma_pcie_req_tracking_cor_err_cnt( 3127 const struct cntr_entry *entry, 3128 void *context, int vl, int mode, u64 data) 3129 { 3130 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3131 3132 return dd->send_dma_err_status_cnt[3]; 3133 } 3134 3135 static u64 access_sdma_pcie_req_tracking_unc_err_cnt( 3136 const struct cntr_entry *entry, 3137 void *context, int vl, int mode, u64 data) 3138 { 3139 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3140 3141 return dd->send_dma_err_status_cnt[2]; 3142 } 3143 3144 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry, 3145 void *context, int vl, int mode, 3146 u64 data) 3147 { 3148 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3149 3150 return dd->send_dma_err_status_cnt[1]; 3151 } 3152 3153 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry, 3154 void *context, int vl, int mode, 3155 u64 data) 3156 { 3157 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3158 3159 return dd->send_dma_err_status_cnt[0]; 3160 } 3161 3162 /* 3163 * Software counters corresponding to each of the 3164 * error status bits within SendEgressErrStatus 3165 */ 3166 static u64 access_tx_read_pio_memory_csr_unc_err_cnt( 3167 const struct cntr_entry *entry, 3168 void *context, int vl, int mode, u64 data) 3169 { 3170 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3171 3172 return dd->send_egress_err_status_cnt[63]; 3173 } 3174 3175 static u64 access_tx_read_sdma_memory_csr_err_cnt( 3176 const struct cntr_entry *entry, 3177 void *context, int vl, int mode, u64 data) 3178 { 3179 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3180 3181 return dd->send_egress_err_status_cnt[62]; 3182 } 3183 3184 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry, 3185 void *context, int vl, int mode, 3186 u64 data) 3187 { 3188 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3189 3190 return dd->send_egress_err_status_cnt[61]; 3191 } 3192 3193 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry, 3194 void *context, int vl, 3195 int mode, u64 data) 3196 { 3197 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3198 3199 return dd->send_egress_err_status_cnt[60]; 3200 } 3201 3202 static u64 access_tx_read_sdma_memory_cor_err_cnt( 3203 const struct cntr_entry *entry, 3204 void *context, int vl, int mode, u64 data) 3205 { 3206 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3207 3208 return dd->send_egress_err_status_cnt[59]; 3209 } 3210 3211 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry, 3212 void *context, int vl, int mode, 3213 u64 data) 3214 { 3215 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3216 3217 return dd->send_egress_err_status_cnt[58]; 3218 } 3219 3220 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry, 3221 void *context, int vl, int mode, 3222 u64 data) 3223 { 3224 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3225 3226 return dd->send_egress_err_status_cnt[57]; 3227 } 3228 3229 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry, 3230 void *context, int vl, int mode, 3231 u64 data) 3232 { 3233 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3234 3235 return dd->send_egress_err_status_cnt[56]; 3236 } 3237 3238 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry, 3239 void *context, int vl, int mode, 3240 u64 data) 3241 { 3242 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3243 3244 return dd->send_egress_err_status_cnt[55]; 3245 } 3246 3247 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry, 3248 void *context, int vl, int mode, 3249 u64 data) 3250 { 3251 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3252 3253 return dd->send_egress_err_status_cnt[54]; 3254 } 3255 3256 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry, 3257 void *context, int vl, int mode, 3258 u64 data) 3259 { 3260 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3261 3262 return dd->send_egress_err_status_cnt[53]; 3263 } 3264 3265 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry, 3266 void *context, int vl, int mode, 3267 u64 data) 3268 { 3269 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3270 3271 return dd->send_egress_err_status_cnt[52]; 3272 } 3273 3274 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry, 3275 void *context, int vl, int mode, 3276 u64 data) 3277 { 3278 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3279 3280 return dd->send_egress_err_status_cnt[51]; 3281 } 3282 3283 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry, 3284 void *context, int vl, int mode, 3285 u64 data) 3286 { 3287 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3288 3289 return dd->send_egress_err_status_cnt[50]; 3290 } 3291 3292 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry, 3293 void *context, int vl, int mode, 3294 u64 data) 3295 { 3296 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3297 3298 return dd->send_egress_err_status_cnt[49]; 3299 } 3300 3301 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry, 3302 void *context, int vl, int mode, 3303 u64 data) 3304 { 3305 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3306 3307 return dd->send_egress_err_status_cnt[48]; 3308 } 3309 3310 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry, 3311 void *context, int vl, int mode, 3312 u64 data) 3313 { 3314 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3315 3316 return dd->send_egress_err_status_cnt[47]; 3317 } 3318 3319 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry, 3320 void *context, int vl, int mode, 3321 u64 data) 3322 { 3323 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3324 3325 return dd->send_egress_err_status_cnt[46]; 3326 } 3327 3328 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry, 3329 void *context, int vl, int mode, 3330 u64 data) 3331 { 3332 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3333 3334 return dd->send_egress_err_status_cnt[45]; 3335 } 3336 3337 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry, 3338 void *context, int vl, 3339 int mode, u64 data) 3340 { 3341 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3342 3343 return dd->send_egress_err_status_cnt[44]; 3344 } 3345 3346 static u64 access_tx_read_sdma_memory_unc_err_cnt( 3347 const struct cntr_entry *entry, 3348 void *context, int vl, int mode, u64 data) 3349 { 3350 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3351 3352 return dd->send_egress_err_status_cnt[43]; 3353 } 3354 3355 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry, 3356 void *context, int vl, int mode, 3357 u64 data) 3358 { 3359 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3360 3361 return dd->send_egress_err_status_cnt[42]; 3362 } 3363 3364 static u64 access_tx_credit_return_partiy_err_cnt( 3365 const struct cntr_entry *entry, 3366 void *context, int vl, int mode, u64 data) 3367 { 3368 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3369 3370 return dd->send_egress_err_status_cnt[41]; 3371 } 3372 3373 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt( 3374 const struct cntr_entry *entry, 3375 void *context, int vl, int mode, u64 data) 3376 { 3377 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3378 3379 return dd->send_egress_err_status_cnt[40]; 3380 } 3381 3382 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt( 3383 const struct cntr_entry *entry, 3384 void *context, int vl, int mode, u64 data) 3385 { 3386 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3387 3388 return dd->send_egress_err_status_cnt[39]; 3389 } 3390 3391 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt( 3392 const struct cntr_entry *entry, 3393 void *context, int vl, int mode, u64 data) 3394 { 3395 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3396 3397 return dd->send_egress_err_status_cnt[38]; 3398 } 3399 3400 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt( 3401 const struct cntr_entry *entry, 3402 void *context, int vl, int mode, u64 data) 3403 { 3404 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3405 3406 return dd->send_egress_err_status_cnt[37]; 3407 } 3408 3409 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt( 3410 const struct cntr_entry *entry, 3411 void *context, int vl, int mode, u64 data) 3412 { 3413 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3414 3415 return dd->send_egress_err_status_cnt[36]; 3416 } 3417 3418 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt( 3419 const struct cntr_entry *entry, 3420 void *context, int vl, int mode, u64 data) 3421 { 3422 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3423 3424 return dd->send_egress_err_status_cnt[35]; 3425 } 3426 3427 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt( 3428 const struct cntr_entry *entry, 3429 void *context, int vl, int mode, u64 data) 3430 { 3431 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3432 3433 return dd->send_egress_err_status_cnt[34]; 3434 } 3435 3436 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt( 3437 const struct cntr_entry *entry, 3438 void *context, int vl, int mode, u64 data) 3439 { 3440 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3441 3442 return dd->send_egress_err_status_cnt[33]; 3443 } 3444 3445 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt( 3446 const struct cntr_entry *entry, 3447 void *context, int vl, int mode, u64 data) 3448 { 3449 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3450 3451 return dd->send_egress_err_status_cnt[32]; 3452 } 3453 3454 static u64 access_tx_sdma15_disallowed_packet_err_cnt( 3455 const struct cntr_entry *entry, 3456 void *context, int vl, int mode, u64 data) 3457 { 3458 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3459 3460 return dd->send_egress_err_status_cnt[31]; 3461 } 3462 3463 static u64 access_tx_sdma14_disallowed_packet_err_cnt( 3464 const struct cntr_entry *entry, 3465 void *context, int vl, int mode, u64 data) 3466 { 3467 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3468 3469 return dd->send_egress_err_status_cnt[30]; 3470 } 3471 3472 static u64 access_tx_sdma13_disallowed_packet_err_cnt( 3473 const struct cntr_entry *entry, 3474 void *context, int vl, int mode, u64 data) 3475 { 3476 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3477 3478 return dd->send_egress_err_status_cnt[29]; 3479 } 3480 3481 static u64 access_tx_sdma12_disallowed_packet_err_cnt( 3482 const struct cntr_entry *entry, 3483 void *context, int vl, int mode, u64 data) 3484 { 3485 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3486 3487 return dd->send_egress_err_status_cnt[28]; 3488 } 3489 3490 static u64 access_tx_sdma11_disallowed_packet_err_cnt( 3491 const struct cntr_entry *entry, 3492 void *context, int vl, int mode, u64 data) 3493 { 3494 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3495 3496 return dd->send_egress_err_status_cnt[27]; 3497 } 3498 3499 static u64 access_tx_sdma10_disallowed_packet_err_cnt( 3500 const struct cntr_entry *entry, 3501 void *context, int vl, int mode, u64 data) 3502 { 3503 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3504 3505 return dd->send_egress_err_status_cnt[26]; 3506 } 3507 3508 static u64 access_tx_sdma9_disallowed_packet_err_cnt( 3509 const struct cntr_entry *entry, 3510 void *context, int vl, int mode, u64 data) 3511 { 3512 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3513 3514 return dd->send_egress_err_status_cnt[25]; 3515 } 3516 3517 static u64 access_tx_sdma8_disallowed_packet_err_cnt( 3518 const struct cntr_entry *entry, 3519 void *context, int vl, int mode, u64 data) 3520 { 3521 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3522 3523 return dd->send_egress_err_status_cnt[24]; 3524 } 3525 3526 static u64 access_tx_sdma7_disallowed_packet_err_cnt( 3527 const struct cntr_entry *entry, 3528 void *context, int vl, int mode, u64 data) 3529 { 3530 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3531 3532 return dd->send_egress_err_status_cnt[23]; 3533 } 3534 3535 static u64 access_tx_sdma6_disallowed_packet_err_cnt( 3536 const struct cntr_entry *entry, 3537 void *context, int vl, int mode, u64 data) 3538 { 3539 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3540 3541 return dd->send_egress_err_status_cnt[22]; 3542 } 3543 3544 static u64 access_tx_sdma5_disallowed_packet_err_cnt( 3545 const struct cntr_entry *entry, 3546 void *context, int vl, int mode, u64 data) 3547 { 3548 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3549 3550 return dd->send_egress_err_status_cnt[21]; 3551 } 3552 3553 static u64 access_tx_sdma4_disallowed_packet_err_cnt( 3554 const struct cntr_entry *entry, 3555 void *context, int vl, int mode, u64 data) 3556 { 3557 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3558 3559 return dd->send_egress_err_status_cnt[20]; 3560 } 3561 3562 static u64 access_tx_sdma3_disallowed_packet_err_cnt( 3563 const struct cntr_entry *entry, 3564 void *context, int vl, int mode, u64 data) 3565 { 3566 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3567 3568 return dd->send_egress_err_status_cnt[19]; 3569 } 3570 3571 static u64 access_tx_sdma2_disallowed_packet_err_cnt( 3572 const struct cntr_entry *entry, 3573 void *context, int vl, int mode, u64 data) 3574 { 3575 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3576 3577 return dd->send_egress_err_status_cnt[18]; 3578 } 3579 3580 static u64 access_tx_sdma1_disallowed_packet_err_cnt( 3581 const struct cntr_entry *entry, 3582 void *context, int vl, int mode, u64 data) 3583 { 3584 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3585 3586 return dd->send_egress_err_status_cnt[17]; 3587 } 3588 3589 static u64 access_tx_sdma0_disallowed_packet_err_cnt( 3590 const struct cntr_entry *entry, 3591 void *context, int vl, int mode, u64 data) 3592 { 3593 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3594 3595 return dd->send_egress_err_status_cnt[16]; 3596 } 3597 3598 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry, 3599 void *context, int vl, int mode, 3600 u64 data) 3601 { 3602 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3603 3604 return dd->send_egress_err_status_cnt[15]; 3605 } 3606 3607 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry, 3608 void *context, int vl, 3609 int mode, u64 data) 3610 { 3611 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3612 3613 return dd->send_egress_err_status_cnt[14]; 3614 } 3615 3616 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry, 3617 void *context, int vl, int mode, 3618 u64 data) 3619 { 3620 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3621 3622 return dd->send_egress_err_status_cnt[13]; 3623 } 3624 3625 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry, 3626 void *context, int vl, int mode, 3627 u64 data) 3628 { 3629 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3630 3631 return dd->send_egress_err_status_cnt[12]; 3632 } 3633 3634 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt( 3635 const struct cntr_entry *entry, 3636 void *context, int vl, int mode, u64 data) 3637 { 3638 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3639 3640 return dd->send_egress_err_status_cnt[11]; 3641 } 3642 3643 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry, 3644 void *context, int vl, int mode, 3645 u64 data) 3646 { 3647 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3648 3649 return dd->send_egress_err_status_cnt[10]; 3650 } 3651 3652 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry, 3653 void *context, int vl, int mode, 3654 u64 data) 3655 { 3656 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3657 3658 return dd->send_egress_err_status_cnt[9]; 3659 } 3660 3661 static u64 access_tx_sdma_launch_intf_parity_err_cnt( 3662 const struct cntr_entry *entry, 3663 void *context, int vl, int mode, u64 data) 3664 { 3665 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3666 3667 return dd->send_egress_err_status_cnt[8]; 3668 } 3669 3670 static u64 access_tx_pio_launch_intf_parity_err_cnt( 3671 const struct cntr_entry *entry, 3672 void *context, int vl, int mode, u64 data) 3673 { 3674 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3675 3676 return dd->send_egress_err_status_cnt[7]; 3677 } 3678 3679 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry, 3680 void *context, int vl, int mode, 3681 u64 data) 3682 { 3683 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3684 3685 return dd->send_egress_err_status_cnt[6]; 3686 } 3687 3688 static u64 access_tx_incorrect_link_state_err_cnt( 3689 const struct cntr_entry *entry, 3690 void *context, int vl, int mode, u64 data) 3691 { 3692 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3693 3694 return dd->send_egress_err_status_cnt[5]; 3695 } 3696 3697 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry, 3698 void *context, int vl, int mode, 3699 u64 data) 3700 { 3701 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3702 3703 return dd->send_egress_err_status_cnt[4]; 3704 } 3705 3706 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt( 3707 const struct cntr_entry *entry, 3708 void *context, int vl, int mode, u64 data) 3709 { 3710 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3711 3712 return dd->send_egress_err_status_cnt[3]; 3713 } 3714 3715 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry, 3716 void *context, int vl, int mode, 3717 u64 data) 3718 { 3719 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3720 3721 return dd->send_egress_err_status_cnt[2]; 3722 } 3723 3724 static u64 access_tx_pkt_integrity_mem_unc_err_cnt( 3725 const struct cntr_entry *entry, 3726 void *context, int vl, int mode, u64 data) 3727 { 3728 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3729 3730 return dd->send_egress_err_status_cnt[1]; 3731 } 3732 3733 static u64 access_tx_pkt_integrity_mem_cor_err_cnt( 3734 const struct cntr_entry *entry, 3735 void *context, int vl, int mode, u64 data) 3736 { 3737 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3738 3739 return dd->send_egress_err_status_cnt[0]; 3740 } 3741 3742 /* 3743 * Software counters corresponding to each of the 3744 * error status bits within SendErrStatus 3745 */ 3746 static u64 access_send_csr_write_bad_addr_err_cnt( 3747 const struct cntr_entry *entry, 3748 void *context, int vl, int mode, u64 data) 3749 { 3750 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3751 3752 return dd->send_err_status_cnt[2]; 3753 } 3754 3755 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 3756 void *context, int vl, 3757 int mode, u64 data) 3758 { 3759 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3760 3761 return dd->send_err_status_cnt[1]; 3762 } 3763 3764 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry, 3765 void *context, int vl, int mode, 3766 u64 data) 3767 { 3768 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3769 3770 return dd->send_err_status_cnt[0]; 3771 } 3772 3773 /* 3774 * Software counters corresponding to each of the 3775 * error status bits within SendCtxtErrStatus 3776 */ 3777 static u64 access_pio_write_out_of_bounds_err_cnt( 3778 const struct cntr_entry *entry, 3779 void *context, int vl, int mode, u64 data) 3780 { 3781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3782 3783 return dd->sw_ctxt_err_status_cnt[4]; 3784 } 3785 3786 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry, 3787 void *context, int vl, int mode, 3788 u64 data) 3789 { 3790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3791 3792 return dd->sw_ctxt_err_status_cnt[3]; 3793 } 3794 3795 static u64 access_pio_write_crosses_boundary_err_cnt( 3796 const struct cntr_entry *entry, 3797 void *context, int vl, int mode, u64 data) 3798 { 3799 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3800 3801 return dd->sw_ctxt_err_status_cnt[2]; 3802 } 3803 3804 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry, 3805 void *context, int vl, 3806 int mode, u64 data) 3807 { 3808 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3809 3810 return dd->sw_ctxt_err_status_cnt[1]; 3811 } 3812 3813 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry, 3814 void *context, int vl, int mode, 3815 u64 data) 3816 { 3817 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3818 3819 return dd->sw_ctxt_err_status_cnt[0]; 3820 } 3821 3822 /* 3823 * Software counters corresponding to each of the 3824 * error status bits within SendDmaEngErrStatus 3825 */ 3826 static u64 access_sdma_header_request_fifo_cor_err_cnt( 3827 const struct cntr_entry *entry, 3828 void *context, int vl, int mode, u64 data) 3829 { 3830 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3831 3832 return dd->sw_send_dma_eng_err_status_cnt[23]; 3833 } 3834 3835 static u64 access_sdma_header_storage_cor_err_cnt( 3836 const struct cntr_entry *entry, 3837 void *context, int vl, int mode, u64 data) 3838 { 3839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3840 3841 return dd->sw_send_dma_eng_err_status_cnt[22]; 3842 } 3843 3844 static u64 access_sdma_packet_tracking_cor_err_cnt( 3845 const struct cntr_entry *entry, 3846 void *context, int vl, int mode, u64 data) 3847 { 3848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3849 3850 return dd->sw_send_dma_eng_err_status_cnt[21]; 3851 } 3852 3853 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry, 3854 void *context, int vl, int mode, 3855 u64 data) 3856 { 3857 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3858 3859 return dd->sw_send_dma_eng_err_status_cnt[20]; 3860 } 3861 3862 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry, 3863 void *context, int vl, int mode, 3864 u64 data) 3865 { 3866 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3867 3868 return dd->sw_send_dma_eng_err_status_cnt[19]; 3869 } 3870 3871 static u64 access_sdma_header_request_fifo_unc_err_cnt( 3872 const struct cntr_entry *entry, 3873 void *context, int vl, int mode, u64 data) 3874 { 3875 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3876 3877 return dd->sw_send_dma_eng_err_status_cnt[18]; 3878 } 3879 3880 static u64 access_sdma_header_storage_unc_err_cnt( 3881 const struct cntr_entry *entry, 3882 void *context, int vl, int mode, u64 data) 3883 { 3884 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3885 3886 return dd->sw_send_dma_eng_err_status_cnt[17]; 3887 } 3888 3889 static u64 access_sdma_packet_tracking_unc_err_cnt( 3890 const struct cntr_entry *entry, 3891 void *context, int vl, int mode, u64 data) 3892 { 3893 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3894 3895 return dd->sw_send_dma_eng_err_status_cnt[16]; 3896 } 3897 3898 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry, 3899 void *context, int vl, int mode, 3900 u64 data) 3901 { 3902 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3903 3904 return dd->sw_send_dma_eng_err_status_cnt[15]; 3905 } 3906 3907 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry, 3908 void *context, int vl, int mode, 3909 u64 data) 3910 { 3911 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3912 3913 return dd->sw_send_dma_eng_err_status_cnt[14]; 3914 } 3915 3916 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry, 3917 void *context, int vl, int mode, 3918 u64 data) 3919 { 3920 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3921 3922 return dd->sw_send_dma_eng_err_status_cnt[13]; 3923 } 3924 3925 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry, 3926 void *context, int vl, int mode, 3927 u64 data) 3928 { 3929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3930 3931 return dd->sw_send_dma_eng_err_status_cnt[12]; 3932 } 3933 3934 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry, 3935 void *context, int vl, int mode, 3936 u64 data) 3937 { 3938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3939 3940 return dd->sw_send_dma_eng_err_status_cnt[11]; 3941 } 3942 3943 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry, 3944 void *context, int vl, int mode, 3945 u64 data) 3946 { 3947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3948 3949 return dd->sw_send_dma_eng_err_status_cnt[10]; 3950 } 3951 3952 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry, 3953 void *context, int vl, int mode, 3954 u64 data) 3955 { 3956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3957 3958 return dd->sw_send_dma_eng_err_status_cnt[9]; 3959 } 3960 3961 static u64 access_sdma_packet_desc_overflow_err_cnt( 3962 const struct cntr_entry *entry, 3963 void *context, int vl, int mode, u64 data) 3964 { 3965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3966 3967 return dd->sw_send_dma_eng_err_status_cnt[8]; 3968 } 3969 3970 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry, 3971 void *context, int vl, 3972 int mode, u64 data) 3973 { 3974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3975 3976 return dd->sw_send_dma_eng_err_status_cnt[7]; 3977 } 3978 3979 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry, 3980 void *context, int vl, int mode, u64 data) 3981 { 3982 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3983 3984 return dd->sw_send_dma_eng_err_status_cnt[6]; 3985 } 3986 3987 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry, 3988 void *context, int vl, int mode, 3989 u64 data) 3990 { 3991 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3992 3993 return dd->sw_send_dma_eng_err_status_cnt[5]; 3994 } 3995 3996 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry, 3997 void *context, int vl, int mode, 3998 u64 data) 3999 { 4000 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4001 4002 return dd->sw_send_dma_eng_err_status_cnt[4]; 4003 } 4004 4005 static u64 access_sdma_tail_out_of_bounds_err_cnt( 4006 const struct cntr_entry *entry, 4007 void *context, int vl, int mode, u64 data) 4008 { 4009 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4010 4011 return dd->sw_send_dma_eng_err_status_cnt[3]; 4012 } 4013 4014 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry, 4015 void *context, int vl, int mode, 4016 u64 data) 4017 { 4018 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4019 4020 return dd->sw_send_dma_eng_err_status_cnt[2]; 4021 } 4022 4023 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry, 4024 void *context, int vl, int mode, 4025 u64 data) 4026 { 4027 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4028 4029 return dd->sw_send_dma_eng_err_status_cnt[1]; 4030 } 4031 4032 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry, 4033 void *context, int vl, int mode, 4034 u64 data) 4035 { 4036 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4037 4038 return dd->sw_send_dma_eng_err_status_cnt[0]; 4039 } 4040 4041 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry, 4042 void *context, int vl, int mode, 4043 u64 data) 4044 { 4045 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4046 4047 u64 val = 0; 4048 u64 csr = entry->csr; 4049 4050 val = read_write_csr(dd, csr, mode, data); 4051 if (mode == CNTR_MODE_R) { 4052 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ? 4053 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors; 4054 } else if (mode == CNTR_MODE_W) { 4055 dd->sw_rcv_bypass_packet_errors = 0; 4056 } else { 4057 dd_dev_err(dd, "Invalid cntr register access mode"); 4058 return 0; 4059 } 4060 return val; 4061 } 4062 4063 #define def_access_sw_cpu(cntr) \ 4064 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \ 4065 void *context, int vl, int mode, u64 data) \ 4066 { \ 4067 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 4068 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \ 4069 ppd->ibport_data.rvp.cntr, vl, \ 4070 mode, data); \ 4071 } 4072 4073 def_access_sw_cpu(rc_acks); 4074 def_access_sw_cpu(rc_qacks); 4075 def_access_sw_cpu(rc_delayed_comp); 4076 4077 #define def_access_ibp_counter(cntr) \ 4078 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \ 4079 void *context, int vl, int mode, u64 data) \ 4080 { \ 4081 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 4082 \ 4083 if (vl != CNTR_INVALID_VL) \ 4084 return 0; \ 4085 \ 4086 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \ 4087 mode, data); \ 4088 } 4089 4090 def_access_ibp_counter(loop_pkts); 4091 def_access_ibp_counter(rc_resends); 4092 def_access_ibp_counter(rnr_naks); 4093 def_access_ibp_counter(other_naks); 4094 def_access_ibp_counter(rc_timeouts); 4095 def_access_ibp_counter(pkt_drops); 4096 def_access_ibp_counter(dmawait); 4097 def_access_ibp_counter(rc_seqnak); 4098 def_access_ibp_counter(rc_dupreq); 4099 def_access_ibp_counter(rdma_seq); 4100 def_access_ibp_counter(unaligned); 4101 def_access_ibp_counter(seq_naks); 4102 4103 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = { 4104 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH), 4105 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT, 4106 CNTR_NORMAL), 4107 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT, 4108 CNTR_NORMAL), 4109 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs, 4110 RCV_TID_FLOW_GEN_MISMATCH_CNT, 4111 CNTR_NORMAL), 4112 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL, 4113 CNTR_NORMAL), 4114 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs, 4115 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL), 4116 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt, 4117 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL), 4118 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT, 4119 CNTR_NORMAL), 4120 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT, 4121 CNTR_NORMAL), 4122 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT, 4123 CNTR_NORMAL), 4124 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT, 4125 CNTR_NORMAL), 4126 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT, 4127 CNTR_NORMAL), 4128 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT, 4129 CNTR_NORMAL), 4130 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt, 4131 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL), 4132 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt, 4133 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL), 4134 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT, 4135 CNTR_SYNTH), 4136 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH, 4137 access_dc_rcv_err_cnt), 4138 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT, 4139 CNTR_SYNTH), 4140 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT, 4141 CNTR_SYNTH), 4142 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT, 4143 CNTR_SYNTH), 4144 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts, 4145 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH), 4146 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts, 4147 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT, 4148 CNTR_SYNTH), 4149 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr, 4150 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH), 4151 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT, 4152 CNTR_SYNTH), 4153 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT, 4154 CNTR_SYNTH), 4155 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT, 4156 CNTR_SYNTH), 4157 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT, 4158 CNTR_SYNTH), 4159 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT, 4160 CNTR_SYNTH), 4161 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT, 4162 CNTR_SYNTH), 4163 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT, 4164 CNTR_SYNTH), 4165 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT, 4166 CNTR_SYNTH | CNTR_VL), 4167 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT, 4168 CNTR_SYNTH | CNTR_VL), 4169 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH), 4170 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT, 4171 CNTR_SYNTH | CNTR_VL), 4172 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH), 4173 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT, 4174 CNTR_SYNTH | CNTR_VL), 4175 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT, 4176 CNTR_SYNTH), 4177 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT, 4178 CNTR_SYNTH | CNTR_VL), 4179 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT, 4180 CNTR_SYNTH), 4181 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT, 4182 CNTR_SYNTH | CNTR_VL), 4183 [C_DC_TOTAL_CRC] = 4184 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR, 4185 CNTR_SYNTH), 4186 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0, 4187 CNTR_SYNTH), 4188 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1, 4189 CNTR_SYNTH), 4190 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2, 4191 CNTR_SYNTH), 4192 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3, 4193 CNTR_SYNTH), 4194 [C_DC_CRC_MULT_LN] = 4195 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN, 4196 CNTR_SYNTH), 4197 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT, 4198 CNTR_SYNTH), 4199 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT, 4200 CNTR_SYNTH), 4201 [C_DC_SEQ_CRC_CNT] = 4202 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT, 4203 CNTR_SYNTH), 4204 [C_DC_ESC0_ONLY_CNT] = 4205 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT, 4206 CNTR_SYNTH), 4207 [C_DC_ESC0_PLUS1_CNT] = 4208 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT, 4209 CNTR_SYNTH), 4210 [C_DC_ESC0_PLUS2_CNT] = 4211 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT, 4212 CNTR_SYNTH), 4213 [C_DC_REINIT_FROM_PEER_CNT] = 4214 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 4215 CNTR_SYNTH), 4216 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT, 4217 CNTR_SYNTH), 4218 [C_DC_MISC_FLG_CNT] = 4219 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT, 4220 CNTR_SYNTH), 4221 [C_DC_PRF_GOOD_LTP_CNT] = 4222 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH), 4223 [C_DC_PRF_ACCEPTED_LTP_CNT] = 4224 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT, 4225 CNTR_SYNTH), 4226 [C_DC_PRF_RX_FLIT_CNT] = 4227 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH), 4228 [C_DC_PRF_TX_FLIT_CNT] = 4229 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH), 4230 [C_DC_PRF_CLK_CNTR] = 4231 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH), 4232 [C_DC_PG_DBG_FLIT_CRDTS_CNT] = 4233 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH), 4234 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] = 4235 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT, 4236 CNTR_SYNTH), 4237 [C_DC_PG_STS_TX_SBE_CNT] = 4238 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH), 4239 [C_DC_PG_STS_TX_MBE_CNT] = 4240 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT, 4241 CNTR_SYNTH), 4242 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL, 4243 access_sw_cpu_intr), 4244 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL, 4245 access_sw_cpu_rcv_limit), 4246 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL, 4247 access_sw_vtx_wait), 4248 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL, 4249 access_sw_pio_wait), 4250 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL, 4251 access_sw_pio_drain), 4252 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL, 4253 access_sw_kmem_wait), 4254 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL, 4255 access_sw_send_schedule), 4256 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn", 4257 SEND_DMA_DESC_FETCHED_CNT, 0, 4258 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4259 dev_access_u32_csr), 4260 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0, 4261 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4262 access_sde_int_cnt), 4263 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0, 4264 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4265 access_sde_err_cnt), 4266 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0, 4267 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4268 access_sde_idle_int_cnt), 4269 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0, 4270 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4271 access_sde_progress_int_cnt), 4272 /* MISC_ERR_STATUS */ 4273 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0, 4274 CNTR_NORMAL, 4275 access_misc_pll_lock_fail_err_cnt), 4276 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0, 4277 CNTR_NORMAL, 4278 access_misc_mbist_fail_err_cnt), 4279 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0, 4280 CNTR_NORMAL, 4281 access_misc_invalid_eep_cmd_err_cnt), 4282 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0, 4283 CNTR_NORMAL, 4284 access_misc_efuse_done_parity_err_cnt), 4285 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0, 4286 CNTR_NORMAL, 4287 access_misc_efuse_write_err_cnt), 4288 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0, 4289 0, CNTR_NORMAL, 4290 access_misc_efuse_read_bad_addr_err_cnt), 4291 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0, 4292 CNTR_NORMAL, 4293 access_misc_efuse_csr_parity_err_cnt), 4294 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0, 4295 CNTR_NORMAL, 4296 access_misc_fw_auth_failed_err_cnt), 4297 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0, 4298 CNTR_NORMAL, 4299 access_misc_key_mismatch_err_cnt), 4300 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0, 4301 CNTR_NORMAL, 4302 access_misc_sbus_write_failed_err_cnt), 4303 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0, 4304 CNTR_NORMAL, 4305 access_misc_csr_write_bad_addr_err_cnt), 4306 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0, 4307 CNTR_NORMAL, 4308 access_misc_csr_read_bad_addr_err_cnt), 4309 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0, 4310 CNTR_NORMAL, 4311 access_misc_csr_parity_err_cnt), 4312 /* CceErrStatus */ 4313 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0, 4314 CNTR_NORMAL, 4315 access_sw_cce_err_status_aggregated_cnt), 4316 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0, 4317 CNTR_NORMAL, 4318 access_cce_msix_csr_parity_err_cnt), 4319 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0, 4320 CNTR_NORMAL, 4321 access_cce_int_map_unc_err_cnt), 4322 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0, 4323 CNTR_NORMAL, 4324 access_cce_int_map_cor_err_cnt), 4325 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0, 4326 CNTR_NORMAL, 4327 access_cce_msix_table_unc_err_cnt), 4328 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0, 4329 CNTR_NORMAL, 4330 access_cce_msix_table_cor_err_cnt), 4331 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0, 4332 0, CNTR_NORMAL, 4333 access_cce_rxdma_conv_fifo_parity_err_cnt), 4334 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0, 4335 0, CNTR_NORMAL, 4336 access_cce_rcpl_async_fifo_parity_err_cnt), 4337 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0, 4338 CNTR_NORMAL, 4339 access_cce_seg_write_bad_addr_err_cnt), 4340 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0, 4341 CNTR_NORMAL, 4342 access_cce_seg_read_bad_addr_err_cnt), 4343 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0, 4344 CNTR_NORMAL, 4345 access_la_triggered_cnt), 4346 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0, 4347 CNTR_NORMAL, 4348 access_cce_trgt_cpl_timeout_err_cnt), 4349 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0, 4350 CNTR_NORMAL, 4351 access_pcic_receive_parity_err_cnt), 4352 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0, 4353 CNTR_NORMAL, 4354 access_pcic_transmit_back_parity_err_cnt), 4355 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0, 4356 0, CNTR_NORMAL, 4357 access_pcic_transmit_front_parity_err_cnt), 4358 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0, 4359 CNTR_NORMAL, 4360 access_pcic_cpl_dat_q_unc_err_cnt), 4361 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0, 4362 CNTR_NORMAL, 4363 access_pcic_cpl_hd_q_unc_err_cnt), 4364 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0, 4365 CNTR_NORMAL, 4366 access_pcic_post_dat_q_unc_err_cnt), 4367 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0, 4368 CNTR_NORMAL, 4369 access_pcic_post_hd_q_unc_err_cnt), 4370 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0, 4371 CNTR_NORMAL, 4372 access_pcic_retry_sot_mem_unc_err_cnt), 4373 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0, 4374 CNTR_NORMAL, 4375 access_pcic_retry_mem_unc_err), 4376 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0, 4377 CNTR_NORMAL, 4378 access_pcic_n_post_dat_q_parity_err_cnt), 4379 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0, 4380 CNTR_NORMAL, 4381 access_pcic_n_post_h_q_parity_err_cnt), 4382 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0, 4383 CNTR_NORMAL, 4384 access_pcic_cpl_dat_q_cor_err_cnt), 4385 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0, 4386 CNTR_NORMAL, 4387 access_pcic_cpl_hd_q_cor_err_cnt), 4388 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0, 4389 CNTR_NORMAL, 4390 access_pcic_post_dat_q_cor_err_cnt), 4391 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0, 4392 CNTR_NORMAL, 4393 access_pcic_post_hd_q_cor_err_cnt), 4394 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0, 4395 CNTR_NORMAL, 4396 access_pcic_retry_sot_mem_cor_err_cnt), 4397 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0, 4398 CNTR_NORMAL, 4399 access_pcic_retry_mem_cor_err_cnt), 4400 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM( 4401 "CceCli1AsyncFifoDbgParityError", 0, 0, 4402 CNTR_NORMAL, 4403 access_cce_cli1_async_fifo_dbg_parity_err_cnt), 4404 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM( 4405 "CceCli1AsyncFifoRxdmaParityError", 0, 0, 4406 CNTR_NORMAL, 4407 access_cce_cli1_async_fifo_rxdma_parity_err_cnt 4408 ), 4409 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM( 4410 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0, 4411 CNTR_NORMAL, 4412 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt), 4413 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM( 4414 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0, 4415 CNTR_NORMAL, 4416 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt), 4417 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0, 4418 0, CNTR_NORMAL, 4419 access_cce_cli2_async_fifo_parity_err_cnt), 4420 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0, 4421 CNTR_NORMAL, 4422 access_cce_csr_cfg_bus_parity_err_cnt), 4423 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0, 4424 0, CNTR_NORMAL, 4425 access_cce_cli0_async_fifo_parity_err_cnt), 4426 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0, 4427 CNTR_NORMAL, 4428 access_cce_rspd_data_parity_err_cnt), 4429 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0, 4430 CNTR_NORMAL, 4431 access_cce_trgt_access_err_cnt), 4432 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0, 4433 0, CNTR_NORMAL, 4434 access_cce_trgt_async_fifo_parity_err_cnt), 4435 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0, 4436 CNTR_NORMAL, 4437 access_cce_csr_write_bad_addr_err_cnt), 4438 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0, 4439 CNTR_NORMAL, 4440 access_cce_csr_read_bad_addr_err_cnt), 4441 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0, 4442 CNTR_NORMAL, 4443 access_ccs_csr_parity_err_cnt), 4444 4445 /* RcvErrStatus */ 4446 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0, 4447 CNTR_NORMAL, 4448 access_rx_csr_parity_err_cnt), 4449 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0, 4450 CNTR_NORMAL, 4451 access_rx_csr_write_bad_addr_err_cnt), 4452 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0, 4453 CNTR_NORMAL, 4454 access_rx_csr_read_bad_addr_err_cnt), 4455 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0, 4456 CNTR_NORMAL, 4457 access_rx_dma_csr_unc_err_cnt), 4458 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0, 4459 CNTR_NORMAL, 4460 access_rx_dma_dq_fsm_encoding_err_cnt), 4461 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0, 4462 CNTR_NORMAL, 4463 access_rx_dma_eq_fsm_encoding_err_cnt), 4464 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0, 4465 CNTR_NORMAL, 4466 access_rx_dma_csr_parity_err_cnt), 4467 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0, 4468 CNTR_NORMAL, 4469 access_rx_rbuf_data_cor_err_cnt), 4470 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0, 4471 CNTR_NORMAL, 4472 access_rx_rbuf_data_unc_err_cnt), 4473 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0, 4474 CNTR_NORMAL, 4475 access_rx_dma_data_fifo_rd_cor_err_cnt), 4476 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0, 4477 CNTR_NORMAL, 4478 access_rx_dma_data_fifo_rd_unc_err_cnt), 4479 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0, 4480 CNTR_NORMAL, 4481 access_rx_dma_hdr_fifo_rd_cor_err_cnt), 4482 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0, 4483 CNTR_NORMAL, 4484 access_rx_dma_hdr_fifo_rd_unc_err_cnt), 4485 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0, 4486 CNTR_NORMAL, 4487 access_rx_rbuf_desc_part2_cor_err_cnt), 4488 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0, 4489 CNTR_NORMAL, 4490 access_rx_rbuf_desc_part2_unc_err_cnt), 4491 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0, 4492 CNTR_NORMAL, 4493 access_rx_rbuf_desc_part1_cor_err_cnt), 4494 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0, 4495 CNTR_NORMAL, 4496 access_rx_rbuf_desc_part1_unc_err_cnt), 4497 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0, 4498 CNTR_NORMAL, 4499 access_rx_hq_intr_fsm_err_cnt), 4500 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0, 4501 CNTR_NORMAL, 4502 access_rx_hq_intr_csr_parity_err_cnt), 4503 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0, 4504 CNTR_NORMAL, 4505 access_rx_lookup_csr_parity_err_cnt), 4506 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0, 4507 CNTR_NORMAL, 4508 access_rx_lookup_rcv_array_cor_err_cnt), 4509 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0, 4510 CNTR_NORMAL, 4511 access_rx_lookup_rcv_array_unc_err_cnt), 4512 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0, 4513 0, CNTR_NORMAL, 4514 access_rx_lookup_des_part2_parity_err_cnt), 4515 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0, 4516 0, CNTR_NORMAL, 4517 access_rx_lookup_des_part1_unc_cor_err_cnt), 4518 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0, 4519 CNTR_NORMAL, 4520 access_rx_lookup_des_part1_unc_err_cnt), 4521 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0, 4522 CNTR_NORMAL, 4523 access_rx_rbuf_next_free_buf_cor_err_cnt), 4524 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0, 4525 CNTR_NORMAL, 4526 access_rx_rbuf_next_free_buf_unc_err_cnt), 4527 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM( 4528 "RxRbufFlInitWrAddrParityErr", 0, 0, 4529 CNTR_NORMAL, 4530 access_rbuf_fl_init_wr_addr_parity_err_cnt), 4531 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0, 4532 0, CNTR_NORMAL, 4533 access_rx_rbuf_fl_initdone_parity_err_cnt), 4534 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0, 4535 0, CNTR_NORMAL, 4536 access_rx_rbuf_fl_write_addr_parity_err_cnt), 4537 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0, 4538 CNTR_NORMAL, 4539 access_rx_rbuf_fl_rd_addr_parity_err_cnt), 4540 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0, 4541 CNTR_NORMAL, 4542 access_rx_rbuf_empty_err_cnt), 4543 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0, 4544 CNTR_NORMAL, 4545 access_rx_rbuf_full_err_cnt), 4546 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0, 4547 CNTR_NORMAL, 4548 access_rbuf_bad_lookup_err_cnt), 4549 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0, 4550 CNTR_NORMAL, 4551 access_rbuf_ctx_id_parity_err_cnt), 4552 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0, 4553 CNTR_NORMAL, 4554 access_rbuf_csr_qeopdw_parity_err_cnt), 4555 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM( 4556 "RxRbufCsrQNumOfPktParityErr", 0, 0, 4557 CNTR_NORMAL, 4558 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt), 4559 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM( 4560 "RxRbufCsrQTlPtrParityErr", 0, 0, 4561 CNTR_NORMAL, 4562 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt), 4563 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0, 4564 0, CNTR_NORMAL, 4565 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt), 4566 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0, 4567 0, CNTR_NORMAL, 4568 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt), 4569 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr", 4570 0, 0, CNTR_NORMAL, 4571 access_rx_rbuf_csr_q_next_buf_parity_err_cnt), 4572 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0, 4573 0, CNTR_NORMAL, 4574 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt), 4575 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM( 4576 "RxRbufCsrQHeadBufNumParityErr", 0, 0, 4577 CNTR_NORMAL, 4578 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt), 4579 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0, 4580 0, CNTR_NORMAL, 4581 access_rx_rbuf_block_list_read_cor_err_cnt), 4582 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0, 4583 0, CNTR_NORMAL, 4584 access_rx_rbuf_block_list_read_unc_err_cnt), 4585 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0, 4586 CNTR_NORMAL, 4587 access_rx_rbuf_lookup_des_cor_err_cnt), 4588 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0, 4589 CNTR_NORMAL, 4590 access_rx_rbuf_lookup_des_unc_err_cnt), 4591 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM( 4592 "RxRbufLookupDesRegUncCorErr", 0, 0, 4593 CNTR_NORMAL, 4594 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt), 4595 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0, 4596 CNTR_NORMAL, 4597 access_rx_rbuf_lookup_des_reg_unc_err_cnt), 4598 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0, 4599 CNTR_NORMAL, 4600 access_rx_rbuf_free_list_cor_err_cnt), 4601 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0, 4602 CNTR_NORMAL, 4603 access_rx_rbuf_free_list_unc_err_cnt), 4604 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0, 4605 CNTR_NORMAL, 4606 access_rx_rcv_fsm_encoding_err_cnt), 4607 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0, 4608 CNTR_NORMAL, 4609 access_rx_dma_flag_cor_err_cnt), 4610 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0, 4611 CNTR_NORMAL, 4612 access_rx_dma_flag_unc_err_cnt), 4613 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0, 4614 CNTR_NORMAL, 4615 access_rx_dc_sop_eop_parity_err_cnt), 4616 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0, 4617 CNTR_NORMAL, 4618 access_rx_rcv_csr_parity_err_cnt), 4619 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0, 4620 CNTR_NORMAL, 4621 access_rx_rcv_qp_map_table_cor_err_cnt), 4622 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0, 4623 CNTR_NORMAL, 4624 access_rx_rcv_qp_map_table_unc_err_cnt), 4625 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0, 4626 CNTR_NORMAL, 4627 access_rx_rcv_data_cor_err_cnt), 4628 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0, 4629 CNTR_NORMAL, 4630 access_rx_rcv_data_unc_err_cnt), 4631 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0, 4632 CNTR_NORMAL, 4633 access_rx_rcv_hdr_cor_err_cnt), 4634 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0, 4635 CNTR_NORMAL, 4636 access_rx_rcv_hdr_unc_err_cnt), 4637 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0, 4638 CNTR_NORMAL, 4639 access_rx_dc_intf_parity_err_cnt), 4640 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0, 4641 CNTR_NORMAL, 4642 access_rx_dma_csr_cor_err_cnt), 4643 /* SendPioErrStatus */ 4644 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0, 4645 CNTR_NORMAL, 4646 access_pio_pec_sop_head_parity_err_cnt), 4647 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0, 4648 CNTR_NORMAL, 4649 access_pio_pcc_sop_head_parity_err_cnt), 4650 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr", 4651 0, 0, CNTR_NORMAL, 4652 access_pio_last_returned_cnt_parity_err_cnt), 4653 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0, 4654 0, CNTR_NORMAL, 4655 access_pio_current_free_cnt_parity_err_cnt), 4656 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0, 4657 CNTR_NORMAL, 4658 access_pio_reserved_31_err_cnt), 4659 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0, 4660 CNTR_NORMAL, 4661 access_pio_reserved_30_err_cnt), 4662 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0, 4663 CNTR_NORMAL, 4664 access_pio_ppmc_sop_len_err_cnt), 4665 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0, 4666 CNTR_NORMAL, 4667 access_pio_ppmc_bqc_mem_parity_err_cnt), 4668 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0, 4669 CNTR_NORMAL, 4670 access_pio_vl_fifo_parity_err_cnt), 4671 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0, 4672 CNTR_NORMAL, 4673 access_pio_vlf_sop_parity_err_cnt), 4674 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0, 4675 CNTR_NORMAL, 4676 access_pio_vlf_v1_len_parity_err_cnt), 4677 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0, 4678 CNTR_NORMAL, 4679 access_pio_block_qw_count_parity_err_cnt), 4680 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0, 4681 CNTR_NORMAL, 4682 access_pio_write_qw_valid_parity_err_cnt), 4683 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0, 4684 CNTR_NORMAL, 4685 access_pio_state_machine_err_cnt), 4686 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0, 4687 CNTR_NORMAL, 4688 access_pio_write_data_parity_err_cnt), 4689 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0, 4690 CNTR_NORMAL, 4691 access_pio_host_addr_mem_cor_err_cnt), 4692 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0, 4693 CNTR_NORMAL, 4694 access_pio_host_addr_mem_unc_err_cnt), 4695 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0, 4696 CNTR_NORMAL, 4697 access_pio_pkt_evict_sm_or_arb_sm_err_cnt), 4698 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0, 4699 CNTR_NORMAL, 4700 access_pio_init_sm_in_err_cnt), 4701 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0, 4702 CNTR_NORMAL, 4703 access_pio_ppmc_pbl_fifo_err_cnt), 4704 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0, 4705 0, CNTR_NORMAL, 4706 access_pio_credit_ret_fifo_parity_err_cnt), 4707 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0, 4708 CNTR_NORMAL, 4709 access_pio_v1_len_mem_bank1_cor_err_cnt), 4710 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0, 4711 CNTR_NORMAL, 4712 access_pio_v1_len_mem_bank0_cor_err_cnt), 4713 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0, 4714 CNTR_NORMAL, 4715 access_pio_v1_len_mem_bank1_unc_err_cnt), 4716 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0, 4717 CNTR_NORMAL, 4718 access_pio_v1_len_mem_bank0_unc_err_cnt), 4719 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0, 4720 CNTR_NORMAL, 4721 access_pio_sm_pkt_reset_parity_err_cnt), 4722 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0, 4723 CNTR_NORMAL, 4724 access_pio_pkt_evict_fifo_parity_err_cnt), 4725 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM( 4726 "PioSbrdctrlCrrelFifoParityErr", 0, 0, 4727 CNTR_NORMAL, 4728 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt), 4729 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0, 4730 CNTR_NORMAL, 4731 access_pio_sbrdctl_crrel_parity_err_cnt), 4732 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0, 4733 CNTR_NORMAL, 4734 access_pio_pec_fifo_parity_err_cnt), 4735 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0, 4736 CNTR_NORMAL, 4737 access_pio_pcc_fifo_parity_err_cnt), 4738 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0, 4739 CNTR_NORMAL, 4740 access_pio_sb_mem_fifo1_err_cnt), 4741 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0, 4742 CNTR_NORMAL, 4743 access_pio_sb_mem_fifo0_err_cnt), 4744 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0, 4745 CNTR_NORMAL, 4746 access_pio_csr_parity_err_cnt), 4747 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0, 4748 CNTR_NORMAL, 4749 access_pio_write_addr_parity_err_cnt), 4750 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0, 4751 CNTR_NORMAL, 4752 access_pio_write_bad_ctxt_err_cnt), 4753 /* SendDmaErrStatus */ 4754 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0, 4755 0, CNTR_NORMAL, 4756 access_sdma_pcie_req_tracking_cor_err_cnt), 4757 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0, 4758 0, CNTR_NORMAL, 4759 access_sdma_pcie_req_tracking_unc_err_cnt), 4760 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0, 4761 CNTR_NORMAL, 4762 access_sdma_csr_parity_err_cnt), 4763 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0, 4764 CNTR_NORMAL, 4765 access_sdma_rpy_tag_err_cnt), 4766 /* SendEgressErrStatus */ 4767 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0, 4768 CNTR_NORMAL, 4769 access_tx_read_pio_memory_csr_unc_err_cnt), 4770 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0, 4771 0, CNTR_NORMAL, 4772 access_tx_read_sdma_memory_csr_err_cnt), 4773 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0, 4774 CNTR_NORMAL, 4775 access_tx_egress_fifo_cor_err_cnt), 4776 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0, 4777 CNTR_NORMAL, 4778 access_tx_read_pio_memory_cor_err_cnt), 4779 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0, 4780 CNTR_NORMAL, 4781 access_tx_read_sdma_memory_cor_err_cnt), 4782 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0, 4783 CNTR_NORMAL, 4784 access_tx_sb_hdr_cor_err_cnt), 4785 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0, 4786 CNTR_NORMAL, 4787 access_tx_credit_overrun_err_cnt), 4788 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0, 4789 CNTR_NORMAL, 4790 access_tx_launch_fifo8_cor_err_cnt), 4791 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0, 4792 CNTR_NORMAL, 4793 access_tx_launch_fifo7_cor_err_cnt), 4794 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0, 4795 CNTR_NORMAL, 4796 access_tx_launch_fifo6_cor_err_cnt), 4797 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0, 4798 CNTR_NORMAL, 4799 access_tx_launch_fifo5_cor_err_cnt), 4800 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0, 4801 CNTR_NORMAL, 4802 access_tx_launch_fifo4_cor_err_cnt), 4803 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0, 4804 CNTR_NORMAL, 4805 access_tx_launch_fifo3_cor_err_cnt), 4806 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0, 4807 CNTR_NORMAL, 4808 access_tx_launch_fifo2_cor_err_cnt), 4809 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0, 4810 CNTR_NORMAL, 4811 access_tx_launch_fifo1_cor_err_cnt), 4812 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0, 4813 CNTR_NORMAL, 4814 access_tx_launch_fifo0_cor_err_cnt), 4815 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0, 4816 CNTR_NORMAL, 4817 access_tx_credit_return_vl_err_cnt), 4818 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0, 4819 CNTR_NORMAL, 4820 access_tx_hcrc_insertion_err_cnt), 4821 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0, 4822 CNTR_NORMAL, 4823 access_tx_egress_fifo_unc_err_cnt), 4824 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0, 4825 CNTR_NORMAL, 4826 access_tx_read_pio_memory_unc_err_cnt), 4827 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0, 4828 CNTR_NORMAL, 4829 access_tx_read_sdma_memory_unc_err_cnt), 4830 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0, 4831 CNTR_NORMAL, 4832 access_tx_sb_hdr_unc_err_cnt), 4833 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0, 4834 CNTR_NORMAL, 4835 access_tx_credit_return_partiy_err_cnt), 4836 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr", 4837 0, 0, CNTR_NORMAL, 4838 access_tx_launch_fifo8_unc_or_parity_err_cnt), 4839 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr", 4840 0, 0, CNTR_NORMAL, 4841 access_tx_launch_fifo7_unc_or_parity_err_cnt), 4842 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr", 4843 0, 0, CNTR_NORMAL, 4844 access_tx_launch_fifo6_unc_or_parity_err_cnt), 4845 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr", 4846 0, 0, CNTR_NORMAL, 4847 access_tx_launch_fifo5_unc_or_parity_err_cnt), 4848 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr", 4849 0, 0, CNTR_NORMAL, 4850 access_tx_launch_fifo4_unc_or_parity_err_cnt), 4851 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr", 4852 0, 0, CNTR_NORMAL, 4853 access_tx_launch_fifo3_unc_or_parity_err_cnt), 4854 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr", 4855 0, 0, CNTR_NORMAL, 4856 access_tx_launch_fifo2_unc_or_parity_err_cnt), 4857 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr", 4858 0, 0, CNTR_NORMAL, 4859 access_tx_launch_fifo1_unc_or_parity_err_cnt), 4860 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr", 4861 0, 0, CNTR_NORMAL, 4862 access_tx_launch_fifo0_unc_or_parity_err_cnt), 4863 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr", 4864 0, 0, CNTR_NORMAL, 4865 access_tx_sdma15_disallowed_packet_err_cnt), 4866 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr", 4867 0, 0, CNTR_NORMAL, 4868 access_tx_sdma14_disallowed_packet_err_cnt), 4869 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr", 4870 0, 0, CNTR_NORMAL, 4871 access_tx_sdma13_disallowed_packet_err_cnt), 4872 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr", 4873 0, 0, CNTR_NORMAL, 4874 access_tx_sdma12_disallowed_packet_err_cnt), 4875 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr", 4876 0, 0, CNTR_NORMAL, 4877 access_tx_sdma11_disallowed_packet_err_cnt), 4878 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr", 4879 0, 0, CNTR_NORMAL, 4880 access_tx_sdma10_disallowed_packet_err_cnt), 4881 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr", 4882 0, 0, CNTR_NORMAL, 4883 access_tx_sdma9_disallowed_packet_err_cnt), 4884 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr", 4885 0, 0, CNTR_NORMAL, 4886 access_tx_sdma8_disallowed_packet_err_cnt), 4887 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr", 4888 0, 0, CNTR_NORMAL, 4889 access_tx_sdma7_disallowed_packet_err_cnt), 4890 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr", 4891 0, 0, CNTR_NORMAL, 4892 access_tx_sdma6_disallowed_packet_err_cnt), 4893 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr", 4894 0, 0, CNTR_NORMAL, 4895 access_tx_sdma5_disallowed_packet_err_cnt), 4896 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr", 4897 0, 0, CNTR_NORMAL, 4898 access_tx_sdma4_disallowed_packet_err_cnt), 4899 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr", 4900 0, 0, CNTR_NORMAL, 4901 access_tx_sdma3_disallowed_packet_err_cnt), 4902 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr", 4903 0, 0, CNTR_NORMAL, 4904 access_tx_sdma2_disallowed_packet_err_cnt), 4905 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr", 4906 0, 0, CNTR_NORMAL, 4907 access_tx_sdma1_disallowed_packet_err_cnt), 4908 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr", 4909 0, 0, CNTR_NORMAL, 4910 access_tx_sdma0_disallowed_packet_err_cnt), 4911 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0, 4912 CNTR_NORMAL, 4913 access_tx_config_parity_err_cnt), 4914 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0, 4915 CNTR_NORMAL, 4916 access_tx_sbrd_ctl_csr_parity_err_cnt), 4917 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0, 4918 CNTR_NORMAL, 4919 access_tx_launch_csr_parity_err_cnt), 4920 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0, 4921 CNTR_NORMAL, 4922 access_tx_illegal_vl_err_cnt), 4923 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM( 4924 "TxSbrdCtlStateMachineParityErr", 0, 0, 4925 CNTR_NORMAL, 4926 access_tx_sbrd_ctl_state_machine_parity_err_cnt), 4927 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0, 4928 CNTR_NORMAL, 4929 access_egress_reserved_10_err_cnt), 4930 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0, 4931 CNTR_NORMAL, 4932 access_egress_reserved_9_err_cnt), 4933 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr", 4934 0, 0, CNTR_NORMAL, 4935 access_tx_sdma_launch_intf_parity_err_cnt), 4936 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0, 4937 CNTR_NORMAL, 4938 access_tx_pio_launch_intf_parity_err_cnt), 4939 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0, 4940 CNTR_NORMAL, 4941 access_egress_reserved_6_err_cnt), 4942 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0, 4943 CNTR_NORMAL, 4944 access_tx_incorrect_link_state_err_cnt), 4945 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0, 4946 CNTR_NORMAL, 4947 access_tx_linkdown_err_cnt), 4948 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM( 4949 "EgressFifoUnderrunOrParityErr", 0, 0, 4950 CNTR_NORMAL, 4951 access_tx_egress_fifi_underrun_or_parity_err_cnt), 4952 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0, 4953 CNTR_NORMAL, 4954 access_egress_reserved_2_err_cnt), 4955 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0, 4956 CNTR_NORMAL, 4957 access_tx_pkt_integrity_mem_unc_err_cnt), 4958 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0, 4959 CNTR_NORMAL, 4960 access_tx_pkt_integrity_mem_cor_err_cnt), 4961 /* SendErrStatus */ 4962 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0, 4963 CNTR_NORMAL, 4964 access_send_csr_write_bad_addr_err_cnt), 4965 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0, 4966 CNTR_NORMAL, 4967 access_send_csr_read_bad_addr_err_cnt), 4968 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0, 4969 CNTR_NORMAL, 4970 access_send_csr_parity_cnt), 4971 /* SendCtxtErrStatus */ 4972 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0, 4973 CNTR_NORMAL, 4974 access_pio_write_out_of_bounds_err_cnt), 4975 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0, 4976 CNTR_NORMAL, 4977 access_pio_write_overflow_err_cnt), 4978 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr", 4979 0, 0, CNTR_NORMAL, 4980 access_pio_write_crosses_boundary_err_cnt), 4981 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0, 4982 CNTR_NORMAL, 4983 access_pio_disallowed_packet_err_cnt), 4984 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0, 4985 CNTR_NORMAL, 4986 access_pio_inconsistent_sop_err_cnt), 4987 /* SendDmaEngErrStatus */ 4988 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr", 4989 0, 0, CNTR_NORMAL, 4990 access_sdma_header_request_fifo_cor_err_cnt), 4991 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0, 4992 CNTR_NORMAL, 4993 access_sdma_header_storage_cor_err_cnt), 4994 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0, 4995 CNTR_NORMAL, 4996 access_sdma_packet_tracking_cor_err_cnt), 4997 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0, 4998 CNTR_NORMAL, 4999 access_sdma_assembly_cor_err_cnt), 5000 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0, 5001 CNTR_NORMAL, 5002 access_sdma_desc_table_cor_err_cnt), 5003 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr", 5004 0, 0, CNTR_NORMAL, 5005 access_sdma_header_request_fifo_unc_err_cnt), 5006 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0, 5007 CNTR_NORMAL, 5008 access_sdma_header_storage_unc_err_cnt), 5009 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0, 5010 CNTR_NORMAL, 5011 access_sdma_packet_tracking_unc_err_cnt), 5012 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0, 5013 CNTR_NORMAL, 5014 access_sdma_assembly_unc_err_cnt), 5015 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0, 5016 CNTR_NORMAL, 5017 access_sdma_desc_table_unc_err_cnt), 5018 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0, 5019 CNTR_NORMAL, 5020 access_sdma_timeout_err_cnt), 5021 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0, 5022 CNTR_NORMAL, 5023 access_sdma_header_length_err_cnt), 5024 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0, 5025 CNTR_NORMAL, 5026 access_sdma_header_address_err_cnt), 5027 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0, 5028 CNTR_NORMAL, 5029 access_sdma_header_select_err_cnt), 5030 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0, 5031 CNTR_NORMAL, 5032 access_sdma_reserved_9_err_cnt), 5033 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0, 5034 CNTR_NORMAL, 5035 access_sdma_packet_desc_overflow_err_cnt), 5036 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0, 5037 CNTR_NORMAL, 5038 access_sdma_length_mismatch_err_cnt), 5039 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0, 5040 CNTR_NORMAL, 5041 access_sdma_halt_err_cnt), 5042 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0, 5043 CNTR_NORMAL, 5044 access_sdma_mem_read_err_cnt), 5045 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0, 5046 CNTR_NORMAL, 5047 access_sdma_first_desc_err_cnt), 5048 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0, 5049 CNTR_NORMAL, 5050 access_sdma_tail_out_of_bounds_err_cnt), 5051 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0, 5052 CNTR_NORMAL, 5053 access_sdma_too_long_err_cnt), 5054 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0, 5055 CNTR_NORMAL, 5056 access_sdma_gen_mismatch_err_cnt), 5057 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0, 5058 CNTR_NORMAL, 5059 access_sdma_wrong_dw_err_cnt), 5060 }; 5061 5062 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = { 5063 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT, 5064 CNTR_NORMAL), 5065 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT, 5066 CNTR_NORMAL), 5067 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT, 5068 CNTR_NORMAL), 5069 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT, 5070 CNTR_NORMAL), 5071 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT, 5072 CNTR_NORMAL), 5073 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT, 5074 CNTR_NORMAL), 5075 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT, 5076 CNTR_NORMAL), 5077 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL), 5078 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL), 5079 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH), 5080 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT, 5081 CNTR_SYNTH | CNTR_VL), 5082 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT, 5083 CNTR_SYNTH | CNTR_VL), 5084 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT, 5085 CNTR_SYNTH | CNTR_VL), 5086 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL), 5087 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL), 5088 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5089 access_sw_link_dn_cnt), 5090 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5091 access_sw_link_up_cnt), 5092 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL, 5093 access_sw_unknown_frame_cnt), 5094 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5095 access_sw_xmit_discards), 5096 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0, 5097 CNTR_SYNTH | CNTR_32BIT | CNTR_VL, 5098 access_sw_xmit_discards), 5099 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH, 5100 access_xmit_constraint_errs), 5101 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH, 5102 access_rcv_constraint_errs), 5103 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts), 5104 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends), 5105 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks), 5106 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks), 5107 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts), 5108 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops), 5109 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait), 5110 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak), 5111 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq), 5112 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq), 5113 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned), 5114 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks), 5115 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL, 5116 access_sw_cpu_rc_acks), 5117 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL, 5118 access_sw_cpu_rc_qacks), 5119 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL, 5120 access_sw_cpu_rc_delayed_comp), 5121 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1), 5122 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3), 5123 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5), 5124 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7), 5125 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9), 5126 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11), 5127 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13), 5128 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15), 5129 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17), 5130 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19), 5131 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21), 5132 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23), 5133 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25), 5134 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27), 5135 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29), 5136 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31), 5137 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33), 5138 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35), 5139 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37), 5140 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39), 5141 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41), 5142 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43), 5143 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45), 5144 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47), 5145 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49), 5146 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51), 5147 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53), 5148 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55), 5149 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57), 5150 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59), 5151 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61), 5152 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63), 5153 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65), 5154 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67), 5155 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69), 5156 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71), 5157 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73), 5158 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75), 5159 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77), 5160 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79), 5161 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81), 5162 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83), 5163 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85), 5164 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87), 5165 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89), 5166 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91), 5167 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93), 5168 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95), 5169 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97), 5170 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99), 5171 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101), 5172 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103), 5173 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105), 5174 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107), 5175 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109), 5176 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111), 5177 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113), 5178 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115), 5179 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117), 5180 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119), 5181 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121), 5182 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123), 5183 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125), 5184 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127), 5185 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129), 5186 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131), 5187 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133), 5188 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135), 5189 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137), 5190 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139), 5191 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141), 5192 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143), 5193 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145), 5194 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147), 5195 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149), 5196 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151), 5197 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153), 5198 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155), 5199 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157), 5200 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159), 5201 }; 5202 5203 /* ======================================================================== */ 5204 5205 /* return true if this is chip revision revision a */ 5206 int is_ax(struct hfi1_devdata *dd) 5207 { 5208 u8 chip_rev_minor = 5209 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5210 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5211 return (chip_rev_minor & 0xf0) == 0; 5212 } 5213 5214 /* return true if this is chip revision revision b */ 5215 int is_bx(struct hfi1_devdata *dd) 5216 { 5217 u8 chip_rev_minor = 5218 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5219 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5220 return (chip_rev_minor & 0xF0) == 0x10; 5221 } 5222 5223 /* 5224 * Append string s to buffer buf. Arguments curp and len are the current 5225 * position and remaining length, respectively. 5226 * 5227 * return 0 on success, 1 on out of room 5228 */ 5229 static int append_str(char *buf, char **curp, int *lenp, const char *s) 5230 { 5231 char *p = *curp; 5232 int len = *lenp; 5233 int result = 0; /* success */ 5234 char c; 5235 5236 /* add a comma, if first in the buffer */ 5237 if (p != buf) { 5238 if (len == 0) { 5239 result = 1; /* out of room */ 5240 goto done; 5241 } 5242 *p++ = ','; 5243 len--; 5244 } 5245 5246 /* copy the string */ 5247 while ((c = *s++) != 0) { 5248 if (len == 0) { 5249 result = 1; /* out of room */ 5250 goto done; 5251 } 5252 *p++ = c; 5253 len--; 5254 } 5255 5256 done: 5257 /* write return values */ 5258 *curp = p; 5259 *lenp = len; 5260 5261 return result; 5262 } 5263 5264 /* 5265 * Using the given flag table, print a comma separated string into 5266 * the buffer. End in '*' if the buffer is too short. 5267 */ 5268 static char *flag_string(char *buf, int buf_len, u64 flags, 5269 struct flag_table *table, int table_size) 5270 { 5271 char extra[32]; 5272 char *p = buf; 5273 int len = buf_len; 5274 int no_room = 0; 5275 int i; 5276 5277 /* make sure there is at least 2 so we can form "*" */ 5278 if (len < 2) 5279 return ""; 5280 5281 len--; /* leave room for a nul */ 5282 for (i = 0; i < table_size; i++) { 5283 if (flags & table[i].flag) { 5284 no_room = append_str(buf, &p, &len, table[i].str); 5285 if (no_room) 5286 break; 5287 flags &= ~table[i].flag; 5288 } 5289 } 5290 5291 /* any undocumented bits left? */ 5292 if (!no_room && flags) { 5293 snprintf(extra, sizeof(extra), "bits 0x%llx", flags); 5294 no_room = append_str(buf, &p, &len, extra); 5295 } 5296 5297 /* add * if ran out of room */ 5298 if (no_room) { 5299 /* may need to back up to add space for a '*' */ 5300 if (len == 0) 5301 --p; 5302 *p++ = '*'; 5303 } 5304 5305 /* add final nul - space already allocated above */ 5306 *p = 0; 5307 return buf; 5308 } 5309 5310 /* first 8 CCE error interrupt source names */ 5311 static const char * const cce_misc_names[] = { 5312 "CceErrInt", /* 0 */ 5313 "RxeErrInt", /* 1 */ 5314 "MiscErrInt", /* 2 */ 5315 "Reserved3", /* 3 */ 5316 "PioErrInt", /* 4 */ 5317 "SDmaErrInt", /* 5 */ 5318 "EgressErrInt", /* 6 */ 5319 "TxeErrInt" /* 7 */ 5320 }; 5321 5322 /* 5323 * Return the miscellaneous error interrupt name. 5324 */ 5325 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source) 5326 { 5327 if (source < ARRAY_SIZE(cce_misc_names)) 5328 strncpy(buf, cce_misc_names[source], bsize); 5329 else 5330 snprintf(buf, bsize, "Reserved%u", 5331 source + IS_GENERAL_ERR_START); 5332 5333 return buf; 5334 } 5335 5336 /* 5337 * Return the SDMA engine error interrupt name. 5338 */ 5339 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source) 5340 { 5341 snprintf(buf, bsize, "SDmaEngErrInt%u", source); 5342 return buf; 5343 } 5344 5345 /* 5346 * Return the send context error interrupt name. 5347 */ 5348 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source) 5349 { 5350 snprintf(buf, bsize, "SendCtxtErrInt%u", source); 5351 return buf; 5352 } 5353 5354 static const char * const various_names[] = { 5355 "PbcInt", 5356 "GpioAssertInt", 5357 "Qsfp1Int", 5358 "Qsfp2Int", 5359 "TCritInt" 5360 }; 5361 5362 /* 5363 * Return the various interrupt name. 5364 */ 5365 static char *is_various_name(char *buf, size_t bsize, unsigned int source) 5366 { 5367 if (source < ARRAY_SIZE(various_names)) 5368 strncpy(buf, various_names[source], bsize); 5369 else 5370 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START); 5371 return buf; 5372 } 5373 5374 /* 5375 * Return the DC interrupt name. 5376 */ 5377 static char *is_dc_name(char *buf, size_t bsize, unsigned int source) 5378 { 5379 static const char * const dc_int_names[] = { 5380 "common", 5381 "lcb", 5382 "8051", 5383 "lbm" /* local block merge */ 5384 }; 5385 5386 if (source < ARRAY_SIZE(dc_int_names)) 5387 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]); 5388 else 5389 snprintf(buf, bsize, "DCInt%u", source); 5390 return buf; 5391 } 5392 5393 static const char * const sdma_int_names[] = { 5394 "SDmaInt", 5395 "SdmaIdleInt", 5396 "SdmaProgressInt", 5397 }; 5398 5399 /* 5400 * Return the SDMA engine interrupt name. 5401 */ 5402 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source) 5403 { 5404 /* what interrupt */ 5405 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 5406 /* which engine */ 5407 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 5408 5409 if (likely(what < 3)) 5410 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which); 5411 else 5412 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source); 5413 return buf; 5414 } 5415 5416 /* 5417 * Return the receive available interrupt name. 5418 */ 5419 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source) 5420 { 5421 snprintf(buf, bsize, "RcvAvailInt%u", source); 5422 return buf; 5423 } 5424 5425 /* 5426 * Return the receive urgent interrupt name. 5427 */ 5428 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source) 5429 { 5430 snprintf(buf, bsize, "RcvUrgentInt%u", source); 5431 return buf; 5432 } 5433 5434 /* 5435 * Return the send credit interrupt name. 5436 */ 5437 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source) 5438 { 5439 snprintf(buf, bsize, "SendCreditInt%u", source); 5440 return buf; 5441 } 5442 5443 /* 5444 * Return the reserved interrupt name. 5445 */ 5446 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source) 5447 { 5448 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START); 5449 return buf; 5450 } 5451 5452 static char *cce_err_status_string(char *buf, int buf_len, u64 flags) 5453 { 5454 return flag_string(buf, buf_len, flags, 5455 cce_err_status_flags, 5456 ARRAY_SIZE(cce_err_status_flags)); 5457 } 5458 5459 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags) 5460 { 5461 return flag_string(buf, buf_len, flags, 5462 rxe_err_status_flags, 5463 ARRAY_SIZE(rxe_err_status_flags)); 5464 } 5465 5466 static char *misc_err_status_string(char *buf, int buf_len, u64 flags) 5467 { 5468 return flag_string(buf, buf_len, flags, misc_err_status_flags, 5469 ARRAY_SIZE(misc_err_status_flags)); 5470 } 5471 5472 static char *pio_err_status_string(char *buf, int buf_len, u64 flags) 5473 { 5474 return flag_string(buf, buf_len, flags, 5475 pio_err_status_flags, 5476 ARRAY_SIZE(pio_err_status_flags)); 5477 } 5478 5479 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags) 5480 { 5481 return flag_string(buf, buf_len, flags, 5482 sdma_err_status_flags, 5483 ARRAY_SIZE(sdma_err_status_flags)); 5484 } 5485 5486 static char *egress_err_status_string(char *buf, int buf_len, u64 flags) 5487 { 5488 return flag_string(buf, buf_len, flags, 5489 egress_err_status_flags, 5490 ARRAY_SIZE(egress_err_status_flags)); 5491 } 5492 5493 static char *egress_err_info_string(char *buf, int buf_len, u64 flags) 5494 { 5495 return flag_string(buf, buf_len, flags, 5496 egress_err_info_flags, 5497 ARRAY_SIZE(egress_err_info_flags)); 5498 } 5499 5500 static char *send_err_status_string(char *buf, int buf_len, u64 flags) 5501 { 5502 return flag_string(buf, buf_len, flags, 5503 send_err_status_flags, 5504 ARRAY_SIZE(send_err_status_flags)); 5505 } 5506 5507 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5508 { 5509 char buf[96]; 5510 int i = 0; 5511 5512 /* 5513 * For most these errors, there is nothing that can be done except 5514 * report or record it. 5515 */ 5516 dd_dev_info(dd, "CCE Error: %s\n", 5517 cce_err_status_string(buf, sizeof(buf), reg)); 5518 5519 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) && 5520 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) { 5521 /* this error requires a manual drop into SPC freeze mode */ 5522 /* then a fix up */ 5523 start_freeze_handling(dd->pport, FREEZE_SELF); 5524 } 5525 5526 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) { 5527 if (reg & (1ull << i)) { 5528 incr_cntr64(&dd->cce_err_status_cnt[i]); 5529 /* maintain a counter over all cce_err_status errors */ 5530 incr_cntr64(&dd->sw_cce_err_status_aggregate); 5531 } 5532 } 5533 } 5534 5535 /* 5536 * Check counters for receive errors that do not have an interrupt 5537 * associated with them. 5538 */ 5539 #define RCVERR_CHECK_TIME 10 5540 static void update_rcverr_timer(struct timer_list *t) 5541 { 5542 struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer); 5543 struct hfi1_pportdata *ppd = dd->pport; 5544 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 5545 5546 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt && 5547 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) { 5548 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 5549 set_link_down_reason( 5550 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0, 5551 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN); 5552 queue_work(ppd->link_wq, &ppd->link_bounce_work); 5553 } 5554 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt; 5555 5556 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5557 } 5558 5559 static int init_rcverr(struct hfi1_devdata *dd) 5560 { 5561 timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0); 5562 /* Assume the hardware counter has been reset */ 5563 dd->rcv_ovfl_cnt = 0; 5564 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5565 } 5566 5567 static void free_rcverr(struct hfi1_devdata *dd) 5568 { 5569 if (dd->rcverr_timer.function) 5570 del_timer_sync(&dd->rcverr_timer); 5571 } 5572 5573 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5574 { 5575 char buf[96]; 5576 int i = 0; 5577 5578 dd_dev_info(dd, "Receive Error: %s\n", 5579 rxe_err_status_string(buf, sizeof(buf), reg)); 5580 5581 if (reg & ALL_RXE_FREEZE_ERR) { 5582 int flags = 0; 5583 5584 /* 5585 * Freeze mode recovery is disabled for the errors 5586 * in RXE_FREEZE_ABORT_MASK 5587 */ 5588 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK)) 5589 flags = FREEZE_ABORT; 5590 5591 start_freeze_handling(dd->pport, flags); 5592 } 5593 5594 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) { 5595 if (reg & (1ull << i)) 5596 incr_cntr64(&dd->rcv_err_status_cnt[i]); 5597 } 5598 } 5599 5600 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5601 { 5602 char buf[96]; 5603 int i = 0; 5604 5605 dd_dev_info(dd, "Misc Error: %s", 5606 misc_err_status_string(buf, sizeof(buf), reg)); 5607 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) { 5608 if (reg & (1ull << i)) 5609 incr_cntr64(&dd->misc_err_status_cnt[i]); 5610 } 5611 } 5612 5613 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5614 { 5615 char buf[96]; 5616 int i = 0; 5617 5618 dd_dev_info(dd, "PIO Error: %s\n", 5619 pio_err_status_string(buf, sizeof(buf), reg)); 5620 5621 if (reg & ALL_PIO_FREEZE_ERR) 5622 start_freeze_handling(dd->pport, 0); 5623 5624 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) { 5625 if (reg & (1ull << i)) 5626 incr_cntr64(&dd->send_pio_err_status_cnt[i]); 5627 } 5628 } 5629 5630 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5631 { 5632 char buf[96]; 5633 int i = 0; 5634 5635 dd_dev_info(dd, "SDMA Error: %s\n", 5636 sdma_err_status_string(buf, sizeof(buf), reg)); 5637 5638 if (reg & ALL_SDMA_FREEZE_ERR) 5639 start_freeze_handling(dd->pport, 0); 5640 5641 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) { 5642 if (reg & (1ull << i)) 5643 incr_cntr64(&dd->send_dma_err_status_cnt[i]); 5644 } 5645 } 5646 5647 static inline void __count_port_discards(struct hfi1_pportdata *ppd) 5648 { 5649 incr_cntr64(&ppd->port_xmit_discards); 5650 } 5651 5652 static void count_port_inactive(struct hfi1_devdata *dd) 5653 { 5654 __count_port_discards(dd->pport); 5655 } 5656 5657 /* 5658 * We have had a "disallowed packet" error during egress. Determine the 5659 * integrity check which failed, and update relevant error counter, etc. 5660 * 5661 * Note that the SEND_EGRESS_ERR_INFO register has only a single 5662 * bit of state per integrity check, and so we can miss the reason for an 5663 * egress error if more than one packet fails the same integrity check 5664 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO. 5665 */ 5666 static void handle_send_egress_err_info(struct hfi1_devdata *dd, 5667 int vl) 5668 { 5669 struct hfi1_pportdata *ppd = dd->pport; 5670 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */ 5671 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO); 5672 char buf[96]; 5673 5674 /* clear down all observed info as quickly as possible after read */ 5675 write_csr(dd, SEND_EGRESS_ERR_INFO, info); 5676 5677 dd_dev_info(dd, 5678 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n", 5679 info, egress_err_info_string(buf, sizeof(buf), info), src); 5680 5681 /* Eventually add other counters for each bit */ 5682 if (info & PORT_DISCARD_EGRESS_ERRS) { 5683 int weight, i; 5684 5685 /* 5686 * Count all applicable bits as individual errors and 5687 * attribute them to the packet that triggered this handler. 5688 * This may not be completely accurate due to limitations 5689 * on the available hardware error information. There is 5690 * a single information register and any number of error 5691 * packets may have occurred and contributed to it before 5692 * this routine is called. This means that: 5693 * a) If multiple packets with the same error occur before 5694 * this routine is called, earlier packets are missed. 5695 * There is only a single bit for each error type. 5696 * b) Errors may not be attributed to the correct VL. 5697 * The driver is attributing all bits in the info register 5698 * to the packet that triggered this call, but bits 5699 * could be an accumulation of different packets with 5700 * different VLs. 5701 * c) A single error packet may have multiple counts attached 5702 * to it. There is no way for the driver to know if 5703 * multiple bits set in the info register are due to a 5704 * single packet or multiple packets. The driver assumes 5705 * multiple packets. 5706 */ 5707 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS); 5708 for (i = 0; i < weight; i++) { 5709 __count_port_discards(ppd); 5710 if (vl >= 0 && vl < TXE_NUM_DATA_VL) 5711 incr_cntr64(&ppd->port_xmit_discards_vl[vl]); 5712 else if (vl == 15) 5713 incr_cntr64(&ppd->port_xmit_discards_vl 5714 [C_VL_15]); 5715 } 5716 } 5717 } 5718 5719 /* 5720 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5721 * register. Does it represent a 'port inactive' error? 5722 */ 5723 static inline int port_inactive_err(u64 posn) 5724 { 5725 return (posn >= SEES(TX_LINKDOWN) && 5726 posn <= SEES(TX_INCORRECT_LINK_STATE)); 5727 } 5728 5729 /* 5730 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5731 * register. Does it represent a 'disallowed packet' error? 5732 */ 5733 static inline int disallowed_pkt_err(int posn) 5734 { 5735 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) && 5736 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET)); 5737 } 5738 5739 /* 5740 * Input value is a bit position of one of the SDMA engine disallowed 5741 * packet errors. Return which engine. Use of this must be guarded by 5742 * disallowed_pkt_err(). 5743 */ 5744 static inline int disallowed_pkt_engine(int posn) 5745 { 5746 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET); 5747 } 5748 5749 /* 5750 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot 5751 * be done. 5752 */ 5753 static int engine_to_vl(struct hfi1_devdata *dd, int engine) 5754 { 5755 struct sdma_vl_map *m; 5756 int vl; 5757 5758 /* range check */ 5759 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES) 5760 return -1; 5761 5762 rcu_read_lock(); 5763 m = rcu_dereference(dd->sdma_map); 5764 vl = m->engine_to_vl[engine]; 5765 rcu_read_unlock(); 5766 5767 return vl; 5768 } 5769 5770 /* 5771 * Translate the send context (sofware index) into a VL. Return -1 if the 5772 * translation cannot be done. 5773 */ 5774 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index) 5775 { 5776 struct send_context_info *sci; 5777 struct send_context *sc; 5778 int i; 5779 5780 sci = &dd->send_contexts[sw_index]; 5781 5782 /* there is no information for user (PSM) and ack contexts */ 5783 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15)) 5784 return -1; 5785 5786 sc = sci->sc; 5787 if (!sc) 5788 return -1; 5789 if (dd->vld[15].sc == sc) 5790 return 15; 5791 for (i = 0; i < num_vls; i++) 5792 if (dd->vld[i].sc == sc) 5793 return i; 5794 5795 return -1; 5796 } 5797 5798 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5799 { 5800 u64 reg_copy = reg, handled = 0; 5801 char buf[96]; 5802 int i = 0; 5803 5804 if (reg & ALL_TXE_EGRESS_FREEZE_ERR) 5805 start_freeze_handling(dd->pport, 0); 5806 else if (is_ax(dd) && 5807 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) && 5808 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) 5809 start_freeze_handling(dd->pport, 0); 5810 5811 while (reg_copy) { 5812 int posn = fls64(reg_copy); 5813 /* fls64() returns a 1-based offset, we want it zero based */ 5814 int shift = posn - 1; 5815 u64 mask = 1ULL << shift; 5816 5817 if (port_inactive_err(shift)) { 5818 count_port_inactive(dd); 5819 handled |= mask; 5820 } else if (disallowed_pkt_err(shift)) { 5821 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift)); 5822 5823 handle_send_egress_err_info(dd, vl); 5824 handled |= mask; 5825 } 5826 reg_copy &= ~mask; 5827 } 5828 5829 reg &= ~handled; 5830 5831 if (reg) 5832 dd_dev_info(dd, "Egress Error: %s\n", 5833 egress_err_status_string(buf, sizeof(buf), reg)); 5834 5835 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) { 5836 if (reg & (1ull << i)) 5837 incr_cntr64(&dd->send_egress_err_status_cnt[i]); 5838 } 5839 } 5840 5841 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5842 { 5843 char buf[96]; 5844 int i = 0; 5845 5846 dd_dev_info(dd, "Send Error: %s\n", 5847 send_err_status_string(buf, sizeof(buf), reg)); 5848 5849 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) { 5850 if (reg & (1ull << i)) 5851 incr_cntr64(&dd->send_err_status_cnt[i]); 5852 } 5853 } 5854 5855 /* 5856 * The maximum number of times the error clear down will loop before 5857 * blocking a repeating error. This value is arbitrary. 5858 */ 5859 #define MAX_CLEAR_COUNT 20 5860 5861 /* 5862 * Clear and handle an error register. All error interrupts are funneled 5863 * through here to have a central location to correctly handle single- 5864 * or multi-shot errors. 5865 * 5866 * For non per-context registers, call this routine with a context value 5867 * of 0 so the per-context offset is zero. 5868 * 5869 * If the handler loops too many times, assume that something is wrong 5870 * and can't be fixed, so mask the error bits. 5871 */ 5872 static void interrupt_clear_down(struct hfi1_devdata *dd, 5873 u32 context, 5874 const struct err_reg_info *eri) 5875 { 5876 u64 reg; 5877 u32 count; 5878 5879 /* read in a loop until no more errors are seen */ 5880 count = 0; 5881 while (1) { 5882 reg = read_kctxt_csr(dd, context, eri->status); 5883 if (reg == 0) 5884 break; 5885 write_kctxt_csr(dd, context, eri->clear, reg); 5886 if (likely(eri->handler)) 5887 eri->handler(dd, context, reg); 5888 count++; 5889 if (count > MAX_CLEAR_COUNT) { 5890 u64 mask; 5891 5892 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n", 5893 eri->desc, reg); 5894 /* 5895 * Read-modify-write so any other masked bits 5896 * remain masked. 5897 */ 5898 mask = read_kctxt_csr(dd, context, eri->mask); 5899 mask &= ~reg; 5900 write_kctxt_csr(dd, context, eri->mask, mask); 5901 break; 5902 } 5903 } 5904 } 5905 5906 /* 5907 * CCE block "misc" interrupt. Source is < 16. 5908 */ 5909 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source) 5910 { 5911 const struct err_reg_info *eri = &misc_errs[source]; 5912 5913 if (eri->handler) { 5914 interrupt_clear_down(dd, 0, eri); 5915 } else { 5916 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n", 5917 source); 5918 } 5919 } 5920 5921 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags) 5922 { 5923 return flag_string(buf, buf_len, flags, 5924 sc_err_status_flags, 5925 ARRAY_SIZE(sc_err_status_flags)); 5926 } 5927 5928 /* 5929 * Send context error interrupt. Source (hw_context) is < 160. 5930 * 5931 * All send context errors cause the send context to halt. The normal 5932 * clear-down mechanism cannot be used because we cannot clear the 5933 * error bits until several other long-running items are done first. 5934 * This is OK because with the context halted, nothing else is going 5935 * to happen on it anyway. 5936 */ 5937 static void is_sendctxt_err_int(struct hfi1_devdata *dd, 5938 unsigned int hw_context) 5939 { 5940 struct send_context_info *sci; 5941 struct send_context *sc; 5942 char flags[96]; 5943 u64 status; 5944 u32 sw_index; 5945 int i = 0; 5946 5947 sw_index = dd->hw_to_sw[hw_context]; 5948 if (sw_index >= dd->num_send_contexts) { 5949 dd_dev_err(dd, 5950 "out of range sw index %u for send context %u\n", 5951 sw_index, hw_context); 5952 return; 5953 } 5954 sci = &dd->send_contexts[sw_index]; 5955 sc = sci->sc; 5956 if (!sc) { 5957 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__, 5958 sw_index, hw_context); 5959 return; 5960 } 5961 5962 /* tell the software that a halt has begun */ 5963 sc_stop(sc, SCF_HALTED); 5964 5965 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS); 5966 5967 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context, 5968 send_context_err_status_string(flags, sizeof(flags), 5969 status)); 5970 5971 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK) 5972 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index)); 5973 5974 /* 5975 * Automatically restart halted kernel contexts out of interrupt 5976 * context. User contexts must ask the driver to restart the context. 5977 */ 5978 if (sc->type != SC_USER) 5979 queue_work(dd->pport->hfi1_wq, &sc->halt_work); 5980 5981 /* 5982 * Update the counters for the corresponding status bits. 5983 * Note that these particular counters are aggregated over all 5984 * 160 contexts. 5985 */ 5986 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) { 5987 if (status & (1ull << i)) 5988 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]); 5989 } 5990 } 5991 5992 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 5993 unsigned int source, u64 status) 5994 { 5995 struct sdma_engine *sde; 5996 int i = 0; 5997 5998 sde = &dd->per_sdma[source]; 5999 #ifdef CONFIG_SDMA_VERBOSITY 6000 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 6001 slashstrip(__FILE__), __LINE__, __func__); 6002 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n", 6003 sde->this_idx, source, (unsigned long long)status); 6004 #endif 6005 sde->err_cnt++; 6006 sdma_engine_error(sde, status); 6007 6008 /* 6009 * Update the counters for the corresponding status bits. 6010 * Note that these particular counters are aggregated over 6011 * all 16 DMA engines. 6012 */ 6013 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) { 6014 if (status & (1ull << i)) 6015 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]); 6016 } 6017 } 6018 6019 /* 6020 * CCE block SDMA error interrupt. Source is < 16. 6021 */ 6022 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source) 6023 { 6024 #ifdef CONFIG_SDMA_VERBOSITY 6025 struct sdma_engine *sde = &dd->per_sdma[source]; 6026 6027 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 6028 slashstrip(__FILE__), __LINE__, __func__); 6029 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx, 6030 source); 6031 sdma_dumpstate(sde); 6032 #endif 6033 interrupt_clear_down(dd, source, &sdma_eng_err); 6034 } 6035 6036 /* 6037 * CCE block "various" interrupt. Source is < 8. 6038 */ 6039 static void is_various_int(struct hfi1_devdata *dd, unsigned int source) 6040 { 6041 const struct err_reg_info *eri = &various_err[source]; 6042 6043 /* 6044 * TCritInt cannot go through interrupt_clear_down() 6045 * because it is not a second tier interrupt. The handler 6046 * should be called directly. 6047 */ 6048 if (source == TCRIT_INT_SOURCE) 6049 handle_temp_err(dd); 6050 else if (eri->handler) 6051 interrupt_clear_down(dd, 0, eri); 6052 else 6053 dd_dev_info(dd, 6054 "%s: Unimplemented/reserved interrupt %d\n", 6055 __func__, source); 6056 } 6057 6058 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg) 6059 { 6060 /* src_ctx is always zero */ 6061 struct hfi1_pportdata *ppd = dd->pport; 6062 unsigned long flags; 6063 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 6064 6065 if (reg & QSFP_HFI0_MODPRST_N) { 6066 if (!qsfp_mod_present(ppd)) { 6067 dd_dev_info(dd, "%s: QSFP module removed\n", 6068 __func__); 6069 6070 ppd->driver_link_ready = 0; 6071 /* 6072 * Cable removed, reset all our information about the 6073 * cache and cable capabilities 6074 */ 6075 6076 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6077 /* 6078 * We don't set cache_refresh_required here as we expect 6079 * an interrupt when a cable is inserted 6080 */ 6081 ppd->qsfp_info.cache_valid = 0; 6082 ppd->qsfp_info.reset_needed = 0; 6083 ppd->qsfp_info.limiting_active = 0; 6084 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6085 flags); 6086 /* Invert the ModPresent pin now to detect plug-in */ 6087 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6088 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6089 6090 if ((ppd->offline_disabled_reason > 6091 HFI1_ODR_MASK( 6092 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) || 6093 (ppd->offline_disabled_reason == 6094 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 6095 ppd->offline_disabled_reason = 6096 HFI1_ODR_MASK( 6097 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED); 6098 6099 if (ppd->host_link_state == HLS_DN_POLL) { 6100 /* 6101 * The link is still in POLL. This means 6102 * that the normal link down processing 6103 * will not happen. We have to do it here 6104 * before turning the DC off. 6105 */ 6106 queue_work(ppd->link_wq, &ppd->link_down_work); 6107 } 6108 } else { 6109 dd_dev_info(dd, "%s: QSFP module inserted\n", 6110 __func__); 6111 6112 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6113 ppd->qsfp_info.cache_valid = 0; 6114 ppd->qsfp_info.cache_refresh_required = 1; 6115 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6116 flags); 6117 6118 /* 6119 * Stop inversion of ModPresent pin to detect 6120 * removal of the cable 6121 */ 6122 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N; 6123 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6124 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6125 6126 ppd->offline_disabled_reason = 6127 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 6128 } 6129 } 6130 6131 if (reg & QSFP_HFI0_INT_N) { 6132 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n", 6133 __func__); 6134 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6135 ppd->qsfp_info.check_interrupt_flags = 1; 6136 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); 6137 } 6138 6139 /* Schedule the QSFP work only if there is a cable attached. */ 6140 if (qsfp_mod_present(ppd)) 6141 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work); 6142 } 6143 6144 static int request_host_lcb_access(struct hfi1_devdata *dd) 6145 { 6146 int ret; 6147 6148 ret = do_8051_command(dd, HCMD_MISC, 6149 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << 6150 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6151 if (ret != HCMD_SUCCESS) { 6152 dd_dev_err(dd, "%s: command failed with error %d\n", 6153 __func__, ret); 6154 } 6155 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6156 } 6157 6158 static int request_8051_lcb_access(struct hfi1_devdata *dd) 6159 { 6160 int ret; 6161 6162 ret = do_8051_command(dd, HCMD_MISC, 6163 (u64)HCMD_MISC_GRANT_LCB_ACCESS << 6164 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6165 if (ret != HCMD_SUCCESS) { 6166 dd_dev_err(dd, "%s: command failed with error %d\n", 6167 __func__, ret); 6168 } 6169 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6170 } 6171 6172 /* 6173 * Set the LCB selector - allow host access. The DCC selector always 6174 * points to the host. 6175 */ 6176 static inline void set_host_lcb_access(struct hfi1_devdata *dd) 6177 { 6178 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6179 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK | 6180 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK); 6181 } 6182 6183 /* 6184 * Clear the LCB selector - allow 8051 access. The DCC selector always 6185 * points to the host. 6186 */ 6187 static inline void set_8051_lcb_access(struct hfi1_devdata *dd) 6188 { 6189 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6190 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK); 6191 } 6192 6193 /* 6194 * Acquire LCB access from the 8051. If the host already has access, 6195 * just increment a counter. Otherwise, inform the 8051 that the 6196 * host is taking access. 6197 * 6198 * Returns: 6199 * 0 on success 6200 * -EBUSY if the 8051 has control and cannot be disturbed 6201 * -errno if unable to acquire access from the 8051 6202 */ 6203 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6204 { 6205 struct hfi1_pportdata *ppd = dd->pport; 6206 int ret = 0; 6207 6208 /* 6209 * Use the host link state lock so the operation of this routine 6210 * { link state check, selector change, count increment } can occur 6211 * as a unit against a link state change. Otherwise there is a 6212 * race between the state change and the count increment. 6213 */ 6214 if (sleep_ok) { 6215 mutex_lock(&ppd->hls_lock); 6216 } else { 6217 while (!mutex_trylock(&ppd->hls_lock)) 6218 udelay(1); 6219 } 6220 6221 /* this access is valid only when the link is up */ 6222 if (ppd->host_link_state & HLS_DOWN) { 6223 dd_dev_info(dd, "%s: link state %s not up\n", 6224 __func__, link_state_name(ppd->host_link_state)); 6225 ret = -EBUSY; 6226 goto done; 6227 } 6228 6229 if (dd->lcb_access_count == 0) { 6230 ret = request_host_lcb_access(dd); 6231 if (ret) { 6232 dd_dev_err(dd, 6233 "%s: unable to acquire LCB access, err %d\n", 6234 __func__, ret); 6235 goto done; 6236 } 6237 set_host_lcb_access(dd); 6238 } 6239 dd->lcb_access_count++; 6240 done: 6241 mutex_unlock(&ppd->hls_lock); 6242 return ret; 6243 } 6244 6245 /* 6246 * Release LCB access by decrementing the use count. If the count is moving 6247 * from 1 to 0, inform 8051 that it has control back. 6248 * 6249 * Returns: 6250 * 0 on success 6251 * -errno if unable to release access to the 8051 6252 */ 6253 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6254 { 6255 int ret = 0; 6256 6257 /* 6258 * Use the host link state lock because the acquire needed it. 6259 * Here, we only need to keep { selector change, count decrement } 6260 * as a unit. 6261 */ 6262 if (sleep_ok) { 6263 mutex_lock(&dd->pport->hls_lock); 6264 } else { 6265 while (!mutex_trylock(&dd->pport->hls_lock)) 6266 udelay(1); 6267 } 6268 6269 if (dd->lcb_access_count == 0) { 6270 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n", 6271 __func__); 6272 goto done; 6273 } 6274 6275 if (dd->lcb_access_count == 1) { 6276 set_8051_lcb_access(dd); 6277 ret = request_8051_lcb_access(dd); 6278 if (ret) { 6279 dd_dev_err(dd, 6280 "%s: unable to release LCB access, err %d\n", 6281 __func__, ret); 6282 /* restore host access if the grant didn't work */ 6283 set_host_lcb_access(dd); 6284 goto done; 6285 } 6286 } 6287 dd->lcb_access_count--; 6288 done: 6289 mutex_unlock(&dd->pport->hls_lock); 6290 return ret; 6291 } 6292 6293 /* 6294 * Initialize LCB access variables and state. Called during driver load, 6295 * after most of the initialization is finished. 6296 * 6297 * The DC default is LCB access on for the host. The driver defaults to 6298 * leaving access to the 8051. Assign access now - this constrains the call 6299 * to this routine to be after all LCB set-up is done. In particular, after 6300 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts() 6301 */ 6302 static void init_lcb_access(struct hfi1_devdata *dd) 6303 { 6304 dd->lcb_access_count = 0; 6305 } 6306 6307 /* 6308 * Write a response back to a 8051 request. 6309 */ 6310 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data) 6311 { 6312 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 6313 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK | 6314 (u64)return_code << 6315 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT | 6316 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 6317 } 6318 6319 /* 6320 * Handle host requests from the 8051. 6321 */ 6322 static void handle_8051_request(struct hfi1_pportdata *ppd) 6323 { 6324 struct hfi1_devdata *dd = ppd->dd; 6325 u64 reg; 6326 u16 data = 0; 6327 u8 type; 6328 6329 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1); 6330 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0) 6331 return; /* no request */ 6332 6333 /* zero out COMPLETED so the response is seen */ 6334 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0); 6335 6336 /* extract request details */ 6337 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT) 6338 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK; 6339 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT) 6340 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK; 6341 6342 switch (type) { 6343 case HREQ_LOAD_CONFIG: 6344 case HREQ_SAVE_CONFIG: 6345 case HREQ_READ_CONFIG: 6346 case HREQ_SET_TX_EQ_ABS: 6347 case HREQ_SET_TX_EQ_REL: 6348 case HREQ_ENABLE: 6349 dd_dev_info(dd, "8051 request: request 0x%x not supported\n", 6350 type); 6351 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6352 break; 6353 case HREQ_CONFIG_DONE: 6354 hreq_response(dd, HREQ_SUCCESS, 0); 6355 break; 6356 6357 case HREQ_INTERFACE_TEST: 6358 hreq_response(dd, HREQ_SUCCESS, data); 6359 break; 6360 default: 6361 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type); 6362 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6363 break; 6364 } 6365 } 6366 6367 /* 6368 * Set up allocation unit vaulue. 6369 */ 6370 void set_up_vau(struct hfi1_devdata *dd, u8 vau) 6371 { 6372 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 6373 6374 /* do not modify other values in the register */ 6375 reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK; 6376 reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT; 6377 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 6378 } 6379 6380 /* 6381 * Set up initial VL15 credits of the remote. Assumes the rest of 6382 * the CM credit registers are zero from a previous global or credit reset. 6383 * Shared limit for VL15 will always be 0. 6384 */ 6385 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf) 6386 { 6387 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 6388 6389 /* set initial values for total and shared credit limit */ 6390 reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK | 6391 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK); 6392 6393 /* 6394 * Set total limit to be equal to VL15 credits. 6395 * Leave shared limit at 0. 6396 */ 6397 reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 6398 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 6399 6400 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf 6401 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6402 } 6403 6404 /* 6405 * Zero all credit details from the previous connection and 6406 * reset the CM manager's internal counters. 6407 */ 6408 void reset_link_credits(struct hfi1_devdata *dd) 6409 { 6410 int i; 6411 6412 /* remove all previous VL credit limits */ 6413 for (i = 0; i < TXE_NUM_DATA_VL; i++) 6414 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 6415 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 6416 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0); 6417 /* reset the CM block */ 6418 pio_send_control(dd, PSC_CM_RESET); 6419 /* reset cached value */ 6420 dd->vl15buf_cached = 0; 6421 } 6422 6423 /* convert a vCU to a CU */ 6424 static u32 vcu_to_cu(u8 vcu) 6425 { 6426 return 1 << vcu; 6427 } 6428 6429 /* convert a CU to a vCU */ 6430 static u8 cu_to_vcu(u32 cu) 6431 { 6432 return ilog2(cu); 6433 } 6434 6435 /* convert a vAU to an AU */ 6436 static u32 vau_to_au(u8 vau) 6437 { 6438 return 8 * (1 << vau); 6439 } 6440 6441 static void set_linkup_defaults(struct hfi1_pportdata *ppd) 6442 { 6443 ppd->sm_trap_qp = 0x0; 6444 ppd->sa_qp = 0x1; 6445 } 6446 6447 /* 6448 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset. 6449 */ 6450 static void lcb_shutdown(struct hfi1_devdata *dd, int abort) 6451 { 6452 u64 reg; 6453 6454 /* clear lcb run: LCB_CFG_RUN.EN = 0 */ 6455 write_csr(dd, DC_LCB_CFG_RUN, 0); 6456 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */ 6457 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 6458 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT); 6459 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */ 6460 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN); 6461 reg = read_csr(dd, DCC_CFG_RESET); 6462 write_csr(dd, DCC_CFG_RESET, reg | 6463 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) | 6464 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT)); 6465 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */ 6466 if (!abort) { 6467 udelay(1); /* must hold for the longer of 16cclks or 20ns */ 6468 write_csr(dd, DCC_CFG_RESET, reg); 6469 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6470 } 6471 } 6472 6473 /* 6474 * This routine should be called after the link has been transitioned to 6475 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into 6476 * reset). 6477 * 6478 * The expectation is that the caller of this routine would have taken 6479 * care of properly transitioning the link into the correct state. 6480 * NOTE: the caller needs to acquire the dd->dc8051_lock lock 6481 * before calling this function. 6482 */ 6483 static void _dc_shutdown(struct hfi1_devdata *dd) 6484 { 6485 lockdep_assert_held(&dd->dc8051_lock); 6486 6487 if (dd->dc_shutdown) 6488 return; 6489 6490 dd->dc_shutdown = 1; 6491 /* Shutdown the LCB */ 6492 lcb_shutdown(dd, 1); 6493 /* 6494 * Going to OFFLINE would have causes the 8051 to put the 6495 * SerDes into reset already. Just need to shut down the 8051, 6496 * itself. 6497 */ 6498 write_csr(dd, DC_DC8051_CFG_RST, 0x1); 6499 } 6500 6501 static void dc_shutdown(struct hfi1_devdata *dd) 6502 { 6503 mutex_lock(&dd->dc8051_lock); 6504 _dc_shutdown(dd); 6505 mutex_unlock(&dd->dc8051_lock); 6506 } 6507 6508 /* 6509 * Calling this after the DC has been brought out of reset should not 6510 * do any damage. 6511 * NOTE: the caller needs to acquire the dd->dc8051_lock lock 6512 * before calling this function. 6513 */ 6514 static void _dc_start(struct hfi1_devdata *dd) 6515 { 6516 lockdep_assert_held(&dd->dc8051_lock); 6517 6518 if (!dd->dc_shutdown) 6519 return; 6520 6521 /* Take the 8051 out of reset */ 6522 write_csr(dd, DC_DC8051_CFG_RST, 0ull); 6523 /* Wait until 8051 is ready */ 6524 if (wait_fm_ready(dd, TIMEOUT_8051_START)) 6525 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n", 6526 __func__); 6527 6528 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */ 6529 write_csr(dd, DCC_CFG_RESET, 0x10); 6530 /* lcb_shutdown() with abort=1 does not restore these */ 6531 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6532 dd->dc_shutdown = 0; 6533 } 6534 6535 static void dc_start(struct hfi1_devdata *dd) 6536 { 6537 mutex_lock(&dd->dc8051_lock); 6538 _dc_start(dd); 6539 mutex_unlock(&dd->dc8051_lock); 6540 } 6541 6542 /* 6543 * These LCB adjustments are for the Aurora SerDes core in the FPGA. 6544 */ 6545 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd) 6546 { 6547 u64 rx_radr, tx_radr; 6548 u32 version; 6549 6550 if (dd->icode != ICODE_FPGA_EMULATION) 6551 return; 6552 6553 /* 6554 * These LCB defaults on emulator _s are good, nothing to do here: 6555 * LCB_CFG_TX_FIFOS_RADR 6556 * LCB_CFG_RX_FIFOS_RADR 6557 * LCB_CFG_LN_DCLK 6558 * LCB_CFG_IGNORE_LOST_RCLK 6559 */ 6560 if (is_emulator_s(dd)) 6561 return; 6562 /* else this is _p */ 6563 6564 version = emulator_rev(dd); 6565 if (!is_ax(dd)) 6566 version = 0x2d; /* all B0 use 0x2d or higher settings */ 6567 6568 if (version <= 0x12) { 6569 /* release 0x12 and below */ 6570 6571 /* 6572 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9 6573 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9 6574 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa 6575 */ 6576 rx_radr = 6577 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6578 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6579 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6580 /* 6581 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default) 6582 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6 6583 */ 6584 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6585 } else if (version <= 0x18) { 6586 /* release 0x13 up to 0x18 */ 6587 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6588 rx_radr = 6589 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6590 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6591 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6592 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6593 } else if (version == 0x19) { 6594 /* release 0x19 */ 6595 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */ 6596 rx_radr = 6597 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6598 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6599 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6600 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6601 } else if (version == 0x1a) { 6602 /* release 0x1a */ 6603 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6604 rx_radr = 6605 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6606 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6607 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6608 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6609 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull); 6610 } else { 6611 /* release 0x1b and higher */ 6612 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */ 6613 rx_radr = 6614 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6615 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6616 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6617 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6618 } 6619 6620 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr); 6621 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */ 6622 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 6623 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 6624 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr); 6625 } 6626 6627 /* 6628 * Handle a SMA idle message 6629 * 6630 * This is a work-queue function outside of the interrupt. 6631 */ 6632 void handle_sma_message(struct work_struct *work) 6633 { 6634 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6635 sma_message_work); 6636 struct hfi1_devdata *dd = ppd->dd; 6637 u64 msg; 6638 int ret; 6639 6640 /* 6641 * msg is bytes 1-4 of the 40-bit idle message - the command code 6642 * is stripped off 6643 */ 6644 ret = read_idle_sma(dd, &msg); 6645 if (ret) 6646 return; 6647 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg); 6648 /* 6649 * React to the SMA message. Byte[1] (0 for us) is the command. 6650 */ 6651 switch (msg & 0xff) { 6652 case SMA_IDLE_ARM: 6653 /* 6654 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6655 * State Transitions 6656 * 6657 * Only expected in INIT or ARMED, discard otherwise. 6658 */ 6659 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED)) 6660 ppd->neighbor_normal = 1; 6661 break; 6662 case SMA_IDLE_ACTIVE: 6663 /* 6664 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6665 * State Transitions 6666 * 6667 * Can activate the node. Discard otherwise. 6668 */ 6669 if (ppd->host_link_state == HLS_UP_ARMED && 6670 ppd->is_active_optimize_enabled) { 6671 ppd->neighbor_normal = 1; 6672 ret = set_link_state(ppd, HLS_UP_ACTIVE); 6673 if (ret) 6674 dd_dev_err( 6675 dd, 6676 "%s: received Active SMA idle message, couldn't set link to Active\n", 6677 __func__); 6678 } 6679 break; 6680 default: 6681 dd_dev_err(dd, 6682 "%s: received unexpected SMA idle message 0x%llx\n", 6683 __func__, msg); 6684 break; 6685 } 6686 } 6687 6688 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear) 6689 { 6690 u64 rcvctrl; 6691 unsigned long flags; 6692 6693 spin_lock_irqsave(&dd->rcvctrl_lock, flags); 6694 rcvctrl = read_csr(dd, RCV_CTRL); 6695 rcvctrl |= add; 6696 rcvctrl &= ~clear; 6697 write_csr(dd, RCV_CTRL, rcvctrl); 6698 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags); 6699 } 6700 6701 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add) 6702 { 6703 adjust_rcvctrl(dd, add, 0); 6704 } 6705 6706 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear) 6707 { 6708 adjust_rcvctrl(dd, 0, clear); 6709 } 6710 6711 /* 6712 * Called from all interrupt handlers to start handling an SPC freeze. 6713 */ 6714 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags) 6715 { 6716 struct hfi1_devdata *dd = ppd->dd; 6717 struct send_context *sc; 6718 int i; 6719 6720 if (flags & FREEZE_SELF) 6721 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6722 6723 /* enter frozen mode */ 6724 dd->flags |= HFI1_FROZEN; 6725 6726 /* notify all SDMA engines that they are going into a freeze */ 6727 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN)); 6728 6729 /* do halt pre-handling on all enabled send contexts */ 6730 for (i = 0; i < dd->num_send_contexts; i++) { 6731 sc = dd->send_contexts[i].sc; 6732 if (sc && (sc->flags & SCF_ENABLED)) 6733 sc_stop(sc, SCF_FROZEN | SCF_HALTED); 6734 } 6735 6736 /* Send context are frozen. Notify user space */ 6737 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT); 6738 6739 if (flags & FREEZE_ABORT) { 6740 dd_dev_err(dd, 6741 "Aborted freeze recovery. Please REBOOT system\n"); 6742 return; 6743 } 6744 /* queue non-interrupt handler */ 6745 queue_work(ppd->hfi1_wq, &ppd->freeze_work); 6746 } 6747 6748 /* 6749 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen, 6750 * depending on the "freeze" parameter. 6751 * 6752 * No need to return an error if it times out, our only option 6753 * is to proceed anyway. 6754 */ 6755 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze) 6756 { 6757 unsigned long timeout; 6758 u64 reg; 6759 6760 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT); 6761 while (1) { 6762 reg = read_csr(dd, CCE_STATUS); 6763 if (freeze) { 6764 /* waiting until all indicators are set */ 6765 if ((reg & ALL_FROZE) == ALL_FROZE) 6766 return; /* all done */ 6767 } else { 6768 /* waiting until all indicators are clear */ 6769 if ((reg & ALL_FROZE) == 0) 6770 return; /* all done */ 6771 } 6772 6773 if (time_after(jiffies, timeout)) { 6774 dd_dev_err(dd, 6775 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing", 6776 freeze ? "" : "un", reg & ALL_FROZE, 6777 freeze ? ALL_FROZE : 0ull); 6778 return; 6779 } 6780 usleep_range(80, 120); 6781 } 6782 } 6783 6784 /* 6785 * Do all freeze handling for the RXE block. 6786 */ 6787 static void rxe_freeze(struct hfi1_devdata *dd) 6788 { 6789 int i; 6790 struct hfi1_ctxtdata *rcd; 6791 6792 /* disable port */ 6793 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6794 6795 /* disable all receive contexts */ 6796 for (i = 0; i < dd->num_rcv_contexts; i++) { 6797 rcd = hfi1_rcd_get_by_index(dd, i); 6798 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd); 6799 hfi1_rcd_put(rcd); 6800 } 6801 } 6802 6803 /* 6804 * Unfreeze handling for the RXE block - kernel contexts only. 6805 * This will also enable the port. User contexts will do unfreeze 6806 * handling on a per-context basis as they call into the driver. 6807 * 6808 */ 6809 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd) 6810 { 6811 u32 rcvmask; 6812 u16 i; 6813 struct hfi1_ctxtdata *rcd; 6814 6815 /* enable all kernel contexts */ 6816 for (i = 0; i < dd->num_rcv_contexts; i++) { 6817 rcd = hfi1_rcd_get_by_index(dd, i); 6818 6819 /* Ensure all non-user contexts(including vnic) are enabled */ 6820 if (!rcd || 6821 (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) { 6822 hfi1_rcd_put(rcd); 6823 continue; 6824 } 6825 rcvmask = HFI1_RCVCTRL_CTXT_ENB; 6826 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */ 6827 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 6828 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 6829 hfi1_rcvctrl(dd, rcvmask, rcd); 6830 hfi1_rcd_put(rcd); 6831 } 6832 6833 /* enable port */ 6834 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6835 } 6836 6837 /* 6838 * Non-interrupt SPC freeze handling. 6839 * 6840 * This is a work-queue function outside of the triggering interrupt. 6841 */ 6842 void handle_freeze(struct work_struct *work) 6843 { 6844 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6845 freeze_work); 6846 struct hfi1_devdata *dd = ppd->dd; 6847 6848 /* wait for freeze indicators on all affected blocks */ 6849 wait_for_freeze_status(dd, 1); 6850 6851 /* SPC is now frozen */ 6852 6853 /* do send PIO freeze steps */ 6854 pio_freeze(dd); 6855 6856 /* do send DMA freeze steps */ 6857 sdma_freeze(dd); 6858 6859 /* do send egress freeze steps - nothing to do */ 6860 6861 /* do receive freeze steps */ 6862 rxe_freeze(dd); 6863 6864 /* 6865 * Unfreeze the hardware - clear the freeze, wait for each 6866 * block's frozen bit to clear, then clear the frozen flag. 6867 */ 6868 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6869 wait_for_freeze_status(dd, 0); 6870 6871 if (is_ax(dd)) { 6872 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6873 wait_for_freeze_status(dd, 1); 6874 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6875 wait_for_freeze_status(dd, 0); 6876 } 6877 6878 /* do send PIO unfreeze steps for kernel contexts */ 6879 pio_kernel_unfreeze(dd); 6880 6881 /* do send DMA unfreeze steps */ 6882 sdma_unfreeze(dd); 6883 6884 /* do send egress unfreeze steps - nothing to do */ 6885 6886 /* do receive unfreeze steps for kernel contexts */ 6887 rxe_kernel_unfreeze(dd); 6888 6889 /* 6890 * The unfreeze procedure touches global device registers when 6891 * it disables and re-enables RXE. Mark the device unfrozen 6892 * after all that is done so other parts of the driver waiting 6893 * for the device to unfreeze don't do things out of order. 6894 * 6895 * The above implies that the meaning of HFI1_FROZEN flag is 6896 * "Device has gone into freeze mode and freeze mode handling 6897 * is still in progress." 6898 * 6899 * The flag will be removed when freeze mode processing has 6900 * completed. 6901 */ 6902 dd->flags &= ~HFI1_FROZEN; 6903 wake_up(&dd->event_queue); 6904 6905 /* no longer frozen */ 6906 } 6907 6908 /* 6909 * Handle a link up interrupt from the 8051. 6910 * 6911 * This is a work-queue function outside of the interrupt. 6912 */ 6913 void handle_link_up(struct work_struct *work) 6914 { 6915 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6916 link_up_work); 6917 struct hfi1_devdata *dd = ppd->dd; 6918 6919 set_link_state(ppd, HLS_UP_INIT); 6920 6921 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 6922 read_ltp_rtt(dd); 6923 /* 6924 * OPA specifies that certain counters are cleared on a transition 6925 * to link up, so do that. 6926 */ 6927 clear_linkup_counters(dd); 6928 /* 6929 * And (re)set link up default values. 6930 */ 6931 set_linkup_defaults(ppd); 6932 6933 /* 6934 * Set VL15 credits. Use cached value from verify cap interrupt. 6935 * In case of quick linkup or simulator, vl15 value will be set by 6936 * handle_linkup_change. VerifyCap interrupt handler will not be 6937 * called in those scenarios. 6938 */ 6939 if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) 6940 set_up_vl15(dd, dd->vl15buf_cached); 6941 6942 /* enforce link speed enabled */ 6943 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) { 6944 /* oops - current speed is not enabled, bounce */ 6945 dd_dev_err(dd, 6946 "Link speed active 0x%x is outside enabled 0x%x, downing link\n", 6947 ppd->link_speed_active, ppd->link_speed_enabled); 6948 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0, 6949 OPA_LINKDOWN_REASON_SPEED_POLICY); 6950 set_link_state(ppd, HLS_DN_OFFLINE); 6951 start_link(ppd); 6952 } 6953 } 6954 6955 /* 6956 * Several pieces of LNI information were cached for SMA in ppd. 6957 * Reset these on link down 6958 */ 6959 static void reset_neighbor_info(struct hfi1_pportdata *ppd) 6960 { 6961 ppd->neighbor_guid = 0; 6962 ppd->neighbor_port_number = 0; 6963 ppd->neighbor_type = 0; 6964 ppd->neighbor_fm_security = 0; 6965 } 6966 6967 static const char * const link_down_reason_strs[] = { 6968 [OPA_LINKDOWN_REASON_NONE] = "None", 6969 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0", 6970 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length", 6971 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long", 6972 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short", 6973 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID", 6974 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID", 6975 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2", 6976 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC", 6977 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8", 6978 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail", 6979 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10", 6980 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error", 6981 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15", 6982 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker", 6983 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14", 6984 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15", 6985 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance", 6986 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance", 6987 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance", 6988 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack", 6989 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker", 6990 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt", 6991 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit", 6992 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit", 6993 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24", 6994 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25", 6995 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26", 6996 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27", 6997 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28", 6998 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29", 6999 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30", 7000 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] = 7001 "Excessive buffer overrun", 7002 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown", 7003 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot", 7004 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown", 7005 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce", 7006 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy", 7007 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy", 7008 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected", 7009 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] = 7010 "Local media not installed", 7011 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed", 7012 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config", 7013 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] = 7014 "End to end not installed", 7015 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy", 7016 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy", 7017 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy", 7018 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management", 7019 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled", 7020 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient" 7021 }; 7022 7023 /* return the neighbor link down reason string */ 7024 static const char *link_down_reason_str(u8 reason) 7025 { 7026 const char *str = NULL; 7027 7028 if (reason < ARRAY_SIZE(link_down_reason_strs)) 7029 str = link_down_reason_strs[reason]; 7030 if (!str) 7031 str = "(invalid)"; 7032 7033 return str; 7034 } 7035 7036 /* 7037 * Handle a link down interrupt from the 8051. 7038 * 7039 * This is a work-queue function outside of the interrupt. 7040 */ 7041 void handle_link_down(struct work_struct *work) 7042 { 7043 u8 lcl_reason, neigh_reason = 0; 7044 u8 link_down_reason; 7045 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7046 link_down_work); 7047 int was_up; 7048 static const char ldr_str[] = "Link down reason: "; 7049 7050 if ((ppd->host_link_state & 7051 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) && 7052 ppd->port_type == PORT_TYPE_FIXED) 7053 ppd->offline_disabled_reason = 7054 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED); 7055 7056 /* Go offline first, then deal with reading/writing through 8051 */ 7057 was_up = !!(ppd->host_link_state & HLS_UP); 7058 set_link_state(ppd, HLS_DN_OFFLINE); 7059 xchg(&ppd->is_link_down_queued, 0); 7060 7061 if (was_up) { 7062 lcl_reason = 0; 7063 /* link down reason is only valid if the link was up */ 7064 read_link_down_reason(ppd->dd, &link_down_reason); 7065 switch (link_down_reason) { 7066 case LDR_LINK_TRANSFER_ACTIVE_LOW: 7067 /* the link went down, no idle message reason */ 7068 dd_dev_info(ppd->dd, "%sUnexpected link down\n", 7069 ldr_str); 7070 break; 7071 case LDR_RECEIVED_LINKDOWN_IDLE_MSG: 7072 /* 7073 * The neighbor reason is only valid if an idle message 7074 * was received for it. 7075 */ 7076 read_planned_down_reason_code(ppd->dd, &neigh_reason); 7077 dd_dev_info(ppd->dd, 7078 "%sNeighbor link down message %d, %s\n", 7079 ldr_str, neigh_reason, 7080 link_down_reason_str(neigh_reason)); 7081 break; 7082 case LDR_RECEIVED_HOST_OFFLINE_REQ: 7083 dd_dev_info(ppd->dd, 7084 "%sHost requested link to go offline\n", 7085 ldr_str); 7086 break; 7087 default: 7088 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n", 7089 ldr_str, link_down_reason); 7090 break; 7091 } 7092 7093 /* 7094 * If no reason, assume peer-initiated but missed 7095 * LinkGoingDown idle flits. 7096 */ 7097 if (neigh_reason == 0) 7098 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN; 7099 } else { 7100 /* went down while polling or going up */ 7101 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT; 7102 } 7103 7104 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0); 7105 7106 /* inform the SMA when the link transitions from up to down */ 7107 if (was_up && ppd->local_link_down_reason.sma == 0 && 7108 ppd->neigh_link_down_reason.sma == 0) { 7109 ppd->local_link_down_reason.sma = 7110 ppd->local_link_down_reason.latest; 7111 ppd->neigh_link_down_reason.sma = 7112 ppd->neigh_link_down_reason.latest; 7113 } 7114 7115 reset_neighbor_info(ppd); 7116 7117 /* disable the port */ 7118 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 7119 7120 /* 7121 * If there is no cable attached, turn the DC off. Otherwise, 7122 * start the link bring up. 7123 */ 7124 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) 7125 dc_shutdown(ppd->dd); 7126 else 7127 start_link(ppd); 7128 } 7129 7130 void handle_link_bounce(struct work_struct *work) 7131 { 7132 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7133 link_bounce_work); 7134 7135 /* 7136 * Only do something if the link is currently up. 7137 */ 7138 if (ppd->host_link_state & HLS_UP) { 7139 set_link_state(ppd, HLS_DN_OFFLINE); 7140 start_link(ppd); 7141 } else { 7142 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n", 7143 __func__, link_state_name(ppd->host_link_state)); 7144 } 7145 } 7146 7147 /* 7148 * Mask conversion: Capability exchange to Port LTP. The capability 7149 * exchange has an implicit 16b CRC that is mandatory. 7150 */ 7151 static int cap_to_port_ltp(int cap) 7152 { 7153 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */ 7154 7155 if (cap & CAP_CRC_14B) 7156 port_ltp |= PORT_LTP_CRC_MODE_14; 7157 if (cap & CAP_CRC_48B) 7158 port_ltp |= PORT_LTP_CRC_MODE_48; 7159 if (cap & CAP_CRC_12B_16B_PER_LANE) 7160 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE; 7161 7162 return port_ltp; 7163 } 7164 7165 /* 7166 * Convert an OPA Port LTP mask to capability mask 7167 */ 7168 int port_ltp_to_cap(int port_ltp) 7169 { 7170 int cap_mask = 0; 7171 7172 if (port_ltp & PORT_LTP_CRC_MODE_14) 7173 cap_mask |= CAP_CRC_14B; 7174 if (port_ltp & PORT_LTP_CRC_MODE_48) 7175 cap_mask |= CAP_CRC_48B; 7176 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE) 7177 cap_mask |= CAP_CRC_12B_16B_PER_LANE; 7178 7179 return cap_mask; 7180 } 7181 7182 /* 7183 * Convert a single DC LCB CRC mode to an OPA Port LTP mask. 7184 */ 7185 static int lcb_to_port_ltp(int lcb_crc) 7186 { 7187 int port_ltp = 0; 7188 7189 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE) 7190 port_ltp = PORT_LTP_CRC_MODE_PER_LANE; 7191 else if (lcb_crc == LCB_CRC_48B) 7192 port_ltp = PORT_LTP_CRC_MODE_48; 7193 else if (lcb_crc == LCB_CRC_14B) 7194 port_ltp = PORT_LTP_CRC_MODE_14; 7195 else 7196 port_ltp = PORT_LTP_CRC_MODE_16; 7197 7198 return port_ltp; 7199 } 7200 7201 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7202 { 7203 if (ppd->pkeys[2] != 0) { 7204 ppd->pkeys[2] = 0; 7205 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7206 hfi1_event_pkey_change(ppd->dd, ppd->port); 7207 } 7208 } 7209 7210 /* 7211 * Convert the given link width to the OPA link width bitmask. 7212 */ 7213 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width) 7214 { 7215 switch (width) { 7216 case 0: 7217 /* 7218 * Simulator and quick linkup do not set the width. 7219 * Just set it to 4x without complaint. 7220 */ 7221 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup) 7222 return OPA_LINK_WIDTH_4X; 7223 return 0; /* no lanes up */ 7224 case 1: return OPA_LINK_WIDTH_1X; 7225 case 2: return OPA_LINK_WIDTH_2X; 7226 case 3: return OPA_LINK_WIDTH_3X; 7227 default: 7228 dd_dev_info(dd, "%s: invalid width %d, using 4\n", 7229 __func__, width); 7230 /* fall through */ 7231 case 4: return OPA_LINK_WIDTH_4X; 7232 } 7233 } 7234 7235 /* 7236 * Do a population count on the bottom nibble. 7237 */ 7238 static const u8 bit_counts[16] = { 7239 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 7240 }; 7241 7242 static inline u8 nibble_to_count(u8 nibble) 7243 { 7244 return bit_counts[nibble & 0xf]; 7245 } 7246 7247 /* 7248 * Read the active lane information from the 8051 registers and return 7249 * their widths. 7250 * 7251 * Active lane information is found in these 8051 registers: 7252 * enable_lane_tx 7253 * enable_lane_rx 7254 */ 7255 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width, 7256 u16 *rx_width) 7257 { 7258 u16 tx, rx; 7259 u8 enable_lane_rx; 7260 u8 enable_lane_tx; 7261 u8 tx_polarity_inversion; 7262 u8 rx_polarity_inversion; 7263 u8 max_rate; 7264 7265 /* read the active lanes */ 7266 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 7267 &rx_polarity_inversion, &max_rate); 7268 read_local_lni(dd, &enable_lane_rx); 7269 7270 /* convert to counts */ 7271 tx = nibble_to_count(enable_lane_tx); 7272 rx = nibble_to_count(enable_lane_rx); 7273 7274 /* 7275 * Set link_speed_active here, overriding what was set in 7276 * handle_verify_cap(). The ASIC 8051 firmware does not correctly 7277 * set the max_rate field in handle_verify_cap until v0.19. 7278 */ 7279 if ((dd->icode == ICODE_RTL_SILICON) && 7280 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) { 7281 /* max_rate: 0 = 12.5G, 1 = 25G */ 7282 switch (max_rate) { 7283 case 0: 7284 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G; 7285 break; 7286 default: 7287 dd_dev_err(dd, 7288 "%s: unexpected max rate %d, using 25Gb\n", 7289 __func__, (int)max_rate); 7290 /* fall through */ 7291 case 1: 7292 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G; 7293 break; 7294 } 7295 } 7296 7297 dd_dev_info(dd, 7298 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n", 7299 enable_lane_tx, tx, enable_lane_rx, rx); 7300 *tx_width = link_width_to_bits(dd, tx); 7301 *rx_width = link_width_to_bits(dd, rx); 7302 } 7303 7304 /* 7305 * Read verify_cap_local_fm_link_width[1] to obtain the link widths. 7306 * Valid after the end of VerifyCap and during LinkUp. Does not change 7307 * after link up. I.e. look elsewhere for downgrade information. 7308 * 7309 * Bits are: 7310 * + bits [7:4] contain the number of active transmitters 7311 * + bits [3:0] contain the number of active receivers 7312 * These are numbers 1 through 4 and can be different values if the 7313 * link is asymmetric. 7314 * 7315 * verify_cap_local_fm_link_width[0] retains its original value. 7316 */ 7317 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width, 7318 u16 *rx_width) 7319 { 7320 u16 widths, tx, rx; 7321 u8 misc_bits, local_flags; 7322 u16 active_tx, active_rx; 7323 7324 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths); 7325 tx = widths >> 12; 7326 rx = (widths >> 8) & 0xf; 7327 7328 *tx_width = link_width_to_bits(dd, tx); 7329 *rx_width = link_width_to_bits(dd, rx); 7330 7331 /* print the active widths */ 7332 get_link_widths(dd, &active_tx, &active_rx); 7333 } 7334 7335 /* 7336 * Set ppd->link_width_active and ppd->link_width_downgrade_active using 7337 * hardware information when the link first comes up. 7338 * 7339 * The link width is not available until after VerifyCap.AllFramesReceived 7340 * (the trigger for handle_verify_cap), so this is outside that routine 7341 * and should be called when the 8051 signals linkup. 7342 */ 7343 void get_linkup_link_widths(struct hfi1_pportdata *ppd) 7344 { 7345 u16 tx_width, rx_width; 7346 7347 /* get end-of-LNI link widths */ 7348 get_linkup_widths(ppd->dd, &tx_width, &rx_width); 7349 7350 /* use tx_width as the link is supposed to be symmetric on link up */ 7351 ppd->link_width_active = tx_width; 7352 /* link width downgrade active (LWD.A) starts out matching LW.A */ 7353 ppd->link_width_downgrade_tx_active = ppd->link_width_active; 7354 ppd->link_width_downgrade_rx_active = ppd->link_width_active; 7355 /* per OPA spec, on link up LWD.E resets to LWD.S */ 7356 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported; 7357 /* cache the active egress rate (units {10^6 bits/sec]) */ 7358 ppd->current_egress_rate = active_egress_rate(ppd); 7359 } 7360 7361 /* 7362 * Handle a verify capabilities interrupt from the 8051. 7363 * 7364 * This is a work-queue function outside of the interrupt. 7365 */ 7366 void handle_verify_cap(struct work_struct *work) 7367 { 7368 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7369 link_vc_work); 7370 struct hfi1_devdata *dd = ppd->dd; 7371 u64 reg; 7372 u8 power_management; 7373 u8 continuous; 7374 u8 vcu; 7375 u8 vau; 7376 u8 z; 7377 u16 vl15buf; 7378 u16 link_widths; 7379 u16 crc_mask; 7380 u16 crc_val; 7381 u16 device_id; 7382 u16 active_tx, active_rx; 7383 u8 partner_supported_crc; 7384 u8 remote_tx_rate; 7385 u8 device_rev; 7386 7387 set_link_state(ppd, HLS_VERIFY_CAP); 7388 7389 lcb_shutdown(dd, 0); 7390 adjust_lcb_for_fpga_serdes(dd); 7391 7392 read_vc_remote_phy(dd, &power_management, &continuous); 7393 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf, 7394 &partner_supported_crc); 7395 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths); 7396 read_remote_device_id(dd, &device_id, &device_rev); 7397 7398 /* print the active widths */ 7399 get_link_widths(dd, &active_tx, &active_rx); 7400 dd_dev_info(dd, 7401 "Peer PHY: power management 0x%x, continuous updates 0x%x\n", 7402 (int)power_management, (int)continuous); 7403 dd_dev_info(dd, 7404 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n", 7405 (int)vau, (int)z, (int)vcu, (int)vl15buf, 7406 (int)partner_supported_crc); 7407 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n", 7408 (u32)remote_tx_rate, (u32)link_widths); 7409 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n", 7410 (u32)device_id, (u32)device_rev); 7411 /* 7412 * The peer vAU value just read is the peer receiver value. HFI does 7413 * not support a transmit vAU of 0 (AU == 8). We advertised that 7414 * with Z=1 in the fabric capabilities sent to the peer. The peer 7415 * will see our Z=1, and, if it advertised a vAU of 0, will move its 7416 * receive to vAU of 1 (AU == 16). Do the same here. We do not care 7417 * about the peer Z value - our sent vAU is 3 (hardwired) and is not 7418 * subject to the Z value exception. 7419 */ 7420 if (vau == 0) 7421 vau = 1; 7422 set_up_vau(dd, vau); 7423 7424 /* 7425 * Set VL15 credits to 0 in global credit register. Cache remote VL15 7426 * credits value and wait for link-up interrupt ot set it. 7427 */ 7428 set_up_vl15(dd, 0); 7429 dd->vl15buf_cached = vl15buf; 7430 7431 /* set up the LCB CRC mode */ 7432 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc; 7433 7434 /* order is important: use the lowest bit in common */ 7435 if (crc_mask & CAP_CRC_14B) 7436 crc_val = LCB_CRC_14B; 7437 else if (crc_mask & CAP_CRC_48B) 7438 crc_val = LCB_CRC_48B; 7439 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE) 7440 crc_val = LCB_CRC_12B_16B_PER_LANE; 7441 else 7442 crc_val = LCB_CRC_16B; 7443 7444 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val); 7445 write_csr(dd, DC_LCB_CFG_CRC_MODE, 7446 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT); 7447 7448 /* set (14b only) or clear sideband credit */ 7449 reg = read_csr(dd, SEND_CM_CTRL); 7450 if (crc_val == LCB_CRC_14B && crc_14b_sideband) { 7451 write_csr(dd, SEND_CM_CTRL, 7452 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7453 } else { 7454 write_csr(dd, SEND_CM_CTRL, 7455 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7456 } 7457 7458 ppd->link_speed_active = 0; /* invalid value */ 7459 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) { 7460 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */ 7461 switch (remote_tx_rate) { 7462 case 0: 7463 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7464 break; 7465 case 1: 7466 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7467 break; 7468 } 7469 } else { 7470 /* actual rate is highest bit of the ANDed rates */ 7471 u8 rate = remote_tx_rate & ppd->local_tx_rate; 7472 7473 if (rate & 2) 7474 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7475 else if (rate & 1) 7476 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7477 } 7478 if (ppd->link_speed_active == 0) { 7479 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n", 7480 __func__, (int)remote_tx_rate); 7481 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7482 } 7483 7484 /* 7485 * Cache the values of the supported, enabled, and active 7486 * LTP CRC modes to return in 'portinfo' queries. But the bit 7487 * flags that are returned in the portinfo query differ from 7488 * what's in the link_crc_mask, crc_sizes, and crc_val 7489 * variables. Convert these here. 7490 */ 7491 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 7492 /* supported crc modes */ 7493 ppd->port_ltp_crc_mode |= 7494 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4; 7495 /* enabled crc modes */ 7496 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val); 7497 /* active crc mode */ 7498 7499 /* set up the remote credit return table */ 7500 assign_remote_cm_au_table(dd, vcu); 7501 7502 /* 7503 * The LCB is reset on entry to handle_verify_cap(), so this must 7504 * be applied on every link up. 7505 * 7506 * Adjust LCB error kill enable to kill the link if 7507 * these RBUF errors are seen: 7508 * REPLAY_BUF_MBE_SMASK 7509 * FLIT_INPUT_BUF_MBE_SMASK 7510 */ 7511 if (is_ax(dd)) { /* fixed in B0 */ 7512 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN); 7513 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK 7514 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK; 7515 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg); 7516 } 7517 7518 /* pull LCB fifos out of reset - all fifo clocks must be stable */ 7519 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 7520 7521 /* give 8051 access to the LCB CSRs */ 7522 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 7523 set_8051_lcb_access(dd); 7524 7525 /* tell the 8051 to go to LinkUp */ 7526 set_link_state(ppd, HLS_GOING_UP); 7527 } 7528 7529 /* 7530 * Apply the link width downgrade enabled policy against the current active 7531 * link widths. 7532 * 7533 * Called when the enabled policy changes or the active link widths change. 7534 */ 7535 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths) 7536 { 7537 int do_bounce = 0; 7538 int tries; 7539 u16 lwde; 7540 u16 tx, rx; 7541 7542 /* use the hls lock to avoid a race with actual link up */ 7543 tries = 0; 7544 retry: 7545 mutex_lock(&ppd->hls_lock); 7546 /* only apply if the link is up */ 7547 if (ppd->host_link_state & HLS_DOWN) { 7548 /* still going up..wait and retry */ 7549 if (ppd->host_link_state & HLS_GOING_UP) { 7550 if (++tries < 1000) { 7551 mutex_unlock(&ppd->hls_lock); 7552 usleep_range(100, 120); /* arbitrary */ 7553 goto retry; 7554 } 7555 dd_dev_err(ppd->dd, 7556 "%s: giving up waiting for link state change\n", 7557 __func__); 7558 } 7559 goto done; 7560 } 7561 7562 lwde = ppd->link_width_downgrade_enabled; 7563 7564 if (refresh_widths) { 7565 get_link_widths(ppd->dd, &tx, &rx); 7566 ppd->link_width_downgrade_tx_active = tx; 7567 ppd->link_width_downgrade_rx_active = rx; 7568 } 7569 7570 if (ppd->link_width_downgrade_tx_active == 0 || 7571 ppd->link_width_downgrade_rx_active == 0) { 7572 /* the 8051 reported a dead link as a downgrade */ 7573 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n"); 7574 } else if (lwde == 0) { 7575 /* downgrade is disabled */ 7576 7577 /* bounce if not at starting active width */ 7578 if ((ppd->link_width_active != 7579 ppd->link_width_downgrade_tx_active) || 7580 (ppd->link_width_active != 7581 ppd->link_width_downgrade_rx_active)) { 7582 dd_dev_err(ppd->dd, 7583 "Link downgrade is disabled and link has downgraded, downing link\n"); 7584 dd_dev_err(ppd->dd, 7585 " original 0x%x, tx active 0x%x, rx active 0x%x\n", 7586 ppd->link_width_active, 7587 ppd->link_width_downgrade_tx_active, 7588 ppd->link_width_downgrade_rx_active); 7589 do_bounce = 1; 7590 } 7591 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 || 7592 (lwde & ppd->link_width_downgrade_rx_active) == 0) { 7593 /* Tx or Rx is outside the enabled policy */ 7594 dd_dev_err(ppd->dd, 7595 "Link is outside of downgrade allowed, downing link\n"); 7596 dd_dev_err(ppd->dd, 7597 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n", 7598 lwde, ppd->link_width_downgrade_tx_active, 7599 ppd->link_width_downgrade_rx_active); 7600 do_bounce = 1; 7601 } 7602 7603 done: 7604 mutex_unlock(&ppd->hls_lock); 7605 7606 if (do_bounce) { 7607 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0, 7608 OPA_LINKDOWN_REASON_WIDTH_POLICY); 7609 set_link_state(ppd, HLS_DN_OFFLINE); 7610 start_link(ppd); 7611 } 7612 } 7613 7614 /* 7615 * Handle a link downgrade interrupt from the 8051. 7616 * 7617 * This is a work-queue function outside of the interrupt. 7618 */ 7619 void handle_link_downgrade(struct work_struct *work) 7620 { 7621 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7622 link_downgrade_work); 7623 7624 dd_dev_info(ppd->dd, "8051: Link width downgrade\n"); 7625 apply_link_downgrade_policy(ppd, 1); 7626 } 7627 7628 static char *dcc_err_string(char *buf, int buf_len, u64 flags) 7629 { 7630 return flag_string(buf, buf_len, flags, dcc_err_flags, 7631 ARRAY_SIZE(dcc_err_flags)); 7632 } 7633 7634 static char *lcb_err_string(char *buf, int buf_len, u64 flags) 7635 { 7636 return flag_string(buf, buf_len, flags, lcb_err_flags, 7637 ARRAY_SIZE(lcb_err_flags)); 7638 } 7639 7640 static char *dc8051_err_string(char *buf, int buf_len, u64 flags) 7641 { 7642 return flag_string(buf, buf_len, flags, dc8051_err_flags, 7643 ARRAY_SIZE(dc8051_err_flags)); 7644 } 7645 7646 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags) 7647 { 7648 return flag_string(buf, buf_len, flags, dc8051_info_err_flags, 7649 ARRAY_SIZE(dc8051_info_err_flags)); 7650 } 7651 7652 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags) 7653 { 7654 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags, 7655 ARRAY_SIZE(dc8051_info_host_msg_flags)); 7656 } 7657 7658 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg) 7659 { 7660 struct hfi1_pportdata *ppd = dd->pport; 7661 u64 info, err, host_msg; 7662 int queue_link_down = 0; 7663 char buf[96]; 7664 7665 /* look at the flags */ 7666 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) { 7667 /* 8051 information set by firmware */ 7668 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */ 7669 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051); 7670 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT) 7671 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK; 7672 host_msg = (info >> 7673 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT) 7674 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK; 7675 7676 /* 7677 * Handle error flags. 7678 */ 7679 if (err & FAILED_LNI) { 7680 /* 7681 * LNI error indications are cleared by the 8051 7682 * only when starting polling. Only pay attention 7683 * to them when in the states that occur during 7684 * LNI. 7685 */ 7686 if (ppd->host_link_state 7687 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 7688 queue_link_down = 1; 7689 dd_dev_info(dd, "Link error: %s\n", 7690 dc8051_info_err_string(buf, 7691 sizeof(buf), 7692 err & 7693 FAILED_LNI)); 7694 } 7695 err &= ~(u64)FAILED_LNI; 7696 } 7697 /* unknown frames can happen durning LNI, just count */ 7698 if (err & UNKNOWN_FRAME) { 7699 ppd->unknown_frame_count++; 7700 err &= ~(u64)UNKNOWN_FRAME; 7701 } 7702 if (err) { 7703 /* report remaining errors, but do not do anything */ 7704 dd_dev_err(dd, "8051 info error: %s\n", 7705 dc8051_info_err_string(buf, sizeof(buf), 7706 err)); 7707 } 7708 7709 /* 7710 * Handle host message flags. 7711 */ 7712 if (host_msg & HOST_REQ_DONE) { 7713 /* 7714 * Presently, the driver does a busy wait for 7715 * host requests to complete. This is only an 7716 * informational message. 7717 * NOTE: The 8051 clears the host message 7718 * information *on the next 8051 command*. 7719 * Therefore, when linkup is achieved, 7720 * this flag will still be set. 7721 */ 7722 host_msg &= ~(u64)HOST_REQ_DONE; 7723 } 7724 if (host_msg & BC_SMA_MSG) { 7725 queue_work(ppd->link_wq, &ppd->sma_message_work); 7726 host_msg &= ~(u64)BC_SMA_MSG; 7727 } 7728 if (host_msg & LINKUP_ACHIEVED) { 7729 dd_dev_info(dd, "8051: Link up\n"); 7730 queue_work(ppd->link_wq, &ppd->link_up_work); 7731 host_msg &= ~(u64)LINKUP_ACHIEVED; 7732 } 7733 if (host_msg & EXT_DEVICE_CFG_REQ) { 7734 handle_8051_request(ppd); 7735 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ; 7736 } 7737 if (host_msg & VERIFY_CAP_FRAME) { 7738 queue_work(ppd->link_wq, &ppd->link_vc_work); 7739 host_msg &= ~(u64)VERIFY_CAP_FRAME; 7740 } 7741 if (host_msg & LINK_GOING_DOWN) { 7742 const char *extra = ""; 7743 /* no downgrade action needed if going down */ 7744 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7745 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7746 extra = " (ignoring downgrade)"; 7747 } 7748 dd_dev_info(dd, "8051: Link down%s\n", extra); 7749 queue_link_down = 1; 7750 host_msg &= ~(u64)LINK_GOING_DOWN; 7751 } 7752 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7753 queue_work(ppd->link_wq, &ppd->link_downgrade_work); 7754 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7755 } 7756 if (host_msg) { 7757 /* report remaining messages, but do not do anything */ 7758 dd_dev_info(dd, "8051 info host message: %s\n", 7759 dc8051_info_host_msg_string(buf, 7760 sizeof(buf), 7761 host_msg)); 7762 } 7763 7764 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK; 7765 } 7766 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) { 7767 /* 7768 * Lost the 8051 heartbeat. If this happens, we 7769 * receive constant interrupts about it. Disable 7770 * the interrupt after the first. 7771 */ 7772 dd_dev_err(dd, "Lost 8051 heartbeat\n"); 7773 write_csr(dd, DC_DC8051_ERR_EN, 7774 read_csr(dd, DC_DC8051_ERR_EN) & 7775 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK); 7776 7777 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK; 7778 } 7779 if (reg) { 7780 /* report the error, but do not do anything */ 7781 dd_dev_err(dd, "8051 error: %s\n", 7782 dc8051_err_string(buf, sizeof(buf), reg)); 7783 } 7784 7785 if (queue_link_down) { 7786 /* 7787 * if the link is already going down or disabled, do not 7788 * queue another. If there's a link down entry already 7789 * queued, don't queue another one. 7790 */ 7791 if ((ppd->host_link_state & 7792 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) || 7793 ppd->link_enabled == 0) { 7794 dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n", 7795 __func__, ppd->host_link_state, 7796 ppd->link_enabled); 7797 } else { 7798 if (xchg(&ppd->is_link_down_queued, 1) == 1) 7799 dd_dev_info(dd, 7800 "%s: link down request already queued\n", 7801 __func__); 7802 else 7803 queue_work(ppd->link_wq, &ppd->link_down_work); 7804 } 7805 } 7806 } 7807 7808 static const char * const fm_config_txt[] = { 7809 [0] = 7810 "BadHeadDist: Distance violation between two head flits", 7811 [1] = 7812 "BadTailDist: Distance violation between two tail flits", 7813 [2] = 7814 "BadCtrlDist: Distance violation between two credit control flits", 7815 [3] = 7816 "BadCrdAck: Credits return for unsupported VL", 7817 [4] = 7818 "UnsupportedVLMarker: Received VL Marker", 7819 [5] = 7820 "BadPreempt: Exceeded the preemption nesting level", 7821 [6] = 7822 "BadControlFlit: Received unsupported control flit", 7823 /* no 7 */ 7824 [8] = 7825 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL", 7826 }; 7827 7828 static const char * const port_rcv_txt[] = { 7829 [1] = 7830 "BadPktLen: Illegal PktLen", 7831 [2] = 7832 "PktLenTooLong: Packet longer than PktLen", 7833 [3] = 7834 "PktLenTooShort: Packet shorter than PktLen", 7835 [4] = 7836 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)", 7837 [5] = 7838 "BadDLID: Illegal DLID (0, doesn't match HFI)", 7839 [6] = 7840 "BadL2: Illegal L2 opcode", 7841 [7] = 7842 "BadSC: Unsupported SC", 7843 [9] = 7844 "BadRC: Illegal RC", 7845 [11] = 7846 "PreemptError: Preempting with same VL", 7847 [12] = 7848 "PreemptVL15: Preempting a VL15 packet", 7849 }; 7850 7851 #define OPA_LDR_FMCONFIG_OFFSET 16 7852 #define OPA_LDR_PORTRCV_OFFSET 0 7853 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7854 { 7855 u64 info, hdr0, hdr1; 7856 const char *extra; 7857 char buf[96]; 7858 struct hfi1_pportdata *ppd = dd->pport; 7859 u8 lcl_reason = 0; 7860 int do_bounce = 0; 7861 7862 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) { 7863 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) { 7864 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE); 7865 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK; 7866 /* set status bit */ 7867 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK; 7868 } 7869 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK; 7870 } 7871 7872 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) { 7873 struct hfi1_pportdata *ppd = dd->pport; 7874 /* this counter saturates at (2^32) - 1 */ 7875 if (ppd->link_downed < (u32)UINT_MAX) 7876 ppd->link_downed++; 7877 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK; 7878 } 7879 7880 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) { 7881 u8 reason_valid = 1; 7882 7883 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG); 7884 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) { 7885 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK; 7886 /* set status bit */ 7887 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK; 7888 } 7889 switch (info) { 7890 case 0: 7891 case 1: 7892 case 2: 7893 case 3: 7894 case 4: 7895 case 5: 7896 case 6: 7897 extra = fm_config_txt[info]; 7898 break; 7899 case 8: 7900 extra = fm_config_txt[info]; 7901 if (ppd->port_error_action & 7902 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) { 7903 do_bounce = 1; 7904 /* 7905 * lcl_reason cannot be derived from info 7906 * for this error 7907 */ 7908 lcl_reason = 7909 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER; 7910 } 7911 break; 7912 default: 7913 reason_valid = 0; 7914 snprintf(buf, sizeof(buf), "reserved%lld", info); 7915 extra = buf; 7916 break; 7917 } 7918 7919 if (reason_valid && !do_bounce) { 7920 do_bounce = ppd->port_error_action & 7921 (1 << (OPA_LDR_FMCONFIG_OFFSET + info)); 7922 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST; 7923 } 7924 7925 /* just report this */ 7926 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n", 7927 extra); 7928 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK; 7929 } 7930 7931 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) { 7932 u8 reason_valid = 1; 7933 7934 info = read_csr(dd, DCC_ERR_INFO_PORTRCV); 7935 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0); 7936 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1); 7937 if (!(dd->err_info_rcvport.status_and_code & 7938 OPA_EI_STATUS_SMASK)) { 7939 dd->err_info_rcvport.status_and_code = 7940 info & OPA_EI_CODE_SMASK; 7941 /* set status bit */ 7942 dd->err_info_rcvport.status_and_code |= 7943 OPA_EI_STATUS_SMASK; 7944 /* 7945 * save first 2 flits in the packet that caused 7946 * the error 7947 */ 7948 dd->err_info_rcvport.packet_flit1 = hdr0; 7949 dd->err_info_rcvport.packet_flit2 = hdr1; 7950 } 7951 switch (info) { 7952 case 1: 7953 case 2: 7954 case 3: 7955 case 4: 7956 case 5: 7957 case 6: 7958 case 7: 7959 case 9: 7960 case 11: 7961 case 12: 7962 extra = port_rcv_txt[info]; 7963 break; 7964 default: 7965 reason_valid = 0; 7966 snprintf(buf, sizeof(buf), "reserved%lld", info); 7967 extra = buf; 7968 break; 7969 } 7970 7971 if (reason_valid && !do_bounce) { 7972 do_bounce = ppd->port_error_action & 7973 (1 << (OPA_LDR_PORTRCV_OFFSET + info)); 7974 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0; 7975 } 7976 7977 /* just report this */ 7978 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n" 7979 " hdr0 0x%llx, hdr1 0x%llx\n", 7980 extra, hdr0, hdr1); 7981 7982 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK; 7983 } 7984 7985 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) { 7986 /* informative only */ 7987 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n"); 7988 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK; 7989 } 7990 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) { 7991 /* informative only */ 7992 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n"); 7993 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK; 7994 } 7995 7996 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev))) 7997 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK; 7998 7999 /* report any remaining errors */ 8000 if (reg) 8001 dd_dev_info_ratelimited(dd, "DCC Error: %s\n", 8002 dcc_err_string(buf, sizeof(buf), reg)); 8003 8004 if (lcl_reason == 0) 8005 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN; 8006 8007 if (do_bounce) { 8008 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n", 8009 __func__); 8010 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason); 8011 queue_work(ppd->link_wq, &ppd->link_bounce_work); 8012 } 8013 } 8014 8015 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 8016 { 8017 char buf[96]; 8018 8019 dd_dev_info(dd, "LCB Error: %s\n", 8020 lcb_err_string(buf, sizeof(buf), reg)); 8021 } 8022 8023 /* 8024 * CCE block DC interrupt. Source is < 8. 8025 */ 8026 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source) 8027 { 8028 const struct err_reg_info *eri = &dc_errs[source]; 8029 8030 if (eri->handler) { 8031 interrupt_clear_down(dd, 0, eri); 8032 } else if (source == 3 /* dc_lbm_int */) { 8033 /* 8034 * This indicates that a parity error has occurred on the 8035 * address/control lines presented to the LBM. The error 8036 * is a single pulse, there is no associated error flag, 8037 * and it is non-maskable. This is because if a parity 8038 * error occurs on the request the request is dropped. 8039 * This should never occur, but it is nice to know if it 8040 * ever does. 8041 */ 8042 dd_dev_err(dd, "Parity error in DC LBM block\n"); 8043 } else { 8044 dd_dev_err(dd, "Invalid DC interrupt %u\n", source); 8045 } 8046 } 8047 8048 /* 8049 * TX block send credit interrupt. Source is < 160. 8050 */ 8051 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source) 8052 { 8053 sc_group_release_update(dd, source); 8054 } 8055 8056 /* 8057 * TX block SDMA interrupt. Source is < 48. 8058 * 8059 * SDMA interrupts are grouped by type: 8060 * 8061 * 0 - N-1 = SDma 8062 * N - 2N-1 = SDmaProgress 8063 * 2N - 3N-1 = SDmaIdle 8064 */ 8065 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source) 8066 { 8067 /* what interrupt */ 8068 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 8069 /* which engine */ 8070 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 8071 8072 #ifdef CONFIG_SDMA_VERBOSITY 8073 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which, 8074 slashstrip(__FILE__), __LINE__, __func__); 8075 sdma_dumpstate(&dd->per_sdma[which]); 8076 #endif 8077 8078 if (likely(what < 3 && which < dd->num_sdma)) { 8079 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source); 8080 } else { 8081 /* should not happen */ 8082 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source); 8083 } 8084 } 8085 8086 /* 8087 * RX block receive available interrupt. Source is < 160. 8088 */ 8089 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source) 8090 { 8091 struct hfi1_ctxtdata *rcd; 8092 char *err_detail; 8093 8094 if (likely(source < dd->num_rcv_contexts)) { 8095 rcd = hfi1_rcd_get_by_index(dd, source); 8096 if (rcd) { 8097 /* Check for non-user contexts, including vnic */ 8098 if (source < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 8099 rcd->do_interrupt(rcd, 0); 8100 else 8101 handle_user_interrupt(rcd); 8102 8103 hfi1_rcd_put(rcd); 8104 return; /* OK */ 8105 } 8106 /* received an interrupt, but no rcd */ 8107 err_detail = "dataless"; 8108 } else { 8109 /* received an interrupt, but are not using that context */ 8110 err_detail = "out of range"; 8111 } 8112 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n", 8113 err_detail, source); 8114 } 8115 8116 /* 8117 * RX block receive urgent interrupt. Source is < 160. 8118 */ 8119 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source) 8120 { 8121 struct hfi1_ctxtdata *rcd; 8122 char *err_detail; 8123 8124 if (likely(source < dd->num_rcv_contexts)) { 8125 rcd = hfi1_rcd_get_by_index(dd, source); 8126 if (rcd) { 8127 /* only pay attention to user urgent interrupts */ 8128 if (source >= dd->first_dyn_alloc_ctxt && 8129 !rcd->is_vnic) 8130 handle_user_interrupt(rcd); 8131 8132 hfi1_rcd_put(rcd); 8133 return; /* OK */ 8134 } 8135 /* received an interrupt, but no rcd */ 8136 err_detail = "dataless"; 8137 } else { 8138 /* received an interrupt, but are not using that context */ 8139 err_detail = "out of range"; 8140 } 8141 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n", 8142 err_detail, source); 8143 } 8144 8145 /* 8146 * Reserved range interrupt. Should not be called in normal operation. 8147 */ 8148 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source) 8149 { 8150 char name[64]; 8151 8152 dd_dev_err(dd, "unexpected %s interrupt\n", 8153 is_reserved_name(name, sizeof(name), source)); 8154 } 8155 8156 static const struct is_table is_table[] = { 8157 /* 8158 * start end 8159 * name func interrupt func 8160 */ 8161 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END, 8162 is_misc_err_name, is_misc_err_int }, 8163 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END, 8164 is_sdma_eng_err_name, is_sdma_eng_err_int }, 8165 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, 8166 is_sendctxt_err_name, is_sendctxt_err_int }, 8167 { IS_SDMA_START, IS_SDMA_END, 8168 is_sdma_eng_name, is_sdma_eng_int }, 8169 { IS_VARIOUS_START, IS_VARIOUS_END, 8170 is_various_name, is_various_int }, 8171 { IS_DC_START, IS_DC_END, 8172 is_dc_name, is_dc_int }, 8173 { IS_RCVAVAIL_START, IS_RCVAVAIL_END, 8174 is_rcv_avail_name, is_rcv_avail_int }, 8175 { IS_RCVURGENT_START, IS_RCVURGENT_END, 8176 is_rcv_urgent_name, is_rcv_urgent_int }, 8177 { IS_SENDCREDIT_START, IS_SENDCREDIT_END, 8178 is_send_credit_name, is_send_credit_int}, 8179 { IS_RESERVED_START, IS_RESERVED_END, 8180 is_reserved_name, is_reserved_int}, 8181 }; 8182 8183 /* 8184 * Interrupt source interrupt - called when the given source has an interrupt. 8185 * Source is a bit index into an array of 64-bit integers. 8186 */ 8187 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source) 8188 { 8189 const struct is_table *entry; 8190 8191 /* avoids a double compare by walking the table in-order */ 8192 for (entry = &is_table[0]; entry->is_name; entry++) { 8193 if (source < entry->end) { 8194 trace_hfi1_interrupt(dd, entry, source); 8195 entry->is_int(dd, source - entry->start); 8196 return; 8197 } 8198 } 8199 /* fell off the end */ 8200 dd_dev_err(dd, "invalid interrupt source %u\n", source); 8201 } 8202 8203 /* 8204 * General interrupt handler. This is able to correctly handle 8205 * all interrupts in case INTx is used. 8206 */ 8207 static irqreturn_t general_interrupt(int irq, void *data) 8208 { 8209 struct hfi1_devdata *dd = data; 8210 u64 regs[CCE_NUM_INT_CSRS]; 8211 u32 bit; 8212 int i; 8213 irqreturn_t handled = IRQ_NONE; 8214 8215 this_cpu_inc(*dd->int_counter); 8216 8217 /* phase 1: scan and clear all handled interrupts */ 8218 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 8219 if (dd->gi_mask[i] == 0) { 8220 regs[i] = 0; /* used later */ 8221 continue; 8222 } 8223 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) & 8224 dd->gi_mask[i]; 8225 /* only clear if anything is set */ 8226 if (regs[i]) 8227 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]); 8228 } 8229 8230 /* phase 2: call the appropriate handler */ 8231 for_each_set_bit(bit, (unsigned long *)®s[0], 8232 CCE_NUM_INT_CSRS * 64) { 8233 is_interrupt(dd, bit); 8234 handled = IRQ_HANDLED; 8235 } 8236 8237 return handled; 8238 } 8239 8240 static irqreturn_t sdma_interrupt(int irq, void *data) 8241 { 8242 struct sdma_engine *sde = data; 8243 struct hfi1_devdata *dd = sde->dd; 8244 u64 status; 8245 8246 #ifdef CONFIG_SDMA_VERBOSITY 8247 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 8248 slashstrip(__FILE__), __LINE__, __func__); 8249 sdma_dumpstate(sde); 8250 #endif 8251 8252 this_cpu_inc(*dd->int_counter); 8253 8254 /* This read_csr is really bad in the hot path */ 8255 status = read_csr(dd, 8256 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64))) 8257 & sde->imask; 8258 if (likely(status)) { 8259 /* clear the interrupt(s) */ 8260 write_csr(dd, 8261 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)), 8262 status); 8263 8264 /* handle the interrupt(s) */ 8265 sdma_engine_interrupt(sde, status); 8266 } else { 8267 dd_dev_err_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n", 8268 sde->this_idx); 8269 } 8270 return IRQ_HANDLED; 8271 } 8272 8273 /* 8274 * Clear the receive interrupt. Use a read of the interrupt clear CSR 8275 * to insure that the write completed. This does NOT guarantee that 8276 * queued DMA writes to memory from the chip are pushed. 8277 */ 8278 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd) 8279 { 8280 struct hfi1_devdata *dd = rcd->dd; 8281 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg); 8282 8283 mmiowb(); /* make sure everything before is written */ 8284 write_csr(dd, addr, rcd->imask); 8285 /* force the above write on the chip and get a value back */ 8286 (void)read_csr(dd, addr); 8287 } 8288 8289 /* force the receive interrupt */ 8290 void force_recv_intr(struct hfi1_ctxtdata *rcd) 8291 { 8292 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask); 8293 } 8294 8295 /* 8296 * Return non-zero if a packet is present. 8297 * 8298 * This routine is called when rechecking for packets after the RcvAvail 8299 * interrupt has been cleared down. First, do a quick check of memory for 8300 * a packet present. If not found, use an expensive CSR read of the context 8301 * tail to determine the actual tail. The CSR read is necessary because there 8302 * is no method to push pending DMAs to memory other than an interrupt and we 8303 * are trying to determine if we need to force an interrupt. 8304 */ 8305 static inline int check_packet_present(struct hfi1_ctxtdata *rcd) 8306 { 8307 u32 tail; 8308 int present; 8309 8310 if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) 8311 present = (rcd->seq_cnt == 8312 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)))); 8313 else /* is RDMA rtail */ 8314 present = (rcd->head != get_rcvhdrtail(rcd)); 8315 8316 if (present) 8317 return 1; 8318 8319 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */ 8320 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 8321 return rcd->head != tail; 8322 } 8323 8324 /* 8325 * Receive packet IRQ handler. This routine expects to be on its own IRQ. 8326 * This routine will try to handle packets immediately (latency), but if 8327 * it finds too many, it will invoke the thread handler (bandwitdh). The 8328 * chip receive interrupt is *not* cleared down until this or the thread (if 8329 * invoked) is finished. The intent is to avoid extra interrupts while we 8330 * are processing packets anyway. 8331 */ 8332 static irqreturn_t receive_context_interrupt(int irq, void *data) 8333 { 8334 struct hfi1_ctxtdata *rcd = data; 8335 struct hfi1_devdata *dd = rcd->dd; 8336 int disposition; 8337 int present; 8338 8339 trace_hfi1_receive_interrupt(dd, rcd); 8340 this_cpu_inc(*dd->int_counter); 8341 aspm_ctx_disable(rcd); 8342 8343 /* receive interrupt remains blocked while processing packets */ 8344 disposition = rcd->do_interrupt(rcd, 0); 8345 8346 /* 8347 * Too many packets were seen while processing packets in this 8348 * IRQ handler. Invoke the handler thread. The receive interrupt 8349 * remains blocked. 8350 */ 8351 if (disposition == RCV_PKT_LIMIT) 8352 return IRQ_WAKE_THREAD; 8353 8354 /* 8355 * The packet processor detected no more packets. Clear the receive 8356 * interrupt and recheck for a packet packet that may have arrived 8357 * after the previous check and interrupt clear. If a packet arrived, 8358 * force another interrupt. 8359 */ 8360 clear_recv_intr(rcd); 8361 present = check_packet_present(rcd); 8362 if (present) 8363 force_recv_intr(rcd); 8364 8365 return IRQ_HANDLED; 8366 } 8367 8368 /* 8369 * Receive packet thread handler. This expects to be invoked with the 8370 * receive interrupt still blocked. 8371 */ 8372 static irqreturn_t receive_context_thread(int irq, void *data) 8373 { 8374 struct hfi1_ctxtdata *rcd = data; 8375 int present; 8376 8377 /* receive interrupt is still blocked from the IRQ handler */ 8378 (void)rcd->do_interrupt(rcd, 1); 8379 8380 /* 8381 * The packet processor will only return if it detected no more 8382 * packets. Hold IRQs here so we can safely clear the interrupt and 8383 * recheck for a packet that may have arrived after the previous 8384 * check and the interrupt clear. If a packet arrived, force another 8385 * interrupt. 8386 */ 8387 local_irq_disable(); 8388 clear_recv_intr(rcd); 8389 present = check_packet_present(rcd); 8390 if (present) 8391 force_recv_intr(rcd); 8392 local_irq_enable(); 8393 8394 return IRQ_HANDLED; 8395 } 8396 8397 /* ========================================================================= */ 8398 8399 u32 read_physical_state(struct hfi1_devdata *dd) 8400 { 8401 u64 reg; 8402 8403 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); 8404 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT) 8405 & DC_DC8051_STS_CUR_STATE_PORT_MASK; 8406 } 8407 8408 u32 read_logical_state(struct hfi1_devdata *dd) 8409 { 8410 u64 reg; 8411 8412 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8413 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT) 8414 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK; 8415 } 8416 8417 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate) 8418 { 8419 u64 reg; 8420 8421 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8422 /* clear current state, set new state */ 8423 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK; 8424 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT; 8425 write_csr(dd, DCC_CFG_PORT_CONFIG, reg); 8426 } 8427 8428 /* 8429 * Use the 8051 to read a LCB CSR. 8430 */ 8431 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data) 8432 { 8433 u32 regno; 8434 int ret; 8435 8436 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8437 if (acquire_lcb_access(dd, 0) == 0) { 8438 *data = read_csr(dd, addr); 8439 release_lcb_access(dd, 0); 8440 return 0; 8441 } 8442 return -EBUSY; 8443 } 8444 8445 /* register is an index of LCB registers: (offset - base) / 8 */ 8446 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8447 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data); 8448 if (ret != HCMD_SUCCESS) 8449 return -EBUSY; 8450 return 0; 8451 } 8452 8453 /* 8454 * Provide a cache for some of the LCB registers in case the LCB is 8455 * unavailable. 8456 * (The LCB is unavailable in certain link states, for example.) 8457 */ 8458 struct lcb_datum { 8459 u32 off; 8460 u64 val; 8461 }; 8462 8463 static struct lcb_datum lcb_cache[] = { 8464 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0}, 8465 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 }, 8466 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 }, 8467 }; 8468 8469 static void update_lcb_cache(struct hfi1_devdata *dd) 8470 { 8471 int i; 8472 int ret; 8473 u64 val; 8474 8475 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 8476 ret = read_lcb_csr(dd, lcb_cache[i].off, &val); 8477 8478 /* Update if we get good data */ 8479 if (likely(ret != -EBUSY)) 8480 lcb_cache[i].val = val; 8481 } 8482 } 8483 8484 static int read_lcb_cache(u32 off, u64 *val) 8485 { 8486 int i; 8487 8488 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 8489 if (lcb_cache[i].off == off) { 8490 *val = lcb_cache[i].val; 8491 return 0; 8492 } 8493 } 8494 8495 pr_warn("%s bad offset 0x%x\n", __func__, off); 8496 return -1; 8497 } 8498 8499 /* 8500 * Read an LCB CSR. Access may not be in host control, so check. 8501 * Return 0 on success, -EBUSY on failure. 8502 */ 8503 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data) 8504 { 8505 struct hfi1_pportdata *ppd = dd->pport; 8506 8507 /* if up, go through the 8051 for the value */ 8508 if (ppd->host_link_state & HLS_UP) 8509 return read_lcb_via_8051(dd, addr, data); 8510 /* if going up or down, check the cache, otherwise, no access */ 8511 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) { 8512 if (read_lcb_cache(addr, data)) 8513 return -EBUSY; 8514 return 0; 8515 } 8516 8517 /* otherwise, host has access */ 8518 *data = read_csr(dd, addr); 8519 return 0; 8520 } 8521 8522 /* 8523 * Use the 8051 to write a LCB CSR. 8524 */ 8525 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data) 8526 { 8527 u32 regno; 8528 int ret; 8529 8530 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || 8531 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) { 8532 if (acquire_lcb_access(dd, 0) == 0) { 8533 write_csr(dd, addr, data); 8534 release_lcb_access(dd, 0); 8535 return 0; 8536 } 8537 return -EBUSY; 8538 } 8539 8540 /* register is an index of LCB registers: (offset - base) / 8 */ 8541 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8542 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data); 8543 if (ret != HCMD_SUCCESS) 8544 return -EBUSY; 8545 return 0; 8546 } 8547 8548 /* 8549 * Write an LCB CSR. Access may not be in host control, so check. 8550 * Return 0 on success, -EBUSY on failure. 8551 */ 8552 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data) 8553 { 8554 struct hfi1_pportdata *ppd = dd->pport; 8555 8556 /* if up, go through the 8051 for the value */ 8557 if (ppd->host_link_state & HLS_UP) 8558 return write_lcb_via_8051(dd, addr, data); 8559 /* if going up or down, no access */ 8560 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8561 return -EBUSY; 8562 /* otherwise, host has access */ 8563 write_csr(dd, addr, data); 8564 return 0; 8565 } 8566 8567 /* 8568 * Returns: 8569 * < 0 = Linux error, not able to get access 8570 * > 0 = 8051 command RETURN_CODE 8571 */ 8572 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 8573 u64 *out_data) 8574 { 8575 u64 reg, completed; 8576 int return_code; 8577 unsigned long timeout; 8578 8579 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data); 8580 8581 mutex_lock(&dd->dc8051_lock); 8582 8583 /* We can't send any commands to the 8051 if it's in reset */ 8584 if (dd->dc_shutdown) { 8585 return_code = -ENODEV; 8586 goto fail; 8587 } 8588 8589 /* 8590 * If an 8051 host command timed out previously, then the 8051 is 8591 * stuck. 8592 * 8593 * On first timeout, attempt to reset and restart the entire DC 8594 * block (including 8051). (Is this too big of a hammer?) 8595 * 8596 * If the 8051 times out a second time, the reset did not bring it 8597 * back to healthy life. In that case, fail any subsequent commands. 8598 */ 8599 if (dd->dc8051_timed_out) { 8600 if (dd->dc8051_timed_out > 1) { 8601 dd_dev_err(dd, 8602 "Previous 8051 host command timed out, skipping command %u\n", 8603 type); 8604 return_code = -ENXIO; 8605 goto fail; 8606 } 8607 _dc_shutdown(dd); 8608 _dc_start(dd); 8609 } 8610 8611 /* 8612 * If there is no timeout, then the 8051 command interface is 8613 * waiting for a command. 8614 */ 8615 8616 /* 8617 * When writing a LCB CSR, out_data contains the full value to 8618 * to be written, while in_data contains the relative LCB 8619 * address in 7:0. Do the work here, rather than the caller, 8620 * of distrubting the write data to where it needs to go: 8621 * 8622 * Write data 8623 * 39:00 -> in_data[47:8] 8624 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE 8625 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA 8626 */ 8627 if (type == HCMD_WRITE_LCB_CSR) { 8628 in_data |= ((*out_data) & 0xffffffffffull) << 8; 8629 /* must preserve COMPLETED - it is tied to hardware */ 8630 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0); 8631 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK; 8632 reg |= ((((*out_data) >> 40) & 0xff) << 8633 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT) 8634 | ((((*out_data) >> 48) & 0xffff) << 8635 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 8636 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg); 8637 } 8638 8639 /* 8640 * Do two writes: the first to stabilize the type and req_data, the 8641 * second to activate. 8642 */ 8643 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK) 8644 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT 8645 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK) 8646 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT; 8647 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8648 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK; 8649 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8650 8651 /* wait for completion, alternate: interrupt */ 8652 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT); 8653 while (1) { 8654 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1); 8655 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK; 8656 if (completed) 8657 break; 8658 if (time_after(jiffies, timeout)) { 8659 dd->dc8051_timed_out++; 8660 dd_dev_err(dd, "8051 host command %u timeout\n", type); 8661 if (out_data) 8662 *out_data = 0; 8663 return_code = -ETIMEDOUT; 8664 goto fail; 8665 } 8666 udelay(2); 8667 } 8668 8669 if (out_data) { 8670 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT) 8671 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK; 8672 if (type == HCMD_READ_LCB_CSR) { 8673 /* top 16 bits are in a different register */ 8674 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1) 8675 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK) 8676 << (48 8677 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT); 8678 } 8679 } 8680 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT) 8681 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK; 8682 dd->dc8051_timed_out = 0; 8683 /* 8684 * Clear command for next user. 8685 */ 8686 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0); 8687 8688 fail: 8689 mutex_unlock(&dd->dc8051_lock); 8690 return return_code; 8691 } 8692 8693 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state) 8694 { 8695 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL); 8696 } 8697 8698 int load_8051_config(struct hfi1_devdata *dd, u8 field_id, 8699 u8 lane_id, u32 config_data) 8700 { 8701 u64 data; 8702 int ret; 8703 8704 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT 8705 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT 8706 | (u64)config_data << LOAD_DATA_DATA_SHIFT; 8707 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL); 8708 if (ret != HCMD_SUCCESS) { 8709 dd_dev_err(dd, 8710 "load 8051 config: field id %d, lane %d, err %d\n", 8711 (int)field_id, (int)lane_id, ret); 8712 } 8713 return ret; 8714 } 8715 8716 /* 8717 * Read the 8051 firmware "registers". Use the RAM directly. Always 8718 * set the result, even on error. 8719 * Return 0 on success, -errno on failure 8720 */ 8721 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id, 8722 u32 *result) 8723 { 8724 u64 big_data; 8725 u32 addr; 8726 int ret; 8727 8728 /* address start depends on the lane_id */ 8729 if (lane_id < 4) 8730 addr = (4 * NUM_GENERAL_FIELDS) 8731 + (lane_id * 4 * NUM_LANE_FIELDS); 8732 else 8733 addr = 0; 8734 addr += field_id * 4; 8735 8736 /* read is in 8-byte chunks, hardware will truncate the address down */ 8737 ret = read_8051_data(dd, addr, 8, &big_data); 8738 8739 if (ret == 0) { 8740 /* extract the 4 bytes we want */ 8741 if (addr & 0x4) 8742 *result = (u32)(big_data >> 32); 8743 else 8744 *result = (u32)big_data; 8745 } else { 8746 *result = 0; 8747 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n", 8748 __func__, lane_id, field_id); 8749 } 8750 8751 return ret; 8752 } 8753 8754 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management, 8755 u8 continuous) 8756 { 8757 u32 frame; 8758 8759 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT 8760 | power_management << POWER_MANAGEMENT_SHIFT; 8761 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY, 8762 GENERAL_CONFIG, frame); 8763 } 8764 8765 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu, 8766 u16 vl15buf, u8 crc_sizes) 8767 { 8768 u32 frame; 8769 8770 frame = (u32)vau << VAU_SHIFT 8771 | (u32)z << Z_SHIFT 8772 | (u32)vcu << VCU_SHIFT 8773 | (u32)vl15buf << VL15BUF_SHIFT 8774 | (u32)crc_sizes << CRC_SIZES_SHIFT; 8775 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC, 8776 GENERAL_CONFIG, frame); 8777 } 8778 8779 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 8780 u8 *flag_bits, u16 *link_widths) 8781 { 8782 u32 frame; 8783 8784 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8785 &frame); 8786 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK; 8787 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK; 8788 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8789 } 8790 8791 static int write_vc_local_link_width(struct hfi1_devdata *dd, 8792 u8 misc_bits, 8793 u8 flag_bits, 8794 u16 link_widths) 8795 { 8796 u32 frame; 8797 8798 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT 8799 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT 8800 | (u32)link_widths << LINK_WIDTH_SHIFT; 8801 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8802 frame); 8803 } 8804 8805 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id, 8806 u8 device_rev) 8807 { 8808 u32 frame; 8809 8810 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT) 8811 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT); 8812 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame); 8813 } 8814 8815 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 8816 u8 *device_rev) 8817 { 8818 u32 frame; 8819 8820 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame); 8821 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK; 8822 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT) 8823 & REMOTE_DEVICE_REV_MASK; 8824 } 8825 8826 int write_host_interface_version(struct hfi1_devdata *dd, u8 version) 8827 { 8828 u32 frame; 8829 u32 mask; 8830 8831 mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT); 8832 read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame); 8833 /* Clear, then set field */ 8834 frame &= ~mask; 8835 frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT); 8836 return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, 8837 frame); 8838 } 8839 8840 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor, 8841 u8 *ver_patch) 8842 { 8843 u32 frame; 8844 8845 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame); 8846 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) & 8847 STS_FM_VERSION_MAJOR_MASK; 8848 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) & 8849 STS_FM_VERSION_MINOR_MASK; 8850 8851 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame); 8852 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) & 8853 STS_FM_VERSION_PATCH_MASK; 8854 } 8855 8856 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 8857 u8 *continuous) 8858 { 8859 u32 frame; 8860 8861 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame); 8862 *power_management = (frame >> POWER_MANAGEMENT_SHIFT) 8863 & POWER_MANAGEMENT_MASK; 8864 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT) 8865 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK; 8866 } 8867 8868 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 8869 u8 *vcu, u16 *vl15buf, u8 *crc_sizes) 8870 { 8871 u32 frame; 8872 8873 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame); 8874 *vau = (frame >> VAU_SHIFT) & VAU_MASK; 8875 *z = (frame >> Z_SHIFT) & Z_MASK; 8876 *vcu = (frame >> VCU_SHIFT) & VCU_MASK; 8877 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK; 8878 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK; 8879 } 8880 8881 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 8882 u8 *remote_tx_rate, 8883 u16 *link_widths) 8884 { 8885 u32 frame; 8886 8887 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG, 8888 &frame); 8889 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT) 8890 & REMOTE_TX_RATE_MASK; 8891 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8892 } 8893 8894 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx) 8895 { 8896 u32 frame; 8897 8898 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame); 8899 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK; 8900 } 8901 8902 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls) 8903 { 8904 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls); 8905 } 8906 8907 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs) 8908 { 8909 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs); 8910 } 8911 8912 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality) 8913 { 8914 u32 frame; 8915 int ret; 8916 8917 *link_quality = 0; 8918 if (dd->pport->host_link_state & HLS_UP) { 8919 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, 8920 &frame); 8921 if (ret == 0) 8922 *link_quality = (frame >> LINK_QUALITY_SHIFT) 8923 & LINK_QUALITY_MASK; 8924 } 8925 } 8926 8927 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc) 8928 { 8929 u32 frame; 8930 8931 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame); 8932 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK; 8933 } 8934 8935 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr) 8936 { 8937 u32 frame; 8938 8939 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame); 8940 *ldr = (frame & 0xff); 8941 } 8942 8943 static int read_tx_settings(struct hfi1_devdata *dd, 8944 u8 *enable_lane_tx, 8945 u8 *tx_polarity_inversion, 8946 u8 *rx_polarity_inversion, 8947 u8 *max_rate) 8948 { 8949 u32 frame; 8950 int ret; 8951 8952 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame); 8953 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT) 8954 & ENABLE_LANE_TX_MASK; 8955 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT) 8956 & TX_POLARITY_INVERSION_MASK; 8957 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT) 8958 & RX_POLARITY_INVERSION_MASK; 8959 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK; 8960 return ret; 8961 } 8962 8963 static int write_tx_settings(struct hfi1_devdata *dd, 8964 u8 enable_lane_tx, 8965 u8 tx_polarity_inversion, 8966 u8 rx_polarity_inversion, 8967 u8 max_rate) 8968 { 8969 u32 frame; 8970 8971 /* no need to mask, all variable sizes match field widths */ 8972 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT 8973 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT 8974 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT 8975 | max_rate << MAX_RATE_SHIFT; 8976 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame); 8977 } 8978 8979 /* 8980 * Read an idle LCB message. 8981 * 8982 * Returns 0 on success, -EINVAL on error 8983 */ 8984 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out) 8985 { 8986 int ret; 8987 8988 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out); 8989 if (ret != HCMD_SUCCESS) { 8990 dd_dev_err(dd, "read idle message: type %d, err %d\n", 8991 (u32)type, ret); 8992 return -EINVAL; 8993 } 8994 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out); 8995 /* return only the payload as we already know the type */ 8996 *data_out >>= IDLE_PAYLOAD_SHIFT; 8997 return 0; 8998 } 8999 9000 /* 9001 * Read an idle SMA message. To be done in response to a notification from 9002 * the 8051. 9003 * 9004 * Returns 0 on success, -EINVAL on error 9005 */ 9006 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data) 9007 { 9008 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, 9009 data); 9010 } 9011 9012 /* 9013 * Send an idle LCB message. 9014 * 9015 * Returns 0 on success, -EINVAL on error 9016 */ 9017 static int send_idle_message(struct hfi1_devdata *dd, u64 data) 9018 { 9019 int ret; 9020 9021 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data); 9022 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL); 9023 if (ret != HCMD_SUCCESS) { 9024 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n", 9025 data, ret); 9026 return -EINVAL; 9027 } 9028 return 0; 9029 } 9030 9031 /* 9032 * Send an idle SMA message. 9033 * 9034 * Returns 0 on success, -EINVAL on error 9035 */ 9036 int send_idle_sma(struct hfi1_devdata *dd, u64 message) 9037 { 9038 u64 data; 9039 9040 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) | 9041 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT); 9042 return send_idle_message(dd, data); 9043 } 9044 9045 /* 9046 * Initialize the LCB then do a quick link up. This may or may not be 9047 * in loopback. 9048 * 9049 * return 0 on success, -errno on error 9050 */ 9051 static int do_quick_linkup(struct hfi1_devdata *dd) 9052 { 9053 int ret; 9054 9055 lcb_shutdown(dd, 0); 9056 9057 if (loopback) { 9058 /* LCB_CFG_LOOPBACK.VAL = 2 */ 9059 /* LCB_CFG_LANE_WIDTH.VAL = 0 */ 9060 write_csr(dd, DC_LCB_CFG_LOOPBACK, 9061 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT); 9062 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 9063 } 9064 9065 /* start the LCBs */ 9066 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */ 9067 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 9068 9069 /* simulator only loopback steps */ 9070 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 9071 /* LCB_CFG_RUN.EN = 1 */ 9072 write_csr(dd, DC_LCB_CFG_RUN, 9073 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 9074 9075 ret = wait_link_transfer_active(dd, 10); 9076 if (ret) 9077 return ret; 9078 9079 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 9080 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT); 9081 } 9082 9083 if (!loopback) { 9084 /* 9085 * When doing quick linkup and not in loopback, both 9086 * sides must be done with LCB set-up before either 9087 * starts the quick linkup. Put a delay here so that 9088 * both sides can be started and have a chance to be 9089 * done with LCB set up before resuming. 9090 */ 9091 dd_dev_err(dd, 9092 "Pausing for peer to be finished with LCB set up\n"); 9093 msleep(5000); 9094 dd_dev_err(dd, "Continuing with quick linkup\n"); 9095 } 9096 9097 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 9098 set_8051_lcb_access(dd); 9099 9100 /* 9101 * State "quick" LinkUp request sets the physical link state to 9102 * LinkUp without a verify capability sequence. 9103 * This state is in simulator v37 and later. 9104 */ 9105 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP); 9106 if (ret != HCMD_SUCCESS) { 9107 dd_dev_err(dd, 9108 "%s: set physical link state to quick LinkUp failed with return %d\n", 9109 __func__, ret); 9110 9111 set_host_lcb_access(dd); 9112 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 9113 9114 if (ret >= 0) 9115 ret = -EINVAL; 9116 return ret; 9117 } 9118 9119 return 0; /* success */ 9120 } 9121 9122 /* 9123 * Do all special steps to set up loopback. 9124 */ 9125 static int init_loopback(struct hfi1_devdata *dd) 9126 { 9127 dd_dev_info(dd, "Entering loopback mode\n"); 9128 9129 /* all loopbacks should disable self GUID check */ 9130 write_csr(dd, DC_DC8051_CFG_MODE, 9131 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK)); 9132 9133 /* 9134 * The simulator has only one loopback option - LCB. Switch 9135 * to that option, which includes quick link up. 9136 * 9137 * Accept all valid loopback values. 9138 */ 9139 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) && 9140 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB || 9141 loopback == LOOPBACK_CABLE)) { 9142 loopback = LOOPBACK_LCB; 9143 quick_linkup = 1; 9144 return 0; 9145 } 9146 9147 /* 9148 * SerDes loopback init sequence is handled in set_local_link_attributes 9149 */ 9150 if (loopback == LOOPBACK_SERDES) 9151 return 0; 9152 9153 /* LCB loopback - handled at poll time */ 9154 if (loopback == LOOPBACK_LCB) { 9155 quick_linkup = 1; /* LCB is always quick linkup */ 9156 9157 /* not supported in emulation due to emulation RTL changes */ 9158 if (dd->icode == ICODE_FPGA_EMULATION) { 9159 dd_dev_err(dd, 9160 "LCB loopback not supported in emulation\n"); 9161 return -EINVAL; 9162 } 9163 return 0; 9164 } 9165 9166 /* external cable loopback requires no extra steps */ 9167 if (loopback == LOOPBACK_CABLE) 9168 return 0; 9169 9170 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback); 9171 return -EINVAL; 9172 } 9173 9174 /* 9175 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits 9176 * used in the Verify Capability link width attribute. 9177 */ 9178 static u16 opa_to_vc_link_widths(u16 opa_widths) 9179 { 9180 int i; 9181 u16 result = 0; 9182 9183 static const struct link_bits { 9184 u16 from; 9185 u16 to; 9186 } opa_link_xlate[] = { 9187 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) }, 9188 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) }, 9189 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) }, 9190 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) }, 9191 }; 9192 9193 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) { 9194 if (opa_widths & opa_link_xlate[i].from) 9195 result |= opa_link_xlate[i].to; 9196 } 9197 return result; 9198 } 9199 9200 /* 9201 * Set link attributes before moving to polling. 9202 */ 9203 static int set_local_link_attributes(struct hfi1_pportdata *ppd) 9204 { 9205 struct hfi1_devdata *dd = ppd->dd; 9206 u8 enable_lane_tx; 9207 u8 tx_polarity_inversion; 9208 u8 rx_polarity_inversion; 9209 int ret; 9210 u32 misc_bits = 0; 9211 /* reset our fabric serdes to clear any lingering problems */ 9212 fabric_serdes_reset(dd); 9213 9214 /* set the local tx rate - need to read-modify-write */ 9215 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 9216 &rx_polarity_inversion, &ppd->local_tx_rate); 9217 if (ret) 9218 goto set_local_link_attributes_fail; 9219 9220 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) { 9221 /* set the tx rate to the fastest enabled */ 9222 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9223 ppd->local_tx_rate = 1; 9224 else 9225 ppd->local_tx_rate = 0; 9226 } else { 9227 /* set the tx rate to all enabled */ 9228 ppd->local_tx_rate = 0; 9229 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9230 ppd->local_tx_rate |= 2; 9231 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G) 9232 ppd->local_tx_rate |= 1; 9233 } 9234 9235 enable_lane_tx = 0xF; /* enable all four lanes */ 9236 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion, 9237 rx_polarity_inversion, ppd->local_tx_rate); 9238 if (ret != HCMD_SUCCESS) 9239 goto set_local_link_attributes_fail; 9240 9241 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION); 9242 if (ret != HCMD_SUCCESS) { 9243 dd_dev_err(dd, 9244 "Failed to set host interface version, return 0x%x\n", 9245 ret); 9246 goto set_local_link_attributes_fail; 9247 } 9248 9249 /* 9250 * DC supports continuous updates. 9251 */ 9252 ret = write_vc_local_phy(dd, 9253 0 /* no power management */, 9254 1 /* continuous updates */); 9255 if (ret != HCMD_SUCCESS) 9256 goto set_local_link_attributes_fail; 9257 9258 /* z=1 in the next call: AU of 0 is not supported by the hardware */ 9259 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init, 9260 ppd->port_crc_mode_enabled); 9261 if (ret != HCMD_SUCCESS) 9262 goto set_local_link_attributes_fail; 9263 9264 /* 9265 * SerDes loopback init sequence requires 9266 * setting bit 0 of MISC_CONFIG_BITS 9267 */ 9268 if (loopback == LOOPBACK_SERDES) 9269 misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT; 9270 9271 ret = write_vc_local_link_width(dd, misc_bits, 0, 9272 opa_to_vc_link_widths( 9273 ppd->link_width_enabled)); 9274 if (ret != HCMD_SUCCESS) 9275 goto set_local_link_attributes_fail; 9276 9277 /* let peer know who we are */ 9278 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev); 9279 if (ret == HCMD_SUCCESS) 9280 return 0; 9281 9282 set_local_link_attributes_fail: 9283 dd_dev_err(dd, 9284 "Failed to set local link attributes, return 0x%x\n", 9285 ret); 9286 return ret; 9287 } 9288 9289 /* 9290 * Call this to start the link. 9291 * Do not do anything if the link is disabled. 9292 * Returns 0 if link is disabled, moved to polling, or the driver is not ready. 9293 */ 9294 int start_link(struct hfi1_pportdata *ppd) 9295 { 9296 /* 9297 * Tune the SerDes to a ballpark setting for optimal signal and bit 9298 * error rate. Needs to be done before starting the link. 9299 */ 9300 tune_serdes(ppd); 9301 9302 if (!ppd->driver_link_ready) { 9303 dd_dev_info(ppd->dd, 9304 "%s: stopping link start because driver is not ready\n", 9305 __func__); 9306 return 0; 9307 } 9308 9309 /* 9310 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the 9311 * pkey table can be configured properly if the HFI unit is connected 9312 * to switch port with MgmtAllowed=NO 9313 */ 9314 clear_full_mgmt_pkey(ppd); 9315 9316 return set_link_state(ppd, HLS_DN_POLL); 9317 } 9318 9319 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd) 9320 { 9321 struct hfi1_devdata *dd = ppd->dd; 9322 u64 mask; 9323 unsigned long timeout; 9324 9325 /* 9326 * Some QSFP cables have a quirk that asserts the IntN line as a side 9327 * effect of power up on plug-in. We ignore this false positive 9328 * interrupt until the module has finished powering up by waiting for 9329 * a minimum timeout of the module inrush initialization time of 9330 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the 9331 * module have stabilized. 9332 */ 9333 msleep(500); 9334 9335 /* 9336 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1) 9337 */ 9338 timeout = jiffies + msecs_to_jiffies(2000); 9339 while (1) { 9340 mask = read_csr(dd, dd->hfi1_id ? 9341 ASIC_QSFP2_IN : ASIC_QSFP1_IN); 9342 if (!(mask & QSFP_HFI0_INT_N)) 9343 break; 9344 if (time_after(jiffies, timeout)) { 9345 dd_dev_info(dd, "%s: No IntN detected, reset complete\n", 9346 __func__); 9347 break; 9348 } 9349 udelay(2); 9350 } 9351 } 9352 9353 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable) 9354 { 9355 struct hfi1_devdata *dd = ppd->dd; 9356 u64 mask; 9357 9358 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK); 9359 if (enable) { 9360 /* 9361 * Clear the status register to avoid an immediate interrupt 9362 * when we re-enable the IntN pin 9363 */ 9364 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9365 QSFP_HFI0_INT_N); 9366 mask |= (u64)QSFP_HFI0_INT_N; 9367 } else { 9368 mask &= ~(u64)QSFP_HFI0_INT_N; 9369 } 9370 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask); 9371 } 9372 9373 int reset_qsfp(struct hfi1_pportdata *ppd) 9374 { 9375 struct hfi1_devdata *dd = ppd->dd; 9376 u64 mask, qsfp_mask; 9377 9378 /* Disable INT_N from triggering QSFP interrupts */ 9379 set_qsfp_int_n(ppd, 0); 9380 9381 /* Reset the QSFP */ 9382 mask = (u64)QSFP_HFI0_RESET_N; 9383 9384 qsfp_mask = read_csr(dd, 9385 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT); 9386 qsfp_mask &= ~mask; 9387 write_csr(dd, 9388 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9389 9390 udelay(10); 9391 9392 qsfp_mask |= mask; 9393 write_csr(dd, 9394 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9395 9396 wait_for_qsfp_init(ppd); 9397 9398 /* 9399 * Allow INT_N to trigger the QSFP interrupt to watch 9400 * for alarms and warnings 9401 */ 9402 set_qsfp_int_n(ppd, 1); 9403 9404 /* 9405 * After the reset, AOC transmitters are enabled by default. They need 9406 * to be turned off to complete the QSFP setup before they can be 9407 * enabled again. 9408 */ 9409 return set_qsfp_tx(ppd, 0); 9410 } 9411 9412 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd, 9413 u8 *qsfp_interrupt_status) 9414 { 9415 struct hfi1_devdata *dd = ppd->dd; 9416 9417 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) || 9418 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING)) 9419 dd_dev_err(dd, "%s: QSFP cable temperature too high\n", 9420 __func__); 9421 9422 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) || 9423 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING)) 9424 dd_dev_err(dd, "%s: QSFP cable temperature too low\n", 9425 __func__); 9426 9427 /* 9428 * The remaining alarms/warnings don't matter if the link is down. 9429 */ 9430 if (ppd->host_link_state & HLS_DOWN) 9431 return 0; 9432 9433 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) || 9434 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING)) 9435 dd_dev_err(dd, "%s: QSFP supply voltage too high\n", 9436 __func__); 9437 9438 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) || 9439 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING)) 9440 dd_dev_err(dd, "%s: QSFP supply voltage too low\n", 9441 __func__); 9442 9443 /* Byte 2 is vendor specific */ 9444 9445 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) || 9446 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING)) 9447 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n", 9448 __func__); 9449 9450 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) || 9451 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING)) 9452 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n", 9453 __func__); 9454 9455 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) || 9456 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING)) 9457 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n", 9458 __func__); 9459 9460 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) || 9461 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING)) 9462 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n", 9463 __func__); 9464 9465 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) || 9466 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING)) 9467 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n", 9468 __func__); 9469 9470 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) || 9471 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING)) 9472 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n", 9473 __func__); 9474 9475 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) || 9476 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING)) 9477 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n", 9478 __func__); 9479 9480 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) || 9481 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING)) 9482 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n", 9483 __func__); 9484 9485 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) || 9486 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING)) 9487 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n", 9488 __func__); 9489 9490 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) || 9491 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING)) 9492 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n", 9493 __func__); 9494 9495 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) || 9496 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING)) 9497 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n", 9498 __func__); 9499 9500 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) || 9501 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING)) 9502 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n", 9503 __func__); 9504 9505 /* Bytes 9-10 and 11-12 are reserved */ 9506 /* Bytes 13-15 are vendor specific */ 9507 9508 return 0; 9509 } 9510 9511 /* This routine will only be scheduled if the QSFP module present is asserted */ 9512 void qsfp_event(struct work_struct *work) 9513 { 9514 struct qsfp_data *qd; 9515 struct hfi1_pportdata *ppd; 9516 struct hfi1_devdata *dd; 9517 9518 qd = container_of(work, struct qsfp_data, qsfp_work); 9519 ppd = qd->ppd; 9520 dd = ppd->dd; 9521 9522 /* Sanity check */ 9523 if (!qsfp_mod_present(ppd)) 9524 return; 9525 9526 if (ppd->host_link_state == HLS_DN_DISABLE) { 9527 dd_dev_info(ppd->dd, 9528 "%s: stopping link start because link is disabled\n", 9529 __func__); 9530 return; 9531 } 9532 9533 /* 9534 * Turn DC back on after cable has been re-inserted. Up until 9535 * now, the DC has been in reset to save power. 9536 */ 9537 dc_start(dd); 9538 9539 if (qd->cache_refresh_required) { 9540 set_qsfp_int_n(ppd, 0); 9541 9542 wait_for_qsfp_init(ppd); 9543 9544 /* 9545 * Allow INT_N to trigger the QSFP interrupt to watch 9546 * for alarms and warnings 9547 */ 9548 set_qsfp_int_n(ppd, 1); 9549 9550 start_link(ppd); 9551 } 9552 9553 if (qd->check_interrupt_flags) { 9554 u8 qsfp_interrupt_status[16] = {0,}; 9555 9556 if (one_qsfp_read(ppd, dd->hfi1_id, 6, 9557 &qsfp_interrupt_status[0], 16) != 16) { 9558 dd_dev_info(dd, 9559 "%s: Failed to read status of QSFP module\n", 9560 __func__); 9561 } else { 9562 unsigned long flags; 9563 9564 handle_qsfp_error_conditions( 9565 ppd, qsfp_interrupt_status); 9566 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 9567 ppd->qsfp_info.check_interrupt_flags = 0; 9568 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 9569 flags); 9570 } 9571 } 9572 } 9573 9574 static void init_qsfp_int(struct hfi1_devdata *dd) 9575 { 9576 struct hfi1_pportdata *ppd = dd->pport; 9577 u64 qsfp_mask, cce_int_mask; 9578 const int qsfp1_int_smask = QSFP1_INT % 64; 9579 const int qsfp2_int_smask = QSFP2_INT % 64; 9580 9581 /* 9582 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0 9583 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR, 9584 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find 9585 * the index of the appropriate CSR in the CCEIntMask CSR array 9586 */ 9587 cce_int_mask = read_csr(dd, CCE_INT_MASK + 9588 (8 * (QSFP1_INT / 64))); 9589 if (dd->hfi1_id) { 9590 cce_int_mask &= ~((u64)1 << qsfp1_int_smask); 9591 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)), 9592 cce_int_mask); 9593 } else { 9594 cce_int_mask &= ~((u64)1 << qsfp2_int_smask); 9595 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)), 9596 cce_int_mask); 9597 } 9598 9599 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 9600 /* Clear current status to avoid spurious interrupts */ 9601 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9602 qsfp_mask); 9603 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, 9604 qsfp_mask); 9605 9606 set_qsfp_int_n(ppd, 0); 9607 9608 /* Handle active low nature of INT_N and MODPRST_N pins */ 9609 if (qsfp_mod_present(ppd)) 9610 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N; 9611 write_csr(dd, 9612 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT, 9613 qsfp_mask); 9614 } 9615 9616 /* 9617 * Do a one-time initialize of the LCB block. 9618 */ 9619 static void init_lcb(struct hfi1_devdata *dd) 9620 { 9621 /* simulator does not correctly handle LCB cclk loopback, skip */ 9622 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 9623 return; 9624 9625 /* the DC has been reset earlier in the driver load */ 9626 9627 /* set LCB for cclk loopback on the port */ 9628 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01); 9629 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00); 9630 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00); 9631 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 9632 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08); 9633 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02); 9634 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00); 9635 } 9636 9637 /* 9638 * Perform a test read on the QSFP. Return 0 on success, -ERRNO 9639 * on error. 9640 */ 9641 static int test_qsfp_read(struct hfi1_pportdata *ppd) 9642 { 9643 int ret; 9644 u8 status; 9645 9646 /* 9647 * Report success if not a QSFP or, if it is a QSFP, but the cable is 9648 * not present 9649 */ 9650 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd)) 9651 return 0; 9652 9653 /* read byte 2, the status byte */ 9654 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1); 9655 if (ret < 0) 9656 return ret; 9657 if (ret != 1) 9658 return -EIO; 9659 9660 return 0; /* success */ 9661 } 9662 9663 /* 9664 * Values for QSFP retry. 9665 * 9666 * Give up after 10s (20 x 500ms). The overall timeout was empirically 9667 * arrived at from experience on a large cluster. 9668 */ 9669 #define MAX_QSFP_RETRIES 20 9670 #define QSFP_RETRY_WAIT 500 /* msec */ 9671 9672 /* 9673 * Try a QSFP read. If it fails, schedule a retry for later. 9674 * Called on first link activation after driver load. 9675 */ 9676 static void try_start_link(struct hfi1_pportdata *ppd) 9677 { 9678 if (test_qsfp_read(ppd)) { 9679 /* read failed */ 9680 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) { 9681 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n"); 9682 return; 9683 } 9684 dd_dev_info(ppd->dd, 9685 "QSFP not responding, waiting and retrying %d\n", 9686 (int)ppd->qsfp_retry_count); 9687 ppd->qsfp_retry_count++; 9688 queue_delayed_work(ppd->link_wq, &ppd->start_link_work, 9689 msecs_to_jiffies(QSFP_RETRY_WAIT)); 9690 return; 9691 } 9692 ppd->qsfp_retry_count = 0; 9693 9694 start_link(ppd); 9695 } 9696 9697 /* 9698 * Workqueue function to start the link after a delay. 9699 */ 9700 void handle_start_link(struct work_struct *work) 9701 { 9702 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 9703 start_link_work.work); 9704 try_start_link(ppd); 9705 } 9706 9707 int bringup_serdes(struct hfi1_pportdata *ppd) 9708 { 9709 struct hfi1_devdata *dd = ppd->dd; 9710 u64 guid; 9711 int ret; 9712 9713 if (HFI1_CAP_IS_KSET(EXTENDED_PSN)) 9714 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK); 9715 9716 guid = ppd->guids[HFI1_PORT_GUID_INDEX]; 9717 if (!guid) { 9718 if (dd->base_guid) 9719 guid = dd->base_guid + ppd->port - 1; 9720 ppd->guids[HFI1_PORT_GUID_INDEX] = guid; 9721 } 9722 9723 /* Set linkinit_reason on power up per OPA spec */ 9724 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP; 9725 9726 /* one-time init of the LCB */ 9727 init_lcb(dd); 9728 9729 if (loopback) { 9730 ret = init_loopback(dd); 9731 if (ret < 0) 9732 return ret; 9733 } 9734 9735 get_port_type(ppd); 9736 if (ppd->port_type == PORT_TYPE_QSFP) { 9737 set_qsfp_int_n(ppd, 0); 9738 wait_for_qsfp_init(ppd); 9739 set_qsfp_int_n(ppd, 1); 9740 } 9741 9742 try_start_link(ppd); 9743 return 0; 9744 } 9745 9746 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd) 9747 { 9748 struct hfi1_devdata *dd = ppd->dd; 9749 9750 /* 9751 * Shut down the link and keep it down. First turn off that the 9752 * driver wants to allow the link to be up (driver_link_ready). 9753 * Then make sure the link is not automatically restarted 9754 * (link_enabled). Cancel any pending restart. And finally 9755 * go offline. 9756 */ 9757 ppd->driver_link_ready = 0; 9758 ppd->link_enabled = 0; 9759 9760 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */ 9761 flush_delayed_work(&ppd->start_link_work); 9762 cancel_delayed_work_sync(&ppd->start_link_work); 9763 9764 ppd->offline_disabled_reason = 9765 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT); 9766 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0, 9767 OPA_LINKDOWN_REASON_REBOOT); 9768 set_link_state(ppd, HLS_DN_OFFLINE); 9769 9770 /* disable the port */ 9771 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 9772 } 9773 9774 static inline int init_cpu_counters(struct hfi1_devdata *dd) 9775 { 9776 struct hfi1_pportdata *ppd; 9777 int i; 9778 9779 ppd = (struct hfi1_pportdata *)(dd + 1); 9780 for (i = 0; i < dd->num_pports; i++, ppd++) { 9781 ppd->ibport_data.rvp.rc_acks = NULL; 9782 ppd->ibport_data.rvp.rc_qacks = NULL; 9783 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64); 9784 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64); 9785 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64); 9786 if (!ppd->ibport_data.rvp.rc_acks || 9787 !ppd->ibport_data.rvp.rc_delayed_comp || 9788 !ppd->ibport_data.rvp.rc_qacks) 9789 return -ENOMEM; 9790 } 9791 9792 return 0; 9793 } 9794 9795 /* 9796 * index is the index into the receive array 9797 */ 9798 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index, 9799 u32 type, unsigned long pa, u16 order) 9800 { 9801 u64 reg; 9802 9803 if (!(dd->flags & HFI1_PRESENT)) 9804 goto done; 9805 9806 if (type == PT_INVALID || type == PT_INVALID_FLUSH) { 9807 pa = 0; 9808 order = 0; 9809 } else if (type > PT_INVALID) { 9810 dd_dev_err(dd, 9811 "unexpected receive array type %u for index %u, not handled\n", 9812 type, index); 9813 goto done; 9814 } 9815 trace_hfi1_put_tid(dd, index, type, pa, order); 9816 9817 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */ 9818 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK 9819 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT 9820 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK) 9821 << RCV_ARRAY_RT_ADDR_SHIFT; 9822 trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg); 9823 writeq(reg, dd->rcvarray_wc + (index * 8)); 9824 9825 if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3) 9826 /* 9827 * Eager entries are written and flushed 9828 * 9829 * Expected entries are flushed every 4 writes 9830 */ 9831 flush_wc(); 9832 done: 9833 return; 9834 } 9835 9836 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd) 9837 { 9838 struct hfi1_devdata *dd = rcd->dd; 9839 u32 i; 9840 9841 /* this could be optimized */ 9842 for (i = rcd->eager_base; i < rcd->eager_base + 9843 rcd->egrbufs.alloced; i++) 9844 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9845 9846 for (i = rcd->expected_base; 9847 i < rcd->expected_base + rcd->expected_count; i++) 9848 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9849 } 9850 9851 static const char * const ib_cfg_name_strings[] = { 9852 "HFI1_IB_CFG_LIDLMC", 9853 "HFI1_IB_CFG_LWID_DG_ENB", 9854 "HFI1_IB_CFG_LWID_ENB", 9855 "HFI1_IB_CFG_LWID", 9856 "HFI1_IB_CFG_SPD_ENB", 9857 "HFI1_IB_CFG_SPD", 9858 "HFI1_IB_CFG_RXPOL_ENB", 9859 "HFI1_IB_CFG_LREV_ENB", 9860 "HFI1_IB_CFG_LINKLATENCY", 9861 "HFI1_IB_CFG_HRTBT", 9862 "HFI1_IB_CFG_OP_VLS", 9863 "HFI1_IB_CFG_VL_HIGH_CAP", 9864 "HFI1_IB_CFG_VL_LOW_CAP", 9865 "HFI1_IB_CFG_OVERRUN_THRESH", 9866 "HFI1_IB_CFG_PHYERR_THRESH", 9867 "HFI1_IB_CFG_LINKDEFAULT", 9868 "HFI1_IB_CFG_PKEYS", 9869 "HFI1_IB_CFG_MTU", 9870 "HFI1_IB_CFG_LSTATE", 9871 "HFI1_IB_CFG_VL_HIGH_LIMIT", 9872 "HFI1_IB_CFG_PMA_TICKS", 9873 "HFI1_IB_CFG_PORT" 9874 }; 9875 9876 static const char *ib_cfg_name(int which) 9877 { 9878 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings)) 9879 return "invalid"; 9880 return ib_cfg_name_strings[which]; 9881 } 9882 9883 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which) 9884 { 9885 struct hfi1_devdata *dd = ppd->dd; 9886 int val = 0; 9887 9888 switch (which) { 9889 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */ 9890 val = ppd->link_width_enabled; 9891 break; 9892 case HFI1_IB_CFG_LWID: /* currently active Link-width */ 9893 val = ppd->link_width_active; 9894 break; 9895 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 9896 val = ppd->link_speed_enabled; 9897 break; 9898 case HFI1_IB_CFG_SPD: /* current Link speed */ 9899 val = ppd->link_speed_active; 9900 break; 9901 9902 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */ 9903 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */ 9904 case HFI1_IB_CFG_LINKLATENCY: 9905 goto unimplemented; 9906 9907 case HFI1_IB_CFG_OP_VLS: 9908 val = ppd->actual_vls_operational; 9909 break; 9910 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */ 9911 val = VL_ARB_HIGH_PRIO_TABLE_SIZE; 9912 break; 9913 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */ 9914 val = VL_ARB_LOW_PRIO_TABLE_SIZE; 9915 break; 9916 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 9917 val = ppd->overrun_threshold; 9918 break; 9919 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 9920 val = ppd->phy_error_threshold; 9921 break; 9922 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 9923 val = HLS_DEFAULT; 9924 break; 9925 9926 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */ 9927 case HFI1_IB_CFG_PMA_TICKS: 9928 default: 9929 unimplemented: 9930 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 9931 dd_dev_info( 9932 dd, 9933 "%s: which %s: not implemented\n", 9934 __func__, 9935 ib_cfg_name(which)); 9936 break; 9937 } 9938 9939 return val; 9940 } 9941 9942 /* 9943 * The largest MAD packet size. 9944 */ 9945 #define MAX_MAD_PACKET 2048 9946 9947 /* 9948 * Return the maximum header bytes that can go on the _wire_ 9949 * for this device. This count includes the ICRC which is 9950 * not part of the packet held in memory but it is appended 9951 * by the HW. 9952 * This is dependent on the device's receive header entry size. 9953 * HFI allows this to be set per-receive context, but the 9954 * driver presently enforces a global value. 9955 */ 9956 u32 lrh_max_header_bytes(struct hfi1_devdata *dd) 9957 { 9958 /* 9959 * The maximum non-payload (MTU) bytes in LRH.PktLen are 9960 * the Receive Header Entry Size minus the PBC (or RHF) size 9961 * plus one DW for the ICRC appended by HW. 9962 * 9963 * dd->rcd[0].rcvhdrqentsize is in DW. 9964 * We use rcd[0] as all context will have the same value. Also, 9965 * the first kernel context would have been allocated by now so 9966 * we are guaranteed a valid value. 9967 */ 9968 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2; 9969 } 9970 9971 /* 9972 * Set Send Length 9973 * @ppd - per port data 9974 * 9975 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck* 9976 * registers compare against LRH.PktLen, so use the max bytes included 9977 * in the LRH. 9978 * 9979 * This routine changes all VL values except VL15, which it maintains at 9980 * the same value. 9981 */ 9982 static void set_send_length(struct hfi1_pportdata *ppd) 9983 { 9984 struct hfi1_devdata *dd = ppd->dd; 9985 u32 max_hb = lrh_max_header_bytes(dd), dcmtu; 9986 u32 maxvlmtu = dd->vld[15].mtu; 9987 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2) 9988 & SEND_LEN_CHECK1_LEN_VL15_MASK) << 9989 SEND_LEN_CHECK1_LEN_VL15_SHIFT; 9990 int i, j; 9991 u32 thres; 9992 9993 for (i = 0; i < ppd->vls_supported; i++) { 9994 if (dd->vld[i].mtu > maxvlmtu) 9995 maxvlmtu = dd->vld[i].mtu; 9996 if (i <= 3) 9997 len1 |= (((dd->vld[i].mtu + max_hb) >> 2) 9998 & SEND_LEN_CHECK0_LEN_VL0_MASK) << 9999 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT); 10000 else 10001 len2 |= (((dd->vld[i].mtu + max_hb) >> 2) 10002 & SEND_LEN_CHECK1_LEN_VL4_MASK) << 10003 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT); 10004 } 10005 write_csr(dd, SEND_LEN_CHECK0, len1); 10006 write_csr(dd, SEND_LEN_CHECK1, len2); 10007 /* adjust kernel credit return thresholds based on new MTUs */ 10008 /* all kernel receive contexts have the same hdrqentsize */ 10009 for (i = 0; i < ppd->vls_supported; i++) { 10010 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50), 10011 sc_mtu_to_threshold(dd->vld[i].sc, 10012 dd->vld[i].mtu, 10013 dd->rcd[0]->rcvhdrqentsize)); 10014 for (j = 0; j < INIT_SC_PER_VL; j++) 10015 sc_set_cr_threshold( 10016 pio_select_send_context_vl(dd, j, i), 10017 thres); 10018 } 10019 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50), 10020 sc_mtu_to_threshold(dd->vld[15].sc, 10021 dd->vld[15].mtu, 10022 dd->rcd[0]->rcvhdrqentsize)); 10023 sc_set_cr_threshold(dd->vld[15].sc, thres); 10024 10025 /* Adjust maximum MTU for the port in DC */ 10026 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 : 10027 (ilog2(maxvlmtu >> 8) + 1); 10028 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG); 10029 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK; 10030 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) << 10031 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT; 10032 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1); 10033 } 10034 10035 static void set_lidlmc(struct hfi1_pportdata *ppd) 10036 { 10037 int i; 10038 u64 sreg = 0; 10039 struct hfi1_devdata *dd = ppd->dd; 10040 u32 mask = ~((1U << ppd->lmc) - 1); 10041 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1); 10042 u32 lid; 10043 10044 /* 10045 * Program 0 in CSR if port lid is extended. This prevents 10046 * 9B packets being sent out for large lids. 10047 */ 10048 lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid; 10049 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK 10050 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK); 10051 c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK) 10052 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) | 10053 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK) 10054 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT); 10055 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1); 10056 10057 /* 10058 * Iterate over all the send contexts and set their SLID check 10059 */ 10060 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) << 10061 SEND_CTXT_CHECK_SLID_MASK_SHIFT) | 10062 (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) << 10063 SEND_CTXT_CHECK_SLID_VALUE_SHIFT); 10064 10065 for (i = 0; i < dd->chip_send_contexts; i++) { 10066 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x", 10067 i, (u32)sreg); 10068 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg); 10069 } 10070 10071 /* Now we have to do the same thing for the sdma engines */ 10072 sdma_update_lmc(dd, mask, lid); 10073 } 10074 10075 static const char *state_completed_string(u32 completed) 10076 { 10077 static const char * const state_completed[] = { 10078 "EstablishComm", 10079 "OptimizeEQ", 10080 "VerifyCap" 10081 }; 10082 10083 if (completed < ARRAY_SIZE(state_completed)) 10084 return state_completed[completed]; 10085 10086 return "unknown"; 10087 } 10088 10089 static const char all_lanes_dead_timeout_expired[] = 10090 "All lanes were inactive – was the interconnect media removed?"; 10091 static const char tx_out_of_policy[] = 10092 "Passing lanes on local port do not meet the local link width policy"; 10093 static const char no_state_complete[] = 10094 "State timeout occurred before link partner completed the state"; 10095 static const char * const state_complete_reasons[] = { 10096 [0x00] = "Reason unknown", 10097 [0x01] = "Link was halted by driver, refer to LinkDownReason", 10098 [0x02] = "Link partner reported failure", 10099 [0x10] = "Unable to achieve frame sync on any lane", 10100 [0x11] = 10101 "Unable to find a common bit rate with the link partner", 10102 [0x12] = 10103 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy", 10104 [0x13] = 10105 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy", 10106 [0x14] = no_state_complete, 10107 [0x15] = 10108 "State timeout occurred before link partner identified equalization presets", 10109 [0x16] = 10110 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy", 10111 [0x17] = tx_out_of_policy, 10112 [0x20] = all_lanes_dead_timeout_expired, 10113 [0x21] = 10114 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy", 10115 [0x22] = no_state_complete, 10116 [0x23] = 10117 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy", 10118 [0x24] = tx_out_of_policy, 10119 [0x30] = all_lanes_dead_timeout_expired, 10120 [0x31] = 10121 "State timeout occurred waiting for host to process received frames", 10122 [0x32] = no_state_complete, 10123 [0x33] = 10124 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy", 10125 [0x34] = tx_out_of_policy, 10126 [0x35] = "Negotiated link width is mutually exclusive", 10127 [0x36] = 10128 "Timed out before receiving verifycap frames in VerifyCap.Exchange", 10129 [0x37] = "Unable to resolve secure data exchange", 10130 }; 10131 10132 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd, 10133 u32 code) 10134 { 10135 const char *str = NULL; 10136 10137 if (code < ARRAY_SIZE(state_complete_reasons)) 10138 str = state_complete_reasons[code]; 10139 10140 if (str) 10141 return str; 10142 return "Reserved"; 10143 } 10144 10145 /* describe the given last state complete frame */ 10146 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame, 10147 const char *prefix) 10148 { 10149 struct hfi1_devdata *dd = ppd->dd; 10150 u32 success; 10151 u32 state; 10152 u32 reason; 10153 u32 lanes; 10154 10155 /* 10156 * Decode frame: 10157 * [ 0: 0] - success 10158 * [ 3: 1] - state 10159 * [ 7: 4] - next state timeout 10160 * [15: 8] - reason code 10161 * [31:16] - lanes 10162 */ 10163 success = frame & 0x1; 10164 state = (frame >> 1) & 0x7; 10165 reason = (frame >> 8) & 0xff; 10166 lanes = (frame >> 16) & 0xffff; 10167 10168 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n", 10169 prefix, frame); 10170 dd_dev_err(dd, " last reported state state: %s (0x%x)\n", 10171 state_completed_string(state), state); 10172 dd_dev_err(dd, " state successfully completed: %s\n", 10173 success ? "yes" : "no"); 10174 dd_dev_err(dd, " fail reason 0x%x: %s\n", 10175 reason, state_complete_reason_code_string(ppd, reason)); 10176 dd_dev_err(dd, " passing lane mask: 0x%x", lanes); 10177 } 10178 10179 /* 10180 * Read the last state complete frames and explain them. This routine 10181 * expects to be called if the link went down during link negotiation 10182 * and initialization (LNI). That is, anywhere between polling and link up. 10183 */ 10184 static void check_lni_states(struct hfi1_pportdata *ppd) 10185 { 10186 u32 last_local_state; 10187 u32 last_remote_state; 10188 10189 read_last_local_state(ppd->dd, &last_local_state); 10190 read_last_remote_state(ppd->dd, &last_remote_state); 10191 10192 /* 10193 * Don't report anything if there is nothing to report. A value of 10194 * 0 means the link was taken down while polling and there was no 10195 * training in-process. 10196 */ 10197 if (last_local_state == 0 && last_remote_state == 0) 10198 return; 10199 10200 decode_state_complete(ppd, last_local_state, "transmitted"); 10201 decode_state_complete(ppd, last_remote_state, "received"); 10202 } 10203 10204 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */ 10205 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms) 10206 { 10207 u64 reg; 10208 unsigned long timeout; 10209 10210 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */ 10211 timeout = jiffies + msecs_to_jiffies(wait_ms); 10212 while (1) { 10213 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE); 10214 if (reg) 10215 break; 10216 if (time_after(jiffies, timeout)) { 10217 dd_dev_err(dd, 10218 "timeout waiting for LINK_TRANSFER_ACTIVE\n"); 10219 return -ETIMEDOUT; 10220 } 10221 udelay(2); 10222 } 10223 return 0; 10224 } 10225 10226 /* called when the logical link state is not down as it should be */ 10227 static void force_logical_link_state_down(struct hfi1_pportdata *ppd) 10228 { 10229 struct hfi1_devdata *dd = ppd->dd; 10230 10231 /* 10232 * Bring link up in LCB loopback 10233 */ 10234 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1); 10235 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 10236 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 10237 10238 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 10239 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0); 10240 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 10241 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2); 10242 10243 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 10244 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET); 10245 udelay(3); 10246 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1); 10247 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 10248 10249 wait_link_transfer_active(dd, 100); 10250 10251 /* 10252 * Bring the link down again. 10253 */ 10254 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1); 10255 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0); 10256 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0); 10257 10258 dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n"); 10259 } 10260 10261 /* 10262 * Helper for set_link_state(). Do not call except from that routine. 10263 * Expects ppd->hls_mutex to be held. 10264 * 10265 * @rem_reason value to be sent to the neighbor 10266 * 10267 * LinkDownReasons only set if transition succeeds. 10268 */ 10269 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason) 10270 { 10271 struct hfi1_devdata *dd = ppd->dd; 10272 u32 previous_state; 10273 int offline_state_ret; 10274 int ret; 10275 10276 update_lcb_cache(dd); 10277 10278 previous_state = ppd->host_link_state; 10279 ppd->host_link_state = HLS_GOING_OFFLINE; 10280 10281 /* start offline transition */ 10282 ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE); 10283 10284 if (ret != HCMD_SUCCESS) { 10285 dd_dev_err(dd, 10286 "Failed to transition to Offline link state, return %d\n", 10287 ret); 10288 return -EINVAL; 10289 } 10290 if (ppd->offline_disabled_reason == 10291 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)) 10292 ppd->offline_disabled_reason = 10293 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 10294 10295 offline_state_ret = wait_phys_link_offline_substates(ppd, 10000); 10296 if (offline_state_ret < 0) 10297 return offline_state_ret; 10298 10299 /* Disabling AOC transmitters */ 10300 if (ppd->port_type == PORT_TYPE_QSFP && 10301 ppd->qsfp_info.limiting_active && 10302 qsfp_mod_present(ppd)) { 10303 int ret; 10304 10305 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT); 10306 if (ret == 0) { 10307 set_qsfp_tx(ppd, 0); 10308 release_chip_resource(dd, qsfp_resource(dd)); 10309 } else { 10310 /* not fatal, but should warn */ 10311 dd_dev_err(dd, 10312 "Unable to acquire lock to turn off QSFP TX\n"); 10313 } 10314 } 10315 10316 /* 10317 * Wait for the offline.Quiet transition if it hasn't happened yet. It 10318 * can take a while for the link to go down. 10319 */ 10320 if (offline_state_ret != PLS_OFFLINE_QUIET) { 10321 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000); 10322 if (ret < 0) 10323 return ret; 10324 } 10325 10326 /* 10327 * Now in charge of LCB - must be after the physical state is 10328 * offline.quiet and before host_link_state is changed. 10329 */ 10330 set_host_lcb_access(dd); 10331 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 10332 10333 /* make sure the logical state is also down */ 10334 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000); 10335 if (ret) 10336 force_logical_link_state_down(ppd); 10337 10338 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */ 10339 update_statusp(ppd, IB_PORT_DOWN); 10340 10341 /* 10342 * The LNI has a mandatory wait time after the physical state 10343 * moves to Offline.Quiet. The wait time may be different 10344 * depending on how the link went down. The 8051 firmware 10345 * will observe the needed wait time and only move to ready 10346 * when that is completed. The largest of the quiet timeouts 10347 * is 6s, so wait that long and then at least 0.5s more for 10348 * other transitions, and another 0.5s for a buffer. 10349 */ 10350 ret = wait_fm_ready(dd, 7000); 10351 if (ret) { 10352 dd_dev_err(dd, 10353 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n"); 10354 /* state is really offline, so make it so */ 10355 ppd->host_link_state = HLS_DN_OFFLINE; 10356 return ret; 10357 } 10358 10359 /* 10360 * The state is now offline and the 8051 is ready to accept host 10361 * requests. 10362 * - change our state 10363 * - notify others if we were previously in a linkup state 10364 */ 10365 ppd->host_link_state = HLS_DN_OFFLINE; 10366 if (previous_state & HLS_UP) { 10367 /* went down while link was up */ 10368 handle_linkup_change(dd, 0); 10369 } else if (previous_state 10370 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 10371 /* went down while attempting link up */ 10372 check_lni_states(ppd); 10373 10374 /* The QSFP doesn't need to be reset on LNI failure */ 10375 ppd->qsfp_info.reset_needed = 0; 10376 } 10377 10378 /* the active link width (downgrade) is 0 on link down */ 10379 ppd->link_width_active = 0; 10380 ppd->link_width_downgrade_tx_active = 0; 10381 ppd->link_width_downgrade_rx_active = 0; 10382 ppd->current_egress_rate = 0; 10383 return 0; 10384 } 10385 10386 /* return the link state name */ 10387 static const char *link_state_name(u32 state) 10388 { 10389 const char *name; 10390 int n = ilog2(state); 10391 static const char * const names[] = { 10392 [__HLS_UP_INIT_BP] = "INIT", 10393 [__HLS_UP_ARMED_BP] = "ARMED", 10394 [__HLS_UP_ACTIVE_BP] = "ACTIVE", 10395 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF", 10396 [__HLS_DN_POLL_BP] = "POLL", 10397 [__HLS_DN_DISABLE_BP] = "DISABLE", 10398 [__HLS_DN_OFFLINE_BP] = "OFFLINE", 10399 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP", 10400 [__HLS_GOING_UP_BP] = "GOING_UP", 10401 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE", 10402 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN" 10403 }; 10404 10405 name = n < ARRAY_SIZE(names) ? names[n] : NULL; 10406 return name ? name : "unknown"; 10407 } 10408 10409 /* return the link state reason name */ 10410 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state) 10411 { 10412 if (state == HLS_UP_INIT) { 10413 switch (ppd->linkinit_reason) { 10414 case OPA_LINKINIT_REASON_LINKUP: 10415 return "(LINKUP)"; 10416 case OPA_LINKINIT_REASON_FLAPPING: 10417 return "(FLAPPING)"; 10418 case OPA_LINKINIT_OUTSIDE_POLICY: 10419 return "(OUTSIDE_POLICY)"; 10420 case OPA_LINKINIT_QUARANTINED: 10421 return "(QUARANTINED)"; 10422 case OPA_LINKINIT_INSUFIC_CAPABILITY: 10423 return "(INSUFIC_CAPABILITY)"; 10424 default: 10425 break; 10426 } 10427 } 10428 return ""; 10429 } 10430 10431 /* 10432 * driver_pstate - convert the driver's notion of a port's 10433 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*). 10434 * Return -1 (converted to a u32) to indicate error. 10435 */ 10436 u32 driver_pstate(struct hfi1_pportdata *ppd) 10437 { 10438 switch (ppd->host_link_state) { 10439 case HLS_UP_INIT: 10440 case HLS_UP_ARMED: 10441 case HLS_UP_ACTIVE: 10442 return IB_PORTPHYSSTATE_LINKUP; 10443 case HLS_DN_POLL: 10444 return IB_PORTPHYSSTATE_POLLING; 10445 case HLS_DN_DISABLE: 10446 return IB_PORTPHYSSTATE_DISABLED; 10447 case HLS_DN_OFFLINE: 10448 return OPA_PORTPHYSSTATE_OFFLINE; 10449 case HLS_VERIFY_CAP: 10450 return IB_PORTPHYSSTATE_POLLING; 10451 case HLS_GOING_UP: 10452 return IB_PORTPHYSSTATE_POLLING; 10453 case HLS_GOING_OFFLINE: 10454 return OPA_PORTPHYSSTATE_OFFLINE; 10455 case HLS_LINK_COOLDOWN: 10456 return OPA_PORTPHYSSTATE_OFFLINE; 10457 case HLS_DN_DOWNDEF: 10458 default: 10459 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10460 ppd->host_link_state); 10461 return -1; 10462 } 10463 } 10464 10465 /* 10466 * driver_lstate - convert the driver's notion of a port's 10467 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1 10468 * (converted to a u32) to indicate error. 10469 */ 10470 u32 driver_lstate(struct hfi1_pportdata *ppd) 10471 { 10472 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN)) 10473 return IB_PORT_DOWN; 10474 10475 switch (ppd->host_link_state & HLS_UP) { 10476 case HLS_UP_INIT: 10477 return IB_PORT_INIT; 10478 case HLS_UP_ARMED: 10479 return IB_PORT_ARMED; 10480 case HLS_UP_ACTIVE: 10481 return IB_PORT_ACTIVE; 10482 default: 10483 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10484 ppd->host_link_state); 10485 return -1; 10486 } 10487 } 10488 10489 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason, 10490 u8 neigh_reason, u8 rem_reason) 10491 { 10492 if (ppd->local_link_down_reason.latest == 0 && 10493 ppd->neigh_link_down_reason.latest == 0) { 10494 ppd->local_link_down_reason.latest = lcl_reason; 10495 ppd->neigh_link_down_reason.latest = neigh_reason; 10496 ppd->remote_link_down_reason = rem_reason; 10497 } 10498 } 10499 10500 /* 10501 * Verify if BCT for data VLs is non-zero. 10502 */ 10503 static inline bool data_vls_operational(struct hfi1_pportdata *ppd) 10504 { 10505 return !!ppd->actual_vls_operational; 10506 } 10507 10508 /* 10509 * Change the physical and/or logical link state. 10510 * 10511 * Do not call this routine while inside an interrupt. It contains 10512 * calls to routines that can take multiple seconds to finish. 10513 * 10514 * Returns 0 on success, -errno on failure. 10515 */ 10516 int set_link_state(struct hfi1_pportdata *ppd, u32 state) 10517 { 10518 struct hfi1_devdata *dd = ppd->dd; 10519 struct ib_event event = {.device = NULL}; 10520 int ret1, ret = 0; 10521 int orig_new_state, poll_bounce; 10522 10523 mutex_lock(&ppd->hls_lock); 10524 10525 orig_new_state = state; 10526 if (state == HLS_DN_DOWNDEF) 10527 state = HLS_DEFAULT; 10528 10529 /* interpret poll -> poll as a link bounce */ 10530 poll_bounce = ppd->host_link_state == HLS_DN_POLL && 10531 state == HLS_DN_POLL; 10532 10533 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__, 10534 link_state_name(ppd->host_link_state), 10535 link_state_name(orig_new_state), 10536 poll_bounce ? "(bounce) " : "", 10537 link_state_reason_name(ppd, state)); 10538 10539 /* 10540 * If we're going to a (HLS_*) link state that implies the logical 10541 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then 10542 * reset is_sm_config_started to 0. 10543 */ 10544 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE))) 10545 ppd->is_sm_config_started = 0; 10546 10547 /* 10548 * Do nothing if the states match. Let a poll to poll link bounce 10549 * go through. 10550 */ 10551 if (ppd->host_link_state == state && !poll_bounce) 10552 goto done; 10553 10554 switch (state) { 10555 case HLS_UP_INIT: 10556 if (ppd->host_link_state == HLS_DN_POLL && 10557 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) { 10558 /* 10559 * Quick link up jumps from polling to here. 10560 * 10561 * Whether in normal or loopback mode, the 10562 * simulator jumps from polling to link up. 10563 * Accept that here. 10564 */ 10565 /* OK */ 10566 } else if (ppd->host_link_state != HLS_GOING_UP) { 10567 goto unexpected; 10568 } 10569 10570 /* 10571 * Wait for Link_Up physical state. 10572 * Physical and Logical states should already be 10573 * be transitioned to LinkUp and LinkInit respectively. 10574 */ 10575 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000); 10576 if (ret) { 10577 dd_dev_err(dd, 10578 "%s: physical state did not change to LINK-UP\n", 10579 __func__); 10580 break; 10581 } 10582 10583 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000); 10584 if (ret) { 10585 dd_dev_err(dd, 10586 "%s: logical state did not change to INIT\n", 10587 __func__); 10588 break; 10589 } 10590 10591 /* clear old transient LINKINIT_REASON code */ 10592 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR) 10593 ppd->linkinit_reason = 10594 OPA_LINKINIT_REASON_LINKUP; 10595 10596 /* enable the port */ 10597 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 10598 10599 handle_linkup_change(dd, 1); 10600 ppd->host_link_state = HLS_UP_INIT; 10601 update_statusp(ppd, IB_PORT_INIT); 10602 break; 10603 case HLS_UP_ARMED: 10604 if (ppd->host_link_state != HLS_UP_INIT) 10605 goto unexpected; 10606 10607 if (!data_vls_operational(ppd)) { 10608 dd_dev_err(dd, 10609 "%s: data VLs not operational\n", __func__); 10610 ret = -EINVAL; 10611 break; 10612 } 10613 10614 set_logical_state(dd, LSTATE_ARMED); 10615 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000); 10616 if (ret) { 10617 dd_dev_err(dd, 10618 "%s: logical state did not change to ARMED\n", 10619 __func__); 10620 break; 10621 } 10622 ppd->host_link_state = HLS_UP_ARMED; 10623 update_statusp(ppd, IB_PORT_ARMED); 10624 /* 10625 * The simulator does not currently implement SMA messages, 10626 * so neighbor_normal is not set. Set it here when we first 10627 * move to Armed. 10628 */ 10629 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 10630 ppd->neighbor_normal = 1; 10631 break; 10632 case HLS_UP_ACTIVE: 10633 if (ppd->host_link_state != HLS_UP_ARMED) 10634 goto unexpected; 10635 10636 set_logical_state(dd, LSTATE_ACTIVE); 10637 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000); 10638 if (ret) { 10639 dd_dev_err(dd, 10640 "%s: logical state did not change to ACTIVE\n", 10641 __func__); 10642 } else { 10643 /* tell all engines to go running */ 10644 sdma_all_running(dd); 10645 ppd->host_link_state = HLS_UP_ACTIVE; 10646 update_statusp(ppd, IB_PORT_ACTIVE); 10647 10648 /* Signal the IB layer that the port has went active */ 10649 event.device = &dd->verbs_dev.rdi.ibdev; 10650 event.element.port_num = ppd->port; 10651 event.event = IB_EVENT_PORT_ACTIVE; 10652 } 10653 break; 10654 case HLS_DN_POLL: 10655 if ((ppd->host_link_state == HLS_DN_DISABLE || 10656 ppd->host_link_state == HLS_DN_OFFLINE) && 10657 dd->dc_shutdown) 10658 dc_start(dd); 10659 /* Hand LED control to the DC */ 10660 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 10661 10662 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10663 u8 tmp = ppd->link_enabled; 10664 10665 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10666 if (ret) { 10667 ppd->link_enabled = tmp; 10668 break; 10669 } 10670 ppd->remote_link_down_reason = 0; 10671 10672 if (ppd->driver_link_ready) 10673 ppd->link_enabled = 1; 10674 } 10675 10676 set_all_slowpath(ppd->dd); 10677 ret = set_local_link_attributes(ppd); 10678 if (ret) 10679 break; 10680 10681 ppd->port_error_action = 0; 10682 ppd->host_link_state = HLS_DN_POLL; 10683 10684 if (quick_linkup) { 10685 /* quick linkup does not go into polling */ 10686 ret = do_quick_linkup(dd); 10687 } else { 10688 ret1 = set_physical_link_state(dd, PLS_POLLING); 10689 if (ret1 != HCMD_SUCCESS) { 10690 dd_dev_err(dd, 10691 "Failed to transition to Polling link state, return 0x%x\n", 10692 ret1); 10693 ret = -EINVAL; 10694 } 10695 } 10696 ppd->offline_disabled_reason = 10697 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE); 10698 /* 10699 * If an error occurred above, go back to offline. The 10700 * caller may reschedule another attempt. 10701 */ 10702 if (ret) 10703 goto_offline(ppd, 0); 10704 else 10705 log_physical_state(ppd, PLS_POLLING); 10706 break; 10707 case HLS_DN_DISABLE: 10708 /* link is disabled */ 10709 ppd->link_enabled = 0; 10710 10711 /* allow any state to transition to disabled */ 10712 10713 /* must transition to offline first */ 10714 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10715 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10716 if (ret) 10717 break; 10718 ppd->remote_link_down_reason = 0; 10719 } 10720 10721 if (!dd->dc_shutdown) { 10722 ret1 = set_physical_link_state(dd, PLS_DISABLED); 10723 if (ret1 != HCMD_SUCCESS) { 10724 dd_dev_err(dd, 10725 "Failed to transition to Disabled link state, return 0x%x\n", 10726 ret1); 10727 ret = -EINVAL; 10728 break; 10729 } 10730 ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000); 10731 if (ret) { 10732 dd_dev_err(dd, 10733 "%s: physical state did not change to DISABLED\n", 10734 __func__); 10735 break; 10736 } 10737 dc_shutdown(dd); 10738 } 10739 ppd->host_link_state = HLS_DN_DISABLE; 10740 break; 10741 case HLS_DN_OFFLINE: 10742 if (ppd->host_link_state == HLS_DN_DISABLE) 10743 dc_start(dd); 10744 10745 /* allow any state to transition to offline */ 10746 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10747 if (!ret) 10748 ppd->remote_link_down_reason = 0; 10749 break; 10750 case HLS_VERIFY_CAP: 10751 if (ppd->host_link_state != HLS_DN_POLL) 10752 goto unexpected; 10753 ppd->host_link_state = HLS_VERIFY_CAP; 10754 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP); 10755 break; 10756 case HLS_GOING_UP: 10757 if (ppd->host_link_state != HLS_VERIFY_CAP) 10758 goto unexpected; 10759 10760 ret1 = set_physical_link_state(dd, PLS_LINKUP); 10761 if (ret1 != HCMD_SUCCESS) { 10762 dd_dev_err(dd, 10763 "Failed to transition to link up state, return 0x%x\n", 10764 ret1); 10765 ret = -EINVAL; 10766 break; 10767 } 10768 ppd->host_link_state = HLS_GOING_UP; 10769 break; 10770 10771 case HLS_GOING_OFFLINE: /* transient within goto_offline() */ 10772 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */ 10773 default: 10774 dd_dev_info(dd, "%s: state 0x%x: not supported\n", 10775 __func__, state); 10776 ret = -EINVAL; 10777 break; 10778 } 10779 10780 goto done; 10781 10782 unexpected: 10783 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n", 10784 __func__, link_state_name(ppd->host_link_state), 10785 link_state_name(state)); 10786 ret = -EINVAL; 10787 10788 done: 10789 mutex_unlock(&ppd->hls_lock); 10790 10791 if (event.device) 10792 ib_dispatch_event(&event); 10793 10794 return ret; 10795 } 10796 10797 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val) 10798 { 10799 u64 reg; 10800 int ret = 0; 10801 10802 switch (which) { 10803 case HFI1_IB_CFG_LIDLMC: 10804 set_lidlmc(ppd); 10805 break; 10806 case HFI1_IB_CFG_VL_HIGH_LIMIT: 10807 /* 10808 * The VL Arbitrator high limit is sent in units of 4k 10809 * bytes, while HFI stores it in units of 64 bytes. 10810 */ 10811 val *= 4096 / 64; 10812 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK) 10813 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT; 10814 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg); 10815 break; 10816 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 10817 /* HFI only supports POLL as the default link down state */ 10818 if (val != HLS_DN_POLL) 10819 ret = -EINVAL; 10820 break; 10821 case HFI1_IB_CFG_OP_VLS: 10822 if (ppd->vls_operational != val) { 10823 ppd->vls_operational = val; 10824 if (!ppd->port) 10825 ret = -EINVAL; 10826 } 10827 break; 10828 /* 10829 * For link width, link width downgrade, and speed enable, always AND 10830 * the setting with what is actually supported. This has two benefits. 10831 * First, enabled can't have unsupported values, no matter what the 10832 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean 10833 * "fill in with your supported value" have all the bits in the 10834 * field set, so simply ANDing with supported has the desired result. 10835 */ 10836 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */ 10837 ppd->link_width_enabled = val & ppd->link_width_supported; 10838 break; 10839 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */ 10840 ppd->link_width_downgrade_enabled = 10841 val & ppd->link_width_downgrade_supported; 10842 break; 10843 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 10844 ppd->link_speed_enabled = val & ppd->link_speed_supported; 10845 break; 10846 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 10847 /* 10848 * HFI does not follow IB specs, save this value 10849 * so we can report it, if asked. 10850 */ 10851 ppd->overrun_threshold = val; 10852 break; 10853 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 10854 /* 10855 * HFI does not follow IB specs, save this value 10856 * so we can report it, if asked. 10857 */ 10858 ppd->phy_error_threshold = val; 10859 break; 10860 10861 case HFI1_IB_CFG_MTU: 10862 set_send_length(ppd); 10863 break; 10864 10865 case HFI1_IB_CFG_PKEYS: 10866 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 10867 set_partition_keys(ppd); 10868 break; 10869 10870 default: 10871 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 10872 dd_dev_info(ppd->dd, 10873 "%s: which %s, val 0x%x: not implemented\n", 10874 __func__, ib_cfg_name(which), val); 10875 break; 10876 } 10877 return ret; 10878 } 10879 10880 /* begin functions related to vl arbitration table caching */ 10881 static void init_vl_arb_caches(struct hfi1_pportdata *ppd) 10882 { 10883 int i; 10884 10885 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10886 VL_ARB_LOW_PRIO_TABLE_SIZE); 10887 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10888 VL_ARB_HIGH_PRIO_TABLE_SIZE); 10889 10890 /* 10891 * Note that we always return values directly from the 10892 * 'vl_arb_cache' (and do no CSR reads) in response to a 10893 * 'Get(VLArbTable)'. This is obviously correct after a 10894 * 'Set(VLArbTable)', since the cache will then be up to 10895 * date. But it's also correct prior to any 'Set(VLArbTable)' 10896 * since then both the cache, and the relevant h/w registers 10897 * will be zeroed. 10898 */ 10899 10900 for (i = 0; i < MAX_PRIO_TABLE; i++) 10901 spin_lock_init(&ppd->vl_arb_cache[i].lock); 10902 } 10903 10904 /* 10905 * vl_arb_lock_cache 10906 * 10907 * All other vl_arb_* functions should be called only after locking 10908 * the cache. 10909 */ 10910 static inline struct vl_arb_cache * 10911 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx) 10912 { 10913 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE) 10914 return NULL; 10915 spin_lock(&ppd->vl_arb_cache[idx].lock); 10916 return &ppd->vl_arb_cache[idx]; 10917 } 10918 10919 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx) 10920 { 10921 spin_unlock(&ppd->vl_arb_cache[idx].lock); 10922 } 10923 10924 static void vl_arb_get_cache(struct vl_arb_cache *cache, 10925 struct ib_vl_weight_elem *vl) 10926 { 10927 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10928 } 10929 10930 static void vl_arb_set_cache(struct vl_arb_cache *cache, 10931 struct ib_vl_weight_elem *vl) 10932 { 10933 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10934 } 10935 10936 static int vl_arb_match_cache(struct vl_arb_cache *cache, 10937 struct ib_vl_weight_elem *vl) 10938 { 10939 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10940 } 10941 10942 /* end functions related to vl arbitration table caching */ 10943 10944 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target, 10945 u32 size, struct ib_vl_weight_elem *vl) 10946 { 10947 struct hfi1_devdata *dd = ppd->dd; 10948 u64 reg; 10949 unsigned int i, is_up = 0; 10950 int drain, ret = 0; 10951 10952 mutex_lock(&ppd->hls_lock); 10953 10954 if (ppd->host_link_state & HLS_UP) 10955 is_up = 1; 10956 10957 drain = !is_ax(dd) && is_up; 10958 10959 if (drain) 10960 /* 10961 * Before adjusting VL arbitration weights, empty per-VL 10962 * FIFOs, otherwise a packet whose VL weight is being 10963 * set to 0 could get stuck in a FIFO with no chance to 10964 * egress. 10965 */ 10966 ret = stop_drain_data_vls(dd); 10967 10968 if (ret) { 10969 dd_dev_err( 10970 dd, 10971 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n", 10972 __func__); 10973 goto err; 10974 } 10975 10976 for (i = 0; i < size; i++, vl++) { 10977 /* 10978 * NOTE: The low priority shift and mask are used here, but 10979 * they are the same for both the low and high registers. 10980 */ 10981 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK) 10982 << SEND_LOW_PRIORITY_LIST_VL_SHIFT) 10983 | (((u64)vl->weight 10984 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK) 10985 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT); 10986 write_csr(dd, target + (i * 8), reg); 10987 } 10988 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE); 10989 10990 if (drain) 10991 open_fill_data_vls(dd); /* reopen all VLs */ 10992 10993 err: 10994 mutex_unlock(&ppd->hls_lock); 10995 10996 return ret; 10997 } 10998 10999 /* 11000 * Read one credit merge VL register. 11001 */ 11002 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr, 11003 struct vl_limit *vll) 11004 { 11005 u64 reg = read_csr(dd, csr); 11006 11007 vll->dedicated = cpu_to_be16( 11008 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT) 11009 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK); 11010 vll->shared = cpu_to_be16( 11011 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT) 11012 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK); 11013 } 11014 11015 /* 11016 * Read the current credit merge limits. 11017 */ 11018 static int get_buffer_control(struct hfi1_devdata *dd, 11019 struct buffer_control *bc, u16 *overall_limit) 11020 { 11021 u64 reg; 11022 int i; 11023 11024 /* not all entries are filled in */ 11025 memset(bc, 0, sizeof(*bc)); 11026 11027 /* OPA and HFI have a 1-1 mapping */ 11028 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11029 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]); 11030 11031 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */ 11032 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]); 11033 11034 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11035 bc->overall_shared_limit = cpu_to_be16( 11036 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) 11037 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK); 11038 if (overall_limit) 11039 *overall_limit = (reg 11040 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) 11041 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK; 11042 return sizeof(struct buffer_control); 11043 } 11044 11045 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 11046 { 11047 u64 reg; 11048 int i; 11049 11050 /* each register contains 16 SC->VLnt mappings, 4 bits each */ 11051 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0); 11052 for (i = 0; i < sizeof(u64); i++) { 11053 u8 byte = *(((u8 *)®) + i); 11054 11055 dp->vlnt[2 * i] = byte & 0xf; 11056 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4; 11057 } 11058 11059 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16); 11060 for (i = 0; i < sizeof(u64); i++) { 11061 u8 byte = *(((u8 *)®) + i); 11062 11063 dp->vlnt[16 + (2 * i)] = byte & 0xf; 11064 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4; 11065 } 11066 return sizeof(struct sc2vlnt); 11067 } 11068 11069 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems, 11070 struct ib_vl_weight_elem *vl) 11071 { 11072 unsigned int i; 11073 11074 for (i = 0; i < nelems; i++, vl++) { 11075 vl->vl = 0xf; 11076 vl->weight = 0; 11077 } 11078 } 11079 11080 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 11081 { 11082 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, 11083 DC_SC_VL_VAL(15_0, 11084 0, dp->vlnt[0] & 0xf, 11085 1, dp->vlnt[1] & 0xf, 11086 2, dp->vlnt[2] & 0xf, 11087 3, dp->vlnt[3] & 0xf, 11088 4, dp->vlnt[4] & 0xf, 11089 5, dp->vlnt[5] & 0xf, 11090 6, dp->vlnt[6] & 0xf, 11091 7, dp->vlnt[7] & 0xf, 11092 8, dp->vlnt[8] & 0xf, 11093 9, dp->vlnt[9] & 0xf, 11094 10, dp->vlnt[10] & 0xf, 11095 11, dp->vlnt[11] & 0xf, 11096 12, dp->vlnt[12] & 0xf, 11097 13, dp->vlnt[13] & 0xf, 11098 14, dp->vlnt[14] & 0xf, 11099 15, dp->vlnt[15] & 0xf)); 11100 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, 11101 DC_SC_VL_VAL(31_16, 11102 16, dp->vlnt[16] & 0xf, 11103 17, dp->vlnt[17] & 0xf, 11104 18, dp->vlnt[18] & 0xf, 11105 19, dp->vlnt[19] & 0xf, 11106 20, dp->vlnt[20] & 0xf, 11107 21, dp->vlnt[21] & 0xf, 11108 22, dp->vlnt[22] & 0xf, 11109 23, dp->vlnt[23] & 0xf, 11110 24, dp->vlnt[24] & 0xf, 11111 25, dp->vlnt[25] & 0xf, 11112 26, dp->vlnt[26] & 0xf, 11113 27, dp->vlnt[27] & 0xf, 11114 28, dp->vlnt[28] & 0xf, 11115 29, dp->vlnt[29] & 0xf, 11116 30, dp->vlnt[30] & 0xf, 11117 31, dp->vlnt[31] & 0xf)); 11118 } 11119 11120 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what, 11121 u16 limit) 11122 { 11123 if (limit != 0) 11124 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n", 11125 what, (int)limit, idx); 11126 } 11127 11128 /* change only the shared limit portion of SendCmGLobalCredit */ 11129 static void set_global_shared(struct hfi1_devdata *dd, u16 limit) 11130 { 11131 u64 reg; 11132 11133 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11134 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK; 11135 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT; 11136 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 11137 } 11138 11139 /* change only the total credit limit portion of SendCmGLobalCredit */ 11140 static void set_global_limit(struct hfi1_devdata *dd, u16 limit) 11141 { 11142 u64 reg; 11143 11144 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11145 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK; 11146 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 11147 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 11148 } 11149 11150 /* set the given per-VL shared limit */ 11151 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit) 11152 { 11153 u64 reg; 11154 u32 addr; 11155 11156 if (vl < TXE_NUM_DATA_VL) 11157 addr = SEND_CM_CREDIT_VL + (8 * vl); 11158 else 11159 addr = SEND_CM_CREDIT_VL15; 11160 11161 reg = read_csr(dd, addr); 11162 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK; 11163 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT; 11164 write_csr(dd, addr, reg); 11165 } 11166 11167 /* set the given per-VL dedicated limit */ 11168 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit) 11169 { 11170 u64 reg; 11171 u32 addr; 11172 11173 if (vl < TXE_NUM_DATA_VL) 11174 addr = SEND_CM_CREDIT_VL + (8 * vl); 11175 else 11176 addr = SEND_CM_CREDIT_VL15; 11177 11178 reg = read_csr(dd, addr); 11179 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK; 11180 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT; 11181 write_csr(dd, addr, reg); 11182 } 11183 11184 /* spin until the given per-VL status mask bits clear */ 11185 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask, 11186 const char *which) 11187 { 11188 unsigned long timeout; 11189 u64 reg; 11190 11191 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT); 11192 while (1) { 11193 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask; 11194 11195 if (reg == 0) 11196 return; /* success */ 11197 if (time_after(jiffies, timeout)) 11198 break; /* timed out */ 11199 udelay(1); 11200 } 11201 11202 dd_dev_err(dd, 11203 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n", 11204 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg); 11205 /* 11206 * If this occurs, it is likely there was a credit loss on the link. 11207 * The only recovery from that is a link bounce. 11208 */ 11209 dd_dev_err(dd, 11210 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n"); 11211 } 11212 11213 /* 11214 * The number of credits on the VLs may be changed while everything 11215 * is "live", but the following algorithm must be followed due to 11216 * how the hardware is actually implemented. In particular, 11217 * Return_Credit_Status[] is the only correct status check. 11218 * 11219 * if (reducing Global_Shared_Credit_Limit or any shared limit changing) 11220 * set Global_Shared_Credit_Limit = 0 11221 * use_all_vl = 1 11222 * mask0 = all VLs that are changing either dedicated or shared limits 11223 * set Shared_Limit[mask0] = 0 11224 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0 11225 * if (changing any dedicated limit) 11226 * mask1 = all VLs that are lowering dedicated limits 11227 * lower Dedicated_Limit[mask1] 11228 * spin until Return_Credit_Status[mask1] == 0 11229 * raise Dedicated_Limits 11230 * raise Shared_Limits 11231 * raise Global_Shared_Credit_Limit 11232 * 11233 * lower = if the new limit is lower, set the limit to the new value 11234 * raise = if the new limit is higher than the current value (may be changed 11235 * earlier in the algorithm), set the new limit to the new value 11236 */ 11237 int set_buffer_control(struct hfi1_pportdata *ppd, 11238 struct buffer_control *new_bc) 11239 { 11240 struct hfi1_devdata *dd = ppd->dd; 11241 u64 changing_mask, ld_mask, stat_mask; 11242 int change_count; 11243 int i, use_all_mask; 11244 int this_shared_changing; 11245 int vl_count = 0, ret; 11246 /* 11247 * A0: add the variable any_shared_limit_changing below and in the 11248 * algorithm above. If removing A0 support, it can be removed. 11249 */ 11250 int any_shared_limit_changing; 11251 struct buffer_control cur_bc; 11252 u8 changing[OPA_MAX_VLS]; 11253 u8 lowering_dedicated[OPA_MAX_VLS]; 11254 u16 cur_total; 11255 u32 new_total = 0; 11256 const u64 all_mask = 11257 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK 11258 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK 11259 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK 11260 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK 11261 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK 11262 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK 11263 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK 11264 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK 11265 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK; 11266 11267 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15) 11268 #define NUM_USABLE_VLS 16 /* look at VL15 and less */ 11269 11270 /* find the new total credits, do sanity check on unused VLs */ 11271 for (i = 0; i < OPA_MAX_VLS; i++) { 11272 if (valid_vl(i)) { 11273 new_total += be16_to_cpu(new_bc->vl[i].dedicated); 11274 continue; 11275 } 11276 nonzero_msg(dd, i, "dedicated", 11277 be16_to_cpu(new_bc->vl[i].dedicated)); 11278 nonzero_msg(dd, i, "shared", 11279 be16_to_cpu(new_bc->vl[i].shared)); 11280 new_bc->vl[i].dedicated = 0; 11281 new_bc->vl[i].shared = 0; 11282 } 11283 new_total += be16_to_cpu(new_bc->overall_shared_limit); 11284 11285 /* fetch the current values */ 11286 get_buffer_control(dd, &cur_bc, &cur_total); 11287 11288 /* 11289 * Create the masks we will use. 11290 */ 11291 memset(changing, 0, sizeof(changing)); 11292 memset(lowering_dedicated, 0, sizeof(lowering_dedicated)); 11293 /* 11294 * NOTE: Assumes that the individual VL bits are adjacent and in 11295 * increasing order 11296 */ 11297 stat_mask = 11298 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK; 11299 changing_mask = 0; 11300 ld_mask = 0; 11301 change_count = 0; 11302 any_shared_limit_changing = 0; 11303 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) { 11304 if (!valid_vl(i)) 11305 continue; 11306 this_shared_changing = new_bc->vl[i].shared 11307 != cur_bc.vl[i].shared; 11308 if (this_shared_changing) 11309 any_shared_limit_changing = 1; 11310 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated || 11311 this_shared_changing) { 11312 changing[i] = 1; 11313 changing_mask |= stat_mask; 11314 change_count++; 11315 } 11316 if (be16_to_cpu(new_bc->vl[i].dedicated) < 11317 be16_to_cpu(cur_bc.vl[i].dedicated)) { 11318 lowering_dedicated[i] = 1; 11319 ld_mask |= stat_mask; 11320 } 11321 } 11322 11323 /* bracket the credit change with a total adjustment */ 11324 if (new_total > cur_total) 11325 set_global_limit(dd, new_total); 11326 11327 /* 11328 * Start the credit change algorithm. 11329 */ 11330 use_all_mask = 0; 11331 if ((be16_to_cpu(new_bc->overall_shared_limit) < 11332 be16_to_cpu(cur_bc.overall_shared_limit)) || 11333 (is_ax(dd) && any_shared_limit_changing)) { 11334 set_global_shared(dd, 0); 11335 cur_bc.overall_shared_limit = 0; 11336 use_all_mask = 1; 11337 } 11338 11339 for (i = 0; i < NUM_USABLE_VLS; i++) { 11340 if (!valid_vl(i)) 11341 continue; 11342 11343 if (changing[i]) { 11344 set_vl_shared(dd, i, 0); 11345 cur_bc.vl[i].shared = 0; 11346 } 11347 } 11348 11349 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask, 11350 "shared"); 11351 11352 if (change_count > 0) { 11353 for (i = 0; i < NUM_USABLE_VLS; i++) { 11354 if (!valid_vl(i)) 11355 continue; 11356 11357 if (lowering_dedicated[i]) { 11358 set_vl_dedicated(dd, i, 11359 be16_to_cpu(new_bc-> 11360 vl[i].dedicated)); 11361 cur_bc.vl[i].dedicated = 11362 new_bc->vl[i].dedicated; 11363 } 11364 } 11365 11366 wait_for_vl_status_clear(dd, ld_mask, "dedicated"); 11367 11368 /* now raise all dedicated that are going up */ 11369 for (i = 0; i < NUM_USABLE_VLS; i++) { 11370 if (!valid_vl(i)) 11371 continue; 11372 11373 if (be16_to_cpu(new_bc->vl[i].dedicated) > 11374 be16_to_cpu(cur_bc.vl[i].dedicated)) 11375 set_vl_dedicated(dd, i, 11376 be16_to_cpu(new_bc-> 11377 vl[i].dedicated)); 11378 } 11379 } 11380 11381 /* next raise all shared that are going up */ 11382 for (i = 0; i < NUM_USABLE_VLS; i++) { 11383 if (!valid_vl(i)) 11384 continue; 11385 11386 if (be16_to_cpu(new_bc->vl[i].shared) > 11387 be16_to_cpu(cur_bc.vl[i].shared)) 11388 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared)); 11389 } 11390 11391 /* finally raise the global shared */ 11392 if (be16_to_cpu(new_bc->overall_shared_limit) > 11393 be16_to_cpu(cur_bc.overall_shared_limit)) 11394 set_global_shared(dd, 11395 be16_to_cpu(new_bc->overall_shared_limit)); 11396 11397 /* bracket the credit change with a total adjustment */ 11398 if (new_total < cur_total) 11399 set_global_limit(dd, new_total); 11400 11401 /* 11402 * Determine the actual number of operational VLS using the number of 11403 * dedicated and shared credits for each VL. 11404 */ 11405 if (change_count > 0) { 11406 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11407 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 || 11408 be16_to_cpu(new_bc->vl[i].shared) > 0) 11409 vl_count++; 11410 ppd->actual_vls_operational = vl_count; 11411 ret = sdma_map_init(dd, ppd->port - 1, vl_count ? 11412 ppd->actual_vls_operational : 11413 ppd->vls_operational, 11414 NULL); 11415 if (ret == 0) 11416 ret = pio_map_init(dd, ppd->port - 1, vl_count ? 11417 ppd->actual_vls_operational : 11418 ppd->vls_operational, NULL); 11419 if (ret) 11420 return ret; 11421 } 11422 return 0; 11423 } 11424 11425 /* 11426 * Read the given fabric manager table. Return the size of the 11427 * table (in bytes) on success, and a negative error code on 11428 * failure. 11429 */ 11430 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t) 11431 11432 { 11433 int size; 11434 struct vl_arb_cache *vlc; 11435 11436 switch (which) { 11437 case FM_TBL_VL_HIGH_ARB: 11438 size = 256; 11439 /* 11440 * OPA specifies 128 elements (of 2 bytes each), though 11441 * HFI supports only 16 elements in h/w. 11442 */ 11443 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11444 vl_arb_get_cache(vlc, t); 11445 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11446 break; 11447 case FM_TBL_VL_LOW_ARB: 11448 size = 256; 11449 /* 11450 * OPA specifies 128 elements (of 2 bytes each), though 11451 * HFI supports only 16 elements in h/w. 11452 */ 11453 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11454 vl_arb_get_cache(vlc, t); 11455 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11456 break; 11457 case FM_TBL_BUFFER_CONTROL: 11458 size = get_buffer_control(ppd->dd, t, NULL); 11459 break; 11460 case FM_TBL_SC2VLNT: 11461 size = get_sc2vlnt(ppd->dd, t); 11462 break; 11463 case FM_TBL_VL_PREEMPT_ELEMS: 11464 size = 256; 11465 /* OPA specifies 128 elements, of 2 bytes each */ 11466 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t); 11467 break; 11468 case FM_TBL_VL_PREEMPT_MATRIX: 11469 size = 256; 11470 /* 11471 * OPA specifies that this is the same size as the VL 11472 * arbitration tables (i.e., 256 bytes). 11473 */ 11474 break; 11475 default: 11476 return -EINVAL; 11477 } 11478 return size; 11479 } 11480 11481 /* 11482 * Write the given fabric manager table. 11483 */ 11484 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t) 11485 { 11486 int ret = 0; 11487 struct vl_arb_cache *vlc; 11488 11489 switch (which) { 11490 case FM_TBL_VL_HIGH_ARB: 11491 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11492 if (vl_arb_match_cache(vlc, t)) { 11493 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11494 break; 11495 } 11496 vl_arb_set_cache(vlc, t); 11497 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11498 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST, 11499 VL_ARB_HIGH_PRIO_TABLE_SIZE, t); 11500 break; 11501 case FM_TBL_VL_LOW_ARB: 11502 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11503 if (vl_arb_match_cache(vlc, t)) { 11504 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11505 break; 11506 } 11507 vl_arb_set_cache(vlc, t); 11508 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11509 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST, 11510 VL_ARB_LOW_PRIO_TABLE_SIZE, t); 11511 break; 11512 case FM_TBL_BUFFER_CONTROL: 11513 ret = set_buffer_control(ppd, t); 11514 break; 11515 case FM_TBL_SC2VLNT: 11516 set_sc2vlnt(ppd->dd, t); 11517 break; 11518 default: 11519 ret = -EINVAL; 11520 } 11521 return ret; 11522 } 11523 11524 /* 11525 * Disable all data VLs. 11526 * 11527 * Return 0 if disabled, non-zero if the VLs cannot be disabled. 11528 */ 11529 static int disable_data_vls(struct hfi1_devdata *dd) 11530 { 11531 if (is_ax(dd)) 11532 return 1; 11533 11534 pio_send_control(dd, PSC_DATA_VL_DISABLE); 11535 11536 return 0; 11537 } 11538 11539 /* 11540 * open_fill_data_vls() - the counterpart to stop_drain_data_vls(). 11541 * Just re-enables all data VLs (the "fill" part happens 11542 * automatically - the name was chosen for symmetry with 11543 * stop_drain_data_vls()). 11544 * 11545 * Return 0 if successful, non-zero if the VLs cannot be enabled. 11546 */ 11547 int open_fill_data_vls(struct hfi1_devdata *dd) 11548 { 11549 if (is_ax(dd)) 11550 return 1; 11551 11552 pio_send_control(dd, PSC_DATA_VL_ENABLE); 11553 11554 return 0; 11555 } 11556 11557 /* 11558 * drain_data_vls() - assumes that disable_data_vls() has been called, 11559 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA 11560 * engines to drop to 0. 11561 */ 11562 static void drain_data_vls(struct hfi1_devdata *dd) 11563 { 11564 sc_wait(dd); 11565 sdma_wait(dd); 11566 pause_for_credit_return(dd); 11567 } 11568 11569 /* 11570 * stop_drain_data_vls() - disable, then drain all per-VL fifos. 11571 * 11572 * Use open_fill_data_vls() to resume using data VLs. This pair is 11573 * meant to be used like this: 11574 * 11575 * stop_drain_data_vls(dd); 11576 * // do things with per-VL resources 11577 * open_fill_data_vls(dd); 11578 */ 11579 int stop_drain_data_vls(struct hfi1_devdata *dd) 11580 { 11581 int ret; 11582 11583 ret = disable_data_vls(dd); 11584 if (ret == 0) 11585 drain_data_vls(dd); 11586 11587 return ret; 11588 } 11589 11590 /* 11591 * Convert a nanosecond time to a cclock count. No matter how slow 11592 * the cclock, a non-zero ns will always have a non-zero result. 11593 */ 11594 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns) 11595 { 11596 u32 cclocks; 11597 11598 if (dd->icode == ICODE_FPGA_EMULATION) 11599 cclocks = (ns * 1000) / FPGA_CCLOCK_PS; 11600 else /* simulation pretends to be ASIC */ 11601 cclocks = (ns * 1000) / ASIC_CCLOCK_PS; 11602 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */ 11603 cclocks = 1; 11604 return cclocks; 11605 } 11606 11607 /* 11608 * Convert a cclock count to nanoseconds. Not matter how slow 11609 * the cclock, a non-zero cclocks will always have a non-zero result. 11610 */ 11611 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks) 11612 { 11613 u32 ns; 11614 11615 if (dd->icode == ICODE_FPGA_EMULATION) 11616 ns = (cclocks * FPGA_CCLOCK_PS) / 1000; 11617 else /* simulation pretends to be ASIC */ 11618 ns = (cclocks * ASIC_CCLOCK_PS) / 1000; 11619 if (cclocks && !ns) 11620 ns = 1; 11621 return ns; 11622 } 11623 11624 /* 11625 * Dynamically adjust the receive interrupt timeout for a context based on 11626 * incoming packet rate. 11627 * 11628 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero. 11629 */ 11630 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts) 11631 { 11632 struct hfi1_devdata *dd = rcd->dd; 11633 u32 timeout = rcd->rcvavail_timeout; 11634 11635 /* 11636 * This algorithm doubles or halves the timeout depending on whether 11637 * the number of packets received in this interrupt were less than or 11638 * greater equal the interrupt count. 11639 * 11640 * The calculations below do not allow a steady state to be achieved. 11641 * Only at the endpoints it is possible to have an unchanging 11642 * timeout. 11643 */ 11644 if (npkts < rcv_intr_count) { 11645 /* 11646 * Not enough packets arrived before the timeout, adjust 11647 * timeout downward. 11648 */ 11649 if (timeout < 2) /* already at minimum? */ 11650 return; 11651 timeout >>= 1; 11652 } else { 11653 /* 11654 * More than enough packets arrived before the timeout, adjust 11655 * timeout upward. 11656 */ 11657 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */ 11658 return; 11659 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr); 11660 } 11661 11662 rcd->rcvavail_timeout = timeout; 11663 /* 11664 * timeout cannot be larger than rcv_intr_timeout_csr which has already 11665 * been verified to be in range 11666 */ 11667 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT, 11668 (u64)timeout << 11669 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11670 } 11671 11672 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd, 11673 u32 intr_adjust, u32 npkts) 11674 { 11675 struct hfi1_devdata *dd = rcd->dd; 11676 u64 reg; 11677 u32 ctxt = rcd->ctxt; 11678 11679 /* 11680 * Need to write timeout register before updating RcvHdrHead to ensure 11681 * that a new value is used when the HW decides to restart counting. 11682 */ 11683 if (intr_adjust) 11684 adjust_rcv_timeout(rcd, npkts); 11685 if (updegr) { 11686 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK) 11687 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT; 11688 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg); 11689 } 11690 mmiowb(); 11691 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) | 11692 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK) 11693 << RCV_HDR_HEAD_HEAD_SHIFT); 11694 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11695 mmiowb(); 11696 } 11697 11698 u32 hdrqempty(struct hfi1_ctxtdata *rcd) 11699 { 11700 u32 head, tail; 11701 11702 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) 11703 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT; 11704 11705 if (rcd->rcvhdrtail_kvaddr) 11706 tail = get_rcvhdrtail(rcd); 11707 else 11708 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 11709 11710 return head == tail; 11711 } 11712 11713 /* 11714 * Context Control and Receive Array encoding for buffer size: 11715 * 0x0 invalid 11716 * 0x1 4 KB 11717 * 0x2 8 KB 11718 * 0x3 16 KB 11719 * 0x4 32 KB 11720 * 0x5 64 KB 11721 * 0x6 128 KB 11722 * 0x7 256 KB 11723 * 0x8 512 KB (Receive Array only) 11724 * 0x9 1 MB (Receive Array only) 11725 * 0xa 2 MB (Receive Array only) 11726 * 11727 * 0xB-0xF - reserved (Receive Array only) 11728 * 11729 * 11730 * This routine assumes that the value has already been sanity checked. 11731 */ 11732 static u32 encoded_size(u32 size) 11733 { 11734 switch (size) { 11735 case 4 * 1024: return 0x1; 11736 case 8 * 1024: return 0x2; 11737 case 16 * 1024: return 0x3; 11738 case 32 * 1024: return 0x4; 11739 case 64 * 1024: return 0x5; 11740 case 128 * 1024: return 0x6; 11741 case 256 * 1024: return 0x7; 11742 case 512 * 1024: return 0x8; 11743 case 1 * 1024 * 1024: return 0x9; 11744 case 2 * 1024 * 1024: return 0xa; 11745 } 11746 return 0x1; /* if invalid, go with the minimum size */ 11747 } 11748 11749 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, 11750 struct hfi1_ctxtdata *rcd) 11751 { 11752 u64 rcvctrl, reg; 11753 int did_enable = 0; 11754 u16 ctxt; 11755 11756 if (!rcd) 11757 return; 11758 11759 ctxt = rcd->ctxt; 11760 11761 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op); 11762 11763 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL); 11764 /* if the context already enabled, don't do the extra steps */ 11765 if ((op & HFI1_RCVCTRL_CTXT_ENB) && 11766 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) { 11767 /* reset the tail and hdr addresses, and sequence count */ 11768 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR, 11769 rcd->rcvhdrq_dma); 11770 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 11771 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11772 rcd->rcvhdrqtailaddr_dma); 11773 rcd->seq_cnt = 1; 11774 11775 /* reset the cached receive header queue head value */ 11776 rcd->head = 0; 11777 11778 /* 11779 * Zero the receive header queue so we don't get false 11780 * positives when checking the sequence number. The 11781 * sequence numbers could land exactly on the same spot. 11782 * E.g. a rcd restart before the receive header wrapped. 11783 */ 11784 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size); 11785 11786 /* starting timeout */ 11787 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr; 11788 11789 /* enable the context */ 11790 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK; 11791 11792 /* clean the egr buffer size first */ 11793 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11794 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size) 11795 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK) 11796 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT; 11797 11798 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */ 11799 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0); 11800 did_enable = 1; 11801 11802 /* zero RcvEgrIndexHead */ 11803 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0); 11804 11805 /* set eager count and base index */ 11806 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT) 11807 & RCV_EGR_CTRL_EGR_CNT_MASK) 11808 << RCV_EGR_CTRL_EGR_CNT_SHIFT) | 11809 (((rcd->eager_base >> RCV_SHIFT) 11810 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK) 11811 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT); 11812 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg); 11813 11814 /* 11815 * Set TID (expected) count and base index. 11816 * rcd->expected_count is set to individual RcvArray entries, 11817 * not pairs, and the CSR takes a pair-count in groups of 11818 * four, so divide by 8. 11819 */ 11820 reg = (((rcd->expected_count >> RCV_SHIFT) 11821 & RCV_TID_CTRL_TID_PAIR_CNT_MASK) 11822 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) | 11823 (((rcd->expected_base >> RCV_SHIFT) 11824 & RCV_TID_CTRL_TID_BASE_INDEX_MASK) 11825 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT); 11826 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg); 11827 if (ctxt == HFI1_CTRL_CTXT) 11828 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT); 11829 } 11830 if (op & HFI1_RCVCTRL_CTXT_DIS) { 11831 write_csr(dd, RCV_VL15, 0); 11832 /* 11833 * When receive context is being disabled turn on tail 11834 * update with a dummy tail address and then disable 11835 * receive context. 11836 */ 11837 if (dd->rcvhdrtail_dummy_dma) { 11838 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11839 dd->rcvhdrtail_dummy_dma); 11840 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */ 11841 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11842 } 11843 11844 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK; 11845 } 11846 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) 11847 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11848 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) 11849 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11850 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma) 11851 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11852 if (op & HFI1_RCVCTRL_TAILUPD_DIS) { 11853 /* See comment on RcvCtxtCtrl.TailUpd above */ 11854 if (!(op & HFI1_RCVCTRL_CTXT_DIS)) 11855 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11856 } 11857 if (op & HFI1_RCVCTRL_TIDFLOW_ENB) 11858 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11859 if (op & HFI1_RCVCTRL_TIDFLOW_DIS) 11860 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11861 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) { 11862 /* 11863 * In one-packet-per-eager mode, the size comes from 11864 * the RcvArray entry. 11865 */ 11866 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11867 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11868 } 11869 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS) 11870 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11871 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB) 11872 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11873 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS) 11874 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11875 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB) 11876 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11877 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS) 11878 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11879 rcd->rcvctrl = rcvctrl; 11880 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl); 11881 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl); 11882 11883 /* work around sticky RcvCtxtStatus.BlockedRHQFull */ 11884 if (did_enable && 11885 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) { 11886 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11887 if (reg != 0) { 11888 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n", 11889 ctxt, reg); 11890 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11891 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10); 11892 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00); 11893 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11894 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11895 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n", 11896 ctxt, reg, reg == 0 ? "not" : "still"); 11897 } 11898 } 11899 11900 if (did_enable) { 11901 /* 11902 * The interrupt timeout and count must be set after 11903 * the context is enabled to take effect. 11904 */ 11905 /* set interrupt timeout */ 11906 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT, 11907 (u64)rcd->rcvavail_timeout << 11908 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11909 11910 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */ 11911 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT; 11912 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11913 } 11914 11915 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS)) 11916 /* 11917 * If the context has been disabled and the Tail Update has 11918 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address 11919 * so it doesn't contain an address that is invalid. 11920 */ 11921 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11922 dd->rcvhdrtail_dummy_dma); 11923 } 11924 11925 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp) 11926 { 11927 int ret; 11928 u64 val = 0; 11929 11930 if (namep) { 11931 ret = dd->cntrnameslen; 11932 *namep = dd->cntrnames; 11933 } else { 11934 const struct cntr_entry *entry; 11935 int i, j; 11936 11937 ret = (dd->ndevcntrs) * sizeof(u64); 11938 11939 /* Get the start of the block of counters */ 11940 *cntrp = dd->cntrs; 11941 11942 /* 11943 * Now go and fill in each counter in the block. 11944 */ 11945 for (i = 0; i < DEV_CNTR_LAST; i++) { 11946 entry = &dev_cntrs[i]; 11947 hfi1_cdbg(CNTR, "reading %s", entry->name); 11948 if (entry->flags & CNTR_DISABLED) { 11949 /* Nothing */ 11950 hfi1_cdbg(CNTR, "\tDisabled\n"); 11951 } else { 11952 if (entry->flags & CNTR_VL) { 11953 hfi1_cdbg(CNTR, "\tPer VL\n"); 11954 for (j = 0; j < C_VL_COUNT; j++) { 11955 val = entry->rw_cntr(entry, 11956 dd, j, 11957 CNTR_MODE_R, 11958 0); 11959 hfi1_cdbg( 11960 CNTR, 11961 "\t\tRead 0x%llx for %d\n", 11962 val, j); 11963 dd->cntrs[entry->offset + j] = 11964 val; 11965 } 11966 } else if (entry->flags & CNTR_SDMA) { 11967 hfi1_cdbg(CNTR, 11968 "\t Per SDMA Engine\n"); 11969 for (j = 0; j < dd->chip_sdma_engines; 11970 j++) { 11971 val = 11972 entry->rw_cntr(entry, dd, j, 11973 CNTR_MODE_R, 0); 11974 hfi1_cdbg(CNTR, 11975 "\t\tRead 0x%llx for %d\n", 11976 val, j); 11977 dd->cntrs[entry->offset + j] = 11978 val; 11979 } 11980 } else { 11981 val = entry->rw_cntr(entry, dd, 11982 CNTR_INVALID_VL, 11983 CNTR_MODE_R, 0); 11984 dd->cntrs[entry->offset] = val; 11985 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 11986 } 11987 } 11988 } 11989 } 11990 return ret; 11991 } 11992 11993 /* 11994 * Used by sysfs to create files for hfi stats to read 11995 */ 11996 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp) 11997 { 11998 int ret; 11999 u64 val = 0; 12000 12001 if (namep) { 12002 ret = ppd->dd->portcntrnameslen; 12003 *namep = ppd->dd->portcntrnames; 12004 } else { 12005 const struct cntr_entry *entry; 12006 int i, j; 12007 12008 ret = ppd->dd->nportcntrs * sizeof(u64); 12009 *cntrp = ppd->cntrs; 12010 12011 for (i = 0; i < PORT_CNTR_LAST; i++) { 12012 entry = &port_cntrs[i]; 12013 hfi1_cdbg(CNTR, "reading %s", entry->name); 12014 if (entry->flags & CNTR_DISABLED) { 12015 /* Nothing */ 12016 hfi1_cdbg(CNTR, "\tDisabled\n"); 12017 continue; 12018 } 12019 12020 if (entry->flags & CNTR_VL) { 12021 hfi1_cdbg(CNTR, "\tPer VL"); 12022 for (j = 0; j < C_VL_COUNT; j++) { 12023 val = entry->rw_cntr(entry, ppd, j, 12024 CNTR_MODE_R, 12025 0); 12026 hfi1_cdbg( 12027 CNTR, 12028 "\t\tRead 0x%llx for %d", 12029 val, j); 12030 ppd->cntrs[entry->offset + j] = val; 12031 } 12032 } else { 12033 val = entry->rw_cntr(entry, ppd, 12034 CNTR_INVALID_VL, 12035 CNTR_MODE_R, 12036 0); 12037 ppd->cntrs[entry->offset] = val; 12038 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 12039 } 12040 } 12041 } 12042 return ret; 12043 } 12044 12045 static void free_cntrs(struct hfi1_devdata *dd) 12046 { 12047 struct hfi1_pportdata *ppd; 12048 int i; 12049 12050 if (dd->synth_stats_timer.function) 12051 del_timer_sync(&dd->synth_stats_timer); 12052 ppd = (struct hfi1_pportdata *)(dd + 1); 12053 for (i = 0; i < dd->num_pports; i++, ppd++) { 12054 kfree(ppd->cntrs); 12055 kfree(ppd->scntrs); 12056 free_percpu(ppd->ibport_data.rvp.rc_acks); 12057 free_percpu(ppd->ibport_data.rvp.rc_qacks); 12058 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp); 12059 ppd->cntrs = NULL; 12060 ppd->scntrs = NULL; 12061 ppd->ibport_data.rvp.rc_acks = NULL; 12062 ppd->ibport_data.rvp.rc_qacks = NULL; 12063 ppd->ibport_data.rvp.rc_delayed_comp = NULL; 12064 } 12065 kfree(dd->portcntrnames); 12066 dd->portcntrnames = NULL; 12067 kfree(dd->cntrs); 12068 dd->cntrs = NULL; 12069 kfree(dd->scntrs); 12070 dd->scntrs = NULL; 12071 kfree(dd->cntrnames); 12072 dd->cntrnames = NULL; 12073 if (dd->update_cntr_wq) { 12074 destroy_workqueue(dd->update_cntr_wq); 12075 dd->update_cntr_wq = NULL; 12076 } 12077 } 12078 12079 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry, 12080 u64 *psval, void *context, int vl) 12081 { 12082 u64 val; 12083 u64 sval = *psval; 12084 12085 if (entry->flags & CNTR_DISABLED) { 12086 dd_dev_err(dd, "Counter %s not enabled", entry->name); 12087 return 0; 12088 } 12089 12090 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 12091 12092 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0); 12093 12094 /* If its a synthetic counter there is more work we need to do */ 12095 if (entry->flags & CNTR_SYNTH) { 12096 if (sval == CNTR_MAX) { 12097 /* No need to read already saturated */ 12098 return CNTR_MAX; 12099 } 12100 12101 if (entry->flags & CNTR_32BIT) { 12102 /* 32bit counters can wrap multiple times */ 12103 u64 upper = sval >> 32; 12104 u64 lower = (sval << 32) >> 32; 12105 12106 if (lower > val) { /* hw wrapped */ 12107 if (upper == CNTR_32BIT_MAX) 12108 val = CNTR_MAX; 12109 else 12110 upper++; 12111 } 12112 12113 if (val != CNTR_MAX) 12114 val = (upper << 32) | val; 12115 12116 } else { 12117 /* If we rolled we are saturated */ 12118 if ((val < sval) || (val > CNTR_MAX)) 12119 val = CNTR_MAX; 12120 } 12121 } 12122 12123 *psval = val; 12124 12125 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 12126 12127 return val; 12128 } 12129 12130 static u64 write_dev_port_cntr(struct hfi1_devdata *dd, 12131 struct cntr_entry *entry, 12132 u64 *psval, void *context, int vl, u64 data) 12133 { 12134 u64 val; 12135 12136 if (entry->flags & CNTR_DISABLED) { 12137 dd_dev_err(dd, "Counter %s not enabled", entry->name); 12138 return 0; 12139 } 12140 12141 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 12142 12143 if (entry->flags & CNTR_SYNTH) { 12144 *psval = data; 12145 if (entry->flags & CNTR_32BIT) { 12146 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 12147 (data << 32) >> 32); 12148 val = data; /* return the full 64bit value */ 12149 } else { 12150 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 12151 data); 12152 } 12153 } else { 12154 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data); 12155 } 12156 12157 *psval = val; 12158 12159 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 12160 12161 return val; 12162 } 12163 12164 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl) 12165 { 12166 struct cntr_entry *entry; 12167 u64 *sval; 12168 12169 entry = &dev_cntrs[index]; 12170 sval = dd->scntrs + entry->offset; 12171 12172 if (vl != CNTR_INVALID_VL) 12173 sval += vl; 12174 12175 return read_dev_port_cntr(dd, entry, sval, dd, vl); 12176 } 12177 12178 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data) 12179 { 12180 struct cntr_entry *entry; 12181 u64 *sval; 12182 12183 entry = &dev_cntrs[index]; 12184 sval = dd->scntrs + entry->offset; 12185 12186 if (vl != CNTR_INVALID_VL) 12187 sval += vl; 12188 12189 return write_dev_port_cntr(dd, entry, sval, dd, vl, data); 12190 } 12191 12192 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl) 12193 { 12194 struct cntr_entry *entry; 12195 u64 *sval; 12196 12197 entry = &port_cntrs[index]; 12198 sval = ppd->scntrs + entry->offset; 12199 12200 if (vl != CNTR_INVALID_VL) 12201 sval += vl; 12202 12203 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12204 (index <= C_RCV_HDR_OVF_LAST)) { 12205 /* We do not want to bother for disabled contexts */ 12206 return 0; 12207 } 12208 12209 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl); 12210 } 12211 12212 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data) 12213 { 12214 struct cntr_entry *entry; 12215 u64 *sval; 12216 12217 entry = &port_cntrs[index]; 12218 sval = ppd->scntrs + entry->offset; 12219 12220 if (vl != CNTR_INVALID_VL) 12221 sval += vl; 12222 12223 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12224 (index <= C_RCV_HDR_OVF_LAST)) { 12225 /* We do not want to bother for disabled contexts */ 12226 return 0; 12227 } 12228 12229 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data); 12230 } 12231 12232 static void do_update_synth_timer(struct work_struct *work) 12233 { 12234 u64 cur_tx; 12235 u64 cur_rx; 12236 u64 total_flits; 12237 u8 update = 0; 12238 int i, j, vl; 12239 struct hfi1_pportdata *ppd; 12240 struct cntr_entry *entry; 12241 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata, 12242 update_cntr_work); 12243 12244 /* 12245 * Rather than keep beating on the CSRs pick a minimal set that we can 12246 * check to watch for potential roll over. We can do this by looking at 12247 * the number of flits sent/recv. If the total flits exceeds 32bits then 12248 * we have to iterate all the counters and update. 12249 */ 12250 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12251 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12252 12253 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12254 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12255 12256 hfi1_cdbg( 12257 CNTR, 12258 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n", 12259 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx); 12260 12261 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) { 12262 /* 12263 * May not be strictly necessary to update but it won't hurt and 12264 * simplifies the logic here. 12265 */ 12266 update = 1; 12267 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating", 12268 dd->unit); 12269 } else { 12270 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx); 12271 hfi1_cdbg(CNTR, 12272 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit, 12273 total_flits, (u64)CNTR_32BIT_MAX); 12274 if (total_flits >= CNTR_32BIT_MAX) { 12275 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating", 12276 dd->unit); 12277 update = 1; 12278 } 12279 } 12280 12281 if (update) { 12282 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit); 12283 for (i = 0; i < DEV_CNTR_LAST; i++) { 12284 entry = &dev_cntrs[i]; 12285 if (entry->flags & CNTR_VL) { 12286 for (vl = 0; vl < C_VL_COUNT; vl++) 12287 read_dev_cntr(dd, i, vl); 12288 } else { 12289 read_dev_cntr(dd, i, CNTR_INVALID_VL); 12290 } 12291 } 12292 ppd = (struct hfi1_pportdata *)(dd + 1); 12293 for (i = 0; i < dd->num_pports; i++, ppd++) { 12294 for (j = 0; j < PORT_CNTR_LAST; j++) { 12295 entry = &port_cntrs[j]; 12296 if (entry->flags & CNTR_VL) { 12297 for (vl = 0; vl < C_VL_COUNT; vl++) 12298 read_port_cntr(ppd, j, vl); 12299 } else { 12300 read_port_cntr(ppd, j, CNTR_INVALID_VL); 12301 } 12302 } 12303 } 12304 12305 /* 12306 * We want the value in the register. The goal is to keep track 12307 * of the number of "ticks" not the counter value. In other 12308 * words if the register rolls we want to notice it and go ahead 12309 * and force an update. 12310 */ 12311 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12312 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12313 CNTR_MODE_R, 0); 12314 12315 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12316 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12317 CNTR_MODE_R, 0); 12318 12319 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx", 12320 dd->unit, dd->last_tx, dd->last_rx); 12321 12322 } else { 12323 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit); 12324 } 12325 } 12326 12327 static void update_synth_timer(struct timer_list *t) 12328 { 12329 struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer); 12330 12331 queue_work(dd->update_cntr_wq, &dd->update_cntr_work); 12332 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12333 } 12334 12335 #define C_MAX_NAME 16 /* 15 chars + one for /0 */ 12336 static int init_cntrs(struct hfi1_devdata *dd) 12337 { 12338 int i, rcv_ctxts, j; 12339 size_t sz; 12340 char *p; 12341 char name[C_MAX_NAME]; 12342 struct hfi1_pportdata *ppd; 12343 const char *bit_type_32 = ",32"; 12344 const int bit_type_32_sz = strlen(bit_type_32); 12345 12346 /* set up the stats timer; the add_timer is done at the end */ 12347 timer_setup(&dd->synth_stats_timer, update_synth_timer, 0); 12348 12349 /***********************/ 12350 /* per device counters */ 12351 /***********************/ 12352 12353 /* size names and determine how many we have*/ 12354 dd->ndevcntrs = 0; 12355 sz = 0; 12356 12357 for (i = 0; i < DEV_CNTR_LAST; i++) { 12358 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12359 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name); 12360 continue; 12361 } 12362 12363 if (dev_cntrs[i].flags & CNTR_VL) { 12364 dev_cntrs[i].offset = dd->ndevcntrs; 12365 for (j = 0; j < C_VL_COUNT; j++) { 12366 snprintf(name, C_MAX_NAME, "%s%d", 12367 dev_cntrs[i].name, vl_from_idx(j)); 12368 sz += strlen(name); 12369 /* Add ",32" for 32-bit counters */ 12370 if (dev_cntrs[i].flags & CNTR_32BIT) 12371 sz += bit_type_32_sz; 12372 sz++; 12373 dd->ndevcntrs++; 12374 } 12375 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12376 dev_cntrs[i].offset = dd->ndevcntrs; 12377 for (j = 0; j < dd->chip_sdma_engines; j++) { 12378 snprintf(name, C_MAX_NAME, "%s%d", 12379 dev_cntrs[i].name, j); 12380 sz += strlen(name); 12381 /* Add ",32" for 32-bit counters */ 12382 if (dev_cntrs[i].flags & CNTR_32BIT) 12383 sz += bit_type_32_sz; 12384 sz++; 12385 dd->ndevcntrs++; 12386 } 12387 } else { 12388 /* +1 for newline. */ 12389 sz += strlen(dev_cntrs[i].name) + 1; 12390 /* Add ",32" for 32-bit counters */ 12391 if (dev_cntrs[i].flags & CNTR_32BIT) 12392 sz += bit_type_32_sz; 12393 dev_cntrs[i].offset = dd->ndevcntrs; 12394 dd->ndevcntrs++; 12395 } 12396 } 12397 12398 /* allocate space for the counter values */ 12399 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12400 if (!dd->cntrs) 12401 goto bail; 12402 12403 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12404 if (!dd->scntrs) 12405 goto bail; 12406 12407 /* allocate space for the counter names */ 12408 dd->cntrnameslen = sz; 12409 dd->cntrnames = kmalloc(sz, GFP_KERNEL); 12410 if (!dd->cntrnames) 12411 goto bail; 12412 12413 /* fill in the names */ 12414 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) { 12415 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12416 /* Nothing */ 12417 } else if (dev_cntrs[i].flags & CNTR_VL) { 12418 for (j = 0; j < C_VL_COUNT; j++) { 12419 snprintf(name, C_MAX_NAME, "%s%d", 12420 dev_cntrs[i].name, 12421 vl_from_idx(j)); 12422 memcpy(p, name, strlen(name)); 12423 p += strlen(name); 12424 12425 /* Counter is 32 bits */ 12426 if (dev_cntrs[i].flags & CNTR_32BIT) { 12427 memcpy(p, bit_type_32, bit_type_32_sz); 12428 p += bit_type_32_sz; 12429 } 12430 12431 *p++ = '\n'; 12432 } 12433 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12434 for (j = 0; j < dd->chip_sdma_engines; j++) { 12435 snprintf(name, C_MAX_NAME, "%s%d", 12436 dev_cntrs[i].name, j); 12437 memcpy(p, name, strlen(name)); 12438 p += strlen(name); 12439 12440 /* Counter is 32 bits */ 12441 if (dev_cntrs[i].flags & CNTR_32BIT) { 12442 memcpy(p, bit_type_32, bit_type_32_sz); 12443 p += bit_type_32_sz; 12444 } 12445 12446 *p++ = '\n'; 12447 } 12448 } else { 12449 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name)); 12450 p += strlen(dev_cntrs[i].name); 12451 12452 /* Counter is 32 bits */ 12453 if (dev_cntrs[i].flags & CNTR_32BIT) { 12454 memcpy(p, bit_type_32, bit_type_32_sz); 12455 p += bit_type_32_sz; 12456 } 12457 12458 *p++ = '\n'; 12459 } 12460 } 12461 12462 /*********************/ 12463 /* per port counters */ 12464 /*********************/ 12465 12466 /* 12467 * Go through the counters for the overflows and disable the ones we 12468 * don't need. This varies based on platform so we need to do it 12469 * dynamically here. 12470 */ 12471 rcv_ctxts = dd->num_rcv_contexts; 12472 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts; 12473 i <= C_RCV_HDR_OVF_LAST; i++) { 12474 port_cntrs[i].flags |= CNTR_DISABLED; 12475 } 12476 12477 /* size port counter names and determine how many we have*/ 12478 sz = 0; 12479 dd->nportcntrs = 0; 12480 for (i = 0; i < PORT_CNTR_LAST; i++) { 12481 if (port_cntrs[i].flags & CNTR_DISABLED) { 12482 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name); 12483 continue; 12484 } 12485 12486 if (port_cntrs[i].flags & CNTR_VL) { 12487 port_cntrs[i].offset = dd->nportcntrs; 12488 for (j = 0; j < C_VL_COUNT; j++) { 12489 snprintf(name, C_MAX_NAME, "%s%d", 12490 port_cntrs[i].name, vl_from_idx(j)); 12491 sz += strlen(name); 12492 /* Add ",32" for 32-bit counters */ 12493 if (port_cntrs[i].flags & CNTR_32BIT) 12494 sz += bit_type_32_sz; 12495 sz++; 12496 dd->nportcntrs++; 12497 } 12498 } else { 12499 /* +1 for newline */ 12500 sz += strlen(port_cntrs[i].name) + 1; 12501 /* Add ",32" for 32-bit counters */ 12502 if (port_cntrs[i].flags & CNTR_32BIT) 12503 sz += bit_type_32_sz; 12504 port_cntrs[i].offset = dd->nportcntrs; 12505 dd->nportcntrs++; 12506 } 12507 } 12508 12509 /* allocate space for the counter names */ 12510 dd->portcntrnameslen = sz; 12511 dd->portcntrnames = kmalloc(sz, GFP_KERNEL); 12512 if (!dd->portcntrnames) 12513 goto bail; 12514 12515 /* fill in port cntr names */ 12516 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) { 12517 if (port_cntrs[i].flags & CNTR_DISABLED) 12518 continue; 12519 12520 if (port_cntrs[i].flags & CNTR_VL) { 12521 for (j = 0; j < C_VL_COUNT; j++) { 12522 snprintf(name, C_MAX_NAME, "%s%d", 12523 port_cntrs[i].name, vl_from_idx(j)); 12524 memcpy(p, name, strlen(name)); 12525 p += strlen(name); 12526 12527 /* Counter is 32 bits */ 12528 if (port_cntrs[i].flags & CNTR_32BIT) { 12529 memcpy(p, bit_type_32, bit_type_32_sz); 12530 p += bit_type_32_sz; 12531 } 12532 12533 *p++ = '\n'; 12534 } 12535 } else { 12536 memcpy(p, port_cntrs[i].name, 12537 strlen(port_cntrs[i].name)); 12538 p += strlen(port_cntrs[i].name); 12539 12540 /* Counter is 32 bits */ 12541 if (port_cntrs[i].flags & CNTR_32BIT) { 12542 memcpy(p, bit_type_32, bit_type_32_sz); 12543 p += bit_type_32_sz; 12544 } 12545 12546 *p++ = '\n'; 12547 } 12548 } 12549 12550 /* allocate per port storage for counter values */ 12551 ppd = (struct hfi1_pportdata *)(dd + 1); 12552 for (i = 0; i < dd->num_pports; i++, ppd++) { 12553 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12554 if (!ppd->cntrs) 12555 goto bail; 12556 12557 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12558 if (!ppd->scntrs) 12559 goto bail; 12560 } 12561 12562 /* CPU counters need to be allocated and zeroed */ 12563 if (init_cpu_counters(dd)) 12564 goto bail; 12565 12566 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d", 12567 WQ_MEM_RECLAIM, dd->unit); 12568 if (!dd->update_cntr_wq) 12569 goto bail; 12570 12571 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer); 12572 12573 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12574 return 0; 12575 bail: 12576 free_cntrs(dd); 12577 return -ENOMEM; 12578 } 12579 12580 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate) 12581 { 12582 switch (chip_lstate) { 12583 default: 12584 dd_dev_err(dd, 12585 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n", 12586 chip_lstate); 12587 /* fall through */ 12588 case LSTATE_DOWN: 12589 return IB_PORT_DOWN; 12590 case LSTATE_INIT: 12591 return IB_PORT_INIT; 12592 case LSTATE_ARMED: 12593 return IB_PORT_ARMED; 12594 case LSTATE_ACTIVE: 12595 return IB_PORT_ACTIVE; 12596 } 12597 } 12598 12599 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate) 12600 { 12601 /* look at the HFI meta-states only */ 12602 switch (chip_pstate & 0xf0) { 12603 default: 12604 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n", 12605 chip_pstate); 12606 /* fall through */ 12607 case PLS_DISABLED: 12608 return IB_PORTPHYSSTATE_DISABLED; 12609 case PLS_OFFLINE: 12610 return OPA_PORTPHYSSTATE_OFFLINE; 12611 case PLS_POLLING: 12612 return IB_PORTPHYSSTATE_POLLING; 12613 case PLS_CONFIGPHY: 12614 return IB_PORTPHYSSTATE_TRAINING; 12615 case PLS_LINKUP: 12616 return IB_PORTPHYSSTATE_LINKUP; 12617 case PLS_PHYTEST: 12618 return IB_PORTPHYSSTATE_PHY_TEST; 12619 } 12620 } 12621 12622 /* return the OPA port logical state name */ 12623 const char *opa_lstate_name(u32 lstate) 12624 { 12625 static const char * const port_logical_names[] = { 12626 "PORT_NOP", 12627 "PORT_DOWN", 12628 "PORT_INIT", 12629 "PORT_ARMED", 12630 "PORT_ACTIVE", 12631 "PORT_ACTIVE_DEFER", 12632 }; 12633 if (lstate < ARRAY_SIZE(port_logical_names)) 12634 return port_logical_names[lstate]; 12635 return "unknown"; 12636 } 12637 12638 /* return the OPA port physical state name */ 12639 const char *opa_pstate_name(u32 pstate) 12640 { 12641 static const char * const port_physical_names[] = { 12642 "PHYS_NOP", 12643 "reserved1", 12644 "PHYS_POLL", 12645 "PHYS_DISABLED", 12646 "PHYS_TRAINING", 12647 "PHYS_LINKUP", 12648 "PHYS_LINK_ERR_RECOVER", 12649 "PHYS_PHY_TEST", 12650 "reserved8", 12651 "PHYS_OFFLINE", 12652 "PHYS_GANGED", 12653 "PHYS_TEST", 12654 }; 12655 if (pstate < ARRAY_SIZE(port_physical_names)) 12656 return port_physical_names[pstate]; 12657 return "unknown"; 12658 } 12659 12660 /** 12661 * update_statusp - Update userspace status flag 12662 * @ppd: Port data structure 12663 * @state: port state information 12664 * 12665 * Actual port status is determined by the host_link_state value 12666 * in the ppd. 12667 * 12668 * host_link_state MUST be updated before updating the user space 12669 * statusp. 12670 */ 12671 static void update_statusp(struct hfi1_pportdata *ppd, u32 state) 12672 { 12673 /* 12674 * Set port status flags in the page mapped into userspace 12675 * memory. Do it here to ensure a reliable state - this is 12676 * the only function called by all state handling code. 12677 * Always set the flags due to the fact that the cache value 12678 * might have been changed explicitly outside of this 12679 * function. 12680 */ 12681 if (ppd->statusp) { 12682 switch (state) { 12683 case IB_PORT_DOWN: 12684 case IB_PORT_INIT: 12685 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 12686 HFI1_STATUS_IB_READY); 12687 break; 12688 case IB_PORT_ARMED: 12689 *ppd->statusp |= HFI1_STATUS_IB_CONF; 12690 break; 12691 case IB_PORT_ACTIVE: 12692 *ppd->statusp |= HFI1_STATUS_IB_READY; 12693 break; 12694 } 12695 } 12696 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n", 12697 opa_lstate_name(state), state); 12698 } 12699 12700 /** 12701 * wait_logical_linkstate - wait for an IB link state change to occur 12702 * @ppd: port device 12703 * @state: the state to wait for 12704 * @msecs: the number of milliseconds to wait 12705 * 12706 * Wait up to msecs milliseconds for IB link state change to occur. 12707 * For now, take the easy polling route. 12708 * Returns 0 if state reached, otherwise -ETIMEDOUT. 12709 */ 12710 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 12711 int msecs) 12712 { 12713 unsigned long timeout; 12714 u32 new_state; 12715 12716 timeout = jiffies + msecs_to_jiffies(msecs); 12717 while (1) { 12718 new_state = chip_to_opa_lstate(ppd->dd, 12719 read_logical_state(ppd->dd)); 12720 if (new_state == state) 12721 break; 12722 if (time_after(jiffies, timeout)) { 12723 dd_dev_err(ppd->dd, 12724 "timeout waiting for link state 0x%x\n", 12725 state); 12726 return -ETIMEDOUT; 12727 } 12728 msleep(20); 12729 } 12730 12731 return 0; 12732 } 12733 12734 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state) 12735 { 12736 u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state); 12737 12738 dd_dev_info(ppd->dd, 12739 "physical state changed to %s (0x%x), phy 0x%x\n", 12740 opa_pstate_name(ib_pstate), ib_pstate, state); 12741 } 12742 12743 /* 12744 * Read the physical hardware link state and check if it matches host 12745 * drivers anticipated state. 12746 */ 12747 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state) 12748 { 12749 u32 read_state = read_physical_state(ppd->dd); 12750 12751 if (read_state == state) { 12752 log_state_transition(ppd, state); 12753 } else { 12754 dd_dev_err(ppd->dd, 12755 "anticipated phy link state 0x%x, read 0x%x\n", 12756 state, read_state); 12757 } 12758 } 12759 12760 /* 12761 * wait_physical_linkstate - wait for an physical link state change to occur 12762 * @ppd: port device 12763 * @state: the state to wait for 12764 * @msecs: the number of milliseconds to wait 12765 * 12766 * Wait up to msecs milliseconds for physical link state change to occur. 12767 * Returns 0 if state reached, otherwise -ETIMEDOUT. 12768 */ 12769 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state, 12770 int msecs) 12771 { 12772 u32 read_state; 12773 unsigned long timeout; 12774 12775 timeout = jiffies + msecs_to_jiffies(msecs); 12776 while (1) { 12777 read_state = read_physical_state(ppd->dd); 12778 if (read_state == state) 12779 break; 12780 if (time_after(jiffies, timeout)) { 12781 dd_dev_err(ppd->dd, 12782 "timeout waiting for phy link state 0x%x\n", 12783 state); 12784 return -ETIMEDOUT; 12785 } 12786 usleep_range(1950, 2050); /* sleep 2ms-ish */ 12787 } 12788 12789 log_state_transition(ppd, state); 12790 return 0; 12791 } 12792 12793 /* 12794 * wait_phys_link_offline_quiet_substates - wait for any offline substate 12795 * @ppd: port device 12796 * @msecs: the number of milliseconds to wait 12797 * 12798 * Wait up to msecs milliseconds for any offline physical link 12799 * state change to occur. 12800 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT. 12801 */ 12802 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd, 12803 int msecs) 12804 { 12805 u32 read_state; 12806 unsigned long timeout; 12807 12808 timeout = jiffies + msecs_to_jiffies(msecs); 12809 while (1) { 12810 read_state = read_physical_state(ppd->dd); 12811 if ((read_state & 0xF0) == PLS_OFFLINE) 12812 break; 12813 if (time_after(jiffies, timeout)) { 12814 dd_dev_err(ppd->dd, 12815 "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n", 12816 read_state, msecs); 12817 return -ETIMEDOUT; 12818 } 12819 usleep_range(1950, 2050); /* sleep 2ms-ish */ 12820 } 12821 12822 log_state_transition(ppd, read_state); 12823 return read_state; 12824 } 12825 12826 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \ 12827 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12828 12829 #define SET_STATIC_RATE_CONTROL_SMASK(r) \ 12830 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12831 12832 void hfi1_init_ctxt(struct send_context *sc) 12833 { 12834 if (sc) { 12835 struct hfi1_devdata *dd = sc->dd; 12836 u64 reg; 12837 u8 set = (sc->type == SC_USER ? 12838 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) : 12839 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)); 12840 reg = read_kctxt_csr(dd, sc->hw_context, 12841 SEND_CTXT_CHECK_ENABLE); 12842 if (set) 12843 CLEAR_STATIC_RATE_CONTROL_SMASK(reg); 12844 else 12845 SET_STATIC_RATE_CONTROL_SMASK(reg); 12846 write_kctxt_csr(dd, sc->hw_context, 12847 SEND_CTXT_CHECK_ENABLE, reg); 12848 } 12849 } 12850 12851 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp) 12852 { 12853 int ret = 0; 12854 u64 reg; 12855 12856 if (dd->icode != ICODE_RTL_SILICON) { 12857 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 12858 dd_dev_info(dd, "%s: tempsense not supported by HW\n", 12859 __func__); 12860 return -EINVAL; 12861 } 12862 reg = read_csr(dd, ASIC_STS_THERM); 12863 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) & 12864 ASIC_STS_THERM_CURR_TEMP_MASK); 12865 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) & 12866 ASIC_STS_THERM_LO_TEMP_MASK); 12867 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) & 12868 ASIC_STS_THERM_HI_TEMP_MASK); 12869 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) & 12870 ASIC_STS_THERM_CRIT_TEMP_MASK); 12871 /* triggers is a 3-bit value - 1 bit per trigger. */ 12872 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7); 12873 12874 return ret; 12875 } 12876 12877 /** 12878 * get_int_mask - get 64 bit int mask 12879 * @dd - the devdata 12880 * @i - the csr (relative to CCE_INT_MASK) 12881 * 12882 * Returns the mask with the urgent interrupt mask 12883 * bit clear for kernel receive contexts. 12884 */ 12885 static u64 get_int_mask(struct hfi1_devdata *dd, u32 i) 12886 { 12887 u64 mask = U64_MAX; /* default to no change */ 12888 12889 if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) { 12890 int j = (i - (IS_RCVURGENT_START / 64)) * 64; 12891 int k = !j ? IS_RCVURGENT_START % 64 : 0; 12892 12893 if (j) 12894 j -= IS_RCVURGENT_START % 64; 12895 /* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */ 12896 for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++) 12897 /* convert to bit in mask and clear */ 12898 mask &= ~BIT_ULL(k); 12899 } 12900 return mask; 12901 } 12902 12903 /* ========================================================================= */ 12904 12905 /* 12906 * Enable/disable chip from delivering interrupts. 12907 */ 12908 void set_intr_state(struct hfi1_devdata *dd, u32 enable) 12909 { 12910 int i; 12911 12912 /* 12913 * In HFI, the mask needs to be 1 to allow interrupts. 12914 */ 12915 if (enable) { 12916 /* enable all interrupts but urgent on kernel contexts */ 12917 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 12918 u64 mask = get_int_mask(dd, i); 12919 12920 write_csr(dd, CCE_INT_MASK + (8 * i), mask); 12921 } 12922 12923 init_qsfp_int(dd); 12924 } else { 12925 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12926 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 12927 } 12928 } 12929 12930 /* 12931 * Clear all interrupt sources on the chip. 12932 */ 12933 static void clear_all_interrupts(struct hfi1_devdata *dd) 12934 { 12935 int i; 12936 12937 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12938 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0); 12939 12940 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0); 12941 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0); 12942 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0); 12943 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0); 12944 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0); 12945 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0); 12946 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0); 12947 for (i = 0; i < dd->chip_send_contexts; i++) 12948 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0); 12949 for (i = 0; i < dd->chip_sdma_engines; i++) 12950 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0); 12951 12952 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0); 12953 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0); 12954 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0); 12955 } 12956 12957 /* Move to pcie.c? */ 12958 static void disable_intx(struct pci_dev *pdev) 12959 { 12960 pci_intx(pdev, 0); 12961 } 12962 12963 static void clean_up_interrupts(struct hfi1_devdata *dd) 12964 { 12965 int i; 12966 12967 /* remove irqs - must happen before disabling/turning off */ 12968 if (dd->num_msix_entries) { 12969 /* MSI-X */ 12970 struct hfi1_msix_entry *me = dd->msix_entries; 12971 12972 for (i = 0; i < dd->num_msix_entries; i++, me++) { 12973 if (!me->arg) /* => no irq, no affinity */ 12974 continue; 12975 hfi1_put_irq_affinity(dd, me); 12976 pci_free_irq(dd->pcidev, i, me->arg); 12977 } 12978 12979 /* clean structures */ 12980 kfree(dd->msix_entries); 12981 dd->msix_entries = NULL; 12982 dd->num_msix_entries = 0; 12983 } else { 12984 /* INTx */ 12985 if (dd->requested_intx_irq) { 12986 pci_free_irq(dd->pcidev, 0, dd); 12987 dd->requested_intx_irq = 0; 12988 } 12989 disable_intx(dd->pcidev); 12990 } 12991 12992 pci_free_irq_vectors(dd->pcidev); 12993 } 12994 12995 /* 12996 * Remap the interrupt source from the general handler to the given MSI-X 12997 * interrupt. 12998 */ 12999 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr) 13000 { 13001 u64 reg; 13002 int m, n; 13003 13004 /* clear from the handled mask of the general interrupt */ 13005 m = isrc / 64; 13006 n = isrc % 64; 13007 if (likely(m < CCE_NUM_INT_CSRS)) { 13008 dd->gi_mask[m] &= ~((u64)1 << n); 13009 } else { 13010 dd_dev_err(dd, "remap interrupt err\n"); 13011 return; 13012 } 13013 13014 /* direct the chip source to the given MSI-X interrupt */ 13015 m = isrc / 8; 13016 n = isrc % 8; 13017 reg = read_csr(dd, CCE_INT_MAP + (8 * m)); 13018 reg &= ~((u64)0xff << (8 * n)); 13019 reg |= ((u64)msix_intr & 0xff) << (8 * n); 13020 write_csr(dd, CCE_INT_MAP + (8 * m), reg); 13021 } 13022 13023 static void remap_sdma_interrupts(struct hfi1_devdata *dd, 13024 int engine, int msix_intr) 13025 { 13026 /* 13027 * SDMA engine interrupt sources grouped by type, rather than 13028 * engine. Per-engine interrupts are as follows: 13029 * SDMA 13030 * SDMAProgress 13031 * SDMAIdle 13032 */ 13033 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine, 13034 msix_intr); 13035 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine, 13036 msix_intr); 13037 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine, 13038 msix_intr); 13039 } 13040 13041 static int request_intx_irq(struct hfi1_devdata *dd) 13042 { 13043 int ret; 13044 13045 ret = pci_request_irq(dd->pcidev, 0, general_interrupt, NULL, dd, 13046 DRIVER_NAME "_%d", dd->unit); 13047 if (ret) 13048 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n", 13049 ret); 13050 else 13051 dd->requested_intx_irq = 1; 13052 return ret; 13053 } 13054 13055 static int request_msix_irqs(struct hfi1_devdata *dd) 13056 { 13057 int first_general, last_general; 13058 int first_sdma, last_sdma; 13059 int first_rx, last_rx; 13060 int i, ret = 0; 13061 13062 /* calculate the ranges we are going to use */ 13063 first_general = 0; 13064 last_general = first_general + 1; 13065 first_sdma = last_general; 13066 last_sdma = first_sdma + dd->num_sdma; 13067 first_rx = last_sdma; 13068 last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts; 13069 13070 /* VNIC MSIx interrupts get mapped when VNIC contexts are created */ 13071 dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues; 13072 13073 /* 13074 * Sanity check - the code expects all SDMA chip source 13075 * interrupts to be in the same CSR, starting at bit 0. Verify 13076 * that this is true by checking the bit location of the start. 13077 */ 13078 BUILD_BUG_ON(IS_SDMA_START % 64); 13079 13080 for (i = 0; i < dd->num_msix_entries; i++) { 13081 struct hfi1_msix_entry *me = &dd->msix_entries[i]; 13082 const char *err_info; 13083 irq_handler_t handler; 13084 irq_handler_t thread = NULL; 13085 void *arg = NULL; 13086 int idx; 13087 struct hfi1_ctxtdata *rcd = NULL; 13088 struct sdma_engine *sde = NULL; 13089 char name[MAX_NAME_SIZE]; 13090 13091 /* obtain the arguments to pci_request_irq */ 13092 if (first_general <= i && i < last_general) { 13093 idx = i - first_general; 13094 handler = general_interrupt; 13095 arg = dd; 13096 snprintf(name, sizeof(name), 13097 DRIVER_NAME "_%d", dd->unit); 13098 err_info = "general"; 13099 me->type = IRQ_GENERAL; 13100 } else if (first_sdma <= i && i < last_sdma) { 13101 idx = i - first_sdma; 13102 sde = &dd->per_sdma[idx]; 13103 handler = sdma_interrupt; 13104 arg = sde; 13105 snprintf(name, sizeof(name), 13106 DRIVER_NAME "_%d sdma%d", dd->unit, idx); 13107 err_info = "sdma"; 13108 remap_sdma_interrupts(dd, idx, i); 13109 me->type = IRQ_SDMA; 13110 } else if (first_rx <= i && i < last_rx) { 13111 idx = i - first_rx; 13112 rcd = hfi1_rcd_get_by_index_safe(dd, idx); 13113 if (rcd) { 13114 /* 13115 * Set the interrupt register and mask for this 13116 * context's interrupt. 13117 */ 13118 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 13119 rcd->imask = ((u64)1) << 13120 ((IS_RCVAVAIL_START + idx) % 64); 13121 handler = receive_context_interrupt; 13122 thread = receive_context_thread; 13123 arg = rcd; 13124 snprintf(name, sizeof(name), 13125 DRIVER_NAME "_%d kctxt%d", 13126 dd->unit, idx); 13127 err_info = "receive context"; 13128 remap_intr(dd, IS_RCVAVAIL_START + idx, i); 13129 me->type = IRQ_RCVCTXT; 13130 rcd->msix_intr = i; 13131 hfi1_rcd_put(rcd); 13132 } 13133 } else { 13134 /* not in our expected range - complain, then 13135 * ignore it 13136 */ 13137 dd_dev_err(dd, 13138 "Unexpected extra MSI-X interrupt %d\n", i); 13139 continue; 13140 } 13141 /* no argument, no interrupt */ 13142 if (!arg) 13143 continue; 13144 /* make sure the name is terminated */ 13145 name[sizeof(name) - 1] = 0; 13146 me->irq = pci_irq_vector(dd->pcidev, i); 13147 ret = pci_request_irq(dd->pcidev, i, handler, thread, arg, 13148 name); 13149 if (ret) { 13150 dd_dev_err(dd, 13151 "unable to allocate %s interrupt, irq %d, index %d, err %d\n", 13152 err_info, me->irq, idx, ret); 13153 return ret; 13154 } 13155 /* 13156 * assign arg after pci_request_irq call, so it will be 13157 * cleaned up 13158 */ 13159 me->arg = arg; 13160 13161 ret = hfi1_get_irq_affinity(dd, me); 13162 if (ret) 13163 dd_dev_err(dd, "unable to pin IRQ %d\n", ret); 13164 } 13165 13166 return ret; 13167 } 13168 13169 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd) 13170 { 13171 int i; 13172 13173 if (!dd->num_msix_entries) { 13174 synchronize_irq(pci_irq_vector(dd->pcidev, 0)); 13175 return; 13176 } 13177 13178 for (i = 0; i < dd->vnic.num_ctxt; i++) { 13179 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i]; 13180 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr]; 13181 13182 synchronize_irq(me->irq); 13183 } 13184 } 13185 13186 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd) 13187 { 13188 struct hfi1_devdata *dd = rcd->dd; 13189 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr]; 13190 13191 if (!me->arg) /* => no irq, no affinity */ 13192 return; 13193 13194 hfi1_put_irq_affinity(dd, me); 13195 pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg); 13196 13197 me->arg = NULL; 13198 } 13199 13200 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd) 13201 { 13202 struct hfi1_devdata *dd = rcd->dd; 13203 struct hfi1_msix_entry *me; 13204 int idx = rcd->ctxt; 13205 void *arg = rcd; 13206 int ret; 13207 13208 rcd->msix_intr = dd->vnic.msix_idx++; 13209 me = &dd->msix_entries[rcd->msix_intr]; 13210 13211 /* 13212 * Set the interrupt register and mask for this 13213 * context's interrupt. 13214 */ 13215 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 13216 rcd->imask = ((u64)1) << 13217 ((IS_RCVAVAIL_START + idx) % 64); 13218 me->type = IRQ_RCVCTXT; 13219 me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr); 13220 remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr); 13221 13222 ret = pci_request_irq(dd->pcidev, rcd->msix_intr, 13223 receive_context_interrupt, 13224 receive_context_thread, arg, 13225 DRIVER_NAME "_%d kctxt%d", dd->unit, idx); 13226 if (ret) { 13227 dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n", 13228 me->irq, idx, ret); 13229 return; 13230 } 13231 /* 13232 * assign arg after pci_request_irq call, so it will be 13233 * cleaned up 13234 */ 13235 me->arg = arg; 13236 13237 ret = hfi1_get_irq_affinity(dd, me); 13238 if (ret) { 13239 dd_dev_err(dd, 13240 "unable to pin IRQ %d\n", ret); 13241 pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg); 13242 } 13243 } 13244 13245 /* 13246 * Set the general handler to accept all interrupts, remap all 13247 * chip interrupts back to MSI-X 0. 13248 */ 13249 static void reset_interrupts(struct hfi1_devdata *dd) 13250 { 13251 int i; 13252 13253 /* all interrupts handled by the general handler */ 13254 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13255 dd->gi_mask[i] = ~(u64)0; 13256 13257 /* all chip interrupts map to MSI-X 0 */ 13258 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13259 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13260 } 13261 13262 static int set_up_interrupts(struct hfi1_devdata *dd) 13263 { 13264 u32 total; 13265 int ret, request; 13266 int single_interrupt = 0; /* we expect to have all the interrupts */ 13267 13268 /* 13269 * Interrupt count: 13270 * 1 general, "slow path" interrupt (includes the SDMA engines 13271 * slow source, SDMACleanupDone) 13272 * N interrupts - one per used SDMA engine 13273 * M interrupt - one per kernel receive context 13274 * V interrupt - one for each VNIC context 13275 */ 13276 total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts; 13277 13278 /* ask for MSI-X interrupts */ 13279 request = request_msix(dd, total); 13280 if (request < 0) { 13281 ret = request; 13282 goto fail; 13283 } else if (request == 0) { 13284 /* using INTx */ 13285 /* dd->num_msix_entries already zero */ 13286 single_interrupt = 1; 13287 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n"); 13288 } else if (request < total) { 13289 /* using MSI-X, with reduced interrupts */ 13290 dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n", 13291 total, request); 13292 ret = -EINVAL; 13293 goto fail; 13294 } else { 13295 dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries), 13296 GFP_KERNEL); 13297 if (!dd->msix_entries) { 13298 ret = -ENOMEM; 13299 goto fail; 13300 } 13301 /* using MSI-X */ 13302 dd->num_msix_entries = total; 13303 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total); 13304 } 13305 13306 /* mask all interrupts */ 13307 set_intr_state(dd, 0); 13308 /* clear all pending interrupts */ 13309 clear_all_interrupts(dd); 13310 13311 /* reset general handler mask, chip MSI-X mappings */ 13312 reset_interrupts(dd); 13313 13314 if (single_interrupt) 13315 ret = request_intx_irq(dd); 13316 else 13317 ret = request_msix_irqs(dd); 13318 if (ret) 13319 goto fail; 13320 13321 return 0; 13322 13323 fail: 13324 clean_up_interrupts(dd); 13325 return ret; 13326 } 13327 13328 /* 13329 * Set up context values in dd. Sets: 13330 * 13331 * num_rcv_contexts - number of contexts being used 13332 * n_krcv_queues - number of kernel contexts 13333 * first_dyn_alloc_ctxt - first dynamically allocated context 13334 * in array of contexts 13335 * freectxts - number of free user contexts 13336 * num_send_contexts - number of PIO send contexts being used 13337 * num_vnic_contexts - number of contexts reserved for VNIC 13338 */ 13339 static int set_up_context_variables(struct hfi1_devdata *dd) 13340 { 13341 unsigned long num_kernel_contexts; 13342 u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT; 13343 int total_contexts; 13344 int ret; 13345 unsigned ngroups; 13346 int qos_rmt_count; 13347 int user_rmt_reduced; 13348 u32 n_usr_ctxts; 13349 13350 /* 13351 * Kernel receive contexts: 13352 * - Context 0 - control context (VL15/multicast/error) 13353 * - Context 1 - first kernel context 13354 * - Context 2 - second kernel context 13355 * ... 13356 */ 13357 if (n_krcvqs) 13358 /* 13359 * n_krcvqs is the sum of module parameter kernel receive 13360 * contexts, krcvqs[]. It does not include the control 13361 * context, so add that. 13362 */ 13363 num_kernel_contexts = n_krcvqs + 1; 13364 else 13365 num_kernel_contexts = DEFAULT_KRCVQS + 1; 13366 /* 13367 * Every kernel receive context needs an ACK send context. 13368 * one send context is allocated for each VL{0-7} and VL15 13369 */ 13370 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) { 13371 dd_dev_err(dd, 13372 "Reducing # kernel rcv contexts to: %d, from %lu\n", 13373 (int)(dd->chip_send_contexts - num_vls - 1), 13374 num_kernel_contexts); 13375 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1; 13376 } 13377 13378 /* Accommodate VNIC contexts if possible */ 13379 if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) { 13380 dd_dev_err(dd, "No receive contexts available for VNIC\n"); 13381 num_vnic_contexts = 0; 13382 } 13383 total_contexts = num_kernel_contexts + num_vnic_contexts; 13384 13385 /* 13386 * User contexts: 13387 * - default to 1 user context per real (non-HT) CPU core if 13388 * num_user_contexts is negative 13389 */ 13390 if (num_user_contexts < 0) 13391 n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask); 13392 else 13393 n_usr_ctxts = num_user_contexts; 13394 /* 13395 * Adjust the counts given a global max. 13396 */ 13397 if (total_contexts + n_usr_ctxts > dd->chip_rcv_contexts) { 13398 dd_dev_err(dd, 13399 "Reducing # user receive contexts to: %d, from %u\n", 13400 (int)(dd->chip_rcv_contexts - total_contexts), 13401 n_usr_ctxts); 13402 /* recalculate */ 13403 n_usr_ctxts = dd->chip_rcv_contexts - total_contexts; 13404 } 13405 13406 /* each user context requires an entry in the RMT */ 13407 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL); 13408 if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) { 13409 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count; 13410 dd_dev_err(dd, 13411 "RMT size is reducing the number of user receive contexts from %u to %d\n", 13412 n_usr_ctxts, 13413 user_rmt_reduced); 13414 /* recalculate */ 13415 n_usr_ctxts = user_rmt_reduced; 13416 } 13417 13418 total_contexts += n_usr_ctxts; 13419 13420 /* the first N are kernel contexts, the rest are user/vnic contexts */ 13421 dd->num_rcv_contexts = total_contexts; 13422 dd->n_krcv_queues = num_kernel_contexts; 13423 dd->first_dyn_alloc_ctxt = num_kernel_contexts; 13424 dd->num_vnic_contexts = num_vnic_contexts; 13425 dd->num_user_contexts = n_usr_ctxts; 13426 dd->freectxts = n_usr_ctxts; 13427 dd_dev_info(dd, 13428 "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n", 13429 (int)dd->chip_rcv_contexts, 13430 (int)dd->num_rcv_contexts, 13431 (int)dd->n_krcv_queues, 13432 dd->num_vnic_contexts, 13433 dd->num_user_contexts); 13434 13435 /* 13436 * Receive array allocation: 13437 * All RcvArray entries are divided into groups of 8. This 13438 * is required by the hardware and will speed up writes to 13439 * consecutive entries by using write-combining of the entire 13440 * cacheline. 13441 * 13442 * The number of groups are evenly divided among all contexts. 13443 * any left over groups will be given to the first N user 13444 * contexts. 13445 */ 13446 dd->rcv_entries.group_size = RCV_INCREMENT; 13447 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size; 13448 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts; 13449 dd->rcv_entries.nctxt_extra = ngroups - 13450 (dd->num_rcv_contexts * dd->rcv_entries.ngroups); 13451 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n", 13452 dd->rcv_entries.ngroups, 13453 dd->rcv_entries.nctxt_extra); 13454 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size > 13455 MAX_EAGER_ENTRIES * 2) { 13456 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) / 13457 dd->rcv_entries.group_size; 13458 dd_dev_info(dd, 13459 "RcvArray group count too high, change to %u\n", 13460 dd->rcv_entries.ngroups); 13461 dd->rcv_entries.nctxt_extra = 0; 13462 } 13463 /* 13464 * PIO send contexts 13465 */ 13466 ret = init_sc_pools_and_sizes(dd); 13467 if (ret >= 0) { /* success */ 13468 dd->num_send_contexts = ret; 13469 dd_dev_info( 13470 dd, 13471 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n", 13472 dd->chip_send_contexts, 13473 dd->num_send_contexts, 13474 dd->sc_sizes[SC_KERNEL].count, 13475 dd->sc_sizes[SC_ACK].count, 13476 dd->sc_sizes[SC_USER].count, 13477 dd->sc_sizes[SC_VL15].count); 13478 ret = 0; /* success */ 13479 } 13480 13481 return ret; 13482 } 13483 13484 /* 13485 * Set the device/port partition key table. The MAD code 13486 * will ensure that, at least, the partial management 13487 * partition key is present in the table. 13488 */ 13489 static void set_partition_keys(struct hfi1_pportdata *ppd) 13490 { 13491 struct hfi1_devdata *dd = ppd->dd; 13492 u64 reg = 0; 13493 int i; 13494 13495 dd_dev_info(dd, "Setting partition keys\n"); 13496 for (i = 0; i < hfi1_get_npkeys(dd); i++) { 13497 reg |= (ppd->pkeys[i] & 13498 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) << 13499 ((i % 4) * 13500 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT); 13501 /* Each register holds 4 PKey values. */ 13502 if ((i % 4) == 3) { 13503 write_csr(dd, RCV_PARTITION_KEY + 13504 ((i - 3) * 2), reg); 13505 reg = 0; 13506 } 13507 } 13508 13509 /* Always enable HW pkeys check when pkeys table is set */ 13510 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK); 13511 } 13512 13513 /* 13514 * These CSRs and memories are uninitialized on reset and must be 13515 * written before reading to set the ECC/parity bits. 13516 * 13517 * NOTE: All user context CSRs that are not mmaped write-only 13518 * (e.g. the TID flows) must be initialized even if the driver never 13519 * reads them. 13520 */ 13521 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd) 13522 { 13523 int i, j; 13524 13525 /* CceIntMap */ 13526 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13527 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13528 13529 /* SendCtxtCreditReturnAddr */ 13530 for (i = 0; i < dd->chip_send_contexts; i++) 13531 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13532 13533 /* PIO Send buffers */ 13534 /* SDMA Send buffers */ 13535 /* 13536 * These are not normally read, and (presently) have no method 13537 * to be read, so are not pre-initialized 13538 */ 13539 13540 /* RcvHdrAddr */ 13541 /* RcvHdrTailAddr */ 13542 /* RcvTidFlowTable */ 13543 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13544 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13545 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13546 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) 13547 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0); 13548 } 13549 13550 /* RcvArray */ 13551 for (i = 0; i < dd->chip_rcv_array_count; i++) 13552 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0); 13553 13554 /* RcvQPMapTable */ 13555 for (i = 0; i < 32; i++) 13556 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13557 } 13558 13559 /* 13560 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus. 13561 */ 13562 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits, 13563 u64 ctrl_bits) 13564 { 13565 unsigned long timeout; 13566 u64 reg; 13567 13568 /* is the condition present? */ 13569 reg = read_csr(dd, CCE_STATUS); 13570 if ((reg & status_bits) == 0) 13571 return; 13572 13573 /* clear the condition */ 13574 write_csr(dd, CCE_CTRL, ctrl_bits); 13575 13576 /* wait for the condition to clear */ 13577 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT); 13578 while (1) { 13579 reg = read_csr(dd, CCE_STATUS); 13580 if ((reg & status_bits) == 0) 13581 return; 13582 if (time_after(jiffies, timeout)) { 13583 dd_dev_err(dd, 13584 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n", 13585 status_bits, reg & status_bits); 13586 return; 13587 } 13588 udelay(1); 13589 } 13590 } 13591 13592 /* set CCE CSRs to chip reset defaults */ 13593 static void reset_cce_csrs(struct hfi1_devdata *dd) 13594 { 13595 int i; 13596 13597 /* CCE_REVISION read-only */ 13598 /* CCE_REVISION2 read-only */ 13599 /* CCE_CTRL - bits clear automatically */ 13600 /* CCE_STATUS read-only, use CceCtrl to clear */ 13601 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK); 13602 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK); 13603 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK); 13604 for (i = 0; i < CCE_NUM_SCRATCH; i++) 13605 write_csr(dd, CCE_SCRATCH + (8 * i), 0); 13606 /* CCE_ERR_STATUS read-only */ 13607 write_csr(dd, CCE_ERR_MASK, 0); 13608 write_csr(dd, CCE_ERR_CLEAR, ~0ull); 13609 /* CCE_ERR_FORCE leave alone */ 13610 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++) 13611 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0); 13612 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR); 13613 /* CCE_PCIE_CTRL leave alone */ 13614 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) { 13615 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0); 13616 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i), 13617 CCE_MSIX_TABLE_UPPER_RESETCSR); 13618 } 13619 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) { 13620 /* CCE_MSIX_PBA read-only */ 13621 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull); 13622 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull); 13623 } 13624 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13625 write_csr(dd, CCE_INT_MAP, 0); 13626 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 13627 /* CCE_INT_STATUS read-only */ 13628 write_csr(dd, CCE_INT_MASK + (8 * i), 0); 13629 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull); 13630 /* CCE_INT_FORCE leave alone */ 13631 /* CCE_INT_BLOCKED read-only */ 13632 } 13633 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++) 13634 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0); 13635 } 13636 13637 /* set MISC CSRs to chip reset defaults */ 13638 static void reset_misc_csrs(struct hfi1_devdata *dd) 13639 { 13640 int i; 13641 13642 for (i = 0; i < 32; i++) { 13643 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0); 13644 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0); 13645 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0); 13646 } 13647 /* 13648 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can 13649 * only be written 128-byte chunks 13650 */ 13651 /* init RSA engine to clear lingering errors */ 13652 write_csr(dd, MISC_CFG_RSA_CMD, 1); 13653 write_csr(dd, MISC_CFG_RSA_MU, 0); 13654 write_csr(dd, MISC_CFG_FW_CTRL, 0); 13655 /* MISC_STS_8051_DIGEST read-only */ 13656 /* MISC_STS_SBM_DIGEST read-only */ 13657 /* MISC_STS_PCIE_DIGEST read-only */ 13658 /* MISC_STS_FAB_DIGEST read-only */ 13659 /* MISC_ERR_STATUS read-only */ 13660 write_csr(dd, MISC_ERR_MASK, 0); 13661 write_csr(dd, MISC_ERR_CLEAR, ~0ull); 13662 /* MISC_ERR_FORCE leave alone */ 13663 } 13664 13665 /* set TXE CSRs to chip reset defaults */ 13666 static void reset_txe_csrs(struct hfi1_devdata *dd) 13667 { 13668 int i; 13669 13670 /* 13671 * TXE Kernel CSRs 13672 */ 13673 write_csr(dd, SEND_CTRL, 0); 13674 __cm_reset(dd, 0); /* reset CM internal state */ 13675 /* SEND_CONTEXTS read-only */ 13676 /* SEND_DMA_ENGINES read-only */ 13677 /* SEND_PIO_MEM_SIZE read-only */ 13678 /* SEND_DMA_MEM_SIZE read-only */ 13679 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0); 13680 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */ 13681 /* SEND_PIO_ERR_STATUS read-only */ 13682 write_csr(dd, SEND_PIO_ERR_MASK, 0); 13683 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull); 13684 /* SEND_PIO_ERR_FORCE leave alone */ 13685 /* SEND_DMA_ERR_STATUS read-only */ 13686 write_csr(dd, SEND_DMA_ERR_MASK, 0); 13687 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull); 13688 /* SEND_DMA_ERR_FORCE leave alone */ 13689 /* SEND_EGRESS_ERR_STATUS read-only */ 13690 write_csr(dd, SEND_EGRESS_ERR_MASK, 0); 13691 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull); 13692 /* SEND_EGRESS_ERR_FORCE leave alone */ 13693 write_csr(dd, SEND_BTH_QP, 0); 13694 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0); 13695 write_csr(dd, SEND_SC2VLT0, 0); 13696 write_csr(dd, SEND_SC2VLT1, 0); 13697 write_csr(dd, SEND_SC2VLT2, 0); 13698 write_csr(dd, SEND_SC2VLT3, 0); 13699 write_csr(dd, SEND_LEN_CHECK0, 0); 13700 write_csr(dd, SEND_LEN_CHECK1, 0); 13701 /* SEND_ERR_STATUS read-only */ 13702 write_csr(dd, SEND_ERR_MASK, 0); 13703 write_csr(dd, SEND_ERR_CLEAR, ~0ull); 13704 /* SEND_ERR_FORCE read-only */ 13705 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++) 13706 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0); 13707 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++) 13708 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0); 13709 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++) 13710 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0); 13711 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++) 13712 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0); 13713 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++) 13714 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0); 13715 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR); 13716 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR); 13717 /* SEND_CM_CREDIT_USED_STATUS read-only */ 13718 write_csr(dd, SEND_CM_TIMER_CTRL, 0); 13719 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0); 13720 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0); 13721 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0); 13722 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0); 13723 for (i = 0; i < TXE_NUM_DATA_VL; i++) 13724 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 13725 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 13726 /* SEND_CM_CREDIT_USED_VL read-only */ 13727 /* SEND_CM_CREDIT_USED_VL15 read-only */ 13728 /* SEND_EGRESS_CTXT_STATUS read-only */ 13729 /* SEND_EGRESS_SEND_DMA_STATUS read-only */ 13730 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull); 13731 /* SEND_EGRESS_ERR_INFO read-only */ 13732 /* SEND_EGRESS_ERR_SOURCE read-only */ 13733 13734 /* 13735 * TXE Per-Context CSRs 13736 */ 13737 for (i = 0; i < dd->chip_send_contexts; i++) { 13738 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13739 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0); 13740 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13741 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0); 13742 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0); 13743 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull); 13744 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0); 13745 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0); 13746 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0); 13747 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0); 13748 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0); 13749 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0); 13750 } 13751 13752 /* 13753 * TXE Per-SDMA CSRs 13754 */ 13755 for (i = 0; i < dd->chip_sdma_engines; i++) { 13756 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13757 /* SEND_DMA_STATUS read-only */ 13758 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0); 13759 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0); 13760 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0); 13761 /* SEND_DMA_HEAD read-only */ 13762 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0); 13763 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0); 13764 /* SEND_DMA_IDLE_CNT read-only */ 13765 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0); 13766 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0); 13767 /* SEND_DMA_DESC_FETCHED_CNT read-only */ 13768 /* SEND_DMA_ENG_ERR_STATUS read-only */ 13769 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0); 13770 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull); 13771 /* SEND_DMA_ENG_ERR_FORCE leave alone */ 13772 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0); 13773 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0); 13774 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0); 13775 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0); 13776 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0); 13777 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0); 13778 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0); 13779 } 13780 } 13781 13782 /* 13783 * Expect on entry: 13784 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0 13785 */ 13786 static void init_rbufs(struct hfi1_devdata *dd) 13787 { 13788 u64 reg; 13789 int count; 13790 13791 /* 13792 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are 13793 * clear. 13794 */ 13795 count = 0; 13796 while (1) { 13797 reg = read_csr(dd, RCV_STATUS); 13798 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK 13799 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0) 13800 break; 13801 /* 13802 * Give up after 1ms - maximum wait time. 13803 * 13804 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at 13805 * 250MB/s bandwidth. Lower rate to 66% for overhead to get: 13806 * 136 KB / (66% * 250MB/s) = 844us 13807 */ 13808 if (count++ > 500) { 13809 dd_dev_err(dd, 13810 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n", 13811 __func__, reg); 13812 break; 13813 } 13814 udelay(2); /* do not busy-wait the CSR */ 13815 } 13816 13817 /* start the init - expect RcvCtrl to be 0 */ 13818 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK); 13819 13820 /* 13821 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief 13822 * period after the write before RcvStatus.RxRbufInitDone is valid. 13823 * The delay in the first run through the loop below is sufficient and 13824 * required before the first read of RcvStatus.RxRbufInintDone. 13825 */ 13826 read_csr(dd, RCV_CTRL); 13827 13828 /* wait for the init to finish */ 13829 count = 0; 13830 while (1) { 13831 /* delay is required first time through - see above */ 13832 udelay(2); /* do not busy-wait the CSR */ 13833 reg = read_csr(dd, RCV_STATUS); 13834 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK)) 13835 break; 13836 13837 /* give up after 100us - slowest possible at 33MHz is 73us */ 13838 if (count++ > 50) { 13839 dd_dev_err(dd, 13840 "%s: RcvStatus.RxRbufInit not set, continuing\n", 13841 __func__); 13842 break; 13843 } 13844 } 13845 } 13846 13847 /* set RXE CSRs to chip reset defaults */ 13848 static void reset_rxe_csrs(struct hfi1_devdata *dd) 13849 { 13850 int i, j; 13851 13852 /* 13853 * RXE Kernel CSRs 13854 */ 13855 write_csr(dd, RCV_CTRL, 0); 13856 init_rbufs(dd); 13857 /* RCV_STATUS read-only */ 13858 /* RCV_CONTEXTS read-only */ 13859 /* RCV_ARRAY_CNT read-only */ 13860 /* RCV_BUF_SIZE read-only */ 13861 write_csr(dd, RCV_BTH_QP, 0); 13862 write_csr(dd, RCV_MULTICAST, 0); 13863 write_csr(dd, RCV_BYPASS, 0); 13864 write_csr(dd, RCV_VL15, 0); 13865 /* this is a clear-down */ 13866 write_csr(dd, RCV_ERR_INFO, 13867 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 13868 /* RCV_ERR_STATUS read-only */ 13869 write_csr(dd, RCV_ERR_MASK, 0); 13870 write_csr(dd, RCV_ERR_CLEAR, ~0ull); 13871 /* RCV_ERR_FORCE leave alone */ 13872 for (i = 0; i < 32; i++) 13873 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13874 for (i = 0; i < 4; i++) 13875 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0); 13876 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++) 13877 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0); 13878 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++) 13879 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0); 13880 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) 13881 clear_rsm_rule(dd, i); 13882 for (i = 0; i < 32; i++) 13883 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0); 13884 13885 /* 13886 * RXE Kernel and User Per-Context CSRs 13887 */ 13888 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13889 /* kernel */ 13890 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0); 13891 /* RCV_CTXT_STATUS read-only */ 13892 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0); 13893 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0); 13894 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0); 13895 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13896 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0); 13897 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0); 13898 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0); 13899 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13900 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0); 13901 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0); 13902 13903 /* user */ 13904 /* RCV_HDR_TAIL read-only */ 13905 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0); 13906 /* RCV_EGR_INDEX_TAIL read-only */ 13907 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0); 13908 /* RCV_EGR_OFFSET_TAIL read-only */ 13909 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) { 13910 write_uctxt_csr(dd, i, 13911 RCV_TID_FLOW_TABLE + (8 * j), 0); 13912 } 13913 } 13914 } 13915 13916 /* 13917 * Set sc2vl tables. 13918 * 13919 * They power on to zeros, so to avoid send context errors 13920 * they need to be set: 13921 * 13922 * SC 0-7 -> VL 0-7 (respectively) 13923 * SC 15 -> VL 15 13924 * otherwise 13925 * -> VL 0 13926 */ 13927 static void init_sc2vl_tables(struct hfi1_devdata *dd) 13928 { 13929 int i; 13930 /* init per architecture spec, constrained by hardware capability */ 13931 13932 /* HFI maps sent packets */ 13933 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL( 13934 0, 13935 0, 0, 1, 1, 13936 2, 2, 3, 3, 13937 4, 4, 5, 5, 13938 6, 6, 7, 7)); 13939 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL( 13940 1, 13941 8, 0, 9, 0, 13942 10, 0, 11, 0, 13943 12, 0, 13, 0, 13944 14, 0, 15, 15)); 13945 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL( 13946 2, 13947 16, 0, 17, 0, 13948 18, 0, 19, 0, 13949 20, 0, 21, 0, 13950 22, 0, 23, 0)); 13951 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL( 13952 3, 13953 24, 0, 25, 0, 13954 26, 0, 27, 0, 13955 28, 0, 29, 0, 13956 30, 0, 31, 0)); 13957 13958 /* DC maps received packets */ 13959 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL( 13960 15_0, 13961 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 13962 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15)); 13963 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL( 13964 31_16, 13965 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 13966 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0)); 13967 13968 /* initialize the cached sc2vl values consistently with h/w */ 13969 for (i = 0; i < 32; i++) { 13970 if (i < 8 || i == 15) 13971 *((u8 *)(dd->sc2vl) + i) = (u8)i; 13972 else 13973 *((u8 *)(dd->sc2vl) + i) = 0; 13974 } 13975 } 13976 13977 /* 13978 * Read chip sizes and then reset parts to sane, disabled, values. We cannot 13979 * depend on the chip going through a power-on reset - a driver may be loaded 13980 * and unloaded many times. 13981 * 13982 * Do not write any CSR values to the chip in this routine - there may be 13983 * a reset following the (possible) FLR in this routine. 13984 * 13985 */ 13986 static int init_chip(struct hfi1_devdata *dd) 13987 { 13988 int i; 13989 int ret = 0; 13990 13991 /* 13992 * Put the HFI CSRs in a known state. 13993 * Combine this with a DC reset. 13994 * 13995 * Stop the device from doing anything while we do a 13996 * reset. We know there are no other active users of 13997 * the device since we are now in charge. Turn off 13998 * off all outbound and inbound traffic and make sure 13999 * the device does not generate any interrupts. 14000 */ 14001 14002 /* disable send contexts and SDMA engines */ 14003 write_csr(dd, SEND_CTRL, 0); 14004 for (i = 0; i < dd->chip_send_contexts; i++) 14005 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 14006 for (i = 0; i < dd->chip_sdma_engines; i++) 14007 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 14008 /* disable port (turn off RXE inbound traffic) and contexts */ 14009 write_csr(dd, RCV_CTRL, 0); 14010 for (i = 0; i < dd->chip_rcv_contexts; i++) 14011 write_csr(dd, RCV_CTXT_CTRL, 0); 14012 /* mask all interrupt sources */ 14013 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 14014 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 14015 14016 /* 14017 * DC Reset: do a full DC reset before the register clear. 14018 * A recommended length of time to hold is one CSR read, 14019 * so reread the CceDcCtrl. Then, hold the DC in reset 14020 * across the clear. 14021 */ 14022 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK); 14023 (void)read_csr(dd, CCE_DC_CTRL); 14024 14025 if (use_flr) { 14026 /* 14027 * A FLR will reset the SPC core and part of the PCIe. 14028 * The parts that need to be restored have already been 14029 * saved. 14030 */ 14031 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 14032 14033 /* do the FLR, the DC reset will remain */ 14034 pcie_flr(dd->pcidev); 14035 14036 /* restore command and BARs */ 14037 ret = restore_pci_variables(dd); 14038 if (ret) { 14039 dd_dev_err(dd, "%s: Could not restore PCI variables\n", 14040 __func__); 14041 return ret; 14042 } 14043 14044 if (is_ax(dd)) { 14045 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 14046 pcie_flr(dd->pcidev); 14047 ret = restore_pci_variables(dd); 14048 if (ret) { 14049 dd_dev_err(dd, "%s: Could not restore PCI variables\n", 14050 __func__); 14051 return ret; 14052 } 14053 } 14054 } else { 14055 dd_dev_info(dd, "Resetting CSRs with writes\n"); 14056 reset_cce_csrs(dd); 14057 reset_txe_csrs(dd); 14058 reset_rxe_csrs(dd); 14059 reset_misc_csrs(dd); 14060 } 14061 /* clear the DC reset */ 14062 write_csr(dd, CCE_DC_CTRL, 0); 14063 14064 /* Set the LED off */ 14065 setextled(dd, 0); 14066 14067 /* 14068 * Clear the QSFP reset. 14069 * An FLR enforces a 0 on all out pins. The driver does not touch 14070 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and 14071 * anything plugged constantly in reset, if it pays attention 14072 * to RESET_N. 14073 * Prime examples of this are optical cables. Set all pins high. 14074 * I2CCLK and I2CDAT will change per direction, and INT_N and 14075 * MODPRS_N are input only and their value is ignored. 14076 */ 14077 write_csr(dd, ASIC_QSFP1_OUT, 0x1f); 14078 write_csr(dd, ASIC_QSFP2_OUT, 0x1f); 14079 init_chip_resources(dd); 14080 return ret; 14081 } 14082 14083 static void init_early_variables(struct hfi1_devdata *dd) 14084 { 14085 int i; 14086 14087 /* assign link credit variables */ 14088 dd->vau = CM_VAU; 14089 dd->link_credits = CM_GLOBAL_CREDITS; 14090 if (is_ax(dd)) 14091 dd->link_credits--; 14092 dd->vcu = cu_to_vcu(hfi1_cu); 14093 /* enough room for 8 MAD packets plus header - 17K */ 14094 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau); 14095 if (dd->vl15_init > dd->link_credits) 14096 dd->vl15_init = dd->link_credits; 14097 14098 write_uninitialized_csrs_and_memories(dd); 14099 14100 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 14101 for (i = 0; i < dd->num_pports; i++) { 14102 struct hfi1_pportdata *ppd = &dd->pport[i]; 14103 14104 set_partition_keys(ppd); 14105 } 14106 init_sc2vl_tables(dd); 14107 } 14108 14109 static void init_kdeth_qp(struct hfi1_devdata *dd) 14110 { 14111 /* user changed the KDETH_QP */ 14112 if (kdeth_qp != 0 && kdeth_qp >= 0xff) { 14113 /* out of range or illegal value */ 14114 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring"); 14115 kdeth_qp = 0; 14116 } 14117 if (kdeth_qp == 0) /* not set, or failed range check */ 14118 kdeth_qp = DEFAULT_KDETH_QP; 14119 14120 write_csr(dd, SEND_BTH_QP, 14121 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) << 14122 SEND_BTH_QP_KDETH_QP_SHIFT); 14123 14124 write_csr(dd, RCV_BTH_QP, 14125 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) << 14126 RCV_BTH_QP_KDETH_QP_SHIFT); 14127 } 14128 14129 /** 14130 * init_qpmap_table 14131 * @dd - device data 14132 * @first_ctxt - first context 14133 * @last_ctxt - first context 14134 * 14135 * This return sets the qpn mapping table that 14136 * is indexed by qpn[8:1]. 14137 * 14138 * The routine will round robin the 256 settings 14139 * from first_ctxt to last_ctxt. 14140 * 14141 * The first/last looks ahead to having specialized 14142 * receive contexts for mgmt and bypass. Normal 14143 * verbs traffic will assumed to be on a range 14144 * of receive contexts. 14145 */ 14146 static void init_qpmap_table(struct hfi1_devdata *dd, 14147 u32 first_ctxt, 14148 u32 last_ctxt) 14149 { 14150 u64 reg = 0; 14151 u64 regno = RCV_QP_MAP_TABLE; 14152 int i; 14153 u64 ctxt = first_ctxt; 14154 14155 for (i = 0; i < 256; i++) { 14156 reg |= ctxt << (8 * (i % 8)); 14157 ctxt++; 14158 if (ctxt > last_ctxt) 14159 ctxt = first_ctxt; 14160 if (i % 8 == 7) { 14161 write_csr(dd, regno, reg); 14162 reg = 0; 14163 regno += 8; 14164 } 14165 } 14166 14167 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK 14168 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK); 14169 } 14170 14171 struct rsm_map_table { 14172 u64 map[NUM_MAP_REGS]; 14173 unsigned int used; 14174 }; 14175 14176 struct rsm_rule_data { 14177 u8 offset; 14178 u8 pkt_type; 14179 u32 field1_off; 14180 u32 field2_off; 14181 u32 index1_off; 14182 u32 index1_width; 14183 u32 index2_off; 14184 u32 index2_width; 14185 u32 mask1; 14186 u32 value1; 14187 u32 mask2; 14188 u32 value2; 14189 }; 14190 14191 /* 14192 * Return an initialized RMT map table for users to fill in. OK if it 14193 * returns NULL, indicating no table. 14194 */ 14195 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd) 14196 { 14197 struct rsm_map_table *rmt; 14198 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */ 14199 14200 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL); 14201 if (rmt) { 14202 memset(rmt->map, rxcontext, sizeof(rmt->map)); 14203 rmt->used = 0; 14204 } 14205 14206 return rmt; 14207 } 14208 14209 /* 14210 * Write the final RMT map table to the chip and free the table. OK if 14211 * table is NULL. 14212 */ 14213 static void complete_rsm_map_table(struct hfi1_devdata *dd, 14214 struct rsm_map_table *rmt) 14215 { 14216 int i; 14217 14218 if (rmt) { 14219 /* write table to chip */ 14220 for (i = 0; i < NUM_MAP_REGS; i++) 14221 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]); 14222 14223 /* enable RSM */ 14224 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14225 } 14226 } 14227 14228 /* 14229 * Add a receive side mapping rule. 14230 */ 14231 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index, 14232 struct rsm_rule_data *rrd) 14233 { 14234 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 14235 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT | 14236 1ull << rule_index | /* enable bit */ 14237 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT); 14238 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 14239 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT | 14240 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT | 14241 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT | 14242 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT | 14243 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT | 14244 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT); 14245 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 14246 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT | 14247 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT | 14248 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT | 14249 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT); 14250 } 14251 14252 /* 14253 * Clear a receive side mapping rule. 14254 */ 14255 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index) 14256 { 14257 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0); 14258 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0); 14259 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0); 14260 } 14261 14262 /* return the number of RSM map table entries that will be used for QOS */ 14263 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 14264 unsigned int *np) 14265 { 14266 int i; 14267 unsigned int m, n; 14268 u8 max_by_vl = 0; 14269 14270 /* is QOS active at all? */ 14271 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS || 14272 num_vls == 1 || 14273 krcvqsset <= 1) 14274 goto no_qos; 14275 14276 /* determine bits for qpn */ 14277 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++) 14278 if (krcvqs[i] > max_by_vl) 14279 max_by_vl = krcvqs[i]; 14280 if (max_by_vl > 32) 14281 goto no_qos; 14282 m = ilog2(__roundup_pow_of_two(max_by_vl)); 14283 14284 /* determine bits for vl */ 14285 n = ilog2(__roundup_pow_of_two(num_vls)); 14286 14287 /* reject if too much is used */ 14288 if ((m + n) > 7) 14289 goto no_qos; 14290 14291 if (mp) 14292 *mp = m; 14293 if (np) 14294 *np = n; 14295 14296 return 1 << (m + n); 14297 14298 no_qos: 14299 if (mp) 14300 *mp = 0; 14301 if (np) 14302 *np = 0; 14303 return 0; 14304 } 14305 14306 /** 14307 * init_qos - init RX qos 14308 * @dd - device data 14309 * @rmt - RSM map table 14310 * 14311 * This routine initializes Rule 0 and the RSM map table to implement 14312 * quality of service (qos). 14313 * 14314 * If all of the limit tests succeed, qos is applied based on the array 14315 * interpretation of krcvqs where entry 0 is VL0. 14316 * 14317 * The number of vl bits (n) and the number of qpn bits (m) are computed to 14318 * feed both the RSM map table and the single rule. 14319 */ 14320 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt) 14321 { 14322 struct rsm_rule_data rrd; 14323 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m; 14324 unsigned int rmt_entries; 14325 u64 reg; 14326 14327 if (!rmt) 14328 goto bail; 14329 rmt_entries = qos_rmt_entries(dd, &m, &n); 14330 if (rmt_entries == 0) 14331 goto bail; 14332 qpns_per_vl = 1 << m; 14333 14334 /* enough room in the map table? */ 14335 rmt_entries = 1 << (m + n); 14336 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES) 14337 goto bail; 14338 14339 /* add qos entries to the the RSM map table */ 14340 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) { 14341 unsigned tctxt; 14342 14343 for (qpn = 0, tctxt = ctxt; 14344 krcvqs[i] && qpn < qpns_per_vl; qpn++) { 14345 unsigned idx, regoff, regidx; 14346 14347 /* generate the index the hardware will produce */ 14348 idx = rmt->used + ((qpn << n) ^ i); 14349 regoff = (idx % 8) * 8; 14350 regidx = idx / 8; 14351 /* replace default with context number */ 14352 reg = rmt->map[regidx]; 14353 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK 14354 << regoff); 14355 reg |= (u64)(tctxt++) << regoff; 14356 rmt->map[regidx] = reg; 14357 if (tctxt == ctxt + krcvqs[i]) 14358 tctxt = ctxt; 14359 } 14360 ctxt += krcvqs[i]; 14361 } 14362 14363 rrd.offset = rmt->used; 14364 rrd.pkt_type = 2; 14365 rrd.field1_off = LRH_BTH_MATCH_OFFSET; 14366 rrd.field2_off = LRH_SC_MATCH_OFFSET; 14367 rrd.index1_off = LRH_SC_SELECT_OFFSET; 14368 rrd.index1_width = n; 14369 rrd.index2_off = QPN_SELECT_OFFSET; 14370 rrd.index2_width = m + n; 14371 rrd.mask1 = LRH_BTH_MASK; 14372 rrd.value1 = LRH_BTH_VALUE; 14373 rrd.mask2 = LRH_SC_MASK; 14374 rrd.value2 = LRH_SC_VALUE; 14375 14376 /* add rule 0 */ 14377 add_rsm_rule(dd, RSM_INS_VERBS, &rrd); 14378 14379 /* mark RSM map entries as used */ 14380 rmt->used += rmt_entries; 14381 /* map everything else to the mcast/err/vl15 context */ 14382 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT); 14383 dd->qos_shift = n + 1; 14384 return; 14385 bail: 14386 dd->qos_shift = 1; 14387 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1); 14388 } 14389 14390 static void init_user_fecn_handling(struct hfi1_devdata *dd, 14391 struct rsm_map_table *rmt) 14392 { 14393 struct rsm_rule_data rrd; 14394 u64 reg; 14395 int i, idx, regoff, regidx; 14396 u8 offset; 14397 14398 /* there needs to be enough room in the map table */ 14399 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) { 14400 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n"); 14401 return; 14402 } 14403 14404 /* 14405 * RSM will extract the destination context as an index into the 14406 * map table. The destination contexts are a sequential block 14407 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive). 14408 * Map entries are accessed as offset + extracted value. Adjust 14409 * the added offset so this sequence can be placed anywhere in 14410 * the table - as long as the entries themselves do not wrap. 14411 * There are only enough bits in offset for the table size, so 14412 * start with that to allow for a "negative" offset. 14413 */ 14414 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used - 14415 (int)dd->first_dyn_alloc_ctxt); 14416 14417 for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used; 14418 i < dd->num_rcv_contexts; i++, idx++) { 14419 /* replace with identity mapping */ 14420 regoff = (idx % 8) * 8; 14421 regidx = idx / 8; 14422 reg = rmt->map[regidx]; 14423 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff); 14424 reg |= (u64)i << regoff; 14425 rmt->map[regidx] = reg; 14426 } 14427 14428 /* 14429 * For RSM intercept of Expected FECN packets: 14430 * o packet type 0 - expected 14431 * o match on F (bit 95), using select/match 1, and 14432 * o match on SH (bit 133), using select/match 2. 14433 * 14434 * Use index 1 to extract the 8-bit receive context from DestQP 14435 * (start at bit 64). Use that as the RSM map table index. 14436 */ 14437 rrd.offset = offset; 14438 rrd.pkt_type = 0; 14439 rrd.field1_off = 95; 14440 rrd.field2_off = 133; 14441 rrd.index1_off = 64; 14442 rrd.index1_width = 8; 14443 rrd.index2_off = 0; 14444 rrd.index2_width = 0; 14445 rrd.mask1 = 1; 14446 rrd.value1 = 1; 14447 rrd.mask2 = 1; 14448 rrd.value2 = 1; 14449 14450 /* add rule 1 */ 14451 add_rsm_rule(dd, RSM_INS_FECN, &rrd); 14452 14453 rmt->used += dd->num_user_contexts; 14454 } 14455 14456 /* Initialize RSM for VNIC */ 14457 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd) 14458 { 14459 u8 i, j; 14460 u8 ctx_id = 0; 14461 u64 reg; 14462 u32 regoff; 14463 struct rsm_rule_data rrd; 14464 14465 if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) { 14466 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n", 14467 dd->vnic.rmt_start); 14468 return; 14469 } 14470 14471 dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n", 14472 dd->vnic.rmt_start, 14473 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES); 14474 14475 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */ 14476 regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8; 14477 reg = read_csr(dd, regoff); 14478 for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) { 14479 /* Update map register with vnic context */ 14480 j = (dd->vnic.rmt_start + i) % 8; 14481 reg &= ~(0xffllu << (j * 8)); 14482 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8); 14483 /* Wrap up vnic ctx index */ 14484 ctx_id %= dd->vnic.num_ctxt; 14485 /* Write back map register */ 14486 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) { 14487 dev_dbg(&(dd)->pcidev->dev, 14488 "Vnic rsm map reg[%d] =0x%llx\n", 14489 regoff - RCV_RSM_MAP_TABLE, reg); 14490 14491 write_csr(dd, regoff, reg); 14492 regoff += 8; 14493 if (i < (NUM_VNIC_MAP_ENTRIES - 1)) 14494 reg = read_csr(dd, regoff); 14495 } 14496 } 14497 14498 /* Add rule for vnic */ 14499 rrd.offset = dd->vnic.rmt_start; 14500 rrd.pkt_type = 4; 14501 /* Match 16B packets */ 14502 rrd.field1_off = L2_TYPE_MATCH_OFFSET; 14503 rrd.mask1 = L2_TYPE_MASK; 14504 rrd.value1 = L2_16B_VALUE; 14505 /* Match ETH L4 packets */ 14506 rrd.field2_off = L4_TYPE_MATCH_OFFSET; 14507 rrd.mask2 = L4_16B_TYPE_MASK; 14508 rrd.value2 = L4_16B_ETH_VALUE; 14509 /* Calc context from veswid and entropy */ 14510 rrd.index1_off = L4_16B_HDR_VESWID_OFFSET; 14511 rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES); 14512 rrd.index2_off = L2_16B_ENTROPY_OFFSET; 14513 rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES); 14514 add_rsm_rule(dd, RSM_INS_VNIC, &rrd); 14515 14516 /* Enable RSM if not already enabled */ 14517 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14518 } 14519 14520 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd) 14521 { 14522 clear_rsm_rule(dd, RSM_INS_VNIC); 14523 14524 /* Disable RSM if used only by vnic */ 14525 if (dd->vnic.rmt_start == 0) 14526 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14527 } 14528 14529 static void init_rxe(struct hfi1_devdata *dd) 14530 { 14531 struct rsm_map_table *rmt; 14532 u64 val; 14533 14534 /* enable all receive errors */ 14535 write_csr(dd, RCV_ERR_MASK, ~0ull); 14536 14537 rmt = alloc_rsm_map_table(dd); 14538 /* set up QOS, including the QPN map table */ 14539 init_qos(dd, rmt); 14540 init_user_fecn_handling(dd, rmt); 14541 complete_rsm_map_table(dd, rmt); 14542 /* record number of used rsm map entries for vnic */ 14543 dd->vnic.rmt_start = rmt->used; 14544 kfree(rmt); 14545 14546 /* 14547 * make sure RcvCtrl.RcvWcb <= PCIe Device Control 14548 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config 14549 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one 14550 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and 14551 * Max_PayLoad_Size set to its minimum of 128. 14552 * 14553 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0 14554 * (64 bytes). Max_Payload_Size is possibly modified upward in 14555 * tune_pcie_caps() which is called after this routine. 14556 */ 14557 14558 /* Have 16 bytes (4DW) of bypass header available in header queue */ 14559 val = read_csr(dd, RCV_BYPASS); 14560 val |= (4ull << 16); 14561 write_csr(dd, RCV_BYPASS, val); 14562 } 14563 14564 static void init_other(struct hfi1_devdata *dd) 14565 { 14566 /* enable all CCE errors */ 14567 write_csr(dd, CCE_ERR_MASK, ~0ull); 14568 /* enable *some* Misc errors */ 14569 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK); 14570 /* enable all DC errors, except LCB */ 14571 write_csr(dd, DCC_ERR_FLG_EN, ~0ull); 14572 write_csr(dd, DC_DC8051_ERR_EN, ~0ull); 14573 } 14574 14575 /* 14576 * Fill out the given AU table using the given CU. A CU is defined in terms 14577 * AUs. The table is a an encoding: given the index, how many AUs does that 14578 * represent? 14579 * 14580 * NOTE: Assumes that the register layout is the same for the 14581 * local and remote tables. 14582 */ 14583 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu, 14584 u32 csr0to3, u32 csr4to7) 14585 { 14586 write_csr(dd, csr0to3, 14587 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT | 14588 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT | 14589 2ull * cu << 14590 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT | 14591 4ull * cu << 14592 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT); 14593 write_csr(dd, csr4to7, 14594 8ull * cu << 14595 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT | 14596 16ull * cu << 14597 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT | 14598 32ull * cu << 14599 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT | 14600 64ull * cu << 14601 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT); 14602 } 14603 14604 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14605 { 14606 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3, 14607 SEND_CM_LOCAL_AU_TABLE4_TO7); 14608 } 14609 14610 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14611 { 14612 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3, 14613 SEND_CM_REMOTE_AU_TABLE4_TO7); 14614 } 14615 14616 static void init_txe(struct hfi1_devdata *dd) 14617 { 14618 int i; 14619 14620 /* enable all PIO, SDMA, general, and Egress errors */ 14621 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull); 14622 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull); 14623 write_csr(dd, SEND_ERR_MASK, ~0ull); 14624 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull); 14625 14626 /* enable all per-context and per-SDMA engine errors */ 14627 for (i = 0; i < dd->chip_send_contexts; i++) 14628 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull); 14629 for (i = 0; i < dd->chip_sdma_engines; i++) 14630 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull); 14631 14632 /* set the local CU to AU mapping */ 14633 assign_local_cm_au_table(dd, dd->vcu); 14634 14635 /* 14636 * Set reasonable default for Credit Return Timer 14637 * Don't set on Simulator - causes it to choke. 14638 */ 14639 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR) 14640 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE); 14641 } 14642 14643 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd, 14644 u16 jkey) 14645 { 14646 u8 hw_ctxt; 14647 u64 reg; 14648 14649 if (!rcd || !rcd->sc) 14650 return -EINVAL; 14651 14652 hw_ctxt = rcd->sc->hw_context; 14653 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */ 14654 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) << 14655 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT); 14656 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */ 14657 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY)) 14658 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK; 14659 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg); 14660 /* 14661 * Enable send-side J_KEY integrity check, unless this is A0 h/w 14662 */ 14663 if (!is_ax(dd)) { 14664 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14665 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14666 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14667 } 14668 14669 /* Enable J_KEY check on receive context. */ 14670 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK | 14671 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) << 14672 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT); 14673 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg); 14674 14675 return 0; 14676 } 14677 14678 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 14679 { 14680 u8 hw_ctxt; 14681 u64 reg; 14682 14683 if (!rcd || !rcd->sc) 14684 return -EINVAL; 14685 14686 hw_ctxt = rcd->sc->hw_context; 14687 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0); 14688 /* 14689 * Disable send-side J_KEY integrity check, unless this is A0 h/w. 14690 * This check would not have been enabled for A0 h/w, see 14691 * set_ctxt_jkey(). 14692 */ 14693 if (!is_ax(dd)) { 14694 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14695 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14696 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14697 } 14698 /* Turn off the J_KEY on the receive side */ 14699 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0); 14700 14701 return 0; 14702 } 14703 14704 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd, 14705 u16 pkey) 14706 { 14707 u8 hw_ctxt; 14708 u64 reg; 14709 14710 if (!rcd || !rcd->sc) 14711 return -EINVAL; 14712 14713 hw_ctxt = rcd->sc->hw_context; 14714 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) << 14715 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT; 14716 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg); 14717 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14718 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14719 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK; 14720 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14721 14722 return 0; 14723 } 14724 14725 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt) 14726 { 14727 u8 hw_ctxt; 14728 u64 reg; 14729 14730 if (!ctxt || !ctxt->sc) 14731 return -EINVAL; 14732 14733 hw_ctxt = ctxt->sc->hw_context; 14734 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14735 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14736 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14737 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0); 14738 14739 return 0; 14740 } 14741 14742 /* 14743 * Start doing the clean up the the chip. Our clean up happens in multiple 14744 * stages and this is just the first. 14745 */ 14746 void hfi1_start_cleanup(struct hfi1_devdata *dd) 14747 { 14748 aspm_exit(dd); 14749 free_cntrs(dd); 14750 free_rcverr(dd); 14751 clean_up_interrupts(dd); 14752 finish_chip_resources(dd); 14753 } 14754 14755 #define HFI_BASE_GUID(dev) \ 14756 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT)) 14757 14758 /* 14759 * Information can be shared between the two HFIs on the same ASIC 14760 * in the same OS. This function finds the peer device and sets 14761 * up a shared structure. 14762 */ 14763 static int init_asic_data(struct hfi1_devdata *dd) 14764 { 14765 unsigned long flags; 14766 struct hfi1_devdata *tmp, *peer = NULL; 14767 struct hfi1_asic_data *asic_data; 14768 int ret = 0; 14769 14770 /* pre-allocate the asic structure in case we are the first device */ 14771 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL); 14772 if (!asic_data) 14773 return -ENOMEM; 14774 14775 spin_lock_irqsave(&hfi1_devs_lock, flags); 14776 /* Find our peer device */ 14777 list_for_each_entry(tmp, &hfi1_dev_list, list) { 14778 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) && 14779 dd->unit != tmp->unit) { 14780 peer = tmp; 14781 break; 14782 } 14783 } 14784 14785 if (peer) { 14786 /* use already allocated structure */ 14787 dd->asic_data = peer->asic_data; 14788 kfree(asic_data); 14789 } else { 14790 dd->asic_data = asic_data; 14791 mutex_init(&dd->asic_data->asic_resource_mutex); 14792 } 14793 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */ 14794 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 14795 14796 /* first one through - set up i2c devices */ 14797 if (!peer) 14798 ret = set_up_i2c(dd, dd->asic_data); 14799 14800 return ret; 14801 } 14802 14803 /* 14804 * Set dd->boardname. Use a generic name if a name is not returned from 14805 * EFI variable space. 14806 * 14807 * Return 0 on success, -ENOMEM if space could not be allocated. 14808 */ 14809 static int obtain_boardname(struct hfi1_devdata *dd) 14810 { 14811 /* generic board description */ 14812 const char generic[] = 14813 "Intel Omni-Path Host Fabric Interface Adapter 100 Series"; 14814 unsigned long size; 14815 int ret; 14816 14817 ret = read_hfi1_efi_var(dd, "description", &size, 14818 (void **)&dd->boardname); 14819 if (ret) { 14820 dd_dev_info(dd, "Board description not found\n"); 14821 /* use generic description */ 14822 dd->boardname = kstrdup(generic, GFP_KERNEL); 14823 if (!dd->boardname) 14824 return -ENOMEM; 14825 } 14826 return 0; 14827 } 14828 14829 /* 14830 * Check the interrupt registers to make sure that they are mapped correctly. 14831 * It is intended to help user identify any mismapping by VMM when the driver 14832 * is running in a VM. This function should only be called before interrupt 14833 * is set up properly. 14834 * 14835 * Return 0 on success, -EINVAL on failure. 14836 */ 14837 static int check_int_registers(struct hfi1_devdata *dd) 14838 { 14839 u64 reg; 14840 u64 all_bits = ~(u64)0; 14841 u64 mask; 14842 14843 /* Clear CceIntMask[0] to avoid raising any interrupts */ 14844 mask = read_csr(dd, CCE_INT_MASK); 14845 write_csr(dd, CCE_INT_MASK, 0ull); 14846 reg = read_csr(dd, CCE_INT_MASK); 14847 if (reg) 14848 goto err_exit; 14849 14850 /* Clear all interrupt status bits */ 14851 write_csr(dd, CCE_INT_CLEAR, all_bits); 14852 reg = read_csr(dd, CCE_INT_STATUS); 14853 if (reg) 14854 goto err_exit; 14855 14856 /* Set all interrupt status bits */ 14857 write_csr(dd, CCE_INT_FORCE, all_bits); 14858 reg = read_csr(dd, CCE_INT_STATUS); 14859 if (reg != all_bits) 14860 goto err_exit; 14861 14862 /* Restore the interrupt mask */ 14863 write_csr(dd, CCE_INT_CLEAR, all_bits); 14864 write_csr(dd, CCE_INT_MASK, mask); 14865 14866 return 0; 14867 err_exit: 14868 write_csr(dd, CCE_INT_MASK, mask); 14869 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n"); 14870 return -EINVAL; 14871 } 14872 14873 /** 14874 * Allocate and initialize the device structure for the hfi. 14875 * @dev: the pci_dev for hfi1_ib device 14876 * @ent: pci_device_id struct for this dev 14877 * 14878 * Also allocates, initializes, and returns the devdata struct for this 14879 * device instance 14880 * 14881 * This is global, and is called directly at init to set up the 14882 * chip-specific function pointers for later use. 14883 */ 14884 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, 14885 const struct pci_device_id *ent) 14886 { 14887 struct hfi1_devdata *dd; 14888 struct hfi1_pportdata *ppd; 14889 u64 reg; 14890 int i, ret; 14891 static const char * const inames[] = { /* implementation names */ 14892 "RTL silicon", 14893 "RTL VCS simulation", 14894 "RTL FPGA emulation", 14895 "Functional simulator" 14896 }; 14897 struct pci_dev *parent = pdev->bus->self; 14898 14899 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 14900 sizeof(struct hfi1_pportdata)); 14901 if (IS_ERR(dd)) 14902 goto bail; 14903 ppd = dd->pport; 14904 for (i = 0; i < dd->num_pports; i++, ppd++) { 14905 int vl; 14906 /* init common fields */ 14907 hfi1_init_pportdata(pdev, ppd, dd, 0, 1); 14908 /* DC supports 4 link widths */ 14909 ppd->link_width_supported = 14910 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X | 14911 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X; 14912 ppd->link_width_downgrade_supported = 14913 ppd->link_width_supported; 14914 /* start out enabling only 4X */ 14915 ppd->link_width_enabled = OPA_LINK_WIDTH_4X; 14916 ppd->link_width_downgrade_enabled = 14917 ppd->link_width_downgrade_supported; 14918 /* link width active is 0 when link is down */ 14919 /* link width downgrade active is 0 when link is down */ 14920 14921 if (num_vls < HFI1_MIN_VLS_SUPPORTED || 14922 num_vls > HFI1_MAX_VLS_SUPPORTED) { 14923 dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n", 14924 num_vls, HFI1_MAX_VLS_SUPPORTED); 14925 num_vls = HFI1_MAX_VLS_SUPPORTED; 14926 } 14927 ppd->vls_supported = num_vls; 14928 ppd->vls_operational = ppd->vls_supported; 14929 /* Set the default MTU. */ 14930 for (vl = 0; vl < num_vls; vl++) 14931 dd->vld[vl].mtu = hfi1_max_mtu; 14932 dd->vld[15].mtu = MAX_MAD_PACKET; 14933 /* 14934 * Set the initial values to reasonable default, will be set 14935 * for real when link is up. 14936 */ 14937 ppd->overrun_threshold = 0x4; 14938 ppd->phy_error_threshold = 0xf; 14939 ppd->port_crc_mode_enabled = link_crc_mask; 14940 /* initialize supported LTP CRC mode */ 14941 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 14942 /* initialize enabled LTP CRC mode */ 14943 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4; 14944 /* start in offline */ 14945 ppd->host_link_state = HLS_DN_OFFLINE; 14946 init_vl_arb_caches(ppd); 14947 } 14948 14949 /* 14950 * Do remaining PCIe setup and save PCIe values in dd. 14951 * Any error printing is already done by the init code. 14952 * On return, we have the chip mapped. 14953 */ 14954 ret = hfi1_pcie_ddinit(dd, pdev); 14955 if (ret < 0) 14956 goto bail_free; 14957 14958 /* Save PCI space registers to rewrite after device reset */ 14959 ret = save_pci_variables(dd); 14960 if (ret < 0) 14961 goto bail_cleanup; 14962 14963 /* verify that reads actually work, save revision for reset check */ 14964 dd->revision = read_csr(dd, CCE_REVISION); 14965 if (dd->revision == ~(u64)0) { 14966 dd_dev_err(dd, "cannot read chip CSRs\n"); 14967 ret = -EINVAL; 14968 goto bail_cleanup; 14969 } 14970 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT) 14971 & CCE_REVISION_CHIP_REV_MAJOR_MASK; 14972 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT) 14973 & CCE_REVISION_CHIP_REV_MINOR_MASK; 14974 14975 /* 14976 * Check interrupt registers mapping if the driver has no access to 14977 * the upstream component. In this case, it is likely that the driver 14978 * is running in a VM. 14979 */ 14980 if (!parent) { 14981 ret = check_int_registers(dd); 14982 if (ret) 14983 goto bail_cleanup; 14984 } 14985 14986 /* 14987 * obtain the hardware ID - NOT related to unit, which is a 14988 * software enumeration 14989 */ 14990 reg = read_csr(dd, CCE_REVISION2); 14991 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT) 14992 & CCE_REVISION2_HFI_ID_MASK; 14993 /* the variable size will remove unwanted bits */ 14994 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT; 14995 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT; 14996 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n", 14997 dd->icode < ARRAY_SIZE(inames) ? 14998 inames[dd->icode] : "unknown", (int)dd->irev); 14999 15000 /* speeds the hardware can support */ 15001 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G; 15002 /* speeds allowed to run at */ 15003 dd->pport->link_speed_enabled = dd->pport->link_speed_supported; 15004 /* give a reasonable active value, will be set on link up */ 15005 dd->pport->link_speed_active = OPA_LINK_SPEED_25G; 15006 15007 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS); 15008 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS); 15009 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES); 15010 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE); 15011 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE); 15012 /* fix up link widths for emulation _p */ 15013 ppd = dd->pport; 15014 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) { 15015 ppd->link_width_supported = 15016 ppd->link_width_enabled = 15017 ppd->link_width_downgrade_supported = 15018 ppd->link_width_downgrade_enabled = 15019 OPA_LINK_WIDTH_1X; 15020 } 15021 /* insure num_vls isn't larger than number of sdma engines */ 15022 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) { 15023 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n", 15024 num_vls, dd->chip_sdma_engines); 15025 num_vls = dd->chip_sdma_engines; 15026 ppd->vls_supported = dd->chip_sdma_engines; 15027 ppd->vls_operational = ppd->vls_supported; 15028 } 15029 15030 /* 15031 * Convert the ns parameter to the 64 * cclocks used in the CSR. 15032 * Limit the max if larger than the field holds. If timeout is 15033 * non-zero, then the calculated field will be at least 1. 15034 * 15035 * Must be after icode is set up - the cclock rate depends 15036 * on knowing the hardware being used. 15037 */ 15038 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64; 15039 if (dd->rcv_intr_timeout_csr > 15040 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK) 15041 dd->rcv_intr_timeout_csr = 15042 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK; 15043 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout) 15044 dd->rcv_intr_timeout_csr = 1; 15045 15046 /* needs to be done before we look for the peer device */ 15047 read_guid(dd); 15048 15049 /* set up shared ASIC data with peer device */ 15050 ret = init_asic_data(dd); 15051 if (ret) 15052 goto bail_cleanup; 15053 15054 /* obtain chip sizes, reset chip CSRs */ 15055 ret = init_chip(dd); 15056 if (ret) 15057 goto bail_cleanup; 15058 15059 /* read in the PCIe link speed information */ 15060 ret = pcie_speeds(dd); 15061 if (ret) 15062 goto bail_cleanup; 15063 15064 /* call before get_platform_config(), after init_chip_resources() */ 15065 ret = eprom_init(dd); 15066 if (ret) 15067 goto bail_free_rcverr; 15068 15069 /* Needs to be called before hfi1_firmware_init */ 15070 get_platform_config(dd); 15071 15072 /* read in firmware */ 15073 ret = hfi1_firmware_init(dd); 15074 if (ret) 15075 goto bail_cleanup; 15076 15077 /* 15078 * In general, the PCIe Gen3 transition must occur after the 15079 * chip has been idled (so it won't initiate any PCIe transactions 15080 * e.g. an interrupt) and before the driver changes any registers 15081 * (the transition will reset the registers). 15082 * 15083 * In particular, place this call after: 15084 * - init_chip() - the chip will not initiate any PCIe transactions 15085 * - pcie_speeds() - reads the current link speed 15086 * - hfi1_firmware_init() - the needed firmware is ready to be 15087 * downloaded 15088 */ 15089 ret = do_pcie_gen3_transition(dd); 15090 if (ret) 15091 goto bail_cleanup; 15092 15093 /* start setting dd values and adjusting CSRs */ 15094 init_early_variables(dd); 15095 15096 parse_platform_config(dd); 15097 15098 ret = obtain_boardname(dd); 15099 if (ret) 15100 goto bail_cleanup; 15101 15102 snprintf(dd->boardversion, BOARD_VERS_MAX, 15103 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n", 15104 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN, 15105 (u32)dd->majrev, 15106 (u32)dd->minrev, 15107 (dd->revision >> CCE_REVISION_SW_SHIFT) 15108 & CCE_REVISION_SW_MASK); 15109 15110 ret = set_up_context_variables(dd); 15111 if (ret) 15112 goto bail_cleanup; 15113 15114 /* set initial RXE CSRs */ 15115 init_rxe(dd); 15116 /* set initial TXE CSRs */ 15117 init_txe(dd); 15118 /* set initial non-RXE, non-TXE CSRs */ 15119 init_other(dd); 15120 /* set up KDETH QP prefix in both RX and TX CSRs */ 15121 init_kdeth_qp(dd); 15122 15123 ret = hfi1_dev_affinity_init(dd); 15124 if (ret) 15125 goto bail_cleanup; 15126 15127 /* send contexts must be set up before receive contexts */ 15128 ret = init_send_contexts(dd); 15129 if (ret) 15130 goto bail_cleanup; 15131 15132 ret = hfi1_create_kctxts(dd); 15133 if (ret) 15134 goto bail_cleanup; 15135 15136 /* 15137 * Initialize aspm, to be done after gen3 transition and setting up 15138 * contexts and before enabling interrupts 15139 */ 15140 aspm_init(dd); 15141 15142 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE; 15143 /* 15144 * rcd[0] is guaranteed to be valid by this point. Also, all 15145 * context are using the same value, as per the module parameter. 15146 */ 15147 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 15148 15149 ret = init_pervl_scs(dd); 15150 if (ret) 15151 goto bail_cleanup; 15152 15153 /* sdma init */ 15154 for (i = 0; i < dd->num_pports; ++i) { 15155 ret = sdma_init(dd, i); 15156 if (ret) 15157 goto bail_cleanup; 15158 } 15159 15160 /* use contexts created by hfi1_create_kctxts */ 15161 ret = set_up_interrupts(dd); 15162 if (ret) 15163 goto bail_cleanup; 15164 15165 /* set up LCB access - must be after set_up_interrupts() */ 15166 init_lcb_access(dd); 15167 15168 /* 15169 * Serial number is created from the base guid: 15170 * [27:24] = base guid [38:35] 15171 * [23: 0] = base guid [23: 0] 15172 */ 15173 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n", 15174 (dd->base_guid & 0xFFFFFF) | 15175 ((dd->base_guid >> 11) & 0xF000000)); 15176 15177 dd->oui1 = dd->base_guid >> 56 & 0xFF; 15178 dd->oui2 = dd->base_guid >> 48 & 0xFF; 15179 dd->oui3 = dd->base_guid >> 40 & 0xFF; 15180 15181 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */ 15182 if (ret) 15183 goto bail_clear_intr; 15184 15185 thermal_init(dd); 15186 15187 ret = init_cntrs(dd); 15188 if (ret) 15189 goto bail_clear_intr; 15190 15191 ret = init_rcverr(dd); 15192 if (ret) 15193 goto bail_free_cntrs; 15194 15195 init_completion(&dd->user_comp); 15196 15197 /* The user refcount starts with one to inidicate an active device */ 15198 atomic_set(&dd->user_refcount, 1); 15199 15200 goto bail; 15201 15202 bail_free_rcverr: 15203 free_rcverr(dd); 15204 bail_free_cntrs: 15205 free_cntrs(dd); 15206 bail_clear_intr: 15207 clean_up_interrupts(dd); 15208 bail_cleanup: 15209 hfi1_pcie_ddcleanup(dd); 15210 bail_free: 15211 hfi1_free_devdata(dd); 15212 dd = ERR_PTR(ret); 15213 bail: 15214 return dd; 15215 } 15216 15217 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate, 15218 u32 dw_len) 15219 { 15220 u32 delta_cycles; 15221 u32 current_egress_rate = ppd->current_egress_rate; 15222 /* rates here are in units of 10^6 bits/sec */ 15223 15224 if (desired_egress_rate == -1) 15225 return 0; /* shouldn't happen */ 15226 15227 if (desired_egress_rate >= current_egress_rate) 15228 return 0; /* we can't help go faster, only slower */ 15229 15230 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) - 15231 egress_cycles(dw_len * 4, current_egress_rate); 15232 15233 return (u16)delta_cycles; 15234 } 15235 15236 /** 15237 * create_pbc - build a pbc for transmission 15238 * @flags: special case flags or-ed in built pbc 15239 * @srate: static rate 15240 * @vl: vl 15241 * @dwlen: dword length (header words + data words + pbc words) 15242 * 15243 * Create a PBC with the given flags, rate, VL, and length. 15244 * 15245 * NOTE: The PBC created will not insert any HCRC - all callers but one are 15246 * for verbs, which does not use this PSM feature. The lone other caller 15247 * is for the diagnostic interface which calls this if the user does not 15248 * supply their own PBC. 15249 */ 15250 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl, 15251 u32 dw_len) 15252 { 15253 u64 pbc, delay = 0; 15254 15255 if (unlikely(srate_mbs)) 15256 delay = delay_cycles(ppd, srate_mbs, dw_len); 15257 15258 pbc = flags 15259 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT) 15260 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT) 15261 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT 15262 | (dw_len & PBC_LENGTH_DWS_MASK) 15263 << PBC_LENGTH_DWS_SHIFT; 15264 15265 return pbc; 15266 } 15267 15268 #define SBUS_THERMAL 0x4f 15269 #define SBUS_THERM_MONITOR_MODE 0x1 15270 15271 #define THERM_FAILURE(dev, ret, reason) \ 15272 dd_dev_err((dd), \ 15273 "Thermal sensor initialization failed: %s (%d)\n", \ 15274 (reason), (ret)) 15275 15276 /* 15277 * Initialize the thermal sensor. 15278 * 15279 * After initialization, enable polling of thermal sensor through 15280 * SBus interface. In order for this to work, the SBus Master 15281 * firmware has to be loaded due to the fact that the HW polling 15282 * logic uses SBus interrupts, which are not supported with 15283 * default firmware. Otherwise, no data will be returned through 15284 * the ASIC_STS_THERM CSR. 15285 */ 15286 static int thermal_init(struct hfi1_devdata *dd) 15287 { 15288 int ret = 0; 15289 15290 if (dd->icode != ICODE_RTL_SILICON || 15291 check_chip_resource(dd, CR_THERM_INIT, NULL)) 15292 return ret; 15293 15294 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 15295 if (ret) { 15296 THERM_FAILURE(dd, ret, "Acquire SBus"); 15297 return ret; 15298 } 15299 15300 dd_dev_info(dd, "Initializing thermal sensor\n"); 15301 /* Disable polling of thermal readings */ 15302 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0); 15303 msleep(100); 15304 /* Thermal Sensor Initialization */ 15305 /* Step 1: Reset the Thermal SBus Receiver */ 15306 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15307 RESET_SBUS_RECEIVER, 0); 15308 if (ret) { 15309 THERM_FAILURE(dd, ret, "Bus Reset"); 15310 goto done; 15311 } 15312 /* Step 2: Set Reset bit in Thermal block */ 15313 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15314 WRITE_SBUS_RECEIVER, 0x1); 15315 if (ret) { 15316 THERM_FAILURE(dd, ret, "Therm Block Reset"); 15317 goto done; 15318 } 15319 /* Step 3: Write clock divider value (100MHz -> 2MHz) */ 15320 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1, 15321 WRITE_SBUS_RECEIVER, 0x32); 15322 if (ret) { 15323 THERM_FAILURE(dd, ret, "Write Clock Div"); 15324 goto done; 15325 } 15326 /* Step 4: Select temperature mode */ 15327 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3, 15328 WRITE_SBUS_RECEIVER, 15329 SBUS_THERM_MONITOR_MODE); 15330 if (ret) { 15331 THERM_FAILURE(dd, ret, "Write Mode Sel"); 15332 goto done; 15333 } 15334 /* Step 5: De-assert block reset and start conversion */ 15335 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15336 WRITE_SBUS_RECEIVER, 0x2); 15337 if (ret) { 15338 THERM_FAILURE(dd, ret, "Write Reset Deassert"); 15339 goto done; 15340 } 15341 /* Step 5.1: Wait for first conversion (21.5ms per spec) */ 15342 msleep(22); 15343 15344 /* Enable polling of thermal readings */ 15345 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1); 15346 15347 /* Set initialized flag */ 15348 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0); 15349 if (ret) 15350 THERM_FAILURE(dd, ret, "Unable to set thermal init flag"); 15351 15352 done: 15353 release_chip_resource(dd, CR_SBUS); 15354 return ret; 15355 } 15356 15357 static void handle_temp_err(struct hfi1_devdata *dd) 15358 { 15359 struct hfi1_pportdata *ppd = &dd->pport[0]; 15360 /* 15361 * Thermal Critical Interrupt 15362 * Put the device into forced freeze mode, take link down to 15363 * offline, and put DC into reset. 15364 */ 15365 dd_dev_emerg(dd, 15366 "Critical temperature reached! Forcing device into freeze mode!\n"); 15367 dd->flags |= HFI1_FORCED_FREEZE; 15368 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT); 15369 /* 15370 * Shut DC down as much and as quickly as possible. 15371 * 15372 * Step 1: Take the link down to OFFLINE. This will cause the 15373 * 8051 to put the Serdes in reset. However, we don't want to 15374 * go through the entire link state machine since we want to 15375 * shutdown ASAP. Furthermore, this is not a graceful shutdown 15376 * but rather an attempt to save the chip. 15377 * Code below is almost the same as quiet_serdes() but avoids 15378 * all the extra work and the sleeps. 15379 */ 15380 ppd->driver_link_ready = 0; 15381 ppd->link_enabled = 0; 15382 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) | 15383 PLS_OFFLINE); 15384 /* 15385 * Step 2: Shutdown LCB and 8051 15386 * After shutdown, do not restore DC_CFG_RESET value. 15387 */ 15388 dc_shutdown(dd); 15389 } 15390