xref: /linux/drivers/infiniband/hw/hfi1/chip.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73 
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77 
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88 
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92 
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96 
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100 
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106 
107 struct flag_table {
108 	u64 flag;	/* the flag */
109 	char *str;	/* description string */
110 	u16 extra;	/* extra information */
111 	u16 unused0;
112 	u32 unused1;
113 };
114 
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118 
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED	0x1
121 #define SEC_PACKET_DROPPED	0x2
122 #define SEC_SC_HALTED		0x4	/* per-context only */
123 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
124 
125 #define DEFAULT_KRCVQS		  2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 
129 /*
130  * RSM instance allocation
131  *   0 - Verbs
132  *   1 - User Fecn Handling
133  *   2 - Vnic
134  */
135 #define RSM_INS_VERBS             0
136 #define RSM_INS_FECN              1
137 #define RSM_INS_VNIC              2
138 
139 /* Bit offset into the GUID which carries HFI id information */
140 #define GUID_HFI_INDEX_SHIFT     39
141 
142 /* extract the emulation revision */
143 #define emulator_rev(dd) ((dd)->irev >> 8)
144 /* parallel and serial emulation versions are 3 and 4 respectively */
145 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
146 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
147 
148 /* RSM fields for Verbs */
149 /* packet type */
150 #define IB_PACKET_TYPE         2ull
151 #define QW_SHIFT               6ull
152 /* QPN[7..1] */
153 #define QPN_WIDTH              7ull
154 
155 /* LRH.BTH: QW 0, OFFSET 48 - for match */
156 #define LRH_BTH_QW             0ull
157 #define LRH_BTH_BIT_OFFSET     48ull
158 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
159 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
160 #define LRH_BTH_SELECT
161 #define LRH_BTH_MASK           3ull
162 #define LRH_BTH_VALUE          2ull
163 
164 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
165 #define LRH_SC_QW              0ull
166 #define LRH_SC_BIT_OFFSET      56ull
167 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
168 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
169 #define LRH_SC_MASK            128ull
170 #define LRH_SC_VALUE           0ull
171 
172 /* SC[n..0] QW 0, OFFSET 60 - for select */
173 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
174 
175 /* QPN[m+n:1] QW 1, OFFSET 1 */
176 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
177 
178 /* RSM fields for Vnic */
179 /* L2_TYPE: QW 0, OFFSET 61 - for match */
180 #define L2_TYPE_QW             0ull
181 #define L2_TYPE_BIT_OFFSET     61ull
182 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
183 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
184 #define L2_TYPE_MASK           3ull
185 #define L2_16B_VALUE           2ull
186 
187 /* L4_TYPE QW 1, OFFSET 0 - for match */
188 #define L4_TYPE_QW              1ull
189 #define L4_TYPE_BIT_OFFSET      0ull
190 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
191 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
192 #define L4_16B_TYPE_MASK        0xFFull
193 #define L4_16B_ETH_VALUE        0x78ull
194 
195 /* 16B VESWID - for select */
196 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
197 /* 16B ENTROPY - for select */
198 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
199 
200 /* defines to build power on SC2VL table */
201 #define SC2VL_VAL( \
202 	num, \
203 	sc0, sc0val, \
204 	sc1, sc1val, \
205 	sc2, sc2val, \
206 	sc3, sc3val, \
207 	sc4, sc4val, \
208 	sc5, sc5val, \
209 	sc6, sc6val, \
210 	sc7, sc7val) \
211 ( \
212 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
213 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
214 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
215 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
216 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
217 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
218 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
219 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
220 )
221 
222 #define DC_SC_VL_VAL( \
223 	range, \
224 	e0, e0val, \
225 	e1, e1val, \
226 	e2, e2val, \
227 	e3, e3val, \
228 	e4, e4val, \
229 	e5, e5val, \
230 	e6, e6val, \
231 	e7, e7val, \
232 	e8, e8val, \
233 	e9, e9val, \
234 	e10, e10val, \
235 	e11, e11val, \
236 	e12, e12val, \
237 	e13, e13val, \
238 	e14, e14val, \
239 	e15, e15val) \
240 ( \
241 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
242 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
243 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
244 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
245 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
246 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
247 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
248 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
249 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
250 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
251 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
252 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
253 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
254 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
255 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
256 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
257 )
258 
259 /* all CceStatus sub-block freeze bits */
260 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
261 			| CCE_STATUS_RXE_FROZE_SMASK \
262 			| CCE_STATUS_TXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
264 /* all CceStatus sub-block TXE pause bits */
265 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
266 			| CCE_STATUS_TXE_PAUSED_SMASK \
267 			| CCE_STATUS_SDMA_PAUSED_SMASK)
268 /* all CceStatus sub-block RXE pause bits */
269 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
270 
271 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
272 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
273 
274 /*
275  * CCE Error flags.
276  */
277 static struct flag_table cce_err_status_flags[] = {
278 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
279 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
280 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
281 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
282 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
283 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
284 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
285 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
286 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
287 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
288 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
289 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
290 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
291 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
292 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
293 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
294 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
295 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
296 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
297 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
298 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
300 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
301 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
302 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
303 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
304 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
305 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
306 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
307 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
308 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
309 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
310 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
311 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
312 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
313 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
314 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
315 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
316 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
317 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
318 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
319 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
320 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
321 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
322 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
324 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
325 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
326 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
327 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
328 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
329 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
330 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
331 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
332 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
333 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
334 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
335 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
336 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
337 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
338 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
339 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
340 /*31*/	FLAG_ENTRY0("LATriggered",
341 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
342 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
343 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
344 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
345 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
346 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
347 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
348 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
349 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
350 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
351 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
352 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
353 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
354 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
355 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
356 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
357 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
358 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
359 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
360 /*41-63 reserved*/
361 };
362 
363 /*
364  * Misc Error flags
365  */
366 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
367 static struct flag_table misc_err_status_flags[] = {
368 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
369 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
370 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
371 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
372 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
373 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
374 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
375 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
376 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
377 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
378 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
379 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
380 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
381 };
382 
383 /*
384  * TXE PIO Error flags and consequences
385  */
386 static struct flag_table pio_err_status_flags[] = {
387 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
388 	SEC_WRITE_DROPPED,
389 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
390 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
391 	SEC_SPC_FREEZE,
392 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
393 /* 2*/	FLAG_ENTRY("PioCsrParity",
394 	SEC_SPC_FREEZE,
395 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
396 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
397 	SEC_SPC_FREEZE,
398 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
399 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
400 	SEC_SPC_FREEZE,
401 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
402 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
403 	SEC_SPC_FREEZE,
404 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
405 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
406 	SEC_SPC_FREEZE,
407 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
408 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
411 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
414 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
415 	SEC_SPC_FREEZE,
416 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
417 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
420 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
423 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
424 	SEC_SPC_FREEZE,
425 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
426 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
427 	0,
428 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
429 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
430 	0,
431 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
432 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
433 	SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
435 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
436 	SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
438 /*17*/	FLAG_ENTRY("PioInitSmIn",
439 	0,
440 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
441 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
444 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
445 	SEC_SPC_FREEZE,
446 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
447 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
448 	0,
449 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
450 /*21*/	FLAG_ENTRY("PioWriteDataParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
453 /*22*/	FLAG_ENTRY("PioStateMachine",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
456 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
457 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
458 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
459 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
460 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
462 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
463 	SEC_SPC_FREEZE,
464 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
465 /*26*/	FLAG_ENTRY("PioVlfSopParity",
466 	SEC_SPC_FREEZE,
467 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
468 /*27*/	FLAG_ENTRY("PioVlFifoParity",
469 	SEC_SPC_FREEZE,
470 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
471 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
472 	SEC_SPC_FREEZE,
473 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
474 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
475 	SEC_SPC_FREEZE,
476 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
477 /*30-31 reserved*/
478 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
479 	SEC_SPC_FREEZE,
480 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
481 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
482 	SEC_SPC_FREEZE,
483 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
484 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
485 	SEC_SPC_FREEZE,
486 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
487 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
488 	SEC_SPC_FREEZE,
489 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
490 /*36-63 reserved*/
491 };
492 
493 /* TXE PIO errors that cause an SPC freeze */
494 #define ALL_PIO_FREEZE_ERR \
495 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
524 
525 /*
526  * TXE SDMA Error flags
527  */
528 static struct flag_table sdma_err_status_flags[] = {
529 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
530 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
531 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
532 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
533 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
534 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
535 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
536 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
537 /*04-63 reserved*/
538 };
539 
540 /* TXE SDMA errors that cause an SPC freeze */
541 #define ALL_SDMA_FREEZE_ERR  \
542 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
543 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
545 
546 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
547 #define PORT_DISCARD_EGRESS_ERRS \
548 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
549 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
551 
552 /*
553  * TXE Egress Error flags
554  */
555 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
556 static struct flag_table egress_err_status_flags[] = {
557 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
558 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
559 /* 2 reserved */
560 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
561 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
562 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
563 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
564 /* 6 reserved */
565 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
566 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
567 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
568 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
569 /* 9-10 reserved */
570 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
571 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
572 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
573 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
574 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
575 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
576 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
577 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
578 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
579 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
580 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
581 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
582 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
583 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
584 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
585 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
586 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
587 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
588 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
589 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
590 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
591 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
592 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
593 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
594 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
595 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
596 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
597 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
598 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
599 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
600 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
601 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
602 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
603 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
604 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
605 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
606 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
607 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
608 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
609 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
610 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
611 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
612 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
613 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
614 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
615 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
616 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
617 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
618 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
619 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
620 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
621 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
622 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
623 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
624 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
625 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
626 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
627 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
628 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
629 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
630 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
631 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
632 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
633 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
634 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
635 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
636 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
637 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
638 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
639 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
640 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
641 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
642 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
643 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
644 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
645 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
646 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
647 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
648 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
649 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
650 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
651 };
652 
653 /*
654  * TXE Egress Error Info flags
655  */
656 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
657 static struct flag_table egress_err_info_flags[] = {
658 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
659 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
660 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
661 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
663 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
664 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
665 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
666 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
667 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
668 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
669 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
670 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
671 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
672 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
673 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
674 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
675 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
676 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
677 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
678 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
679 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
680 };
681 
682 /* TXE Egress errors that cause an SPC freeze */
683 #define ALL_TXE_EGRESS_FREEZE_ERR \
684 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
685 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
686 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
688 	| SEES(TX_LAUNCH_CSR_PARITY) \
689 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
690 	| SEES(TX_CONFIG_PARITY) \
691 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
700 	| SEES(TX_CREDIT_RETURN_PARITY))
701 
702 /*
703  * TXE Send error flags
704  */
705 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
706 static struct flag_table send_err_status_flags[] = {
707 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
708 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
709 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
710 };
711 
712 /*
713  * TXE Send Context Error flags and consequences
714  */
715 static struct flag_table sc_err_status_flags[] = {
716 /* 0*/	FLAG_ENTRY("InconsistentSop",
717 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
718 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
719 /* 1*/	FLAG_ENTRY("DisallowedPacket",
720 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
721 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
722 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
723 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
724 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
725 /* 3*/	FLAG_ENTRY("WriteOverflow",
726 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
727 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
728 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
729 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
730 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
731 /* 5-63 reserved*/
732 };
733 
734 /*
735  * RXE Receive Error flags
736  */
737 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
738 static struct flag_table rxe_err_status_flags[] = {
739 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
740 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
741 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
742 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
743 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
744 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
745 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
746 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
747 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
748 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
749 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
750 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
751 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
752 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
753 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
754 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
755 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
756 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
757 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
758 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
759 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
760 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
761 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
762 		RXES(RBUF_BLOCK_LIST_READ_COR)),
763 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
764 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
765 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
766 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
767 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
768 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
769 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
770 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
771 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
772 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
773 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
774 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
775 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
776 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
777 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
778 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
779 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
780 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
781 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
782 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
783 		RXES(RBUF_FL_INITDONE_PARITY)),
784 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
785 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
786 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
787 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
788 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
789 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
790 		RXES(LOOKUP_DES_PART1_UNC_COR)),
791 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
792 		RXES(LOOKUP_DES_PART2_PARITY)),
793 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
794 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
795 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
796 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
797 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
798 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
799 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
800 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
801 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
802 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
803 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
804 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
805 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
806 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
807 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
808 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
809 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
810 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
811 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
812 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
813 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
814 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
815 };
816 
817 /* RXE errors that will trigger an SPC freeze */
818 #define ALL_RXE_FREEZE_ERR  \
819 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
863 
864 #define RXE_FREEZE_ABORT_MASK \
865 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
866 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
868 
869 /*
870  * DCC Error Flags
871  */
872 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
873 static struct flag_table dcc_err_flags[] = {
874 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
875 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
876 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
877 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
878 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
880 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
881 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
882 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
883 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
884 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
885 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
886 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
887 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
888 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
889 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
890 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
891 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
892 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
894 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
895 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
896 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
897 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
898 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
899 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
900 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
901 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
902 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
903 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
904 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
905 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
906 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
908 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
909 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
910 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
911 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
912 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
913 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
914 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
915 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
916 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
917 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
919 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
920 };
921 
922 /*
923  * LCB error flags
924  */
925 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
926 static struct flag_table lcb_err_flags[] = {
927 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
928 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
929 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
930 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
931 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
932 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
933 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
934 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
935 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
936 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
937 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
938 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
939 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
940 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
941 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
942 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
943 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
944 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
945 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
946 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
947 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
948 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
949 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
950 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
951 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
952 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
953 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
954 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
955 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
956 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
957 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
958 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
959 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
960 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
961 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
962 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
963 };
964 
965 /*
966  * DC8051 Error Flags
967  */
968 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
969 static struct flag_table dc8051_err_flags[] = {
970 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
971 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
972 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
973 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
974 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
975 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
976 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
977 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
978 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
979 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
980 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
981 };
982 
983 /*
984  * DC8051 Information Error flags
985  *
986  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
987  */
988 static struct flag_table dc8051_info_err_flags[] = {
989 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
990 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
991 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
992 	FLAG_ENTRY0("Serdes internal loopback failure",
993 		    FAILED_SERDES_INTERNAL_LOOPBACK),
994 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
995 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
996 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
997 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
998 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
999 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1001 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1002 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1003 	FLAG_ENTRY0("External Device Request Timeout",
1004 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1005 };
1006 
1007 /*
1008  * DC8051 Information Host Information flags
1009  *
1010  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1011  */
1012 static struct flag_table dc8051_info_host_msg_flags[] = {
1013 	FLAG_ENTRY0("Host request done", 0x0001),
1014 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1015 	FLAG_ENTRY0("BC SMA message", 0x0004),
1016 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1017 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1018 	FLAG_ENTRY0("External device config request", 0x0020),
1019 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1020 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1021 	FLAG_ENTRY0("Link going down", 0x0100),
1022 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1023 };
1024 
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 			       u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 				      u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1035 				    u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 				  u8 *device_rev);
1038 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1039 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1040 			    u8 *tx_polarity_inversion,
1041 			    u8 *rx_polarity_inversion, u8 *max_rate);
1042 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1043 				unsigned int context, u64 err_status);
1044 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1045 static void handle_dcc_err(struct hfi1_devdata *dd,
1046 			   unsigned int context, u64 err_status);
1047 static void handle_lcb_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1050 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void set_partition_keys(struct hfi1_pportdata *ppd);
1058 static const char *link_state_name(u32 state);
1059 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1060 					  u32 state);
1061 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1062 			   u64 *out_data);
1063 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1064 static int thermal_init(struct hfi1_devdata *dd);
1065 
1066 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1067 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1068 					    int msecs);
1069 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1070 				  int msecs);
1071 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1072 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1073 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1074 				   int msecs);
1075 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1076 					 int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 			   unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088 
1089 /*
1090  * Error interrupt table entry.  This is used as input to the interrupt
1091  * "clear down" routine used for all second tier error interrupt register.
1092  * Second tier interrupt registers have a single bit representing them
1093  * in the top-level CceIntStatus.
1094  */
1095 struct err_reg_info {
1096 	u32 status;		/* status CSR offset */
1097 	u32 clear;		/* clear CSR offset */
1098 	u32 mask;		/* mask CSR offset */
1099 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 	const char *desc;
1101 };
1102 
1103 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1104 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1105 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1106 
1107 /*
1108  * Helpers for building HFI and DC error interrupt table entries.  Different
1109  * helpers are needed because of inconsistent register names.
1110  */
1111 #define EE(reg, handler, desc) \
1112 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 		handler, desc }
1114 #define DC_EE1(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116 #define DC_EE2(reg, handler, desc) \
1117 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118 
1119 /*
1120  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1121  * another register containing more information.
1122  */
1123 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1125 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1126 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1127 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1128 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1129 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1130 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1132 	/* the rest are reserved */
1133 };
1134 
1135 /*
1136  * Index into the Various section of the interrupt sources
1137  * corresponding to the Critical Temperature interrupt.
1138  */
1139 #define TCRIT_INT_SOURCE 4
1140 
1141 /*
1142  * SDMA error interrupt entry - refers to another register containing more
1143  * information.
1144  */
1145 static const struct err_reg_info sdma_eng_err =
1146 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147 
1148 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1150 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1151 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1152 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1153 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1154 	/* rest are reserved */
1155 };
1156 
1157 /*
1158  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159  * register can not be derived from the MTU value because 10K is not
1160  * a power of 2. Therefore, we need a constant. Everything else can
1161  * be calculated.
1162  */
1163 #define DCC_CFG_PORT_MTU_CAP_10240 7
1164 
1165 /*
1166  * Table of the DC grouping of error interrupts.  Each entry refers to
1167  * another register containing more information.
1168  */
1169 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1171 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1172 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1173 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1174 	/* the rest are reserved */
1175 };
1176 
1177 struct cntr_entry {
1178 	/*
1179 	 * counter name
1180 	 */
1181 	char *name;
1182 
1183 	/*
1184 	 * csr to read for name (if applicable)
1185 	 */
1186 	u64 csr;
1187 
1188 	/*
1189 	 * offset into dd or ppd to store the counter's value
1190 	 */
1191 	int offset;
1192 
1193 	/*
1194 	 * flags
1195 	 */
1196 	u8 flags;
1197 
1198 	/*
1199 	 * accessor for stat element, context either dd or ppd
1200 	 */
1201 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 		       int mode, u64 data);
1203 };
1204 
1205 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207 
1208 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209 { \
1210 	name, \
1211 	csr, \
1212 	offset, \
1213 	flags, \
1214 	accessor \
1215 }
1216 
1217 /* 32bit RXE */
1218 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 	  0, flags | CNTR_32BIT, \
1222 	  port_access_u32_csr)
1223 
1224 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225 CNTR_ELEM(#name, \
1226 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 	  0, flags | CNTR_32BIT, \
1228 	  dev_access_u32_csr)
1229 
1230 /* 64bit RXE */
1231 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 	  0, flags, \
1235 	  port_access_u64_csr)
1236 
1237 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 	  0, flags, \
1241 	  dev_access_u64_csr)
1242 
1243 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244 #define OVR_ELM(ctx) \
1245 CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 	  0, CNTR_NORMAL, port_access_u64_csr)
1248 
1249 /* 32bit TXE */
1250 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251 CNTR_ELEM(#name, \
1252 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 	  0, flags | CNTR_32BIT, \
1254 	  port_access_u32_csr)
1255 
1256 /* 64bit TXE */
1257 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258 CNTR_ELEM(#name, \
1259 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 	  0, flags, \
1261 	  port_access_u64_csr)
1262 
1263 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264 CNTR_ELEM(#name,\
1265 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1266 	  0, \
1267 	  flags, \
1268 	  dev_access_u64_csr)
1269 
1270 /* CCE */
1271 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272 CNTR_ELEM(#name, \
1273 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 	  0, flags | CNTR_32BIT, \
1275 	  dev_access_u32_csr)
1276 
1277 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278 CNTR_ELEM(#name, \
1279 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 	  0, flags | CNTR_32BIT, \
1281 	  dev_access_u32_csr)
1282 
1283 /* DC */
1284 #define DC_PERF_CNTR(name, counter, flags) \
1285 CNTR_ELEM(#name, \
1286 	  counter, \
1287 	  0, \
1288 	  flags, \
1289 	  dev_access_u64_csr)
1290 
1291 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1292 CNTR_ELEM(#name, \
1293 	  counter, \
1294 	  0, \
1295 	  flags, \
1296 	  dc_access_lcb_cntr)
1297 
1298 /* ibp counters */
1299 #define SW_IBP_CNTR(name, cntr) \
1300 CNTR_ELEM(#name, \
1301 	  0, \
1302 	  0, \
1303 	  CNTR_SYNTH, \
1304 	  access_ibp_##cntr)
1305 
1306 /**
1307  * hfi_addr_from_offset - return addr for readq/writeq
1308  * @dd - the dd device
1309  * @offset - the offset of the CSR within bar0
1310  *
1311  * This routine selects the appropriate base address
1312  * based on the indicated offset.
1313  */
1314 static inline void __iomem *hfi1_addr_from_offset(
1315 	const struct hfi1_devdata *dd,
1316 	u32 offset)
1317 {
1318 	if (offset >= dd->base2_start)
1319 		return dd->kregbase2 + (offset - dd->base2_start);
1320 	return dd->kregbase1 + offset;
1321 }
1322 
1323 /**
1324  * read_csr - read CSR at the indicated offset
1325  * @dd - the dd device
1326  * @offset - the offset of the CSR within bar0
1327  *
1328  * Return: the value read or all FF's if there
1329  * is no mapping
1330  */
1331 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332 {
1333 	if (dd->flags & HFI1_PRESENT)
1334 		return readq(hfi1_addr_from_offset(dd, offset));
1335 	return -1;
1336 }
1337 
1338 /**
1339  * write_csr - write CSR at the indicated offset
1340  * @dd - the dd device
1341  * @offset - the offset of the CSR within bar0
1342  * @value - value to write
1343  */
1344 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345 {
1346 	if (dd->flags & HFI1_PRESENT) {
1347 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348 
1349 		/* avoid write to RcvArray */
1350 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 			return;
1352 		writeq(value, base);
1353 	}
1354 }
1355 
1356 /**
1357  * get_csr_addr - return te iomem address for offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  *
1361  * Return: The iomem address to use in subsequent
1362  * writeq/readq operations.
1363  */
1364 void __iomem *get_csr_addr(
1365 	const struct hfi1_devdata *dd,
1366 	u32 offset)
1367 {
1368 	if (dd->flags & HFI1_PRESENT)
1369 		return hfi1_addr_from_offset(dd, offset);
1370 	return NULL;
1371 }
1372 
1373 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 				 int mode, u64 value)
1375 {
1376 	u64 ret;
1377 
1378 	if (mode == CNTR_MODE_R) {
1379 		ret = read_csr(dd, csr);
1380 	} else if (mode == CNTR_MODE_W) {
1381 		write_csr(dd, csr, value);
1382 		ret = value;
1383 	} else {
1384 		dd_dev_err(dd, "Invalid cntr register access mode");
1385 		return 0;
1386 	}
1387 
1388 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 	return ret;
1390 }
1391 
1392 /* Dev Access */
1393 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 			      void *context, int vl, int mode, u64 data)
1395 {
1396 	struct hfi1_devdata *dd = context;
1397 	u64 csr = entry->csr;
1398 
1399 	if (entry->flags & CNTR_SDMA) {
1400 		if (vl == CNTR_INVALID_VL)
1401 			return 0;
1402 		csr += 0x100 * vl;
1403 	} else {
1404 		if (vl != CNTR_INVALID_VL)
1405 			return 0;
1406 	}
1407 	return read_write_csr(dd, csr, mode, data);
1408 }
1409 
1410 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 			      void *context, int idx, int mode, u64 data)
1412 {
1413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414 
1415 	if (dd->per_sdma && idx < dd->num_sdma)
1416 		return dd->per_sdma[idx].err_cnt;
1417 	return 0;
1418 }
1419 
1420 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 			      void *context, int idx, int mode, u64 data)
1422 {
1423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424 
1425 	if (dd->per_sdma && idx < dd->num_sdma)
1426 		return dd->per_sdma[idx].sdma_int_cnt;
1427 	return 0;
1428 }
1429 
1430 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 				   void *context, int idx, int mode, u64 data)
1432 {
1433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434 
1435 	if (dd->per_sdma && idx < dd->num_sdma)
1436 		return dd->per_sdma[idx].idle_int_cnt;
1437 	return 0;
1438 }
1439 
1440 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 				       void *context, int idx, int mode,
1442 				       u64 data)
1443 {
1444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445 
1446 	if (dd->per_sdma && idx < dd->num_sdma)
1447 		return dd->per_sdma[idx].progress_int_cnt;
1448 	return 0;
1449 }
1450 
1451 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 			      int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_devdata *dd = context;
1455 
1456 	u64 val = 0;
1457 	u64 csr = entry->csr;
1458 
1459 	if (entry->flags & CNTR_VL) {
1460 		if (vl == CNTR_INVALID_VL)
1461 			return 0;
1462 		csr += 8 * vl;
1463 	} else {
1464 		if (vl != CNTR_INVALID_VL)
1465 			return 0;
1466 	}
1467 
1468 	val = read_write_csr(dd, csr, mode, data);
1469 	return val;
1470 }
1471 
1472 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 			      int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_devdata *dd = context;
1476 	u32 csr = entry->csr;
1477 	int ret = 0;
1478 
1479 	if (vl != CNTR_INVALID_VL)
1480 		return 0;
1481 	if (mode == CNTR_MODE_R)
1482 		ret = read_lcb_csr(dd, csr, &data);
1483 	else if (mode == CNTR_MODE_W)
1484 		ret = write_lcb_csr(dd, csr, data);
1485 
1486 	if (ret) {
1487 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 		return 0;
1489 	}
1490 
1491 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 	return data;
1493 }
1494 
1495 /* Port Access */
1496 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 			       int vl, int mode, u64 data)
1498 {
1499 	struct hfi1_pportdata *ppd = context;
1500 
1501 	if (vl != CNTR_INVALID_VL)
1502 		return 0;
1503 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1504 }
1505 
1506 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 			       void *context, int vl, int mode, u64 data)
1508 {
1509 	struct hfi1_pportdata *ppd = context;
1510 	u64 val;
1511 	u64 csr = entry->csr;
1512 
1513 	if (entry->flags & CNTR_VL) {
1514 		if (vl == CNTR_INVALID_VL)
1515 			return 0;
1516 		csr += 8 * vl;
1517 	} else {
1518 		if (vl != CNTR_INVALID_VL)
1519 			return 0;
1520 	}
1521 	val = read_write_csr(ppd->dd, csr, mode, data);
1522 	return val;
1523 }
1524 
1525 /* Software defined */
1526 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 				u64 data)
1528 {
1529 	u64 ret;
1530 
1531 	if (mode == CNTR_MODE_R) {
1532 		ret = *cntr;
1533 	} else if (mode == CNTR_MODE_W) {
1534 		*cntr = data;
1535 		ret = data;
1536 	} else {
1537 		dd_dev_err(dd, "Invalid cntr sw access mode");
1538 		return 0;
1539 	}
1540 
1541 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542 
1543 	return ret;
1544 }
1545 
1546 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 				 int vl, int mode, u64 data)
1548 {
1549 	struct hfi1_pportdata *ppd = context;
1550 
1551 	if (vl != CNTR_INVALID_VL)
1552 		return 0;
1553 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554 }
1555 
1556 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 				 int vl, int mode, u64 data)
1558 {
1559 	struct hfi1_pportdata *ppd = context;
1560 
1561 	if (vl != CNTR_INVALID_VL)
1562 		return 0;
1563 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564 }
1565 
1566 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 				       void *context, int vl, int mode,
1568 				       u64 data)
1569 {
1570 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571 
1572 	if (vl != CNTR_INVALID_VL)
1573 		return 0;
1574 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575 }
1576 
1577 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 	u64 zero = 0;
1582 	u64 *counter;
1583 
1584 	if (vl == CNTR_INVALID_VL)
1585 		counter = &ppd->port_xmit_discards;
1586 	else if (vl >= 0 && vl < C_VL_COUNT)
1587 		counter = &ppd->port_xmit_discards_vl[vl];
1588 	else
1589 		counter = &zero;
1590 
1591 	return read_write_sw(ppd->dd, counter, mode, data);
1592 }
1593 
1594 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 				       void *context, int vl, int mode,
1596 				       u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = context;
1599 
1600 	if (vl != CNTR_INVALID_VL)
1601 		return 0;
1602 
1603 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 			     mode, data);
1605 }
1606 
1607 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 				      void *context, int vl, int mode, u64 data)
1609 {
1610 	struct hfi1_pportdata *ppd = context;
1611 
1612 	if (vl != CNTR_INVALID_VL)
1613 		return 0;
1614 
1615 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 			     mode, data);
1617 }
1618 
1619 u64 get_all_cpu_total(u64 __percpu *cntr)
1620 {
1621 	int cpu;
1622 	u64 counter = 0;
1623 
1624 	for_each_possible_cpu(cpu)
1625 		counter += *per_cpu_ptr(cntr, cpu);
1626 	return counter;
1627 }
1628 
1629 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 			  u64 __percpu *cntr,
1631 			  int vl, int mode, u64 data)
1632 {
1633 	u64 ret = 0;
1634 
1635 	if (vl != CNTR_INVALID_VL)
1636 		return 0;
1637 
1638 	if (mode == CNTR_MODE_R) {
1639 		ret = get_all_cpu_total(cntr) - *z_val;
1640 	} else if (mode == CNTR_MODE_W) {
1641 		/* A write can only zero the counter */
1642 		if (data == 0)
1643 			*z_val = get_all_cpu_total(cntr);
1644 		else
1645 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 	} else {
1647 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 		return 0;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 			      void *context, int vl, int mode, u64 data)
1656 {
1657 	struct hfi1_devdata *dd = context;
1658 
1659 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 			      mode, data);
1661 }
1662 
1663 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 				   void *context, int vl, int mode, u64 data)
1665 {
1666 	struct hfi1_devdata *dd = context;
1667 
1668 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 			      mode, data);
1670 }
1671 
1672 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_piowait;
1678 }
1679 
1680 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684 
1685 	return dd->verbs_dev.n_piodrain;
1686 }
1687 
1688 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1689 			      void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = context;
1692 
1693 	return dd->verbs_dev.n_txwait;
1694 }
1695 
1696 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1697 			       void *context, int vl, int mode, u64 data)
1698 {
1699 	struct hfi1_devdata *dd = context;
1700 
1701 	return dd->verbs_dev.n_kmem_wait;
1702 }
1703 
1704 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1705 				   void *context, int vl, int mode, u64 data)
1706 {
1707 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1708 
1709 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1710 			      mode, data);
1711 }
1712 
1713 /* Software counters for the error status bits within MISC_ERR_STATUS */
1714 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1715 					     void *context, int vl, int mode,
1716 					     u64 data)
1717 {
1718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1719 
1720 	return dd->misc_err_status_cnt[12];
1721 }
1722 
1723 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1724 					  void *context, int vl, int mode,
1725 					  u64 data)
1726 {
1727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728 
1729 	return dd->misc_err_status_cnt[11];
1730 }
1731 
1732 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1733 					       void *context, int vl, int mode,
1734 					       u64 data)
1735 {
1736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737 
1738 	return dd->misc_err_status_cnt[10];
1739 }
1740 
1741 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1742 						 void *context, int vl,
1743 						 int mode, u64 data)
1744 {
1745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746 
1747 	return dd->misc_err_status_cnt[9];
1748 }
1749 
1750 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1751 					   void *context, int vl, int mode,
1752 					   u64 data)
1753 {
1754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755 
1756 	return dd->misc_err_status_cnt[8];
1757 }
1758 
1759 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1760 				const struct cntr_entry *entry,
1761 				void *context, int vl, int mode, u64 data)
1762 {
1763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764 
1765 	return dd->misc_err_status_cnt[7];
1766 }
1767 
1768 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1769 						void *context, int vl,
1770 						int mode, u64 data)
1771 {
1772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773 
1774 	return dd->misc_err_status_cnt[6];
1775 }
1776 
1777 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1778 					      void *context, int vl, int mode,
1779 					      u64 data)
1780 {
1781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782 
1783 	return dd->misc_err_status_cnt[5];
1784 }
1785 
1786 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1787 					    void *context, int vl, int mode,
1788 					    u64 data)
1789 {
1790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791 
1792 	return dd->misc_err_status_cnt[4];
1793 }
1794 
1795 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1796 						 void *context, int vl,
1797 						 int mode, u64 data)
1798 {
1799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800 
1801 	return dd->misc_err_status_cnt[3];
1802 }
1803 
1804 static u64 access_misc_csr_write_bad_addr_err_cnt(
1805 				const struct cntr_entry *entry,
1806 				void *context, int vl, int mode, u64 data)
1807 {
1808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809 
1810 	return dd->misc_err_status_cnt[2];
1811 }
1812 
1813 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1814 						 void *context, int vl,
1815 						 int mode, u64 data)
1816 {
1817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818 
1819 	return dd->misc_err_status_cnt[1];
1820 }
1821 
1822 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1823 					  void *context, int vl, int mode,
1824 					  u64 data)
1825 {
1826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827 
1828 	return dd->misc_err_status_cnt[0];
1829 }
1830 
1831 /*
1832  * Software counter for the aggregate of
1833  * individual CceErrStatus counters
1834  */
1835 static u64 access_sw_cce_err_status_aggregated_cnt(
1836 				const struct cntr_entry *entry,
1837 				void *context, int vl, int mode, u64 data)
1838 {
1839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1840 
1841 	return dd->sw_cce_err_status_aggregate;
1842 }
1843 
1844 /*
1845  * Software counters corresponding to each of the
1846  * error status bits within CceErrStatus
1847  */
1848 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 					      void *context, int vl, int mode,
1850 					      u64 data)
1851 {
1852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853 
1854 	return dd->cce_err_status_cnt[40];
1855 }
1856 
1857 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1858 					  void *context, int vl, int mode,
1859 					  u64 data)
1860 {
1861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862 
1863 	return dd->cce_err_status_cnt[39];
1864 }
1865 
1866 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1867 					  void *context, int vl, int mode,
1868 					  u64 data)
1869 {
1870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871 
1872 	return dd->cce_err_status_cnt[38];
1873 }
1874 
1875 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1876 					     void *context, int vl, int mode,
1877 					     u64 data)
1878 {
1879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880 
1881 	return dd->cce_err_status_cnt[37];
1882 }
1883 
1884 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1885 					     void *context, int vl, int mode,
1886 					     u64 data)
1887 {
1888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889 
1890 	return dd->cce_err_status_cnt[36];
1891 }
1892 
1893 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1894 				const struct cntr_entry *entry,
1895 				void *context, int vl, int mode, u64 data)
1896 {
1897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898 
1899 	return dd->cce_err_status_cnt[35];
1900 }
1901 
1902 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1903 				const struct cntr_entry *entry,
1904 				void *context, int vl, int mode, u64 data)
1905 {
1906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907 
1908 	return dd->cce_err_status_cnt[34];
1909 }
1910 
1911 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1912 						 void *context, int vl,
1913 						 int mode, u64 data)
1914 {
1915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916 
1917 	return dd->cce_err_status_cnt[33];
1918 }
1919 
1920 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1921 						void *context, int vl, int mode,
1922 						u64 data)
1923 {
1924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925 
1926 	return dd->cce_err_status_cnt[32];
1927 }
1928 
1929 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1930 				   void *context, int vl, int mode, u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[31];
1935 }
1936 
1937 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1938 					       void *context, int vl, int mode,
1939 					       u64 data)
1940 {
1941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942 
1943 	return dd->cce_err_status_cnt[30];
1944 }
1945 
1946 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1947 					      void *context, int vl, int mode,
1948 					      u64 data)
1949 {
1950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951 
1952 	return dd->cce_err_status_cnt[29];
1953 }
1954 
1955 static u64 access_pcic_transmit_back_parity_err_cnt(
1956 				const struct cntr_entry *entry,
1957 				void *context, int vl, int mode, u64 data)
1958 {
1959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960 
1961 	return dd->cce_err_status_cnt[28];
1962 }
1963 
1964 static u64 access_pcic_transmit_front_parity_err_cnt(
1965 				const struct cntr_entry *entry,
1966 				void *context, int vl, int mode, u64 data)
1967 {
1968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969 
1970 	return dd->cce_err_status_cnt[27];
1971 }
1972 
1973 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1974 					     void *context, int vl, int mode,
1975 					     u64 data)
1976 {
1977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978 
1979 	return dd->cce_err_status_cnt[26];
1980 }
1981 
1982 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1983 					    void *context, int vl, int mode,
1984 					    u64 data)
1985 {
1986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987 
1988 	return dd->cce_err_status_cnt[25];
1989 }
1990 
1991 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1992 					      void *context, int vl, int mode,
1993 					      u64 data)
1994 {
1995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996 
1997 	return dd->cce_err_status_cnt[24];
1998 }
1999 
2000 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2001 					     void *context, int vl, int mode,
2002 					     u64 data)
2003 {
2004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005 
2006 	return dd->cce_err_status_cnt[23];
2007 }
2008 
2009 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2010 						 void *context, int vl,
2011 						 int mode, u64 data)
2012 {
2013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014 
2015 	return dd->cce_err_status_cnt[22];
2016 }
2017 
2018 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2019 					 void *context, int vl, int mode,
2020 					 u64 data)
2021 {
2022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023 
2024 	return dd->cce_err_status_cnt[21];
2025 }
2026 
2027 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2028 				const struct cntr_entry *entry,
2029 				void *context, int vl, int mode, u64 data)
2030 {
2031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032 
2033 	return dd->cce_err_status_cnt[20];
2034 }
2035 
2036 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2037 						 void *context, int vl,
2038 						 int mode, u64 data)
2039 {
2040 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041 
2042 	return dd->cce_err_status_cnt[19];
2043 }
2044 
2045 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2046 					     void *context, int vl, int mode,
2047 					     u64 data)
2048 {
2049 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050 
2051 	return dd->cce_err_status_cnt[18];
2052 }
2053 
2054 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2055 					    void *context, int vl, int mode,
2056 					    u64 data)
2057 {
2058 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059 
2060 	return dd->cce_err_status_cnt[17];
2061 }
2062 
2063 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2064 					      void *context, int vl, int mode,
2065 					      u64 data)
2066 {
2067 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068 
2069 	return dd->cce_err_status_cnt[16];
2070 }
2071 
2072 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2073 					     void *context, int vl, int mode,
2074 					     u64 data)
2075 {
2076 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077 
2078 	return dd->cce_err_status_cnt[15];
2079 }
2080 
2081 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2082 						 void *context, int vl,
2083 						 int mode, u64 data)
2084 {
2085 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086 
2087 	return dd->cce_err_status_cnt[14];
2088 }
2089 
2090 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2091 					     void *context, int vl, int mode,
2092 					     u64 data)
2093 {
2094 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095 
2096 	return dd->cce_err_status_cnt[13];
2097 }
2098 
2099 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2100 				const struct cntr_entry *entry,
2101 				void *context, int vl, int mode, u64 data)
2102 {
2103 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104 
2105 	return dd->cce_err_status_cnt[12];
2106 }
2107 
2108 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2109 				const struct cntr_entry *entry,
2110 				void *context, int vl, int mode, u64 data)
2111 {
2112 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113 
2114 	return dd->cce_err_status_cnt[11];
2115 }
2116 
2117 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2118 				const struct cntr_entry *entry,
2119 				void *context, int vl, int mode, u64 data)
2120 {
2121 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122 
2123 	return dd->cce_err_status_cnt[10];
2124 }
2125 
2126 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2127 				const struct cntr_entry *entry,
2128 				void *context, int vl, int mode, u64 data)
2129 {
2130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131 
2132 	return dd->cce_err_status_cnt[9];
2133 }
2134 
2135 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2136 				const struct cntr_entry *entry,
2137 				void *context, int vl, int mode, u64 data)
2138 {
2139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140 
2141 	return dd->cce_err_status_cnt[8];
2142 }
2143 
2144 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2145 						 void *context, int vl,
2146 						 int mode, u64 data)
2147 {
2148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149 
2150 	return dd->cce_err_status_cnt[7];
2151 }
2152 
2153 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2154 				const struct cntr_entry *entry,
2155 				void *context, int vl, int mode, u64 data)
2156 {
2157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158 
2159 	return dd->cce_err_status_cnt[6];
2160 }
2161 
2162 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2163 					       void *context, int vl, int mode,
2164 					       u64 data)
2165 {
2166 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167 
2168 	return dd->cce_err_status_cnt[5];
2169 }
2170 
2171 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2172 					  void *context, int vl, int mode,
2173 					  u64 data)
2174 {
2175 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176 
2177 	return dd->cce_err_status_cnt[4];
2178 }
2179 
2180 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2181 				const struct cntr_entry *entry,
2182 				void *context, int vl, int mode, u64 data)
2183 {
2184 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185 
2186 	return dd->cce_err_status_cnt[3];
2187 }
2188 
2189 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2190 						 void *context, int vl,
2191 						 int mode, u64 data)
2192 {
2193 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194 
2195 	return dd->cce_err_status_cnt[2];
2196 }
2197 
2198 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2199 						void *context, int vl,
2200 						int mode, u64 data)
2201 {
2202 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203 
2204 	return dd->cce_err_status_cnt[1];
2205 }
2206 
2207 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2208 					 void *context, int vl, int mode,
2209 					 u64 data)
2210 {
2211 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212 
2213 	return dd->cce_err_status_cnt[0];
2214 }
2215 
2216 /*
2217  * Software counters corresponding to each of the
2218  * error status bits within RcvErrStatus
2219  */
2220 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2221 					void *context, int vl, int mode,
2222 					u64 data)
2223 {
2224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2225 
2226 	return dd->rcv_err_status_cnt[63];
2227 }
2228 
2229 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2230 						void *context, int vl,
2231 						int mode, u64 data)
2232 {
2233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234 
2235 	return dd->rcv_err_status_cnt[62];
2236 }
2237 
2238 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2239 					       void *context, int vl, int mode,
2240 					       u64 data)
2241 {
2242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243 
2244 	return dd->rcv_err_status_cnt[61];
2245 }
2246 
2247 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2248 					 void *context, int vl, int mode,
2249 					 u64 data)
2250 {
2251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252 
2253 	return dd->rcv_err_status_cnt[60];
2254 }
2255 
2256 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2257 						 void *context, int vl,
2258 						 int mode, u64 data)
2259 {
2260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261 
2262 	return dd->rcv_err_status_cnt[59];
2263 }
2264 
2265 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266 						 void *context, int vl,
2267 						 int mode, u64 data)
2268 {
2269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270 
2271 	return dd->rcv_err_status_cnt[58];
2272 }
2273 
2274 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2275 					    void *context, int vl, int mode,
2276 					    u64 data)
2277 {
2278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279 
2280 	return dd->rcv_err_status_cnt[57];
2281 }
2282 
2283 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2284 					   void *context, int vl, int mode,
2285 					   u64 data)
2286 {
2287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288 
2289 	return dd->rcv_err_status_cnt[56];
2290 }
2291 
2292 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2293 					   void *context, int vl, int mode,
2294 					   u64 data)
2295 {
2296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297 
2298 	return dd->rcv_err_status_cnt[55];
2299 }
2300 
2301 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2302 				const struct cntr_entry *entry,
2303 				void *context, int vl, int mode, u64 data)
2304 {
2305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306 
2307 	return dd->rcv_err_status_cnt[54];
2308 }
2309 
2310 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2311 				const struct cntr_entry *entry,
2312 				void *context, int vl, int mode, u64 data)
2313 {
2314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315 
2316 	return dd->rcv_err_status_cnt[53];
2317 }
2318 
2319 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2320 						 void *context, int vl,
2321 						 int mode, u64 data)
2322 {
2323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324 
2325 	return dd->rcv_err_status_cnt[52];
2326 }
2327 
2328 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2329 						 void *context, int vl,
2330 						 int mode, u64 data)
2331 {
2332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333 
2334 	return dd->rcv_err_status_cnt[51];
2335 }
2336 
2337 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2338 						 void *context, int vl,
2339 						 int mode, u64 data)
2340 {
2341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342 
2343 	return dd->rcv_err_status_cnt[50];
2344 }
2345 
2346 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2347 						 void *context, int vl,
2348 						 int mode, u64 data)
2349 {
2350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351 
2352 	return dd->rcv_err_status_cnt[49];
2353 }
2354 
2355 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2356 						 void *context, int vl,
2357 						 int mode, u64 data)
2358 {
2359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360 
2361 	return dd->rcv_err_status_cnt[48];
2362 }
2363 
2364 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2365 						 void *context, int vl,
2366 						 int mode, u64 data)
2367 {
2368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369 
2370 	return dd->rcv_err_status_cnt[47];
2371 }
2372 
2373 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2374 					 void *context, int vl, int mode,
2375 					 u64 data)
2376 {
2377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378 
2379 	return dd->rcv_err_status_cnt[46];
2380 }
2381 
2382 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2383 				const struct cntr_entry *entry,
2384 				void *context, int vl, int mode, u64 data)
2385 {
2386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387 
2388 	return dd->rcv_err_status_cnt[45];
2389 }
2390 
2391 static u64 access_rx_lookup_csr_parity_err_cnt(
2392 				const struct cntr_entry *entry,
2393 				void *context, int vl, int mode, u64 data)
2394 {
2395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396 
2397 	return dd->rcv_err_status_cnt[44];
2398 }
2399 
2400 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2401 				const struct cntr_entry *entry,
2402 				void *context, int vl, int mode, u64 data)
2403 {
2404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405 
2406 	return dd->rcv_err_status_cnt[43];
2407 }
2408 
2409 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2410 				const struct cntr_entry *entry,
2411 				void *context, int vl, int mode, u64 data)
2412 {
2413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414 
2415 	return dd->rcv_err_status_cnt[42];
2416 }
2417 
2418 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2419 				const struct cntr_entry *entry,
2420 				void *context, int vl, int mode, u64 data)
2421 {
2422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423 
2424 	return dd->rcv_err_status_cnt[41];
2425 }
2426 
2427 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2428 				const struct cntr_entry *entry,
2429 				void *context, int vl, int mode, u64 data)
2430 {
2431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432 
2433 	return dd->rcv_err_status_cnt[40];
2434 }
2435 
2436 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2437 				const struct cntr_entry *entry,
2438 				void *context, int vl, int mode, u64 data)
2439 {
2440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441 
2442 	return dd->rcv_err_status_cnt[39];
2443 }
2444 
2445 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2446 				const struct cntr_entry *entry,
2447 				void *context, int vl, int mode, u64 data)
2448 {
2449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450 
2451 	return dd->rcv_err_status_cnt[38];
2452 }
2453 
2454 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2455 				const struct cntr_entry *entry,
2456 				void *context, int vl, int mode, u64 data)
2457 {
2458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459 
2460 	return dd->rcv_err_status_cnt[37];
2461 }
2462 
2463 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2464 				const struct cntr_entry *entry,
2465 				void *context, int vl, int mode, u64 data)
2466 {
2467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468 
2469 	return dd->rcv_err_status_cnt[36];
2470 }
2471 
2472 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2473 				const struct cntr_entry *entry,
2474 				void *context, int vl, int mode, u64 data)
2475 {
2476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477 
2478 	return dd->rcv_err_status_cnt[35];
2479 }
2480 
2481 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2482 				const struct cntr_entry *entry,
2483 				void *context, int vl, int mode, u64 data)
2484 {
2485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486 
2487 	return dd->rcv_err_status_cnt[34];
2488 }
2489 
2490 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2491 				const struct cntr_entry *entry,
2492 				void *context, int vl, int mode, u64 data)
2493 {
2494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495 
2496 	return dd->rcv_err_status_cnt[33];
2497 }
2498 
2499 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2500 					void *context, int vl, int mode,
2501 					u64 data)
2502 {
2503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504 
2505 	return dd->rcv_err_status_cnt[32];
2506 }
2507 
2508 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2509 				       void *context, int vl, int mode,
2510 				       u64 data)
2511 {
2512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513 
2514 	return dd->rcv_err_status_cnt[31];
2515 }
2516 
2517 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2518 					  void *context, int vl, int mode,
2519 					  u64 data)
2520 {
2521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522 
2523 	return dd->rcv_err_status_cnt[30];
2524 }
2525 
2526 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2527 					     void *context, int vl, int mode,
2528 					     u64 data)
2529 {
2530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531 
2532 	return dd->rcv_err_status_cnt[29];
2533 }
2534 
2535 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2536 						 void *context, int vl,
2537 						 int mode, u64 data)
2538 {
2539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540 
2541 	return dd->rcv_err_status_cnt[28];
2542 }
2543 
2544 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2545 				const struct cntr_entry *entry,
2546 				void *context, int vl, int mode, u64 data)
2547 {
2548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549 
2550 	return dd->rcv_err_status_cnt[27];
2551 }
2552 
2553 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2554 				const struct cntr_entry *entry,
2555 				void *context, int vl, int mode, u64 data)
2556 {
2557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558 
2559 	return dd->rcv_err_status_cnt[26];
2560 }
2561 
2562 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2563 				const struct cntr_entry *entry,
2564 				void *context, int vl, int mode, u64 data)
2565 {
2566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567 
2568 	return dd->rcv_err_status_cnt[25];
2569 }
2570 
2571 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2572 				const struct cntr_entry *entry,
2573 				void *context, int vl, int mode, u64 data)
2574 {
2575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576 
2577 	return dd->rcv_err_status_cnt[24];
2578 }
2579 
2580 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2581 				const struct cntr_entry *entry,
2582 				void *context, int vl, int mode, u64 data)
2583 {
2584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585 
2586 	return dd->rcv_err_status_cnt[23];
2587 }
2588 
2589 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2590 				const struct cntr_entry *entry,
2591 				void *context, int vl, int mode, u64 data)
2592 {
2593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594 
2595 	return dd->rcv_err_status_cnt[22];
2596 }
2597 
2598 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2599 				const struct cntr_entry *entry,
2600 				void *context, int vl, int mode, u64 data)
2601 {
2602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603 
2604 	return dd->rcv_err_status_cnt[21];
2605 }
2606 
2607 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2608 				const struct cntr_entry *entry,
2609 				void *context, int vl, int mode, u64 data)
2610 {
2611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612 
2613 	return dd->rcv_err_status_cnt[20];
2614 }
2615 
2616 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2617 				const struct cntr_entry *entry,
2618 				void *context, int vl, int mode, u64 data)
2619 {
2620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621 
2622 	return dd->rcv_err_status_cnt[19];
2623 }
2624 
2625 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2626 						 void *context, int vl,
2627 						 int mode, u64 data)
2628 {
2629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630 
2631 	return dd->rcv_err_status_cnt[18];
2632 }
2633 
2634 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2635 						 void *context, int vl,
2636 						 int mode, u64 data)
2637 {
2638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639 
2640 	return dd->rcv_err_status_cnt[17];
2641 }
2642 
2643 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2644 				const struct cntr_entry *entry,
2645 				void *context, int vl, int mode, u64 data)
2646 {
2647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648 
2649 	return dd->rcv_err_status_cnt[16];
2650 }
2651 
2652 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2653 				const struct cntr_entry *entry,
2654 				void *context, int vl, int mode, u64 data)
2655 {
2656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657 
2658 	return dd->rcv_err_status_cnt[15];
2659 }
2660 
2661 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2662 						void *context, int vl,
2663 						int mode, u64 data)
2664 {
2665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666 
2667 	return dd->rcv_err_status_cnt[14];
2668 }
2669 
2670 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2671 						void *context, int vl,
2672 						int mode, u64 data)
2673 {
2674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675 
2676 	return dd->rcv_err_status_cnt[13];
2677 }
2678 
2679 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2680 					      void *context, int vl, int mode,
2681 					      u64 data)
2682 {
2683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684 
2685 	return dd->rcv_err_status_cnt[12];
2686 }
2687 
2688 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2689 					  void *context, int vl, int mode,
2690 					  u64 data)
2691 {
2692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693 
2694 	return dd->rcv_err_status_cnt[11];
2695 }
2696 
2697 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2698 					  void *context, int vl, int mode,
2699 					  u64 data)
2700 {
2701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702 
2703 	return dd->rcv_err_status_cnt[10];
2704 }
2705 
2706 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2707 					       void *context, int vl, int mode,
2708 					       u64 data)
2709 {
2710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711 
2712 	return dd->rcv_err_status_cnt[9];
2713 }
2714 
2715 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2716 					    void *context, int vl, int mode,
2717 					    u64 data)
2718 {
2719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720 
2721 	return dd->rcv_err_status_cnt[8];
2722 }
2723 
2724 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2725 				const struct cntr_entry *entry,
2726 				void *context, int vl, int mode, u64 data)
2727 {
2728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729 
2730 	return dd->rcv_err_status_cnt[7];
2731 }
2732 
2733 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2734 				const struct cntr_entry *entry,
2735 				void *context, int vl, int mode, u64 data)
2736 {
2737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738 
2739 	return dd->rcv_err_status_cnt[6];
2740 }
2741 
2742 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2743 					  void *context, int vl, int mode,
2744 					  u64 data)
2745 {
2746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747 
2748 	return dd->rcv_err_status_cnt[5];
2749 }
2750 
2751 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2752 					  void *context, int vl, int mode,
2753 					  u64 data)
2754 {
2755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756 
2757 	return dd->rcv_err_status_cnt[4];
2758 }
2759 
2760 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2761 					 void *context, int vl, int mode,
2762 					 u64 data)
2763 {
2764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765 
2766 	return dd->rcv_err_status_cnt[3];
2767 }
2768 
2769 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2770 					 void *context, int vl, int mode,
2771 					 u64 data)
2772 {
2773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774 
2775 	return dd->rcv_err_status_cnt[2];
2776 }
2777 
2778 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2779 					    void *context, int vl, int mode,
2780 					    u64 data)
2781 {
2782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783 
2784 	return dd->rcv_err_status_cnt[1];
2785 }
2786 
2787 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2788 					 void *context, int vl, int mode,
2789 					 u64 data)
2790 {
2791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792 
2793 	return dd->rcv_err_status_cnt[0];
2794 }
2795 
2796 /*
2797  * Software counters corresponding to each of the
2798  * error status bits within SendPioErrStatus
2799  */
2800 static u64 access_pio_pec_sop_head_parity_err_cnt(
2801 				const struct cntr_entry *entry,
2802 				void *context, int vl, int mode, u64 data)
2803 {
2804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2805 
2806 	return dd->send_pio_err_status_cnt[35];
2807 }
2808 
2809 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2810 				const struct cntr_entry *entry,
2811 				void *context, int vl, int mode, u64 data)
2812 {
2813 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814 
2815 	return dd->send_pio_err_status_cnt[34];
2816 }
2817 
2818 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2819 				const struct cntr_entry *entry,
2820 				void *context, int vl, int mode, u64 data)
2821 {
2822 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823 
2824 	return dd->send_pio_err_status_cnt[33];
2825 }
2826 
2827 static u64 access_pio_current_free_cnt_parity_err_cnt(
2828 				const struct cntr_entry *entry,
2829 				void *context, int vl, int mode, u64 data)
2830 {
2831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832 
2833 	return dd->send_pio_err_status_cnt[32];
2834 }
2835 
2836 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2837 					  void *context, int vl, int mode,
2838 					  u64 data)
2839 {
2840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841 
2842 	return dd->send_pio_err_status_cnt[31];
2843 }
2844 
2845 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2846 					  void *context, int vl, int mode,
2847 					  u64 data)
2848 {
2849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850 
2851 	return dd->send_pio_err_status_cnt[30];
2852 }
2853 
2854 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2855 					   void *context, int vl, int mode,
2856 					   u64 data)
2857 {
2858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859 
2860 	return dd->send_pio_err_status_cnt[29];
2861 }
2862 
2863 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2864 				const struct cntr_entry *entry,
2865 				void *context, int vl, int mode, u64 data)
2866 {
2867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868 
2869 	return dd->send_pio_err_status_cnt[28];
2870 }
2871 
2872 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2873 					     void *context, int vl, int mode,
2874 					     u64 data)
2875 {
2876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877 
2878 	return dd->send_pio_err_status_cnt[27];
2879 }
2880 
2881 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2882 					     void *context, int vl, int mode,
2883 					     u64 data)
2884 {
2885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886 
2887 	return dd->send_pio_err_status_cnt[26];
2888 }
2889 
2890 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2891 						void *context, int vl,
2892 						int mode, u64 data)
2893 {
2894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895 
2896 	return dd->send_pio_err_status_cnt[25];
2897 }
2898 
2899 static u64 access_pio_block_qw_count_parity_err_cnt(
2900 				const struct cntr_entry *entry,
2901 				void *context, int vl, int mode, u64 data)
2902 {
2903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904 
2905 	return dd->send_pio_err_status_cnt[24];
2906 }
2907 
2908 static u64 access_pio_write_qw_valid_parity_err_cnt(
2909 				const struct cntr_entry *entry,
2910 				void *context, int vl, int mode, u64 data)
2911 {
2912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913 
2914 	return dd->send_pio_err_status_cnt[23];
2915 }
2916 
2917 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2918 					    void *context, int vl, int mode,
2919 					    u64 data)
2920 {
2921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922 
2923 	return dd->send_pio_err_status_cnt[22];
2924 }
2925 
2926 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2927 						void *context, int vl,
2928 						int mode, u64 data)
2929 {
2930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931 
2932 	return dd->send_pio_err_status_cnt[21];
2933 }
2934 
2935 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2936 						void *context, int vl,
2937 						int mode, u64 data)
2938 {
2939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940 
2941 	return dd->send_pio_err_status_cnt[20];
2942 }
2943 
2944 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2945 						void *context, int vl,
2946 						int mode, u64 data)
2947 {
2948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949 
2950 	return dd->send_pio_err_status_cnt[19];
2951 }
2952 
2953 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2954 				const struct cntr_entry *entry,
2955 				void *context, int vl, int mode, u64 data)
2956 {
2957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958 
2959 	return dd->send_pio_err_status_cnt[18];
2960 }
2961 
2962 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2963 					 void *context, int vl, int mode,
2964 					 u64 data)
2965 {
2966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967 
2968 	return dd->send_pio_err_status_cnt[17];
2969 }
2970 
2971 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2972 					    void *context, int vl, int mode,
2973 					    u64 data)
2974 {
2975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976 
2977 	return dd->send_pio_err_status_cnt[16];
2978 }
2979 
2980 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2981 				const struct cntr_entry *entry,
2982 				void *context, int vl, int mode, u64 data)
2983 {
2984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985 
2986 	return dd->send_pio_err_status_cnt[15];
2987 }
2988 
2989 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2990 				const struct cntr_entry *entry,
2991 				void *context, int vl, int mode, u64 data)
2992 {
2993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994 
2995 	return dd->send_pio_err_status_cnt[14];
2996 }
2997 
2998 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2999 				const struct cntr_entry *entry,
3000 				void *context, int vl, int mode, u64 data)
3001 {
3002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003 
3004 	return dd->send_pio_err_status_cnt[13];
3005 }
3006 
3007 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3008 				const struct cntr_entry *entry,
3009 				void *context, int vl, int mode, u64 data)
3010 {
3011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012 
3013 	return dd->send_pio_err_status_cnt[12];
3014 }
3015 
3016 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3017 				const struct cntr_entry *entry,
3018 				void *context, int vl, int mode, u64 data)
3019 {
3020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021 
3022 	return dd->send_pio_err_status_cnt[11];
3023 }
3024 
3025 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3026 				const struct cntr_entry *entry,
3027 				void *context, int vl, int mode, u64 data)
3028 {
3029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030 
3031 	return dd->send_pio_err_status_cnt[10];
3032 }
3033 
3034 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3035 				const struct cntr_entry *entry,
3036 				void *context, int vl, int mode, u64 data)
3037 {
3038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039 
3040 	return dd->send_pio_err_status_cnt[9];
3041 }
3042 
3043 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3044 				const struct cntr_entry *entry,
3045 				void *context, int vl, int mode, u64 data)
3046 {
3047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048 
3049 	return dd->send_pio_err_status_cnt[8];
3050 }
3051 
3052 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3053 				const struct cntr_entry *entry,
3054 				void *context, int vl, int mode, u64 data)
3055 {
3056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057 
3058 	return dd->send_pio_err_status_cnt[7];
3059 }
3060 
3061 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3062 					      void *context, int vl, int mode,
3063 					      u64 data)
3064 {
3065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066 
3067 	return dd->send_pio_err_status_cnt[6];
3068 }
3069 
3070 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071 					      void *context, int vl, int mode,
3072 					      u64 data)
3073 {
3074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075 
3076 	return dd->send_pio_err_status_cnt[5];
3077 }
3078 
3079 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3080 					   void *context, int vl, int mode,
3081 					   u64 data)
3082 {
3083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084 
3085 	return dd->send_pio_err_status_cnt[4];
3086 }
3087 
3088 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3089 					   void *context, int vl, int mode,
3090 					   u64 data)
3091 {
3092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093 
3094 	return dd->send_pio_err_status_cnt[3];
3095 }
3096 
3097 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3098 					 void *context, int vl, int mode,
3099 					 u64 data)
3100 {
3101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102 
3103 	return dd->send_pio_err_status_cnt[2];
3104 }
3105 
3106 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3107 						void *context, int vl,
3108 						int mode, u64 data)
3109 {
3110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111 
3112 	return dd->send_pio_err_status_cnt[1];
3113 }
3114 
3115 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3116 					     void *context, int vl, int mode,
3117 					     u64 data)
3118 {
3119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120 
3121 	return dd->send_pio_err_status_cnt[0];
3122 }
3123 
3124 /*
3125  * Software counters corresponding to each of the
3126  * error status bits within SendDmaErrStatus
3127  */
3128 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3129 				const struct cntr_entry *entry,
3130 				void *context, int vl, int mode, u64 data)
3131 {
3132 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3133 
3134 	return dd->send_dma_err_status_cnt[3];
3135 }
3136 
3137 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3138 				const struct cntr_entry *entry,
3139 				void *context, int vl, int mode, u64 data)
3140 {
3141 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142 
3143 	return dd->send_dma_err_status_cnt[2];
3144 }
3145 
3146 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3147 					  void *context, int vl, int mode,
3148 					  u64 data)
3149 {
3150 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151 
3152 	return dd->send_dma_err_status_cnt[1];
3153 }
3154 
3155 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3156 				       void *context, int vl, int mode,
3157 				       u64 data)
3158 {
3159 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160 
3161 	return dd->send_dma_err_status_cnt[0];
3162 }
3163 
3164 /*
3165  * Software counters corresponding to each of the
3166  * error status bits within SendEgressErrStatus
3167  */
3168 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3169 				const struct cntr_entry *entry,
3170 				void *context, int vl, int mode, u64 data)
3171 {
3172 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3173 
3174 	return dd->send_egress_err_status_cnt[63];
3175 }
3176 
3177 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3178 				const struct cntr_entry *entry,
3179 				void *context, int vl, int mode, u64 data)
3180 {
3181 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182 
3183 	return dd->send_egress_err_status_cnt[62];
3184 }
3185 
3186 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3187 					     void *context, int vl, int mode,
3188 					     u64 data)
3189 {
3190 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191 
3192 	return dd->send_egress_err_status_cnt[61];
3193 }
3194 
3195 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3196 						 void *context, int vl,
3197 						 int mode, u64 data)
3198 {
3199 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200 
3201 	return dd->send_egress_err_status_cnt[60];
3202 }
3203 
3204 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3205 				const struct cntr_entry *entry,
3206 				void *context, int vl, int mode, u64 data)
3207 {
3208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209 
3210 	return dd->send_egress_err_status_cnt[59];
3211 }
3212 
3213 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3214 					void *context, int vl, int mode,
3215 					u64 data)
3216 {
3217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218 
3219 	return dd->send_egress_err_status_cnt[58];
3220 }
3221 
3222 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3223 					    void *context, int vl, int mode,
3224 					    u64 data)
3225 {
3226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227 
3228 	return dd->send_egress_err_status_cnt[57];
3229 }
3230 
3231 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3232 					      void *context, int vl, int mode,
3233 					      u64 data)
3234 {
3235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236 
3237 	return dd->send_egress_err_status_cnt[56];
3238 }
3239 
3240 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3241 					      void *context, int vl, int mode,
3242 					      u64 data)
3243 {
3244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245 
3246 	return dd->send_egress_err_status_cnt[55];
3247 }
3248 
3249 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3250 					      void *context, int vl, int mode,
3251 					      u64 data)
3252 {
3253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254 
3255 	return dd->send_egress_err_status_cnt[54];
3256 }
3257 
3258 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3259 					      void *context, int vl, int mode,
3260 					      u64 data)
3261 {
3262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263 
3264 	return dd->send_egress_err_status_cnt[53];
3265 }
3266 
3267 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3268 					      void *context, int vl, int mode,
3269 					      u64 data)
3270 {
3271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272 
3273 	return dd->send_egress_err_status_cnt[52];
3274 }
3275 
3276 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3277 					      void *context, int vl, int mode,
3278 					      u64 data)
3279 {
3280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281 
3282 	return dd->send_egress_err_status_cnt[51];
3283 }
3284 
3285 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3286 					      void *context, int vl, int mode,
3287 					      u64 data)
3288 {
3289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290 
3291 	return dd->send_egress_err_status_cnt[50];
3292 }
3293 
3294 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3295 					      void *context, int vl, int mode,
3296 					      u64 data)
3297 {
3298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299 
3300 	return dd->send_egress_err_status_cnt[49];
3301 }
3302 
3303 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3304 					      void *context, int vl, int mode,
3305 					      u64 data)
3306 {
3307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308 
3309 	return dd->send_egress_err_status_cnt[48];
3310 }
3311 
3312 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3313 					      void *context, int vl, int mode,
3314 					      u64 data)
3315 {
3316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317 
3318 	return dd->send_egress_err_status_cnt[47];
3319 }
3320 
3321 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3322 					    void *context, int vl, int mode,
3323 					    u64 data)
3324 {
3325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326 
3327 	return dd->send_egress_err_status_cnt[46];
3328 }
3329 
3330 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3331 					     void *context, int vl, int mode,
3332 					     u64 data)
3333 {
3334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335 
3336 	return dd->send_egress_err_status_cnt[45];
3337 }
3338 
3339 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3340 						 void *context, int vl,
3341 						 int mode, u64 data)
3342 {
3343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344 
3345 	return dd->send_egress_err_status_cnt[44];
3346 }
3347 
3348 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3349 				const struct cntr_entry *entry,
3350 				void *context, int vl, int mode, u64 data)
3351 {
3352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353 
3354 	return dd->send_egress_err_status_cnt[43];
3355 }
3356 
3357 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3358 					void *context, int vl, int mode,
3359 					u64 data)
3360 {
3361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362 
3363 	return dd->send_egress_err_status_cnt[42];
3364 }
3365 
3366 static u64 access_tx_credit_return_partiy_err_cnt(
3367 				const struct cntr_entry *entry,
3368 				void *context, int vl, int mode, u64 data)
3369 {
3370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371 
3372 	return dd->send_egress_err_status_cnt[41];
3373 }
3374 
3375 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3376 				const struct cntr_entry *entry,
3377 				void *context, int vl, int mode, u64 data)
3378 {
3379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380 
3381 	return dd->send_egress_err_status_cnt[40];
3382 }
3383 
3384 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3385 				const struct cntr_entry *entry,
3386 				void *context, int vl, int mode, u64 data)
3387 {
3388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389 
3390 	return dd->send_egress_err_status_cnt[39];
3391 }
3392 
3393 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3394 				const struct cntr_entry *entry,
3395 				void *context, int vl, int mode, u64 data)
3396 {
3397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398 
3399 	return dd->send_egress_err_status_cnt[38];
3400 }
3401 
3402 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3403 				const struct cntr_entry *entry,
3404 				void *context, int vl, int mode, u64 data)
3405 {
3406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407 
3408 	return dd->send_egress_err_status_cnt[37];
3409 }
3410 
3411 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3412 				const struct cntr_entry *entry,
3413 				void *context, int vl, int mode, u64 data)
3414 {
3415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416 
3417 	return dd->send_egress_err_status_cnt[36];
3418 }
3419 
3420 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3421 				const struct cntr_entry *entry,
3422 				void *context, int vl, int mode, u64 data)
3423 {
3424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425 
3426 	return dd->send_egress_err_status_cnt[35];
3427 }
3428 
3429 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3430 				const struct cntr_entry *entry,
3431 				void *context, int vl, int mode, u64 data)
3432 {
3433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434 
3435 	return dd->send_egress_err_status_cnt[34];
3436 }
3437 
3438 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3439 				const struct cntr_entry *entry,
3440 				void *context, int vl, int mode, u64 data)
3441 {
3442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443 
3444 	return dd->send_egress_err_status_cnt[33];
3445 }
3446 
3447 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3448 				const struct cntr_entry *entry,
3449 				void *context, int vl, int mode, u64 data)
3450 {
3451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452 
3453 	return dd->send_egress_err_status_cnt[32];
3454 }
3455 
3456 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3457 				const struct cntr_entry *entry,
3458 				void *context, int vl, int mode, u64 data)
3459 {
3460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461 
3462 	return dd->send_egress_err_status_cnt[31];
3463 }
3464 
3465 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3466 				const struct cntr_entry *entry,
3467 				void *context, int vl, int mode, u64 data)
3468 {
3469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470 
3471 	return dd->send_egress_err_status_cnt[30];
3472 }
3473 
3474 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3475 				const struct cntr_entry *entry,
3476 				void *context, int vl, int mode, u64 data)
3477 {
3478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479 
3480 	return dd->send_egress_err_status_cnt[29];
3481 }
3482 
3483 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3484 				const struct cntr_entry *entry,
3485 				void *context, int vl, int mode, u64 data)
3486 {
3487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488 
3489 	return dd->send_egress_err_status_cnt[28];
3490 }
3491 
3492 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3493 				const struct cntr_entry *entry,
3494 				void *context, int vl, int mode, u64 data)
3495 {
3496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497 
3498 	return dd->send_egress_err_status_cnt[27];
3499 }
3500 
3501 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3502 				const struct cntr_entry *entry,
3503 				void *context, int vl, int mode, u64 data)
3504 {
3505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506 
3507 	return dd->send_egress_err_status_cnt[26];
3508 }
3509 
3510 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3511 				const struct cntr_entry *entry,
3512 				void *context, int vl, int mode, u64 data)
3513 {
3514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515 
3516 	return dd->send_egress_err_status_cnt[25];
3517 }
3518 
3519 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3520 				const struct cntr_entry *entry,
3521 				void *context, int vl, int mode, u64 data)
3522 {
3523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524 
3525 	return dd->send_egress_err_status_cnt[24];
3526 }
3527 
3528 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3529 				const struct cntr_entry *entry,
3530 				void *context, int vl, int mode, u64 data)
3531 {
3532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533 
3534 	return dd->send_egress_err_status_cnt[23];
3535 }
3536 
3537 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3538 				const struct cntr_entry *entry,
3539 				void *context, int vl, int mode, u64 data)
3540 {
3541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542 
3543 	return dd->send_egress_err_status_cnt[22];
3544 }
3545 
3546 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3547 				const struct cntr_entry *entry,
3548 				void *context, int vl, int mode, u64 data)
3549 {
3550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551 
3552 	return dd->send_egress_err_status_cnt[21];
3553 }
3554 
3555 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3556 				const struct cntr_entry *entry,
3557 				void *context, int vl, int mode, u64 data)
3558 {
3559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560 
3561 	return dd->send_egress_err_status_cnt[20];
3562 }
3563 
3564 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3565 				const struct cntr_entry *entry,
3566 				void *context, int vl, int mode, u64 data)
3567 {
3568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569 
3570 	return dd->send_egress_err_status_cnt[19];
3571 }
3572 
3573 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3574 				const struct cntr_entry *entry,
3575 				void *context, int vl, int mode, u64 data)
3576 {
3577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578 
3579 	return dd->send_egress_err_status_cnt[18];
3580 }
3581 
3582 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3583 				const struct cntr_entry *entry,
3584 				void *context, int vl, int mode, u64 data)
3585 {
3586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587 
3588 	return dd->send_egress_err_status_cnt[17];
3589 }
3590 
3591 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3592 				const struct cntr_entry *entry,
3593 				void *context, int vl, int mode, u64 data)
3594 {
3595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596 
3597 	return dd->send_egress_err_status_cnt[16];
3598 }
3599 
3600 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3601 					   void *context, int vl, int mode,
3602 					   u64 data)
3603 {
3604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605 
3606 	return dd->send_egress_err_status_cnt[15];
3607 }
3608 
3609 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3610 						 void *context, int vl,
3611 						 int mode, u64 data)
3612 {
3613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614 
3615 	return dd->send_egress_err_status_cnt[14];
3616 }
3617 
3618 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3619 					       void *context, int vl, int mode,
3620 					       u64 data)
3621 {
3622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623 
3624 	return dd->send_egress_err_status_cnt[13];
3625 }
3626 
3627 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3628 					void *context, int vl, int mode,
3629 					u64 data)
3630 {
3631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632 
3633 	return dd->send_egress_err_status_cnt[12];
3634 }
3635 
3636 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3637 				const struct cntr_entry *entry,
3638 				void *context, int vl, int mode, u64 data)
3639 {
3640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641 
3642 	return dd->send_egress_err_status_cnt[11];
3643 }
3644 
3645 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3646 					     void *context, int vl, int mode,
3647 					     u64 data)
3648 {
3649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650 
3651 	return dd->send_egress_err_status_cnt[10];
3652 }
3653 
3654 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3655 					    void *context, int vl, int mode,
3656 					    u64 data)
3657 {
3658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659 
3660 	return dd->send_egress_err_status_cnt[9];
3661 }
3662 
3663 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3664 				const struct cntr_entry *entry,
3665 				void *context, int vl, int mode, u64 data)
3666 {
3667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668 
3669 	return dd->send_egress_err_status_cnt[8];
3670 }
3671 
3672 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3673 				const struct cntr_entry *entry,
3674 				void *context, int vl, int mode, u64 data)
3675 {
3676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677 
3678 	return dd->send_egress_err_status_cnt[7];
3679 }
3680 
3681 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3682 					    void *context, int vl, int mode,
3683 					    u64 data)
3684 {
3685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686 
3687 	return dd->send_egress_err_status_cnt[6];
3688 }
3689 
3690 static u64 access_tx_incorrect_link_state_err_cnt(
3691 				const struct cntr_entry *entry,
3692 				void *context, int vl, int mode, u64 data)
3693 {
3694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695 
3696 	return dd->send_egress_err_status_cnt[5];
3697 }
3698 
3699 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3700 				      void *context, int vl, int mode,
3701 				      u64 data)
3702 {
3703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704 
3705 	return dd->send_egress_err_status_cnt[4];
3706 }
3707 
3708 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3709 				const struct cntr_entry *entry,
3710 				void *context, int vl, int mode, u64 data)
3711 {
3712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713 
3714 	return dd->send_egress_err_status_cnt[3];
3715 }
3716 
3717 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3718 					    void *context, int vl, int mode,
3719 					    u64 data)
3720 {
3721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722 
3723 	return dd->send_egress_err_status_cnt[2];
3724 }
3725 
3726 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3727 				const struct cntr_entry *entry,
3728 				void *context, int vl, int mode, u64 data)
3729 {
3730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731 
3732 	return dd->send_egress_err_status_cnt[1];
3733 }
3734 
3735 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3736 				const struct cntr_entry *entry,
3737 				void *context, int vl, int mode, u64 data)
3738 {
3739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740 
3741 	return dd->send_egress_err_status_cnt[0];
3742 }
3743 
3744 /*
3745  * Software counters corresponding to each of the
3746  * error status bits within SendErrStatus
3747  */
3748 static u64 access_send_csr_write_bad_addr_err_cnt(
3749 				const struct cntr_entry *entry,
3750 				void *context, int vl, int mode, u64 data)
3751 {
3752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3753 
3754 	return dd->send_err_status_cnt[2];
3755 }
3756 
3757 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3758 						 void *context, int vl,
3759 						 int mode, u64 data)
3760 {
3761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762 
3763 	return dd->send_err_status_cnt[1];
3764 }
3765 
3766 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3767 				      void *context, int vl, int mode,
3768 				      u64 data)
3769 {
3770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771 
3772 	return dd->send_err_status_cnt[0];
3773 }
3774 
3775 /*
3776  * Software counters corresponding to each of the
3777  * error status bits within SendCtxtErrStatus
3778  */
3779 static u64 access_pio_write_out_of_bounds_err_cnt(
3780 				const struct cntr_entry *entry,
3781 				void *context, int vl, int mode, u64 data)
3782 {
3783 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3784 
3785 	return dd->sw_ctxt_err_status_cnt[4];
3786 }
3787 
3788 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3789 					     void *context, int vl, int mode,
3790 					     u64 data)
3791 {
3792 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793 
3794 	return dd->sw_ctxt_err_status_cnt[3];
3795 }
3796 
3797 static u64 access_pio_write_crosses_boundary_err_cnt(
3798 				const struct cntr_entry *entry,
3799 				void *context, int vl, int mode, u64 data)
3800 {
3801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802 
3803 	return dd->sw_ctxt_err_status_cnt[2];
3804 }
3805 
3806 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3807 						void *context, int vl,
3808 						int mode, u64 data)
3809 {
3810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811 
3812 	return dd->sw_ctxt_err_status_cnt[1];
3813 }
3814 
3815 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3816 					       void *context, int vl, int mode,
3817 					       u64 data)
3818 {
3819 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820 
3821 	return dd->sw_ctxt_err_status_cnt[0];
3822 }
3823 
3824 /*
3825  * Software counters corresponding to each of the
3826  * error status bits within SendDmaEngErrStatus
3827  */
3828 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3829 				const struct cntr_entry *entry,
3830 				void *context, int vl, int mode, u64 data)
3831 {
3832 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3833 
3834 	return dd->sw_send_dma_eng_err_status_cnt[23];
3835 }
3836 
3837 static u64 access_sdma_header_storage_cor_err_cnt(
3838 				const struct cntr_entry *entry,
3839 				void *context, int vl, int mode, u64 data)
3840 {
3841 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842 
3843 	return dd->sw_send_dma_eng_err_status_cnt[22];
3844 }
3845 
3846 static u64 access_sdma_packet_tracking_cor_err_cnt(
3847 				const struct cntr_entry *entry,
3848 				void *context, int vl, int mode, u64 data)
3849 {
3850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851 
3852 	return dd->sw_send_dma_eng_err_status_cnt[21];
3853 }
3854 
3855 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3856 					    void *context, int vl, int mode,
3857 					    u64 data)
3858 {
3859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860 
3861 	return dd->sw_send_dma_eng_err_status_cnt[20];
3862 }
3863 
3864 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3865 					      void *context, int vl, int mode,
3866 					      u64 data)
3867 {
3868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869 
3870 	return dd->sw_send_dma_eng_err_status_cnt[19];
3871 }
3872 
3873 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3874 				const struct cntr_entry *entry,
3875 				void *context, int vl, int mode, u64 data)
3876 {
3877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878 
3879 	return dd->sw_send_dma_eng_err_status_cnt[18];
3880 }
3881 
3882 static u64 access_sdma_header_storage_unc_err_cnt(
3883 				const struct cntr_entry *entry,
3884 				void *context, int vl, int mode, u64 data)
3885 {
3886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887 
3888 	return dd->sw_send_dma_eng_err_status_cnt[17];
3889 }
3890 
3891 static u64 access_sdma_packet_tracking_unc_err_cnt(
3892 				const struct cntr_entry *entry,
3893 				void *context, int vl, int mode, u64 data)
3894 {
3895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896 
3897 	return dd->sw_send_dma_eng_err_status_cnt[16];
3898 }
3899 
3900 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3901 					    void *context, int vl, int mode,
3902 					    u64 data)
3903 {
3904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905 
3906 	return dd->sw_send_dma_eng_err_status_cnt[15];
3907 }
3908 
3909 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3910 					      void *context, int vl, int mode,
3911 					      u64 data)
3912 {
3913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914 
3915 	return dd->sw_send_dma_eng_err_status_cnt[14];
3916 }
3917 
3918 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3919 				       void *context, int vl, int mode,
3920 				       u64 data)
3921 {
3922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923 
3924 	return dd->sw_send_dma_eng_err_status_cnt[13];
3925 }
3926 
3927 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3928 					     void *context, int vl, int mode,
3929 					     u64 data)
3930 {
3931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932 
3933 	return dd->sw_send_dma_eng_err_status_cnt[12];
3934 }
3935 
3936 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3937 					      void *context, int vl, int mode,
3938 					      u64 data)
3939 {
3940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941 
3942 	return dd->sw_send_dma_eng_err_status_cnt[11];
3943 }
3944 
3945 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3946 					     void *context, int vl, int mode,
3947 					     u64 data)
3948 {
3949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950 
3951 	return dd->sw_send_dma_eng_err_status_cnt[10];
3952 }
3953 
3954 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3955 					  void *context, int vl, int mode,
3956 					  u64 data)
3957 {
3958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959 
3960 	return dd->sw_send_dma_eng_err_status_cnt[9];
3961 }
3962 
3963 static u64 access_sdma_packet_desc_overflow_err_cnt(
3964 				const struct cntr_entry *entry,
3965 				void *context, int vl, int mode, u64 data)
3966 {
3967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968 
3969 	return dd->sw_send_dma_eng_err_status_cnt[8];
3970 }
3971 
3972 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3973 					       void *context, int vl,
3974 					       int mode, u64 data)
3975 {
3976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977 
3978 	return dd->sw_send_dma_eng_err_status_cnt[7];
3979 }
3980 
3981 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3982 				    void *context, int vl, int mode, u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[6];
3987 }
3988 
3989 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3990 					void *context, int vl, int mode,
3991 					u64 data)
3992 {
3993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994 
3995 	return dd->sw_send_dma_eng_err_status_cnt[5];
3996 }
3997 
3998 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3999 					  void *context, int vl, int mode,
4000 					  u64 data)
4001 {
4002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003 
4004 	return dd->sw_send_dma_eng_err_status_cnt[4];
4005 }
4006 
4007 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4008 				const struct cntr_entry *entry,
4009 				void *context, int vl, int mode, u64 data)
4010 {
4011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012 
4013 	return dd->sw_send_dma_eng_err_status_cnt[3];
4014 }
4015 
4016 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4017 					void *context, int vl, int mode,
4018 					u64 data)
4019 {
4020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021 
4022 	return dd->sw_send_dma_eng_err_status_cnt[2];
4023 }
4024 
4025 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4026 					    void *context, int vl, int mode,
4027 					    u64 data)
4028 {
4029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030 
4031 	return dd->sw_send_dma_eng_err_status_cnt[1];
4032 }
4033 
4034 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4035 					void *context, int vl, int mode,
4036 					u64 data)
4037 {
4038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039 
4040 	return dd->sw_send_dma_eng_err_status_cnt[0];
4041 }
4042 
4043 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4044 				 void *context, int vl, int mode,
4045 				 u64 data)
4046 {
4047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048 
4049 	u64 val = 0;
4050 	u64 csr = entry->csr;
4051 
4052 	val = read_write_csr(dd, csr, mode, data);
4053 	if (mode == CNTR_MODE_R) {
4054 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4055 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4056 	} else if (mode == CNTR_MODE_W) {
4057 		dd->sw_rcv_bypass_packet_errors = 0;
4058 	} else {
4059 		dd_dev_err(dd, "Invalid cntr register access mode");
4060 		return 0;
4061 	}
4062 	return val;
4063 }
4064 
4065 #define def_access_sw_cpu(cntr) \
4066 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4067 			      void *context, int vl, int mode, u64 data)      \
4068 {									      \
4069 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4070 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4071 			      ppd->ibport_data.rvp.cntr, vl,		      \
4072 			      mode, data);				      \
4073 }
4074 
4075 def_access_sw_cpu(rc_acks);
4076 def_access_sw_cpu(rc_qacks);
4077 def_access_sw_cpu(rc_delayed_comp);
4078 
4079 #define def_access_ibp_counter(cntr) \
4080 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4081 				void *context, int vl, int mode, u64 data)    \
4082 {									      \
4083 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4084 									      \
4085 	if (vl != CNTR_INVALID_VL)					      \
4086 		return 0;						      \
4087 									      \
4088 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4089 			     mode, data);				      \
4090 }
4091 
4092 def_access_ibp_counter(loop_pkts);
4093 def_access_ibp_counter(rc_resends);
4094 def_access_ibp_counter(rnr_naks);
4095 def_access_ibp_counter(other_naks);
4096 def_access_ibp_counter(rc_timeouts);
4097 def_access_ibp_counter(pkt_drops);
4098 def_access_ibp_counter(dmawait);
4099 def_access_ibp_counter(rc_seqnak);
4100 def_access_ibp_counter(rc_dupreq);
4101 def_access_ibp_counter(rdma_seq);
4102 def_access_ibp_counter(unaligned);
4103 def_access_ibp_counter(seq_naks);
4104 def_access_ibp_counter(rc_crwaits);
4105 
4106 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4107 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4108 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4109 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4110 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4111 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4112 			CNTR_NORMAL),
4113 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4114 			CNTR_NORMAL),
4115 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4116 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4117 			CNTR_NORMAL),
4118 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4119 			CNTR_NORMAL),
4120 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4121 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4122 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4123 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4124 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4125 			CNTR_NORMAL),
4126 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4127 			CNTR_NORMAL),
4128 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4129 			CNTR_NORMAL),
4130 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4131 			CNTR_NORMAL),
4132 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4133 			CNTR_NORMAL),
4134 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4135 			CNTR_NORMAL),
4136 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4137 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4138 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4139 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4140 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4141 			      CNTR_SYNTH),
4142 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4143 			    access_dc_rcv_err_cnt),
4144 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4145 				 CNTR_SYNTH),
4146 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4147 				  CNTR_SYNTH),
4148 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4149 				  CNTR_SYNTH),
4150 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4151 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4152 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4153 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4154 				  CNTR_SYNTH),
4155 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4156 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4157 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4158 			       CNTR_SYNTH),
4159 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4160 			      CNTR_SYNTH),
4161 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4162 			       CNTR_SYNTH),
4163 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4164 				 CNTR_SYNTH),
4165 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4166 				CNTR_SYNTH),
4167 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4168 				CNTR_SYNTH),
4169 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4170 			       CNTR_SYNTH),
4171 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4172 				 CNTR_SYNTH | CNTR_VL),
4173 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4174 				CNTR_SYNTH | CNTR_VL),
4175 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4176 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4177 				 CNTR_SYNTH | CNTR_VL),
4178 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4179 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4180 				 CNTR_SYNTH | CNTR_VL),
4181 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4182 			      CNTR_SYNTH),
4183 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4184 				 CNTR_SYNTH | CNTR_VL),
4185 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4186 				CNTR_SYNTH),
4187 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4188 				   CNTR_SYNTH | CNTR_VL),
4189 [C_DC_TOTAL_CRC] =
4190 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4191 			 CNTR_SYNTH),
4192 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4193 				  CNTR_SYNTH),
4194 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4195 				  CNTR_SYNTH),
4196 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4197 				  CNTR_SYNTH),
4198 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4199 				  CNTR_SYNTH),
4200 [C_DC_CRC_MULT_LN] =
4201 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4202 			 CNTR_SYNTH),
4203 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4204 				    CNTR_SYNTH),
4205 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4206 				    CNTR_SYNTH),
4207 [C_DC_SEQ_CRC_CNT] =
4208 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4209 			 CNTR_SYNTH),
4210 [C_DC_ESC0_ONLY_CNT] =
4211 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4212 			 CNTR_SYNTH),
4213 [C_DC_ESC0_PLUS1_CNT] =
4214 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4215 			 CNTR_SYNTH),
4216 [C_DC_ESC0_PLUS2_CNT] =
4217 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4218 			 CNTR_SYNTH),
4219 [C_DC_REINIT_FROM_PEER_CNT] =
4220 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4221 			 CNTR_SYNTH),
4222 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4223 				  CNTR_SYNTH),
4224 [C_DC_MISC_FLG_CNT] =
4225 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4226 			 CNTR_SYNTH),
4227 [C_DC_PRF_GOOD_LTP_CNT] =
4228 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4229 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4230 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4231 			 CNTR_SYNTH),
4232 [C_DC_PRF_RX_FLIT_CNT] =
4233 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4234 [C_DC_PRF_TX_FLIT_CNT] =
4235 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4236 [C_DC_PRF_CLK_CNTR] =
4237 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4238 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4239 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4240 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4241 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4242 			 CNTR_SYNTH),
4243 [C_DC_PG_STS_TX_SBE_CNT] =
4244 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4245 [C_DC_PG_STS_TX_MBE_CNT] =
4246 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4247 			 CNTR_SYNTH),
4248 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4249 			    access_sw_cpu_intr),
4250 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4251 			    access_sw_cpu_rcv_limit),
4252 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4253 			    access_sw_vtx_wait),
4254 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4255 			    access_sw_pio_wait),
4256 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4257 			    access_sw_pio_drain),
4258 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4259 			    access_sw_kmem_wait),
4260 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4261 			    hfi1_access_sw_tid_wait),
4262 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4263 			    access_sw_send_schedule),
4264 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4265 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4266 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4267 				      dev_access_u32_csr),
4268 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4269 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4270 			     access_sde_int_cnt),
4271 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4272 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4273 			     access_sde_err_cnt),
4274 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4275 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4276 				  access_sde_idle_int_cnt),
4277 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4278 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4279 				      access_sde_progress_int_cnt),
4280 /* MISC_ERR_STATUS */
4281 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4282 				CNTR_NORMAL,
4283 				access_misc_pll_lock_fail_err_cnt),
4284 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4285 				CNTR_NORMAL,
4286 				access_misc_mbist_fail_err_cnt),
4287 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4288 				CNTR_NORMAL,
4289 				access_misc_invalid_eep_cmd_err_cnt),
4290 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4291 				CNTR_NORMAL,
4292 				access_misc_efuse_done_parity_err_cnt),
4293 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_misc_efuse_write_err_cnt),
4296 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4297 				0, CNTR_NORMAL,
4298 				access_misc_efuse_read_bad_addr_err_cnt),
4299 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_misc_efuse_csr_parity_err_cnt),
4302 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4303 				CNTR_NORMAL,
4304 				access_misc_fw_auth_failed_err_cnt),
4305 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_misc_key_mismatch_err_cnt),
4308 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_misc_sbus_write_failed_err_cnt),
4311 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_misc_csr_write_bad_addr_err_cnt),
4314 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4315 				CNTR_NORMAL,
4316 				access_misc_csr_read_bad_addr_err_cnt),
4317 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_misc_csr_parity_err_cnt),
4320 /* CceErrStatus */
4321 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4322 				CNTR_NORMAL,
4323 				access_sw_cce_err_status_aggregated_cnt),
4324 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4325 				CNTR_NORMAL,
4326 				access_cce_msix_csr_parity_err_cnt),
4327 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4328 				CNTR_NORMAL,
4329 				access_cce_int_map_unc_err_cnt),
4330 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4331 				CNTR_NORMAL,
4332 				access_cce_int_map_cor_err_cnt),
4333 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4334 				CNTR_NORMAL,
4335 				access_cce_msix_table_unc_err_cnt),
4336 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4337 				CNTR_NORMAL,
4338 				access_cce_msix_table_cor_err_cnt),
4339 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4340 				0, CNTR_NORMAL,
4341 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4342 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4343 				0, CNTR_NORMAL,
4344 				access_cce_rcpl_async_fifo_parity_err_cnt),
4345 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4346 				CNTR_NORMAL,
4347 				access_cce_seg_write_bad_addr_err_cnt),
4348 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4349 				CNTR_NORMAL,
4350 				access_cce_seg_read_bad_addr_err_cnt),
4351 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4352 				CNTR_NORMAL,
4353 				access_la_triggered_cnt),
4354 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4355 				CNTR_NORMAL,
4356 				access_cce_trgt_cpl_timeout_err_cnt),
4357 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4358 				CNTR_NORMAL,
4359 				access_pcic_receive_parity_err_cnt),
4360 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4361 				CNTR_NORMAL,
4362 				access_pcic_transmit_back_parity_err_cnt),
4363 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4364 				0, CNTR_NORMAL,
4365 				access_pcic_transmit_front_parity_err_cnt),
4366 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4367 				CNTR_NORMAL,
4368 				access_pcic_cpl_dat_q_unc_err_cnt),
4369 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4370 				CNTR_NORMAL,
4371 				access_pcic_cpl_hd_q_unc_err_cnt),
4372 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4373 				CNTR_NORMAL,
4374 				access_pcic_post_dat_q_unc_err_cnt),
4375 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4376 				CNTR_NORMAL,
4377 				access_pcic_post_hd_q_unc_err_cnt),
4378 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4379 				CNTR_NORMAL,
4380 				access_pcic_retry_sot_mem_unc_err_cnt),
4381 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4382 				CNTR_NORMAL,
4383 				access_pcic_retry_mem_unc_err),
4384 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4385 				CNTR_NORMAL,
4386 				access_pcic_n_post_dat_q_parity_err_cnt),
4387 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4388 				CNTR_NORMAL,
4389 				access_pcic_n_post_h_q_parity_err_cnt),
4390 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4391 				CNTR_NORMAL,
4392 				access_pcic_cpl_dat_q_cor_err_cnt),
4393 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4394 				CNTR_NORMAL,
4395 				access_pcic_cpl_hd_q_cor_err_cnt),
4396 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4397 				CNTR_NORMAL,
4398 				access_pcic_post_dat_q_cor_err_cnt),
4399 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4400 				CNTR_NORMAL,
4401 				access_pcic_post_hd_q_cor_err_cnt),
4402 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4403 				CNTR_NORMAL,
4404 				access_pcic_retry_sot_mem_cor_err_cnt),
4405 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4406 				CNTR_NORMAL,
4407 				access_pcic_retry_mem_cor_err_cnt),
4408 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4409 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4410 				CNTR_NORMAL,
4411 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4412 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4413 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4414 				CNTR_NORMAL,
4415 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4416 				),
4417 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4418 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4419 			CNTR_NORMAL,
4420 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4421 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4422 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4423 			CNTR_NORMAL,
4424 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4425 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4426 			0, CNTR_NORMAL,
4427 			access_cce_cli2_async_fifo_parity_err_cnt),
4428 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4429 			CNTR_NORMAL,
4430 			access_cce_csr_cfg_bus_parity_err_cnt),
4431 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4432 			0, CNTR_NORMAL,
4433 			access_cce_cli0_async_fifo_parity_err_cnt),
4434 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4435 			CNTR_NORMAL,
4436 			access_cce_rspd_data_parity_err_cnt),
4437 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4438 			CNTR_NORMAL,
4439 			access_cce_trgt_access_err_cnt),
4440 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4441 			0, CNTR_NORMAL,
4442 			access_cce_trgt_async_fifo_parity_err_cnt),
4443 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4444 			CNTR_NORMAL,
4445 			access_cce_csr_write_bad_addr_err_cnt),
4446 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4447 			CNTR_NORMAL,
4448 			access_cce_csr_read_bad_addr_err_cnt),
4449 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4450 			CNTR_NORMAL,
4451 			access_ccs_csr_parity_err_cnt),
4452 
4453 /* RcvErrStatus */
4454 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4455 			CNTR_NORMAL,
4456 			access_rx_csr_parity_err_cnt),
4457 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_rx_csr_write_bad_addr_err_cnt),
4460 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4461 			CNTR_NORMAL,
4462 			access_rx_csr_read_bad_addr_err_cnt),
4463 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_rx_dma_csr_unc_err_cnt),
4466 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_rx_dma_dq_fsm_encoding_err_cnt),
4469 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4470 			CNTR_NORMAL,
4471 			access_rx_dma_eq_fsm_encoding_err_cnt),
4472 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_rx_dma_csr_parity_err_cnt),
4475 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_rx_rbuf_data_cor_err_cnt),
4478 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4479 			CNTR_NORMAL,
4480 			access_rx_rbuf_data_unc_err_cnt),
4481 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4482 			CNTR_NORMAL,
4483 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4484 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4485 			CNTR_NORMAL,
4486 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4487 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4488 			CNTR_NORMAL,
4489 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4490 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4493 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4494 			CNTR_NORMAL,
4495 			access_rx_rbuf_desc_part2_cor_err_cnt),
4496 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4497 			CNTR_NORMAL,
4498 			access_rx_rbuf_desc_part2_unc_err_cnt),
4499 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rx_rbuf_desc_part1_cor_err_cnt),
4502 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4503 			CNTR_NORMAL,
4504 			access_rx_rbuf_desc_part1_unc_err_cnt),
4505 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4506 			CNTR_NORMAL,
4507 			access_rx_hq_intr_fsm_err_cnt),
4508 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4509 			CNTR_NORMAL,
4510 			access_rx_hq_intr_csr_parity_err_cnt),
4511 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4512 			CNTR_NORMAL,
4513 			access_rx_lookup_csr_parity_err_cnt),
4514 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4515 			CNTR_NORMAL,
4516 			access_rx_lookup_rcv_array_cor_err_cnt),
4517 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4518 			CNTR_NORMAL,
4519 			access_rx_lookup_rcv_array_unc_err_cnt),
4520 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4521 			0, CNTR_NORMAL,
4522 			access_rx_lookup_des_part2_parity_err_cnt),
4523 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4524 			0, CNTR_NORMAL,
4525 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4526 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4527 			CNTR_NORMAL,
4528 			access_rx_lookup_des_part1_unc_err_cnt),
4529 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4530 			CNTR_NORMAL,
4531 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4532 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4533 			CNTR_NORMAL,
4534 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4535 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4536 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4537 			CNTR_NORMAL,
4538 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4539 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4540 			0, CNTR_NORMAL,
4541 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4542 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4543 			0, CNTR_NORMAL,
4544 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4545 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4548 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rx_rbuf_empty_err_cnt),
4551 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rx_rbuf_full_err_cnt),
4554 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4555 			CNTR_NORMAL,
4556 			access_rbuf_bad_lookup_err_cnt),
4557 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4558 			CNTR_NORMAL,
4559 			access_rbuf_ctx_id_parity_err_cnt),
4560 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4561 			CNTR_NORMAL,
4562 			access_rbuf_csr_qeopdw_parity_err_cnt),
4563 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4564 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4565 			CNTR_NORMAL,
4566 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4567 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4568 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4569 			CNTR_NORMAL,
4570 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4571 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4572 			0, CNTR_NORMAL,
4573 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4574 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4575 			0, CNTR_NORMAL,
4576 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4577 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4578 			0, 0, CNTR_NORMAL,
4579 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4580 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4581 			0, CNTR_NORMAL,
4582 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4583 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4584 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4585 			CNTR_NORMAL,
4586 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4587 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4588 			0, CNTR_NORMAL,
4589 			access_rx_rbuf_block_list_read_cor_err_cnt),
4590 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4591 			0, CNTR_NORMAL,
4592 			access_rx_rbuf_block_list_read_unc_err_cnt),
4593 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4594 			CNTR_NORMAL,
4595 			access_rx_rbuf_lookup_des_cor_err_cnt),
4596 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4597 			CNTR_NORMAL,
4598 			access_rx_rbuf_lookup_des_unc_err_cnt),
4599 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4600 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4601 			CNTR_NORMAL,
4602 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4603 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4606 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_rx_rbuf_free_list_cor_err_cnt),
4609 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_rx_rbuf_free_list_unc_err_cnt),
4612 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_rx_rcv_fsm_encoding_err_cnt),
4615 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_rx_dma_flag_cor_err_cnt),
4618 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4619 			CNTR_NORMAL,
4620 			access_rx_dma_flag_unc_err_cnt),
4621 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_rx_dc_sop_eop_parity_err_cnt),
4624 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_rx_rcv_csr_parity_err_cnt),
4627 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_rx_rcv_qp_map_table_cor_err_cnt),
4630 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_rx_rcv_qp_map_table_unc_err_cnt),
4633 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_rx_rcv_data_cor_err_cnt),
4636 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_rx_rcv_data_unc_err_cnt),
4639 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_rx_rcv_hdr_cor_err_cnt),
4642 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_rx_rcv_hdr_unc_err_cnt),
4645 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4646 			CNTR_NORMAL,
4647 			access_rx_dc_intf_parity_err_cnt),
4648 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4649 			CNTR_NORMAL,
4650 			access_rx_dma_csr_cor_err_cnt),
4651 /* SendPioErrStatus */
4652 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4653 			CNTR_NORMAL,
4654 			access_pio_pec_sop_head_parity_err_cnt),
4655 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4656 			CNTR_NORMAL,
4657 			access_pio_pcc_sop_head_parity_err_cnt),
4658 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4659 			0, 0, CNTR_NORMAL,
4660 			access_pio_last_returned_cnt_parity_err_cnt),
4661 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4662 			0, CNTR_NORMAL,
4663 			access_pio_current_free_cnt_parity_err_cnt),
4664 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4665 			CNTR_NORMAL,
4666 			access_pio_reserved_31_err_cnt),
4667 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4668 			CNTR_NORMAL,
4669 			access_pio_reserved_30_err_cnt),
4670 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4671 			CNTR_NORMAL,
4672 			access_pio_ppmc_sop_len_err_cnt),
4673 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4674 			CNTR_NORMAL,
4675 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4676 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_pio_vl_fifo_parity_err_cnt),
4679 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_pio_vlf_sop_parity_err_cnt),
4682 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4683 			CNTR_NORMAL,
4684 			access_pio_vlf_v1_len_parity_err_cnt),
4685 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4686 			CNTR_NORMAL,
4687 			access_pio_block_qw_count_parity_err_cnt),
4688 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4689 			CNTR_NORMAL,
4690 			access_pio_write_qw_valid_parity_err_cnt),
4691 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4692 			CNTR_NORMAL,
4693 			access_pio_state_machine_err_cnt),
4694 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4695 			CNTR_NORMAL,
4696 			access_pio_write_data_parity_err_cnt),
4697 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4698 			CNTR_NORMAL,
4699 			access_pio_host_addr_mem_cor_err_cnt),
4700 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4701 			CNTR_NORMAL,
4702 			access_pio_host_addr_mem_unc_err_cnt),
4703 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4704 			CNTR_NORMAL,
4705 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4706 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4707 			CNTR_NORMAL,
4708 			access_pio_init_sm_in_err_cnt),
4709 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4710 			CNTR_NORMAL,
4711 			access_pio_ppmc_pbl_fifo_err_cnt),
4712 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4713 			0, CNTR_NORMAL,
4714 			access_pio_credit_ret_fifo_parity_err_cnt),
4715 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4716 			CNTR_NORMAL,
4717 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4718 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4719 			CNTR_NORMAL,
4720 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4721 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4722 			CNTR_NORMAL,
4723 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4724 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4725 			CNTR_NORMAL,
4726 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4727 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4728 			CNTR_NORMAL,
4729 			access_pio_sm_pkt_reset_parity_err_cnt),
4730 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4731 			CNTR_NORMAL,
4732 			access_pio_pkt_evict_fifo_parity_err_cnt),
4733 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4734 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4735 			CNTR_NORMAL,
4736 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4737 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4738 			CNTR_NORMAL,
4739 			access_pio_sbrdctl_crrel_parity_err_cnt),
4740 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4741 			CNTR_NORMAL,
4742 			access_pio_pec_fifo_parity_err_cnt),
4743 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4744 			CNTR_NORMAL,
4745 			access_pio_pcc_fifo_parity_err_cnt),
4746 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4747 			CNTR_NORMAL,
4748 			access_pio_sb_mem_fifo1_err_cnt),
4749 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4750 			CNTR_NORMAL,
4751 			access_pio_sb_mem_fifo0_err_cnt),
4752 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4753 			CNTR_NORMAL,
4754 			access_pio_csr_parity_err_cnt),
4755 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4756 			CNTR_NORMAL,
4757 			access_pio_write_addr_parity_err_cnt),
4758 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4759 			CNTR_NORMAL,
4760 			access_pio_write_bad_ctxt_err_cnt),
4761 /* SendDmaErrStatus */
4762 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4763 			0, CNTR_NORMAL,
4764 			access_sdma_pcie_req_tracking_cor_err_cnt),
4765 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4766 			0, CNTR_NORMAL,
4767 			access_sdma_pcie_req_tracking_unc_err_cnt),
4768 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4769 			CNTR_NORMAL,
4770 			access_sdma_csr_parity_err_cnt),
4771 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4772 			CNTR_NORMAL,
4773 			access_sdma_rpy_tag_err_cnt),
4774 /* SendEgressErrStatus */
4775 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4776 			CNTR_NORMAL,
4777 			access_tx_read_pio_memory_csr_unc_err_cnt),
4778 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4779 			0, CNTR_NORMAL,
4780 			access_tx_read_sdma_memory_csr_err_cnt),
4781 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4782 			CNTR_NORMAL,
4783 			access_tx_egress_fifo_cor_err_cnt),
4784 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4785 			CNTR_NORMAL,
4786 			access_tx_read_pio_memory_cor_err_cnt),
4787 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4788 			CNTR_NORMAL,
4789 			access_tx_read_sdma_memory_cor_err_cnt),
4790 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4791 			CNTR_NORMAL,
4792 			access_tx_sb_hdr_cor_err_cnt),
4793 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4794 			CNTR_NORMAL,
4795 			access_tx_credit_overrun_err_cnt),
4796 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4797 			CNTR_NORMAL,
4798 			access_tx_launch_fifo8_cor_err_cnt),
4799 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4800 			CNTR_NORMAL,
4801 			access_tx_launch_fifo7_cor_err_cnt),
4802 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4803 			CNTR_NORMAL,
4804 			access_tx_launch_fifo6_cor_err_cnt),
4805 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4806 			CNTR_NORMAL,
4807 			access_tx_launch_fifo5_cor_err_cnt),
4808 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4809 			CNTR_NORMAL,
4810 			access_tx_launch_fifo4_cor_err_cnt),
4811 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4812 			CNTR_NORMAL,
4813 			access_tx_launch_fifo3_cor_err_cnt),
4814 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4815 			CNTR_NORMAL,
4816 			access_tx_launch_fifo2_cor_err_cnt),
4817 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4818 			CNTR_NORMAL,
4819 			access_tx_launch_fifo1_cor_err_cnt),
4820 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4821 			CNTR_NORMAL,
4822 			access_tx_launch_fifo0_cor_err_cnt),
4823 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4824 			CNTR_NORMAL,
4825 			access_tx_credit_return_vl_err_cnt),
4826 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4827 			CNTR_NORMAL,
4828 			access_tx_hcrc_insertion_err_cnt),
4829 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4830 			CNTR_NORMAL,
4831 			access_tx_egress_fifo_unc_err_cnt),
4832 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4833 			CNTR_NORMAL,
4834 			access_tx_read_pio_memory_unc_err_cnt),
4835 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4836 			CNTR_NORMAL,
4837 			access_tx_read_sdma_memory_unc_err_cnt),
4838 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4839 			CNTR_NORMAL,
4840 			access_tx_sb_hdr_unc_err_cnt),
4841 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4842 			CNTR_NORMAL,
4843 			access_tx_credit_return_partiy_err_cnt),
4844 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4845 			0, 0, CNTR_NORMAL,
4846 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4847 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4848 			0, 0, CNTR_NORMAL,
4849 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4850 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4851 			0, 0, CNTR_NORMAL,
4852 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4853 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4854 			0, 0, CNTR_NORMAL,
4855 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4856 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4857 			0, 0, CNTR_NORMAL,
4858 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4859 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4860 			0, 0, CNTR_NORMAL,
4861 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4862 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4863 			0, 0, CNTR_NORMAL,
4864 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4865 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4866 			0, 0, CNTR_NORMAL,
4867 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4868 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4869 			0, 0, CNTR_NORMAL,
4870 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4871 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4872 			0, 0, CNTR_NORMAL,
4873 			access_tx_sdma15_disallowed_packet_err_cnt),
4874 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4875 			0, 0, CNTR_NORMAL,
4876 			access_tx_sdma14_disallowed_packet_err_cnt),
4877 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4878 			0, 0, CNTR_NORMAL,
4879 			access_tx_sdma13_disallowed_packet_err_cnt),
4880 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4881 			0, 0, CNTR_NORMAL,
4882 			access_tx_sdma12_disallowed_packet_err_cnt),
4883 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4884 			0, 0, CNTR_NORMAL,
4885 			access_tx_sdma11_disallowed_packet_err_cnt),
4886 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4887 			0, 0, CNTR_NORMAL,
4888 			access_tx_sdma10_disallowed_packet_err_cnt),
4889 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4890 			0, 0, CNTR_NORMAL,
4891 			access_tx_sdma9_disallowed_packet_err_cnt),
4892 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4893 			0, 0, CNTR_NORMAL,
4894 			access_tx_sdma8_disallowed_packet_err_cnt),
4895 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4896 			0, 0, CNTR_NORMAL,
4897 			access_tx_sdma7_disallowed_packet_err_cnt),
4898 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4899 			0, 0, CNTR_NORMAL,
4900 			access_tx_sdma6_disallowed_packet_err_cnt),
4901 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4902 			0, 0, CNTR_NORMAL,
4903 			access_tx_sdma5_disallowed_packet_err_cnt),
4904 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4905 			0, 0, CNTR_NORMAL,
4906 			access_tx_sdma4_disallowed_packet_err_cnt),
4907 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4908 			0, 0, CNTR_NORMAL,
4909 			access_tx_sdma3_disallowed_packet_err_cnt),
4910 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4911 			0, 0, CNTR_NORMAL,
4912 			access_tx_sdma2_disallowed_packet_err_cnt),
4913 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4914 			0, 0, CNTR_NORMAL,
4915 			access_tx_sdma1_disallowed_packet_err_cnt),
4916 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4917 			0, 0, CNTR_NORMAL,
4918 			access_tx_sdma0_disallowed_packet_err_cnt),
4919 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_tx_config_parity_err_cnt),
4922 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4925 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4926 			CNTR_NORMAL,
4927 			access_tx_launch_csr_parity_err_cnt),
4928 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4929 			CNTR_NORMAL,
4930 			access_tx_illegal_vl_err_cnt),
4931 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4932 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4933 			CNTR_NORMAL,
4934 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4935 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4936 			CNTR_NORMAL,
4937 			access_egress_reserved_10_err_cnt),
4938 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_egress_reserved_9_err_cnt),
4941 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4942 			0, 0, CNTR_NORMAL,
4943 			access_tx_sdma_launch_intf_parity_err_cnt),
4944 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_tx_pio_launch_intf_parity_err_cnt),
4947 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_egress_reserved_6_err_cnt),
4950 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4951 			CNTR_NORMAL,
4952 			access_tx_incorrect_link_state_err_cnt),
4953 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_tx_linkdown_err_cnt),
4956 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4957 			"EgressFifoUnderrunOrParityErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4960 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4961 			CNTR_NORMAL,
4962 			access_egress_reserved_2_err_cnt),
4963 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4964 			CNTR_NORMAL,
4965 			access_tx_pkt_integrity_mem_unc_err_cnt),
4966 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4967 			CNTR_NORMAL,
4968 			access_tx_pkt_integrity_mem_cor_err_cnt),
4969 /* SendErrStatus */
4970 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4971 			CNTR_NORMAL,
4972 			access_send_csr_write_bad_addr_err_cnt),
4973 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4974 			CNTR_NORMAL,
4975 			access_send_csr_read_bad_addr_err_cnt),
4976 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4977 			CNTR_NORMAL,
4978 			access_send_csr_parity_cnt),
4979 /* SendCtxtErrStatus */
4980 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4981 			CNTR_NORMAL,
4982 			access_pio_write_out_of_bounds_err_cnt),
4983 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4984 			CNTR_NORMAL,
4985 			access_pio_write_overflow_err_cnt),
4986 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4987 			0, 0, CNTR_NORMAL,
4988 			access_pio_write_crosses_boundary_err_cnt),
4989 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4990 			CNTR_NORMAL,
4991 			access_pio_disallowed_packet_err_cnt),
4992 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4993 			CNTR_NORMAL,
4994 			access_pio_inconsistent_sop_err_cnt),
4995 /* SendDmaEngErrStatus */
4996 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4997 			0, 0, CNTR_NORMAL,
4998 			access_sdma_header_request_fifo_cor_err_cnt),
4999 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
5000 			CNTR_NORMAL,
5001 			access_sdma_header_storage_cor_err_cnt),
5002 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
5003 			CNTR_NORMAL,
5004 			access_sdma_packet_tracking_cor_err_cnt),
5005 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5006 			CNTR_NORMAL,
5007 			access_sdma_assembly_cor_err_cnt),
5008 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5009 			CNTR_NORMAL,
5010 			access_sdma_desc_table_cor_err_cnt),
5011 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5012 			0, 0, CNTR_NORMAL,
5013 			access_sdma_header_request_fifo_unc_err_cnt),
5014 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5015 			CNTR_NORMAL,
5016 			access_sdma_header_storage_unc_err_cnt),
5017 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5018 			CNTR_NORMAL,
5019 			access_sdma_packet_tracking_unc_err_cnt),
5020 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5021 			CNTR_NORMAL,
5022 			access_sdma_assembly_unc_err_cnt),
5023 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5024 			CNTR_NORMAL,
5025 			access_sdma_desc_table_unc_err_cnt),
5026 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5027 			CNTR_NORMAL,
5028 			access_sdma_timeout_err_cnt),
5029 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5030 			CNTR_NORMAL,
5031 			access_sdma_header_length_err_cnt),
5032 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5033 			CNTR_NORMAL,
5034 			access_sdma_header_address_err_cnt),
5035 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5036 			CNTR_NORMAL,
5037 			access_sdma_header_select_err_cnt),
5038 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5039 			CNTR_NORMAL,
5040 			access_sdma_reserved_9_err_cnt),
5041 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5042 			CNTR_NORMAL,
5043 			access_sdma_packet_desc_overflow_err_cnt),
5044 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5045 			CNTR_NORMAL,
5046 			access_sdma_length_mismatch_err_cnt),
5047 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5048 			CNTR_NORMAL,
5049 			access_sdma_halt_err_cnt),
5050 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5051 			CNTR_NORMAL,
5052 			access_sdma_mem_read_err_cnt),
5053 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5054 			CNTR_NORMAL,
5055 			access_sdma_first_desc_err_cnt),
5056 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5057 			CNTR_NORMAL,
5058 			access_sdma_tail_out_of_bounds_err_cnt),
5059 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5060 			CNTR_NORMAL,
5061 			access_sdma_too_long_err_cnt),
5062 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5063 			CNTR_NORMAL,
5064 			access_sdma_gen_mismatch_err_cnt),
5065 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5066 			CNTR_NORMAL,
5067 			access_sdma_wrong_dw_err_cnt),
5068 };
5069 
5070 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5071 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5074 			CNTR_NORMAL),
5075 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5076 			CNTR_NORMAL),
5077 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5078 			CNTR_NORMAL),
5079 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5080 			CNTR_NORMAL),
5081 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5082 			CNTR_NORMAL),
5083 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5084 			CNTR_NORMAL),
5085 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5086 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5087 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5088 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5089 				      CNTR_SYNTH | CNTR_VL),
5090 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5091 				     CNTR_SYNTH | CNTR_VL),
5092 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5093 				      CNTR_SYNTH | CNTR_VL),
5094 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5095 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5096 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5097 			     access_sw_link_dn_cnt),
5098 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5099 			   access_sw_link_up_cnt),
5100 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5101 				 access_sw_unknown_frame_cnt),
5102 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5103 			     access_sw_xmit_discards),
5104 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5105 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5106 				access_sw_xmit_discards),
5107 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5108 				 access_xmit_constraint_errs),
5109 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5110 				access_rcv_constraint_errs),
5111 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5112 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5113 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5114 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5115 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5116 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5117 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5118 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5119 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5120 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5121 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5122 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5123 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5124 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5125 			       access_sw_cpu_rc_acks),
5126 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5127 				access_sw_cpu_rc_qacks),
5128 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5129 				       access_sw_cpu_rc_delayed_comp),
5130 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5131 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5132 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5133 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5134 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5135 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5136 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5137 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5138 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5139 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5140 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5141 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5142 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5143 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5144 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5145 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5146 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5147 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5148 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5149 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5150 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5151 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5152 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5153 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5154 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5155 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5156 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5157 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5158 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5159 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5160 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5161 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5162 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5163 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5164 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5165 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5166 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5167 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5168 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5169 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5170 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5171 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5172 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5173 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5174 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5175 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5176 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5177 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5178 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5179 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5180 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5181 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5182 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5183 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5184 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5185 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5186 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5187 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5188 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5189 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5190 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5191 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5192 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5193 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5194 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5195 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5196 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5197 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5198 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5199 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5200 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5201 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5202 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5203 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5204 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5205 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5206 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5207 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5208 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5209 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5210 };
5211 
5212 /* ======================================================================== */
5213 
5214 /* return true if this is chip revision revision a */
5215 int is_ax(struct hfi1_devdata *dd)
5216 {
5217 	u8 chip_rev_minor =
5218 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5219 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5220 	return (chip_rev_minor & 0xf0) == 0;
5221 }
5222 
5223 /* return true if this is chip revision revision b */
5224 int is_bx(struct hfi1_devdata *dd)
5225 {
5226 	u8 chip_rev_minor =
5227 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5228 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5229 	return (chip_rev_minor & 0xF0) == 0x10;
5230 }
5231 
5232 /* return true is kernel urg disabled for rcd */
5233 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5234 {
5235 	u64 mask;
5236 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5237 	u8 bit = is % 64;
5238 
5239 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5240 	return !(mask & BIT_ULL(bit));
5241 }
5242 
5243 /*
5244  * Append string s to buffer buf.  Arguments curp and len are the current
5245  * position and remaining length, respectively.
5246  *
5247  * return 0 on success, 1 on out of room
5248  */
5249 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5250 {
5251 	char *p = *curp;
5252 	int len = *lenp;
5253 	int result = 0; /* success */
5254 	char c;
5255 
5256 	/* add a comma, if first in the buffer */
5257 	if (p != buf) {
5258 		if (len == 0) {
5259 			result = 1; /* out of room */
5260 			goto done;
5261 		}
5262 		*p++ = ',';
5263 		len--;
5264 	}
5265 
5266 	/* copy the string */
5267 	while ((c = *s++) != 0) {
5268 		if (len == 0) {
5269 			result = 1; /* out of room */
5270 			goto done;
5271 		}
5272 		*p++ = c;
5273 		len--;
5274 	}
5275 
5276 done:
5277 	/* write return values */
5278 	*curp = p;
5279 	*lenp = len;
5280 
5281 	return result;
5282 }
5283 
5284 /*
5285  * Using the given flag table, print a comma separated string into
5286  * the buffer.  End in '*' if the buffer is too short.
5287  */
5288 static char *flag_string(char *buf, int buf_len, u64 flags,
5289 			 struct flag_table *table, int table_size)
5290 {
5291 	char extra[32];
5292 	char *p = buf;
5293 	int len = buf_len;
5294 	int no_room = 0;
5295 	int i;
5296 
5297 	/* make sure there is at least 2 so we can form "*" */
5298 	if (len < 2)
5299 		return "";
5300 
5301 	len--;	/* leave room for a nul */
5302 	for (i = 0; i < table_size; i++) {
5303 		if (flags & table[i].flag) {
5304 			no_room = append_str(buf, &p, &len, table[i].str);
5305 			if (no_room)
5306 				break;
5307 			flags &= ~table[i].flag;
5308 		}
5309 	}
5310 
5311 	/* any undocumented bits left? */
5312 	if (!no_room && flags) {
5313 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5314 		no_room = append_str(buf, &p, &len, extra);
5315 	}
5316 
5317 	/* add * if ran out of room */
5318 	if (no_room) {
5319 		/* may need to back up to add space for a '*' */
5320 		if (len == 0)
5321 			--p;
5322 		*p++ = '*';
5323 	}
5324 
5325 	/* add final nul - space already allocated above */
5326 	*p = 0;
5327 	return buf;
5328 }
5329 
5330 /* first 8 CCE error interrupt source names */
5331 static const char * const cce_misc_names[] = {
5332 	"CceErrInt",		/* 0 */
5333 	"RxeErrInt",		/* 1 */
5334 	"MiscErrInt",		/* 2 */
5335 	"Reserved3",		/* 3 */
5336 	"PioErrInt",		/* 4 */
5337 	"SDmaErrInt",		/* 5 */
5338 	"EgressErrInt",		/* 6 */
5339 	"TxeErrInt"		/* 7 */
5340 };
5341 
5342 /*
5343  * Return the miscellaneous error interrupt name.
5344  */
5345 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5346 {
5347 	if (source < ARRAY_SIZE(cce_misc_names))
5348 		strncpy(buf, cce_misc_names[source], bsize);
5349 	else
5350 		snprintf(buf, bsize, "Reserved%u",
5351 			 source + IS_GENERAL_ERR_START);
5352 
5353 	return buf;
5354 }
5355 
5356 /*
5357  * Return the SDMA engine error interrupt name.
5358  */
5359 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5360 {
5361 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5362 	return buf;
5363 }
5364 
5365 /*
5366  * Return the send context error interrupt name.
5367  */
5368 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5369 {
5370 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5371 	return buf;
5372 }
5373 
5374 static const char * const various_names[] = {
5375 	"PbcInt",
5376 	"GpioAssertInt",
5377 	"Qsfp1Int",
5378 	"Qsfp2Int",
5379 	"TCritInt"
5380 };
5381 
5382 /*
5383  * Return the various interrupt name.
5384  */
5385 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5386 {
5387 	if (source < ARRAY_SIZE(various_names))
5388 		strncpy(buf, various_names[source], bsize);
5389 	else
5390 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5391 	return buf;
5392 }
5393 
5394 /*
5395  * Return the DC interrupt name.
5396  */
5397 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5398 {
5399 	static const char * const dc_int_names[] = {
5400 		"common",
5401 		"lcb",
5402 		"8051",
5403 		"lbm"	/* local block merge */
5404 	};
5405 
5406 	if (source < ARRAY_SIZE(dc_int_names))
5407 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5408 	else
5409 		snprintf(buf, bsize, "DCInt%u", source);
5410 	return buf;
5411 }
5412 
5413 static const char * const sdma_int_names[] = {
5414 	"SDmaInt",
5415 	"SdmaIdleInt",
5416 	"SdmaProgressInt",
5417 };
5418 
5419 /*
5420  * Return the SDMA engine interrupt name.
5421  */
5422 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5423 {
5424 	/* what interrupt */
5425 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5426 	/* which engine */
5427 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5428 
5429 	if (likely(what < 3))
5430 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5431 	else
5432 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5433 	return buf;
5434 }
5435 
5436 /*
5437  * Return the receive available interrupt name.
5438  */
5439 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5440 {
5441 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5442 	return buf;
5443 }
5444 
5445 /*
5446  * Return the receive urgent interrupt name.
5447  */
5448 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5449 {
5450 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5451 	return buf;
5452 }
5453 
5454 /*
5455  * Return the send credit interrupt name.
5456  */
5457 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5458 {
5459 	snprintf(buf, bsize, "SendCreditInt%u", source);
5460 	return buf;
5461 }
5462 
5463 /*
5464  * Return the reserved interrupt name.
5465  */
5466 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5467 {
5468 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5469 	return buf;
5470 }
5471 
5472 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5473 {
5474 	return flag_string(buf, buf_len, flags,
5475 			   cce_err_status_flags,
5476 			   ARRAY_SIZE(cce_err_status_flags));
5477 }
5478 
5479 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5480 {
5481 	return flag_string(buf, buf_len, flags,
5482 			   rxe_err_status_flags,
5483 			   ARRAY_SIZE(rxe_err_status_flags));
5484 }
5485 
5486 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5487 {
5488 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5489 			   ARRAY_SIZE(misc_err_status_flags));
5490 }
5491 
5492 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5493 {
5494 	return flag_string(buf, buf_len, flags,
5495 			   pio_err_status_flags,
5496 			   ARRAY_SIZE(pio_err_status_flags));
5497 }
5498 
5499 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5500 {
5501 	return flag_string(buf, buf_len, flags,
5502 			   sdma_err_status_flags,
5503 			   ARRAY_SIZE(sdma_err_status_flags));
5504 }
5505 
5506 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5507 {
5508 	return flag_string(buf, buf_len, flags,
5509 			   egress_err_status_flags,
5510 			   ARRAY_SIZE(egress_err_status_flags));
5511 }
5512 
5513 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5514 {
5515 	return flag_string(buf, buf_len, flags,
5516 			   egress_err_info_flags,
5517 			   ARRAY_SIZE(egress_err_info_flags));
5518 }
5519 
5520 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5521 {
5522 	return flag_string(buf, buf_len, flags,
5523 			   send_err_status_flags,
5524 			   ARRAY_SIZE(send_err_status_flags));
5525 }
5526 
5527 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5528 {
5529 	char buf[96];
5530 	int i = 0;
5531 
5532 	/*
5533 	 * For most these errors, there is nothing that can be done except
5534 	 * report or record it.
5535 	 */
5536 	dd_dev_info(dd, "CCE Error: %s\n",
5537 		    cce_err_status_string(buf, sizeof(buf), reg));
5538 
5539 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5540 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5541 		/* this error requires a manual drop into SPC freeze mode */
5542 		/* then a fix up */
5543 		start_freeze_handling(dd->pport, FREEZE_SELF);
5544 	}
5545 
5546 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5547 		if (reg & (1ull << i)) {
5548 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5549 			/* maintain a counter over all cce_err_status errors */
5550 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5551 		}
5552 	}
5553 }
5554 
5555 /*
5556  * Check counters for receive errors that do not have an interrupt
5557  * associated with them.
5558  */
5559 #define RCVERR_CHECK_TIME 10
5560 static void update_rcverr_timer(struct timer_list *t)
5561 {
5562 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5563 	struct hfi1_pportdata *ppd = dd->pport;
5564 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5565 
5566 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5567 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5568 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5569 		set_link_down_reason(
5570 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5571 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5572 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5573 	}
5574 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5575 
5576 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5577 }
5578 
5579 static int init_rcverr(struct hfi1_devdata *dd)
5580 {
5581 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5582 	/* Assume the hardware counter has been reset */
5583 	dd->rcv_ovfl_cnt = 0;
5584 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5585 }
5586 
5587 static void free_rcverr(struct hfi1_devdata *dd)
5588 {
5589 	if (dd->rcverr_timer.function)
5590 		del_timer_sync(&dd->rcverr_timer);
5591 }
5592 
5593 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5594 {
5595 	char buf[96];
5596 	int i = 0;
5597 
5598 	dd_dev_info(dd, "Receive Error: %s\n",
5599 		    rxe_err_status_string(buf, sizeof(buf), reg));
5600 
5601 	if (reg & ALL_RXE_FREEZE_ERR) {
5602 		int flags = 0;
5603 
5604 		/*
5605 		 * Freeze mode recovery is disabled for the errors
5606 		 * in RXE_FREEZE_ABORT_MASK
5607 		 */
5608 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5609 			flags = FREEZE_ABORT;
5610 
5611 		start_freeze_handling(dd->pport, flags);
5612 	}
5613 
5614 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5615 		if (reg & (1ull << i))
5616 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5617 	}
5618 }
5619 
5620 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5621 {
5622 	char buf[96];
5623 	int i = 0;
5624 
5625 	dd_dev_info(dd, "Misc Error: %s",
5626 		    misc_err_status_string(buf, sizeof(buf), reg));
5627 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5628 		if (reg & (1ull << i))
5629 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5630 	}
5631 }
5632 
5633 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5634 {
5635 	char buf[96];
5636 	int i = 0;
5637 
5638 	dd_dev_info(dd, "PIO Error: %s\n",
5639 		    pio_err_status_string(buf, sizeof(buf), reg));
5640 
5641 	if (reg & ALL_PIO_FREEZE_ERR)
5642 		start_freeze_handling(dd->pport, 0);
5643 
5644 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5645 		if (reg & (1ull << i))
5646 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5647 	}
5648 }
5649 
5650 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5651 {
5652 	char buf[96];
5653 	int i = 0;
5654 
5655 	dd_dev_info(dd, "SDMA Error: %s\n",
5656 		    sdma_err_status_string(buf, sizeof(buf), reg));
5657 
5658 	if (reg & ALL_SDMA_FREEZE_ERR)
5659 		start_freeze_handling(dd->pport, 0);
5660 
5661 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5662 		if (reg & (1ull << i))
5663 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5664 	}
5665 }
5666 
5667 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5668 {
5669 	incr_cntr64(&ppd->port_xmit_discards);
5670 }
5671 
5672 static void count_port_inactive(struct hfi1_devdata *dd)
5673 {
5674 	__count_port_discards(dd->pport);
5675 }
5676 
5677 /*
5678  * We have had a "disallowed packet" error during egress. Determine the
5679  * integrity check which failed, and update relevant error counter, etc.
5680  *
5681  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5682  * bit of state per integrity check, and so we can miss the reason for an
5683  * egress error if more than one packet fails the same integrity check
5684  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5685  */
5686 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5687 					int vl)
5688 {
5689 	struct hfi1_pportdata *ppd = dd->pport;
5690 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5691 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5692 	char buf[96];
5693 
5694 	/* clear down all observed info as quickly as possible after read */
5695 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5696 
5697 	dd_dev_info(dd,
5698 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5699 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5700 
5701 	/* Eventually add other counters for each bit */
5702 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5703 		int weight, i;
5704 
5705 		/*
5706 		 * Count all applicable bits as individual errors and
5707 		 * attribute them to the packet that triggered this handler.
5708 		 * This may not be completely accurate due to limitations
5709 		 * on the available hardware error information.  There is
5710 		 * a single information register and any number of error
5711 		 * packets may have occurred and contributed to it before
5712 		 * this routine is called.  This means that:
5713 		 * a) If multiple packets with the same error occur before
5714 		 *    this routine is called, earlier packets are missed.
5715 		 *    There is only a single bit for each error type.
5716 		 * b) Errors may not be attributed to the correct VL.
5717 		 *    The driver is attributing all bits in the info register
5718 		 *    to the packet that triggered this call, but bits
5719 		 *    could be an accumulation of different packets with
5720 		 *    different VLs.
5721 		 * c) A single error packet may have multiple counts attached
5722 		 *    to it.  There is no way for the driver to know if
5723 		 *    multiple bits set in the info register are due to a
5724 		 *    single packet or multiple packets.  The driver assumes
5725 		 *    multiple packets.
5726 		 */
5727 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5728 		for (i = 0; i < weight; i++) {
5729 			__count_port_discards(ppd);
5730 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5731 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5732 			else if (vl == 15)
5733 				incr_cntr64(&ppd->port_xmit_discards_vl
5734 					    [C_VL_15]);
5735 		}
5736 	}
5737 }
5738 
5739 /*
5740  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5741  * register. Does it represent a 'port inactive' error?
5742  */
5743 static inline int port_inactive_err(u64 posn)
5744 {
5745 	return (posn >= SEES(TX_LINKDOWN) &&
5746 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5747 }
5748 
5749 /*
5750  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5751  * register. Does it represent a 'disallowed packet' error?
5752  */
5753 static inline int disallowed_pkt_err(int posn)
5754 {
5755 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5756 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5757 }
5758 
5759 /*
5760  * Input value is a bit position of one of the SDMA engine disallowed
5761  * packet errors.  Return which engine.  Use of this must be guarded by
5762  * disallowed_pkt_err().
5763  */
5764 static inline int disallowed_pkt_engine(int posn)
5765 {
5766 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5767 }
5768 
5769 /*
5770  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5771  * be done.
5772  */
5773 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5774 {
5775 	struct sdma_vl_map *m;
5776 	int vl;
5777 
5778 	/* range check */
5779 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5780 		return -1;
5781 
5782 	rcu_read_lock();
5783 	m = rcu_dereference(dd->sdma_map);
5784 	vl = m->engine_to_vl[engine];
5785 	rcu_read_unlock();
5786 
5787 	return vl;
5788 }
5789 
5790 /*
5791  * Translate the send context (sofware index) into a VL.  Return -1 if the
5792  * translation cannot be done.
5793  */
5794 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5795 {
5796 	struct send_context_info *sci;
5797 	struct send_context *sc;
5798 	int i;
5799 
5800 	sci = &dd->send_contexts[sw_index];
5801 
5802 	/* there is no information for user (PSM) and ack contexts */
5803 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5804 		return -1;
5805 
5806 	sc = sci->sc;
5807 	if (!sc)
5808 		return -1;
5809 	if (dd->vld[15].sc == sc)
5810 		return 15;
5811 	for (i = 0; i < num_vls; i++)
5812 		if (dd->vld[i].sc == sc)
5813 			return i;
5814 
5815 	return -1;
5816 }
5817 
5818 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5819 {
5820 	u64 reg_copy = reg, handled = 0;
5821 	char buf[96];
5822 	int i = 0;
5823 
5824 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5825 		start_freeze_handling(dd->pport, 0);
5826 	else if (is_ax(dd) &&
5827 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5828 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5829 		start_freeze_handling(dd->pport, 0);
5830 
5831 	while (reg_copy) {
5832 		int posn = fls64(reg_copy);
5833 		/* fls64() returns a 1-based offset, we want it zero based */
5834 		int shift = posn - 1;
5835 		u64 mask = 1ULL << shift;
5836 
5837 		if (port_inactive_err(shift)) {
5838 			count_port_inactive(dd);
5839 			handled |= mask;
5840 		} else if (disallowed_pkt_err(shift)) {
5841 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5842 
5843 			handle_send_egress_err_info(dd, vl);
5844 			handled |= mask;
5845 		}
5846 		reg_copy &= ~mask;
5847 	}
5848 
5849 	reg &= ~handled;
5850 
5851 	if (reg)
5852 		dd_dev_info(dd, "Egress Error: %s\n",
5853 			    egress_err_status_string(buf, sizeof(buf), reg));
5854 
5855 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5856 		if (reg & (1ull << i))
5857 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5858 	}
5859 }
5860 
5861 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5862 {
5863 	char buf[96];
5864 	int i = 0;
5865 
5866 	dd_dev_info(dd, "Send Error: %s\n",
5867 		    send_err_status_string(buf, sizeof(buf), reg));
5868 
5869 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5870 		if (reg & (1ull << i))
5871 			incr_cntr64(&dd->send_err_status_cnt[i]);
5872 	}
5873 }
5874 
5875 /*
5876  * The maximum number of times the error clear down will loop before
5877  * blocking a repeating error.  This value is arbitrary.
5878  */
5879 #define MAX_CLEAR_COUNT 20
5880 
5881 /*
5882  * Clear and handle an error register.  All error interrupts are funneled
5883  * through here to have a central location to correctly handle single-
5884  * or multi-shot errors.
5885  *
5886  * For non per-context registers, call this routine with a context value
5887  * of 0 so the per-context offset is zero.
5888  *
5889  * If the handler loops too many times, assume that something is wrong
5890  * and can't be fixed, so mask the error bits.
5891  */
5892 static void interrupt_clear_down(struct hfi1_devdata *dd,
5893 				 u32 context,
5894 				 const struct err_reg_info *eri)
5895 {
5896 	u64 reg;
5897 	u32 count;
5898 
5899 	/* read in a loop until no more errors are seen */
5900 	count = 0;
5901 	while (1) {
5902 		reg = read_kctxt_csr(dd, context, eri->status);
5903 		if (reg == 0)
5904 			break;
5905 		write_kctxt_csr(dd, context, eri->clear, reg);
5906 		if (likely(eri->handler))
5907 			eri->handler(dd, context, reg);
5908 		count++;
5909 		if (count > MAX_CLEAR_COUNT) {
5910 			u64 mask;
5911 
5912 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5913 				   eri->desc, reg);
5914 			/*
5915 			 * Read-modify-write so any other masked bits
5916 			 * remain masked.
5917 			 */
5918 			mask = read_kctxt_csr(dd, context, eri->mask);
5919 			mask &= ~reg;
5920 			write_kctxt_csr(dd, context, eri->mask, mask);
5921 			break;
5922 		}
5923 	}
5924 }
5925 
5926 /*
5927  * CCE block "misc" interrupt.  Source is < 16.
5928  */
5929 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5930 {
5931 	const struct err_reg_info *eri = &misc_errs[source];
5932 
5933 	if (eri->handler) {
5934 		interrupt_clear_down(dd, 0, eri);
5935 	} else {
5936 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5937 			   source);
5938 	}
5939 }
5940 
5941 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5942 {
5943 	return flag_string(buf, buf_len, flags,
5944 			   sc_err_status_flags,
5945 			   ARRAY_SIZE(sc_err_status_flags));
5946 }
5947 
5948 /*
5949  * Send context error interrupt.  Source (hw_context) is < 160.
5950  *
5951  * All send context errors cause the send context to halt.  The normal
5952  * clear-down mechanism cannot be used because we cannot clear the
5953  * error bits until several other long-running items are done first.
5954  * This is OK because with the context halted, nothing else is going
5955  * to happen on it anyway.
5956  */
5957 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5958 				unsigned int hw_context)
5959 {
5960 	struct send_context_info *sci;
5961 	struct send_context *sc;
5962 	char flags[96];
5963 	u64 status;
5964 	u32 sw_index;
5965 	int i = 0;
5966 	unsigned long irq_flags;
5967 
5968 	sw_index = dd->hw_to_sw[hw_context];
5969 	if (sw_index >= dd->num_send_contexts) {
5970 		dd_dev_err(dd,
5971 			   "out of range sw index %u for send context %u\n",
5972 			   sw_index, hw_context);
5973 		return;
5974 	}
5975 	sci = &dd->send_contexts[sw_index];
5976 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5977 	sc = sci->sc;
5978 	if (!sc) {
5979 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5980 			   sw_index, hw_context);
5981 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5982 		return;
5983 	}
5984 
5985 	/* tell the software that a halt has begun */
5986 	sc_stop(sc, SCF_HALTED);
5987 
5988 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5989 
5990 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5991 		    send_context_err_status_string(flags, sizeof(flags),
5992 						   status));
5993 
5994 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5995 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5996 
5997 	/*
5998 	 * Automatically restart halted kernel contexts out of interrupt
5999 	 * context.  User contexts must ask the driver to restart the context.
6000 	 */
6001 	if (sc->type != SC_USER)
6002 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
6003 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
6004 
6005 	/*
6006 	 * Update the counters for the corresponding status bits.
6007 	 * Note that these particular counters are aggregated over all
6008 	 * 160 contexts.
6009 	 */
6010 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6011 		if (status & (1ull << i))
6012 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6013 	}
6014 }
6015 
6016 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6017 				unsigned int source, u64 status)
6018 {
6019 	struct sdma_engine *sde;
6020 	int i = 0;
6021 
6022 	sde = &dd->per_sdma[source];
6023 #ifdef CONFIG_SDMA_VERBOSITY
6024 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6025 		   slashstrip(__FILE__), __LINE__, __func__);
6026 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6027 		   sde->this_idx, source, (unsigned long long)status);
6028 #endif
6029 	sde->err_cnt++;
6030 	sdma_engine_error(sde, status);
6031 
6032 	/*
6033 	* Update the counters for the corresponding status bits.
6034 	* Note that these particular counters are aggregated over
6035 	* all 16 DMA engines.
6036 	*/
6037 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6038 		if (status & (1ull << i))
6039 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6040 	}
6041 }
6042 
6043 /*
6044  * CCE block SDMA error interrupt.  Source is < 16.
6045  */
6046 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6047 {
6048 #ifdef CONFIG_SDMA_VERBOSITY
6049 	struct sdma_engine *sde = &dd->per_sdma[source];
6050 
6051 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6052 		   slashstrip(__FILE__), __LINE__, __func__);
6053 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6054 		   source);
6055 	sdma_dumpstate(sde);
6056 #endif
6057 	interrupt_clear_down(dd, source, &sdma_eng_err);
6058 }
6059 
6060 /*
6061  * CCE block "various" interrupt.  Source is < 8.
6062  */
6063 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6064 {
6065 	const struct err_reg_info *eri = &various_err[source];
6066 
6067 	/*
6068 	 * TCritInt cannot go through interrupt_clear_down()
6069 	 * because it is not a second tier interrupt. The handler
6070 	 * should be called directly.
6071 	 */
6072 	if (source == TCRIT_INT_SOURCE)
6073 		handle_temp_err(dd);
6074 	else if (eri->handler)
6075 		interrupt_clear_down(dd, 0, eri);
6076 	else
6077 		dd_dev_info(dd,
6078 			    "%s: Unimplemented/reserved interrupt %d\n",
6079 			    __func__, source);
6080 }
6081 
6082 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6083 {
6084 	/* src_ctx is always zero */
6085 	struct hfi1_pportdata *ppd = dd->pport;
6086 	unsigned long flags;
6087 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6088 
6089 	if (reg & QSFP_HFI0_MODPRST_N) {
6090 		if (!qsfp_mod_present(ppd)) {
6091 			dd_dev_info(dd, "%s: QSFP module removed\n",
6092 				    __func__);
6093 
6094 			ppd->driver_link_ready = 0;
6095 			/*
6096 			 * Cable removed, reset all our information about the
6097 			 * cache and cable capabilities
6098 			 */
6099 
6100 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6101 			/*
6102 			 * We don't set cache_refresh_required here as we expect
6103 			 * an interrupt when a cable is inserted
6104 			 */
6105 			ppd->qsfp_info.cache_valid = 0;
6106 			ppd->qsfp_info.reset_needed = 0;
6107 			ppd->qsfp_info.limiting_active = 0;
6108 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6109 					       flags);
6110 			/* Invert the ModPresent pin now to detect plug-in */
6111 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6112 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6113 
6114 			if ((ppd->offline_disabled_reason >
6115 			  HFI1_ODR_MASK(
6116 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6117 			  (ppd->offline_disabled_reason ==
6118 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6119 				ppd->offline_disabled_reason =
6120 				HFI1_ODR_MASK(
6121 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6122 
6123 			if (ppd->host_link_state == HLS_DN_POLL) {
6124 				/*
6125 				 * The link is still in POLL. This means
6126 				 * that the normal link down processing
6127 				 * will not happen. We have to do it here
6128 				 * before turning the DC off.
6129 				 */
6130 				queue_work(ppd->link_wq, &ppd->link_down_work);
6131 			}
6132 		} else {
6133 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6134 				    __func__);
6135 
6136 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6137 			ppd->qsfp_info.cache_valid = 0;
6138 			ppd->qsfp_info.cache_refresh_required = 1;
6139 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6140 					       flags);
6141 
6142 			/*
6143 			 * Stop inversion of ModPresent pin to detect
6144 			 * removal of the cable
6145 			 */
6146 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6147 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6148 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6149 
6150 			ppd->offline_disabled_reason =
6151 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6152 		}
6153 	}
6154 
6155 	if (reg & QSFP_HFI0_INT_N) {
6156 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6157 			    __func__);
6158 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6159 		ppd->qsfp_info.check_interrupt_flags = 1;
6160 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6161 	}
6162 
6163 	/* Schedule the QSFP work only if there is a cable attached. */
6164 	if (qsfp_mod_present(ppd))
6165 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6166 }
6167 
6168 static int request_host_lcb_access(struct hfi1_devdata *dd)
6169 {
6170 	int ret;
6171 
6172 	ret = do_8051_command(dd, HCMD_MISC,
6173 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6174 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6175 	if (ret != HCMD_SUCCESS) {
6176 		dd_dev_err(dd, "%s: command failed with error %d\n",
6177 			   __func__, ret);
6178 	}
6179 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6180 }
6181 
6182 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6183 {
6184 	int ret;
6185 
6186 	ret = do_8051_command(dd, HCMD_MISC,
6187 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6188 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6189 	if (ret != HCMD_SUCCESS) {
6190 		dd_dev_err(dd, "%s: command failed with error %d\n",
6191 			   __func__, ret);
6192 	}
6193 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6194 }
6195 
6196 /*
6197  * Set the LCB selector - allow host access.  The DCC selector always
6198  * points to the host.
6199  */
6200 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6201 {
6202 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6203 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6204 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6205 }
6206 
6207 /*
6208  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6209  * points to the host.
6210  */
6211 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6212 {
6213 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6214 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6215 }
6216 
6217 /*
6218  * Acquire LCB access from the 8051.  If the host already has access,
6219  * just increment a counter.  Otherwise, inform the 8051 that the
6220  * host is taking access.
6221  *
6222  * Returns:
6223  *	0 on success
6224  *	-EBUSY if the 8051 has control and cannot be disturbed
6225  *	-errno if unable to acquire access from the 8051
6226  */
6227 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6228 {
6229 	struct hfi1_pportdata *ppd = dd->pport;
6230 	int ret = 0;
6231 
6232 	/*
6233 	 * Use the host link state lock so the operation of this routine
6234 	 * { link state check, selector change, count increment } can occur
6235 	 * as a unit against a link state change.  Otherwise there is a
6236 	 * race between the state change and the count increment.
6237 	 */
6238 	if (sleep_ok) {
6239 		mutex_lock(&ppd->hls_lock);
6240 	} else {
6241 		while (!mutex_trylock(&ppd->hls_lock))
6242 			udelay(1);
6243 	}
6244 
6245 	/* this access is valid only when the link is up */
6246 	if (ppd->host_link_state & HLS_DOWN) {
6247 		dd_dev_info(dd, "%s: link state %s not up\n",
6248 			    __func__, link_state_name(ppd->host_link_state));
6249 		ret = -EBUSY;
6250 		goto done;
6251 	}
6252 
6253 	if (dd->lcb_access_count == 0) {
6254 		ret = request_host_lcb_access(dd);
6255 		if (ret) {
6256 			dd_dev_err(dd,
6257 				   "%s: unable to acquire LCB access, err %d\n",
6258 				   __func__, ret);
6259 			goto done;
6260 		}
6261 		set_host_lcb_access(dd);
6262 	}
6263 	dd->lcb_access_count++;
6264 done:
6265 	mutex_unlock(&ppd->hls_lock);
6266 	return ret;
6267 }
6268 
6269 /*
6270  * Release LCB access by decrementing the use count.  If the count is moving
6271  * from 1 to 0, inform 8051 that it has control back.
6272  *
6273  * Returns:
6274  *	0 on success
6275  *	-errno if unable to release access to the 8051
6276  */
6277 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6278 {
6279 	int ret = 0;
6280 
6281 	/*
6282 	 * Use the host link state lock because the acquire needed it.
6283 	 * Here, we only need to keep { selector change, count decrement }
6284 	 * as a unit.
6285 	 */
6286 	if (sleep_ok) {
6287 		mutex_lock(&dd->pport->hls_lock);
6288 	} else {
6289 		while (!mutex_trylock(&dd->pport->hls_lock))
6290 			udelay(1);
6291 	}
6292 
6293 	if (dd->lcb_access_count == 0) {
6294 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6295 			   __func__);
6296 		goto done;
6297 	}
6298 
6299 	if (dd->lcb_access_count == 1) {
6300 		set_8051_lcb_access(dd);
6301 		ret = request_8051_lcb_access(dd);
6302 		if (ret) {
6303 			dd_dev_err(dd,
6304 				   "%s: unable to release LCB access, err %d\n",
6305 				   __func__, ret);
6306 			/* restore host access if the grant didn't work */
6307 			set_host_lcb_access(dd);
6308 			goto done;
6309 		}
6310 	}
6311 	dd->lcb_access_count--;
6312 done:
6313 	mutex_unlock(&dd->pport->hls_lock);
6314 	return ret;
6315 }
6316 
6317 /*
6318  * Initialize LCB access variables and state.  Called during driver load,
6319  * after most of the initialization is finished.
6320  *
6321  * The DC default is LCB access on for the host.  The driver defaults to
6322  * leaving access to the 8051.  Assign access now - this constrains the call
6323  * to this routine to be after all LCB set-up is done.  In particular, after
6324  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6325  */
6326 static void init_lcb_access(struct hfi1_devdata *dd)
6327 {
6328 	dd->lcb_access_count = 0;
6329 }
6330 
6331 /*
6332  * Write a response back to a 8051 request.
6333  */
6334 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6335 {
6336 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6337 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6338 		  (u64)return_code <<
6339 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6340 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6341 }
6342 
6343 /*
6344  * Handle host requests from the 8051.
6345  */
6346 static void handle_8051_request(struct hfi1_pportdata *ppd)
6347 {
6348 	struct hfi1_devdata *dd = ppd->dd;
6349 	u64 reg;
6350 	u16 data = 0;
6351 	u8 type;
6352 
6353 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6354 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6355 		return;	/* no request */
6356 
6357 	/* zero out COMPLETED so the response is seen */
6358 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6359 
6360 	/* extract request details */
6361 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6362 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6363 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6364 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6365 
6366 	switch (type) {
6367 	case HREQ_LOAD_CONFIG:
6368 	case HREQ_SAVE_CONFIG:
6369 	case HREQ_READ_CONFIG:
6370 	case HREQ_SET_TX_EQ_ABS:
6371 	case HREQ_SET_TX_EQ_REL:
6372 	case HREQ_ENABLE:
6373 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6374 			    type);
6375 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6376 		break;
6377 	case HREQ_LCB_RESET:
6378 		/* Put the LCB, RX FPE and TX FPE into reset */
6379 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6380 		/* Make sure the write completed */
6381 		(void)read_csr(dd, DCC_CFG_RESET);
6382 		/* Hold the reset long enough to take effect */
6383 		udelay(1);
6384 		/* Take the LCB, RX FPE and TX FPE out of reset */
6385 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6386 		hreq_response(dd, HREQ_SUCCESS, 0);
6387 
6388 		break;
6389 	case HREQ_CONFIG_DONE:
6390 		hreq_response(dd, HREQ_SUCCESS, 0);
6391 		break;
6392 
6393 	case HREQ_INTERFACE_TEST:
6394 		hreq_response(dd, HREQ_SUCCESS, data);
6395 		break;
6396 	default:
6397 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6398 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6399 		break;
6400 	}
6401 }
6402 
6403 /*
6404  * Set up allocation unit vaulue.
6405  */
6406 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6407 {
6408 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6409 
6410 	/* do not modify other values in the register */
6411 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6412 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6413 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6414 }
6415 
6416 /*
6417  * Set up initial VL15 credits of the remote.  Assumes the rest of
6418  * the CM credit registers are zero from a previous global or credit reset.
6419  * Shared limit for VL15 will always be 0.
6420  */
6421 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6422 {
6423 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6424 
6425 	/* set initial values for total and shared credit limit */
6426 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6427 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6428 
6429 	/*
6430 	 * Set total limit to be equal to VL15 credits.
6431 	 * Leave shared limit at 0.
6432 	 */
6433 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6434 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6435 
6436 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6437 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6438 }
6439 
6440 /*
6441  * Zero all credit details from the previous connection and
6442  * reset the CM manager's internal counters.
6443  */
6444 void reset_link_credits(struct hfi1_devdata *dd)
6445 {
6446 	int i;
6447 
6448 	/* remove all previous VL credit limits */
6449 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6450 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6451 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6452 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6453 	/* reset the CM block */
6454 	pio_send_control(dd, PSC_CM_RESET);
6455 	/* reset cached value */
6456 	dd->vl15buf_cached = 0;
6457 }
6458 
6459 /* convert a vCU to a CU */
6460 static u32 vcu_to_cu(u8 vcu)
6461 {
6462 	return 1 << vcu;
6463 }
6464 
6465 /* convert a CU to a vCU */
6466 static u8 cu_to_vcu(u32 cu)
6467 {
6468 	return ilog2(cu);
6469 }
6470 
6471 /* convert a vAU to an AU */
6472 static u32 vau_to_au(u8 vau)
6473 {
6474 	return 8 * (1 << vau);
6475 }
6476 
6477 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6478 {
6479 	ppd->sm_trap_qp = 0x0;
6480 	ppd->sa_qp = 0x1;
6481 }
6482 
6483 /*
6484  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6485  */
6486 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6487 {
6488 	u64 reg;
6489 
6490 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6491 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6492 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6493 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6494 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6495 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6496 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6497 	reg = read_csr(dd, DCC_CFG_RESET);
6498 	write_csr(dd, DCC_CFG_RESET, reg |
6499 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6500 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6501 	if (!abort) {
6502 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6503 		write_csr(dd, DCC_CFG_RESET, reg);
6504 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6505 	}
6506 }
6507 
6508 /*
6509  * This routine should be called after the link has been transitioned to
6510  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6511  * reset).
6512  *
6513  * The expectation is that the caller of this routine would have taken
6514  * care of properly transitioning the link into the correct state.
6515  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6516  *       before calling this function.
6517  */
6518 static void _dc_shutdown(struct hfi1_devdata *dd)
6519 {
6520 	lockdep_assert_held(&dd->dc8051_lock);
6521 
6522 	if (dd->dc_shutdown)
6523 		return;
6524 
6525 	dd->dc_shutdown = 1;
6526 	/* Shutdown the LCB */
6527 	lcb_shutdown(dd, 1);
6528 	/*
6529 	 * Going to OFFLINE would have causes the 8051 to put the
6530 	 * SerDes into reset already. Just need to shut down the 8051,
6531 	 * itself.
6532 	 */
6533 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6534 }
6535 
6536 static void dc_shutdown(struct hfi1_devdata *dd)
6537 {
6538 	mutex_lock(&dd->dc8051_lock);
6539 	_dc_shutdown(dd);
6540 	mutex_unlock(&dd->dc8051_lock);
6541 }
6542 
6543 /*
6544  * Calling this after the DC has been brought out of reset should not
6545  * do any damage.
6546  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6547  *       before calling this function.
6548  */
6549 static void _dc_start(struct hfi1_devdata *dd)
6550 {
6551 	lockdep_assert_held(&dd->dc8051_lock);
6552 
6553 	if (!dd->dc_shutdown)
6554 		return;
6555 
6556 	/* Take the 8051 out of reset */
6557 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6558 	/* Wait until 8051 is ready */
6559 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6560 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6561 			   __func__);
6562 
6563 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6564 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6565 	/* lcb_shutdown() with abort=1 does not restore these */
6566 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6567 	dd->dc_shutdown = 0;
6568 }
6569 
6570 static void dc_start(struct hfi1_devdata *dd)
6571 {
6572 	mutex_lock(&dd->dc8051_lock);
6573 	_dc_start(dd);
6574 	mutex_unlock(&dd->dc8051_lock);
6575 }
6576 
6577 /*
6578  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6579  */
6580 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6581 {
6582 	u64 rx_radr, tx_radr;
6583 	u32 version;
6584 
6585 	if (dd->icode != ICODE_FPGA_EMULATION)
6586 		return;
6587 
6588 	/*
6589 	 * These LCB defaults on emulator _s are good, nothing to do here:
6590 	 *	LCB_CFG_TX_FIFOS_RADR
6591 	 *	LCB_CFG_RX_FIFOS_RADR
6592 	 *	LCB_CFG_LN_DCLK
6593 	 *	LCB_CFG_IGNORE_LOST_RCLK
6594 	 */
6595 	if (is_emulator_s(dd))
6596 		return;
6597 	/* else this is _p */
6598 
6599 	version = emulator_rev(dd);
6600 	if (!is_ax(dd))
6601 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6602 
6603 	if (version <= 0x12) {
6604 		/* release 0x12 and below */
6605 
6606 		/*
6607 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6608 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6609 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6610 		 */
6611 		rx_radr =
6612 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6613 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6614 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6615 		/*
6616 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6617 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6618 		 */
6619 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6620 	} else if (version <= 0x18) {
6621 		/* release 0x13 up to 0x18 */
6622 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6623 		rx_radr =
6624 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6625 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6626 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6627 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6628 	} else if (version == 0x19) {
6629 		/* release 0x19 */
6630 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6631 		rx_radr =
6632 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6633 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6634 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6635 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6636 	} else if (version == 0x1a) {
6637 		/* release 0x1a */
6638 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6639 		rx_radr =
6640 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6641 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6642 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6643 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6644 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6645 	} else {
6646 		/* release 0x1b and higher */
6647 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6648 		rx_radr =
6649 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6650 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6651 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6652 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6653 	}
6654 
6655 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6656 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6657 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6658 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6659 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6660 }
6661 
6662 /*
6663  * Handle a SMA idle message
6664  *
6665  * This is a work-queue function outside of the interrupt.
6666  */
6667 void handle_sma_message(struct work_struct *work)
6668 {
6669 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6670 							sma_message_work);
6671 	struct hfi1_devdata *dd = ppd->dd;
6672 	u64 msg;
6673 	int ret;
6674 
6675 	/*
6676 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6677 	 * is stripped off
6678 	 */
6679 	ret = read_idle_sma(dd, &msg);
6680 	if (ret)
6681 		return;
6682 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6683 	/*
6684 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6685 	 */
6686 	switch (msg & 0xff) {
6687 	case SMA_IDLE_ARM:
6688 		/*
6689 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6690 		 * State Transitions
6691 		 *
6692 		 * Only expected in INIT or ARMED, discard otherwise.
6693 		 */
6694 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6695 			ppd->neighbor_normal = 1;
6696 		break;
6697 	case SMA_IDLE_ACTIVE:
6698 		/*
6699 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6700 		 * State Transitions
6701 		 *
6702 		 * Can activate the node.  Discard otherwise.
6703 		 */
6704 		if (ppd->host_link_state == HLS_UP_ARMED &&
6705 		    ppd->is_active_optimize_enabled) {
6706 			ppd->neighbor_normal = 1;
6707 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6708 			if (ret)
6709 				dd_dev_err(
6710 					dd,
6711 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6712 					__func__);
6713 		}
6714 		break;
6715 	default:
6716 		dd_dev_err(dd,
6717 			   "%s: received unexpected SMA idle message 0x%llx\n",
6718 			   __func__, msg);
6719 		break;
6720 	}
6721 }
6722 
6723 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6724 {
6725 	u64 rcvctrl;
6726 	unsigned long flags;
6727 
6728 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6729 	rcvctrl = read_csr(dd, RCV_CTRL);
6730 	rcvctrl |= add;
6731 	rcvctrl &= ~clear;
6732 	write_csr(dd, RCV_CTRL, rcvctrl);
6733 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6734 }
6735 
6736 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6737 {
6738 	adjust_rcvctrl(dd, add, 0);
6739 }
6740 
6741 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6742 {
6743 	adjust_rcvctrl(dd, 0, clear);
6744 }
6745 
6746 /*
6747  * Called from all interrupt handlers to start handling an SPC freeze.
6748  */
6749 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6750 {
6751 	struct hfi1_devdata *dd = ppd->dd;
6752 	struct send_context *sc;
6753 	int i;
6754 	int sc_flags;
6755 
6756 	if (flags & FREEZE_SELF)
6757 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6758 
6759 	/* enter frozen mode */
6760 	dd->flags |= HFI1_FROZEN;
6761 
6762 	/* notify all SDMA engines that they are going into a freeze */
6763 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6764 
6765 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6766 					      SCF_LINK_DOWN : 0);
6767 	/* do halt pre-handling on all enabled send contexts */
6768 	for (i = 0; i < dd->num_send_contexts; i++) {
6769 		sc = dd->send_contexts[i].sc;
6770 		if (sc && (sc->flags & SCF_ENABLED))
6771 			sc_stop(sc, sc_flags);
6772 	}
6773 
6774 	/* Send context are frozen. Notify user space */
6775 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6776 
6777 	if (flags & FREEZE_ABORT) {
6778 		dd_dev_err(dd,
6779 			   "Aborted freeze recovery. Please REBOOT system\n");
6780 		return;
6781 	}
6782 	/* queue non-interrupt handler */
6783 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6784 }
6785 
6786 /*
6787  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6788  * depending on the "freeze" parameter.
6789  *
6790  * No need to return an error if it times out, our only option
6791  * is to proceed anyway.
6792  */
6793 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6794 {
6795 	unsigned long timeout;
6796 	u64 reg;
6797 
6798 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6799 	while (1) {
6800 		reg = read_csr(dd, CCE_STATUS);
6801 		if (freeze) {
6802 			/* waiting until all indicators are set */
6803 			if ((reg & ALL_FROZE) == ALL_FROZE)
6804 				return;	/* all done */
6805 		} else {
6806 			/* waiting until all indicators are clear */
6807 			if ((reg & ALL_FROZE) == 0)
6808 				return; /* all done */
6809 		}
6810 
6811 		if (time_after(jiffies, timeout)) {
6812 			dd_dev_err(dd,
6813 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6814 				   freeze ? "" : "un", reg & ALL_FROZE,
6815 				   freeze ? ALL_FROZE : 0ull);
6816 			return;
6817 		}
6818 		usleep_range(80, 120);
6819 	}
6820 }
6821 
6822 /*
6823  * Do all freeze handling for the RXE block.
6824  */
6825 static void rxe_freeze(struct hfi1_devdata *dd)
6826 {
6827 	int i;
6828 	struct hfi1_ctxtdata *rcd;
6829 
6830 	/* disable port */
6831 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6832 
6833 	/* disable all receive contexts */
6834 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6835 		rcd = hfi1_rcd_get_by_index(dd, i);
6836 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6837 		hfi1_rcd_put(rcd);
6838 	}
6839 }
6840 
6841 /*
6842  * Unfreeze handling for the RXE block - kernel contexts only.
6843  * This will also enable the port.  User contexts will do unfreeze
6844  * handling on a per-context basis as they call into the driver.
6845  *
6846  */
6847 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6848 {
6849 	u32 rcvmask;
6850 	u16 i;
6851 	struct hfi1_ctxtdata *rcd;
6852 
6853 	/* enable all kernel contexts */
6854 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6855 		rcd = hfi1_rcd_get_by_index(dd, i);
6856 
6857 		/* Ensure all non-user contexts(including vnic) are enabled */
6858 		if (!rcd ||
6859 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6860 			hfi1_rcd_put(rcd);
6861 			continue;
6862 		}
6863 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6864 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6865 		rcvmask |= rcd->rcvhdrtail_kvaddr ?
6866 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6867 		hfi1_rcvctrl(dd, rcvmask, rcd);
6868 		hfi1_rcd_put(rcd);
6869 	}
6870 
6871 	/* enable port */
6872 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6873 }
6874 
6875 /*
6876  * Non-interrupt SPC freeze handling.
6877  *
6878  * This is a work-queue function outside of the triggering interrupt.
6879  */
6880 void handle_freeze(struct work_struct *work)
6881 {
6882 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6883 								freeze_work);
6884 	struct hfi1_devdata *dd = ppd->dd;
6885 
6886 	/* wait for freeze indicators on all affected blocks */
6887 	wait_for_freeze_status(dd, 1);
6888 
6889 	/* SPC is now frozen */
6890 
6891 	/* do send PIO freeze steps */
6892 	pio_freeze(dd);
6893 
6894 	/* do send DMA freeze steps */
6895 	sdma_freeze(dd);
6896 
6897 	/* do send egress freeze steps - nothing to do */
6898 
6899 	/* do receive freeze steps */
6900 	rxe_freeze(dd);
6901 
6902 	/*
6903 	 * Unfreeze the hardware - clear the freeze, wait for each
6904 	 * block's frozen bit to clear, then clear the frozen flag.
6905 	 */
6906 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6907 	wait_for_freeze_status(dd, 0);
6908 
6909 	if (is_ax(dd)) {
6910 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6911 		wait_for_freeze_status(dd, 1);
6912 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6913 		wait_for_freeze_status(dd, 0);
6914 	}
6915 
6916 	/* do send PIO unfreeze steps for kernel contexts */
6917 	pio_kernel_unfreeze(dd);
6918 
6919 	/* do send DMA unfreeze steps */
6920 	sdma_unfreeze(dd);
6921 
6922 	/* do send egress unfreeze steps - nothing to do */
6923 
6924 	/* do receive unfreeze steps for kernel contexts */
6925 	rxe_kernel_unfreeze(dd);
6926 
6927 	/*
6928 	 * The unfreeze procedure touches global device registers when
6929 	 * it disables and re-enables RXE. Mark the device unfrozen
6930 	 * after all that is done so other parts of the driver waiting
6931 	 * for the device to unfreeze don't do things out of order.
6932 	 *
6933 	 * The above implies that the meaning of HFI1_FROZEN flag is
6934 	 * "Device has gone into freeze mode and freeze mode handling
6935 	 * is still in progress."
6936 	 *
6937 	 * The flag will be removed when freeze mode processing has
6938 	 * completed.
6939 	 */
6940 	dd->flags &= ~HFI1_FROZEN;
6941 	wake_up(&dd->event_queue);
6942 
6943 	/* no longer frozen */
6944 }
6945 
6946 /**
6947  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6948  * counters.
6949  * @ppd: info of physical Hfi port
6950  * @link_width: new link width after link up or downgrade
6951  *
6952  * Update the PortXmitWait and PortVlXmitWait counters after
6953  * a link up or downgrade event to reflect a link width change.
6954  */
6955 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6956 {
6957 	int i;
6958 	u16 tx_width;
6959 	u16 link_speed;
6960 
6961 	tx_width = tx_link_width(link_width);
6962 	link_speed = get_link_speed(ppd->link_speed_active);
6963 
6964 	/*
6965 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6966 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6967 	 */
6968 	for (i = 0; i < C_VL_COUNT + 1; i++)
6969 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6970 }
6971 
6972 /*
6973  * Handle a link up interrupt from the 8051.
6974  *
6975  * This is a work-queue function outside of the interrupt.
6976  */
6977 void handle_link_up(struct work_struct *work)
6978 {
6979 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6980 						  link_up_work);
6981 	struct hfi1_devdata *dd = ppd->dd;
6982 
6983 	set_link_state(ppd, HLS_UP_INIT);
6984 
6985 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6986 	read_ltp_rtt(dd);
6987 	/*
6988 	 * OPA specifies that certain counters are cleared on a transition
6989 	 * to link up, so do that.
6990 	 */
6991 	clear_linkup_counters(dd);
6992 	/*
6993 	 * And (re)set link up default values.
6994 	 */
6995 	set_linkup_defaults(ppd);
6996 
6997 	/*
6998 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6999 	 * In case of quick linkup or simulator, vl15 value will be set by
7000 	 * handle_linkup_change. VerifyCap interrupt handler will not be
7001 	 * called in those scenarios.
7002 	 */
7003 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
7004 		set_up_vl15(dd, dd->vl15buf_cached);
7005 
7006 	/* enforce link speed enabled */
7007 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7008 		/* oops - current speed is not enabled, bounce */
7009 		dd_dev_err(dd,
7010 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7011 			   ppd->link_speed_active, ppd->link_speed_enabled);
7012 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7013 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7014 		set_link_state(ppd, HLS_DN_OFFLINE);
7015 		start_link(ppd);
7016 	}
7017 }
7018 
7019 /*
7020  * Several pieces of LNI information were cached for SMA in ppd.
7021  * Reset these on link down
7022  */
7023 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7024 {
7025 	ppd->neighbor_guid = 0;
7026 	ppd->neighbor_port_number = 0;
7027 	ppd->neighbor_type = 0;
7028 	ppd->neighbor_fm_security = 0;
7029 }
7030 
7031 static const char * const link_down_reason_strs[] = {
7032 	[OPA_LINKDOWN_REASON_NONE] = "None",
7033 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7034 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7035 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7036 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7037 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7038 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7039 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7040 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7041 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7042 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7043 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7044 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7045 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7046 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7047 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7048 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7049 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7050 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7051 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7052 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7053 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7054 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7055 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7056 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7057 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7058 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7059 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7060 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7061 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7062 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7063 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7064 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7065 					"Excessive buffer overrun",
7066 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7067 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7068 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7069 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7070 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7071 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7072 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7073 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7074 					"Local media not installed",
7075 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7076 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7077 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7078 					"End to end not installed",
7079 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7080 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7081 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7082 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7083 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7084 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7085 };
7086 
7087 /* return the neighbor link down reason string */
7088 static const char *link_down_reason_str(u8 reason)
7089 {
7090 	const char *str = NULL;
7091 
7092 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7093 		str = link_down_reason_strs[reason];
7094 	if (!str)
7095 		str = "(invalid)";
7096 
7097 	return str;
7098 }
7099 
7100 /*
7101  * Handle a link down interrupt from the 8051.
7102  *
7103  * This is a work-queue function outside of the interrupt.
7104  */
7105 void handle_link_down(struct work_struct *work)
7106 {
7107 	u8 lcl_reason, neigh_reason = 0;
7108 	u8 link_down_reason;
7109 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7110 						  link_down_work);
7111 	int was_up;
7112 	static const char ldr_str[] = "Link down reason: ";
7113 
7114 	if ((ppd->host_link_state &
7115 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7116 	     ppd->port_type == PORT_TYPE_FIXED)
7117 		ppd->offline_disabled_reason =
7118 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7119 
7120 	/* Go offline first, then deal with reading/writing through 8051 */
7121 	was_up = !!(ppd->host_link_state & HLS_UP);
7122 	set_link_state(ppd, HLS_DN_OFFLINE);
7123 	xchg(&ppd->is_link_down_queued, 0);
7124 
7125 	if (was_up) {
7126 		lcl_reason = 0;
7127 		/* link down reason is only valid if the link was up */
7128 		read_link_down_reason(ppd->dd, &link_down_reason);
7129 		switch (link_down_reason) {
7130 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7131 			/* the link went down, no idle message reason */
7132 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7133 				    ldr_str);
7134 			break;
7135 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7136 			/*
7137 			 * The neighbor reason is only valid if an idle message
7138 			 * was received for it.
7139 			 */
7140 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7141 			dd_dev_info(ppd->dd,
7142 				    "%sNeighbor link down message %d, %s\n",
7143 				    ldr_str, neigh_reason,
7144 				    link_down_reason_str(neigh_reason));
7145 			break;
7146 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7147 			dd_dev_info(ppd->dd,
7148 				    "%sHost requested link to go offline\n",
7149 				    ldr_str);
7150 			break;
7151 		default:
7152 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7153 				    ldr_str, link_down_reason);
7154 			break;
7155 		}
7156 
7157 		/*
7158 		 * If no reason, assume peer-initiated but missed
7159 		 * LinkGoingDown idle flits.
7160 		 */
7161 		if (neigh_reason == 0)
7162 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7163 	} else {
7164 		/* went down while polling or going up */
7165 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7166 	}
7167 
7168 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7169 
7170 	/* inform the SMA when the link transitions from up to down */
7171 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7172 	    ppd->neigh_link_down_reason.sma == 0) {
7173 		ppd->local_link_down_reason.sma =
7174 					ppd->local_link_down_reason.latest;
7175 		ppd->neigh_link_down_reason.sma =
7176 					ppd->neigh_link_down_reason.latest;
7177 	}
7178 
7179 	reset_neighbor_info(ppd);
7180 
7181 	/* disable the port */
7182 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7183 
7184 	/*
7185 	 * If there is no cable attached, turn the DC off. Otherwise,
7186 	 * start the link bring up.
7187 	 */
7188 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7189 		dc_shutdown(ppd->dd);
7190 	else
7191 		start_link(ppd);
7192 }
7193 
7194 void handle_link_bounce(struct work_struct *work)
7195 {
7196 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7197 							link_bounce_work);
7198 
7199 	/*
7200 	 * Only do something if the link is currently up.
7201 	 */
7202 	if (ppd->host_link_state & HLS_UP) {
7203 		set_link_state(ppd, HLS_DN_OFFLINE);
7204 		start_link(ppd);
7205 	} else {
7206 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7207 			    __func__, link_state_name(ppd->host_link_state));
7208 	}
7209 }
7210 
7211 /*
7212  * Mask conversion: Capability exchange to Port LTP.  The capability
7213  * exchange has an implicit 16b CRC that is mandatory.
7214  */
7215 static int cap_to_port_ltp(int cap)
7216 {
7217 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7218 
7219 	if (cap & CAP_CRC_14B)
7220 		port_ltp |= PORT_LTP_CRC_MODE_14;
7221 	if (cap & CAP_CRC_48B)
7222 		port_ltp |= PORT_LTP_CRC_MODE_48;
7223 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7224 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7225 
7226 	return port_ltp;
7227 }
7228 
7229 /*
7230  * Convert an OPA Port LTP mask to capability mask
7231  */
7232 int port_ltp_to_cap(int port_ltp)
7233 {
7234 	int cap_mask = 0;
7235 
7236 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7237 		cap_mask |= CAP_CRC_14B;
7238 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7239 		cap_mask |= CAP_CRC_48B;
7240 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7241 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7242 
7243 	return cap_mask;
7244 }
7245 
7246 /*
7247  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7248  */
7249 static int lcb_to_port_ltp(int lcb_crc)
7250 {
7251 	int port_ltp = 0;
7252 
7253 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7254 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7255 	else if (lcb_crc == LCB_CRC_48B)
7256 		port_ltp = PORT_LTP_CRC_MODE_48;
7257 	else if (lcb_crc == LCB_CRC_14B)
7258 		port_ltp = PORT_LTP_CRC_MODE_14;
7259 	else
7260 		port_ltp = PORT_LTP_CRC_MODE_16;
7261 
7262 	return port_ltp;
7263 }
7264 
7265 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7266 {
7267 	if (ppd->pkeys[2] != 0) {
7268 		ppd->pkeys[2] = 0;
7269 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7270 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7271 	}
7272 }
7273 
7274 /*
7275  * Convert the given link width to the OPA link width bitmask.
7276  */
7277 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7278 {
7279 	switch (width) {
7280 	case 0:
7281 		/*
7282 		 * Simulator and quick linkup do not set the width.
7283 		 * Just set it to 4x without complaint.
7284 		 */
7285 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7286 			return OPA_LINK_WIDTH_4X;
7287 		return 0; /* no lanes up */
7288 	case 1: return OPA_LINK_WIDTH_1X;
7289 	case 2: return OPA_LINK_WIDTH_2X;
7290 	case 3: return OPA_LINK_WIDTH_3X;
7291 	default:
7292 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7293 			    __func__, width);
7294 		/* fall through */
7295 	case 4: return OPA_LINK_WIDTH_4X;
7296 	}
7297 }
7298 
7299 /*
7300  * Do a population count on the bottom nibble.
7301  */
7302 static const u8 bit_counts[16] = {
7303 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7304 };
7305 
7306 static inline u8 nibble_to_count(u8 nibble)
7307 {
7308 	return bit_counts[nibble & 0xf];
7309 }
7310 
7311 /*
7312  * Read the active lane information from the 8051 registers and return
7313  * their widths.
7314  *
7315  * Active lane information is found in these 8051 registers:
7316  *	enable_lane_tx
7317  *	enable_lane_rx
7318  */
7319 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7320 			    u16 *rx_width)
7321 {
7322 	u16 tx, rx;
7323 	u8 enable_lane_rx;
7324 	u8 enable_lane_tx;
7325 	u8 tx_polarity_inversion;
7326 	u8 rx_polarity_inversion;
7327 	u8 max_rate;
7328 
7329 	/* read the active lanes */
7330 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7331 			 &rx_polarity_inversion, &max_rate);
7332 	read_local_lni(dd, &enable_lane_rx);
7333 
7334 	/* convert to counts */
7335 	tx = nibble_to_count(enable_lane_tx);
7336 	rx = nibble_to_count(enable_lane_rx);
7337 
7338 	/*
7339 	 * Set link_speed_active here, overriding what was set in
7340 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7341 	 * set the max_rate field in handle_verify_cap until v0.19.
7342 	 */
7343 	if ((dd->icode == ICODE_RTL_SILICON) &&
7344 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7345 		/* max_rate: 0 = 12.5G, 1 = 25G */
7346 		switch (max_rate) {
7347 		case 0:
7348 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7349 			break;
7350 		default:
7351 			dd_dev_err(dd,
7352 				   "%s: unexpected max rate %d, using 25Gb\n",
7353 				   __func__, (int)max_rate);
7354 			/* fall through */
7355 		case 1:
7356 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7357 			break;
7358 		}
7359 	}
7360 
7361 	dd_dev_info(dd,
7362 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7363 		    enable_lane_tx, tx, enable_lane_rx, rx);
7364 	*tx_width = link_width_to_bits(dd, tx);
7365 	*rx_width = link_width_to_bits(dd, rx);
7366 }
7367 
7368 /*
7369  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7370  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7371  * after link up.  I.e. look elsewhere for downgrade information.
7372  *
7373  * Bits are:
7374  *	+ bits [7:4] contain the number of active transmitters
7375  *	+ bits [3:0] contain the number of active receivers
7376  * These are numbers 1 through 4 and can be different values if the
7377  * link is asymmetric.
7378  *
7379  * verify_cap_local_fm_link_width[0] retains its original value.
7380  */
7381 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7382 			      u16 *rx_width)
7383 {
7384 	u16 widths, tx, rx;
7385 	u8 misc_bits, local_flags;
7386 	u16 active_tx, active_rx;
7387 
7388 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7389 	tx = widths >> 12;
7390 	rx = (widths >> 8) & 0xf;
7391 
7392 	*tx_width = link_width_to_bits(dd, tx);
7393 	*rx_width = link_width_to_bits(dd, rx);
7394 
7395 	/* print the active widths */
7396 	get_link_widths(dd, &active_tx, &active_rx);
7397 }
7398 
7399 /*
7400  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7401  * hardware information when the link first comes up.
7402  *
7403  * The link width is not available until after VerifyCap.AllFramesReceived
7404  * (the trigger for handle_verify_cap), so this is outside that routine
7405  * and should be called when the 8051 signals linkup.
7406  */
7407 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7408 {
7409 	u16 tx_width, rx_width;
7410 
7411 	/* get end-of-LNI link widths */
7412 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7413 
7414 	/* use tx_width as the link is supposed to be symmetric on link up */
7415 	ppd->link_width_active = tx_width;
7416 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7417 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7418 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7419 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7420 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7421 	/* cache the active egress rate (units {10^6 bits/sec]) */
7422 	ppd->current_egress_rate = active_egress_rate(ppd);
7423 }
7424 
7425 /*
7426  * Handle a verify capabilities interrupt from the 8051.
7427  *
7428  * This is a work-queue function outside of the interrupt.
7429  */
7430 void handle_verify_cap(struct work_struct *work)
7431 {
7432 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7433 								link_vc_work);
7434 	struct hfi1_devdata *dd = ppd->dd;
7435 	u64 reg;
7436 	u8 power_management;
7437 	u8 continuous;
7438 	u8 vcu;
7439 	u8 vau;
7440 	u8 z;
7441 	u16 vl15buf;
7442 	u16 link_widths;
7443 	u16 crc_mask;
7444 	u16 crc_val;
7445 	u16 device_id;
7446 	u16 active_tx, active_rx;
7447 	u8 partner_supported_crc;
7448 	u8 remote_tx_rate;
7449 	u8 device_rev;
7450 
7451 	set_link_state(ppd, HLS_VERIFY_CAP);
7452 
7453 	lcb_shutdown(dd, 0);
7454 	adjust_lcb_for_fpga_serdes(dd);
7455 
7456 	read_vc_remote_phy(dd, &power_management, &continuous);
7457 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7458 			      &partner_supported_crc);
7459 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7460 	read_remote_device_id(dd, &device_id, &device_rev);
7461 
7462 	/* print the active widths */
7463 	get_link_widths(dd, &active_tx, &active_rx);
7464 	dd_dev_info(dd,
7465 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7466 		    (int)power_management, (int)continuous);
7467 	dd_dev_info(dd,
7468 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7469 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7470 		    (int)partner_supported_crc);
7471 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7472 		    (u32)remote_tx_rate, (u32)link_widths);
7473 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7474 		    (u32)device_id, (u32)device_rev);
7475 	/*
7476 	 * The peer vAU value just read is the peer receiver value.  HFI does
7477 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7478 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7479 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7480 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7481 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7482 	 * subject to the Z value exception.
7483 	 */
7484 	if (vau == 0)
7485 		vau = 1;
7486 	set_up_vau(dd, vau);
7487 
7488 	/*
7489 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7490 	 * credits value and wait for link-up interrupt ot set it.
7491 	 */
7492 	set_up_vl15(dd, 0);
7493 	dd->vl15buf_cached = vl15buf;
7494 
7495 	/* set up the LCB CRC mode */
7496 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7497 
7498 	/* order is important: use the lowest bit in common */
7499 	if (crc_mask & CAP_CRC_14B)
7500 		crc_val = LCB_CRC_14B;
7501 	else if (crc_mask & CAP_CRC_48B)
7502 		crc_val = LCB_CRC_48B;
7503 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7504 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7505 	else
7506 		crc_val = LCB_CRC_16B;
7507 
7508 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7509 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7510 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7511 
7512 	/* set (14b only) or clear sideband credit */
7513 	reg = read_csr(dd, SEND_CM_CTRL);
7514 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7515 		write_csr(dd, SEND_CM_CTRL,
7516 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7517 	} else {
7518 		write_csr(dd, SEND_CM_CTRL,
7519 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7520 	}
7521 
7522 	ppd->link_speed_active = 0;	/* invalid value */
7523 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7524 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7525 		switch (remote_tx_rate) {
7526 		case 0:
7527 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7528 			break;
7529 		case 1:
7530 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7531 			break;
7532 		}
7533 	} else {
7534 		/* actual rate is highest bit of the ANDed rates */
7535 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7536 
7537 		if (rate & 2)
7538 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7539 		else if (rate & 1)
7540 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7541 	}
7542 	if (ppd->link_speed_active == 0) {
7543 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7544 			   __func__, (int)remote_tx_rate);
7545 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7546 	}
7547 
7548 	/*
7549 	 * Cache the values of the supported, enabled, and active
7550 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7551 	 * flags that are returned in the portinfo query differ from
7552 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7553 	 * variables. Convert these here.
7554 	 */
7555 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7556 		/* supported crc modes */
7557 	ppd->port_ltp_crc_mode |=
7558 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7559 		/* enabled crc modes */
7560 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7561 		/* active crc mode */
7562 
7563 	/* set up the remote credit return table */
7564 	assign_remote_cm_au_table(dd, vcu);
7565 
7566 	/*
7567 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7568 	 * be applied on every link up.
7569 	 *
7570 	 * Adjust LCB error kill enable to kill the link if
7571 	 * these RBUF errors are seen:
7572 	 *	REPLAY_BUF_MBE_SMASK
7573 	 *	FLIT_INPUT_BUF_MBE_SMASK
7574 	 */
7575 	if (is_ax(dd)) {			/* fixed in B0 */
7576 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7577 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7578 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7579 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7580 	}
7581 
7582 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7583 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7584 
7585 	/* give 8051 access to the LCB CSRs */
7586 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7587 	set_8051_lcb_access(dd);
7588 
7589 	/* tell the 8051 to go to LinkUp */
7590 	set_link_state(ppd, HLS_GOING_UP);
7591 }
7592 
7593 /**
7594  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7595  * policy against the current active link widths.
7596  * @ppd: info of physical Hfi port
7597  * @refresh_widths: True indicates link downgrade event
7598  * @return: True indicates a successful link downgrade. False indicates
7599  *	    link downgrade event failed and the link will bounce back to
7600  *	    default link width.
7601  *
7602  * Called when the enabled policy changes or the active link widths
7603  * change.
7604  * Refresh_widths indicates that a link downgrade occurred. The
7605  * link_downgraded variable is set by refresh_widths and
7606  * determines the success/failure of the policy application.
7607  */
7608 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7609 				 bool refresh_widths)
7610 {
7611 	int do_bounce = 0;
7612 	int tries;
7613 	u16 lwde;
7614 	u16 tx, rx;
7615 	bool link_downgraded = refresh_widths;
7616 
7617 	/* use the hls lock to avoid a race with actual link up */
7618 	tries = 0;
7619 retry:
7620 	mutex_lock(&ppd->hls_lock);
7621 	/* only apply if the link is up */
7622 	if (ppd->host_link_state & HLS_DOWN) {
7623 		/* still going up..wait and retry */
7624 		if (ppd->host_link_state & HLS_GOING_UP) {
7625 			if (++tries < 1000) {
7626 				mutex_unlock(&ppd->hls_lock);
7627 				usleep_range(100, 120); /* arbitrary */
7628 				goto retry;
7629 			}
7630 			dd_dev_err(ppd->dd,
7631 				   "%s: giving up waiting for link state change\n",
7632 				   __func__);
7633 		}
7634 		goto done;
7635 	}
7636 
7637 	lwde = ppd->link_width_downgrade_enabled;
7638 
7639 	if (refresh_widths) {
7640 		get_link_widths(ppd->dd, &tx, &rx);
7641 		ppd->link_width_downgrade_tx_active = tx;
7642 		ppd->link_width_downgrade_rx_active = rx;
7643 	}
7644 
7645 	if (ppd->link_width_downgrade_tx_active == 0 ||
7646 	    ppd->link_width_downgrade_rx_active == 0) {
7647 		/* the 8051 reported a dead link as a downgrade */
7648 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7649 		link_downgraded = false;
7650 	} else if (lwde == 0) {
7651 		/* downgrade is disabled */
7652 
7653 		/* bounce if not at starting active width */
7654 		if ((ppd->link_width_active !=
7655 		     ppd->link_width_downgrade_tx_active) ||
7656 		    (ppd->link_width_active !=
7657 		     ppd->link_width_downgrade_rx_active)) {
7658 			dd_dev_err(ppd->dd,
7659 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7660 			dd_dev_err(ppd->dd,
7661 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7662 				   ppd->link_width_active,
7663 				   ppd->link_width_downgrade_tx_active,
7664 				   ppd->link_width_downgrade_rx_active);
7665 			do_bounce = 1;
7666 			link_downgraded = false;
7667 		}
7668 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7669 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7670 		/* Tx or Rx is outside the enabled policy */
7671 		dd_dev_err(ppd->dd,
7672 			   "Link is outside of downgrade allowed, downing link\n");
7673 		dd_dev_err(ppd->dd,
7674 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7675 			   lwde, ppd->link_width_downgrade_tx_active,
7676 			   ppd->link_width_downgrade_rx_active);
7677 		do_bounce = 1;
7678 		link_downgraded = false;
7679 	}
7680 
7681 done:
7682 	mutex_unlock(&ppd->hls_lock);
7683 
7684 	if (do_bounce) {
7685 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7686 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7687 		set_link_state(ppd, HLS_DN_OFFLINE);
7688 		start_link(ppd);
7689 	}
7690 
7691 	return link_downgraded;
7692 }
7693 
7694 /*
7695  * Handle a link downgrade interrupt from the 8051.
7696  *
7697  * This is a work-queue function outside of the interrupt.
7698  */
7699 void handle_link_downgrade(struct work_struct *work)
7700 {
7701 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7702 							link_downgrade_work);
7703 
7704 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7705 	if (apply_link_downgrade_policy(ppd, true))
7706 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7707 }
7708 
7709 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7710 {
7711 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7712 		ARRAY_SIZE(dcc_err_flags));
7713 }
7714 
7715 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7716 {
7717 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7718 		ARRAY_SIZE(lcb_err_flags));
7719 }
7720 
7721 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7722 {
7723 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7724 		ARRAY_SIZE(dc8051_err_flags));
7725 }
7726 
7727 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7728 {
7729 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7730 		ARRAY_SIZE(dc8051_info_err_flags));
7731 }
7732 
7733 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7734 {
7735 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7736 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7737 }
7738 
7739 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7740 {
7741 	struct hfi1_pportdata *ppd = dd->pport;
7742 	u64 info, err, host_msg;
7743 	int queue_link_down = 0;
7744 	char buf[96];
7745 
7746 	/* look at the flags */
7747 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7748 		/* 8051 information set by firmware */
7749 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7750 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7751 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7752 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7753 		host_msg = (info >>
7754 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7755 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7756 
7757 		/*
7758 		 * Handle error flags.
7759 		 */
7760 		if (err & FAILED_LNI) {
7761 			/*
7762 			 * LNI error indications are cleared by the 8051
7763 			 * only when starting polling.  Only pay attention
7764 			 * to them when in the states that occur during
7765 			 * LNI.
7766 			 */
7767 			if (ppd->host_link_state
7768 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7769 				queue_link_down = 1;
7770 				dd_dev_info(dd, "Link error: %s\n",
7771 					    dc8051_info_err_string(buf,
7772 								   sizeof(buf),
7773 								   err &
7774 								   FAILED_LNI));
7775 			}
7776 			err &= ~(u64)FAILED_LNI;
7777 		}
7778 		/* unknown frames can happen durning LNI, just count */
7779 		if (err & UNKNOWN_FRAME) {
7780 			ppd->unknown_frame_count++;
7781 			err &= ~(u64)UNKNOWN_FRAME;
7782 		}
7783 		if (err) {
7784 			/* report remaining errors, but do not do anything */
7785 			dd_dev_err(dd, "8051 info error: %s\n",
7786 				   dc8051_info_err_string(buf, sizeof(buf),
7787 							  err));
7788 		}
7789 
7790 		/*
7791 		 * Handle host message flags.
7792 		 */
7793 		if (host_msg & HOST_REQ_DONE) {
7794 			/*
7795 			 * Presently, the driver does a busy wait for
7796 			 * host requests to complete.  This is only an
7797 			 * informational message.
7798 			 * NOTE: The 8051 clears the host message
7799 			 * information *on the next 8051 command*.
7800 			 * Therefore, when linkup is achieved,
7801 			 * this flag will still be set.
7802 			 */
7803 			host_msg &= ~(u64)HOST_REQ_DONE;
7804 		}
7805 		if (host_msg & BC_SMA_MSG) {
7806 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7807 			host_msg &= ~(u64)BC_SMA_MSG;
7808 		}
7809 		if (host_msg & LINKUP_ACHIEVED) {
7810 			dd_dev_info(dd, "8051: Link up\n");
7811 			queue_work(ppd->link_wq, &ppd->link_up_work);
7812 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7813 		}
7814 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7815 			handle_8051_request(ppd);
7816 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7817 		}
7818 		if (host_msg & VERIFY_CAP_FRAME) {
7819 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7820 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7821 		}
7822 		if (host_msg & LINK_GOING_DOWN) {
7823 			const char *extra = "";
7824 			/* no downgrade action needed if going down */
7825 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7826 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7827 				extra = " (ignoring downgrade)";
7828 			}
7829 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7830 			queue_link_down = 1;
7831 			host_msg &= ~(u64)LINK_GOING_DOWN;
7832 		}
7833 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7834 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7835 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7836 		}
7837 		if (host_msg) {
7838 			/* report remaining messages, but do not do anything */
7839 			dd_dev_info(dd, "8051 info host message: %s\n",
7840 				    dc8051_info_host_msg_string(buf,
7841 								sizeof(buf),
7842 								host_msg));
7843 		}
7844 
7845 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7846 	}
7847 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7848 		/*
7849 		 * Lost the 8051 heartbeat.  If this happens, we
7850 		 * receive constant interrupts about it.  Disable
7851 		 * the interrupt after the first.
7852 		 */
7853 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7854 		write_csr(dd, DC_DC8051_ERR_EN,
7855 			  read_csr(dd, DC_DC8051_ERR_EN) &
7856 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7857 
7858 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7859 	}
7860 	if (reg) {
7861 		/* report the error, but do not do anything */
7862 		dd_dev_err(dd, "8051 error: %s\n",
7863 			   dc8051_err_string(buf, sizeof(buf), reg));
7864 	}
7865 
7866 	if (queue_link_down) {
7867 		/*
7868 		 * if the link is already going down or disabled, do not
7869 		 * queue another. If there's a link down entry already
7870 		 * queued, don't queue another one.
7871 		 */
7872 		if ((ppd->host_link_state &
7873 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7874 		    ppd->link_enabled == 0) {
7875 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7876 				    __func__, ppd->host_link_state,
7877 				    ppd->link_enabled);
7878 		} else {
7879 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7880 				dd_dev_info(dd,
7881 					    "%s: link down request already queued\n",
7882 					    __func__);
7883 			else
7884 				queue_work(ppd->link_wq, &ppd->link_down_work);
7885 		}
7886 	}
7887 }
7888 
7889 static const char * const fm_config_txt[] = {
7890 [0] =
7891 	"BadHeadDist: Distance violation between two head flits",
7892 [1] =
7893 	"BadTailDist: Distance violation between two tail flits",
7894 [2] =
7895 	"BadCtrlDist: Distance violation between two credit control flits",
7896 [3] =
7897 	"BadCrdAck: Credits return for unsupported VL",
7898 [4] =
7899 	"UnsupportedVLMarker: Received VL Marker",
7900 [5] =
7901 	"BadPreempt: Exceeded the preemption nesting level",
7902 [6] =
7903 	"BadControlFlit: Received unsupported control flit",
7904 /* no 7 */
7905 [8] =
7906 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7907 };
7908 
7909 static const char * const port_rcv_txt[] = {
7910 [1] =
7911 	"BadPktLen: Illegal PktLen",
7912 [2] =
7913 	"PktLenTooLong: Packet longer than PktLen",
7914 [3] =
7915 	"PktLenTooShort: Packet shorter than PktLen",
7916 [4] =
7917 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7918 [5] =
7919 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7920 [6] =
7921 	"BadL2: Illegal L2 opcode",
7922 [7] =
7923 	"BadSC: Unsupported SC",
7924 [9] =
7925 	"BadRC: Illegal RC",
7926 [11] =
7927 	"PreemptError: Preempting with same VL",
7928 [12] =
7929 	"PreemptVL15: Preempting a VL15 packet",
7930 };
7931 
7932 #define OPA_LDR_FMCONFIG_OFFSET 16
7933 #define OPA_LDR_PORTRCV_OFFSET 0
7934 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7935 {
7936 	u64 info, hdr0, hdr1;
7937 	const char *extra;
7938 	char buf[96];
7939 	struct hfi1_pportdata *ppd = dd->pport;
7940 	u8 lcl_reason = 0;
7941 	int do_bounce = 0;
7942 
7943 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7944 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7945 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7946 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7947 			/* set status bit */
7948 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7949 		}
7950 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7951 	}
7952 
7953 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7954 		struct hfi1_pportdata *ppd = dd->pport;
7955 		/* this counter saturates at (2^32) - 1 */
7956 		if (ppd->link_downed < (u32)UINT_MAX)
7957 			ppd->link_downed++;
7958 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7959 	}
7960 
7961 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7962 		u8 reason_valid = 1;
7963 
7964 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7965 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7966 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7967 			/* set status bit */
7968 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7969 		}
7970 		switch (info) {
7971 		case 0:
7972 		case 1:
7973 		case 2:
7974 		case 3:
7975 		case 4:
7976 		case 5:
7977 		case 6:
7978 			extra = fm_config_txt[info];
7979 			break;
7980 		case 8:
7981 			extra = fm_config_txt[info];
7982 			if (ppd->port_error_action &
7983 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7984 				do_bounce = 1;
7985 				/*
7986 				 * lcl_reason cannot be derived from info
7987 				 * for this error
7988 				 */
7989 				lcl_reason =
7990 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7991 			}
7992 			break;
7993 		default:
7994 			reason_valid = 0;
7995 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7996 			extra = buf;
7997 			break;
7998 		}
7999 
8000 		if (reason_valid && !do_bounce) {
8001 			do_bounce = ppd->port_error_action &
8002 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
8003 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
8004 		}
8005 
8006 		/* just report this */
8007 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8008 					extra);
8009 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8010 	}
8011 
8012 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8013 		u8 reason_valid = 1;
8014 
8015 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8016 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8017 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8018 		if (!(dd->err_info_rcvport.status_and_code &
8019 		      OPA_EI_STATUS_SMASK)) {
8020 			dd->err_info_rcvport.status_and_code =
8021 				info & OPA_EI_CODE_SMASK;
8022 			/* set status bit */
8023 			dd->err_info_rcvport.status_and_code |=
8024 				OPA_EI_STATUS_SMASK;
8025 			/*
8026 			 * save first 2 flits in the packet that caused
8027 			 * the error
8028 			 */
8029 			dd->err_info_rcvport.packet_flit1 = hdr0;
8030 			dd->err_info_rcvport.packet_flit2 = hdr1;
8031 		}
8032 		switch (info) {
8033 		case 1:
8034 		case 2:
8035 		case 3:
8036 		case 4:
8037 		case 5:
8038 		case 6:
8039 		case 7:
8040 		case 9:
8041 		case 11:
8042 		case 12:
8043 			extra = port_rcv_txt[info];
8044 			break;
8045 		default:
8046 			reason_valid = 0;
8047 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8048 			extra = buf;
8049 			break;
8050 		}
8051 
8052 		if (reason_valid && !do_bounce) {
8053 			do_bounce = ppd->port_error_action &
8054 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8055 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8056 		}
8057 
8058 		/* just report this */
8059 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8060 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8061 					extra, hdr0, hdr1);
8062 
8063 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8064 	}
8065 
8066 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8067 		/* informative only */
8068 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8069 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8070 	}
8071 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8072 		/* informative only */
8073 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8074 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8075 	}
8076 
8077 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8078 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8079 
8080 	/* report any remaining errors */
8081 	if (reg)
8082 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8083 					dcc_err_string(buf, sizeof(buf), reg));
8084 
8085 	if (lcl_reason == 0)
8086 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8087 
8088 	if (do_bounce) {
8089 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8090 					__func__);
8091 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8092 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8093 	}
8094 }
8095 
8096 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8097 {
8098 	char buf[96];
8099 
8100 	dd_dev_info(dd, "LCB Error: %s\n",
8101 		    lcb_err_string(buf, sizeof(buf), reg));
8102 }
8103 
8104 /*
8105  * CCE block DC interrupt.  Source is < 8.
8106  */
8107 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8108 {
8109 	const struct err_reg_info *eri = &dc_errs[source];
8110 
8111 	if (eri->handler) {
8112 		interrupt_clear_down(dd, 0, eri);
8113 	} else if (source == 3 /* dc_lbm_int */) {
8114 		/*
8115 		 * This indicates that a parity error has occurred on the
8116 		 * address/control lines presented to the LBM.  The error
8117 		 * is a single pulse, there is no associated error flag,
8118 		 * and it is non-maskable.  This is because if a parity
8119 		 * error occurs on the request the request is dropped.
8120 		 * This should never occur, but it is nice to know if it
8121 		 * ever does.
8122 		 */
8123 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8124 	} else {
8125 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8126 	}
8127 }
8128 
8129 /*
8130  * TX block send credit interrupt.  Source is < 160.
8131  */
8132 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8133 {
8134 	sc_group_release_update(dd, source);
8135 }
8136 
8137 /*
8138  * TX block SDMA interrupt.  Source is < 48.
8139  *
8140  * SDMA interrupts are grouped by type:
8141  *
8142  *	 0 -  N-1 = SDma
8143  *	 N - 2N-1 = SDmaProgress
8144  *	2N - 3N-1 = SDmaIdle
8145  */
8146 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8147 {
8148 	/* what interrupt */
8149 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8150 	/* which engine */
8151 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8152 
8153 #ifdef CONFIG_SDMA_VERBOSITY
8154 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8155 		   slashstrip(__FILE__), __LINE__, __func__);
8156 	sdma_dumpstate(&dd->per_sdma[which]);
8157 #endif
8158 
8159 	if (likely(what < 3 && which < dd->num_sdma)) {
8160 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8161 	} else {
8162 		/* should not happen */
8163 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8164 	}
8165 }
8166 
8167 /**
8168  * is_rcv_avail_int() - User receive context available IRQ handler
8169  * @dd: valid dd
8170  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8171  *
8172  * RX block receive available interrupt.  Source is < 160.
8173  *
8174  * This is the general interrupt handler for user (PSM) receive contexts,
8175  * and can only be used for non-threaded IRQs.
8176  */
8177 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8178 {
8179 	struct hfi1_ctxtdata *rcd;
8180 	char *err_detail;
8181 
8182 	if (likely(source < dd->num_rcv_contexts)) {
8183 		rcd = hfi1_rcd_get_by_index(dd, source);
8184 		if (rcd) {
8185 			handle_user_interrupt(rcd);
8186 			hfi1_rcd_put(rcd);
8187 			return;	/* OK */
8188 		}
8189 		/* received an interrupt, but no rcd */
8190 		err_detail = "dataless";
8191 	} else {
8192 		/* received an interrupt, but are not using that context */
8193 		err_detail = "out of range";
8194 	}
8195 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8196 		   err_detail, source);
8197 }
8198 
8199 /**
8200  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8201  * @dd: valid dd
8202  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8203  *
8204  * RX block receive urgent interrupt.  Source is < 160.
8205  *
8206  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8207  */
8208 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8209 {
8210 	struct hfi1_ctxtdata *rcd;
8211 	char *err_detail;
8212 
8213 	if (likely(source < dd->num_rcv_contexts)) {
8214 		rcd = hfi1_rcd_get_by_index(dd, source);
8215 		if (rcd) {
8216 			handle_user_interrupt(rcd);
8217 			hfi1_rcd_put(rcd);
8218 			return;	/* OK */
8219 		}
8220 		/* received an interrupt, but no rcd */
8221 		err_detail = "dataless";
8222 	} else {
8223 		/* received an interrupt, but are not using that context */
8224 		err_detail = "out of range";
8225 	}
8226 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8227 		   err_detail, source);
8228 }
8229 
8230 /*
8231  * Reserved range interrupt.  Should not be called in normal operation.
8232  */
8233 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8234 {
8235 	char name[64];
8236 
8237 	dd_dev_err(dd, "unexpected %s interrupt\n",
8238 		   is_reserved_name(name, sizeof(name), source));
8239 }
8240 
8241 static const struct is_table is_table[] = {
8242 /*
8243  * start		 end
8244  *				name func		interrupt func
8245  */
8246 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8247 				is_misc_err_name,	is_misc_err_int },
8248 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8249 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8250 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8251 				is_sendctxt_err_name,	is_sendctxt_err_int },
8252 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8253 				is_sdma_eng_name,	is_sdma_eng_int },
8254 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8255 				is_various_name,	is_various_int },
8256 { IS_DC_START,	     IS_DC_END,
8257 				is_dc_name,		is_dc_int },
8258 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8259 				is_rcv_avail_name,	is_rcv_avail_int },
8260 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8261 				is_rcv_urgent_name,	is_rcv_urgent_int },
8262 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8263 				is_send_credit_name,	is_send_credit_int},
8264 { IS_RESERVED_START,     IS_RESERVED_END,
8265 				is_reserved_name,	is_reserved_int},
8266 };
8267 
8268 /*
8269  * Interrupt source interrupt - called when the given source has an interrupt.
8270  * Source is a bit index into an array of 64-bit integers.
8271  */
8272 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8273 {
8274 	const struct is_table *entry;
8275 
8276 	/* avoids a double compare by walking the table in-order */
8277 	for (entry = &is_table[0]; entry->is_name; entry++) {
8278 		if (source <= entry->end) {
8279 			trace_hfi1_interrupt(dd, entry, source);
8280 			entry->is_int(dd, source - entry->start);
8281 			return;
8282 		}
8283 	}
8284 	/* fell off the end */
8285 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8286 }
8287 
8288 /**
8289  * gerneral_interrupt() -  General interrupt handler
8290  * @irq: MSIx IRQ vector
8291  * @data: hfi1 devdata
8292  *
8293  * This is able to correctly handle all non-threaded interrupts.  Receive
8294  * context DATA IRQs are threaded and are not supported by this handler.
8295  *
8296  */
8297 irqreturn_t general_interrupt(int irq, void *data)
8298 {
8299 	struct hfi1_devdata *dd = data;
8300 	u64 regs[CCE_NUM_INT_CSRS];
8301 	u32 bit;
8302 	int i;
8303 	irqreturn_t handled = IRQ_NONE;
8304 
8305 	this_cpu_inc(*dd->int_counter);
8306 
8307 	/* phase 1: scan and clear all handled interrupts */
8308 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8309 		if (dd->gi_mask[i] == 0) {
8310 			regs[i] = 0;	/* used later */
8311 			continue;
8312 		}
8313 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8314 				dd->gi_mask[i];
8315 		/* only clear if anything is set */
8316 		if (regs[i])
8317 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8318 	}
8319 
8320 	/* phase 2: call the appropriate handler */
8321 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8322 			 CCE_NUM_INT_CSRS * 64) {
8323 		is_interrupt(dd, bit);
8324 		handled = IRQ_HANDLED;
8325 	}
8326 
8327 	return handled;
8328 }
8329 
8330 irqreturn_t sdma_interrupt(int irq, void *data)
8331 {
8332 	struct sdma_engine *sde = data;
8333 	struct hfi1_devdata *dd = sde->dd;
8334 	u64 status;
8335 
8336 #ifdef CONFIG_SDMA_VERBOSITY
8337 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8338 		   slashstrip(__FILE__), __LINE__, __func__);
8339 	sdma_dumpstate(sde);
8340 #endif
8341 
8342 	this_cpu_inc(*dd->int_counter);
8343 
8344 	/* This read_csr is really bad in the hot path */
8345 	status = read_csr(dd,
8346 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8347 			  & sde->imask;
8348 	if (likely(status)) {
8349 		/* clear the interrupt(s) */
8350 		write_csr(dd,
8351 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8352 			  status);
8353 
8354 		/* handle the interrupt(s) */
8355 		sdma_engine_interrupt(sde, status);
8356 	} else {
8357 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8358 					sde->this_idx);
8359 	}
8360 	return IRQ_HANDLED;
8361 }
8362 
8363 /*
8364  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8365  * to insure that the write completed.  This does NOT guarantee that
8366  * queued DMA writes to memory from the chip are pushed.
8367  */
8368 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8369 {
8370 	struct hfi1_devdata *dd = rcd->dd;
8371 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8372 
8373 	write_csr(dd, addr, rcd->imask);
8374 	/* force the above write on the chip and get a value back */
8375 	(void)read_csr(dd, addr);
8376 }
8377 
8378 /* force the receive interrupt */
8379 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8380 {
8381 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8382 }
8383 
8384 /*
8385  * Return non-zero if a packet is present.
8386  *
8387  * This routine is called when rechecking for packets after the RcvAvail
8388  * interrupt has been cleared down.  First, do a quick check of memory for
8389  * a packet present.  If not found, use an expensive CSR read of the context
8390  * tail to determine the actual tail.  The CSR read is necessary because there
8391  * is no method to push pending DMAs to memory other than an interrupt and we
8392  * are trying to determine if we need to force an interrupt.
8393  */
8394 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8395 {
8396 	u32 tail;
8397 	int present;
8398 
8399 	if (!rcd->rcvhdrtail_kvaddr)
8400 		present = (rcd->seq_cnt ==
8401 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8402 	else /* is RDMA rtail */
8403 		present = (rcd->head != get_rcvhdrtail(rcd));
8404 
8405 	if (present)
8406 		return 1;
8407 
8408 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8409 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8410 	return rcd->head != tail;
8411 }
8412 
8413 /*
8414  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8415  * This routine will try to handle packets immediately (latency), but if
8416  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8417  * chip receive interrupt is *not* cleared down until this or the thread (if
8418  * invoked) is finished.  The intent is to avoid extra interrupts while we
8419  * are processing packets anyway.
8420  */
8421 irqreturn_t receive_context_interrupt(int irq, void *data)
8422 {
8423 	struct hfi1_ctxtdata *rcd = data;
8424 	struct hfi1_devdata *dd = rcd->dd;
8425 	int disposition;
8426 	int present;
8427 
8428 	trace_hfi1_receive_interrupt(dd, rcd);
8429 	this_cpu_inc(*dd->int_counter);
8430 	aspm_ctx_disable(rcd);
8431 
8432 	/* receive interrupt remains blocked while processing packets */
8433 	disposition = rcd->do_interrupt(rcd, 0);
8434 
8435 	/*
8436 	 * Too many packets were seen while processing packets in this
8437 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8438 	 * remains blocked.
8439 	 */
8440 	if (disposition == RCV_PKT_LIMIT)
8441 		return IRQ_WAKE_THREAD;
8442 
8443 	/*
8444 	 * The packet processor detected no more packets.  Clear the receive
8445 	 * interrupt and recheck for a packet packet that may have arrived
8446 	 * after the previous check and interrupt clear.  If a packet arrived,
8447 	 * force another interrupt.
8448 	 */
8449 	clear_recv_intr(rcd);
8450 	present = check_packet_present(rcd);
8451 	if (present)
8452 		force_recv_intr(rcd);
8453 
8454 	return IRQ_HANDLED;
8455 }
8456 
8457 /*
8458  * Receive packet thread handler.  This expects to be invoked with the
8459  * receive interrupt still blocked.
8460  */
8461 irqreturn_t receive_context_thread(int irq, void *data)
8462 {
8463 	struct hfi1_ctxtdata *rcd = data;
8464 	int present;
8465 
8466 	/* receive interrupt is still blocked from the IRQ handler */
8467 	(void)rcd->do_interrupt(rcd, 1);
8468 
8469 	/*
8470 	 * The packet processor will only return if it detected no more
8471 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8472 	 * recheck for a packet that may have arrived after the previous
8473 	 * check and the interrupt clear.  If a packet arrived, force another
8474 	 * interrupt.
8475 	 */
8476 	local_irq_disable();
8477 	clear_recv_intr(rcd);
8478 	present = check_packet_present(rcd);
8479 	if (present)
8480 		force_recv_intr(rcd);
8481 	local_irq_enable();
8482 
8483 	return IRQ_HANDLED;
8484 }
8485 
8486 /* ========================================================================= */
8487 
8488 u32 read_physical_state(struct hfi1_devdata *dd)
8489 {
8490 	u64 reg;
8491 
8492 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8493 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8494 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8495 }
8496 
8497 u32 read_logical_state(struct hfi1_devdata *dd)
8498 {
8499 	u64 reg;
8500 
8501 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8502 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8503 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8504 }
8505 
8506 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8507 {
8508 	u64 reg;
8509 
8510 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8511 	/* clear current state, set new state */
8512 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8513 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8514 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8515 }
8516 
8517 /*
8518  * Use the 8051 to read a LCB CSR.
8519  */
8520 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8521 {
8522 	u32 regno;
8523 	int ret;
8524 
8525 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8526 		if (acquire_lcb_access(dd, 0) == 0) {
8527 			*data = read_csr(dd, addr);
8528 			release_lcb_access(dd, 0);
8529 			return 0;
8530 		}
8531 		return -EBUSY;
8532 	}
8533 
8534 	/* register is an index of LCB registers: (offset - base) / 8 */
8535 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8536 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8537 	if (ret != HCMD_SUCCESS)
8538 		return -EBUSY;
8539 	return 0;
8540 }
8541 
8542 /*
8543  * Provide a cache for some of the LCB registers in case the LCB is
8544  * unavailable.
8545  * (The LCB is unavailable in certain link states, for example.)
8546  */
8547 struct lcb_datum {
8548 	u32 off;
8549 	u64 val;
8550 };
8551 
8552 static struct lcb_datum lcb_cache[] = {
8553 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8554 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8555 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8556 };
8557 
8558 static void update_lcb_cache(struct hfi1_devdata *dd)
8559 {
8560 	int i;
8561 	int ret;
8562 	u64 val;
8563 
8564 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8565 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8566 
8567 		/* Update if we get good data */
8568 		if (likely(ret != -EBUSY))
8569 			lcb_cache[i].val = val;
8570 	}
8571 }
8572 
8573 static int read_lcb_cache(u32 off, u64 *val)
8574 {
8575 	int i;
8576 
8577 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8578 		if (lcb_cache[i].off == off) {
8579 			*val = lcb_cache[i].val;
8580 			return 0;
8581 		}
8582 	}
8583 
8584 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8585 	return -1;
8586 }
8587 
8588 /*
8589  * Read an LCB CSR.  Access may not be in host control, so check.
8590  * Return 0 on success, -EBUSY on failure.
8591  */
8592 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8593 {
8594 	struct hfi1_pportdata *ppd = dd->pport;
8595 
8596 	/* if up, go through the 8051 for the value */
8597 	if (ppd->host_link_state & HLS_UP)
8598 		return read_lcb_via_8051(dd, addr, data);
8599 	/* if going up or down, check the cache, otherwise, no access */
8600 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8601 		if (read_lcb_cache(addr, data))
8602 			return -EBUSY;
8603 		return 0;
8604 	}
8605 
8606 	/* otherwise, host has access */
8607 	*data = read_csr(dd, addr);
8608 	return 0;
8609 }
8610 
8611 /*
8612  * Use the 8051 to write a LCB CSR.
8613  */
8614 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8615 {
8616 	u32 regno;
8617 	int ret;
8618 
8619 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8620 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8621 		if (acquire_lcb_access(dd, 0) == 0) {
8622 			write_csr(dd, addr, data);
8623 			release_lcb_access(dd, 0);
8624 			return 0;
8625 		}
8626 		return -EBUSY;
8627 	}
8628 
8629 	/* register is an index of LCB registers: (offset - base) / 8 */
8630 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8631 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8632 	if (ret != HCMD_SUCCESS)
8633 		return -EBUSY;
8634 	return 0;
8635 }
8636 
8637 /*
8638  * Write an LCB CSR.  Access may not be in host control, so check.
8639  * Return 0 on success, -EBUSY on failure.
8640  */
8641 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8642 {
8643 	struct hfi1_pportdata *ppd = dd->pport;
8644 
8645 	/* if up, go through the 8051 for the value */
8646 	if (ppd->host_link_state & HLS_UP)
8647 		return write_lcb_via_8051(dd, addr, data);
8648 	/* if going up or down, no access */
8649 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8650 		return -EBUSY;
8651 	/* otherwise, host has access */
8652 	write_csr(dd, addr, data);
8653 	return 0;
8654 }
8655 
8656 /*
8657  * Returns:
8658  *	< 0 = Linux error, not able to get access
8659  *	> 0 = 8051 command RETURN_CODE
8660  */
8661 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8662 			   u64 *out_data)
8663 {
8664 	u64 reg, completed;
8665 	int return_code;
8666 	unsigned long timeout;
8667 
8668 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8669 
8670 	mutex_lock(&dd->dc8051_lock);
8671 
8672 	/* We can't send any commands to the 8051 if it's in reset */
8673 	if (dd->dc_shutdown) {
8674 		return_code = -ENODEV;
8675 		goto fail;
8676 	}
8677 
8678 	/*
8679 	 * If an 8051 host command timed out previously, then the 8051 is
8680 	 * stuck.
8681 	 *
8682 	 * On first timeout, attempt to reset and restart the entire DC
8683 	 * block (including 8051). (Is this too big of a hammer?)
8684 	 *
8685 	 * If the 8051 times out a second time, the reset did not bring it
8686 	 * back to healthy life. In that case, fail any subsequent commands.
8687 	 */
8688 	if (dd->dc8051_timed_out) {
8689 		if (dd->dc8051_timed_out > 1) {
8690 			dd_dev_err(dd,
8691 				   "Previous 8051 host command timed out, skipping command %u\n",
8692 				   type);
8693 			return_code = -ENXIO;
8694 			goto fail;
8695 		}
8696 		_dc_shutdown(dd);
8697 		_dc_start(dd);
8698 	}
8699 
8700 	/*
8701 	 * If there is no timeout, then the 8051 command interface is
8702 	 * waiting for a command.
8703 	 */
8704 
8705 	/*
8706 	 * When writing a LCB CSR, out_data contains the full value to
8707 	 * to be written, while in_data contains the relative LCB
8708 	 * address in 7:0.  Do the work here, rather than the caller,
8709 	 * of distrubting the write data to where it needs to go:
8710 	 *
8711 	 * Write data
8712 	 *   39:00 -> in_data[47:8]
8713 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8714 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8715 	 */
8716 	if (type == HCMD_WRITE_LCB_CSR) {
8717 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8718 		/* must preserve COMPLETED - it is tied to hardware */
8719 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8720 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8721 		reg |= ((((*out_data) >> 40) & 0xff) <<
8722 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8723 		      | ((((*out_data) >> 48) & 0xffff) <<
8724 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8725 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8726 	}
8727 
8728 	/*
8729 	 * Do two writes: the first to stabilize the type and req_data, the
8730 	 * second to activate.
8731 	 */
8732 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8733 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8734 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8735 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8736 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8737 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8738 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8739 
8740 	/* wait for completion, alternate: interrupt */
8741 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8742 	while (1) {
8743 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8744 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8745 		if (completed)
8746 			break;
8747 		if (time_after(jiffies, timeout)) {
8748 			dd->dc8051_timed_out++;
8749 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8750 			if (out_data)
8751 				*out_data = 0;
8752 			return_code = -ETIMEDOUT;
8753 			goto fail;
8754 		}
8755 		udelay(2);
8756 	}
8757 
8758 	if (out_data) {
8759 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8760 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8761 		if (type == HCMD_READ_LCB_CSR) {
8762 			/* top 16 bits are in a different register */
8763 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8764 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8765 				<< (48
8766 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8767 		}
8768 	}
8769 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8770 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8771 	dd->dc8051_timed_out = 0;
8772 	/*
8773 	 * Clear command for next user.
8774 	 */
8775 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8776 
8777 fail:
8778 	mutex_unlock(&dd->dc8051_lock);
8779 	return return_code;
8780 }
8781 
8782 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8783 {
8784 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8785 }
8786 
8787 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8788 		     u8 lane_id, u32 config_data)
8789 {
8790 	u64 data;
8791 	int ret;
8792 
8793 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8794 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8795 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8796 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8797 	if (ret != HCMD_SUCCESS) {
8798 		dd_dev_err(dd,
8799 			   "load 8051 config: field id %d, lane %d, err %d\n",
8800 			   (int)field_id, (int)lane_id, ret);
8801 	}
8802 	return ret;
8803 }
8804 
8805 /*
8806  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8807  * set the result, even on error.
8808  * Return 0 on success, -errno on failure
8809  */
8810 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8811 		     u32 *result)
8812 {
8813 	u64 big_data;
8814 	u32 addr;
8815 	int ret;
8816 
8817 	/* address start depends on the lane_id */
8818 	if (lane_id < 4)
8819 		addr = (4 * NUM_GENERAL_FIELDS)
8820 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8821 	else
8822 		addr = 0;
8823 	addr += field_id * 4;
8824 
8825 	/* read is in 8-byte chunks, hardware will truncate the address down */
8826 	ret = read_8051_data(dd, addr, 8, &big_data);
8827 
8828 	if (ret == 0) {
8829 		/* extract the 4 bytes we want */
8830 		if (addr & 0x4)
8831 			*result = (u32)(big_data >> 32);
8832 		else
8833 			*result = (u32)big_data;
8834 	} else {
8835 		*result = 0;
8836 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8837 			   __func__, lane_id, field_id);
8838 	}
8839 
8840 	return ret;
8841 }
8842 
8843 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8844 			      u8 continuous)
8845 {
8846 	u32 frame;
8847 
8848 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8849 		| power_management << POWER_MANAGEMENT_SHIFT;
8850 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8851 				GENERAL_CONFIG, frame);
8852 }
8853 
8854 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8855 				 u16 vl15buf, u8 crc_sizes)
8856 {
8857 	u32 frame;
8858 
8859 	frame = (u32)vau << VAU_SHIFT
8860 		| (u32)z << Z_SHIFT
8861 		| (u32)vcu << VCU_SHIFT
8862 		| (u32)vl15buf << VL15BUF_SHIFT
8863 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8864 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8865 				GENERAL_CONFIG, frame);
8866 }
8867 
8868 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8869 				    u8 *flag_bits, u16 *link_widths)
8870 {
8871 	u32 frame;
8872 
8873 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8874 			 &frame);
8875 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8876 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8877 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8878 }
8879 
8880 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8881 				    u8 misc_bits,
8882 				    u8 flag_bits,
8883 				    u16 link_widths)
8884 {
8885 	u32 frame;
8886 
8887 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8888 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8889 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8890 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8891 		     frame);
8892 }
8893 
8894 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8895 				 u8 device_rev)
8896 {
8897 	u32 frame;
8898 
8899 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8900 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8901 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8902 }
8903 
8904 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8905 				  u8 *device_rev)
8906 {
8907 	u32 frame;
8908 
8909 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8910 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8911 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8912 			& REMOTE_DEVICE_REV_MASK;
8913 }
8914 
8915 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8916 {
8917 	u32 frame;
8918 	u32 mask;
8919 
8920 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8921 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8922 	/* Clear, then set field */
8923 	frame &= ~mask;
8924 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8925 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8926 				frame);
8927 }
8928 
8929 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8930 		      u8 *ver_patch)
8931 {
8932 	u32 frame;
8933 
8934 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8935 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8936 		STS_FM_VERSION_MAJOR_MASK;
8937 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8938 		STS_FM_VERSION_MINOR_MASK;
8939 
8940 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8941 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8942 		STS_FM_VERSION_PATCH_MASK;
8943 }
8944 
8945 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8946 			       u8 *continuous)
8947 {
8948 	u32 frame;
8949 
8950 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8951 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8952 					& POWER_MANAGEMENT_MASK;
8953 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8954 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8955 }
8956 
8957 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8958 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8959 {
8960 	u32 frame;
8961 
8962 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8963 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8964 	*z = (frame >> Z_SHIFT) & Z_MASK;
8965 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8966 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8967 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8968 }
8969 
8970 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8971 				      u8 *remote_tx_rate,
8972 				      u16 *link_widths)
8973 {
8974 	u32 frame;
8975 
8976 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8977 			 &frame);
8978 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8979 				& REMOTE_TX_RATE_MASK;
8980 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8981 }
8982 
8983 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8984 {
8985 	u32 frame;
8986 
8987 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8988 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8989 }
8990 
8991 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8992 {
8993 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8994 }
8995 
8996 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8997 {
8998 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8999 }
9000 
9001 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9002 {
9003 	u32 frame;
9004 	int ret;
9005 
9006 	*link_quality = 0;
9007 	if (dd->pport->host_link_state & HLS_UP) {
9008 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9009 				       &frame);
9010 		if (ret == 0)
9011 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9012 						& LINK_QUALITY_MASK;
9013 	}
9014 }
9015 
9016 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9017 {
9018 	u32 frame;
9019 
9020 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9021 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9022 }
9023 
9024 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9025 {
9026 	u32 frame;
9027 
9028 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9029 	*ldr = (frame & 0xff);
9030 }
9031 
9032 static int read_tx_settings(struct hfi1_devdata *dd,
9033 			    u8 *enable_lane_tx,
9034 			    u8 *tx_polarity_inversion,
9035 			    u8 *rx_polarity_inversion,
9036 			    u8 *max_rate)
9037 {
9038 	u32 frame;
9039 	int ret;
9040 
9041 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9042 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9043 				& ENABLE_LANE_TX_MASK;
9044 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9045 				& TX_POLARITY_INVERSION_MASK;
9046 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9047 				& RX_POLARITY_INVERSION_MASK;
9048 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9049 	return ret;
9050 }
9051 
9052 static int write_tx_settings(struct hfi1_devdata *dd,
9053 			     u8 enable_lane_tx,
9054 			     u8 tx_polarity_inversion,
9055 			     u8 rx_polarity_inversion,
9056 			     u8 max_rate)
9057 {
9058 	u32 frame;
9059 
9060 	/* no need to mask, all variable sizes match field widths */
9061 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9062 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9063 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9064 		| max_rate << MAX_RATE_SHIFT;
9065 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9066 }
9067 
9068 /*
9069  * Read an idle LCB message.
9070  *
9071  * Returns 0 on success, -EINVAL on error
9072  */
9073 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9074 {
9075 	int ret;
9076 
9077 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9078 	if (ret != HCMD_SUCCESS) {
9079 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9080 			   (u32)type, ret);
9081 		return -EINVAL;
9082 	}
9083 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9084 	/* return only the payload as we already know the type */
9085 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9086 	return 0;
9087 }
9088 
9089 /*
9090  * Read an idle SMA message.  To be done in response to a notification from
9091  * the 8051.
9092  *
9093  * Returns 0 on success, -EINVAL on error
9094  */
9095 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9096 {
9097 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9098 				 data);
9099 }
9100 
9101 /*
9102  * Send an idle LCB message.
9103  *
9104  * Returns 0 on success, -EINVAL on error
9105  */
9106 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9107 {
9108 	int ret;
9109 
9110 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9111 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9112 	if (ret != HCMD_SUCCESS) {
9113 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9114 			   data, ret);
9115 		return -EINVAL;
9116 	}
9117 	return 0;
9118 }
9119 
9120 /*
9121  * Send an idle SMA message.
9122  *
9123  * Returns 0 on success, -EINVAL on error
9124  */
9125 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9126 {
9127 	u64 data;
9128 
9129 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9130 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9131 	return send_idle_message(dd, data);
9132 }
9133 
9134 /*
9135  * Initialize the LCB then do a quick link up.  This may or may not be
9136  * in loopback.
9137  *
9138  * return 0 on success, -errno on error
9139  */
9140 static int do_quick_linkup(struct hfi1_devdata *dd)
9141 {
9142 	int ret;
9143 
9144 	lcb_shutdown(dd, 0);
9145 
9146 	if (loopback) {
9147 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9148 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9149 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9150 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9151 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9152 	}
9153 
9154 	/* start the LCBs */
9155 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9156 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9157 
9158 	/* simulator only loopback steps */
9159 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9160 		/* LCB_CFG_RUN.EN = 1 */
9161 		write_csr(dd, DC_LCB_CFG_RUN,
9162 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9163 
9164 		ret = wait_link_transfer_active(dd, 10);
9165 		if (ret)
9166 			return ret;
9167 
9168 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9169 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9170 	}
9171 
9172 	if (!loopback) {
9173 		/*
9174 		 * When doing quick linkup and not in loopback, both
9175 		 * sides must be done with LCB set-up before either
9176 		 * starts the quick linkup.  Put a delay here so that
9177 		 * both sides can be started and have a chance to be
9178 		 * done with LCB set up before resuming.
9179 		 */
9180 		dd_dev_err(dd,
9181 			   "Pausing for peer to be finished with LCB set up\n");
9182 		msleep(5000);
9183 		dd_dev_err(dd, "Continuing with quick linkup\n");
9184 	}
9185 
9186 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9187 	set_8051_lcb_access(dd);
9188 
9189 	/*
9190 	 * State "quick" LinkUp request sets the physical link state to
9191 	 * LinkUp without a verify capability sequence.
9192 	 * This state is in simulator v37 and later.
9193 	 */
9194 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9195 	if (ret != HCMD_SUCCESS) {
9196 		dd_dev_err(dd,
9197 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9198 			   __func__, ret);
9199 
9200 		set_host_lcb_access(dd);
9201 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9202 
9203 		if (ret >= 0)
9204 			ret = -EINVAL;
9205 		return ret;
9206 	}
9207 
9208 	return 0; /* success */
9209 }
9210 
9211 /*
9212  * Do all special steps to set up loopback.
9213  */
9214 static int init_loopback(struct hfi1_devdata *dd)
9215 {
9216 	dd_dev_info(dd, "Entering loopback mode\n");
9217 
9218 	/* all loopbacks should disable self GUID check */
9219 	write_csr(dd, DC_DC8051_CFG_MODE,
9220 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9221 
9222 	/*
9223 	 * The simulator has only one loopback option - LCB.  Switch
9224 	 * to that option, which includes quick link up.
9225 	 *
9226 	 * Accept all valid loopback values.
9227 	 */
9228 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9229 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9230 	     loopback == LOOPBACK_CABLE)) {
9231 		loopback = LOOPBACK_LCB;
9232 		quick_linkup = 1;
9233 		return 0;
9234 	}
9235 
9236 	/*
9237 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9238 	 */
9239 	if (loopback == LOOPBACK_SERDES)
9240 		return 0;
9241 
9242 	/* LCB loopback - handled at poll time */
9243 	if (loopback == LOOPBACK_LCB) {
9244 		quick_linkup = 1; /* LCB is always quick linkup */
9245 
9246 		/* not supported in emulation due to emulation RTL changes */
9247 		if (dd->icode == ICODE_FPGA_EMULATION) {
9248 			dd_dev_err(dd,
9249 				   "LCB loopback not supported in emulation\n");
9250 			return -EINVAL;
9251 		}
9252 		return 0;
9253 	}
9254 
9255 	/* external cable loopback requires no extra steps */
9256 	if (loopback == LOOPBACK_CABLE)
9257 		return 0;
9258 
9259 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9260 	return -EINVAL;
9261 }
9262 
9263 /*
9264  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9265  * used in the Verify Capability link width attribute.
9266  */
9267 static u16 opa_to_vc_link_widths(u16 opa_widths)
9268 {
9269 	int i;
9270 	u16 result = 0;
9271 
9272 	static const struct link_bits {
9273 		u16 from;
9274 		u16 to;
9275 	} opa_link_xlate[] = {
9276 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9277 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9278 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9279 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9280 	};
9281 
9282 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9283 		if (opa_widths & opa_link_xlate[i].from)
9284 			result |= opa_link_xlate[i].to;
9285 	}
9286 	return result;
9287 }
9288 
9289 /*
9290  * Set link attributes before moving to polling.
9291  */
9292 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9293 {
9294 	struct hfi1_devdata *dd = ppd->dd;
9295 	u8 enable_lane_tx;
9296 	u8 tx_polarity_inversion;
9297 	u8 rx_polarity_inversion;
9298 	int ret;
9299 	u32 misc_bits = 0;
9300 	/* reset our fabric serdes to clear any lingering problems */
9301 	fabric_serdes_reset(dd);
9302 
9303 	/* set the local tx rate - need to read-modify-write */
9304 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9305 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9306 	if (ret)
9307 		goto set_local_link_attributes_fail;
9308 
9309 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9310 		/* set the tx rate to the fastest enabled */
9311 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9312 			ppd->local_tx_rate = 1;
9313 		else
9314 			ppd->local_tx_rate = 0;
9315 	} else {
9316 		/* set the tx rate to all enabled */
9317 		ppd->local_tx_rate = 0;
9318 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9319 			ppd->local_tx_rate |= 2;
9320 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9321 			ppd->local_tx_rate |= 1;
9322 	}
9323 
9324 	enable_lane_tx = 0xF; /* enable all four lanes */
9325 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9326 				rx_polarity_inversion, ppd->local_tx_rate);
9327 	if (ret != HCMD_SUCCESS)
9328 		goto set_local_link_attributes_fail;
9329 
9330 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9331 	if (ret != HCMD_SUCCESS) {
9332 		dd_dev_err(dd,
9333 			   "Failed to set host interface version, return 0x%x\n",
9334 			   ret);
9335 		goto set_local_link_attributes_fail;
9336 	}
9337 
9338 	/*
9339 	 * DC supports continuous updates.
9340 	 */
9341 	ret = write_vc_local_phy(dd,
9342 				 0 /* no power management */,
9343 				 1 /* continuous updates */);
9344 	if (ret != HCMD_SUCCESS)
9345 		goto set_local_link_attributes_fail;
9346 
9347 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9348 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9349 				    ppd->port_crc_mode_enabled);
9350 	if (ret != HCMD_SUCCESS)
9351 		goto set_local_link_attributes_fail;
9352 
9353 	/*
9354 	 * SerDes loopback init sequence requires
9355 	 * setting bit 0 of MISC_CONFIG_BITS
9356 	 */
9357 	if (loopback == LOOPBACK_SERDES)
9358 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9359 
9360 	/*
9361 	 * An external device configuration request is used to reset the LCB
9362 	 * to retry to obtain operational lanes when the first attempt is
9363 	 * unsuccesful.
9364 	 */
9365 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9366 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9367 
9368 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9369 				       opa_to_vc_link_widths(
9370 						ppd->link_width_enabled));
9371 	if (ret != HCMD_SUCCESS)
9372 		goto set_local_link_attributes_fail;
9373 
9374 	/* let peer know who we are */
9375 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9376 	if (ret == HCMD_SUCCESS)
9377 		return 0;
9378 
9379 set_local_link_attributes_fail:
9380 	dd_dev_err(dd,
9381 		   "Failed to set local link attributes, return 0x%x\n",
9382 		   ret);
9383 	return ret;
9384 }
9385 
9386 /*
9387  * Call this to start the link.
9388  * Do not do anything if the link is disabled.
9389  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9390  */
9391 int start_link(struct hfi1_pportdata *ppd)
9392 {
9393 	/*
9394 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9395 	 * error rate.  Needs to be done before starting the link.
9396 	 */
9397 	tune_serdes(ppd);
9398 
9399 	if (!ppd->driver_link_ready) {
9400 		dd_dev_info(ppd->dd,
9401 			    "%s: stopping link start because driver is not ready\n",
9402 			    __func__);
9403 		return 0;
9404 	}
9405 
9406 	/*
9407 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9408 	 * pkey table can be configured properly if the HFI unit is connected
9409 	 * to switch port with MgmtAllowed=NO
9410 	 */
9411 	clear_full_mgmt_pkey(ppd);
9412 
9413 	return set_link_state(ppd, HLS_DN_POLL);
9414 }
9415 
9416 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9417 {
9418 	struct hfi1_devdata *dd = ppd->dd;
9419 	u64 mask;
9420 	unsigned long timeout;
9421 
9422 	/*
9423 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9424 	 * effect of power up on plug-in. We ignore this false positive
9425 	 * interrupt until the module has finished powering up by waiting for
9426 	 * a minimum timeout of the module inrush initialization time of
9427 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9428 	 * module have stabilized.
9429 	 */
9430 	msleep(500);
9431 
9432 	/*
9433 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9434 	 */
9435 	timeout = jiffies + msecs_to_jiffies(2000);
9436 	while (1) {
9437 		mask = read_csr(dd, dd->hfi1_id ?
9438 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9439 		if (!(mask & QSFP_HFI0_INT_N))
9440 			break;
9441 		if (time_after(jiffies, timeout)) {
9442 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9443 				    __func__);
9444 			break;
9445 		}
9446 		udelay(2);
9447 	}
9448 }
9449 
9450 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9451 {
9452 	struct hfi1_devdata *dd = ppd->dd;
9453 	u64 mask;
9454 
9455 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9456 	if (enable) {
9457 		/*
9458 		 * Clear the status register to avoid an immediate interrupt
9459 		 * when we re-enable the IntN pin
9460 		 */
9461 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9462 			  QSFP_HFI0_INT_N);
9463 		mask |= (u64)QSFP_HFI0_INT_N;
9464 	} else {
9465 		mask &= ~(u64)QSFP_HFI0_INT_N;
9466 	}
9467 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9468 }
9469 
9470 int reset_qsfp(struct hfi1_pportdata *ppd)
9471 {
9472 	struct hfi1_devdata *dd = ppd->dd;
9473 	u64 mask, qsfp_mask;
9474 
9475 	/* Disable INT_N from triggering QSFP interrupts */
9476 	set_qsfp_int_n(ppd, 0);
9477 
9478 	/* Reset the QSFP */
9479 	mask = (u64)QSFP_HFI0_RESET_N;
9480 
9481 	qsfp_mask = read_csr(dd,
9482 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9483 	qsfp_mask &= ~mask;
9484 	write_csr(dd,
9485 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9486 
9487 	udelay(10);
9488 
9489 	qsfp_mask |= mask;
9490 	write_csr(dd,
9491 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9492 
9493 	wait_for_qsfp_init(ppd);
9494 
9495 	/*
9496 	 * Allow INT_N to trigger the QSFP interrupt to watch
9497 	 * for alarms and warnings
9498 	 */
9499 	set_qsfp_int_n(ppd, 1);
9500 
9501 	/*
9502 	 * After the reset, AOC transmitters are enabled by default. They need
9503 	 * to be turned off to complete the QSFP setup before they can be
9504 	 * enabled again.
9505 	 */
9506 	return set_qsfp_tx(ppd, 0);
9507 }
9508 
9509 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9510 					u8 *qsfp_interrupt_status)
9511 {
9512 	struct hfi1_devdata *dd = ppd->dd;
9513 
9514 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9515 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9516 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9517 			   __func__);
9518 
9519 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9520 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9521 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9522 			   __func__);
9523 
9524 	/*
9525 	 * The remaining alarms/warnings don't matter if the link is down.
9526 	 */
9527 	if (ppd->host_link_state & HLS_DOWN)
9528 		return 0;
9529 
9530 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9531 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9532 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9533 			   __func__);
9534 
9535 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9536 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9537 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9538 			   __func__);
9539 
9540 	/* Byte 2 is vendor specific */
9541 
9542 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9543 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9544 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9545 			   __func__);
9546 
9547 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9548 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9549 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9550 			   __func__);
9551 
9552 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9553 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9554 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9555 			   __func__);
9556 
9557 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9558 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9559 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9560 			   __func__);
9561 
9562 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9563 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9564 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9565 			   __func__);
9566 
9567 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9568 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9569 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9570 			   __func__);
9571 
9572 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9573 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9574 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9575 			   __func__);
9576 
9577 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9578 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9579 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9580 			   __func__);
9581 
9582 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9583 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9584 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9585 			   __func__);
9586 
9587 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9588 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9589 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9590 			   __func__);
9591 
9592 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9593 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9594 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9595 			   __func__);
9596 
9597 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9598 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9599 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9600 			   __func__);
9601 
9602 	/* Bytes 9-10 and 11-12 are reserved */
9603 	/* Bytes 13-15 are vendor specific */
9604 
9605 	return 0;
9606 }
9607 
9608 /* This routine will only be scheduled if the QSFP module present is asserted */
9609 void qsfp_event(struct work_struct *work)
9610 {
9611 	struct qsfp_data *qd;
9612 	struct hfi1_pportdata *ppd;
9613 	struct hfi1_devdata *dd;
9614 
9615 	qd = container_of(work, struct qsfp_data, qsfp_work);
9616 	ppd = qd->ppd;
9617 	dd = ppd->dd;
9618 
9619 	/* Sanity check */
9620 	if (!qsfp_mod_present(ppd))
9621 		return;
9622 
9623 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9624 		dd_dev_info(ppd->dd,
9625 			    "%s: stopping link start because link is disabled\n",
9626 			    __func__);
9627 		return;
9628 	}
9629 
9630 	/*
9631 	 * Turn DC back on after cable has been re-inserted. Up until
9632 	 * now, the DC has been in reset to save power.
9633 	 */
9634 	dc_start(dd);
9635 
9636 	if (qd->cache_refresh_required) {
9637 		set_qsfp_int_n(ppd, 0);
9638 
9639 		wait_for_qsfp_init(ppd);
9640 
9641 		/*
9642 		 * Allow INT_N to trigger the QSFP interrupt to watch
9643 		 * for alarms and warnings
9644 		 */
9645 		set_qsfp_int_n(ppd, 1);
9646 
9647 		start_link(ppd);
9648 	}
9649 
9650 	if (qd->check_interrupt_flags) {
9651 		u8 qsfp_interrupt_status[16] = {0,};
9652 
9653 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9654 				  &qsfp_interrupt_status[0], 16) != 16) {
9655 			dd_dev_info(dd,
9656 				    "%s: Failed to read status of QSFP module\n",
9657 				    __func__);
9658 		} else {
9659 			unsigned long flags;
9660 
9661 			handle_qsfp_error_conditions(
9662 					ppd, qsfp_interrupt_status);
9663 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9664 			ppd->qsfp_info.check_interrupt_flags = 0;
9665 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9666 					       flags);
9667 		}
9668 	}
9669 }
9670 
9671 void init_qsfp_int(struct hfi1_devdata *dd)
9672 {
9673 	struct hfi1_pportdata *ppd = dd->pport;
9674 	u64 qsfp_mask;
9675 
9676 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9677 	/* Clear current status to avoid spurious interrupts */
9678 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9679 		  qsfp_mask);
9680 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9681 		  qsfp_mask);
9682 
9683 	set_qsfp_int_n(ppd, 0);
9684 
9685 	/* Handle active low nature of INT_N and MODPRST_N pins */
9686 	if (qsfp_mod_present(ppd))
9687 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9688 	write_csr(dd,
9689 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9690 		  qsfp_mask);
9691 
9692 	/* Enable the appropriate QSFP IRQ source */
9693 	if (!dd->hfi1_id)
9694 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9695 	else
9696 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9697 }
9698 
9699 /*
9700  * Do a one-time initialize of the LCB block.
9701  */
9702 static void init_lcb(struct hfi1_devdata *dd)
9703 {
9704 	/* simulator does not correctly handle LCB cclk loopback, skip */
9705 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9706 		return;
9707 
9708 	/* the DC has been reset earlier in the driver load */
9709 
9710 	/* set LCB for cclk loopback on the port */
9711 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9712 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9713 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9714 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9715 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9716 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9717 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9718 }
9719 
9720 /*
9721  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9722  * on error.
9723  */
9724 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9725 {
9726 	int ret;
9727 	u8 status;
9728 
9729 	/*
9730 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9731 	 * not present
9732 	 */
9733 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9734 		return 0;
9735 
9736 	/* read byte 2, the status byte */
9737 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9738 	if (ret < 0)
9739 		return ret;
9740 	if (ret != 1)
9741 		return -EIO;
9742 
9743 	return 0; /* success */
9744 }
9745 
9746 /*
9747  * Values for QSFP retry.
9748  *
9749  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9750  * arrived at from experience on a large cluster.
9751  */
9752 #define MAX_QSFP_RETRIES 20
9753 #define QSFP_RETRY_WAIT 500 /* msec */
9754 
9755 /*
9756  * Try a QSFP read.  If it fails, schedule a retry for later.
9757  * Called on first link activation after driver load.
9758  */
9759 static void try_start_link(struct hfi1_pportdata *ppd)
9760 {
9761 	if (test_qsfp_read(ppd)) {
9762 		/* read failed */
9763 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9764 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9765 			return;
9766 		}
9767 		dd_dev_info(ppd->dd,
9768 			    "QSFP not responding, waiting and retrying %d\n",
9769 			    (int)ppd->qsfp_retry_count);
9770 		ppd->qsfp_retry_count++;
9771 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9772 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9773 		return;
9774 	}
9775 	ppd->qsfp_retry_count = 0;
9776 
9777 	start_link(ppd);
9778 }
9779 
9780 /*
9781  * Workqueue function to start the link after a delay.
9782  */
9783 void handle_start_link(struct work_struct *work)
9784 {
9785 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9786 						  start_link_work.work);
9787 	try_start_link(ppd);
9788 }
9789 
9790 int bringup_serdes(struct hfi1_pportdata *ppd)
9791 {
9792 	struct hfi1_devdata *dd = ppd->dd;
9793 	u64 guid;
9794 	int ret;
9795 
9796 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9797 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9798 
9799 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9800 	if (!guid) {
9801 		if (dd->base_guid)
9802 			guid = dd->base_guid + ppd->port - 1;
9803 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9804 	}
9805 
9806 	/* Set linkinit_reason on power up per OPA spec */
9807 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9808 
9809 	/* one-time init of the LCB */
9810 	init_lcb(dd);
9811 
9812 	if (loopback) {
9813 		ret = init_loopback(dd);
9814 		if (ret < 0)
9815 			return ret;
9816 	}
9817 
9818 	get_port_type(ppd);
9819 	if (ppd->port_type == PORT_TYPE_QSFP) {
9820 		set_qsfp_int_n(ppd, 0);
9821 		wait_for_qsfp_init(ppd);
9822 		set_qsfp_int_n(ppd, 1);
9823 	}
9824 
9825 	try_start_link(ppd);
9826 	return 0;
9827 }
9828 
9829 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9830 {
9831 	struct hfi1_devdata *dd = ppd->dd;
9832 
9833 	/*
9834 	 * Shut down the link and keep it down.   First turn off that the
9835 	 * driver wants to allow the link to be up (driver_link_ready).
9836 	 * Then make sure the link is not automatically restarted
9837 	 * (link_enabled).  Cancel any pending restart.  And finally
9838 	 * go offline.
9839 	 */
9840 	ppd->driver_link_ready = 0;
9841 	ppd->link_enabled = 0;
9842 
9843 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9844 	flush_delayed_work(&ppd->start_link_work);
9845 	cancel_delayed_work_sync(&ppd->start_link_work);
9846 
9847 	ppd->offline_disabled_reason =
9848 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9849 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9850 			     OPA_LINKDOWN_REASON_REBOOT);
9851 	set_link_state(ppd, HLS_DN_OFFLINE);
9852 
9853 	/* disable the port */
9854 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9855 	cancel_work_sync(&ppd->freeze_work);
9856 }
9857 
9858 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9859 {
9860 	struct hfi1_pportdata *ppd;
9861 	int i;
9862 
9863 	ppd = (struct hfi1_pportdata *)(dd + 1);
9864 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9865 		ppd->ibport_data.rvp.rc_acks = NULL;
9866 		ppd->ibport_data.rvp.rc_qacks = NULL;
9867 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9868 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9869 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9870 		if (!ppd->ibport_data.rvp.rc_acks ||
9871 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9872 		    !ppd->ibport_data.rvp.rc_qacks)
9873 			return -ENOMEM;
9874 	}
9875 
9876 	return 0;
9877 }
9878 
9879 /*
9880  * index is the index into the receive array
9881  */
9882 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9883 		  u32 type, unsigned long pa, u16 order)
9884 {
9885 	u64 reg;
9886 
9887 	if (!(dd->flags & HFI1_PRESENT))
9888 		goto done;
9889 
9890 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9891 		pa = 0;
9892 		order = 0;
9893 	} else if (type > PT_INVALID) {
9894 		dd_dev_err(dd,
9895 			   "unexpected receive array type %u for index %u, not handled\n",
9896 			   type, index);
9897 		goto done;
9898 	}
9899 	trace_hfi1_put_tid(dd, index, type, pa, order);
9900 
9901 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9902 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9903 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9904 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9905 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9906 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9907 	writeq(reg, dd->rcvarray_wc + (index * 8));
9908 
9909 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9910 		/*
9911 		 * Eager entries are written and flushed
9912 		 *
9913 		 * Expected entries are flushed every 4 writes
9914 		 */
9915 		flush_wc();
9916 done:
9917 	return;
9918 }
9919 
9920 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9921 {
9922 	struct hfi1_devdata *dd = rcd->dd;
9923 	u32 i;
9924 
9925 	/* this could be optimized */
9926 	for (i = rcd->eager_base; i < rcd->eager_base +
9927 		     rcd->egrbufs.alloced; i++)
9928 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9929 
9930 	for (i = rcd->expected_base;
9931 			i < rcd->expected_base + rcd->expected_count; i++)
9932 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9933 }
9934 
9935 static const char * const ib_cfg_name_strings[] = {
9936 	"HFI1_IB_CFG_LIDLMC",
9937 	"HFI1_IB_CFG_LWID_DG_ENB",
9938 	"HFI1_IB_CFG_LWID_ENB",
9939 	"HFI1_IB_CFG_LWID",
9940 	"HFI1_IB_CFG_SPD_ENB",
9941 	"HFI1_IB_CFG_SPD",
9942 	"HFI1_IB_CFG_RXPOL_ENB",
9943 	"HFI1_IB_CFG_LREV_ENB",
9944 	"HFI1_IB_CFG_LINKLATENCY",
9945 	"HFI1_IB_CFG_HRTBT",
9946 	"HFI1_IB_CFG_OP_VLS",
9947 	"HFI1_IB_CFG_VL_HIGH_CAP",
9948 	"HFI1_IB_CFG_VL_LOW_CAP",
9949 	"HFI1_IB_CFG_OVERRUN_THRESH",
9950 	"HFI1_IB_CFG_PHYERR_THRESH",
9951 	"HFI1_IB_CFG_LINKDEFAULT",
9952 	"HFI1_IB_CFG_PKEYS",
9953 	"HFI1_IB_CFG_MTU",
9954 	"HFI1_IB_CFG_LSTATE",
9955 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9956 	"HFI1_IB_CFG_PMA_TICKS",
9957 	"HFI1_IB_CFG_PORT"
9958 };
9959 
9960 static const char *ib_cfg_name(int which)
9961 {
9962 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9963 		return "invalid";
9964 	return ib_cfg_name_strings[which];
9965 }
9966 
9967 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9968 {
9969 	struct hfi1_devdata *dd = ppd->dd;
9970 	int val = 0;
9971 
9972 	switch (which) {
9973 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9974 		val = ppd->link_width_enabled;
9975 		break;
9976 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9977 		val = ppd->link_width_active;
9978 		break;
9979 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9980 		val = ppd->link_speed_enabled;
9981 		break;
9982 	case HFI1_IB_CFG_SPD: /* current Link speed */
9983 		val = ppd->link_speed_active;
9984 		break;
9985 
9986 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9987 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9988 	case HFI1_IB_CFG_LINKLATENCY:
9989 		goto unimplemented;
9990 
9991 	case HFI1_IB_CFG_OP_VLS:
9992 		val = ppd->actual_vls_operational;
9993 		break;
9994 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9995 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9996 		break;
9997 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9998 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9999 		break;
10000 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10001 		val = ppd->overrun_threshold;
10002 		break;
10003 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10004 		val = ppd->phy_error_threshold;
10005 		break;
10006 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10007 		val = HLS_DEFAULT;
10008 		break;
10009 
10010 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10011 	case HFI1_IB_CFG_PMA_TICKS:
10012 	default:
10013 unimplemented:
10014 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10015 			dd_dev_info(
10016 				dd,
10017 				"%s: which %s: not implemented\n",
10018 				__func__,
10019 				ib_cfg_name(which));
10020 		break;
10021 	}
10022 
10023 	return val;
10024 }
10025 
10026 /*
10027  * The largest MAD packet size.
10028  */
10029 #define MAX_MAD_PACKET 2048
10030 
10031 /*
10032  * Return the maximum header bytes that can go on the _wire_
10033  * for this device. This count includes the ICRC which is
10034  * not part of the packet held in memory but it is appended
10035  * by the HW.
10036  * This is dependent on the device's receive header entry size.
10037  * HFI allows this to be set per-receive context, but the
10038  * driver presently enforces a global value.
10039  */
10040 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10041 {
10042 	/*
10043 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10044 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10045 	 * plus one DW for the ICRC appended by HW.
10046 	 *
10047 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10048 	 * We use rcd[0] as all context will have the same value. Also,
10049 	 * the first kernel context would have been allocated by now so
10050 	 * we are guaranteed a valid value.
10051 	 */
10052 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10053 }
10054 
10055 /*
10056  * Set Send Length
10057  * @ppd - per port data
10058  *
10059  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10060  * registers compare against LRH.PktLen, so use the max bytes included
10061  * in the LRH.
10062  *
10063  * This routine changes all VL values except VL15, which it maintains at
10064  * the same value.
10065  */
10066 static void set_send_length(struct hfi1_pportdata *ppd)
10067 {
10068 	struct hfi1_devdata *dd = ppd->dd;
10069 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10070 	u32 maxvlmtu = dd->vld[15].mtu;
10071 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10072 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10073 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10074 	int i, j;
10075 	u32 thres;
10076 
10077 	for (i = 0; i < ppd->vls_supported; i++) {
10078 		if (dd->vld[i].mtu > maxvlmtu)
10079 			maxvlmtu = dd->vld[i].mtu;
10080 		if (i <= 3)
10081 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10082 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10083 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10084 		else
10085 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10086 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10087 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10088 	}
10089 	write_csr(dd, SEND_LEN_CHECK0, len1);
10090 	write_csr(dd, SEND_LEN_CHECK1, len2);
10091 	/* adjust kernel credit return thresholds based on new MTUs */
10092 	/* all kernel receive contexts have the same hdrqentsize */
10093 	for (i = 0; i < ppd->vls_supported; i++) {
10094 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10095 			    sc_mtu_to_threshold(dd->vld[i].sc,
10096 						dd->vld[i].mtu,
10097 						dd->rcd[0]->rcvhdrqentsize));
10098 		for (j = 0; j < INIT_SC_PER_VL; j++)
10099 			sc_set_cr_threshold(
10100 					pio_select_send_context_vl(dd, j, i),
10101 					    thres);
10102 	}
10103 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10104 		    sc_mtu_to_threshold(dd->vld[15].sc,
10105 					dd->vld[15].mtu,
10106 					dd->rcd[0]->rcvhdrqentsize));
10107 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10108 
10109 	/* Adjust maximum MTU for the port in DC */
10110 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10111 		(ilog2(maxvlmtu >> 8) + 1);
10112 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10113 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10114 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10115 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10116 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10117 }
10118 
10119 static void set_lidlmc(struct hfi1_pportdata *ppd)
10120 {
10121 	int i;
10122 	u64 sreg = 0;
10123 	struct hfi1_devdata *dd = ppd->dd;
10124 	u32 mask = ~((1U << ppd->lmc) - 1);
10125 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10126 	u32 lid;
10127 
10128 	/*
10129 	 * Program 0 in CSR if port lid is extended. This prevents
10130 	 * 9B packets being sent out for large lids.
10131 	 */
10132 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10133 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10134 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10135 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10136 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10137 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10138 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10139 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10140 
10141 	/*
10142 	 * Iterate over all the send contexts and set their SLID check
10143 	 */
10144 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10145 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10146 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10147 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10148 
10149 	for (i = 0; i < chip_send_contexts(dd); i++) {
10150 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10151 			  i, (u32)sreg);
10152 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10153 	}
10154 
10155 	/* Now we have to do the same thing for the sdma engines */
10156 	sdma_update_lmc(dd, mask, lid);
10157 }
10158 
10159 static const char *state_completed_string(u32 completed)
10160 {
10161 	static const char * const state_completed[] = {
10162 		"EstablishComm",
10163 		"OptimizeEQ",
10164 		"VerifyCap"
10165 	};
10166 
10167 	if (completed < ARRAY_SIZE(state_completed))
10168 		return state_completed[completed];
10169 
10170 	return "unknown";
10171 }
10172 
10173 static const char all_lanes_dead_timeout_expired[] =
10174 	"All lanes were inactive – was the interconnect media removed?";
10175 static const char tx_out_of_policy[] =
10176 	"Passing lanes on local port do not meet the local link width policy";
10177 static const char no_state_complete[] =
10178 	"State timeout occurred before link partner completed the state";
10179 static const char * const state_complete_reasons[] = {
10180 	[0x00] = "Reason unknown",
10181 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10182 	[0x02] = "Link partner reported failure",
10183 	[0x10] = "Unable to achieve frame sync on any lane",
10184 	[0x11] =
10185 	  "Unable to find a common bit rate with the link partner",
10186 	[0x12] =
10187 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10188 	[0x13] =
10189 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10190 	[0x14] = no_state_complete,
10191 	[0x15] =
10192 	  "State timeout occurred before link partner identified equalization presets",
10193 	[0x16] =
10194 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10195 	[0x17] = tx_out_of_policy,
10196 	[0x20] = all_lanes_dead_timeout_expired,
10197 	[0x21] =
10198 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10199 	[0x22] = no_state_complete,
10200 	[0x23] =
10201 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10202 	[0x24] = tx_out_of_policy,
10203 	[0x30] = all_lanes_dead_timeout_expired,
10204 	[0x31] =
10205 	  "State timeout occurred waiting for host to process received frames",
10206 	[0x32] = no_state_complete,
10207 	[0x33] =
10208 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10209 	[0x34] = tx_out_of_policy,
10210 	[0x35] = "Negotiated link width is mutually exclusive",
10211 	[0x36] =
10212 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10213 	[0x37] = "Unable to resolve secure data exchange",
10214 };
10215 
10216 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10217 						     u32 code)
10218 {
10219 	const char *str = NULL;
10220 
10221 	if (code < ARRAY_SIZE(state_complete_reasons))
10222 		str = state_complete_reasons[code];
10223 
10224 	if (str)
10225 		return str;
10226 	return "Reserved";
10227 }
10228 
10229 /* describe the given last state complete frame */
10230 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10231 				  const char *prefix)
10232 {
10233 	struct hfi1_devdata *dd = ppd->dd;
10234 	u32 success;
10235 	u32 state;
10236 	u32 reason;
10237 	u32 lanes;
10238 
10239 	/*
10240 	 * Decode frame:
10241 	 *  [ 0: 0] - success
10242 	 *  [ 3: 1] - state
10243 	 *  [ 7: 4] - next state timeout
10244 	 *  [15: 8] - reason code
10245 	 *  [31:16] - lanes
10246 	 */
10247 	success = frame & 0x1;
10248 	state = (frame >> 1) & 0x7;
10249 	reason = (frame >> 8) & 0xff;
10250 	lanes = (frame >> 16) & 0xffff;
10251 
10252 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10253 		   prefix, frame);
10254 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10255 		   state_completed_string(state), state);
10256 	dd_dev_err(dd, "    state successfully completed: %s\n",
10257 		   success ? "yes" : "no");
10258 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10259 		   reason, state_complete_reason_code_string(ppd, reason));
10260 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10261 }
10262 
10263 /*
10264  * Read the last state complete frames and explain them.  This routine
10265  * expects to be called if the link went down during link negotiation
10266  * and initialization (LNI).  That is, anywhere between polling and link up.
10267  */
10268 static void check_lni_states(struct hfi1_pportdata *ppd)
10269 {
10270 	u32 last_local_state;
10271 	u32 last_remote_state;
10272 
10273 	read_last_local_state(ppd->dd, &last_local_state);
10274 	read_last_remote_state(ppd->dd, &last_remote_state);
10275 
10276 	/*
10277 	 * Don't report anything if there is nothing to report.  A value of
10278 	 * 0 means the link was taken down while polling and there was no
10279 	 * training in-process.
10280 	 */
10281 	if (last_local_state == 0 && last_remote_state == 0)
10282 		return;
10283 
10284 	decode_state_complete(ppd, last_local_state, "transmitted");
10285 	decode_state_complete(ppd, last_remote_state, "received");
10286 }
10287 
10288 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10289 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10290 {
10291 	u64 reg;
10292 	unsigned long timeout;
10293 
10294 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10295 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10296 	while (1) {
10297 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10298 		if (reg)
10299 			break;
10300 		if (time_after(jiffies, timeout)) {
10301 			dd_dev_err(dd,
10302 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10303 			return -ETIMEDOUT;
10304 		}
10305 		udelay(2);
10306 	}
10307 	return 0;
10308 }
10309 
10310 /* called when the logical link state is not down as it should be */
10311 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10312 {
10313 	struct hfi1_devdata *dd = ppd->dd;
10314 
10315 	/*
10316 	 * Bring link up in LCB loopback
10317 	 */
10318 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10319 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10320 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10321 
10322 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10323 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10324 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10325 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10326 
10327 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10328 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10329 	udelay(3);
10330 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10331 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10332 
10333 	wait_link_transfer_active(dd, 100);
10334 
10335 	/*
10336 	 * Bring the link down again.
10337 	 */
10338 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10339 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10340 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10341 
10342 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10343 }
10344 
10345 /*
10346  * Helper for set_link_state().  Do not call except from that routine.
10347  * Expects ppd->hls_mutex to be held.
10348  *
10349  * @rem_reason value to be sent to the neighbor
10350  *
10351  * LinkDownReasons only set if transition succeeds.
10352  */
10353 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10354 {
10355 	struct hfi1_devdata *dd = ppd->dd;
10356 	u32 previous_state;
10357 	int offline_state_ret;
10358 	int ret;
10359 
10360 	update_lcb_cache(dd);
10361 
10362 	previous_state = ppd->host_link_state;
10363 	ppd->host_link_state = HLS_GOING_OFFLINE;
10364 
10365 	/* start offline transition */
10366 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10367 
10368 	if (ret != HCMD_SUCCESS) {
10369 		dd_dev_err(dd,
10370 			   "Failed to transition to Offline link state, return %d\n",
10371 			   ret);
10372 		return -EINVAL;
10373 	}
10374 	if (ppd->offline_disabled_reason ==
10375 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10376 		ppd->offline_disabled_reason =
10377 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10378 
10379 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10380 	if (offline_state_ret < 0)
10381 		return offline_state_ret;
10382 
10383 	/* Disabling AOC transmitters */
10384 	if (ppd->port_type == PORT_TYPE_QSFP &&
10385 	    ppd->qsfp_info.limiting_active &&
10386 	    qsfp_mod_present(ppd)) {
10387 		int ret;
10388 
10389 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10390 		if (ret == 0) {
10391 			set_qsfp_tx(ppd, 0);
10392 			release_chip_resource(dd, qsfp_resource(dd));
10393 		} else {
10394 			/* not fatal, but should warn */
10395 			dd_dev_err(dd,
10396 				   "Unable to acquire lock to turn off QSFP TX\n");
10397 		}
10398 	}
10399 
10400 	/*
10401 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10402 	 * can take a while for the link to go down.
10403 	 */
10404 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10405 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10406 		if (ret < 0)
10407 			return ret;
10408 	}
10409 
10410 	/*
10411 	 * Now in charge of LCB - must be after the physical state is
10412 	 * offline.quiet and before host_link_state is changed.
10413 	 */
10414 	set_host_lcb_access(dd);
10415 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10416 
10417 	/* make sure the logical state is also down */
10418 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10419 	if (ret)
10420 		force_logical_link_state_down(ppd);
10421 
10422 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10423 	update_statusp(ppd, IB_PORT_DOWN);
10424 
10425 	/*
10426 	 * The LNI has a mandatory wait time after the physical state
10427 	 * moves to Offline.Quiet.  The wait time may be different
10428 	 * depending on how the link went down.  The 8051 firmware
10429 	 * will observe the needed wait time and only move to ready
10430 	 * when that is completed.  The largest of the quiet timeouts
10431 	 * is 6s, so wait that long and then at least 0.5s more for
10432 	 * other transitions, and another 0.5s for a buffer.
10433 	 */
10434 	ret = wait_fm_ready(dd, 7000);
10435 	if (ret) {
10436 		dd_dev_err(dd,
10437 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10438 		/* state is really offline, so make it so */
10439 		ppd->host_link_state = HLS_DN_OFFLINE;
10440 		return ret;
10441 	}
10442 
10443 	/*
10444 	 * The state is now offline and the 8051 is ready to accept host
10445 	 * requests.
10446 	 *	- change our state
10447 	 *	- notify others if we were previously in a linkup state
10448 	 */
10449 	ppd->host_link_state = HLS_DN_OFFLINE;
10450 	if (previous_state & HLS_UP) {
10451 		/* went down while link was up */
10452 		handle_linkup_change(dd, 0);
10453 	} else if (previous_state
10454 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10455 		/* went down while attempting link up */
10456 		check_lni_states(ppd);
10457 
10458 		/* The QSFP doesn't need to be reset on LNI failure */
10459 		ppd->qsfp_info.reset_needed = 0;
10460 	}
10461 
10462 	/* the active link width (downgrade) is 0 on link down */
10463 	ppd->link_width_active = 0;
10464 	ppd->link_width_downgrade_tx_active = 0;
10465 	ppd->link_width_downgrade_rx_active = 0;
10466 	ppd->current_egress_rate = 0;
10467 	return 0;
10468 }
10469 
10470 /* return the link state name */
10471 static const char *link_state_name(u32 state)
10472 {
10473 	const char *name;
10474 	int n = ilog2(state);
10475 	static const char * const names[] = {
10476 		[__HLS_UP_INIT_BP]	 = "INIT",
10477 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10478 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10479 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10480 		[__HLS_DN_POLL_BP]	 = "POLL",
10481 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10482 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10483 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10484 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10485 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10486 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10487 	};
10488 
10489 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10490 	return name ? name : "unknown";
10491 }
10492 
10493 /* return the link state reason name */
10494 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10495 {
10496 	if (state == HLS_UP_INIT) {
10497 		switch (ppd->linkinit_reason) {
10498 		case OPA_LINKINIT_REASON_LINKUP:
10499 			return "(LINKUP)";
10500 		case OPA_LINKINIT_REASON_FLAPPING:
10501 			return "(FLAPPING)";
10502 		case OPA_LINKINIT_OUTSIDE_POLICY:
10503 			return "(OUTSIDE_POLICY)";
10504 		case OPA_LINKINIT_QUARANTINED:
10505 			return "(QUARANTINED)";
10506 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10507 			return "(INSUFIC_CAPABILITY)";
10508 		default:
10509 			break;
10510 		}
10511 	}
10512 	return "";
10513 }
10514 
10515 /*
10516  * driver_pstate - convert the driver's notion of a port's
10517  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10518  * Return -1 (converted to a u32) to indicate error.
10519  */
10520 u32 driver_pstate(struct hfi1_pportdata *ppd)
10521 {
10522 	switch (ppd->host_link_state) {
10523 	case HLS_UP_INIT:
10524 	case HLS_UP_ARMED:
10525 	case HLS_UP_ACTIVE:
10526 		return IB_PORTPHYSSTATE_LINKUP;
10527 	case HLS_DN_POLL:
10528 		return IB_PORTPHYSSTATE_POLLING;
10529 	case HLS_DN_DISABLE:
10530 		return IB_PORTPHYSSTATE_DISABLED;
10531 	case HLS_DN_OFFLINE:
10532 		return OPA_PORTPHYSSTATE_OFFLINE;
10533 	case HLS_VERIFY_CAP:
10534 		return IB_PORTPHYSSTATE_TRAINING;
10535 	case HLS_GOING_UP:
10536 		return IB_PORTPHYSSTATE_TRAINING;
10537 	case HLS_GOING_OFFLINE:
10538 		return OPA_PORTPHYSSTATE_OFFLINE;
10539 	case HLS_LINK_COOLDOWN:
10540 		return OPA_PORTPHYSSTATE_OFFLINE;
10541 	case HLS_DN_DOWNDEF:
10542 	default:
10543 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10544 			   ppd->host_link_state);
10545 		return  -1;
10546 	}
10547 }
10548 
10549 /*
10550  * driver_lstate - convert the driver's notion of a port's
10551  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10552  * (converted to a u32) to indicate error.
10553  */
10554 u32 driver_lstate(struct hfi1_pportdata *ppd)
10555 {
10556 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10557 		return IB_PORT_DOWN;
10558 
10559 	switch (ppd->host_link_state & HLS_UP) {
10560 	case HLS_UP_INIT:
10561 		return IB_PORT_INIT;
10562 	case HLS_UP_ARMED:
10563 		return IB_PORT_ARMED;
10564 	case HLS_UP_ACTIVE:
10565 		return IB_PORT_ACTIVE;
10566 	default:
10567 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10568 			   ppd->host_link_state);
10569 	return -1;
10570 	}
10571 }
10572 
10573 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10574 			  u8 neigh_reason, u8 rem_reason)
10575 {
10576 	if (ppd->local_link_down_reason.latest == 0 &&
10577 	    ppd->neigh_link_down_reason.latest == 0) {
10578 		ppd->local_link_down_reason.latest = lcl_reason;
10579 		ppd->neigh_link_down_reason.latest = neigh_reason;
10580 		ppd->remote_link_down_reason = rem_reason;
10581 	}
10582 }
10583 
10584 /**
10585  * data_vls_operational() - Verify if data VL BCT credits and MTU
10586  *			    are both set.
10587  * @ppd: pointer to hfi1_pportdata structure
10588  *
10589  * Return: true - Ok, false -otherwise.
10590  */
10591 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10592 {
10593 	int i;
10594 	u64 reg;
10595 
10596 	if (!ppd->actual_vls_operational)
10597 		return false;
10598 
10599 	for (i = 0; i < ppd->vls_supported; i++) {
10600 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10601 		if ((reg && !ppd->dd->vld[i].mtu) ||
10602 		    (!reg && ppd->dd->vld[i].mtu))
10603 			return false;
10604 	}
10605 
10606 	return true;
10607 }
10608 
10609 /*
10610  * Change the physical and/or logical link state.
10611  *
10612  * Do not call this routine while inside an interrupt.  It contains
10613  * calls to routines that can take multiple seconds to finish.
10614  *
10615  * Returns 0 on success, -errno on failure.
10616  */
10617 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10618 {
10619 	struct hfi1_devdata *dd = ppd->dd;
10620 	struct ib_event event = {.device = NULL};
10621 	int ret1, ret = 0;
10622 	int orig_new_state, poll_bounce;
10623 
10624 	mutex_lock(&ppd->hls_lock);
10625 
10626 	orig_new_state = state;
10627 	if (state == HLS_DN_DOWNDEF)
10628 		state = HLS_DEFAULT;
10629 
10630 	/* interpret poll -> poll as a link bounce */
10631 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10632 		      state == HLS_DN_POLL;
10633 
10634 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10635 		    link_state_name(ppd->host_link_state),
10636 		    link_state_name(orig_new_state),
10637 		    poll_bounce ? "(bounce) " : "",
10638 		    link_state_reason_name(ppd, state));
10639 
10640 	/*
10641 	 * If we're going to a (HLS_*) link state that implies the logical
10642 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10643 	 * reset is_sm_config_started to 0.
10644 	 */
10645 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10646 		ppd->is_sm_config_started = 0;
10647 
10648 	/*
10649 	 * Do nothing if the states match.  Let a poll to poll link bounce
10650 	 * go through.
10651 	 */
10652 	if (ppd->host_link_state == state && !poll_bounce)
10653 		goto done;
10654 
10655 	switch (state) {
10656 	case HLS_UP_INIT:
10657 		if (ppd->host_link_state == HLS_DN_POLL &&
10658 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10659 			/*
10660 			 * Quick link up jumps from polling to here.
10661 			 *
10662 			 * Whether in normal or loopback mode, the
10663 			 * simulator jumps from polling to link up.
10664 			 * Accept that here.
10665 			 */
10666 			/* OK */
10667 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10668 			goto unexpected;
10669 		}
10670 
10671 		/*
10672 		 * Wait for Link_Up physical state.
10673 		 * Physical and Logical states should already be
10674 		 * be transitioned to LinkUp and LinkInit respectively.
10675 		 */
10676 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10677 		if (ret) {
10678 			dd_dev_err(dd,
10679 				   "%s: physical state did not change to LINK-UP\n",
10680 				   __func__);
10681 			break;
10682 		}
10683 
10684 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10685 		if (ret) {
10686 			dd_dev_err(dd,
10687 				   "%s: logical state did not change to INIT\n",
10688 				   __func__);
10689 			break;
10690 		}
10691 
10692 		/* clear old transient LINKINIT_REASON code */
10693 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10694 			ppd->linkinit_reason =
10695 				OPA_LINKINIT_REASON_LINKUP;
10696 
10697 		/* enable the port */
10698 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10699 
10700 		handle_linkup_change(dd, 1);
10701 		pio_kernel_linkup(dd);
10702 
10703 		/*
10704 		 * After link up, a new link width will have been set.
10705 		 * Update the xmit counters with regards to the new
10706 		 * link width.
10707 		 */
10708 		update_xmit_counters(ppd, ppd->link_width_active);
10709 
10710 		ppd->host_link_state = HLS_UP_INIT;
10711 		update_statusp(ppd, IB_PORT_INIT);
10712 		break;
10713 	case HLS_UP_ARMED:
10714 		if (ppd->host_link_state != HLS_UP_INIT)
10715 			goto unexpected;
10716 
10717 		if (!data_vls_operational(ppd)) {
10718 			dd_dev_err(dd,
10719 				   "%s: Invalid data VL credits or mtu\n",
10720 				   __func__);
10721 			ret = -EINVAL;
10722 			break;
10723 		}
10724 
10725 		set_logical_state(dd, LSTATE_ARMED);
10726 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10727 		if (ret) {
10728 			dd_dev_err(dd,
10729 				   "%s: logical state did not change to ARMED\n",
10730 				   __func__);
10731 			break;
10732 		}
10733 		ppd->host_link_state = HLS_UP_ARMED;
10734 		update_statusp(ppd, IB_PORT_ARMED);
10735 		/*
10736 		 * The simulator does not currently implement SMA messages,
10737 		 * so neighbor_normal is not set.  Set it here when we first
10738 		 * move to Armed.
10739 		 */
10740 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10741 			ppd->neighbor_normal = 1;
10742 		break;
10743 	case HLS_UP_ACTIVE:
10744 		if (ppd->host_link_state != HLS_UP_ARMED)
10745 			goto unexpected;
10746 
10747 		set_logical_state(dd, LSTATE_ACTIVE);
10748 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10749 		if (ret) {
10750 			dd_dev_err(dd,
10751 				   "%s: logical state did not change to ACTIVE\n",
10752 				   __func__);
10753 		} else {
10754 			/* tell all engines to go running */
10755 			sdma_all_running(dd);
10756 			ppd->host_link_state = HLS_UP_ACTIVE;
10757 			update_statusp(ppd, IB_PORT_ACTIVE);
10758 
10759 			/* Signal the IB layer that the port has went active */
10760 			event.device = &dd->verbs_dev.rdi.ibdev;
10761 			event.element.port_num = ppd->port;
10762 			event.event = IB_EVENT_PORT_ACTIVE;
10763 		}
10764 		break;
10765 	case HLS_DN_POLL:
10766 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10767 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10768 		    dd->dc_shutdown)
10769 			dc_start(dd);
10770 		/* Hand LED control to the DC */
10771 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10772 
10773 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10774 			u8 tmp = ppd->link_enabled;
10775 
10776 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10777 			if (ret) {
10778 				ppd->link_enabled = tmp;
10779 				break;
10780 			}
10781 			ppd->remote_link_down_reason = 0;
10782 
10783 			if (ppd->driver_link_ready)
10784 				ppd->link_enabled = 1;
10785 		}
10786 
10787 		set_all_slowpath(ppd->dd);
10788 		ret = set_local_link_attributes(ppd);
10789 		if (ret)
10790 			break;
10791 
10792 		ppd->port_error_action = 0;
10793 
10794 		if (quick_linkup) {
10795 			/* quick linkup does not go into polling */
10796 			ret = do_quick_linkup(dd);
10797 		} else {
10798 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10799 			if (!ret1)
10800 				ret1 = wait_phys_link_out_of_offline(ppd,
10801 								     3000);
10802 			if (ret1 != HCMD_SUCCESS) {
10803 				dd_dev_err(dd,
10804 					   "Failed to transition to Polling link state, return 0x%x\n",
10805 					   ret1);
10806 				ret = -EINVAL;
10807 			}
10808 		}
10809 
10810 		/*
10811 		 * Change the host link state after requesting DC8051 to
10812 		 * change its physical state so that we can ignore any
10813 		 * interrupt with stale LNI(XX) error, which will not be
10814 		 * cleared until DC8051 transitions to Polling state.
10815 		 */
10816 		ppd->host_link_state = HLS_DN_POLL;
10817 		ppd->offline_disabled_reason =
10818 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10819 		/*
10820 		 * If an error occurred above, go back to offline.  The
10821 		 * caller may reschedule another attempt.
10822 		 */
10823 		if (ret)
10824 			goto_offline(ppd, 0);
10825 		else
10826 			log_physical_state(ppd, PLS_POLLING);
10827 		break;
10828 	case HLS_DN_DISABLE:
10829 		/* link is disabled */
10830 		ppd->link_enabled = 0;
10831 
10832 		/* allow any state to transition to disabled */
10833 
10834 		/* must transition to offline first */
10835 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10836 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10837 			if (ret)
10838 				break;
10839 			ppd->remote_link_down_reason = 0;
10840 		}
10841 
10842 		if (!dd->dc_shutdown) {
10843 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10844 			if (ret1 != HCMD_SUCCESS) {
10845 				dd_dev_err(dd,
10846 					   "Failed to transition to Disabled link state, return 0x%x\n",
10847 					   ret1);
10848 				ret = -EINVAL;
10849 				break;
10850 			}
10851 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10852 			if (ret) {
10853 				dd_dev_err(dd,
10854 					   "%s: physical state did not change to DISABLED\n",
10855 					   __func__);
10856 				break;
10857 			}
10858 			dc_shutdown(dd);
10859 		}
10860 		ppd->host_link_state = HLS_DN_DISABLE;
10861 		break;
10862 	case HLS_DN_OFFLINE:
10863 		if (ppd->host_link_state == HLS_DN_DISABLE)
10864 			dc_start(dd);
10865 
10866 		/* allow any state to transition to offline */
10867 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10868 		if (!ret)
10869 			ppd->remote_link_down_reason = 0;
10870 		break;
10871 	case HLS_VERIFY_CAP:
10872 		if (ppd->host_link_state != HLS_DN_POLL)
10873 			goto unexpected;
10874 		ppd->host_link_state = HLS_VERIFY_CAP;
10875 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10876 		break;
10877 	case HLS_GOING_UP:
10878 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10879 			goto unexpected;
10880 
10881 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10882 		if (ret1 != HCMD_SUCCESS) {
10883 			dd_dev_err(dd,
10884 				   "Failed to transition to link up state, return 0x%x\n",
10885 				   ret1);
10886 			ret = -EINVAL;
10887 			break;
10888 		}
10889 		ppd->host_link_state = HLS_GOING_UP;
10890 		break;
10891 
10892 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10893 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10894 	default:
10895 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10896 			    __func__, state);
10897 		ret = -EINVAL;
10898 		break;
10899 	}
10900 
10901 	goto done;
10902 
10903 unexpected:
10904 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10905 		   __func__, link_state_name(ppd->host_link_state),
10906 		   link_state_name(state));
10907 	ret = -EINVAL;
10908 
10909 done:
10910 	mutex_unlock(&ppd->hls_lock);
10911 
10912 	if (event.device)
10913 		ib_dispatch_event(&event);
10914 
10915 	return ret;
10916 }
10917 
10918 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10919 {
10920 	u64 reg;
10921 	int ret = 0;
10922 
10923 	switch (which) {
10924 	case HFI1_IB_CFG_LIDLMC:
10925 		set_lidlmc(ppd);
10926 		break;
10927 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10928 		/*
10929 		 * The VL Arbitrator high limit is sent in units of 4k
10930 		 * bytes, while HFI stores it in units of 64 bytes.
10931 		 */
10932 		val *= 4096 / 64;
10933 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10934 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10935 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10936 		break;
10937 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10938 		/* HFI only supports POLL as the default link down state */
10939 		if (val != HLS_DN_POLL)
10940 			ret = -EINVAL;
10941 		break;
10942 	case HFI1_IB_CFG_OP_VLS:
10943 		if (ppd->vls_operational != val) {
10944 			ppd->vls_operational = val;
10945 			if (!ppd->port)
10946 				ret = -EINVAL;
10947 		}
10948 		break;
10949 	/*
10950 	 * For link width, link width downgrade, and speed enable, always AND
10951 	 * the setting with what is actually supported.  This has two benefits.
10952 	 * First, enabled can't have unsupported values, no matter what the
10953 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10954 	 * "fill in with your supported value" have all the bits in the
10955 	 * field set, so simply ANDing with supported has the desired result.
10956 	 */
10957 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10958 		ppd->link_width_enabled = val & ppd->link_width_supported;
10959 		break;
10960 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10961 		ppd->link_width_downgrade_enabled =
10962 				val & ppd->link_width_downgrade_supported;
10963 		break;
10964 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10965 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10966 		break;
10967 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10968 		/*
10969 		 * HFI does not follow IB specs, save this value
10970 		 * so we can report it, if asked.
10971 		 */
10972 		ppd->overrun_threshold = val;
10973 		break;
10974 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10975 		/*
10976 		 * HFI does not follow IB specs, save this value
10977 		 * so we can report it, if asked.
10978 		 */
10979 		ppd->phy_error_threshold = val;
10980 		break;
10981 
10982 	case HFI1_IB_CFG_MTU:
10983 		set_send_length(ppd);
10984 		break;
10985 
10986 	case HFI1_IB_CFG_PKEYS:
10987 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10988 			set_partition_keys(ppd);
10989 		break;
10990 
10991 	default:
10992 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10993 			dd_dev_info(ppd->dd,
10994 				    "%s: which %s, val 0x%x: not implemented\n",
10995 				    __func__, ib_cfg_name(which), val);
10996 		break;
10997 	}
10998 	return ret;
10999 }
11000 
11001 /* begin functions related to vl arbitration table caching */
11002 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11003 {
11004 	int i;
11005 
11006 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11007 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11008 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11009 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11010 
11011 	/*
11012 	 * Note that we always return values directly from the
11013 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11014 	 * 'Get(VLArbTable)'. This is obviously correct after a
11015 	 * 'Set(VLArbTable)', since the cache will then be up to
11016 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11017 	 * since then both the cache, and the relevant h/w registers
11018 	 * will be zeroed.
11019 	 */
11020 
11021 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11022 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11023 }
11024 
11025 /*
11026  * vl_arb_lock_cache
11027  *
11028  * All other vl_arb_* functions should be called only after locking
11029  * the cache.
11030  */
11031 static inline struct vl_arb_cache *
11032 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11033 {
11034 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11035 		return NULL;
11036 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11037 	return &ppd->vl_arb_cache[idx];
11038 }
11039 
11040 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11041 {
11042 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11043 }
11044 
11045 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11046 			     struct ib_vl_weight_elem *vl)
11047 {
11048 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11049 }
11050 
11051 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11052 			     struct ib_vl_weight_elem *vl)
11053 {
11054 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11055 }
11056 
11057 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11058 			      struct ib_vl_weight_elem *vl)
11059 {
11060 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11061 }
11062 
11063 /* end functions related to vl arbitration table caching */
11064 
11065 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11066 			  u32 size, struct ib_vl_weight_elem *vl)
11067 {
11068 	struct hfi1_devdata *dd = ppd->dd;
11069 	u64 reg;
11070 	unsigned int i, is_up = 0;
11071 	int drain, ret = 0;
11072 
11073 	mutex_lock(&ppd->hls_lock);
11074 
11075 	if (ppd->host_link_state & HLS_UP)
11076 		is_up = 1;
11077 
11078 	drain = !is_ax(dd) && is_up;
11079 
11080 	if (drain)
11081 		/*
11082 		 * Before adjusting VL arbitration weights, empty per-VL
11083 		 * FIFOs, otherwise a packet whose VL weight is being
11084 		 * set to 0 could get stuck in a FIFO with no chance to
11085 		 * egress.
11086 		 */
11087 		ret = stop_drain_data_vls(dd);
11088 
11089 	if (ret) {
11090 		dd_dev_err(
11091 			dd,
11092 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11093 			__func__);
11094 		goto err;
11095 	}
11096 
11097 	for (i = 0; i < size; i++, vl++) {
11098 		/*
11099 		 * NOTE: The low priority shift and mask are used here, but
11100 		 * they are the same for both the low and high registers.
11101 		 */
11102 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11103 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11104 		      | (((u64)vl->weight
11105 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11106 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11107 		write_csr(dd, target + (i * 8), reg);
11108 	}
11109 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11110 
11111 	if (drain)
11112 		open_fill_data_vls(dd); /* reopen all VLs */
11113 
11114 err:
11115 	mutex_unlock(&ppd->hls_lock);
11116 
11117 	return ret;
11118 }
11119 
11120 /*
11121  * Read one credit merge VL register.
11122  */
11123 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11124 			   struct vl_limit *vll)
11125 {
11126 	u64 reg = read_csr(dd, csr);
11127 
11128 	vll->dedicated = cpu_to_be16(
11129 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11130 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11131 	vll->shared = cpu_to_be16(
11132 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11133 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11134 }
11135 
11136 /*
11137  * Read the current credit merge limits.
11138  */
11139 static int get_buffer_control(struct hfi1_devdata *dd,
11140 			      struct buffer_control *bc, u16 *overall_limit)
11141 {
11142 	u64 reg;
11143 	int i;
11144 
11145 	/* not all entries are filled in */
11146 	memset(bc, 0, sizeof(*bc));
11147 
11148 	/* OPA and HFI have a 1-1 mapping */
11149 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11150 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11151 
11152 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11153 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11154 
11155 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11156 	bc->overall_shared_limit = cpu_to_be16(
11157 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11158 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11159 	if (overall_limit)
11160 		*overall_limit = (reg
11161 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11162 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11163 	return sizeof(struct buffer_control);
11164 }
11165 
11166 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11167 {
11168 	u64 reg;
11169 	int i;
11170 
11171 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11172 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11173 	for (i = 0; i < sizeof(u64); i++) {
11174 		u8 byte = *(((u8 *)&reg) + i);
11175 
11176 		dp->vlnt[2 * i] = byte & 0xf;
11177 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11178 	}
11179 
11180 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11181 	for (i = 0; i < sizeof(u64); i++) {
11182 		u8 byte = *(((u8 *)&reg) + i);
11183 
11184 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11185 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11186 	}
11187 	return sizeof(struct sc2vlnt);
11188 }
11189 
11190 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11191 			      struct ib_vl_weight_elem *vl)
11192 {
11193 	unsigned int i;
11194 
11195 	for (i = 0; i < nelems; i++, vl++) {
11196 		vl->vl = 0xf;
11197 		vl->weight = 0;
11198 	}
11199 }
11200 
11201 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11202 {
11203 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11204 		  DC_SC_VL_VAL(15_0,
11205 			       0, dp->vlnt[0] & 0xf,
11206 			       1, dp->vlnt[1] & 0xf,
11207 			       2, dp->vlnt[2] & 0xf,
11208 			       3, dp->vlnt[3] & 0xf,
11209 			       4, dp->vlnt[4] & 0xf,
11210 			       5, dp->vlnt[5] & 0xf,
11211 			       6, dp->vlnt[6] & 0xf,
11212 			       7, dp->vlnt[7] & 0xf,
11213 			       8, dp->vlnt[8] & 0xf,
11214 			       9, dp->vlnt[9] & 0xf,
11215 			       10, dp->vlnt[10] & 0xf,
11216 			       11, dp->vlnt[11] & 0xf,
11217 			       12, dp->vlnt[12] & 0xf,
11218 			       13, dp->vlnt[13] & 0xf,
11219 			       14, dp->vlnt[14] & 0xf,
11220 			       15, dp->vlnt[15] & 0xf));
11221 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11222 		  DC_SC_VL_VAL(31_16,
11223 			       16, dp->vlnt[16] & 0xf,
11224 			       17, dp->vlnt[17] & 0xf,
11225 			       18, dp->vlnt[18] & 0xf,
11226 			       19, dp->vlnt[19] & 0xf,
11227 			       20, dp->vlnt[20] & 0xf,
11228 			       21, dp->vlnt[21] & 0xf,
11229 			       22, dp->vlnt[22] & 0xf,
11230 			       23, dp->vlnt[23] & 0xf,
11231 			       24, dp->vlnt[24] & 0xf,
11232 			       25, dp->vlnt[25] & 0xf,
11233 			       26, dp->vlnt[26] & 0xf,
11234 			       27, dp->vlnt[27] & 0xf,
11235 			       28, dp->vlnt[28] & 0xf,
11236 			       29, dp->vlnt[29] & 0xf,
11237 			       30, dp->vlnt[30] & 0xf,
11238 			       31, dp->vlnt[31] & 0xf));
11239 }
11240 
11241 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11242 			u16 limit)
11243 {
11244 	if (limit != 0)
11245 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11246 			    what, (int)limit, idx);
11247 }
11248 
11249 /* change only the shared limit portion of SendCmGLobalCredit */
11250 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11251 {
11252 	u64 reg;
11253 
11254 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11255 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11256 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11257 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11258 }
11259 
11260 /* change only the total credit limit portion of SendCmGLobalCredit */
11261 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11262 {
11263 	u64 reg;
11264 
11265 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11266 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11267 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11268 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11269 }
11270 
11271 /* set the given per-VL shared limit */
11272 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11273 {
11274 	u64 reg;
11275 	u32 addr;
11276 
11277 	if (vl < TXE_NUM_DATA_VL)
11278 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11279 	else
11280 		addr = SEND_CM_CREDIT_VL15;
11281 
11282 	reg = read_csr(dd, addr);
11283 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11284 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11285 	write_csr(dd, addr, reg);
11286 }
11287 
11288 /* set the given per-VL dedicated limit */
11289 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11290 {
11291 	u64 reg;
11292 	u32 addr;
11293 
11294 	if (vl < TXE_NUM_DATA_VL)
11295 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11296 	else
11297 		addr = SEND_CM_CREDIT_VL15;
11298 
11299 	reg = read_csr(dd, addr);
11300 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11301 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11302 	write_csr(dd, addr, reg);
11303 }
11304 
11305 /* spin until the given per-VL status mask bits clear */
11306 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11307 				     const char *which)
11308 {
11309 	unsigned long timeout;
11310 	u64 reg;
11311 
11312 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11313 	while (1) {
11314 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11315 
11316 		if (reg == 0)
11317 			return;	/* success */
11318 		if (time_after(jiffies, timeout))
11319 			break;		/* timed out */
11320 		udelay(1);
11321 	}
11322 
11323 	dd_dev_err(dd,
11324 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11325 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11326 	/*
11327 	 * If this occurs, it is likely there was a credit loss on the link.
11328 	 * The only recovery from that is a link bounce.
11329 	 */
11330 	dd_dev_err(dd,
11331 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11332 }
11333 
11334 /*
11335  * The number of credits on the VLs may be changed while everything
11336  * is "live", but the following algorithm must be followed due to
11337  * how the hardware is actually implemented.  In particular,
11338  * Return_Credit_Status[] is the only correct status check.
11339  *
11340  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11341  *     set Global_Shared_Credit_Limit = 0
11342  *     use_all_vl = 1
11343  * mask0 = all VLs that are changing either dedicated or shared limits
11344  * set Shared_Limit[mask0] = 0
11345  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11346  * if (changing any dedicated limit)
11347  *     mask1 = all VLs that are lowering dedicated limits
11348  *     lower Dedicated_Limit[mask1]
11349  *     spin until Return_Credit_Status[mask1] == 0
11350  *     raise Dedicated_Limits
11351  * raise Shared_Limits
11352  * raise Global_Shared_Credit_Limit
11353  *
11354  * lower = if the new limit is lower, set the limit to the new value
11355  * raise = if the new limit is higher than the current value (may be changed
11356  *	earlier in the algorithm), set the new limit to the new value
11357  */
11358 int set_buffer_control(struct hfi1_pportdata *ppd,
11359 		       struct buffer_control *new_bc)
11360 {
11361 	struct hfi1_devdata *dd = ppd->dd;
11362 	u64 changing_mask, ld_mask, stat_mask;
11363 	int change_count;
11364 	int i, use_all_mask;
11365 	int this_shared_changing;
11366 	int vl_count = 0, ret;
11367 	/*
11368 	 * A0: add the variable any_shared_limit_changing below and in the
11369 	 * algorithm above.  If removing A0 support, it can be removed.
11370 	 */
11371 	int any_shared_limit_changing;
11372 	struct buffer_control cur_bc;
11373 	u8 changing[OPA_MAX_VLS];
11374 	u8 lowering_dedicated[OPA_MAX_VLS];
11375 	u16 cur_total;
11376 	u32 new_total = 0;
11377 	const u64 all_mask =
11378 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11379 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11380 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11381 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11382 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11383 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11384 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11385 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11386 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11387 
11388 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11389 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11390 
11391 	/* find the new total credits, do sanity check on unused VLs */
11392 	for (i = 0; i < OPA_MAX_VLS; i++) {
11393 		if (valid_vl(i)) {
11394 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11395 			continue;
11396 		}
11397 		nonzero_msg(dd, i, "dedicated",
11398 			    be16_to_cpu(new_bc->vl[i].dedicated));
11399 		nonzero_msg(dd, i, "shared",
11400 			    be16_to_cpu(new_bc->vl[i].shared));
11401 		new_bc->vl[i].dedicated = 0;
11402 		new_bc->vl[i].shared = 0;
11403 	}
11404 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11405 
11406 	/* fetch the current values */
11407 	get_buffer_control(dd, &cur_bc, &cur_total);
11408 
11409 	/*
11410 	 * Create the masks we will use.
11411 	 */
11412 	memset(changing, 0, sizeof(changing));
11413 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11414 	/*
11415 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11416 	 * increasing order
11417 	 */
11418 	stat_mask =
11419 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11420 	changing_mask = 0;
11421 	ld_mask = 0;
11422 	change_count = 0;
11423 	any_shared_limit_changing = 0;
11424 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11425 		if (!valid_vl(i))
11426 			continue;
11427 		this_shared_changing = new_bc->vl[i].shared
11428 						!= cur_bc.vl[i].shared;
11429 		if (this_shared_changing)
11430 			any_shared_limit_changing = 1;
11431 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11432 		    this_shared_changing) {
11433 			changing[i] = 1;
11434 			changing_mask |= stat_mask;
11435 			change_count++;
11436 		}
11437 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11438 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11439 			lowering_dedicated[i] = 1;
11440 			ld_mask |= stat_mask;
11441 		}
11442 	}
11443 
11444 	/* bracket the credit change with a total adjustment */
11445 	if (new_total > cur_total)
11446 		set_global_limit(dd, new_total);
11447 
11448 	/*
11449 	 * Start the credit change algorithm.
11450 	 */
11451 	use_all_mask = 0;
11452 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11453 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11454 	    (is_ax(dd) && any_shared_limit_changing)) {
11455 		set_global_shared(dd, 0);
11456 		cur_bc.overall_shared_limit = 0;
11457 		use_all_mask = 1;
11458 	}
11459 
11460 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11461 		if (!valid_vl(i))
11462 			continue;
11463 
11464 		if (changing[i]) {
11465 			set_vl_shared(dd, i, 0);
11466 			cur_bc.vl[i].shared = 0;
11467 		}
11468 	}
11469 
11470 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11471 				 "shared");
11472 
11473 	if (change_count > 0) {
11474 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11475 			if (!valid_vl(i))
11476 				continue;
11477 
11478 			if (lowering_dedicated[i]) {
11479 				set_vl_dedicated(dd, i,
11480 						 be16_to_cpu(new_bc->
11481 							     vl[i].dedicated));
11482 				cur_bc.vl[i].dedicated =
11483 						new_bc->vl[i].dedicated;
11484 			}
11485 		}
11486 
11487 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11488 
11489 		/* now raise all dedicated that are going up */
11490 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11491 			if (!valid_vl(i))
11492 				continue;
11493 
11494 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11495 					be16_to_cpu(cur_bc.vl[i].dedicated))
11496 				set_vl_dedicated(dd, i,
11497 						 be16_to_cpu(new_bc->
11498 							     vl[i].dedicated));
11499 		}
11500 	}
11501 
11502 	/* next raise all shared that are going up */
11503 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11504 		if (!valid_vl(i))
11505 			continue;
11506 
11507 		if (be16_to_cpu(new_bc->vl[i].shared) >
11508 				be16_to_cpu(cur_bc.vl[i].shared))
11509 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11510 	}
11511 
11512 	/* finally raise the global shared */
11513 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11514 	    be16_to_cpu(cur_bc.overall_shared_limit))
11515 		set_global_shared(dd,
11516 				  be16_to_cpu(new_bc->overall_shared_limit));
11517 
11518 	/* bracket the credit change with a total adjustment */
11519 	if (new_total < cur_total)
11520 		set_global_limit(dd, new_total);
11521 
11522 	/*
11523 	 * Determine the actual number of operational VLS using the number of
11524 	 * dedicated and shared credits for each VL.
11525 	 */
11526 	if (change_count > 0) {
11527 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11528 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11529 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11530 				vl_count++;
11531 		ppd->actual_vls_operational = vl_count;
11532 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11533 				    ppd->actual_vls_operational :
11534 				    ppd->vls_operational,
11535 				    NULL);
11536 		if (ret == 0)
11537 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11538 					   ppd->actual_vls_operational :
11539 					   ppd->vls_operational, NULL);
11540 		if (ret)
11541 			return ret;
11542 	}
11543 	return 0;
11544 }
11545 
11546 /*
11547  * Read the given fabric manager table. Return the size of the
11548  * table (in bytes) on success, and a negative error code on
11549  * failure.
11550  */
11551 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11552 
11553 {
11554 	int size;
11555 	struct vl_arb_cache *vlc;
11556 
11557 	switch (which) {
11558 	case FM_TBL_VL_HIGH_ARB:
11559 		size = 256;
11560 		/*
11561 		 * OPA specifies 128 elements (of 2 bytes each), though
11562 		 * HFI supports only 16 elements in h/w.
11563 		 */
11564 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11565 		vl_arb_get_cache(vlc, t);
11566 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11567 		break;
11568 	case FM_TBL_VL_LOW_ARB:
11569 		size = 256;
11570 		/*
11571 		 * OPA specifies 128 elements (of 2 bytes each), though
11572 		 * HFI supports only 16 elements in h/w.
11573 		 */
11574 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11575 		vl_arb_get_cache(vlc, t);
11576 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11577 		break;
11578 	case FM_TBL_BUFFER_CONTROL:
11579 		size = get_buffer_control(ppd->dd, t, NULL);
11580 		break;
11581 	case FM_TBL_SC2VLNT:
11582 		size = get_sc2vlnt(ppd->dd, t);
11583 		break;
11584 	case FM_TBL_VL_PREEMPT_ELEMS:
11585 		size = 256;
11586 		/* OPA specifies 128 elements, of 2 bytes each */
11587 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11588 		break;
11589 	case FM_TBL_VL_PREEMPT_MATRIX:
11590 		size = 256;
11591 		/*
11592 		 * OPA specifies that this is the same size as the VL
11593 		 * arbitration tables (i.e., 256 bytes).
11594 		 */
11595 		break;
11596 	default:
11597 		return -EINVAL;
11598 	}
11599 	return size;
11600 }
11601 
11602 /*
11603  * Write the given fabric manager table.
11604  */
11605 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11606 {
11607 	int ret = 0;
11608 	struct vl_arb_cache *vlc;
11609 
11610 	switch (which) {
11611 	case FM_TBL_VL_HIGH_ARB:
11612 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11613 		if (vl_arb_match_cache(vlc, t)) {
11614 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11615 			break;
11616 		}
11617 		vl_arb_set_cache(vlc, t);
11618 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11619 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11620 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11621 		break;
11622 	case FM_TBL_VL_LOW_ARB:
11623 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11624 		if (vl_arb_match_cache(vlc, t)) {
11625 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11626 			break;
11627 		}
11628 		vl_arb_set_cache(vlc, t);
11629 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11630 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11631 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11632 		break;
11633 	case FM_TBL_BUFFER_CONTROL:
11634 		ret = set_buffer_control(ppd, t);
11635 		break;
11636 	case FM_TBL_SC2VLNT:
11637 		set_sc2vlnt(ppd->dd, t);
11638 		break;
11639 	default:
11640 		ret = -EINVAL;
11641 	}
11642 	return ret;
11643 }
11644 
11645 /*
11646  * Disable all data VLs.
11647  *
11648  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11649  */
11650 static int disable_data_vls(struct hfi1_devdata *dd)
11651 {
11652 	if (is_ax(dd))
11653 		return 1;
11654 
11655 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11656 
11657 	return 0;
11658 }
11659 
11660 /*
11661  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11662  * Just re-enables all data VLs (the "fill" part happens
11663  * automatically - the name was chosen for symmetry with
11664  * stop_drain_data_vls()).
11665  *
11666  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11667  */
11668 int open_fill_data_vls(struct hfi1_devdata *dd)
11669 {
11670 	if (is_ax(dd))
11671 		return 1;
11672 
11673 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11674 
11675 	return 0;
11676 }
11677 
11678 /*
11679  * drain_data_vls() - assumes that disable_data_vls() has been called,
11680  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11681  * engines to drop to 0.
11682  */
11683 static void drain_data_vls(struct hfi1_devdata *dd)
11684 {
11685 	sc_wait(dd);
11686 	sdma_wait(dd);
11687 	pause_for_credit_return(dd);
11688 }
11689 
11690 /*
11691  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11692  *
11693  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11694  * meant to be used like this:
11695  *
11696  * stop_drain_data_vls(dd);
11697  * // do things with per-VL resources
11698  * open_fill_data_vls(dd);
11699  */
11700 int stop_drain_data_vls(struct hfi1_devdata *dd)
11701 {
11702 	int ret;
11703 
11704 	ret = disable_data_vls(dd);
11705 	if (ret == 0)
11706 		drain_data_vls(dd);
11707 
11708 	return ret;
11709 }
11710 
11711 /*
11712  * Convert a nanosecond time to a cclock count.  No matter how slow
11713  * the cclock, a non-zero ns will always have a non-zero result.
11714  */
11715 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11716 {
11717 	u32 cclocks;
11718 
11719 	if (dd->icode == ICODE_FPGA_EMULATION)
11720 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11721 	else  /* simulation pretends to be ASIC */
11722 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11723 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11724 		cclocks = 1;
11725 	return cclocks;
11726 }
11727 
11728 /*
11729  * Convert a cclock count to nanoseconds. Not matter how slow
11730  * the cclock, a non-zero cclocks will always have a non-zero result.
11731  */
11732 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11733 {
11734 	u32 ns;
11735 
11736 	if (dd->icode == ICODE_FPGA_EMULATION)
11737 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11738 	else  /* simulation pretends to be ASIC */
11739 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11740 	if (cclocks && !ns)
11741 		ns = 1;
11742 	return ns;
11743 }
11744 
11745 /*
11746  * Dynamically adjust the receive interrupt timeout for a context based on
11747  * incoming packet rate.
11748  *
11749  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11750  */
11751 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11752 {
11753 	struct hfi1_devdata *dd = rcd->dd;
11754 	u32 timeout = rcd->rcvavail_timeout;
11755 
11756 	/*
11757 	 * This algorithm doubles or halves the timeout depending on whether
11758 	 * the number of packets received in this interrupt were less than or
11759 	 * greater equal the interrupt count.
11760 	 *
11761 	 * The calculations below do not allow a steady state to be achieved.
11762 	 * Only at the endpoints it is possible to have an unchanging
11763 	 * timeout.
11764 	 */
11765 	if (npkts < rcv_intr_count) {
11766 		/*
11767 		 * Not enough packets arrived before the timeout, adjust
11768 		 * timeout downward.
11769 		 */
11770 		if (timeout < 2) /* already at minimum? */
11771 			return;
11772 		timeout >>= 1;
11773 	} else {
11774 		/*
11775 		 * More than enough packets arrived before the timeout, adjust
11776 		 * timeout upward.
11777 		 */
11778 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11779 			return;
11780 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11781 	}
11782 
11783 	rcd->rcvavail_timeout = timeout;
11784 	/*
11785 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11786 	 * been verified to be in range
11787 	 */
11788 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11789 			(u64)timeout <<
11790 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11791 }
11792 
11793 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11794 		    u32 intr_adjust, u32 npkts)
11795 {
11796 	struct hfi1_devdata *dd = rcd->dd;
11797 	u64 reg;
11798 	u32 ctxt = rcd->ctxt;
11799 
11800 	/*
11801 	 * Need to write timeout register before updating RcvHdrHead to ensure
11802 	 * that a new value is used when the HW decides to restart counting.
11803 	 */
11804 	if (intr_adjust)
11805 		adjust_rcv_timeout(rcd, npkts);
11806 	if (updegr) {
11807 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11808 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11809 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11810 	}
11811 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11812 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11813 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11814 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11815 }
11816 
11817 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11818 {
11819 	u32 head, tail;
11820 
11821 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11822 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11823 
11824 	if (rcd->rcvhdrtail_kvaddr)
11825 		tail = get_rcvhdrtail(rcd);
11826 	else
11827 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11828 
11829 	return head == tail;
11830 }
11831 
11832 /*
11833  * Context Control and Receive Array encoding for buffer size:
11834  *	0x0 invalid
11835  *	0x1   4 KB
11836  *	0x2   8 KB
11837  *	0x3  16 KB
11838  *	0x4  32 KB
11839  *	0x5  64 KB
11840  *	0x6 128 KB
11841  *	0x7 256 KB
11842  *	0x8 512 KB (Receive Array only)
11843  *	0x9   1 MB (Receive Array only)
11844  *	0xa   2 MB (Receive Array only)
11845  *
11846  *	0xB-0xF - reserved (Receive Array only)
11847  *
11848  *
11849  * This routine assumes that the value has already been sanity checked.
11850  */
11851 static u32 encoded_size(u32 size)
11852 {
11853 	switch (size) {
11854 	case   4 * 1024: return 0x1;
11855 	case   8 * 1024: return 0x2;
11856 	case  16 * 1024: return 0x3;
11857 	case  32 * 1024: return 0x4;
11858 	case  64 * 1024: return 0x5;
11859 	case 128 * 1024: return 0x6;
11860 	case 256 * 1024: return 0x7;
11861 	case 512 * 1024: return 0x8;
11862 	case   1 * 1024 * 1024: return 0x9;
11863 	case   2 * 1024 * 1024: return 0xa;
11864 	}
11865 	return 0x1;	/* if invalid, go with the minimum size */
11866 }
11867 
11868 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11869 		  struct hfi1_ctxtdata *rcd)
11870 {
11871 	u64 rcvctrl, reg;
11872 	int did_enable = 0;
11873 	u16 ctxt;
11874 
11875 	if (!rcd)
11876 		return;
11877 
11878 	ctxt = rcd->ctxt;
11879 
11880 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11881 
11882 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11883 	/* if the context already enabled, don't do the extra steps */
11884 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11885 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11886 		/* reset the tail and hdr addresses, and sequence count */
11887 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11888 				rcd->rcvhdrq_dma);
11889 		if (rcd->rcvhdrtail_kvaddr)
11890 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11891 					rcd->rcvhdrqtailaddr_dma);
11892 		rcd->seq_cnt = 1;
11893 
11894 		/* reset the cached receive header queue head value */
11895 		rcd->head = 0;
11896 
11897 		/*
11898 		 * Zero the receive header queue so we don't get false
11899 		 * positives when checking the sequence number.  The
11900 		 * sequence numbers could land exactly on the same spot.
11901 		 * E.g. a rcd restart before the receive header wrapped.
11902 		 */
11903 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
11904 
11905 		/* starting timeout */
11906 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11907 
11908 		/* enable the context */
11909 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11910 
11911 		/* clean the egr buffer size first */
11912 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11913 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11914 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11915 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11916 
11917 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11918 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11919 		did_enable = 1;
11920 
11921 		/* zero RcvEgrIndexHead */
11922 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11923 
11924 		/* set eager count and base index */
11925 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11926 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11927 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11928 			(((rcd->eager_base >> RCV_SHIFT)
11929 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11930 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11931 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11932 
11933 		/*
11934 		 * Set TID (expected) count and base index.
11935 		 * rcd->expected_count is set to individual RcvArray entries,
11936 		 * not pairs, and the CSR takes a pair-count in groups of
11937 		 * four, so divide by 8.
11938 		 */
11939 		reg = (((rcd->expected_count >> RCV_SHIFT)
11940 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11941 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11942 		      (((rcd->expected_base >> RCV_SHIFT)
11943 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11944 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11945 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11946 		if (ctxt == HFI1_CTRL_CTXT)
11947 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11948 	}
11949 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11950 		write_csr(dd, RCV_VL15, 0);
11951 		/*
11952 		 * When receive context is being disabled turn on tail
11953 		 * update with a dummy tail address and then disable
11954 		 * receive context.
11955 		 */
11956 		if (dd->rcvhdrtail_dummy_dma) {
11957 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11958 					dd->rcvhdrtail_dummy_dma);
11959 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11960 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11961 		}
11962 
11963 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11964 	}
11965 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
11966 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11967 			      IS_RCVAVAIL_START + rcd->ctxt, true);
11968 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11969 	}
11970 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
11971 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11972 			      IS_RCVAVAIL_START + rcd->ctxt, false);
11973 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11974 	}
11975 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11976 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11977 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11978 		/* See comment on RcvCtxtCtrl.TailUpd above */
11979 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11980 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11981 	}
11982 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11983 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11984 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11985 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11986 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11987 		/*
11988 		 * In one-packet-per-eager mode, the size comes from
11989 		 * the RcvArray entry.
11990 		 */
11991 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11992 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11993 	}
11994 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11995 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11996 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11997 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11998 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11999 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12000 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12001 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12002 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12003 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12004 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12005 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12006 			      IS_RCVURGENT_START + rcd->ctxt, true);
12007 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12008 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12009 			      IS_RCVURGENT_START + rcd->ctxt, false);
12010 
12011 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12012 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12013 
12014 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12015 	if (did_enable &&
12016 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12017 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12018 		if (reg != 0) {
12019 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12020 				    ctxt, reg);
12021 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12022 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12023 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12024 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12025 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12026 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12027 				    ctxt, reg, reg == 0 ? "not" : "still");
12028 		}
12029 	}
12030 
12031 	if (did_enable) {
12032 		/*
12033 		 * The interrupt timeout and count must be set after
12034 		 * the context is enabled to take effect.
12035 		 */
12036 		/* set interrupt timeout */
12037 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12038 				(u64)rcd->rcvavail_timeout <<
12039 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12040 
12041 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12042 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12043 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12044 	}
12045 
12046 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12047 		/*
12048 		 * If the context has been disabled and the Tail Update has
12049 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12050 		 * so it doesn't contain an address that is invalid.
12051 		 */
12052 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12053 				dd->rcvhdrtail_dummy_dma);
12054 }
12055 
12056 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12057 {
12058 	int ret;
12059 	u64 val = 0;
12060 
12061 	if (namep) {
12062 		ret = dd->cntrnameslen;
12063 		*namep = dd->cntrnames;
12064 	} else {
12065 		const struct cntr_entry *entry;
12066 		int i, j;
12067 
12068 		ret = (dd->ndevcntrs) * sizeof(u64);
12069 
12070 		/* Get the start of the block of counters */
12071 		*cntrp = dd->cntrs;
12072 
12073 		/*
12074 		 * Now go and fill in each counter in the block.
12075 		 */
12076 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12077 			entry = &dev_cntrs[i];
12078 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12079 			if (entry->flags & CNTR_DISABLED) {
12080 				/* Nothing */
12081 				hfi1_cdbg(CNTR, "\tDisabled\n");
12082 			} else {
12083 				if (entry->flags & CNTR_VL) {
12084 					hfi1_cdbg(CNTR, "\tPer VL\n");
12085 					for (j = 0; j < C_VL_COUNT; j++) {
12086 						val = entry->rw_cntr(entry,
12087 								  dd, j,
12088 								  CNTR_MODE_R,
12089 								  0);
12090 						hfi1_cdbg(
12091 						   CNTR,
12092 						   "\t\tRead 0x%llx for %d\n",
12093 						   val, j);
12094 						dd->cntrs[entry->offset + j] =
12095 									    val;
12096 					}
12097 				} else if (entry->flags & CNTR_SDMA) {
12098 					hfi1_cdbg(CNTR,
12099 						  "\t Per SDMA Engine\n");
12100 					for (j = 0; j < chip_sdma_engines(dd);
12101 					     j++) {
12102 						val =
12103 						entry->rw_cntr(entry, dd, j,
12104 							       CNTR_MODE_R, 0);
12105 						hfi1_cdbg(CNTR,
12106 							  "\t\tRead 0x%llx for %d\n",
12107 							  val, j);
12108 						dd->cntrs[entry->offset + j] =
12109 									val;
12110 					}
12111 				} else {
12112 					val = entry->rw_cntr(entry, dd,
12113 							CNTR_INVALID_VL,
12114 							CNTR_MODE_R, 0);
12115 					dd->cntrs[entry->offset] = val;
12116 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12117 				}
12118 			}
12119 		}
12120 	}
12121 	return ret;
12122 }
12123 
12124 /*
12125  * Used by sysfs to create files for hfi stats to read
12126  */
12127 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12128 {
12129 	int ret;
12130 	u64 val = 0;
12131 
12132 	if (namep) {
12133 		ret = ppd->dd->portcntrnameslen;
12134 		*namep = ppd->dd->portcntrnames;
12135 	} else {
12136 		const struct cntr_entry *entry;
12137 		int i, j;
12138 
12139 		ret = ppd->dd->nportcntrs * sizeof(u64);
12140 		*cntrp = ppd->cntrs;
12141 
12142 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12143 			entry = &port_cntrs[i];
12144 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12145 			if (entry->flags & CNTR_DISABLED) {
12146 				/* Nothing */
12147 				hfi1_cdbg(CNTR, "\tDisabled\n");
12148 				continue;
12149 			}
12150 
12151 			if (entry->flags & CNTR_VL) {
12152 				hfi1_cdbg(CNTR, "\tPer VL");
12153 				for (j = 0; j < C_VL_COUNT; j++) {
12154 					val = entry->rw_cntr(entry, ppd, j,
12155 							       CNTR_MODE_R,
12156 							       0);
12157 					hfi1_cdbg(
12158 					   CNTR,
12159 					   "\t\tRead 0x%llx for %d",
12160 					   val, j);
12161 					ppd->cntrs[entry->offset + j] = val;
12162 				}
12163 			} else {
12164 				val = entry->rw_cntr(entry, ppd,
12165 						       CNTR_INVALID_VL,
12166 						       CNTR_MODE_R,
12167 						       0);
12168 				ppd->cntrs[entry->offset] = val;
12169 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12170 			}
12171 		}
12172 	}
12173 	return ret;
12174 }
12175 
12176 static void free_cntrs(struct hfi1_devdata *dd)
12177 {
12178 	struct hfi1_pportdata *ppd;
12179 	int i;
12180 
12181 	if (dd->synth_stats_timer.function)
12182 		del_timer_sync(&dd->synth_stats_timer);
12183 	ppd = (struct hfi1_pportdata *)(dd + 1);
12184 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12185 		kfree(ppd->cntrs);
12186 		kfree(ppd->scntrs);
12187 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12188 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12189 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12190 		ppd->cntrs = NULL;
12191 		ppd->scntrs = NULL;
12192 		ppd->ibport_data.rvp.rc_acks = NULL;
12193 		ppd->ibport_data.rvp.rc_qacks = NULL;
12194 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12195 	}
12196 	kfree(dd->portcntrnames);
12197 	dd->portcntrnames = NULL;
12198 	kfree(dd->cntrs);
12199 	dd->cntrs = NULL;
12200 	kfree(dd->scntrs);
12201 	dd->scntrs = NULL;
12202 	kfree(dd->cntrnames);
12203 	dd->cntrnames = NULL;
12204 	if (dd->update_cntr_wq) {
12205 		destroy_workqueue(dd->update_cntr_wq);
12206 		dd->update_cntr_wq = NULL;
12207 	}
12208 }
12209 
12210 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12211 			      u64 *psval, void *context, int vl)
12212 {
12213 	u64 val;
12214 	u64 sval = *psval;
12215 
12216 	if (entry->flags & CNTR_DISABLED) {
12217 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12218 		return 0;
12219 	}
12220 
12221 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12222 
12223 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12224 
12225 	/* If its a synthetic counter there is more work we need to do */
12226 	if (entry->flags & CNTR_SYNTH) {
12227 		if (sval == CNTR_MAX) {
12228 			/* No need to read already saturated */
12229 			return CNTR_MAX;
12230 		}
12231 
12232 		if (entry->flags & CNTR_32BIT) {
12233 			/* 32bit counters can wrap multiple times */
12234 			u64 upper = sval >> 32;
12235 			u64 lower = (sval << 32) >> 32;
12236 
12237 			if (lower > val) { /* hw wrapped */
12238 				if (upper == CNTR_32BIT_MAX)
12239 					val = CNTR_MAX;
12240 				else
12241 					upper++;
12242 			}
12243 
12244 			if (val != CNTR_MAX)
12245 				val = (upper << 32) | val;
12246 
12247 		} else {
12248 			/* If we rolled we are saturated */
12249 			if ((val < sval) || (val > CNTR_MAX))
12250 				val = CNTR_MAX;
12251 		}
12252 	}
12253 
12254 	*psval = val;
12255 
12256 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12257 
12258 	return val;
12259 }
12260 
12261 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12262 			       struct cntr_entry *entry,
12263 			       u64 *psval, void *context, int vl, u64 data)
12264 {
12265 	u64 val;
12266 
12267 	if (entry->flags & CNTR_DISABLED) {
12268 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12269 		return 0;
12270 	}
12271 
12272 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12273 
12274 	if (entry->flags & CNTR_SYNTH) {
12275 		*psval = data;
12276 		if (entry->flags & CNTR_32BIT) {
12277 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12278 					     (data << 32) >> 32);
12279 			val = data; /* return the full 64bit value */
12280 		} else {
12281 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12282 					     data);
12283 		}
12284 	} else {
12285 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12286 	}
12287 
12288 	*psval = val;
12289 
12290 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12291 
12292 	return val;
12293 }
12294 
12295 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12296 {
12297 	struct cntr_entry *entry;
12298 	u64 *sval;
12299 
12300 	entry = &dev_cntrs[index];
12301 	sval = dd->scntrs + entry->offset;
12302 
12303 	if (vl != CNTR_INVALID_VL)
12304 		sval += vl;
12305 
12306 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12307 }
12308 
12309 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12310 {
12311 	struct cntr_entry *entry;
12312 	u64 *sval;
12313 
12314 	entry = &dev_cntrs[index];
12315 	sval = dd->scntrs + entry->offset;
12316 
12317 	if (vl != CNTR_INVALID_VL)
12318 		sval += vl;
12319 
12320 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12321 }
12322 
12323 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12324 {
12325 	struct cntr_entry *entry;
12326 	u64 *sval;
12327 
12328 	entry = &port_cntrs[index];
12329 	sval = ppd->scntrs + entry->offset;
12330 
12331 	if (vl != CNTR_INVALID_VL)
12332 		sval += vl;
12333 
12334 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12335 	    (index <= C_RCV_HDR_OVF_LAST)) {
12336 		/* We do not want to bother for disabled contexts */
12337 		return 0;
12338 	}
12339 
12340 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12341 }
12342 
12343 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12344 {
12345 	struct cntr_entry *entry;
12346 	u64 *sval;
12347 
12348 	entry = &port_cntrs[index];
12349 	sval = ppd->scntrs + entry->offset;
12350 
12351 	if (vl != CNTR_INVALID_VL)
12352 		sval += vl;
12353 
12354 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12355 	    (index <= C_RCV_HDR_OVF_LAST)) {
12356 		/* We do not want to bother for disabled contexts */
12357 		return 0;
12358 	}
12359 
12360 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12361 }
12362 
12363 static void do_update_synth_timer(struct work_struct *work)
12364 {
12365 	u64 cur_tx;
12366 	u64 cur_rx;
12367 	u64 total_flits;
12368 	u8 update = 0;
12369 	int i, j, vl;
12370 	struct hfi1_pportdata *ppd;
12371 	struct cntr_entry *entry;
12372 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12373 					       update_cntr_work);
12374 
12375 	/*
12376 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12377 	 * check to watch for potential roll over. We can do this by looking at
12378 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12379 	 * we have to iterate all the counters and update.
12380 	 */
12381 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12382 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12383 
12384 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12385 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12386 
12387 	hfi1_cdbg(
12388 	    CNTR,
12389 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12390 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12391 
12392 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12393 		/*
12394 		 * May not be strictly necessary to update but it won't hurt and
12395 		 * simplifies the logic here.
12396 		 */
12397 		update = 1;
12398 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12399 			  dd->unit);
12400 	} else {
12401 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12402 		hfi1_cdbg(CNTR,
12403 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12404 			  total_flits, (u64)CNTR_32BIT_MAX);
12405 		if (total_flits >= CNTR_32BIT_MAX) {
12406 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12407 				  dd->unit);
12408 			update = 1;
12409 		}
12410 	}
12411 
12412 	if (update) {
12413 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12414 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12415 			entry = &dev_cntrs[i];
12416 			if (entry->flags & CNTR_VL) {
12417 				for (vl = 0; vl < C_VL_COUNT; vl++)
12418 					read_dev_cntr(dd, i, vl);
12419 			} else {
12420 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12421 			}
12422 		}
12423 		ppd = (struct hfi1_pportdata *)(dd + 1);
12424 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12425 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12426 				entry = &port_cntrs[j];
12427 				if (entry->flags & CNTR_VL) {
12428 					for (vl = 0; vl < C_VL_COUNT; vl++)
12429 						read_port_cntr(ppd, j, vl);
12430 				} else {
12431 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12432 				}
12433 			}
12434 		}
12435 
12436 		/*
12437 		 * We want the value in the register. The goal is to keep track
12438 		 * of the number of "ticks" not the counter value. In other
12439 		 * words if the register rolls we want to notice it and go ahead
12440 		 * and force an update.
12441 		 */
12442 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12443 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12444 						CNTR_MODE_R, 0);
12445 
12446 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12447 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12448 						CNTR_MODE_R, 0);
12449 
12450 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12451 			  dd->unit, dd->last_tx, dd->last_rx);
12452 
12453 	} else {
12454 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12455 	}
12456 }
12457 
12458 static void update_synth_timer(struct timer_list *t)
12459 {
12460 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12461 
12462 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12463 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12464 }
12465 
12466 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12467 static int init_cntrs(struct hfi1_devdata *dd)
12468 {
12469 	int i, rcv_ctxts, j;
12470 	size_t sz;
12471 	char *p;
12472 	char name[C_MAX_NAME];
12473 	struct hfi1_pportdata *ppd;
12474 	const char *bit_type_32 = ",32";
12475 	const int bit_type_32_sz = strlen(bit_type_32);
12476 	u32 sdma_engines = chip_sdma_engines(dd);
12477 
12478 	/* set up the stats timer; the add_timer is done at the end */
12479 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12480 
12481 	/***********************/
12482 	/* per device counters */
12483 	/***********************/
12484 
12485 	/* size names and determine how many we have*/
12486 	dd->ndevcntrs = 0;
12487 	sz = 0;
12488 
12489 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12490 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12491 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12492 			continue;
12493 		}
12494 
12495 		if (dev_cntrs[i].flags & CNTR_VL) {
12496 			dev_cntrs[i].offset = dd->ndevcntrs;
12497 			for (j = 0; j < C_VL_COUNT; j++) {
12498 				snprintf(name, C_MAX_NAME, "%s%d",
12499 					 dev_cntrs[i].name, vl_from_idx(j));
12500 				sz += strlen(name);
12501 				/* Add ",32" for 32-bit counters */
12502 				if (dev_cntrs[i].flags & CNTR_32BIT)
12503 					sz += bit_type_32_sz;
12504 				sz++;
12505 				dd->ndevcntrs++;
12506 			}
12507 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12508 			dev_cntrs[i].offset = dd->ndevcntrs;
12509 			for (j = 0; j < sdma_engines; j++) {
12510 				snprintf(name, C_MAX_NAME, "%s%d",
12511 					 dev_cntrs[i].name, j);
12512 				sz += strlen(name);
12513 				/* Add ",32" for 32-bit counters */
12514 				if (dev_cntrs[i].flags & CNTR_32BIT)
12515 					sz += bit_type_32_sz;
12516 				sz++;
12517 				dd->ndevcntrs++;
12518 			}
12519 		} else {
12520 			/* +1 for newline. */
12521 			sz += strlen(dev_cntrs[i].name) + 1;
12522 			/* Add ",32" for 32-bit counters */
12523 			if (dev_cntrs[i].flags & CNTR_32BIT)
12524 				sz += bit_type_32_sz;
12525 			dev_cntrs[i].offset = dd->ndevcntrs;
12526 			dd->ndevcntrs++;
12527 		}
12528 	}
12529 
12530 	/* allocate space for the counter values */
12531 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12532 			    GFP_KERNEL);
12533 	if (!dd->cntrs)
12534 		goto bail;
12535 
12536 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12537 	if (!dd->scntrs)
12538 		goto bail;
12539 
12540 	/* allocate space for the counter names */
12541 	dd->cntrnameslen = sz;
12542 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12543 	if (!dd->cntrnames)
12544 		goto bail;
12545 
12546 	/* fill in the names */
12547 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12548 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12549 			/* Nothing */
12550 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12551 			for (j = 0; j < C_VL_COUNT; j++) {
12552 				snprintf(name, C_MAX_NAME, "%s%d",
12553 					 dev_cntrs[i].name,
12554 					 vl_from_idx(j));
12555 				memcpy(p, name, strlen(name));
12556 				p += strlen(name);
12557 
12558 				/* Counter is 32 bits */
12559 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12560 					memcpy(p, bit_type_32, bit_type_32_sz);
12561 					p += bit_type_32_sz;
12562 				}
12563 
12564 				*p++ = '\n';
12565 			}
12566 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12567 			for (j = 0; j < sdma_engines; j++) {
12568 				snprintf(name, C_MAX_NAME, "%s%d",
12569 					 dev_cntrs[i].name, j);
12570 				memcpy(p, name, strlen(name));
12571 				p += strlen(name);
12572 
12573 				/* Counter is 32 bits */
12574 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12575 					memcpy(p, bit_type_32, bit_type_32_sz);
12576 					p += bit_type_32_sz;
12577 				}
12578 
12579 				*p++ = '\n';
12580 			}
12581 		} else {
12582 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12583 			p += strlen(dev_cntrs[i].name);
12584 
12585 			/* Counter is 32 bits */
12586 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12587 				memcpy(p, bit_type_32, bit_type_32_sz);
12588 				p += bit_type_32_sz;
12589 			}
12590 
12591 			*p++ = '\n';
12592 		}
12593 	}
12594 
12595 	/*********************/
12596 	/* per port counters */
12597 	/*********************/
12598 
12599 	/*
12600 	 * Go through the counters for the overflows and disable the ones we
12601 	 * don't need. This varies based on platform so we need to do it
12602 	 * dynamically here.
12603 	 */
12604 	rcv_ctxts = dd->num_rcv_contexts;
12605 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12606 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12607 		port_cntrs[i].flags |= CNTR_DISABLED;
12608 	}
12609 
12610 	/* size port counter names and determine how many we have*/
12611 	sz = 0;
12612 	dd->nportcntrs = 0;
12613 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12614 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12615 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12616 			continue;
12617 		}
12618 
12619 		if (port_cntrs[i].flags & CNTR_VL) {
12620 			port_cntrs[i].offset = dd->nportcntrs;
12621 			for (j = 0; j < C_VL_COUNT; j++) {
12622 				snprintf(name, C_MAX_NAME, "%s%d",
12623 					 port_cntrs[i].name, vl_from_idx(j));
12624 				sz += strlen(name);
12625 				/* Add ",32" for 32-bit counters */
12626 				if (port_cntrs[i].flags & CNTR_32BIT)
12627 					sz += bit_type_32_sz;
12628 				sz++;
12629 				dd->nportcntrs++;
12630 			}
12631 		} else {
12632 			/* +1 for newline */
12633 			sz += strlen(port_cntrs[i].name) + 1;
12634 			/* Add ",32" for 32-bit counters */
12635 			if (port_cntrs[i].flags & CNTR_32BIT)
12636 				sz += bit_type_32_sz;
12637 			port_cntrs[i].offset = dd->nportcntrs;
12638 			dd->nportcntrs++;
12639 		}
12640 	}
12641 
12642 	/* allocate space for the counter names */
12643 	dd->portcntrnameslen = sz;
12644 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12645 	if (!dd->portcntrnames)
12646 		goto bail;
12647 
12648 	/* fill in port cntr names */
12649 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12650 		if (port_cntrs[i].flags & CNTR_DISABLED)
12651 			continue;
12652 
12653 		if (port_cntrs[i].flags & CNTR_VL) {
12654 			for (j = 0; j < C_VL_COUNT; j++) {
12655 				snprintf(name, C_MAX_NAME, "%s%d",
12656 					 port_cntrs[i].name, vl_from_idx(j));
12657 				memcpy(p, name, strlen(name));
12658 				p += strlen(name);
12659 
12660 				/* Counter is 32 bits */
12661 				if (port_cntrs[i].flags & CNTR_32BIT) {
12662 					memcpy(p, bit_type_32, bit_type_32_sz);
12663 					p += bit_type_32_sz;
12664 				}
12665 
12666 				*p++ = '\n';
12667 			}
12668 		} else {
12669 			memcpy(p, port_cntrs[i].name,
12670 			       strlen(port_cntrs[i].name));
12671 			p += strlen(port_cntrs[i].name);
12672 
12673 			/* Counter is 32 bits */
12674 			if (port_cntrs[i].flags & CNTR_32BIT) {
12675 				memcpy(p, bit_type_32, bit_type_32_sz);
12676 				p += bit_type_32_sz;
12677 			}
12678 
12679 			*p++ = '\n';
12680 		}
12681 	}
12682 
12683 	/* allocate per port storage for counter values */
12684 	ppd = (struct hfi1_pportdata *)(dd + 1);
12685 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12686 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12687 		if (!ppd->cntrs)
12688 			goto bail;
12689 
12690 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12691 		if (!ppd->scntrs)
12692 			goto bail;
12693 	}
12694 
12695 	/* CPU counters need to be allocated and zeroed */
12696 	if (init_cpu_counters(dd))
12697 		goto bail;
12698 
12699 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12700 						     WQ_MEM_RECLAIM, dd->unit);
12701 	if (!dd->update_cntr_wq)
12702 		goto bail;
12703 
12704 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12705 
12706 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12707 	return 0;
12708 bail:
12709 	free_cntrs(dd);
12710 	return -ENOMEM;
12711 }
12712 
12713 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12714 {
12715 	switch (chip_lstate) {
12716 	default:
12717 		dd_dev_err(dd,
12718 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12719 			   chip_lstate);
12720 		/* fall through */
12721 	case LSTATE_DOWN:
12722 		return IB_PORT_DOWN;
12723 	case LSTATE_INIT:
12724 		return IB_PORT_INIT;
12725 	case LSTATE_ARMED:
12726 		return IB_PORT_ARMED;
12727 	case LSTATE_ACTIVE:
12728 		return IB_PORT_ACTIVE;
12729 	}
12730 }
12731 
12732 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12733 {
12734 	/* look at the HFI meta-states only */
12735 	switch (chip_pstate & 0xf0) {
12736 	default:
12737 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12738 			   chip_pstate);
12739 		/* fall through */
12740 	case PLS_DISABLED:
12741 		return IB_PORTPHYSSTATE_DISABLED;
12742 	case PLS_OFFLINE:
12743 		return OPA_PORTPHYSSTATE_OFFLINE;
12744 	case PLS_POLLING:
12745 		return IB_PORTPHYSSTATE_POLLING;
12746 	case PLS_CONFIGPHY:
12747 		return IB_PORTPHYSSTATE_TRAINING;
12748 	case PLS_LINKUP:
12749 		return IB_PORTPHYSSTATE_LINKUP;
12750 	case PLS_PHYTEST:
12751 		return IB_PORTPHYSSTATE_PHY_TEST;
12752 	}
12753 }
12754 
12755 /* return the OPA port logical state name */
12756 const char *opa_lstate_name(u32 lstate)
12757 {
12758 	static const char * const port_logical_names[] = {
12759 		"PORT_NOP",
12760 		"PORT_DOWN",
12761 		"PORT_INIT",
12762 		"PORT_ARMED",
12763 		"PORT_ACTIVE",
12764 		"PORT_ACTIVE_DEFER",
12765 	};
12766 	if (lstate < ARRAY_SIZE(port_logical_names))
12767 		return port_logical_names[lstate];
12768 	return "unknown";
12769 }
12770 
12771 /* return the OPA port physical state name */
12772 const char *opa_pstate_name(u32 pstate)
12773 {
12774 	static const char * const port_physical_names[] = {
12775 		"PHYS_NOP",
12776 		"reserved1",
12777 		"PHYS_POLL",
12778 		"PHYS_DISABLED",
12779 		"PHYS_TRAINING",
12780 		"PHYS_LINKUP",
12781 		"PHYS_LINK_ERR_RECOVER",
12782 		"PHYS_PHY_TEST",
12783 		"reserved8",
12784 		"PHYS_OFFLINE",
12785 		"PHYS_GANGED",
12786 		"PHYS_TEST",
12787 	};
12788 	if (pstate < ARRAY_SIZE(port_physical_names))
12789 		return port_physical_names[pstate];
12790 	return "unknown";
12791 }
12792 
12793 /**
12794  * update_statusp - Update userspace status flag
12795  * @ppd: Port data structure
12796  * @state: port state information
12797  *
12798  * Actual port status is determined by the host_link_state value
12799  * in the ppd.
12800  *
12801  * host_link_state MUST be updated before updating the user space
12802  * statusp.
12803  */
12804 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12805 {
12806 	/*
12807 	 * Set port status flags in the page mapped into userspace
12808 	 * memory. Do it here to ensure a reliable state - this is
12809 	 * the only function called by all state handling code.
12810 	 * Always set the flags due to the fact that the cache value
12811 	 * might have been changed explicitly outside of this
12812 	 * function.
12813 	 */
12814 	if (ppd->statusp) {
12815 		switch (state) {
12816 		case IB_PORT_DOWN:
12817 		case IB_PORT_INIT:
12818 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12819 					   HFI1_STATUS_IB_READY);
12820 			break;
12821 		case IB_PORT_ARMED:
12822 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12823 			break;
12824 		case IB_PORT_ACTIVE:
12825 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12826 			break;
12827 		}
12828 	}
12829 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12830 		    opa_lstate_name(state), state);
12831 }
12832 
12833 /**
12834  * wait_logical_linkstate - wait for an IB link state change to occur
12835  * @ppd: port device
12836  * @state: the state to wait for
12837  * @msecs: the number of milliseconds to wait
12838  *
12839  * Wait up to msecs milliseconds for IB link state change to occur.
12840  * For now, take the easy polling route.
12841  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12842  */
12843 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12844 				  int msecs)
12845 {
12846 	unsigned long timeout;
12847 	u32 new_state;
12848 
12849 	timeout = jiffies + msecs_to_jiffies(msecs);
12850 	while (1) {
12851 		new_state = chip_to_opa_lstate(ppd->dd,
12852 					       read_logical_state(ppd->dd));
12853 		if (new_state == state)
12854 			break;
12855 		if (time_after(jiffies, timeout)) {
12856 			dd_dev_err(ppd->dd,
12857 				   "timeout waiting for link state 0x%x\n",
12858 				   state);
12859 			return -ETIMEDOUT;
12860 		}
12861 		msleep(20);
12862 	}
12863 
12864 	return 0;
12865 }
12866 
12867 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12868 {
12869 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12870 
12871 	dd_dev_info(ppd->dd,
12872 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12873 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12874 }
12875 
12876 /*
12877  * Read the physical hardware link state and check if it matches host
12878  * drivers anticipated state.
12879  */
12880 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12881 {
12882 	u32 read_state = read_physical_state(ppd->dd);
12883 
12884 	if (read_state == state) {
12885 		log_state_transition(ppd, state);
12886 	} else {
12887 		dd_dev_err(ppd->dd,
12888 			   "anticipated phy link state 0x%x, read 0x%x\n",
12889 			   state, read_state);
12890 	}
12891 }
12892 
12893 /*
12894  * wait_physical_linkstate - wait for an physical link state change to occur
12895  * @ppd: port device
12896  * @state: the state to wait for
12897  * @msecs: the number of milliseconds to wait
12898  *
12899  * Wait up to msecs milliseconds for physical link state change to occur.
12900  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12901  */
12902 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12903 				   int msecs)
12904 {
12905 	u32 read_state;
12906 	unsigned long timeout;
12907 
12908 	timeout = jiffies + msecs_to_jiffies(msecs);
12909 	while (1) {
12910 		read_state = read_physical_state(ppd->dd);
12911 		if (read_state == state)
12912 			break;
12913 		if (time_after(jiffies, timeout)) {
12914 			dd_dev_err(ppd->dd,
12915 				   "timeout waiting for phy link state 0x%x\n",
12916 				   state);
12917 			return -ETIMEDOUT;
12918 		}
12919 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12920 	}
12921 
12922 	log_state_transition(ppd, state);
12923 	return 0;
12924 }
12925 
12926 /*
12927  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12928  * @ppd: port device
12929  * @msecs: the number of milliseconds to wait
12930  *
12931  * Wait up to msecs milliseconds for any offline physical link
12932  * state change to occur.
12933  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12934  */
12935 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12936 					    int msecs)
12937 {
12938 	u32 read_state;
12939 	unsigned long timeout;
12940 
12941 	timeout = jiffies + msecs_to_jiffies(msecs);
12942 	while (1) {
12943 		read_state = read_physical_state(ppd->dd);
12944 		if ((read_state & 0xF0) == PLS_OFFLINE)
12945 			break;
12946 		if (time_after(jiffies, timeout)) {
12947 			dd_dev_err(ppd->dd,
12948 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12949 				   read_state, msecs);
12950 			return -ETIMEDOUT;
12951 		}
12952 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12953 	}
12954 
12955 	log_state_transition(ppd, read_state);
12956 	return read_state;
12957 }
12958 
12959 /*
12960  * wait_phys_link_out_of_offline - wait for any out of offline state
12961  * @ppd: port device
12962  * @msecs: the number of milliseconds to wait
12963  *
12964  * Wait up to msecs milliseconds for any out of offline physical link
12965  * state change to occur.
12966  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12967  */
12968 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
12969 					 int msecs)
12970 {
12971 	u32 read_state;
12972 	unsigned long timeout;
12973 
12974 	timeout = jiffies + msecs_to_jiffies(msecs);
12975 	while (1) {
12976 		read_state = read_physical_state(ppd->dd);
12977 		if ((read_state & 0xF0) != PLS_OFFLINE)
12978 			break;
12979 		if (time_after(jiffies, timeout)) {
12980 			dd_dev_err(ppd->dd,
12981 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
12982 				   read_state, msecs);
12983 			return -ETIMEDOUT;
12984 		}
12985 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12986 	}
12987 
12988 	log_state_transition(ppd, read_state);
12989 	return read_state;
12990 }
12991 
12992 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12993 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12994 
12995 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12996 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12997 
12998 void hfi1_init_ctxt(struct send_context *sc)
12999 {
13000 	if (sc) {
13001 		struct hfi1_devdata *dd = sc->dd;
13002 		u64 reg;
13003 		u8 set = (sc->type == SC_USER ?
13004 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13005 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13006 		reg = read_kctxt_csr(dd, sc->hw_context,
13007 				     SEND_CTXT_CHECK_ENABLE);
13008 		if (set)
13009 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13010 		else
13011 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13012 		write_kctxt_csr(dd, sc->hw_context,
13013 				SEND_CTXT_CHECK_ENABLE, reg);
13014 	}
13015 }
13016 
13017 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13018 {
13019 	int ret = 0;
13020 	u64 reg;
13021 
13022 	if (dd->icode != ICODE_RTL_SILICON) {
13023 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13024 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13025 				    __func__);
13026 		return -EINVAL;
13027 	}
13028 	reg = read_csr(dd, ASIC_STS_THERM);
13029 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13030 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13031 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13032 			ASIC_STS_THERM_LO_TEMP_MASK);
13033 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13034 			ASIC_STS_THERM_HI_TEMP_MASK);
13035 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13036 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13037 	/* triggers is a 3-bit value - 1 bit per trigger. */
13038 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13039 
13040 	return ret;
13041 }
13042 
13043 /* ========================================================================= */
13044 
13045 /**
13046  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13047  * @dd: valid devdata
13048  * @src: IRQ source to determine register index from
13049  * @bits: the bits to set or clear
13050  * @set: true == set the bits, false == clear the bits
13051  *
13052  */
13053 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13054 			   bool set)
13055 {
13056 	u64 reg;
13057 	u16 idx = src / BITS_PER_REGISTER;
13058 
13059 	spin_lock(&dd->irq_src_lock);
13060 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13061 	if (set)
13062 		reg |= bits;
13063 	else
13064 		reg &= ~bits;
13065 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13066 	spin_unlock(&dd->irq_src_lock);
13067 }
13068 
13069 /**
13070  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13071  * @dd: valid devdata
13072  * @first: first IRQ source to set/clear
13073  * @last: last IRQ source (inclusive) to set/clear
13074  * @set: true == set the bits, false == clear the bits
13075  *
13076  * If first == last, set the exact source.
13077  */
13078 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13079 {
13080 	u64 bits = 0;
13081 	u64 bit;
13082 	u16 src;
13083 
13084 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13085 		return -EINVAL;
13086 
13087 	if (last < first)
13088 		return -ERANGE;
13089 
13090 	for (src = first; src <= last; src++) {
13091 		bit = src % BITS_PER_REGISTER;
13092 		/* wrapped to next register? */
13093 		if (!bit && bits) {
13094 			read_mod_write(dd, src - 1, bits, set);
13095 			bits = 0;
13096 		}
13097 		bits |= BIT_ULL(bit);
13098 	}
13099 	read_mod_write(dd, last, bits, set);
13100 
13101 	return 0;
13102 }
13103 
13104 /*
13105  * Clear all interrupt sources on the chip.
13106  */
13107 void clear_all_interrupts(struct hfi1_devdata *dd)
13108 {
13109 	int i;
13110 
13111 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13112 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13113 
13114 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13115 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13116 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13117 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13118 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13119 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13120 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13121 	for (i = 0; i < chip_send_contexts(dd); i++)
13122 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13123 	for (i = 0; i < chip_sdma_engines(dd); i++)
13124 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13125 
13126 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13127 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13128 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13129 }
13130 
13131 /*
13132  * Remap the interrupt source from the general handler to the given MSI-X
13133  * interrupt.
13134  */
13135 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13136 {
13137 	u64 reg;
13138 	int m, n;
13139 
13140 	/* clear from the handled mask of the general interrupt */
13141 	m = isrc / 64;
13142 	n = isrc % 64;
13143 	if (likely(m < CCE_NUM_INT_CSRS)) {
13144 		dd->gi_mask[m] &= ~((u64)1 << n);
13145 	} else {
13146 		dd_dev_err(dd, "remap interrupt err\n");
13147 		return;
13148 	}
13149 
13150 	/* direct the chip source to the given MSI-X interrupt */
13151 	m = isrc / 8;
13152 	n = isrc % 8;
13153 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13154 	reg &= ~((u64)0xff << (8 * n));
13155 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13156 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13157 }
13158 
13159 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13160 {
13161 	/*
13162 	 * SDMA engine interrupt sources grouped by type, rather than
13163 	 * engine.  Per-engine interrupts are as follows:
13164 	 *	SDMA
13165 	 *	SDMAProgress
13166 	 *	SDMAIdle
13167 	 */
13168 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13169 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13170 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13171 }
13172 
13173 /*
13174  * Set the general handler to accept all interrupts, remap all
13175  * chip interrupts back to MSI-X 0.
13176  */
13177 void reset_interrupts(struct hfi1_devdata *dd)
13178 {
13179 	int i;
13180 
13181 	/* all interrupts handled by the general handler */
13182 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13183 		dd->gi_mask[i] = ~(u64)0;
13184 
13185 	/* all chip interrupts map to MSI-X 0 */
13186 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13187 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13188 }
13189 
13190 /**
13191  * set_up_interrupts() - Initialize the IRQ resources and state
13192  * @dd: valid devdata
13193  *
13194  */
13195 static int set_up_interrupts(struct hfi1_devdata *dd)
13196 {
13197 	int ret;
13198 
13199 	/* mask all interrupts */
13200 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13201 
13202 	/* clear all pending interrupts */
13203 	clear_all_interrupts(dd);
13204 
13205 	/* reset general handler mask, chip MSI-X mappings */
13206 	reset_interrupts(dd);
13207 
13208 	/* ask for MSI-X interrupts */
13209 	ret = msix_initialize(dd);
13210 	if (ret)
13211 		return ret;
13212 
13213 	ret = msix_request_irqs(dd);
13214 	if (ret)
13215 		msix_clean_up_interrupts(dd);
13216 
13217 	return ret;
13218 }
13219 
13220 /*
13221  * Set up context values in dd.  Sets:
13222  *
13223  *	num_rcv_contexts - number of contexts being used
13224  *	n_krcv_queues - number of kernel contexts
13225  *	first_dyn_alloc_ctxt - first dynamically allocated context
13226  *                             in array of contexts
13227  *	freectxts  - number of free user contexts
13228  *	num_send_contexts - number of PIO send contexts being used
13229  *	num_vnic_contexts - number of contexts reserved for VNIC
13230  */
13231 static int set_up_context_variables(struct hfi1_devdata *dd)
13232 {
13233 	unsigned long num_kernel_contexts;
13234 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13235 	int total_contexts;
13236 	int ret;
13237 	unsigned ngroups;
13238 	int rmt_count;
13239 	int user_rmt_reduced;
13240 	u32 n_usr_ctxts;
13241 	u32 send_contexts = chip_send_contexts(dd);
13242 	u32 rcv_contexts = chip_rcv_contexts(dd);
13243 
13244 	/*
13245 	 * Kernel receive contexts:
13246 	 * - Context 0 - control context (VL15/multicast/error)
13247 	 * - Context 1 - first kernel context
13248 	 * - Context 2 - second kernel context
13249 	 * ...
13250 	 */
13251 	if (n_krcvqs)
13252 		/*
13253 		 * n_krcvqs is the sum of module parameter kernel receive
13254 		 * contexts, krcvqs[].  It does not include the control
13255 		 * context, so add that.
13256 		 */
13257 		num_kernel_contexts = n_krcvqs + 1;
13258 	else
13259 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13260 	/*
13261 	 * Every kernel receive context needs an ACK send context.
13262 	 * one send context is allocated for each VL{0-7} and VL15
13263 	 */
13264 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13265 		dd_dev_err(dd,
13266 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13267 			   send_contexts - num_vls - 1,
13268 			   num_kernel_contexts);
13269 		num_kernel_contexts = send_contexts - num_vls - 1;
13270 	}
13271 
13272 	/* Accommodate VNIC contexts if possible */
13273 	if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13274 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13275 		num_vnic_contexts = 0;
13276 	}
13277 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13278 
13279 	/*
13280 	 * User contexts:
13281 	 *	- default to 1 user context per real (non-HT) CPU core if
13282 	 *	  num_user_contexts is negative
13283 	 */
13284 	if (num_user_contexts < 0)
13285 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13286 	else
13287 		n_usr_ctxts = num_user_contexts;
13288 	/*
13289 	 * Adjust the counts given a global max.
13290 	 */
13291 	if (total_contexts + n_usr_ctxts > rcv_contexts) {
13292 		dd_dev_err(dd,
13293 			   "Reducing # user receive contexts to: %d, from %u\n",
13294 			   rcv_contexts - total_contexts,
13295 			   n_usr_ctxts);
13296 		/* recalculate */
13297 		n_usr_ctxts = rcv_contexts - total_contexts;
13298 	}
13299 
13300 	/*
13301 	 * The RMT entries are currently allocated as shown below:
13302 	 * 1. QOS (0 to 128 entries);
13303 	 * 2. FECN (num_kernel_context - 1 + num_user_contexts +
13304 	 *    num_vnic_contexts);
13305 	 * 3. VNIC (num_vnic_contexts).
13306 	 * It should be noted that FECN oversubscribe num_vnic_contexts
13307 	 * entries of RMT because both VNIC and PSM could allocate any receive
13308 	 * context between dd->first_dyn_alloc_text and dd->num_rcv_contexts,
13309 	 * and PSM FECN must reserve an RMT entry for each possible PSM receive
13310 	 * context.
13311 	 */
13312 	rmt_count = qos_rmt_entries(dd, NULL, NULL) + (num_vnic_contexts * 2);
13313 	if (HFI1_CAP_IS_KSET(TID_RDMA))
13314 		rmt_count += num_kernel_contexts - 1;
13315 	if (rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13316 		user_rmt_reduced = NUM_MAP_ENTRIES - rmt_count;
13317 		dd_dev_err(dd,
13318 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13319 			   n_usr_ctxts,
13320 			   user_rmt_reduced);
13321 		/* recalculate */
13322 		n_usr_ctxts = user_rmt_reduced;
13323 	}
13324 
13325 	total_contexts += n_usr_ctxts;
13326 
13327 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13328 	dd->num_rcv_contexts = total_contexts;
13329 	dd->n_krcv_queues = num_kernel_contexts;
13330 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13331 	dd->num_vnic_contexts = num_vnic_contexts;
13332 	dd->num_user_contexts = n_usr_ctxts;
13333 	dd->freectxts = n_usr_ctxts;
13334 	dd_dev_info(dd,
13335 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13336 		    rcv_contexts,
13337 		    (int)dd->num_rcv_contexts,
13338 		    (int)dd->n_krcv_queues,
13339 		    dd->num_vnic_contexts,
13340 		    dd->num_user_contexts);
13341 
13342 	/*
13343 	 * Receive array allocation:
13344 	 *   All RcvArray entries are divided into groups of 8. This
13345 	 *   is required by the hardware and will speed up writes to
13346 	 *   consecutive entries by using write-combining of the entire
13347 	 *   cacheline.
13348 	 *
13349 	 *   The number of groups are evenly divided among all contexts.
13350 	 *   any left over groups will be given to the first N user
13351 	 *   contexts.
13352 	 */
13353 	dd->rcv_entries.group_size = RCV_INCREMENT;
13354 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13355 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13356 	dd->rcv_entries.nctxt_extra = ngroups -
13357 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13358 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13359 		    dd->rcv_entries.ngroups,
13360 		    dd->rcv_entries.nctxt_extra);
13361 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13362 	    MAX_EAGER_ENTRIES * 2) {
13363 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13364 			dd->rcv_entries.group_size;
13365 		dd_dev_info(dd,
13366 			    "RcvArray group count too high, change to %u\n",
13367 			    dd->rcv_entries.ngroups);
13368 		dd->rcv_entries.nctxt_extra = 0;
13369 	}
13370 	/*
13371 	 * PIO send contexts
13372 	 */
13373 	ret = init_sc_pools_and_sizes(dd);
13374 	if (ret >= 0) {	/* success */
13375 		dd->num_send_contexts = ret;
13376 		dd_dev_info(
13377 			dd,
13378 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13379 			send_contexts,
13380 			dd->num_send_contexts,
13381 			dd->sc_sizes[SC_KERNEL].count,
13382 			dd->sc_sizes[SC_ACK].count,
13383 			dd->sc_sizes[SC_USER].count,
13384 			dd->sc_sizes[SC_VL15].count);
13385 		ret = 0;	/* success */
13386 	}
13387 
13388 	return ret;
13389 }
13390 
13391 /*
13392  * Set the device/port partition key table. The MAD code
13393  * will ensure that, at least, the partial management
13394  * partition key is present in the table.
13395  */
13396 static void set_partition_keys(struct hfi1_pportdata *ppd)
13397 {
13398 	struct hfi1_devdata *dd = ppd->dd;
13399 	u64 reg = 0;
13400 	int i;
13401 
13402 	dd_dev_info(dd, "Setting partition keys\n");
13403 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13404 		reg |= (ppd->pkeys[i] &
13405 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13406 			((i % 4) *
13407 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13408 		/* Each register holds 4 PKey values. */
13409 		if ((i % 4) == 3) {
13410 			write_csr(dd, RCV_PARTITION_KEY +
13411 				  ((i - 3) * 2), reg);
13412 			reg = 0;
13413 		}
13414 	}
13415 
13416 	/* Always enable HW pkeys check when pkeys table is set */
13417 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13418 }
13419 
13420 /*
13421  * These CSRs and memories are uninitialized on reset and must be
13422  * written before reading to set the ECC/parity bits.
13423  *
13424  * NOTE: All user context CSRs that are not mmaped write-only
13425  * (e.g. the TID flows) must be initialized even if the driver never
13426  * reads them.
13427  */
13428 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13429 {
13430 	int i, j;
13431 
13432 	/* CceIntMap */
13433 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13434 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13435 
13436 	/* SendCtxtCreditReturnAddr */
13437 	for (i = 0; i < chip_send_contexts(dd); i++)
13438 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13439 
13440 	/* PIO Send buffers */
13441 	/* SDMA Send buffers */
13442 	/*
13443 	 * These are not normally read, and (presently) have no method
13444 	 * to be read, so are not pre-initialized
13445 	 */
13446 
13447 	/* RcvHdrAddr */
13448 	/* RcvHdrTailAddr */
13449 	/* RcvTidFlowTable */
13450 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13451 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13452 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13453 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13454 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13455 	}
13456 
13457 	/* RcvArray */
13458 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13459 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13460 
13461 	/* RcvQPMapTable */
13462 	for (i = 0; i < 32; i++)
13463 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13464 }
13465 
13466 /*
13467  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13468  */
13469 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13470 			     u64 ctrl_bits)
13471 {
13472 	unsigned long timeout;
13473 	u64 reg;
13474 
13475 	/* is the condition present? */
13476 	reg = read_csr(dd, CCE_STATUS);
13477 	if ((reg & status_bits) == 0)
13478 		return;
13479 
13480 	/* clear the condition */
13481 	write_csr(dd, CCE_CTRL, ctrl_bits);
13482 
13483 	/* wait for the condition to clear */
13484 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13485 	while (1) {
13486 		reg = read_csr(dd, CCE_STATUS);
13487 		if ((reg & status_bits) == 0)
13488 			return;
13489 		if (time_after(jiffies, timeout)) {
13490 			dd_dev_err(dd,
13491 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13492 				   status_bits, reg & status_bits);
13493 			return;
13494 		}
13495 		udelay(1);
13496 	}
13497 }
13498 
13499 /* set CCE CSRs to chip reset defaults */
13500 static void reset_cce_csrs(struct hfi1_devdata *dd)
13501 {
13502 	int i;
13503 
13504 	/* CCE_REVISION read-only */
13505 	/* CCE_REVISION2 read-only */
13506 	/* CCE_CTRL - bits clear automatically */
13507 	/* CCE_STATUS read-only, use CceCtrl to clear */
13508 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13509 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13510 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13511 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13512 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13513 	/* CCE_ERR_STATUS read-only */
13514 	write_csr(dd, CCE_ERR_MASK, 0);
13515 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13516 	/* CCE_ERR_FORCE leave alone */
13517 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13518 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13519 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13520 	/* CCE_PCIE_CTRL leave alone */
13521 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13522 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13523 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13524 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13525 	}
13526 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13527 		/* CCE_MSIX_PBA read-only */
13528 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13529 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13530 	}
13531 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13532 		write_csr(dd, CCE_INT_MAP, 0);
13533 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13534 		/* CCE_INT_STATUS read-only */
13535 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13536 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13537 		/* CCE_INT_FORCE leave alone */
13538 		/* CCE_INT_BLOCKED read-only */
13539 	}
13540 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13541 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13542 }
13543 
13544 /* set MISC CSRs to chip reset defaults */
13545 static void reset_misc_csrs(struct hfi1_devdata *dd)
13546 {
13547 	int i;
13548 
13549 	for (i = 0; i < 32; i++) {
13550 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13551 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13552 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13553 	}
13554 	/*
13555 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13556 	 * only be written 128-byte chunks
13557 	 */
13558 	/* init RSA engine to clear lingering errors */
13559 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13560 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13561 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13562 	/* MISC_STS_8051_DIGEST read-only */
13563 	/* MISC_STS_SBM_DIGEST read-only */
13564 	/* MISC_STS_PCIE_DIGEST read-only */
13565 	/* MISC_STS_FAB_DIGEST read-only */
13566 	/* MISC_ERR_STATUS read-only */
13567 	write_csr(dd, MISC_ERR_MASK, 0);
13568 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13569 	/* MISC_ERR_FORCE leave alone */
13570 }
13571 
13572 /* set TXE CSRs to chip reset defaults */
13573 static void reset_txe_csrs(struct hfi1_devdata *dd)
13574 {
13575 	int i;
13576 
13577 	/*
13578 	 * TXE Kernel CSRs
13579 	 */
13580 	write_csr(dd, SEND_CTRL, 0);
13581 	__cm_reset(dd, 0);	/* reset CM internal state */
13582 	/* SEND_CONTEXTS read-only */
13583 	/* SEND_DMA_ENGINES read-only */
13584 	/* SEND_PIO_MEM_SIZE read-only */
13585 	/* SEND_DMA_MEM_SIZE read-only */
13586 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13587 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13588 	/* SEND_PIO_ERR_STATUS read-only */
13589 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13590 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13591 	/* SEND_PIO_ERR_FORCE leave alone */
13592 	/* SEND_DMA_ERR_STATUS read-only */
13593 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13594 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13595 	/* SEND_DMA_ERR_FORCE leave alone */
13596 	/* SEND_EGRESS_ERR_STATUS read-only */
13597 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13598 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13599 	/* SEND_EGRESS_ERR_FORCE leave alone */
13600 	write_csr(dd, SEND_BTH_QP, 0);
13601 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13602 	write_csr(dd, SEND_SC2VLT0, 0);
13603 	write_csr(dd, SEND_SC2VLT1, 0);
13604 	write_csr(dd, SEND_SC2VLT2, 0);
13605 	write_csr(dd, SEND_SC2VLT3, 0);
13606 	write_csr(dd, SEND_LEN_CHECK0, 0);
13607 	write_csr(dd, SEND_LEN_CHECK1, 0);
13608 	/* SEND_ERR_STATUS read-only */
13609 	write_csr(dd, SEND_ERR_MASK, 0);
13610 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13611 	/* SEND_ERR_FORCE read-only */
13612 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13613 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13614 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13615 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13616 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13617 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13618 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13619 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13620 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13621 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13622 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13623 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13624 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13625 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13626 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13627 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13628 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13629 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13630 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13631 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13632 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13633 	/* SEND_CM_CREDIT_USED_VL read-only */
13634 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13635 	/* SEND_EGRESS_CTXT_STATUS read-only */
13636 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13637 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13638 	/* SEND_EGRESS_ERR_INFO read-only */
13639 	/* SEND_EGRESS_ERR_SOURCE read-only */
13640 
13641 	/*
13642 	 * TXE Per-Context CSRs
13643 	 */
13644 	for (i = 0; i < chip_send_contexts(dd); i++) {
13645 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13646 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13647 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13648 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13649 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13650 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13651 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13652 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13653 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13654 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13655 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13656 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13657 	}
13658 
13659 	/*
13660 	 * TXE Per-SDMA CSRs
13661 	 */
13662 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13663 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13664 		/* SEND_DMA_STATUS read-only */
13665 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13666 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13667 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13668 		/* SEND_DMA_HEAD read-only */
13669 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13670 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13671 		/* SEND_DMA_IDLE_CNT read-only */
13672 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13673 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13674 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13675 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13676 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13677 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13678 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13679 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13680 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13681 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13682 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13683 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13684 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13685 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13686 	}
13687 }
13688 
13689 /*
13690  * Expect on entry:
13691  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13692  */
13693 static void init_rbufs(struct hfi1_devdata *dd)
13694 {
13695 	u64 reg;
13696 	int count;
13697 
13698 	/*
13699 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13700 	 * clear.
13701 	 */
13702 	count = 0;
13703 	while (1) {
13704 		reg = read_csr(dd, RCV_STATUS);
13705 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13706 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13707 			break;
13708 		/*
13709 		 * Give up after 1ms - maximum wait time.
13710 		 *
13711 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13712 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13713 		 *	136 KB / (66% * 250MB/s) = 844us
13714 		 */
13715 		if (count++ > 500) {
13716 			dd_dev_err(dd,
13717 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13718 				   __func__, reg);
13719 			break;
13720 		}
13721 		udelay(2); /* do not busy-wait the CSR */
13722 	}
13723 
13724 	/* start the init - expect RcvCtrl to be 0 */
13725 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13726 
13727 	/*
13728 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13729 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13730 	 * The delay in the first run through the loop below is sufficient and
13731 	 * required before the first read of RcvStatus.RxRbufInintDone.
13732 	 */
13733 	read_csr(dd, RCV_CTRL);
13734 
13735 	/* wait for the init to finish */
13736 	count = 0;
13737 	while (1) {
13738 		/* delay is required first time through - see above */
13739 		udelay(2); /* do not busy-wait the CSR */
13740 		reg = read_csr(dd, RCV_STATUS);
13741 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13742 			break;
13743 
13744 		/* give up after 100us - slowest possible at 33MHz is 73us */
13745 		if (count++ > 50) {
13746 			dd_dev_err(dd,
13747 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13748 				   __func__);
13749 			break;
13750 		}
13751 	}
13752 }
13753 
13754 /* set RXE CSRs to chip reset defaults */
13755 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13756 {
13757 	int i, j;
13758 
13759 	/*
13760 	 * RXE Kernel CSRs
13761 	 */
13762 	write_csr(dd, RCV_CTRL, 0);
13763 	init_rbufs(dd);
13764 	/* RCV_STATUS read-only */
13765 	/* RCV_CONTEXTS read-only */
13766 	/* RCV_ARRAY_CNT read-only */
13767 	/* RCV_BUF_SIZE read-only */
13768 	write_csr(dd, RCV_BTH_QP, 0);
13769 	write_csr(dd, RCV_MULTICAST, 0);
13770 	write_csr(dd, RCV_BYPASS, 0);
13771 	write_csr(dd, RCV_VL15, 0);
13772 	/* this is a clear-down */
13773 	write_csr(dd, RCV_ERR_INFO,
13774 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13775 	/* RCV_ERR_STATUS read-only */
13776 	write_csr(dd, RCV_ERR_MASK, 0);
13777 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13778 	/* RCV_ERR_FORCE leave alone */
13779 	for (i = 0; i < 32; i++)
13780 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13781 	for (i = 0; i < 4; i++)
13782 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13783 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13784 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13785 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13786 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13787 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13788 		clear_rsm_rule(dd, i);
13789 	for (i = 0; i < 32; i++)
13790 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13791 
13792 	/*
13793 	 * RXE Kernel and User Per-Context CSRs
13794 	 */
13795 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13796 		/* kernel */
13797 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13798 		/* RCV_CTXT_STATUS read-only */
13799 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13800 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13801 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13802 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13803 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13804 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13805 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13806 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13807 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13808 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13809 
13810 		/* user */
13811 		/* RCV_HDR_TAIL read-only */
13812 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13813 		/* RCV_EGR_INDEX_TAIL read-only */
13814 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13815 		/* RCV_EGR_OFFSET_TAIL read-only */
13816 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13817 			write_uctxt_csr(dd, i,
13818 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13819 		}
13820 	}
13821 }
13822 
13823 /*
13824  * Set sc2vl tables.
13825  *
13826  * They power on to zeros, so to avoid send context errors
13827  * they need to be set:
13828  *
13829  * SC 0-7 -> VL 0-7 (respectively)
13830  * SC 15  -> VL 15
13831  * otherwise
13832  *        -> VL 0
13833  */
13834 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13835 {
13836 	int i;
13837 	/* init per architecture spec, constrained by hardware capability */
13838 
13839 	/* HFI maps sent packets */
13840 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13841 		0,
13842 		0, 0, 1, 1,
13843 		2, 2, 3, 3,
13844 		4, 4, 5, 5,
13845 		6, 6, 7, 7));
13846 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13847 		1,
13848 		8, 0, 9, 0,
13849 		10, 0, 11, 0,
13850 		12, 0, 13, 0,
13851 		14, 0, 15, 15));
13852 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13853 		2,
13854 		16, 0, 17, 0,
13855 		18, 0, 19, 0,
13856 		20, 0, 21, 0,
13857 		22, 0, 23, 0));
13858 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13859 		3,
13860 		24, 0, 25, 0,
13861 		26, 0, 27, 0,
13862 		28, 0, 29, 0,
13863 		30, 0, 31, 0));
13864 
13865 	/* DC maps received packets */
13866 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13867 		15_0,
13868 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13869 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13870 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13871 		31_16,
13872 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13873 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13874 
13875 	/* initialize the cached sc2vl values consistently with h/w */
13876 	for (i = 0; i < 32; i++) {
13877 		if (i < 8 || i == 15)
13878 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13879 		else
13880 			*((u8 *)(dd->sc2vl) + i) = 0;
13881 	}
13882 }
13883 
13884 /*
13885  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13886  * depend on the chip going through a power-on reset - a driver may be loaded
13887  * and unloaded many times.
13888  *
13889  * Do not write any CSR values to the chip in this routine - there may be
13890  * a reset following the (possible) FLR in this routine.
13891  *
13892  */
13893 static int init_chip(struct hfi1_devdata *dd)
13894 {
13895 	int i;
13896 	int ret = 0;
13897 
13898 	/*
13899 	 * Put the HFI CSRs in a known state.
13900 	 * Combine this with a DC reset.
13901 	 *
13902 	 * Stop the device from doing anything while we do a
13903 	 * reset.  We know there are no other active users of
13904 	 * the device since we are now in charge.  Turn off
13905 	 * off all outbound and inbound traffic and make sure
13906 	 * the device does not generate any interrupts.
13907 	 */
13908 
13909 	/* disable send contexts and SDMA engines */
13910 	write_csr(dd, SEND_CTRL, 0);
13911 	for (i = 0; i < chip_send_contexts(dd); i++)
13912 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13913 	for (i = 0; i < chip_sdma_engines(dd); i++)
13914 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13915 	/* disable port (turn off RXE inbound traffic) and contexts */
13916 	write_csr(dd, RCV_CTRL, 0);
13917 	for (i = 0; i < chip_rcv_contexts(dd); i++)
13918 		write_csr(dd, RCV_CTXT_CTRL, 0);
13919 	/* mask all interrupt sources */
13920 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13921 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13922 
13923 	/*
13924 	 * DC Reset: do a full DC reset before the register clear.
13925 	 * A recommended length of time to hold is one CSR read,
13926 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13927 	 * across the clear.
13928 	 */
13929 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13930 	(void)read_csr(dd, CCE_DC_CTRL);
13931 
13932 	if (use_flr) {
13933 		/*
13934 		 * A FLR will reset the SPC core and part of the PCIe.
13935 		 * The parts that need to be restored have already been
13936 		 * saved.
13937 		 */
13938 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13939 
13940 		/* do the FLR, the DC reset will remain */
13941 		pcie_flr(dd->pcidev);
13942 
13943 		/* restore command and BARs */
13944 		ret = restore_pci_variables(dd);
13945 		if (ret) {
13946 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13947 				   __func__);
13948 			return ret;
13949 		}
13950 
13951 		if (is_ax(dd)) {
13952 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13953 			pcie_flr(dd->pcidev);
13954 			ret = restore_pci_variables(dd);
13955 			if (ret) {
13956 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13957 					   __func__);
13958 				return ret;
13959 			}
13960 		}
13961 	} else {
13962 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13963 		reset_cce_csrs(dd);
13964 		reset_txe_csrs(dd);
13965 		reset_rxe_csrs(dd);
13966 		reset_misc_csrs(dd);
13967 	}
13968 	/* clear the DC reset */
13969 	write_csr(dd, CCE_DC_CTRL, 0);
13970 
13971 	/* Set the LED off */
13972 	setextled(dd, 0);
13973 
13974 	/*
13975 	 * Clear the QSFP reset.
13976 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13977 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13978 	 * anything plugged constantly in reset, if it pays attention
13979 	 * to RESET_N.
13980 	 * Prime examples of this are optical cables. Set all pins high.
13981 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13982 	 * MODPRS_N are input only and their value is ignored.
13983 	 */
13984 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13985 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13986 	init_chip_resources(dd);
13987 	return ret;
13988 }
13989 
13990 static void init_early_variables(struct hfi1_devdata *dd)
13991 {
13992 	int i;
13993 
13994 	/* assign link credit variables */
13995 	dd->vau = CM_VAU;
13996 	dd->link_credits = CM_GLOBAL_CREDITS;
13997 	if (is_ax(dd))
13998 		dd->link_credits--;
13999 	dd->vcu = cu_to_vcu(hfi1_cu);
14000 	/* enough room for 8 MAD packets plus header - 17K */
14001 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14002 	if (dd->vl15_init > dd->link_credits)
14003 		dd->vl15_init = dd->link_credits;
14004 
14005 	write_uninitialized_csrs_and_memories(dd);
14006 
14007 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14008 		for (i = 0; i < dd->num_pports; i++) {
14009 			struct hfi1_pportdata *ppd = &dd->pport[i];
14010 
14011 			set_partition_keys(ppd);
14012 		}
14013 	init_sc2vl_tables(dd);
14014 }
14015 
14016 static void init_kdeth_qp(struct hfi1_devdata *dd)
14017 {
14018 	/* user changed the KDETH_QP */
14019 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14020 		/* out of range or illegal value */
14021 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14022 		kdeth_qp = 0;
14023 	}
14024 	if (kdeth_qp == 0)	/* not set, or failed range check */
14025 		kdeth_qp = DEFAULT_KDETH_QP;
14026 
14027 	write_csr(dd, SEND_BTH_QP,
14028 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14029 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14030 
14031 	write_csr(dd, RCV_BTH_QP,
14032 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14033 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14034 }
14035 
14036 /**
14037  * hfi1_get_qp_map
14038  * @dd: device data
14039  * @idx: index to read
14040  */
14041 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14042 {
14043 	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14044 
14045 	reg >>= (idx % 8) * 8;
14046 	return reg;
14047 }
14048 
14049 /**
14050  * init_qpmap_table
14051  * @dd - device data
14052  * @first_ctxt - first context
14053  * @last_ctxt - first context
14054  *
14055  * This return sets the qpn mapping table that
14056  * is indexed by qpn[8:1].
14057  *
14058  * The routine will round robin the 256 settings
14059  * from first_ctxt to last_ctxt.
14060  *
14061  * The first/last looks ahead to having specialized
14062  * receive contexts for mgmt and bypass.  Normal
14063  * verbs traffic will assumed to be on a range
14064  * of receive contexts.
14065  */
14066 static void init_qpmap_table(struct hfi1_devdata *dd,
14067 			     u32 first_ctxt,
14068 			     u32 last_ctxt)
14069 {
14070 	u64 reg = 0;
14071 	u64 regno = RCV_QP_MAP_TABLE;
14072 	int i;
14073 	u64 ctxt = first_ctxt;
14074 
14075 	for (i = 0; i < 256; i++) {
14076 		reg |= ctxt << (8 * (i % 8));
14077 		ctxt++;
14078 		if (ctxt > last_ctxt)
14079 			ctxt = first_ctxt;
14080 		if (i % 8 == 7) {
14081 			write_csr(dd, regno, reg);
14082 			reg = 0;
14083 			regno += 8;
14084 		}
14085 	}
14086 
14087 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14088 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14089 }
14090 
14091 struct rsm_map_table {
14092 	u64 map[NUM_MAP_REGS];
14093 	unsigned int used;
14094 };
14095 
14096 struct rsm_rule_data {
14097 	u8 offset;
14098 	u8 pkt_type;
14099 	u32 field1_off;
14100 	u32 field2_off;
14101 	u32 index1_off;
14102 	u32 index1_width;
14103 	u32 index2_off;
14104 	u32 index2_width;
14105 	u32 mask1;
14106 	u32 value1;
14107 	u32 mask2;
14108 	u32 value2;
14109 };
14110 
14111 /*
14112  * Return an initialized RMT map table for users to fill in.  OK if it
14113  * returns NULL, indicating no table.
14114  */
14115 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14116 {
14117 	struct rsm_map_table *rmt;
14118 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14119 
14120 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14121 	if (rmt) {
14122 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14123 		rmt->used = 0;
14124 	}
14125 
14126 	return rmt;
14127 }
14128 
14129 /*
14130  * Write the final RMT map table to the chip and free the table.  OK if
14131  * table is NULL.
14132  */
14133 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14134 				   struct rsm_map_table *rmt)
14135 {
14136 	int i;
14137 
14138 	if (rmt) {
14139 		/* write table to chip */
14140 		for (i = 0; i < NUM_MAP_REGS; i++)
14141 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14142 
14143 		/* enable RSM */
14144 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14145 	}
14146 }
14147 
14148 /*
14149  * Add a receive side mapping rule.
14150  */
14151 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14152 			 struct rsm_rule_data *rrd)
14153 {
14154 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14155 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14156 		  1ull << rule_index | /* enable bit */
14157 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14158 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14159 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14160 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14161 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14162 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14163 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14164 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14165 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14166 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14167 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14168 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14169 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14170 }
14171 
14172 /*
14173  * Clear a receive side mapping rule.
14174  */
14175 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14176 {
14177 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14178 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14179 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14180 }
14181 
14182 /* return the number of RSM map table entries that will be used for QOS */
14183 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14184 			   unsigned int *np)
14185 {
14186 	int i;
14187 	unsigned int m, n;
14188 	u8 max_by_vl = 0;
14189 
14190 	/* is QOS active at all? */
14191 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14192 	    num_vls == 1 ||
14193 	    krcvqsset <= 1)
14194 		goto no_qos;
14195 
14196 	/* determine bits for qpn */
14197 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14198 		if (krcvqs[i] > max_by_vl)
14199 			max_by_vl = krcvqs[i];
14200 	if (max_by_vl > 32)
14201 		goto no_qos;
14202 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14203 
14204 	/* determine bits for vl */
14205 	n = ilog2(__roundup_pow_of_two(num_vls));
14206 
14207 	/* reject if too much is used */
14208 	if ((m + n) > 7)
14209 		goto no_qos;
14210 
14211 	if (mp)
14212 		*mp = m;
14213 	if (np)
14214 		*np = n;
14215 
14216 	return 1 << (m + n);
14217 
14218 no_qos:
14219 	if (mp)
14220 		*mp = 0;
14221 	if (np)
14222 		*np = 0;
14223 	return 0;
14224 }
14225 
14226 /**
14227  * init_qos - init RX qos
14228  * @dd - device data
14229  * @rmt - RSM map table
14230  *
14231  * This routine initializes Rule 0 and the RSM map table to implement
14232  * quality of service (qos).
14233  *
14234  * If all of the limit tests succeed, qos is applied based on the array
14235  * interpretation of krcvqs where entry 0 is VL0.
14236  *
14237  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14238  * feed both the RSM map table and the single rule.
14239  */
14240 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14241 {
14242 	struct rsm_rule_data rrd;
14243 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14244 	unsigned int rmt_entries;
14245 	u64 reg;
14246 
14247 	if (!rmt)
14248 		goto bail;
14249 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14250 	if (rmt_entries == 0)
14251 		goto bail;
14252 	qpns_per_vl = 1 << m;
14253 
14254 	/* enough room in the map table? */
14255 	rmt_entries = 1 << (m + n);
14256 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14257 		goto bail;
14258 
14259 	/* add qos entries to the the RSM map table */
14260 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14261 		unsigned tctxt;
14262 
14263 		for (qpn = 0, tctxt = ctxt;
14264 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14265 			unsigned idx, regoff, regidx;
14266 
14267 			/* generate the index the hardware will produce */
14268 			idx = rmt->used + ((qpn << n) ^ i);
14269 			regoff = (idx % 8) * 8;
14270 			regidx = idx / 8;
14271 			/* replace default with context number */
14272 			reg = rmt->map[regidx];
14273 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14274 				<< regoff);
14275 			reg |= (u64)(tctxt++) << regoff;
14276 			rmt->map[regidx] = reg;
14277 			if (tctxt == ctxt + krcvqs[i])
14278 				tctxt = ctxt;
14279 		}
14280 		ctxt += krcvqs[i];
14281 	}
14282 
14283 	rrd.offset = rmt->used;
14284 	rrd.pkt_type = 2;
14285 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14286 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14287 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14288 	rrd.index1_width = n;
14289 	rrd.index2_off = QPN_SELECT_OFFSET;
14290 	rrd.index2_width = m + n;
14291 	rrd.mask1 = LRH_BTH_MASK;
14292 	rrd.value1 = LRH_BTH_VALUE;
14293 	rrd.mask2 = LRH_SC_MASK;
14294 	rrd.value2 = LRH_SC_VALUE;
14295 
14296 	/* add rule 0 */
14297 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14298 
14299 	/* mark RSM map entries as used */
14300 	rmt->used += rmt_entries;
14301 	/* map everything else to the mcast/err/vl15 context */
14302 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14303 	dd->qos_shift = n + 1;
14304 	return;
14305 bail:
14306 	dd->qos_shift = 1;
14307 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14308 }
14309 
14310 static void init_fecn_handling(struct hfi1_devdata *dd,
14311 			       struct rsm_map_table *rmt)
14312 {
14313 	struct rsm_rule_data rrd;
14314 	u64 reg;
14315 	int i, idx, regoff, regidx, start;
14316 	u8 offset;
14317 	u32 total_cnt;
14318 
14319 	if (HFI1_CAP_IS_KSET(TID_RDMA))
14320 		/* Exclude context 0 */
14321 		start = 1;
14322 	else
14323 		start = dd->first_dyn_alloc_ctxt;
14324 
14325 	total_cnt = dd->num_rcv_contexts - start;
14326 
14327 	/* there needs to be enough room in the map table */
14328 	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14329 		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14330 		return;
14331 	}
14332 
14333 	/*
14334 	 * RSM will extract the destination context as an index into the
14335 	 * map table.  The destination contexts are a sequential block
14336 	 * in the range start...num_rcv_contexts-1 (inclusive).
14337 	 * Map entries are accessed as offset + extracted value.  Adjust
14338 	 * the added offset so this sequence can be placed anywhere in
14339 	 * the table - as long as the entries themselves do not wrap.
14340 	 * There are only enough bits in offset for the table size, so
14341 	 * start with that to allow for a "negative" offset.
14342 	 */
14343 	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14344 
14345 	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14346 	     i++, idx++) {
14347 		/* replace with identity mapping */
14348 		regoff = (idx % 8) * 8;
14349 		regidx = idx / 8;
14350 		reg = rmt->map[regidx];
14351 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14352 		reg |= (u64)i << regoff;
14353 		rmt->map[regidx] = reg;
14354 	}
14355 
14356 	/*
14357 	 * For RSM intercept of Expected FECN packets:
14358 	 * o packet type 0 - expected
14359 	 * o match on F (bit 95), using select/match 1, and
14360 	 * o match on SH (bit 133), using select/match 2.
14361 	 *
14362 	 * Use index 1 to extract the 8-bit receive context from DestQP
14363 	 * (start at bit 64).  Use that as the RSM map table index.
14364 	 */
14365 	rrd.offset = offset;
14366 	rrd.pkt_type = 0;
14367 	rrd.field1_off = 95;
14368 	rrd.field2_off = 133;
14369 	rrd.index1_off = 64;
14370 	rrd.index1_width = 8;
14371 	rrd.index2_off = 0;
14372 	rrd.index2_width = 0;
14373 	rrd.mask1 = 1;
14374 	rrd.value1 = 1;
14375 	rrd.mask2 = 1;
14376 	rrd.value2 = 1;
14377 
14378 	/* add rule 1 */
14379 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14380 
14381 	rmt->used += total_cnt;
14382 }
14383 
14384 /* Initialize RSM for VNIC */
14385 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14386 {
14387 	u8 i, j;
14388 	u8 ctx_id = 0;
14389 	u64 reg;
14390 	u32 regoff;
14391 	struct rsm_rule_data rrd;
14392 
14393 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14394 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14395 			   dd->vnic.rmt_start);
14396 		return;
14397 	}
14398 
14399 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14400 		dd->vnic.rmt_start,
14401 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14402 
14403 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14404 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14405 	reg = read_csr(dd, regoff);
14406 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14407 		/* Update map register with vnic context */
14408 		j = (dd->vnic.rmt_start + i) % 8;
14409 		reg &= ~(0xffllu << (j * 8));
14410 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14411 		/* Wrap up vnic ctx index */
14412 		ctx_id %= dd->vnic.num_ctxt;
14413 		/* Write back map register */
14414 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14415 			dev_dbg(&(dd)->pcidev->dev,
14416 				"Vnic rsm map reg[%d] =0x%llx\n",
14417 				regoff - RCV_RSM_MAP_TABLE, reg);
14418 
14419 			write_csr(dd, regoff, reg);
14420 			regoff += 8;
14421 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14422 				reg = read_csr(dd, regoff);
14423 		}
14424 	}
14425 
14426 	/* Add rule for vnic */
14427 	rrd.offset = dd->vnic.rmt_start;
14428 	rrd.pkt_type = 4;
14429 	/* Match 16B packets */
14430 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14431 	rrd.mask1 = L2_TYPE_MASK;
14432 	rrd.value1 = L2_16B_VALUE;
14433 	/* Match ETH L4 packets */
14434 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14435 	rrd.mask2 = L4_16B_TYPE_MASK;
14436 	rrd.value2 = L4_16B_ETH_VALUE;
14437 	/* Calc context from veswid and entropy */
14438 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14439 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14440 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14441 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14442 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14443 
14444 	/* Enable RSM if not already enabled */
14445 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14446 }
14447 
14448 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14449 {
14450 	clear_rsm_rule(dd, RSM_INS_VNIC);
14451 
14452 	/* Disable RSM if used only by vnic */
14453 	if (dd->vnic.rmt_start == 0)
14454 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14455 }
14456 
14457 static int init_rxe(struct hfi1_devdata *dd)
14458 {
14459 	struct rsm_map_table *rmt;
14460 	u64 val;
14461 
14462 	/* enable all receive errors */
14463 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14464 
14465 	rmt = alloc_rsm_map_table(dd);
14466 	if (!rmt)
14467 		return -ENOMEM;
14468 
14469 	/* set up QOS, including the QPN map table */
14470 	init_qos(dd, rmt);
14471 	init_fecn_handling(dd, rmt);
14472 	complete_rsm_map_table(dd, rmt);
14473 	/* record number of used rsm map entries for vnic */
14474 	dd->vnic.rmt_start = rmt->used;
14475 	kfree(rmt);
14476 
14477 	/*
14478 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14479 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14480 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14481 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14482 	 * Max_PayLoad_Size set to its minimum of 128.
14483 	 *
14484 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14485 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14486 	 * tune_pcie_caps() which is called after this routine.
14487 	 */
14488 
14489 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14490 	val = read_csr(dd, RCV_BYPASS);
14491 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14492 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14493 		RCV_BYPASS_HDR_SIZE_SHIFT);
14494 	write_csr(dd, RCV_BYPASS, val);
14495 	return 0;
14496 }
14497 
14498 static void init_other(struct hfi1_devdata *dd)
14499 {
14500 	/* enable all CCE errors */
14501 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14502 	/* enable *some* Misc errors */
14503 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14504 	/* enable all DC errors, except LCB */
14505 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14506 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14507 }
14508 
14509 /*
14510  * Fill out the given AU table using the given CU.  A CU is defined in terms
14511  * AUs.  The table is a an encoding: given the index, how many AUs does that
14512  * represent?
14513  *
14514  * NOTE: Assumes that the register layout is the same for the
14515  * local and remote tables.
14516  */
14517 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14518 			       u32 csr0to3, u32 csr4to7)
14519 {
14520 	write_csr(dd, csr0to3,
14521 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14522 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14523 		  2ull * cu <<
14524 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14525 		  4ull * cu <<
14526 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14527 	write_csr(dd, csr4to7,
14528 		  8ull * cu <<
14529 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14530 		  16ull * cu <<
14531 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14532 		  32ull * cu <<
14533 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14534 		  64ull * cu <<
14535 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14536 }
14537 
14538 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14539 {
14540 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14541 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14542 }
14543 
14544 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14545 {
14546 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14547 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14548 }
14549 
14550 static void init_txe(struct hfi1_devdata *dd)
14551 {
14552 	int i;
14553 
14554 	/* enable all PIO, SDMA, general, and Egress errors */
14555 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14556 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14557 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14558 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14559 
14560 	/* enable all per-context and per-SDMA engine errors */
14561 	for (i = 0; i < chip_send_contexts(dd); i++)
14562 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14563 	for (i = 0; i < chip_sdma_engines(dd); i++)
14564 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14565 
14566 	/* set the local CU to AU mapping */
14567 	assign_local_cm_au_table(dd, dd->vcu);
14568 
14569 	/*
14570 	 * Set reasonable default for Credit Return Timer
14571 	 * Don't set on Simulator - causes it to choke.
14572 	 */
14573 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14574 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14575 }
14576 
14577 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14578 		       u16 jkey)
14579 {
14580 	u8 hw_ctxt;
14581 	u64 reg;
14582 
14583 	if (!rcd || !rcd->sc)
14584 		return -EINVAL;
14585 
14586 	hw_ctxt = rcd->sc->hw_context;
14587 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14588 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14589 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14590 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14591 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14592 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14593 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14594 	/*
14595 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14596 	 */
14597 	if (!is_ax(dd)) {
14598 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14599 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14600 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14601 	}
14602 
14603 	/* Enable J_KEY check on receive context. */
14604 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14605 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14606 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14607 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14608 
14609 	return 0;
14610 }
14611 
14612 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14613 {
14614 	u8 hw_ctxt;
14615 	u64 reg;
14616 
14617 	if (!rcd || !rcd->sc)
14618 		return -EINVAL;
14619 
14620 	hw_ctxt = rcd->sc->hw_context;
14621 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14622 	/*
14623 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14624 	 * This check would not have been enabled for A0 h/w, see
14625 	 * set_ctxt_jkey().
14626 	 */
14627 	if (!is_ax(dd)) {
14628 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14629 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14630 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14631 	}
14632 	/* Turn off the J_KEY on the receive side */
14633 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14634 
14635 	return 0;
14636 }
14637 
14638 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14639 		       u16 pkey)
14640 {
14641 	u8 hw_ctxt;
14642 	u64 reg;
14643 
14644 	if (!rcd || !rcd->sc)
14645 		return -EINVAL;
14646 
14647 	hw_ctxt = rcd->sc->hw_context;
14648 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14649 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14650 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14651 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14652 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14653 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14654 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14655 
14656 	return 0;
14657 }
14658 
14659 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14660 {
14661 	u8 hw_ctxt;
14662 	u64 reg;
14663 
14664 	if (!ctxt || !ctxt->sc)
14665 		return -EINVAL;
14666 
14667 	hw_ctxt = ctxt->sc->hw_context;
14668 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14669 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14670 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14671 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14672 
14673 	return 0;
14674 }
14675 
14676 /*
14677  * Start doing the clean up the the chip. Our clean up happens in multiple
14678  * stages and this is just the first.
14679  */
14680 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14681 {
14682 	aspm_exit(dd);
14683 	free_cntrs(dd);
14684 	free_rcverr(dd);
14685 	finish_chip_resources(dd);
14686 }
14687 
14688 #define HFI_BASE_GUID(dev) \
14689 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14690 
14691 /*
14692  * Information can be shared between the two HFIs on the same ASIC
14693  * in the same OS.  This function finds the peer device and sets
14694  * up a shared structure.
14695  */
14696 static int init_asic_data(struct hfi1_devdata *dd)
14697 {
14698 	unsigned long index;
14699 	struct hfi1_devdata *peer;
14700 	struct hfi1_asic_data *asic_data;
14701 	int ret = 0;
14702 
14703 	/* pre-allocate the asic structure in case we are the first device */
14704 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14705 	if (!asic_data)
14706 		return -ENOMEM;
14707 
14708 	xa_lock_irq(&hfi1_dev_table);
14709 	/* Find our peer device */
14710 	xa_for_each(&hfi1_dev_table, index, peer) {
14711 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14712 		    dd->unit != peer->unit)
14713 			break;
14714 	}
14715 
14716 	if (peer) {
14717 		/* use already allocated structure */
14718 		dd->asic_data = peer->asic_data;
14719 		kfree(asic_data);
14720 	} else {
14721 		dd->asic_data = asic_data;
14722 		mutex_init(&dd->asic_data->asic_resource_mutex);
14723 	}
14724 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14725 	xa_unlock_irq(&hfi1_dev_table);
14726 
14727 	/* first one through - set up i2c devices */
14728 	if (!peer)
14729 		ret = set_up_i2c(dd, dd->asic_data);
14730 
14731 	return ret;
14732 }
14733 
14734 /*
14735  * Set dd->boardname.  Use a generic name if a name is not returned from
14736  * EFI variable space.
14737  *
14738  * Return 0 on success, -ENOMEM if space could not be allocated.
14739  */
14740 static int obtain_boardname(struct hfi1_devdata *dd)
14741 {
14742 	/* generic board description */
14743 	const char generic[] =
14744 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14745 	unsigned long size;
14746 	int ret;
14747 
14748 	ret = read_hfi1_efi_var(dd, "description", &size,
14749 				(void **)&dd->boardname);
14750 	if (ret) {
14751 		dd_dev_info(dd, "Board description not found\n");
14752 		/* use generic description */
14753 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14754 		if (!dd->boardname)
14755 			return -ENOMEM;
14756 	}
14757 	return 0;
14758 }
14759 
14760 /*
14761  * Check the interrupt registers to make sure that they are mapped correctly.
14762  * It is intended to help user identify any mismapping by VMM when the driver
14763  * is running in a VM. This function should only be called before interrupt
14764  * is set up properly.
14765  *
14766  * Return 0 on success, -EINVAL on failure.
14767  */
14768 static int check_int_registers(struct hfi1_devdata *dd)
14769 {
14770 	u64 reg;
14771 	u64 all_bits = ~(u64)0;
14772 	u64 mask;
14773 
14774 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14775 	mask = read_csr(dd, CCE_INT_MASK);
14776 	write_csr(dd, CCE_INT_MASK, 0ull);
14777 	reg = read_csr(dd, CCE_INT_MASK);
14778 	if (reg)
14779 		goto err_exit;
14780 
14781 	/* Clear all interrupt status bits */
14782 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14783 	reg = read_csr(dd, CCE_INT_STATUS);
14784 	if (reg)
14785 		goto err_exit;
14786 
14787 	/* Set all interrupt status bits */
14788 	write_csr(dd, CCE_INT_FORCE, all_bits);
14789 	reg = read_csr(dd, CCE_INT_STATUS);
14790 	if (reg != all_bits)
14791 		goto err_exit;
14792 
14793 	/* Restore the interrupt mask */
14794 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14795 	write_csr(dd, CCE_INT_MASK, mask);
14796 
14797 	return 0;
14798 err_exit:
14799 	write_csr(dd, CCE_INT_MASK, mask);
14800 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14801 	return -EINVAL;
14802 }
14803 
14804 /**
14805  * hfi1_init_dd() - Initialize most of the dd structure.
14806  * @dev: the pci_dev for hfi1_ib device
14807  * @ent: pci_device_id struct for this dev
14808  *
14809  * This is global, and is called directly at init to set up the
14810  * chip-specific function pointers for later use.
14811  */
14812 int hfi1_init_dd(struct hfi1_devdata *dd)
14813 {
14814 	struct pci_dev *pdev = dd->pcidev;
14815 	struct hfi1_pportdata *ppd;
14816 	u64 reg;
14817 	int i, ret;
14818 	static const char * const inames[] = { /* implementation names */
14819 		"RTL silicon",
14820 		"RTL VCS simulation",
14821 		"RTL FPGA emulation",
14822 		"Functional simulator"
14823 	};
14824 	struct pci_dev *parent = pdev->bus->self;
14825 	u32 sdma_engines = chip_sdma_engines(dd);
14826 
14827 	ppd = dd->pport;
14828 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14829 		int vl;
14830 		/* init common fields */
14831 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14832 		/* DC supports 4 link widths */
14833 		ppd->link_width_supported =
14834 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14835 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14836 		ppd->link_width_downgrade_supported =
14837 			ppd->link_width_supported;
14838 		/* start out enabling only 4X */
14839 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14840 		ppd->link_width_downgrade_enabled =
14841 					ppd->link_width_downgrade_supported;
14842 		/* link width active is 0 when link is down */
14843 		/* link width downgrade active is 0 when link is down */
14844 
14845 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14846 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14847 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14848 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14849 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14850 		}
14851 		ppd->vls_supported = num_vls;
14852 		ppd->vls_operational = ppd->vls_supported;
14853 		/* Set the default MTU. */
14854 		for (vl = 0; vl < num_vls; vl++)
14855 			dd->vld[vl].mtu = hfi1_max_mtu;
14856 		dd->vld[15].mtu = MAX_MAD_PACKET;
14857 		/*
14858 		 * Set the initial values to reasonable default, will be set
14859 		 * for real when link is up.
14860 		 */
14861 		ppd->overrun_threshold = 0x4;
14862 		ppd->phy_error_threshold = 0xf;
14863 		ppd->port_crc_mode_enabled = link_crc_mask;
14864 		/* initialize supported LTP CRC mode */
14865 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14866 		/* initialize enabled LTP CRC mode */
14867 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14868 		/* start in offline */
14869 		ppd->host_link_state = HLS_DN_OFFLINE;
14870 		init_vl_arb_caches(ppd);
14871 	}
14872 
14873 	/*
14874 	 * Do remaining PCIe setup and save PCIe values in dd.
14875 	 * Any error printing is already done by the init code.
14876 	 * On return, we have the chip mapped.
14877 	 */
14878 	ret = hfi1_pcie_ddinit(dd, pdev);
14879 	if (ret < 0)
14880 		goto bail_free;
14881 
14882 	/* Save PCI space registers to rewrite after device reset */
14883 	ret = save_pci_variables(dd);
14884 	if (ret < 0)
14885 		goto bail_cleanup;
14886 
14887 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14888 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14889 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14890 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14891 
14892 	/*
14893 	 * Check interrupt registers mapping if the driver has no access to
14894 	 * the upstream component. In this case, it is likely that the driver
14895 	 * is running in a VM.
14896 	 */
14897 	if (!parent) {
14898 		ret = check_int_registers(dd);
14899 		if (ret)
14900 			goto bail_cleanup;
14901 	}
14902 
14903 	/*
14904 	 * obtain the hardware ID - NOT related to unit, which is a
14905 	 * software enumeration
14906 	 */
14907 	reg = read_csr(dd, CCE_REVISION2);
14908 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14909 					& CCE_REVISION2_HFI_ID_MASK;
14910 	/* the variable size will remove unwanted bits */
14911 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14912 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14913 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14914 		    dd->icode < ARRAY_SIZE(inames) ?
14915 		    inames[dd->icode] : "unknown", (int)dd->irev);
14916 
14917 	/* speeds the hardware can support */
14918 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14919 	/* speeds allowed to run at */
14920 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14921 	/* give a reasonable active value, will be set on link up */
14922 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14923 
14924 	/* fix up link widths for emulation _p */
14925 	ppd = dd->pport;
14926 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14927 		ppd->link_width_supported =
14928 			ppd->link_width_enabled =
14929 			ppd->link_width_downgrade_supported =
14930 			ppd->link_width_downgrade_enabled =
14931 				OPA_LINK_WIDTH_1X;
14932 	}
14933 	/* insure num_vls isn't larger than number of sdma engines */
14934 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
14935 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14936 			   num_vls, sdma_engines);
14937 		num_vls = sdma_engines;
14938 		ppd->vls_supported = sdma_engines;
14939 		ppd->vls_operational = ppd->vls_supported;
14940 	}
14941 
14942 	/*
14943 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14944 	 * Limit the max if larger than the field holds.  If timeout is
14945 	 * non-zero, then the calculated field will be at least 1.
14946 	 *
14947 	 * Must be after icode is set up - the cclock rate depends
14948 	 * on knowing the hardware being used.
14949 	 */
14950 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14951 	if (dd->rcv_intr_timeout_csr >
14952 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14953 		dd->rcv_intr_timeout_csr =
14954 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14955 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14956 		dd->rcv_intr_timeout_csr = 1;
14957 
14958 	/* needs to be done before we look for the peer device */
14959 	read_guid(dd);
14960 
14961 	/* set up shared ASIC data with peer device */
14962 	ret = init_asic_data(dd);
14963 	if (ret)
14964 		goto bail_cleanup;
14965 
14966 	/* obtain chip sizes, reset chip CSRs */
14967 	ret = init_chip(dd);
14968 	if (ret)
14969 		goto bail_cleanup;
14970 
14971 	/* read in the PCIe link speed information */
14972 	ret = pcie_speeds(dd);
14973 	if (ret)
14974 		goto bail_cleanup;
14975 
14976 	/* call before get_platform_config(), after init_chip_resources() */
14977 	ret = eprom_init(dd);
14978 	if (ret)
14979 		goto bail_free_rcverr;
14980 
14981 	/* Needs to be called before hfi1_firmware_init */
14982 	get_platform_config(dd);
14983 
14984 	/* read in firmware */
14985 	ret = hfi1_firmware_init(dd);
14986 	if (ret)
14987 		goto bail_cleanup;
14988 
14989 	/*
14990 	 * In general, the PCIe Gen3 transition must occur after the
14991 	 * chip has been idled (so it won't initiate any PCIe transactions
14992 	 * e.g. an interrupt) and before the driver changes any registers
14993 	 * (the transition will reset the registers).
14994 	 *
14995 	 * In particular, place this call after:
14996 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14997 	 * - pcie_speeds()   - reads the current link speed
14998 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14999 	 *			    downloaded
15000 	 */
15001 	ret = do_pcie_gen3_transition(dd);
15002 	if (ret)
15003 		goto bail_cleanup;
15004 
15005 	/*
15006 	 * This should probably occur in hfi1_pcie_init(), but historically
15007 	 * occurs after the do_pcie_gen3_transition() code.
15008 	 */
15009 	tune_pcie_caps(dd);
15010 
15011 	/* start setting dd values and adjusting CSRs */
15012 	init_early_variables(dd);
15013 
15014 	parse_platform_config(dd);
15015 
15016 	ret = obtain_boardname(dd);
15017 	if (ret)
15018 		goto bail_cleanup;
15019 
15020 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15021 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15022 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15023 		 (u32)dd->majrev,
15024 		 (u32)dd->minrev,
15025 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15026 		    & CCE_REVISION_SW_MASK);
15027 
15028 	ret = set_up_context_variables(dd);
15029 	if (ret)
15030 		goto bail_cleanup;
15031 
15032 	/* set initial RXE CSRs */
15033 	ret = init_rxe(dd);
15034 	if (ret)
15035 		goto bail_cleanup;
15036 
15037 	/* set initial TXE CSRs */
15038 	init_txe(dd);
15039 	/* set initial non-RXE, non-TXE CSRs */
15040 	init_other(dd);
15041 	/* set up KDETH QP prefix in both RX and TX CSRs */
15042 	init_kdeth_qp(dd);
15043 
15044 	ret = hfi1_dev_affinity_init(dd);
15045 	if (ret)
15046 		goto bail_cleanup;
15047 
15048 	/* send contexts must be set up before receive contexts */
15049 	ret = init_send_contexts(dd);
15050 	if (ret)
15051 		goto bail_cleanup;
15052 
15053 	ret = hfi1_create_kctxts(dd);
15054 	if (ret)
15055 		goto bail_cleanup;
15056 
15057 	/*
15058 	 * Initialize aspm, to be done after gen3 transition and setting up
15059 	 * contexts and before enabling interrupts
15060 	 */
15061 	aspm_init(dd);
15062 
15063 	ret = init_pervl_scs(dd);
15064 	if (ret)
15065 		goto bail_cleanup;
15066 
15067 	/* sdma init */
15068 	for (i = 0; i < dd->num_pports; ++i) {
15069 		ret = sdma_init(dd, i);
15070 		if (ret)
15071 			goto bail_cleanup;
15072 	}
15073 
15074 	/* use contexts created by hfi1_create_kctxts */
15075 	ret = set_up_interrupts(dd);
15076 	if (ret)
15077 		goto bail_cleanup;
15078 
15079 	ret = hfi1_comp_vectors_set_up(dd);
15080 	if (ret)
15081 		goto bail_clear_intr;
15082 
15083 	/* set up LCB access - must be after set_up_interrupts() */
15084 	init_lcb_access(dd);
15085 
15086 	/*
15087 	 * Serial number is created from the base guid:
15088 	 * [27:24] = base guid [38:35]
15089 	 * [23: 0] = base guid [23: 0]
15090 	 */
15091 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15092 		 (dd->base_guid & 0xFFFFFF) |
15093 		     ((dd->base_guid >> 11) & 0xF000000));
15094 
15095 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15096 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15097 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15098 
15099 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15100 	if (ret)
15101 		goto bail_clear_intr;
15102 
15103 	thermal_init(dd);
15104 
15105 	ret = init_cntrs(dd);
15106 	if (ret)
15107 		goto bail_clear_intr;
15108 
15109 	ret = init_rcverr(dd);
15110 	if (ret)
15111 		goto bail_free_cntrs;
15112 
15113 	init_completion(&dd->user_comp);
15114 
15115 	/* The user refcount starts with one to inidicate an active device */
15116 	atomic_set(&dd->user_refcount, 1);
15117 
15118 	goto bail;
15119 
15120 bail_free_rcverr:
15121 	free_rcverr(dd);
15122 bail_free_cntrs:
15123 	free_cntrs(dd);
15124 bail_clear_intr:
15125 	hfi1_comp_vectors_clean_up(dd);
15126 	msix_clean_up_interrupts(dd);
15127 bail_cleanup:
15128 	hfi1_pcie_ddcleanup(dd);
15129 bail_free:
15130 	hfi1_free_devdata(dd);
15131 bail:
15132 	return ret;
15133 }
15134 
15135 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15136 			u32 dw_len)
15137 {
15138 	u32 delta_cycles;
15139 	u32 current_egress_rate = ppd->current_egress_rate;
15140 	/* rates here are in units of 10^6 bits/sec */
15141 
15142 	if (desired_egress_rate == -1)
15143 		return 0; /* shouldn't happen */
15144 
15145 	if (desired_egress_rate >= current_egress_rate)
15146 		return 0; /* we can't help go faster, only slower */
15147 
15148 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15149 			egress_cycles(dw_len * 4, current_egress_rate);
15150 
15151 	return (u16)delta_cycles;
15152 }
15153 
15154 /**
15155  * create_pbc - build a pbc for transmission
15156  * @flags: special case flags or-ed in built pbc
15157  * @srate: static rate
15158  * @vl: vl
15159  * @dwlen: dword length (header words + data words + pbc words)
15160  *
15161  * Create a PBC with the given flags, rate, VL, and length.
15162  *
15163  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15164  * for verbs, which does not use this PSM feature.  The lone other caller
15165  * is for the diagnostic interface which calls this if the user does not
15166  * supply their own PBC.
15167  */
15168 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15169 	       u32 dw_len)
15170 {
15171 	u64 pbc, delay = 0;
15172 
15173 	if (unlikely(srate_mbs))
15174 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15175 
15176 	pbc = flags
15177 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15178 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15179 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15180 		| (dw_len & PBC_LENGTH_DWS_MASK)
15181 			<< PBC_LENGTH_DWS_SHIFT;
15182 
15183 	return pbc;
15184 }
15185 
15186 #define SBUS_THERMAL    0x4f
15187 #define SBUS_THERM_MONITOR_MODE 0x1
15188 
15189 #define THERM_FAILURE(dev, ret, reason) \
15190 	dd_dev_err((dd),						\
15191 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15192 		   (reason), (ret))
15193 
15194 /*
15195  * Initialize the thermal sensor.
15196  *
15197  * After initialization, enable polling of thermal sensor through
15198  * SBus interface. In order for this to work, the SBus Master
15199  * firmware has to be loaded due to the fact that the HW polling
15200  * logic uses SBus interrupts, which are not supported with
15201  * default firmware. Otherwise, no data will be returned through
15202  * the ASIC_STS_THERM CSR.
15203  */
15204 static int thermal_init(struct hfi1_devdata *dd)
15205 {
15206 	int ret = 0;
15207 
15208 	if (dd->icode != ICODE_RTL_SILICON ||
15209 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15210 		return ret;
15211 
15212 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15213 	if (ret) {
15214 		THERM_FAILURE(dd, ret, "Acquire SBus");
15215 		return ret;
15216 	}
15217 
15218 	dd_dev_info(dd, "Initializing thermal sensor\n");
15219 	/* Disable polling of thermal readings */
15220 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15221 	msleep(100);
15222 	/* Thermal Sensor Initialization */
15223 	/*    Step 1: Reset the Thermal SBus Receiver */
15224 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15225 				RESET_SBUS_RECEIVER, 0);
15226 	if (ret) {
15227 		THERM_FAILURE(dd, ret, "Bus Reset");
15228 		goto done;
15229 	}
15230 	/*    Step 2: Set Reset bit in Thermal block */
15231 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15232 				WRITE_SBUS_RECEIVER, 0x1);
15233 	if (ret) {
15234 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15235 		goto done;
15236 	}
15237 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15238 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15239 				WRITE_SBUS_RECEIVER, 0x32);
15240 	if (ret) {
15241 		THERM_FAILURE(dd, ret, "Write Clock Div");
15242 		goto done;
15243 	}
15244 	/*    Step 4: Select temperature mode */
15245 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15246 				WRITE_SBUS_RECEIVER,
15247 				SBUS_THERM_MONITOR_MODE);
15248 	if (ret) {
15249 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15250 		goto done;
15251 	}
15252 	/*    Step 5: De-assert block reset and start conversion */
15253 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15254 				WRITE_SBUS_RECEIVER, 0x2);
15255 	if (ret) {
15256 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15257 		goto done;
15258 	}
15259 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15260 	msleep(22);
15261 
15262 	/* Enable polling of thermal readings */
15263 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15264 
15265 	/* Set initialized flag */
15266 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15267 	if (ret)
15268 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15269 
15270 done:
15271 	release_chip_resource(dd, CR_SBUS);
15272 	return ret;
15273 }
15274 
15275 static void handle_temp_err(struct hfi1_devdata *dd)
15276 {
15277 	struct hfi1_pportdata *ppd = &dd->pport[0];
15278 	/*
15279 	 * Thermal Critical Interrupt
15280 	 * Put the device into forced freeze mode, take link down to
15281 	 * offline, and put DC into reset.
15282 	 */
15283 	dd_dev_emerg(dd,
15284 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15285 	dd->flags |= HFI1_FORCED_FREEZE;
15286 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15287 	/*
15288 	 * Shut DC down as much and as quickly as possible.
15289 	 *
15290 	 * Step 1: Take the link down to OFFLINE. This will cause the
15291 	 *         8051 to put the Serdes in reset. However, we don't want to
15292 	 *         go through the entire link state machine since we want to
15293 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15294 	 *         but rather an attempt to save the chip.
15295 	 *         Code below is almost the same as quiet_serdes() but avoids
15296 	 *         all the extra work and the sleeps.
15297 	 */
15298 	ppd->driver_link_ready = 0;
15299 	ppd->link_enabled = 0;
15300 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15301 				PLS_OFFLINE);
15302 	/*
15303 	 * Step 2: Shutdown LCB and 8051
15304 	 *         After shutdown, do not restore DC_CFG_RESET value.
15305 	 */
15306 	dc_shutdown(dd);
15307 }
15308