xref: /linux/drivers/infiniband/hw/hfi1/chip.c (revision 24168c5e6dfbdd5b414f048f47f75d64533296ca)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  * Copyright(c) 2021 Cornelis Networks.
5  */
6 
7 /*
8  * This file contains all of the code that is specific to the HFI chip
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 
16 #include "hfi.h"
17 #include "trace.h"
18 #include "mad.h"
19 #include "pio.h"
20 #include "sdma.h"
21 #include "eprom.h"
22 #include "efivar.h"
23 #include "platform.h"
24 #include "aspm.h"
25 #include "affinity.h"
26 #include "debugfs.h"
27 #include "fault.h"
28 #include "netdev.h"
29 
30 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
31 module_param(num_vls, uint, S_IRUGO);
32 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
33 
34 /*
35  * Default time to aggregate two 10K packets from the idle state
36  * (timer not running). The timer starts at the end of the first packet,
37  * so only the time for one 10K packet and header plus a bit extra is needed.
38  * 10 * 1024 + 64 header byte = 10304 byte
39  * 10304 byte / 12.5 GB/s = 824.32ns
40  */
41 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
42 module_param(rcv_intr_timeout, uint, S_IRUGO);
43 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
44 
45 uint rcv_intr_count = 16; /* same as qib */
46 module_param(rcv_intr_count, uint, S_IRUGO);
47 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
48 
49 ushort link_crc_mask = SUPPORTED_CRCS;
50 module_param(link_crc_mask, ushort, S_IRUGO);
51 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
52 
53 uint loopback;
54 module_param_named(loopback, loopback, uint, S_IRUGO);
55 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
56 
57 /* Other driver tunables */
58 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
59 static ushort crc_14b_sideband = 1;
60 static uint use_flr = 1;
61 uint quick_linkup; /* skip LNI */
62 
63 struct flag_table {
64 	u64 flag;	/* the flag */
65 	char *str;	/* description string */
66 	u16 extra;	/* extra information */
67 	u16 unused0;
68 	u32 unused1;
69 };
70 
71 /* str must be a string constant */
72 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
73 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
74 
75 /* Send Error Consequences */
76 #define SEC_WRITE_DROPPED	0x1
77 #define SEC_PACKET_DROPPED	0x2
78 #define SEC_SC_HALTED		0x4	/* per-context only */
79 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
80 
81 #define DEFAULT_KRCVQS		  2
82 #define MIN_KERNEL_KCTXTS         2
83 #define FIRST_KERNEL_KCTXT        1
84 
85 /*
86  * RSM instance allocation
87  *   0 - User Fecn Handling
88  *   1 - Vnic
89  *   2 - AIP
90  *   3 - Verbs
91  */
92 #define RSM_INS_FECN              0
93 #define RSM_INS_VNIC              1
94 #define RSM_INS_AIP               2
95 #define RSM_INS_VERBS             3
96 
97 /* Bit offset into the GUID which carries HFI id information */
98 #define GUID_HFI_INDEX_SHIFT     39
99 
100 /* extract the emulation revision */
101 #define emulator_rev(dd) ((dd)->irev >> 8)
102 /* parallel and serial emulation versions are 3 and 4 respectively */
103 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
104 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
105 
106 /* RSM fields for Verbs */
107 /* packet type */
108 #define IB_PACKET_TYPE         2ull
109 #define QW_SHIFT               6ull
110 /* QPN[7..1] */
111 #define QPN_WIDTH              7ull
112 
113 /* LRH.BTH: QW 0, OFFSET 48 - for match */
114 #define LRH_BTH_QW             0ull
115 #define LRH_BTH_BIT_OFFSET     48ull
116 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
117 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
118 #define LRH_BTH_SELECT
119 #define LRH_BTH_MASK           3ull
120 #define LRH_BTH_VALUE          2ull
121 
122 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
123 #define LRH_SC_QW              0ull
124 #define LRH_SC_BIT_OFFSET      56ull
125 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
126 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
127 #define LRH_SC_MASK            128ull
128 #define LRH_SC_VALUE           0ull
129 
130 /* SC[n..0] QW 0, OFFSET 60 - for select */
131 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
132 
133 /* QPN[m+n:1] QW 1, OFFSET 1 */
134 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
135 
136 /* RSM fields for AIP */
137 /* LRH.BTH above is reused for this rule */
138 
139 /* BTH.DESTQP: QW 1, OFFSET 16 for match */
140 #define BTH_DESTQP_QW           1ull
141 #define BTH_DESTQP_BIT_OFFSET   16ull
142 #define BTH_DESTQP_OFFSET(off) ((BTH_DESTQP_QW << QW_SHIFT) | (off))
143 #define BTH_DESTQP_MATCH_OFFSET BTH_DESTQP_OFFSET(BTH_DESTQP_BIT_OFFSET)
144 #define BTH_DESTQP_MASK         0xFFull
145 #define BTH_DESTQP_VALUE        0x81ull
146 
147 /* DETH.SQPN: QW 1 Offset 56 for select */
148 /* We use 8 most significant Soure QPN bits as entropy fpr AIP */
149 #define DETH_AIP_SQPN_QW 3ull
150 #define DETH_AIP_SQPN_BIT_OFFSET 56ull
151 #define DETH_AIP_SQPN_OFFSET(off) ((DETH_AIP_SQPN_QW << QW_SHIFT) | (off))
152 #define DETH_AIP_SQPN_SELECT_OFFSET \
153 	DETH_AIP_SQPN_OFFSET(DETH_AIP_SQPN_BIT_OFFSET)
154 
155 /* RSM fields for Vnic */
156 /* L2_TYPE: QW 0, OFFSET 61 - for match */
157 #define L2_TYPE_QW             0ull
158 #define L2_TYPE_BIT_OFFSET     61ull
159 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
160 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
161 #define L2_TYPE_MASK           3ull
162 #define L2_16B_VALUE           2ull
163 
164 /* L4_TYPE QW 1, OFFSET 0 - for match */
165 #define L4_TYPE_QW              1ull
166 #define L4_TYPE_BIT_OFFSET      0ull
167 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
168 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
169 #define L4_16B_TYPE_MASK        0xFFull
170 #define L4_16B_ETH_VALUE        0x78ull
171 
172 /* 16B VESWID - for select */
173 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
174 /* 16B ENTROPY - for select */
175 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
176 
177 /* defines to build power on SC2VL table */
178 #define SC2VL_VAL( \
179 	num, \
180 	sc0, sc0val, \
181 	sc1, sc1val, \
182 	sc2, sc2val, \
183 	sc3, sc3val, \
184 	sc4, sc4val, \
185 	sc5, sc5val, \
186 	sc6, sc6val, \
187 	sc7, sc7val) \
188 ( \
189 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
190 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
191 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
192 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
193 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
194 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
195 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
196 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
197 )
198 
199 #define DC_SC_VL_VAL( \
200 	range, \
201 	e0, e0val, \
202 	e1, e1val, \
203 	e2, e2val, \
204 	e3, e3val, \
205 	e4, e4val, \
206 	e5, e5val, \
207 	e6, e6val, \
208 	e7, e7val, \
209 	e8, e8val, \
210 	e9, e9val, \
211 	e10, e10val, \
212 	e11, e11val, \
213 	e12, e12val, \
214 	e13, e13val, \
215 	e14, e14val, \
216 	e15, e15val) \
217 ( \
218 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
219 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
220 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
221 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
222 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
223 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
224 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
225 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
226 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
227 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
228 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
229 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
230 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
231 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
232 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
233 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
234 )
235 
236 /* all CceStatus sub-block freeze bits */
237 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
238 			| CCE_STATUS_RXE_FROZE_SMASK \
239 			| CCE_STATUS_TXE_FROZE_SMASK \
240 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
241 /* all CceStatus sub-block TXE pause bits */
242 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
243 			| CCE_STATUS_TXE_PAUSED_SMASK \
244 			| CCE_STATUS_SDMA_PAUSED_SMASK)
245 /* all CceStatus sub-block RXE pause bits */
246 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
247 
248 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
249 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
250 
251 /*
252  * CCE Error flags.
253  */
254 static struct flag_table cce_err_status_flags[] = {
255 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
256 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
257 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
258 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
259 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
260 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
261 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
262 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
263 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
264 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
265 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
266 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
267 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
268 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
269 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
270 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
271 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
272 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
273 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
274 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
275 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
276 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
277 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
278 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
279 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
280 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
281 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
282 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
283 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
284 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
285 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
286 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
287 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
288 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
289 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
290 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
291 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
292 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
293 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
294 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
295 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
296 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
297 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
298 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
299 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
300 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
301 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
302 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
303 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
304 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
305 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
306 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
307 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
308 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
309 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
310 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
311 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
312 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
313 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
314 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
315 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
316 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
317 /*31*/	FLAG_ENTRY0("LATriggered",
318 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
319 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
320 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
321 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
322 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
323 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
324 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
325 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
326 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
327 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
328 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
329 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
330 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
331 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
332 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
333 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
334 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
335 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
336 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
337 /*41-63 reserved*/
338 };
339 
340 /*
341  * Misc Error flags
342  */
343 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
344 static struct flag_table misc_err_status_flags[] = {
345 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
346 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
347 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
348 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
349 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
350 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
351 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
352 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
353 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
354 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
355 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
356 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
357 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
358 };
359 
360 /*
361  * TXE PIO Error flags and consequences
362  */
363 static struct flag_table pio_err_status_flags[] = {
364 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
365 	SEC_WRITE_DROPPED,
366 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
367 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
368 	SEC_SPC_FREEZE,
369 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
370 /* 2*/	FLAG_ENTRY("PioCsrParity",
371 	SEC_SPC_FREEZE,
372 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
373 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
374 	SEC_SPC_FREEZE,
375 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
376 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
377 	SEC_SPC_FREEZE,
378 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
379 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
380 	SEC_SPC_FREEZE,
381 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
382 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
383 	SEC_SPC_FREEZE,
384 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
385 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
386 	SEC_SPC_FREEZE,
387 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
388 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
389 	SEC_SPC_FREEZE,
390 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
391 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
394 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
397 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
400 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
403 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
404 	0,
405 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
406 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
407 	0,
408 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
409 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
412 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
415 /*17*/	FLAG_ENTRY("PioInitSmIn",
416 	0,
417 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
418 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
421 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
424 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
425 	0,
426 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
427 /*21*/	FLAG_ENTRY("PioWriteDataParity",
428 	SEC_SPC_FREEZE,
429 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
430 /*22*/	FLAG_ENTRY("PioStateMachine",
431 	SEC_SPC_FREEZE,
432 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
433 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
434 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
436 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
437 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
439 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
440 	SEC_SPC_FREEZE,
441 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
442 /*26*/	FLAG_ENTRY("PioVlfSopParity",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
445 /*27*/	FLAG_ENTRY("PioVlFifoParity",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
448 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
449 	SEC_SPC_FREEZE,
450 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
451 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
454 /*30-31 reserved*/
455 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
456 	SEC_SPC_FREEZE,
457 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
458 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
459 	SEC_SPC_FREEZE,
460 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
461 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
462 	SEC_SPC_FREEZE,
463 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
464 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
465 	SEC_SPC_FREEZE,
466 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
467 /*36-63 reserved*/
468 };
469 
470 /* TXE PIO errors that cause an SPC freeze */
471 #define ALL_PIO_FREEZE_ERR \
472 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
473 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
474 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
475 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
476 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
477 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
478 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
479 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
480 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
481 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
482 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
483 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
484 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
485 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
486 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
487 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
488 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
489 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
490 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
491 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
492 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
493 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
494 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
495 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
501 
502 /*
503  * TXE SDMA Error flags
504  */
505 static struct flag_table sdma_err_status_flags[] = {
506 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
507 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
508 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
509 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
510 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
511 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
512 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
513 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
514 /*04-63 reserved*/
515 };
516 
517 /* TXE SDMA errors that cause an SPC freeze */
518 #define ALL_SDMA_FREEZE_ERR  \
519 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
520 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
521 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
522 
523 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
524 #define PORT_DISCARD_EGRESS_ERRS \
525 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
526 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
527 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
528 
529 /*
530  * TXE Egress Error flags
531  */
532 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
533 static struct flag_table egress_err_status_flags[] = {
534 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
535 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
536 /* 2 reserved */
537 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
538 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
539 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
540 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
541 /* 6 reserved */
542 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
543 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
544 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
545 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
546 /* 9-10 reserved */
547 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
548 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
549 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
550 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
551 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
552 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
553 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
554 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
555 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
556 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
557 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
558 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
559 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
560 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
561 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
562 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
563 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
564 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
565 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
566 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
567 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
568 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
569 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
570 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
571 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
572 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
573 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
574 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
575 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
576 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
577 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
578 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
579 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
580 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
581 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
582 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
583 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
584 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
585 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
586 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
587 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
588 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
589 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
590 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
591 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
592 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
593 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
594 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
595 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
596 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
597 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
598 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
599 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
600 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
601 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
602 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
603 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
604 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
605 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
606 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
607 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
608 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
609 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
610 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
611 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
612 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
613 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
614 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
615 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
616 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
617 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
618 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
619 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
620 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
621 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
622 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
623 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
624 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
625 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
626 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
627 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
628 };
629 
630 /*
631  * TXE Egress Error Info flags
632  */
633 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
634 static struct flag_table egress_err_info_flags[] = {
635 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
636 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
637 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
638 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
639 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
640 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
641 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
642 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
643 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
644 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
645 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
646 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
647 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
648 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
649 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
650 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
651 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
652 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
653 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
654 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
655 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
656 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
657 };
658 
659 /* TXE Egress errors that cause an SPC freeze */
660 #define ALL_TXE_EGRESS_FREEZE_ERR \
661 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
662 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
663 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
664 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
665 	| SEES(TX_LAUNCH_CSR_PARITY) \
666 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
667 	| SEES(TX_CONFIG_PARITY) \
668 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
669 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
670 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
671 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
672 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
673 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
674 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
675 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
676 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
677 	| SEES(TX_CREDIT_RETURN_PARITY))
678 
679 /*
680  * TXE Send error flags
681  */
682 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
683 static struct flag_table send_err_status_flags[] = {
684 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
685 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
686 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
687 };
688 
689 /*
690  * TXE Send Context Error flags and consequences
691  */
692 static struct flag_table sc_err_status_flags[] = {
693 /* 0*/	FLAG_ENTRY("InconsistentSop",
694 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
695 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
696 /* 1*/	FLAG_ENTRY("DisallowedPacket",
697 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
698 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
699 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
700 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
701 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
702 /* 3*/	FLAG_ENTRY("WriteOverflow",
703 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
704 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
705 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
706 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
707 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
708 /* 5-63 reserved*/
709 };
710 
711 /*
712  * RXE Receive Error flags
713  */
714 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
715 static struct flag_table rxe_err_status_flags[] = {
716 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
717 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
718 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
719 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
720 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
721 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
722 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
723 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
724 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
725 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
726 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
727 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
728 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
729 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
730 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
731 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
732 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
733 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
734 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
735 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
736 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
737 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
738 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
739 		RXES(RBUF_BLOCK_LIST_READ_COR)),
740 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
741 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
742 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
743 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
744 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
745 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
746 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
747 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
748 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
749 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
750 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
751 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
752 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
753 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
754 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
755 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
756 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
757 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
758 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
759 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
760 		RXES(RBUF_FL_INITDONE_PARITY)),
761 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
762 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
763 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
764 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
765 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
766 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
767 		RXES(LOOKUP_DES_PART1_UNC_COR)),
768 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
769 		RXES(LOOKUP_DES_PART2_PARITY)),
770 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
771 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
772 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
773 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
774 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
775 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
776 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
777 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
778 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
779 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
780 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
781 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
782 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
783 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
784 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
785 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
786 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
787 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
788 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
789 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
790 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
791 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
792 };
793 
794 /* RXE errors that will trigger an SPC freeze */
795 #define ALL_RXE_FREEZE_ERR  \
796 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
797 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
798 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
799 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
800 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
801 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
802 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
803 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
804 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
805 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
806 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
807 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
808 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
809 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
810 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
811 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
812 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
813 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
814 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
815 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
816 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
817 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
818 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
819 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
840 
841 #define RXE_FREEZE_ABORT_MASK \
842 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
843 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
844 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
845 
846 /*
847  * DCC Error Flags
848  */
849 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
850 static struct flag_table dcc_err_flags[] = {
851 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
852 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
853 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
854 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
855 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
856 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
857 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
858 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
859 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
860 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
861 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
862 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
863 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
864 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
865 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
866 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
867 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
868 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
869 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
870 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
871 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
872 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
873 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
874 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
875 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
876 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
877 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
878 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
879 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
880 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
881 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
882 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
883 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
884 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
885 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
886 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
887 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
888 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
889 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
890 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
891 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
892 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
893 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
894 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
895 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
896 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
897 };
898 
899 /*
900  * LCB error flags
901  */
902 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
903 static struct flag_table lcb_err_flags[] = {
904 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
905 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
906 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
907 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
908 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
909 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
910 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
911 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
912 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
913 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
914 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
915 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
916 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
917 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
918 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
919 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
920 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
921 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
922 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
923 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
924 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
925 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
926 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
927 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
928 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
929 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
930 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
931 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
932 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
933 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
934 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
935 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
936 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
937 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
938 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
939 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
940 };
941 
942 /*
943  * DC8051 Error Flags
944  */
945 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
946 static struct flag_table dc8051_err_flags[] = {
947 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
948 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
949 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
950 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
951 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
952 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
953 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
954 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
955 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
956 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
957 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
958 };
959 
960 /*
961  * DC8051 Information Error flags
962  *
963  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
964  */
965 static struct flag_table dc8051_info_err_flags[] = {
966 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
967 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
968 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
969 	FLAG_ENTRY0("Serdes internal loopback failure",
970 		    FAILED_SERDES_INTERNAL_LOOPBACK),
971 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
972 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
973 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
974 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
975 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
976 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
977 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
978 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
979 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
980 	FLAG_ENTRY0("External Device Request Timeout",
981 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
982 };
983 
984 /*
985  * DC8051 Information Host Information flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
988  */
989 static struct flag_table dc8051_info_host_msg_flags[] = {
990 	FLAG_ENTRY0("Host request done", 0x0001),
991 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
992 	FLAG_ENTRY0("BC SMA message", 0x0004),
993 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
994 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
995 	FLAG_ENTRY0("External device config request", 0x0020),
996 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
997 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
998 	FLAG_ENTRY0("Link going down", 0x0100),
999 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1000 };
1001 
1002 static u32 encoded_size(u32 size);
1003 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1004 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1005 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1006 			       u8 *continuous);
1007 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1008 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1009 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1010 				      u8 *remote_tx_rate, u16 *link_widths);
1011 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1012 				    u8 *flag_bits, u16 *link_widths);
1013 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1014 				  u8 *device_rev);
1015 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1016 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1017 			    u8 *tx_polarity_inversion,
1018 			    u8 *rx_polarity_inversion, u8 *max_rate);
1019 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1020 				unsigned int context, u64 err_status);
1021 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1022 static void handle_dcc_err(struct hfi1_devdata *dd,
1023 			   unsigned int context, u64 err_status);
1024 static void handle_lcb_err(struct hfi1_devdata *dd,
1025 			   unsigned int context, u64 err_status);
1026 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1027 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1028 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1029 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1030 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1031 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1032 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1033 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1034 static void set_partition_keys(struct hfi1_pportdata *ppd);
1035 static const char *link_state_name(u32 state);
1036 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1037 					  u32 state);
1038 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1039 			   u64 *out_data);
1040 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1041 static int thermal_init(struct hfi1_devdata *dd);
1042 
1043 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1044 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1045 					    int msecs);
1046 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1047 				  int msecs);
1048 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1049 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1050 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1051 				   int msecs);
1052 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1053 					 int msecs);
1054 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1055 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1056 static void handle_temp_err(struct hfi1_devdata *dd);
1057 static void dc_shutdown(struct hfi1_devdata *dd);
1058 static void dc_start(struct hfi1_devdata *dd);
1059 static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
1060 			   unsigned int *np);
1061 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1062 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1063 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1064 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1065 
1066 /*
1067  * Error interrupt table entry.  This is used as input to the interrupt
1068  * "clear down" routine used for all second tier error interrupt register.
1069  * Second tier interrupt registers have a single bit representing them
1070  * in the top-level CceIntStatus.
1071  */
1072 struct err_reg_info {
1073 	u32 status;		/* status CSR offset */
1074 	u32 clear;		/* clear CSR offset */
1075 	u32 mask;		/* mask CSR offset */
1076 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1077 	const char *desc;
1078 };
1079 
1080 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1081 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1082 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1083 
1084 /*
1085  * Helpers for building HFI and DC error interrupt table entries.  Different
1086  * helpers are needed because of inconsistent register names.
1087  */
1088 #define EE(reg, handler, desc) \
1089 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1090 		handler, desc }
1091 #define DC_EE1(reg, handler, desc) \
1092 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1093 #define DC_EE2(reg, handler, desc) \
1094 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1095 
1096 /*
1097  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1098  * another register containing more information.
1099  */
1100 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1101 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1102 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1103 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1104 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1105 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1106 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1107 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1108 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1109 	/* the rest are reserved */
1110 };
1111 
1112 /*
1113  * Index into the Various section of the interrupt sources
1114  * corresponding to the Critical Temperature interrupt.
1115  */
1116 #define TCRIT_INT_SOURCE 4
1117 
1118 /*
1119  * SDMA error interrupt entry - refers to another register containing more
1120  * information.
1121  */
1122 static const struct err_reg_info sdma_eng_err =
1123 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1124 
1125 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1126 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1127 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1128 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1129 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1130 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1131 	/* rest are reserved */
1132 };
1133 
1134 /*
1135  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1136  * register can not be derived from the MTU value because 10K is not
1137  * a power of 2. Therefore, we need a constant. Everything else can
1138  * be calculated.
1139  */
1140 #define DCC_CFG_PORT_MTU_CAP_10240 7
1141 
1142 /*
1143  * Table of the DC grouping of error interrupts.  Each entry refers to
1144  * another register containing more information.
1145  */
1146 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1147 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1148 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1149 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1150 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1151 	/* the rest are reserved */
1152 };
1153 
1154 struct cntr_entry {
1155 	/*
1156 	 * counter name
1157 	 */
1158 	char *name;
1159 
1160 	/*
1161 	 * csr to read for name (if applicable)
1162 	 */
1163 	u64 csr;
1164 
1165 	/*
1166 	 * offset into dd or ppd to store the counter's value
1167 	 */
1168 	int offset;
1169 
1170 	/*
1171 	 * flags
1172 	 */
1173 	u8 flags;
1174 
1175 	/*
1176 	 * accessor for stat element, context either dd or ppd
1177 	 */
1178 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1179 		       int mode, u64 data);
1180 };
1181 
1182 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1183 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1184 
1185 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1186 { \
1187 	name, \
1188 	csr, \
1189 	offset, \
1190 	flags, \
1191 	accessor \
1192 }
1193 
1194 /* 32bit RXE */
1195 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1196 CNTR_ELEM(#name, \
1197 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1198 	  0, flags | CNTR_32BIT, \
1199 	  port_access_u32_csr)
1200 
1201 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1202 CNTR_ELEM(#name, \
1203 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1204 	  0, flags | CNTR_32BIT, \
1205 	  dev_access_u32_csr)
1206 
1207 /* 64bit RXE */
1208 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1209 CNTR_ELEM(#name, \
1210 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1211 	  0, flags, \
1212 	  port_access_u64_csr)
1213 
1214 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1215 CNTR_ELEM(#name, \
1216 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1217 	  0, flags, \
1218 	  dev_access_u64_csr)
1219 
1220 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1221 #define OVR_ELM(ctx) \
1222 CNTR_ELEM("RcvHdrOvr" #ctx, \
1223 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1224 	  0, CNTR_NORMAL, port_access_u64_csr)
1225 
1226 /* 32bit TXE */
1227 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1228 CNTR_ELEM(#name, \
1229 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1230 	  0, flags | CNTR_32BIT, \
1231 	  port_access_u32_csr)
1232 
1233 /* 64bit TXE */
1234 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1235 CNTR_ELEM(#name, \
1236 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1237 	  0, flags, \
1238 	  port_access_u64_csr)
1239 
1240 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1241 CNTR_ELEM(#name,\
1242 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1243 	  0, \
1244 	  flags, \
1245 	  dev_access_u64_csr)
1246 
1247 /* CCE */
1248 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1251 	  0, flags | CNTR_32BIT, \
1252 	  dev_access_u32_csr)
1253 
1254 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1255 CNTR_ELEM(#name, \
1256 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1257 	  0, flags | CNTR_32BIT, \
1258 	  dev_access_u32_csr)
1259 
1260 /* DC */
1261 #define DC_PERF_CNTR(name, counter, flags) \
1262 CNTR_ELEM(#name, \
1263 	  counter, \
1264 	  0, \
1265 	  flags, \
1266 	  dev_access_u64_csr)
1267 
1268 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270 	  counter, \
1271 	  0, \
1272 	  flags, \
1273 	  dc_access_lcb_cntr)
1274 
1275 /* ibp counters */
1276 #define SW_IBP_CNTR(name, cntr) \
1277 CNTR_ELEM(#name, \
1278 	  0, \
1279 	  0, \
1280 	  CNTR_SYNTH, \
1281 	  access_ibp_##cntr)
1282 
1283 /**
1284  * hfi1_addr_from_offset - return addr for readq/writeq
1285  * @dd: the dd device
1286  * @offset: the offset of the CSR within bar0
1287  *
1288  * This routine selects the appropriate base address
1289  * based on the indicated offset.
1290  */
1291 static inline void __iomem *hfi1_addr_from_offset(
1292 	const struct hfi1_devdata *dd,
1293 	u32 offset)
1294 {
1295 	if (offset >= dd->base2_start)
1296 		return dd->kregbase2 + (offset - dd->base2_start);
1297 	return dd->kregbase1 + offset;
1298 }
1299 
1300 /**
1301  * read_csr - read CSR at the indicated offset
1302  * @dd: the dd device
1303  * @offset: the offset of the CSR within bar0
1304  *
1305  * Return: the value read or all FF's if there
1306  * is no mapping
1307  */
1308 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1309 {
1310 	if (dd->flags & HFI1_PRESENT)
1311 		return readq(hfi1_addr_from_offset(dd, offset));
1312 	return -1;
1313 }
1314 
1315 /**
1316  * write_csr - write CSR at the indicated offset
1317  * @dd: the dd device
1318  * @offset: the offset of the CSR within bar0
1319  * @value: value to write
1320  */
1321 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1322 {
1323 	if (dd->flags & HFI1_PRESENT) {
1324 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1325 
1326 		/* avoid write to RcvArray */
1327 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1328 			return;
1329 		writeq(value, base);
1330 	}
1331 }
1332 
1333 /**
1334  * get_csr_addr - return te iomem address for offset
1335  * @dd: the dd device
1336  * @offset: the offset of the CSR within bar0
1337  *
1338  * Return: The iomem address to use in subsequent
1339  * writeq/readq operations.
1340  */
1341 void __iomem *get_csr_addr(
1342 	const struct hfi1_devdata *dd,
1343 	u32 offset)
1344 {
1345 	if (dd->flags & HFI1_PRESENT)
1346 		return hfi1_addr_from_offset(dd, offset);
1347 	return NULL;
1348 }
1349 
1350 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1351 				 int mode, u64 value)
1352 {
1353 	u64 ret;
1354 
1355 	if (mode == CNTR_MODE_R) {
1356 		ret = read_csr(dd, csr);
1357 	} else if (mode == CNTR_MODE_W) {
1358 		write_csr(dd, csr, value);
1359 		ret = value;
1360 	} else {
1361 		dd_dev_err(dd, "Invalid cntr register access mode");
1362 		return 0;
1363 	}
1364 
1365 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1366 	return ret;
1367 }
1368 
1369 /* Dev Access */
1370 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1371 			      void *context, int vl, int mode, u64 data)
1372 {
1373 	struct hfi1_devdata *dd = context;
1374 	u64 csr = entry->csr;
1375 
1376 	if (entry->flags & CNTR_SDMA) {
1377 		if (vl == CNTR_INVALID_VL)
1378 			return 0;
1379 		csr += 0x100 * vl;
1380 	} else {
1381 		if (vl != CNTR_INVALID_VL)
1382 			return 0;
1383 	}
1384 	return read_write_csr(dd, csr, mode, data);
1385 }
1386 
1387 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1388 			      void *context, int idx, int mode, u64 data)
1389 {
1390 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1391 
1392 	if (dd->per_sdma && idx < dd->num_sdma)
1393 		return dd->per_sdma[idx].err_cnt;
1394 	return 0;
1395 }
1396 
1397 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1398 			      void *context, int idx, int mode, u64 data)
1399 {
1400 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1401 
1402 	if (dd->per_sdma && idx < dd->num_sdma)
1403 		return dd->per_sdma[idx].sdma_int_cnt;
1404 	return 0;
1405 }
1406 
1407 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1408 				   void *context, int idx, int mode, u64 data)
1409 {
1410 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1411 
1412 	if (dd->per_sdma && idx < dd->num_sdma)
1413 		return dd->per_sdma[idx].idle_int_cnt;
1414 	return 0;
1415 }
1416 
1417 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1418 				       void *context, int idx, int mode,
1419 				       u64 data)
1420 {
1421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1422 
1423 	if (dd->per_sdma && idx < dd->num_sdma)
1424 		return dd->per_sdma[idx].progress_int_cnt;
1425 	return 0;
1426 }
1427 
1428 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1429 			      int vl, int mode, u64 data)
1430 {
1431 	struct hfi1_devdata *dd = context;
1432 
1433 	u64 val = 0;
1434 	u64 csr = entry->csr;
1435 
1436 	if (entry->flags & CNTR_VL) {
1437 		if (vl == CNTR_INVALID_VL)
1438 			return 0;
1439 		csr += 8 * vl;
1440 	} else {
1441 		if (vl != CNTR_INVALID_VL)
1442 			return 0;
1443 	}
1444 
1445 	val = read_write_csr(dd, csr, mode, data);
1446 	return val;
1447 }
1448 
1449 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1450 			      int vl, int mode, u64 data)
1451 {
1452 	struct hfi1_devdata *dd = context;
1453 	u32 csr = entry->csr;
1454 	int ret = 0;
1455 
1456 	if (vl != CNTR_INVALID_VL)
1457 		return 0;
1458 	if (mode == CNTR_MODE_R)
1459 		ret = read_lcb_csr(dd, csr, &data);
1460 	else if (mode == CNTR_MODE_W)
1461 		ret = write_lcb_csr(dd, csr, data);
1462 
1463 	if (ret) {
1464 		if (!(dd->flags & HFI1_SHUTDOWN))
1465 			dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1466 		return 0;
1467 	}
1468 
1469 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1470 	return data;
1471 }
1472 
1473 /* Port Access */
1474 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1475 			       int vl, int mode, u64 data)
1476 {
1477 	struct hfi1_pportdata *ppd = context;
1478 
1479 	if (vl != CNTR_INVALID_VL)
1480 		return 0;
1481 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1482 }
1483 
1484 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1485 			       void *context, int vl, int mode, u64 data)
1486 {
1487 	struct hfi1_pportdata *ppd = context;
1488 	u64 val;
1489 	u64 csr = entry->csr;
1490 
1491 	if (entry->flags & CNTR_VL) {
1492 		if (vl == CNTR_INVALID_VL)
1493 			return 0;
1494 		csr += 8 * vl;
1495 	} else {
1496 		if (vl != CNTR_INVALID_VL)
1497 			return 0;
1498 	}
1499 	val = read_write_csr(ppd->dd, csr, mode, data);
1500 	return val;
1501 }
1502 
1503 /* Software defined */
1504 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1505 				u64 data)
1506 {
1507 	u64 ret;
1508 
1509 	if (mode == CNTR_MODE_R) {
1510 		ret = *cntr;
1511 	} else if (mode == CNTR_MODE_W) {
1512 		*cntr = data;
1513 		ret = data;
1514 	} else {
1515 		dd_dev_err(dd, "Invalid cntr sw access mode");
1516 		return 0;
1517 	}
1518 
1519 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1520 
1521 	return ret;
1522 }
1523 
1524 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1525 				 int vl, int mode, u64 data)
1526 {
1527 	struct hfi1_pportdata *ppd = context;
1528 
1529 	if (vl != CNTR_INVALID_VL)
1530 		return 0;
1531 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1532 }
1533 
1534 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1535 				 int vl, int mode, u64 data)
1536 {
1537 	struct hfi1_pportdata *ppd = context;
1538 
1539 	if (vl != CNTR_INVALID_VL)
1540 		return 0;
1541 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1542 }
1543 
1544 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1545 				       void *context, int vl, int mode,
1546 				       u64 data)
1547 {
1548 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1549 
1550 	if (vl != CNTR_INVALID_VL)
1551 		return 0;
1552 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1553 }
1554 
1555 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1556 				   void *context, int vl, int mode, u64 data)
1557 {
1558 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1559 	u64 zero = 0;
1560 	u64 *counter;
1561 
1562 	if (vl == CNTR_INVALID_VL)
1563 		counter = &ppd->port_xmit_discards;
1564 	else if (vl >= 0 && vl < C_VL_COUNT)
1565 		counter = &ppd->port_xmit_discards_vl[vl];
1566 	else
1567 		counter = &zero;
1568 
1569 	return read_write_sw(ppd->dd, counter, mode, data);
1570 }
1571 
1572 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1573 				       void *context, int vl, int mode,
1574 				       u64 data)
1575 {
1576 	struct hfi1_pportdata *ppd = context;
1577 
1578 	if (vl != CNTR_INVALID_VL)
1579 		return 0;
1580 
1581 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1582 			     mode, data);
1583 }
1584 
1585 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1586 				      void *context, int vl, int mode, u64 data)
1587 {
1588 	struct hfi1_pportdata *ppd = context;
1589 
1590 	if (vl != CNTR_INVALID_VL)
1591 		return 0;
1592 
1593 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1594 			     mode, data);
1595 }
1596 
1597 u64 get_all_cpu_total(u64 __percpu *cntr)
1598 {
1599 	int cpu;
1600 	u64 counter = 0;
1601 
1602 	for_each_possible_cpu(cpu)
1603 		counter += *per_cpu_ptr(cntr, cpu);
1604 	return counter;
1605 }
1606 
1607 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1608 			  u64 __percpu *cntr,
1609 			  int vl, int mode, u64 data)
1610 {
1611 	u64 ret = 0;
1612 
1613 	if (vl != CNTR_INVALID_VL)
1614 		return 0;
1615 
1616 	if (mode == CNTR_MODE_R) {
1617 		ret = get_all_cpu_total(cntr) - *z_val;
1618 	} else if (mode == CNTR_MODE_W) {
1619 		/* A write can only zero the counter */
1620 		if (data == 0)
1621 			*z_val = get_all_cpu_total(cntr);
1622 		else
1623 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1624 	} else {
1625 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1626 		return 0;
1627 	}
1628 
1629 	return ret;
1630 }
1631 
1632 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1633 			      void *context, int vl, int mode, u64 data)
1634 {
1635 	struct hfi1_devdata *dd = context;
1636 
1637 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1638 			      mode, data);
1639 }
1640 
1641 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1642 				   void *context, int vl, int mode, u64 data)
1643 {
1644 	struct hfi1_devdata *dd = context;
1645 
1646 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1647 			      mode, data);
1648 }
1649 
1650 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1651 			      void *context, int vl, int mode, u64 data)
1652 {
1653 	struct hfi1_devdata *dd = context;
1654 
1655 	return dd->verbs_dev.n_piowait;
1656 }
1657 
1658 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1659 			       void *context, int vl, int mode, u64 data)
1660 {
1661 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1662 
1663 	return dd->verbs_dev.n_piodrain;
1664 }
1665 
1666 static u64 access_sw_ctx0_seq_drop(const struct cntr_entry *entry,
1667 				   void *context, int vl, int mode, u64 data)
1668 {
1669 	struct hfi1_devdata *dd = context;
1670 
1671 	return dd->ctx0_seq_drop;
1672 }
1673 
1674 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1675 			      void *context, int vl, int mode, u64 data)
1676 {
1677 	struct hfi1_devdata *dd = context;
1678 
1679 	return dd->verbs_dev.n_txwait;
1680 }
1681 
1682 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1683 			       void *context, int vl, int mode, u64 data)
1684 {
1685 	struct hfi1_devdata *dd = context;
1686 
1687 	return dd->verbs_dev.n_kmem_wait;
1688 }
1689 
1690 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1691 				   void *context, int vl, int mode, u64 data)
1692 {
1693 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694 
1695 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1696 			      mode, data);
1697 }
1698 
1699 /* Software counters for the error status bits within MISC_ERR_STATUS */
1700 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1701 					     void *context, int vl, int mode,
1702 					     u64 data)
1703 {
1704 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1705 
1706 	return dd->misc_err_status_cnt[12];
1707 }
1708 
1709 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1710 					  void *context, int vl, int mode,
1711 					  u64 data)
1712 {
1713 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1714 
1715 	return dd->misc_err_status_cnt[11];
1716 }
1717 
1718 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1719 					       void *context, int vl, int mode,
1720 					       u64 data)
1721 {
1722 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1723 
1724 	return dd->misc_err_status_cnt[10];
1725 }
1726 
1727 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1728 						 void *context, int vl,
1729 						 int mode, u64 data)
1730 {
1731 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1732 
1733 	return dd->misc_err_status_cnt[9];
1734 }
1735 
1736 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1737 					   void *context, int vl, int mode,
1738 					   u64 data)
1739 {
1740 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1741 
1742 	return dd->misc_err_status_cnt[8];
1743 }
1744 
1745 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1746 				const struct cntr_entry *entry,
1747 				void *context, int vl, int mode, u64 data)
1748 {
1749 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1750 
1751 	return dd->misc_err_status_cnt[7];
1752 }
1753 
1754 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1755 						void *context, int vl,
1756 						int mode, u64 data)
1757 {
1758 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1759 
1760 	return dd->misc_err_status_cnt[6];
1761 }
1762 
1763 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1764 					      void *context, int vl, int mode,
1765 					      u64 data)
1766 {
1767 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1768 
1769 	return dd->misc_err_status_cnt[5];
1770 }
1771 
1772 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1773 					    void *context, int vl, int mode,
1774 					    u64 data)
1775 {
1776 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1777 
1778 	return dd->misc_err_status_cnt[4];
1779 }
1780 
1781 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1782 						 void *context, int vl,
1783 						 int mode, u64 data)
1784 {
1785 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1786 
1787 	return dd->misc_err_status_cnt[3];
1788 }
1789 
1790 static u64 access_misc_csr_write_bad_addr_err_cnt(
1791 				const struct cntr_entry *entry,
1792 				void *context, int vl, int mode, u64 data)
1793 {
1794 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1795 
1796 	return dd->misc_err_status_cnt[2];
1797 }
1798 
1799 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1800 						 void *context, int vl,
1801 						 int mode, u64 data)
1802 {
1803 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1804 
1805 	return dd->misc_err_status_cnt[1];
1806 }
1807 
1808 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1809 					  void *context, int vl, int mode,
1810 					  u64 data)
1811 {
1812 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1813 
1814 	return dd->misc_err_status_cnt[0];
1815 }
1816 
1817 /*
1818  * Software counter for the aggregate of
1819  * individual CceErrStatus counters
1820  */
1821 static u64 access_sw_cce_err_status_aggregated_cnt(
1822 				const struct cntr_entry *entry,
1823 				void *context, int vl, int mode, u64 data)
1824 {
1825 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1826 
1827 	return dd->sw_cce_err_status_aggregate;
1828 }
1829 
1830 /*
1831  * Software counters corresponding to each of the
1832  * error status bits within CceErrStatus
1833  */
1834 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1835 					      void *context, int vl, int mode,
1836 					      u64 data)
1837 {
1838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1839 
1840 	return dd->cce_err_status_cnt[40];
1841 }
1842 
1843 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1844 					  void *context, int vl, int mode,
1845 					  u64 data)
1846 {
1847 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1848 
1849 	return dd->cce_err_status_cnt[39];
1850 }
1851 
1852 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1853 					  void *context, int vl, int mode,
1854 					  u64 data)
1855 {
1856 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1857 
1858 	return dd->cce_err_status_cnt[38];
1859 }
1860 
1861 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1862 					     void *context, int vl, int mode,
1863 					     u64 data)
1864 {
1865 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1866 
1867 	return dd->cce_err_status_cnt[37];
1868 }
1869 
1870 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1871 					     void *context, int vl, int mode,
1872 					     u64 data)
1873 {
1874 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1875 
1876 	return dd->cce_err_status_cnt[36];
1877 }
1878 
1879 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1880 				const struct cntr_entry *entry,
1881 				void *context, int vl, int mode, u64 data)
1882 {
1883 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1884 
1885 	return dd->cce_err_status_cnt[35];
1886 }
1887 
1888 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1889 				const struct cntr_entry *entry,
1890 				void *context, int vl, int mode, u64 data)
1891 {
1892 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1893 
1894 	return dd->cce_err_status_cnt[34];
1895 }
1896 
1897 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1898 						 void *context, int vl,
1899 						 int mode, u64 data)
1900 {
1901 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1902 
1903 	return dd->cce_err_status_cnt[33];
1904 }
1905 
1906 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1907 						void *context, int vl, int mode,
1908 						u64 data)
1909 {
1910 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1911 
1912 	return dd->cce_err_status_cnt[32];
1913 }
1914 
1915 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1916 				   void *context, int vl, int mode, u64 data)
1917 {
1918 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1919 
1920 	return dd->cce_err_status_cnt[31];
1921 }
1922 
1923 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1924 					       void *context, int vl, int mode,
1925 					       u64 data)
1926 {
1927 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1928 
1929 	return dd->cce_err_status_cnt[30];
1930 }
1931 
1932 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1933 					      void *context, int vl, int mode,
1934 					      u64 data)
1935 {
1936 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1937 
1938 	return dd->cce_err_status_cnt[29];
1939 }
1940 
1941 static u64 access_pcic_transmit_back_parity_err_cnt(
1942 				const struct cntr_entry *entry,
1943 				void *context, int vl, int mode, u64 data)
1944 {
1945 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1946 
1947 	return dd->cce_err_status_cnt[28];
1948 }
1949 
1950 static u64 access_pcic_transmit_front_parity_err_cnt(
1951 				const struct cntr_entry *entry,
1952 				void *context, int vl, int mode, u64 data)
1953 {
1954 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1955 
1956 	return dd->cce_err_status_cnt[27];
1957 }
1958 
1959 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1960 					     void *context, int vl, int mode,
1961 					     u64 data)
1962 {
1963 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1964 
1965 	return dd->cce_err_status_cnt[26];
1966 }
1967 
1968 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1969 					    void *context, int vl, int mode,
1970 					    u64 data)
1971 {
1972 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1973 
1974 	return dd->cce_err_status_cnt[25];
1975 }
1976 
1977 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1978 					      void *context, int vl, int mode,
1979 					      u64 data)
1980 {
1981 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1982 
1983 	return dd->cce_err_status_cnt[24];
1984 }
1985 
1986 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1987 					     void *context, int vl, int mode,
1988 					     u64 data)
1989 {
1990 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1991 
1992 	return dd->cce_err_status_cnt[23];
1993 }
1994 
1995 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1996 						 void *context, int vl,
1997 						 int mode, u64 data)
1998 {
1999 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2000 
2001 	return dd->cce_err_status_cnt[22];
2002 }
2003 
2004 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2005 					 void *context, int vl, int mode,
2006 					 u64 data)
2007 {
2008 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2009 
2010 	return dd->cce_err_status_cnt[21];
2011 }
2012 
2013 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2014 				const struct cntr_entry *entry,
2015 				void *context, int vl, int mode, u64 data)
2016 {
2017 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2018 
2019 	return dd->cce_err_status_cnt[20];
2020 }
2021 
2022 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2023 						 void *context, int vl,
2024 						 int mode, u64 data)
2025 {
2026 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2027 
2028 	return dd->cce_err_status_cnt[19];
2029 }
2030 
2031 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2032 					     void *context, int vl, int mode,
2033 					     u64 data)
2034 {
2035 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2036 
2037 	return dd->cce_err_status_cnt[18];
2038 }
2039 
2040 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2041 					    void *context, int vl, int mode,
2042 					    u64 data)
2043 {
2044 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2045 
2046 	return dd->cce_err_status_cnt[17];
2047 }
2048 
2049 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2050 					      void *context, int vl, int mode,
2051 					      u64 data)
2052 {
2053 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2054 
2055 	return dd->cce_err_status_cnt[16];
2056 }
2057 
2058 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2059 					     void *context, int vl, int mode,
2060 					     u64 data)
2061 {
2062 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2063 
2064 	return dd->cce_err_status_cnt[15];
2065 }
2066 
2067 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2068 						 void *context, int vl,
2069 						 int mode, u64 data)
2070 {
2071 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2072 
2073 	return dd->cce_err_status_cnt[14];
2074 }
2075 
2076 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2077 					     void *context, int vl, int mode,
2078 					     u64 data)
2079 {
2080 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2081 
2082 	return dd->cce_err_status_cnt[13];
2083 }
2084 
2085 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2086 				const struct cntr_entry *entry,
2087 				void *context, int vl, int mode, u64 data)
2088 {
2089 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2090 
2091 	return dd->cce_err_status_cnt[12];
2092 }
2093 
2094 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2095 				const struct cntr_entry *entry,
2096 				void *context, int vl, int mode, u64 data)
2097 {
2098 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2099 
2100 	return dd->cce_err_status_cnt[11];
2101 }
2102 
2103 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2104 				const struct cntr_entry *entry,
2105 				void *context, int vl, int mode, u64 data)
2106 {
2107 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2108 
2109 	return dd->cce_err_status_cnt[10];
2110 }
2111 
2112 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2113 				const struct cntr_entry *entry,
2114 				void *context, int vl, int mode, u64 data)
2115 {
2116 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2117 
2118 	return dd->cce_err_status_cnt[9];
2119 }
2120 
2121 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2122 				const struct cntr_entry *entry,
2123 				void *context, int vl, int mode, u64 data)
2124 {
2125 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2126 
2127 	return dd->cce_err_status_cnt[8];
2128 }
2129 
2130 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2131 						 void *context, int vl,
2132 						 int mode, u64 data)
2133 {
2134 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2135 
2136 	return dd->cce_err_status_cnt[7];
2137 }
2138 
2139 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2140 				const struct cntr_entry *entry,
2141 				void *context, int vl, int mode, u64 data)
2142 {
2143 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2144 
2145 	return dd->cce_err_status_cnt[6];
2146 }
2147 
2148 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2149 					       void *context, int vl, int mode,
2150 					       u64 data)
2151 {
2152 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2153 
2154 	return dd->cce_err_status_cnt[5];
2155 }
2156 
2157 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2158 					  void *context, int vl, int mode,
2159 					  u64 data)
2160 {
2161 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2162 
2163 	return dd->cce_err_status_cnt[4];
2164 }
2165 
2166 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2167 				const struct cntr_entry *entry,
2168 				void *context, int vl, int mode, u64 data)
2169 {
2170 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2171 
2172 	return dd->cce_err_status_cnt[3];
2173 }
2174 
2175 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2176 						 void *context, int vl,
2177 						 int mode, u64 data)
2178 {
2179 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2180 
2181 	return dd->cce_err_status_cnt[2];
2182 }
2183 
2184 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2185 						void *context, int vl,
2186 						int mode, u64 data)
2187 {
2188 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2189 
2190 	return dd->cce_err_status_cnt[1];
2191 }
2192 
2193 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2194 					 void *context, int vl, int mode,
2195 					 u64 data)
2196 {
2197 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2198 
2199 	return dd->cce_err_status_cnt[0];
2200 }
2201 
2202 /*
2203  * Software counters corresponding to each of the
2204  * error status bits within RcvErrStatus
2205  */
2206 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2207 					void *context, int vl, int mode,
2208 					u64 data)
2209 {
2210 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2211 
2212 	return dd->rcv_err_status_cnt[63];
2213 }
2214 
2215 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2216 						void *context, int vl,
2217 						int mode, u64 data)
2218 {
2219 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2220 
2221 	return dd->rcv_err_status_cnt[62];
2222 }
2223 
2224 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2225 					       void *context, int vl, int mode,
2226 					       u64 data)
2227 {
2228 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2229 
2230 	return dd->rcv_err_status_cnt[61];
2231 }
2232 
2233 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2234 					 void *context, int vl, int mode,
2235 					 u64 data)
2236 {
2237 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2238 
2239 	return dd->rcv_err_status_cnt[60];
2240 }
2241 
2242 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2243 						 void *context, int vl,
2244 						 int mode, u64 data)
2245 {
2246 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2247 
2248 	return dd->rcv_err_status_cnt[59];
2249 }
2250 
2251 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2252 						 void *context, int vl,
2253 						 int mode, u64 data)
2254 {
2255 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2256 
2257 	return dd->rcv_err_status_cnt[58];
2258 }
2259 
2260 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2261 					    void *context, int vl, int mode,
2262 					    u64 data)
2263 {
2264 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2265 
2266 	return dd->rcv_err_status_cnt[57];
2267 }
2268 
2269 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2270 					   void *context, int vl, int mode,
2271 					   u64 data)
2272 {
2273 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2274 
2275 	return dd->rcv_err_status_cnt[56];
2276 }
2277 
2278 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2279 					   void *context, int vl, int mode,
2280 					   u64 data)
2281 {
2282 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2283 
2284 	return dd->rcv_err_status_cnt[55];
2285 }
2286 
2287 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2288 				const struct cntr_entry *entry,
2289 				void *context, int vl, int mode, u64 data)
2290 {
2291 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2292 
2293 	return dd->rcv_err_status_cnt[54];
2294 }
2295 
2296 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2297 				const struct cntr_entry *entry,
2298 				void *context, int vl, int mode, u64 data)
2299 {
2300 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2301 
2302 	return dd->rcv_err_status_cnt[53];
2303 }
2304 
2305 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2306 						 void *context, int vl,
2307 						 int mode, u64 data)
2308 {
2309 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2310 
2311 	return dd->rcv_err_status_cnt[52];
2312 }
2313 
2314 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2315 						 void *context, int vl,
2316 						 int mode, u64 data)
2317 {
2318 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2319 
2320 	return dd->rcv_err_status_cnt[51];
2321 }
2322 
2323 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2324 						 void *context, int vl,
2325 						 int mode, u64 data)
2326 {
2327 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2328 
2329 	return dd->rcv_err_status_cnt[50];
2330 }
2331 
2332 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2333 						 void *context, int vl,
2334 						 int mode, u64 data)
2335 {
2336 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2337 
2338 	return dd->rcv_err_status_cnt[49];
2339 }
2340 
2341 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2342 						 void *context, int vl,
2343 						 int mode, u64 data)
2344 {
2345 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2346 
2347 	return dd->rcv_err_status_cnt[48];
2348 }
2349 
2350 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2351 						 void *context, int vl,
2352 						 int mode, u64 data)
2353 {
2354 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2355 
2356 	return dd->rcv_err_status_cnt[47];
2357 }
2358 
2359 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2360 					 void *context, int vl, int mode,
2361 					 u64 data)
2362 {
2363 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2364 
2365 	return dd->rcv_err_status_cnt[46];
2366 }
2367 
2368 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2369 				const struct cntr_entry *entry,
2370 				void *context, int vl, int mode, u64 data)
2371 {
2372 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2373 
2374 	return dd->rcv_err_status_cnt[45];
2375 }
2376 
2377 static u64 access_rx_lookup_csr_parity_err_cnt(
2378 				const struct cntr_entry *entry,
2379 				void *context, int vl, int mode, u64 data)
2380 {
2381 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2382 
2383 	return dd->rcv_err_status_cnt[44];
2384 }
2385 
2386 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2387 				const struct cntr_entry *entry,
2388 				void *context, int vl, int mode, u64 data)
2389 {
2390 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2391 
2392 	return dd->rcv_err_status_cnt[43];
2393 }
2394 
2395 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2396 				const struct cntr_entry *entry,
2397 				void *context, int vl, int mode, u64 data)
2398 {
2399 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2400 
2401 	return dd->rcv_err_status_cnt[42];
2402 }
2403 
2404 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2405 				const struct cntr_entry *entry,
2406 				void *context, int vl, int mode, u64 data)
2407 {
2408 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2409 
2410 	return dd->rcv_err_status_cnt[41];
2411 }
2412 
2413 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2414 				const struct cntr_entry *entry,
2415 				void *context, int vl, int mode, u64 data)
2416 {
2417 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2418 
2419 	return dd->rcv_err_status_cnt[40];
2420 }
2421 
2422 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2423 				const struct cntr_entry *entry,
2424 				void *context, int vl, int mode, u64 data)
2425 {
2426 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2427 
2428 	return dd->rcv_err_status_cnt[39];
2429 }
2430 
2431 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2432 				const struct cntr_entry *entry,
2433 				void *context, int vl, int mode, u64 data)
2434 {
2435 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2436 
2437 	return dd->rcv_err_status_cnt[38];
2438 }
2439 
2440 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2441 				const struct cntr_entry *entry,
2442 				void *context, int vl, int mode, u64 data)
2443 {
2444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2445 
2446 	return dd->rcv_err_status_cnt[37];
2447 }
2448 
2449 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2450 				const struct cntr_entry *entry,
2451 				void *context, int vl, int mode, u64 data)
2452 {
2453 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2454 
2455 	return dd->rcv_err_status_cnt[36];
2456 }
2457 
2458 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2459 				const struct cntr_entry *entry,
2460 				void *context, int vl, int mode, u64 data)
2461 {
2462 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2463 
2464 	return dd->rcv_err_status_cnt[35];
2465 }
2466 
2467 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2468 				const struct cntr_entry *entry,
2469 				void *context, int vl, int mode, u64 data)
2470 {
2471 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2472 
2473 	return dd->rcv_err_status_cnt[34];
2474 }
2475 
2476 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2477 				const struct cntr_entry *entry,
2478 				void *context, int vl, int mode, u64 data)
2479 {
2480 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2481 
2482 	return dd->rcv_err_status_cnt[33];
2483 }
2484 
2485 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2486 					void *context, int vl, int mode,
2487 					u64 data)
2488 {
2489 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2490 
2491 	return dd->rcv_err_status_cnt[32];
2492 }
2493 
2494 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2495 				       void *context, int vl, int mode,
2496 				       u64 data)
2497 {
2498 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2499 
2500 	return dd->rcv_err_status_cnt[31];
2501 }
2502 
2503 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2504 					  void *context, int vl, int mode,
2505 					  u64 data)
2506 {
2507 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2508 
2509 	return dd->rcv_err_status_cnt[30];
2510 }
2511 
2512 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2513 					     void *context, int vl, int mode,
2514 					     u64 data)
2515 {
2516 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2517 
2518 	return dd->rcv_err_status_cnt[29];
2519 }
2520 
2521 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2522 						 void *context, int vl,
2523 						 int mode, u64 data)
2524 {
2525 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2526 
2527 	return dd->rcv_err_status_cnt[28];
2528 }
2529 
2530 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2531 				const struct cntr_entry *entry,
2532 				void *context, int vl, int mode, u64 data)
2533 {
2534 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2535 
2536 	return dd->rcv_err_status_cnt[27];
2537 }
2538 
2539 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2540 				const struct cntr_entry *entry,
2541 				void *context, int vl, int mode, u64 data)
2542 {
2543 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2544 
2545 	return dd->rcv_err_status_cnt[26];
2546 }
2547 
2548 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2549 				const struct cntr_entry *entry,
2550 				void *context, int vl, int mode, u64 data)
2551 {
2552 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2553 
2554 	return dd->rcv_err_status_cnt[25];
2555 }
2556 
2557 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2558 				const struct cntr_entry *entry,
2559 				void *context, int vl, int mode, u64 data)
2560 {
2561 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2562 
2563 	return dd->rcv_err_status_cnt[24];
2564 }
2565 
2566 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2567 				const struct cntr_entry *entry,
2568 				void *context, int vl, int mode, u64 data)
2569 {
2570 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2571 
2572 	return dd->rcv_err_status_cnt[23];
2573 }
2574 
2575 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2576 				const struct cntr_entry *entry,
2577 				void *context, int vl, int mode, u64 data)
2578 {
2579 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2580 
2581 	return dd->rcv_err_status_cnt[22];
2582 }
2583 
2584 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2585 				const struct cntr_entry *entry,
2586 				void *context, int vl, int mode, u64 data)
2587 {
2588 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2589 
2590 	return dd->rcv_err_status_cnt[21];
2591 }
2592 
2593 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2594 				const struct cntr_entry *entry,
2595 				void *context, int vl, int mode, u64 data)
2596 {
2597 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2598 
2599 	return dd->rcv_err_status_cnt[20];
2600 }
2601 
2602 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2603 				const struct cntr_entry *entry,
2604 				void *context, int vl, int mode, u64 data)
2605 {
2606 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2607 
2608 	return dd->rcv_err_status_cnt[19];
2609 }
2610 
2611 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2612 						 void *context, int vl,
2613 						 int mode, u64 data)
2614 {
2615 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2616 
2617 	return dd->rcv_err_status_cnt[18];
2618 }
2619 
2620 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2621 						 void *context, int vl,
2622 						 int mode, u64 data)
2623 {
2624 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2625 
2626 	return dd->rcv_err_status_cnt[17];
2627 }
2628 
2629 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2630 				const struct cntr_entry *entry,
2631 				void *context, int vl, int mode, u64 data)
2632 {
2633 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2634 
2635 	return dd->rcv_err_status_cnt[16];
2636 }
2637 
2638 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2639 				const struct cntr_entry *entry,
2640 				void *context, int vl, int mode, u64 data)
2641 {
2642 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2643 
2644 	return dd->rcv_err_status_cnt[15];
2645 }
2646 
2647 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2648 						void *context, int vl,
2649 						int mode, u64 data)
2650 {
2651 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2652 
2653 	return dd->rcv_err_status_cnt[14];
2654 }
2655 
2656 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2657 						void *context, int vl,
2658 						int mode, u64 data)
2659 {
2660 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2661 
2662 	return dd->rcv_err_status_cnt[13];
2663 }
2664 
2665 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2666 					      void *context, int vl, int mode,
2667 					      u64 data)
2668 {
2669 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2670 
2671 	return dd->rcv_err_status_cnt[12];
2672 }
2673 
2674 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2675 					  void *context, int vl, int mode,
2676 					  u64 data)
2677 {
2678 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2679 
2680 	return dd->rcv_err_status_cnt[11];
2681 }
2682 
2683 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2684 					  void *context, int vl, int mode,
2685 					  u64 data)
2686 {
2687 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2688 
2689 	return dd->rcv_err_status_cnt[10];
2690 }
2691 
2692 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2693 					       void *context, int vl, int mode,
2694 					       u64 data)
2695 {
2696 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2697 
2698 	return dd->rcv_err_status_cnt[9];
2699 }
2700 
2701 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2702 					    void *context, int vl, int mode,
2703 					    u64 data)
2704 {
2705 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2706 
2707 	return dd->rcv_err_status_cnt[8];
2708 }
2709 
2710 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2711 				const struct cntr_entry *entry,
2712 				void *context, int vl, int mode, u64 data)
2713 {
2714 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2715 
2716 	return dd->rcv_err_status_cnt[7];
2717 }
2718 
2719 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2720 				const struct cntr_entry *entry,
2721 				void *context, int vl, int mode, u64 data)
2722 {
2723 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2724 
2725 	return dd->rcv_err_status_cnt[6];
2726 }
2727 
2728 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2729 					  void *context, int vl, int mode,
2730 					  u64 data)
2731 {
2732 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2733 
2734 	return dd->rcv_err_status_cnt[5];
2735 }
2736 
2737 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2738 					  void *context, int vl, int mode,
2739 					  u64 data)
2740 {
2741 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2742 
2743 	return dd->rcv_err_status_cnt[4];
2744 }
2745 
2746 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2747 					 void *context, int vl, int mode,
2748 					 u64 data)
2749 {
2750 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2751 
2752 	return dd->rcv_err_status_cnt[3];
2753 }
2754 
2755 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2756 					 void *context, int vl, int mode,
2757 					 u64 data)
2758 {
2759 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2760 
2761 	return dd->rcv_err_status_cnt[2];
2762 }
2763 
2764 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2765 					    void *context, int vl, int mode,
2766 					    u64 data)
2767 {
2768 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2769 
2770 	return dd->rcv_err_status_cnt[1];
2771 }
2772 
2773 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2774 					 void *context, int vl, int mode,
2775 					 u64 data)
2776 {
2777 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2778 
2779 	return dd->rcv_err_status_cnt[0];
2780 }
2781 
2782 /*
2783  * Software counters corresponding to each of the
2784  * error status bits within SendPioErrStatus
2785  */
2786 static u64 access_pio_pec_sop_head_parity_err_cnt(
2787 				const struct cntr_entry *entry,
2788 				void *context, int vl, int mode, u64 data)
2789 {
2790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2791 
2792 	return dd->send_pio_err_status_cnt[35];
2793 }
2794 
2795 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2796 				const struct cntr_entry *entry,
2797 				void *context, int vl, int mode, u64 data)
2798 {
2799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2800 
2801 	return dd->send_pio_err_status_cnt[34];
2802 }
2803 
2804 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2805 				const struct cntr_entry *entry,
2806 				void *context, int vl, int mode, u64 data)
2807 {
2808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2809 
2810 	return dd->send_pio_err_status_cnt[33];
2811 }
2812 
2813 static u64 access_pio_current_free_cnt_parity_err_cnt(
2814 				const struct cntr_entry *entry,
2815 				void *context, int vl, int mode, u64 data)
2816 {
2817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2818 
2819 	return dd->send_pio_err_status_cnt[32];
2820 }
2821 
2822 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2823 					  void *context, int vl, int mode,
2824 					  u64 data)
2825 {
2826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2827 
2828 	return dd->send_pio_err_status_cnt[31];
2829 }
2830 
2831 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2832 					  void *context, int vl, int mode,
2833 					  u64 data)
2834 {
2835 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2836 
2837 	return dd->send_pio_err_status_cnt[30];
2838 }
2839 
2840 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2841 					   void *context, int vl, int mode,
2842 					   u64 data)
2843 {
2844 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2845 
2846 	return dd->send_pio_err_status_cnt[29];
2847 }
2848 
2849 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2850 				const struct cntr_entry *entry,
2851 				void *context, int vl, int mode, u64 data)
2852 {
2853 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2854 
2855 	return dd->send_pio_err_status_cnt[28];
2856 }
2857 
2858 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2859 					     void *context, int vl, int mode,
2860 					     u64 data)
2861 {
2862 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2863 
2864 	return dd->send_pio_err_status_cnt[27];
2865 }
2866 
2867 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2868 					     void *context, int vl, int mode,
2869 					     u64 data)
2870 {
2871 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2872 
2873 	return dd->send_pio_err_status_cnt[26];
2874 }
2875 
2876 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2877 						void *context, int vl,
2878 						int mode, u64 data)
2879 {
2880 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2881 
2882 	return dd->send_pio_err_status_cnt[25];
2883 }
2884 
2885 static u64 access_pio_block_qw_count_parity_err_cnt(
2886 				const struct cntr_entry *entry,
2887 				void *context, int vl, int mode, u64 data)
2888 {
2889 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2890 
2891 	return dd->send_pio_err_status_cnt[24];
2892 }
2893 
2894 static u64 access_pio_write_qw_valid_parity_err_cnt(
2895 				const struct cntr_entry *entry,
2896 				void *context, int vl, int mode, u64 data)
2897 {
2898 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2899 
2900 	return dd->send_pio_err_status_cnt[23];
2901 }
2902 
2903 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2904 					    void *context, int vl, int mode,
2905 					    u64 data)
2906 {
2907 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2908 
2909 	return dd->send_pio_err_status_cnt[22];
2910 }
2911 
2912 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2913 						void *context, int vl,
2914 						int mode, u64 data)
2915 {
2916 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2917 
2918 	return dd->send_pio_err_status_cnt[21];
2919 }
2920 
2921 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2922 						void *context, int vl,
2923 						int mode, u64 data)
2924 {
2925 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2926 
2927 	return dd->send_pio_err_status_cnt[20];
2928 }
2929 
2930 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2931 						void *context, int vl,
2932 						int mode, u64 data)
2933 {
2934 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2935 
2936 	return dd->send_pio_err_status_cnt[19];
2937 }
2938 
2939 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2940 				const struct cntr_entry *entry,
2941 				void *context, int vl, int mode, u64 data)
2942 {
2943 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2944 
2945 	return dd->send_pio_err_status_cnt[18];
2946 }
2947 
2948 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2949 					 void *context, int vl, int mode,
2950 					 u64 data)
2951 {
2952 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2953 
2954 	return dd->send_pio_err_status_cnt[17];
2955 }
2956 
2957 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2958 					    void *context, int vl, int mode,
2959 					    u64 data)
2960 {
2961 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2962 
2963 	return dd->send_pio_err_status_cnt[16];
2964 }
2965 
2966 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2967 				const struct cntr_entry *entry,
2968 				void *context, int vl, int mode, u64 data)
2969 {
2970 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2971 
2972 	return dd->send_pio_err_status_cnt[15];
2973 }
2974 
2975 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2976 				const struct cntr_entry *entry,
2977 				void *context, int vl, int mode, u64 data)
2978 {
2979 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2980 
2981 	return dd->send_pio_err_status_cnt[14];
2982 }
2983 
2984 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2985 				const struct cntr_entry *entry,
2986 				void *context, int vl, int mode, u64 data)
2987 {
2988 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2989 
2990 	return dd->send_pio_err_status_cnt[13];
2991 }
2992 
2993 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2994 				const struct cntr_entry *entry,
2995 				void *context, int vl, int mode, u64 data)
2996 {
2997 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2998 
2999 	return dd->send_pio_err_status_cnt[12];
3000 }
3001 
3002 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3003 				const struct cntr_entry *entry,
3004 				void *context, int vl, int mode, u64 data)
3005 {
3006 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3007 
3008 	return dd->send_pio_err_status_cnt[11];
3009 }
3010 
3011 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3012 				const struct cntr_entry *entry,
3013 				void *context, int vl, int mode, u64 data)
3014 {
3015 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3016 
3017 	return dd->send_pio_err_status_cnt[10];
3018 }
3019 
3020 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3021 				const struct cntr_entry *entry,
3022 				void *context, int vl, int mode, u64 data)
3023 {
3024 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3025 
3026 	return dd->send_pio_err_status_cnt[9];
3027 }
3028 
3029 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3030 				const struct cntr_entry *entry,
3031 				void *context, int vl, int mode, u64 data)
3032 {
3033 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3034 
3035 	return dd->send_pio_err_status_cnt[8];
3036 }
3037 
3038 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3039 				const struct cntr_entry *entry,
3040 				void *context, int vl, int mode, u64 data)
3041 {
3042 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3043 
3044 	return dd->send_pio_err_status_cnt[7];
3045 }
3046 
3047 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3048 					      void *context, int vl, int mode,
3049 					      u64 data)
3050 {
3051 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3052 
3053 	return dd->send_pio_err_status_cnt[6];
3054 }
3055 
3056 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3057 					      void *context, int vl, int mode,
3058 					      u64 data)
3059 {
3060 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3061 
3062 	return dd->send_pio_err_status_cnt[5];
3063 }
3064 
3065 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3066 					   void *context, int vl, int mode,
3067 					   u64 data)
3068 {
3069 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3070 
3071 	return dd->send_pio_err_status_cnt[4];
3072 }
3073 
3074 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3075 					   void *context, int vl, int mode,
3076 					   u64 data)
3077 {
3078 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3079 
3080 	return dd->send_pio_err_status_cnt[3];
3081 }
3082 
3083 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3084 					 void *context, int vl, int mode,
3085 					 u64 data)
3086 {
3087 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3088 
3089 	return dd->send_pio_err_status_cnt[2];
3090 }
3091 
3092 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3093 						void *context, int vl,
3094 						int mode, u64 data)
3095 {
3096 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3097 
3098 	return dd->send_pio_err_status_cnt[1];
3099 }
3100 
3101 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3102 					     void *context, int vl, int mode,
3103 					     u64 data)
3104 {
3105 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3106 
3107 	return dd->send_pio_err_status_cnt[0];
3108 }
3109 
3110 /*
3111  * Software counters corresponding to each of the
3112  * error status bits within SendDmaErrStatus
3113  */
3114 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3115 				const struct cntr_entry *entry,
3116 				void *context, int vl, int mode, u64 data)
3117 {
3118 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3119 
3120 	return dd->send_dma_err_status_cnt[3];
3121 }
3122 
3123 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3124 				const struct cntr_entry *entry,
3125 				void *context, int vl, int mode, u64 data)
3126 {
3127 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3128 
3129 	return dd->send_dma_err_status_cnt[2];
3130 }
3131 
3132 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3133 					  void *context, int vl, int mode,
3134 					  u64 data)
3135 {
3136 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3137 
3138 	return dd->send_dma_err_status_cnt[1];
3139 }
3140 
3141 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3142 				       void *context, int vl, int mode,
3143 				       u64 data)
3144 {
3145 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3146 
3147 	return dd->send_dma_err_status_cnt[0];
3148 }
3149 
3150 /*
3151  * Software counters corresponding to each of the
3152  * error status bits within SendEgressErrStatus
3153  */
3154 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3155 				const struct cntr_entry *entry,
3156 				void *context, int vl, int mode, u64 data)
3157 {
3158 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3159 
3160 	return dd->send_egress_err_status_cnt[63];
3161 }
3162 
3163 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3164 				const struct cntr_entry *entry,
3165 				void *context, int vl, int mode, u64 data)
3166 {
3167 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3168 
3169 	return dd->send_egress_err_status_cnt[62];
3170 }
3171 
3172 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3173 					     void *context, int vl, int mode,
3174 					     u64 data)
3175 {
3176 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3177 
3178 	return dd->send_egress_err_status_cnt[61];
3179 }
3180 
3181 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3182 						 void *context, int vl,
3183 						 int mode, u64 data)
3184 {
3185 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3186 
3187 	return dd->send_egress_err_status_cnt[60];
3188 }
3189 
3190 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3191 				const struct cntr_entry *entry,
3192 				void *context, int vl, int mode, u64 data)
3193 {
3194 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3195 
3196 	return dd->send_egress_err_status_cnt[59];
3197 }
3198 
3199 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3200 					void *context, int vl, int mode,
3201 					u64 data)
3202 {
3203 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3204 
3205 	return dd->send_egress_err_status_cnt[58];
3206 }
3207 
3208 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3209 					    void *context, int vl, int mode,
3210 					    u64 data)
3211 {
3212 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3213 
3214 	return dd->send_egress_err_status_cnt[57];
3215 }
3216 
3217 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3218 					      void *context, int vl, int mode,
3219 					      u64 data)
3220 {
3221 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3222 
3223 	return dd->send_egress_err_status_cnt[56];
3224 }
3225 
3226 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3227 					      void *context, int vl, int mode,
3228 					      u64 data)
3229 {
3230 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3231 
3232 	return dd->send_egress_err_status_cnt[55];
3233 }
3234 
3235 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3236 					      void *context, int vl, int mode,
3237 					      u64 data)
3238 {
3239 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3240 
3241 	return dd->send_egress_err_status_cnt[54];
3242 }
3243 
3244 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3245 					      void *context, int vl, int mode,
3246 					      u64 data)
3247 {
3248 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3249 
3250 	return dd->send_egress_err_status_cnt[53];
3251 }
3252 
3253 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3254 					      void *context, int vl, int mode,
3255 					      u64 data)
3256 {
3257 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3258 
3259 	return dd->send_egress_err_status_cnt[52];
3260 }
3261 
3262 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3263 					      void *context, int vl, int mode,
3264 					      u64 data)
3265 {
3266 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3267 
3268 	return dd->send_egress_err_status_cnt[51];
3269 }
3270 
3271 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3272 					      void *context, int vl, int mode,
3273 					      u64 data)
3274 {
3275 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3276 
3277 	return dd->send_egress_err_status_cnt[50];
3278 }
3279 
3280 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3281 					      void *context, int vl, int mode,
3282 					      u64 data)
3283 {
3284 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3285 
3286 	return dd->send_egress_err_status_cnt[49];
3287 }
3288 
3289 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3290 					      void *context, int vl, int mode,
3291 					      u64 data)
3292 {
3293 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3294 
3295 	return dd->send_egress_err_status_cnt[48];
3296 }
3297 
3298 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3299 					      void *context, int vl, int mode,
3300 					      u64 data)
3301 {
3302 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3303 
3304 	return dd->send_egress_err_status_cnt[47];
3305 }
3306 
3307 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3308 					    void *context, int vl, int mode,
3309 					    u64 data)
3310 {
3311 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3312 
3313 	return dd->send_egress_err_status_cnt[46];
3314 }
3315 
3316 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3317 					     void *context, int vl, int mode,
3318 					     u64 data)
3319 {
3320 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3321 
3322 	return dd->send_egress_err_status_cnt[45];
3323 }
3324 
3325 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3326 						 void *context, int vl,
3327 						 int mode, u64 data)
3328 {
3329 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3330 
3331 	return dd->send_egress_err_status_cnt[44];
3332 }
3333 
3334 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3335 				const struct cntr_entry *entry,
3336 				void *context, int vl, int mode, u64 data)
3337 {
3338 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3339 
3340 	return dd->send_egress_err_status_cnt[43];
3341 }
3342 
3343 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3344 					void *context, int vl, int mode,
3345 					u64 data)
3346 {
3347 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3348 
3349 	return dd->send_egress_err_status_cnt[42];
3350 }
3351 
3352 static u64 access_tx_credit_return_partiy_err_cnt(
3353 				const struct cntr_entry *entry,
3354 				void *context, int vl, int mode, u64 data)
3355 {
3356 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3357 
3358 	return dd->send_egress_err_status_cnt[41];
3359 }
3360 
3361 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3362 				const struct cntr_entry *entry,
3363 				void *context, int vl, int mode, u64 data)
3364 {
3365 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3366 
3367 	return dd->send_egress_err_status_cnt[40];
3368 }
3369 
3370 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3371 				const struct cntr_entry *entry,
3372 				void *context, int vl, int mode, u64 data)
3373 {
3374 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3375 
3376 	return dd->send_egress_err_status_cnt[39];
3377 }
3378 
3379 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3380 				const struct cntr_entry *entry,
3381 				void *context, int vl, int mode, u64 data)
3382 {
3383 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3384 
3385 	return dd->send_egress_err_status_cnt[38];
3386 }
3387 
3388 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3389 				const struct cntr_entry *entry,
3390 				void *context, int vl, int mode, u64 data)
3391 {
3392 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3393 
3394 	return dd->send_egress_err_status_cnt[37];
3395 }
3396 
3397 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3398 				const struct cntr_entry *entry,
3399 				void *context, int vl, int mode, u64 data)
3400 {
3401 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3402 
3403 	return dd->send_egress_err_status_cnt[36];
3404 }
3405 
3406 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3407 				const struct cntr_entry *entry,
3408 				void *context, int vl, int mode, u64 data)
3409 {
3410 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3411 
3412 	return dd->send_egress_err_status_cnt[35];
3413 }
3414 
3415 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3416 				const struct cntr_entry *entry,
3417 				void *context, int vl, int mode, u64 data)
3418 {
3419 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3420 
3421 	return dd->send_egress_err_status_cnt[34];
3422 }
3423 
3424 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3425 				const struct cntr_entry *entry,
3426 				void *context, int vl, int mode, u64 data)
3427 {
3428 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3429 
3430 	return dd->send_egress_err_status_cnt[33];
3431 }
3432 
3433 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3434 				const struct cntr_entry *entry,
3435 				void *context, int vl, int mode, u64 data)
3436 {
3437 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3438 
3439 	return dd->send_egress_err_status_cnt[32];
3440 }
3441 
3442 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3443 				const struct cntr_entry *entry,
3444 				void *context, int vl, int mode, u64 data)
3445 {
3446 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3447 
3448 	return dd->send_egress_err_status_cnt[31];
3449 }
3450 
3451 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3452 				const struct cntr_entry *entry,
3453 				void *context, int vl, int mode, u64 data)
3454 {
3455 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3456 
3457 	return dd->send_egress_err_status_cnt[30];
3458 }
3459 
3460 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3461 				const struct cntr_entry *entry,
3462 				void *context, int vl, int mode, u64 data)
3463 {
3464 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3465 
3466 	return dd->send_egress_err_status_cnt[29];
3467 }
3468 
3469 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3470 				const struct cntr_entry *entry,
3471 				void *context, int vl, int mode, u64 data)
3472 {
3473 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3474 
3475 	return dd->send_egress_err_status_cnt[28];
3476 }
3477 
3478 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3479 				const struct cntr_entry *entry,
3480 				void *context, int vl, int mode, u64 data)
3481 {
3482 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3483 
3484 	return dd->send_egress_err_status_cnt[27];
3485 }
3486 
3487 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3488 				const struct cntr_entry *entry,
3489 				void *context, int vl, int mode, u64 data)
3490 {
3491 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3492 
3493 	return dd->send_egress_err_status_cnt[26];
3494 }
3495 
3496 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3497 				const struct cntr_entry *entry,
3498 				void *context, int vl, int mode, u64 data)
3499 {
3500 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3501 
3502 	return dd->send_egress_err_status_cnt[25];
3503 }
3504 
3505 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3506 				const struct cntr_entry *entry,
3507 				void *context, int vl, int mode, u64 data)
3508 {
3509 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3510 
3511 	return dd->send_egress_err_status_cnt[24];
3512 }
3513 
3514 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3515 				const struct cntr_entry *entry,
3516 				void *context, int vl, int mode, u64 data)
3517 {
3518 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3519 
3520 	return dd->send_egress_err_status_cnt[23];
3521 }
3522 
3523 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3524 				const struct cntr_entry *entry,
3525 				void *context, int vl, int mode, u64 data)
3526 {
3527 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3528 
3529 	return dd->send_egress_err_status_cnt[22];
3530 }
3531 
3532 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3533 				const struct cntr_entry *entry,
3534 				void *context, int vl, int mode, u64 data)
3535 {
3536 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3537 
3538 	return dd->send_egress_err_status_cnt[21];
3539 }
3540 
3541 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3542 				const struct cntr_entry *entry,
3543 				void *context, int vl, int mode, u64 data)
3544 {
3545 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3546 
3547 	return dd->send_egress_err_status_cnt[20];
3548 }
3549 
3550 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3551 				const struct cntr_entry *entry,
3552 				void *context, int vl, int mode, u64 data)
3553 {
3554 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3555 
3556 	return dd->send_egress_err_status_cnt[19];
3557 }
3558 
3559 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3560 				const struct cntr_entry *entry,
3561 				void *context, int vl, int mode, u64 data)
3562 {
3563 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3564 
3565 	return dd->send_egress_err_status_cnt[18];
3566 }
3567 
3568 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3569 				const struct cntr_entry *entry,
3570 				void *context, int vl, int mode, u64 data)
3571 {
3572 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3573 
3574 	return dd->send_egress_err_status_cnt[17];
3575 }
3576 
3577 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3578 				const struct cntr_entry *entry,
3579 				void *context, int vl, int mode, u64 data)
3580 {
3581 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3582 
3583 	return dd->send_egress_err_status_cnt[16];
3584 }
3585 
3586 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3587 					   void *context, int vl, int mode,
3588 					   u64 data)
3589 {
3590 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3591 
3592 	return dd->send_egress_err_status_cnt[15];
3593 }
3594 
3595 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3596 						 void *context, int vl,
3597 						 int mode, u64 data)
3598 {
3599 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3600 
3601 	return dd->send_egress_err_status_cnt[14];
3602 }
3603 
3604 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3605 					       void *context, int vl, int mode,
3606 					       u64 data)
3607 {
3608 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3609 
3610 	return dd->send_egress_err_status_cnt[13];
3611 }
3612 
3613 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3614 					void *context, int vl, int mode,
3615 					u64 data)
3616 {
3617 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3618 
3619 	return dd->send_egress_err_status_cnt[12];
3620 }
3621 
3622 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3623 				const struct cntr_entry *entry,
3624 				void *context, int vl, int mode, u64 data)
3625 {
3626 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3627 
3628 	return dd->send_egress_err_status_cnt[11];
3629 }
3630 
3631 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3632 					     void *context, int vl, int mode,
3633 					     u64 data)
3634 {
3635 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3636 
3637 	return dd->send_egress_err_status_cnt[10];
3638 }
3639 
3640 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3641 					    void *context, int vl, int mode,
3642 					    u64 data)
3643 {
3644 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3645 
3646 	return dd->send_egress_err_status_cnt[9];
3647 }
3648 
3649 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3650 				const struct cntr_entry *entry,
3651 				void *context, int vl, int mode, u64 data)
3652 {
3653 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3654 
3655 	return dd->send_egress_err_status_cnt[8];
3656 }
3657 
3658 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3659 				const struct cntr_entry *entry,
3660 				void *context, int vl, int mode, u64 data)
3661 {
3662 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3663 
3664 	return dd->send_egress_err_status_cnt[7];
3665 }
3666 
3667 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3668 					    void *context, int vl, int mode,
3669 					    u64 data)
3670 {
3671 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3672 
3673 	return dd->send_egress_err_status_cnt[6];
3674 }
3675 
3676 static u64 access_tx_incorrect_link_state_err_cnt(
3677 				const struct cntr_entry *entry,
3678 				void *context, int vl, int mode, u64 data)
3679 {
3680 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3681 
3682 	return dd->send_egress_err_status_cnt[5];
3683 }
3684 
3685 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3686 				      void *context, int vl, int mode,
3687 				      u64 data)
3688 {
3689 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3690 
3691 	return dd->send_egress_err_status_cnt[4];
3692 }
3693 
3694 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3695 				const struct cntr_entry *entry,
3696 				void *context, int vl, int mode, u64 data)
3697 {
3698 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3699 
3700 	return dd->send_egress_err_status_cnt[3];
3701 }
3702 
3703 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3704 					    void *context, int vl, int mode,
3705 					    u64 data)
3706 {
3707 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3708 
3709 	return dd->send_egress_err_status_cnt[2];
3710 }
3711 
3712 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3713 				const struct cntr_entry *entry,
3714 				void *context, int vl, int mode, u64 data)
3715 {
3716 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3717 
3718 	return dd->send_egress_err_status_cnt[1];
3719 }
3720 
3721 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3722 				const struct cntr_entry *entry,
3723 				void *context, int vl, int mode, u64 data)
3724 {
3725 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3726 
3727 	return dd->send_egress_err_status_cnt[0];
3728 }
3729 
3730 /*
3731  * Software counters corresponding to each of the
3732  * error status bits within SendErrStatus
3733  */
3734 static u64 access_send_csr_write_bad_addr_err_cnt(
3735 				const struct cntr_entry *entry,
3736 				void *context, int vl, int mode, u64 data)
3737 {
3738 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3739 
3740 	return dd->send_err_status_cnt[2];
3741 }
3742 
3743 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3744 						 void *context, int vl,
3745 						 int mode, u64 data)
3746 {
3747 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3748 
3749 	return dd->send_err_status_cnt[1];
3750 }
3751 
3752 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3753 				      void *context, int vl, int mode,
3754 				      u64 data)
3755 {
3756 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3757 
3758 	return dd->send_err_status_cnt[0];
3759 }
3760 
3761 /*
3762  * Software counters corresponding to each of the
3763  * error status bits within SendCtxtErrStatus
3764  */
3765 static u64 access_pio_write_out_of_bounds_err_cnt(
3766 				const struct cntr_entry *entry,
3767 				void *context, int vl, int mode, u64 data)
3768 {
3769 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3770 
3771 	return dd->sw_ctxt_err_status_cnt[4];
3772 }
3773 
3774 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3775 					     void *context, int vl, int mode,
3776 					     u64 data)
3777 {
3778 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3779 
3780 	return dd->sw_ctxt_err_status_cnt[3];
3781 }
3782 
3783 static u64 access_pio_write_crosses_boundary_err_cnt(
3784 				const struct cntr_entry *entry,
3785 				void *context, int vl, int mode, u64 data)
3786 {
3787 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3788 
3789 	return dd->sw_ctxt_err_status_cnt[2];
3790 }
3791 
3792 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3793 						void *context, int vl,
3794 						int mode, u64 data)
3795 {
3796 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3797 
3798 	return dd->sw_ctxt_err_status_cnt[1];
3799 }
3800 
3801 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3802 					       void *context, int vl, int mode,
3803 					       u64 data)
3804 {
3805 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3806 
3807 	return dd->sw_ctxt_err_status_cnt[0];
3808 }
3809 
3810 /*
3811  * Software counters corresponding to each of the
3812  * error status bits within SendDmaEngErrStatus
3813  */
3814 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3815 				const struct cntr_entry *entry,
3816 				void *context, int vl, int mode, u64 data)
3817 {
3818 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3819 
3820 	return dd->sw_send_dma_eng_err_status_cnt[23];
3821 }
3822 
3823 static u64 access_sdma_header_storage_cor_err_cnt(
3824 				const struct cntr_entry *entry,
3825 				void *context, int vl, int mode, u64 data)
3826 {
3827 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3828 
3829 	return dd->sw_send_dma_eng_err_status_cnt[22];
3830 }
3831 
3832 static u64 access_sdma_packet_tracking_cor_err_cnt(
3833 				const struct cntr_entry *entry,
3834 				void *context, int vl, int mode, u64 data)
3835 {
3836 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3837 
3838 	return dd->sw_send_dma_eng_err_status_cnt[21];
3839 }
3840 
3841 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3842 					    void *context, int vl, int mode,
3843 					    u64 data)
3844 {
3845 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3846 
3847 	return dd->sw_send_dma_eng_err_status_cnt[20];
3848 }
3849 
3850 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3851 					      void *context, int vl, int mode,
3852 					      u64 data)
3853 {
3854 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3855 
3856 	return dd->sw_send_dma_eng_err_status_cnt[19];
3857 }
3858 
3859 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3860 				const struct cntr_entry *entry,
3861 				void *context, int vl, int mode, u64 data)
3862 {
3863 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3864 
3865 	return dd->sw_send_dma_eng_err_status_cnt[18];
3866 }
3867 
3868 static u64 access_sdma_header_storage_unc_err_cnt(
3869 				const struct cntr_entry *entry,
3870 				void *context, int vl, int mode, u64 data)
3871 {
3872 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3873 
3874 	return dd->sw_send_dma_eng_err_status_cnt[17];
3875 }
3876 
3877 static u64 access_sdma_packet_tracking_unc_err_cnt(
3878 				const struct cntr_entry *entry,
3879 				void *context, int vl, int mode, u64 data)
3880 {
3881 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3882 
3883 	return dd->sw_send_dma_eng_err_status_cnt[16];
3884 }
3885 
3886 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3887 					    void *context, int vl, int mode,
3888 					    u64 data)
3889 {
3890 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3891 
3892 	return dd->sw_send_dma_eng_err_status_cnt[15];
3893 }
3894 
3895 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3896 					      void *context, int vl, int mode,
3897 					      u64 data)
3898 {
3899 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3900 
3901 	return dd->sw_send_dma_eng_err_status_cnt[14];
3902 }
3903 
3904 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3905 				       void *context, int vl, int mode,
3906 				       u64 data)
3907 {
3908 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3909 
3910 	return dd->sw_send_dma_eng_err_status_cnt[13];
3911 }
3912 
3913 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3914 					     void *context, int vl, int mode,
3915 					     u64 data)
3916 {
3917 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3918 
3919 	return dd->sw_send_dma_eng_err_status_cnt[12];
3920 }
3921 
3922 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3923 					      void *context, int vl, int mode,
3924 					      u64 data)
3925 {
3926 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3927 
3928 	return dd->sw_send_dma_eng_err_status_cnt[11];
3929 }
3930 
3931 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3932 					     void *context, int vl, int mode,
3933 					     u64 data)
3934 {
3935 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3936 
3937 	return dd->sw_send_dma_eng_err_status_cnt[10];
3938 }
3939 
3940 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3941 					  void *context, int vl, int mode,
3942 					  u64 data)
3943 {
3944 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3945 
3946 	return dd->sw_send_dma_eng_err_status_cnt[9];
3947 }
3948 
3949 static u64 access_sdma_packet_desc_overflow_err_cnt(
3950 				const struct cntr_entry *entry,
3951 				void *context, int vl, int mode, u64 data)
3952 {
3953 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3954 
3955 	return dd->sw_send_dma_eng_err_status_cnt[8];
3956 }
3957 
3958 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3959 					       void *context, int vl,
3960 					       int mode, u64 data)
3961 {
3962 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3963 
3964 	return dd->sw_send_dma_eng_err_status_cnt[7];
3965 }
3966 
3967 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3968 				    void *context, int vl, int mode, u64 data)
3969 {
3970 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3971 
3972 	return dd->sw_send_dma_eng_err_status_cnt[6];
3973 }
3974 
3975 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3976 					void *context, int vl, int mode,
3977 					u64 data)
3978 {
3979 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3980 
3981 	return dd->sw_send_dma_eng_err_status_cnt[5];
3982 }
3983 
3984 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3985 					  void *context, int vl, int mode,
3986 					  u64 data)
3987 {
3988 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3989 
3990 	return dd->sw_send_dma_eng_err_status_cnt[4];
3991 }
3992 
3993 static u64 access_sdma_tail_out_of_bounds_err_cnt(
3994 				const struct cntr_entry *entry,
3995 				void *context, int vl, int mode, u64 data)
3996 {
3997 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3998 
3999 	return dd->sw_send_dma_eng_err_status_cnt[3];
4000 }
4001 
4002 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4003 					void *context, int vl, int mode,
4004 					u64 data)
4005 {
4006 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4007 
4008 	return dd->sw_send_dma_eng_err_status_cnt[2];
4009 }
4010 
4011 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4012 					    void *context, int vl, int mode,
4013 					    u64 data)
4014 {
4015 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4016 
4017 	return dd->sw_send_dma_eng_err_status_cnt[1];
4018 }
4019 
4020 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4021 					void *context, int vl, int mode,
4022 					u64 data)
4023 {
4024 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4025 
4026 	return dd->sw_send_dma_eng_err_status_cnt[0];
4027 }
4028 
4029 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4030 				 void *context, int vl, int mode,
4031 				 u64 data)
4032 {
4033 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4034 
4035 	u64 val = 0;
4036 	u64 csr = entry->csr;
4037 
4038 	val = read_write_csr(dd, csr, mode, data);
4039 	if (mode == CNTR_MODE_R) {
4040 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4041 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4042 	} else if (mode == CNTR_MODE_W) {
4043 		dd->sw_rcv_bypass_packet_errors = 0;
4044 	} else {
4045 		dd_dev_err(dd, "Invalid cntr register access mode");
4046 		return 0;
4047 	}
4048 	return val;
4049 }
4050 
4051 #define def_access_sw_cpu(cntr) \
4052 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4053 			      void *context, int vl, int mode, u64 data)      \
4054 {									      \
4055 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4056 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4057 			      ppd->ibport_data.rvp.cntr, vl,		      \
4058 			      mode, data);				      \
4059 }
4060 
4061 def_access_sw_cpu(rc_acks);
4062 def_access_sw_cpu(rc_qacks);
4063 def_access_sw_cpu(rc_delayed_comp);
4064 
4065 #define def_access_ibp_counter(cntr) \
4066 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4067 				void *context, int vl, int mode, u64 data)    \
4068 {									      \
4069 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4070 									      \
4071 	if (vl != CNTR_INVALID_VL)					      \
4072 		return 0;						      \
4073 									      \
4074 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4075 			     mode, data);				      \
4076 }
4077 
4078 def_access_ibp_counter(loop_pkts);
4079 def_access_ibp_counter(rc_resends);
4080 def_access_ibp_counter(rnr_naks);
4081 def_access_ibp_counter(other_naks);
4082 def_access_ibp_counter(rc_timeouts);
4083 def_access_ibp_counter(pkt_drops);
4084 def_access_ibp_counter(dmawait);
4085 def_access_ibp_counter(rc_seqnak);
4086 def_access_ibp_counter(rc_dupreq);
4087 def_access_ibp_counter(rdma_seq);
4088 def_access_ibp_counter(unaligned);
4089 def_access_ibp_counter(seq_naks);
4090 def_access_ibp_counter(rc_crwaits);
4091 
4092 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4093 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4094 [C_RX_LEN_ERR] = RXE32_DEV_CNTR_ELEM(RxLenErr, RCV_LENGTH_ERR_CNT, CNTR_SYNTH),
4095 [C_RX_SHORT_ERR] = RXE32_DEV_CNTR_ELEM(RxShrErr, RCV_SHORT_ERR_CNT, CNTR_SYNTH),
4096 [C_RX_ICRC_ERR] = RXE32_DEV_CNTR_ELEM(RxICrcErr, RCV_ICRC_ERR_CNT, CNTR_SYNTH),
4097 [C_RX_EBP] = RXE32_DEV_CNTR_ELEM(RxEbpCnt, RCV_EBP_CNT, CNTR_SYNTH),
4098 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4099 			CNTR_NORMAL),
4100 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4101 			CNTR_NORMAL),
4102 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4103 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4104 			CNTR_NORMAL),
4105 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4106 			CNTR_NORMAL),
4107 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4108 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4109 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4110 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4111 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4112 			CNTR_NORMAL),
4113 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4114 			CNTR_NORMAL),
4115 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4116 			CNTR_NORMAL),
4117 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4118 			CNTR_NORMAL),
4119 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4120 			CNTR_NORMAL),
4121 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4122 			CNTR_NORMAL),
4123 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4124 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4125 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4126 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4127 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4128 			      CNTR_SYNTH),
4129 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4130 			    access_dc_rcv_err_cnt),
4131 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4132 				 CNTR_SYNTH),
4133 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4134 				  CNTR_SYNTH),
4135 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4136 				  CNTR_SYNTH),
4137 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4138 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4139 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4140 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4141 				  CNTR_SYNTH),
4142 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4143 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4144 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4145 			       CNTR_SYNTH),
4146 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4147 			      CNTR_SYNTH),
4148 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4149 			       CNTR_SYNTH),
4150 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4151 				 CNTR_SYNTH),
4152 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4153 				CNTR_SYNTH),
4154 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4155 				CNTR_SYNTH),
4156 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4157 			       CNTR_SYNTH),
4158 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4159 				 CNTR_SYNTH | CNTR_VL),
4160 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4161 				CNTR_SYNTH | CNTR_VL),
4162 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4163 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4164 				 CNTR_SYNTH | CNTR_VL),
4165 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4166 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4167 				 CNTR_SYNTH | CNTR_VL),
4168 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4169 			      CNTR_SYNTH),
4170 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4171 				 CNTR_SYNTH | CNTR_VL),
4172 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4173 				CNTR_SYNTH),
4174 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4175 				   CNTR_SYNTH | CNTR_VL),
4176 [C_DC_TOTAL_CRC] =
4177 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4178 			 CNTR_SYNTH),
4179 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4180 				  CNTR_SYNTH),
4181 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4182 				  CNTR_SYNTH),
4183 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4184 				  CNTR_SYNTH),
4185 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4186 				  CNTR_SYNTH),
4187 [C_DC_CRC_MULT_LN] =
4188 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4189 			 CNTR_SYNTH),
4190 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4191 				    CNTR_SYNTH),
4192 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4193 				    CNTR_SYNTH),
4194 [C_DC_SEQ_CRC_CNT] =
4195 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4196 			 CNTR_SYNTH),
4197 [C_DC_ESC0_ONLY_CNT] =
4198 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4199 			 CNTR_SYNTH),
4200 [C_DC_ESC0_PLUS1_CNT] =
4201 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4202 			 CNTR_SYNTH),
4203 [C_DC_ESC0_PLUS2_CNT] =
4204 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4205 			 CNTR_SYNTH),
4206 [C_DC_REINIT_FROM_PEER_CNT] =
4207 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4208 			 CNTR_SYNTH),
4209 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4210 				  CNTR_SYNTH),
4211 [C_DC_MISC_FLG_CNT] =
4212 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4213 			 CNTR_SYNTH),
4214 [C_DC_PRF_GOOD_LTP_CNT] =
4215 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4216 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4217 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4218 			 CNTR_SYNTH),
4219 [C_DC_PRF_RX_FLIT_CNT] =
4220 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4221 [C_DC_PRF_TX_FLIT_CNT] =
4222 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4223 [C_DC_PRF_CLK_CNTR] =
4224 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4225 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4226 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4227 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4228 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4229 			 CNTR_SYNTH),
4230 [C_DC_PG_STS_TX_SBE_CNT] =
4231 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4232 [C_DC_PG_STS_TX_MBE_CNT] =
4233 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4234 			 CNTR_SYNTH),
4235 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4236 			    access_sw_cpu_intr),
4237 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4238 			    access_sw_cpu_rcv_limit),
4239 [C_SW_CTX0_SEQ_DROP] = CNTR_ELEM("SeqDrop0", 0, 0, CNTR_NORMAL,
4240 			    access_sw_ctx0_seq_drop),
4241 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4242 			    access_sw_vtx_wait),
4243 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4244 			    access_sw_pio_wait),
4245 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4246 			    access_sw_pio_drain),
4247 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4248 			    access_sw_kmem_wait),
4249 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4250 			    hfi1_access_sw_tid_wait),
4251 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4252 			    access_sw_send_schedule),
4253 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4254 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4255 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4256 				      dev_access_u32_csr),
4257 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4258 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4259 			     access_sde_int_cnt),
4260 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4261 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4262 			     access_sde_err_cnt),
4263 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4264 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4265 				  access_sde_idle_int_cnt),
4266 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4267 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4268 				      access_sde_progress_int_cnt),
4269 /* MISC_ERR_STATUS */
4270 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4271 				CNTR_NORMAL,
4272 				access_misc_pll_lock_fail_err_cnt),
4273 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4274 				CNTR_NORMAL,
4275 				access_misc_mbist_fail_err_cnt),
4276 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4277 				CNTR_NORMAL,
4278 				access_misc_invalid_eep_cmd_err_cnt),
4279 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4280 				CNTR_NORMAL,
4281 				access_misc_efuse_done_parity_err_cnt),
4282 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4283 				CNTR_NORMAL,
4284 				access_misc_efuse_write_err_cnt),
4285 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4286 				0, CNTR_NORMAL,
4287 				access_misc_efuse_read_bad_addr_err_cnt),
4288 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4289 				CNTR_NORMAL,
4290 				access_misc_efuse_csr_parity_err_cnt),
4291 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4292 				CNTR_NORMAL,
4293 				access_misc_fw_auth_failed_err_cnt),
4294 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4295 				CNTR_NORMAL,
4296 				access_misc_key_mismatch_err_cnt),
4297 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4298 				CNTR_NORMAL,
4299 				access_misc_sbus_write_failed_err_cnt),
4300 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4301 				CNTR_NORMAL,
4302 				access_misc_csr_write_bad_addr_err_cnt),
4303 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4304 				CNTR_NORMAL,
4305 				access_misc_csr_read_bad_addr_err_cnt),
4306 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4307 				CNTR_NORMAL,
4308 				access_misc_csr_parity_err_cnt),
4309 /* CceErrStatus */
4310 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_sw_cce_err_status_aggregated_cnt),
4313 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_cce_msix_csr_parity_err_cnt),
4316 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4317 				CNTR_NORMAL,
4318 				access_cce_int_map_unc_err_cnt),
4319 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4320 				CNTR_NORMAL,
4321 				access_cce_int_map_cor_err_cnt),
4322 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4323 				CNTR_NORMAL,
4324 				access_cce_msix_table_unc_err_cnt),
4325 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4326 				CNTR_NORMAL,
4327 				access_cce_msix_table_cor_err_cnt),
4328 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4329 				0, CNTR_NORMAL,
4330 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4331 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4332 				0, CNTR_NORMAL,
4333 				access_cce_rcpl_async_fifo_parity_err_cnt),
4334 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4335 				CNTR_NORMAL,
4336 				access_cce_seg_write_bad_addr_err_cnt),
4337 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4338 				CNTR_NORMAL,
4339 				access_cce_seg_read_bad_addr_err_cnt),
4340 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4341 				CNTR_NORMAL,
4342 				access_la_triggered_cnt),
4343 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4344 				CNTR_NORMAL,
4345 				access_cce_trgt_cpl_timeout_err_cnt),
4346 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4347 				CNTR_NORMAL,
4348 				access_pcic_receive_parity_err_cnt),
4349 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4350 				CNTR_NORMAL,
4351 				access_pcic_transmit_back_parity_err_cnt),
4352 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4353 				0, CNTR_NORMAL,
4354 				access_pcic_transmit_front_parity_err_cnt),
4355 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4356 				CNTR_NORMAL,
4357 				access_pcic_cpl_dat_q_unc_err_cnt),
4358 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4359 				CNTR_NORMAL,
4360 				access_pcic_cpl_hd_q_unc_err_cnt),
4361 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4362 				CNTR_NORMAL,
4363 				access_pcic_post_dat_q_unc_err_cnt),
4364 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4365 				CNTR_NORMAL,
4366 				access_pcic_post_hd_q_unc_err_cnt),
4367 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4368 				CNTR_NORMAL,
4369 				access_pcic_retry_sot_mem_unc_err_cnt),
4370 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4371 				CNTR_NORMAL,
4372 				access_pcic_retry_mem_unc_err),
4373 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4374 				CNTR_NORMAL,
4375 				access_pcic_n_post_dat_q_parity_err_cnt),
4376 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4377 				CNTR_NORMAL,
4378 				access_pcic_n_post_h_q_parity_err_cnt),
4379 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4380 				CNTR_NORMAL,
4381 				access_pcic_cpl_dat_q_cor_err_cnt),
4382 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4383 				CNTR_NORMAL,
4384 				access_pcic_cpl_hd_q_cor_err_cnt),
4385 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4386 				CNTR_NORMAL,
4387 				access_pcic_post_dat_q_cor_err_cnt),
4388 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4389 				CNTR_NORMAL,
4390 				access_pcic_post_hd_q_cor_err_cnt),
4391 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4392 				CNTR_NORMAL,
4393 				access_pcic_retry_sot_mem_cor_err_cnt),
4394 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4395 				CNTR_NORMAL,
4396 				access_pcic_retry_mem_cor_err_cnt),
4397 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4398 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4399 				CNTR_NORMAL,
4400 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4401 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4402 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4403 				CNTR_NORMAL,
4404 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4405 				),
4406 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4407 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4408 			CNTR_NORMAL,
4409 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4410 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4411 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4412 			CNTR_NORMAL,
4413 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4414 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4415 			0, CNTR_NORMAL,
4416 			access_cce_cli2_async_fifo_parity_err_cnt),
4417 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4418 			CNTR_NORMAL,
4419 			access_cce_csr_cfg_bus_parity_err_cnt),
4420 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4421 			0, CNTR_NORMAL,
4422 			access_cce_cli0_async_fifo_parity_err_cnt),
4423 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4424 			CNTR_NORMAL,
4425 			access_cce_rspd_data_parity_err_cnt),
4426 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4427 			CNTR_NORMAL,
4428 			access_cce_trgt_access_err_cnt),
4429 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4430 			0, CNTR_NORMAL,
4431 			access_cce_trgt_async_fifo_parity_err_cnt),
4432 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4433 			CNTR_NORMAL,
4434 			access_cce_csr_write_bad_addr_err_cnt),
4435 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4436 			CNTR_NORMAL,
4437 			access_cce_csr_read_bad_addr_err_cnt),
4438 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4439 			CNTR_NORMAL,
4440 			access_ccs_csr_parity_err_cnt),
4441 
4442 /* RcvErrStatus */
4443 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4444 			CNTR_NORMAL,
4445 			access_rx_csr_parity_err_cnt),
4446 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4447 			CNTR_NORMAL,
4448 			access_rx_csr_write_bad_addr_err_cnt),
4449 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4450 			CNTR_NORMAL,
4451 			access_rx_csr_read_bad_addr_err_cnt),
4452 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4453 			CNTR_NORMAL,
4454 			access_rx_dma_csr_unc_err_cnt),
4455 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4456 			CNTR_NORMAL,
4457 			access_rx_dma_dq_fsm_encoding_err_cnt),
4458 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4459 			CNTR_NORMAL,
4460 			access_rx_dma_eq_fsm_encoding_err_cnt),
4461 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4462 			CNTR_NORMAL,
4463 			access_rx_dma_csr_parity_err_cnt),
4464 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4465 			CNTR_NORMAL,
4466 			access_rx_rbuf_data_cor_err_cnt),
4467 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4468 			CNTR_NORMAL,
4469 			access_rx_rbuf_data_unc_err_cnt),
4470 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4471 			CNTR_NORMAL,
4472 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4473 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4474 			CNTR_NORMAL,
4475 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4476 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4477 			CNTR_NORMAL,
4478 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4479 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4480 			CNTR_NORMAL,
4481 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4482 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4483 			CNTR_NORMAL,
4484 			access_rx_rbuf_desc_part2_cor_err_cnt),
4485 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4486 			CNTR_NORMAL,
4487 			access_rx_rbuf_desc_part2_unc_err_cnt),
4488 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4489 			CNTR_NORMAL,
4490 			access_rx_rbuf_desc_part1_cor_err_cnt),
4491 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4492 			CNTR_NORMAL,
4493 			access_rx_rbuf_desc_part1_unc_err_cnt),
4494 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4495 			CNTR_NORMAL,
4496 			access_rx_hq_intr_fsm_err_cnt),
4497 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4498 			CNTR_NORMAL,
4499 			access_rx_hq_intr_csr_parity_err_cnt),
4500 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4501 			CNTR_NORMAL,
4502 			access_rx_lookup_csr_parity_err_cnt),
4503 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4504 			CNTR_NORMAL,
4505 			access_rx_lookup_rcv_array_cor_err_cnt),
4506 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4507 			CNTR_NORMAL,
4508 			access_rx_lookup_rcv_array_unc_err_cnt),
4509 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4510 			0, CNTR_NORMAL,
4511 			access_rx_lookup_des_part2_parity_err_cnt),
4512 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4513 			0, CNTR_NORMAL,
4514 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4515 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4516 			CNTR_NORMAL,
4517 			access_rx_lookup_des_part1_unc_err_cnt),
4518 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4519 			CNTR_NORMAL,
4520 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4521 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4522 			CNTR_NORMAL,
4523 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4524 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4525 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4526 			CNTR_NORMAL,
4527 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4528 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4529 			0, CNTR_NORMAL,
4530 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4531 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4532 			0, CNTR_NORMAL,
4533 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4534 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4535 			CNTR_NORMAL,
4536 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4537 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4538 			CNTR_NORMAL,
4539 			access_rx_rbuf_empty_err_cnt),
4540 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4541 			CNTR_NORMAL,
4542 			access_rx_rbuf_full_err_cnt),
4543 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4544 			CNTR_NORMAL,
4545 			access_rbuf_bad_lookup_err_cnt),
4546 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4547 			CNTR_NORMAL,
4548 			access_rbuf_ctx_id_parity_err_cnt),
4549 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4550 			CNTR_NORMAL,
4551 			access_rbuf_csr_qeopdw_parity_err_cnt),
4552 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4553 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4554 			CNTR_NORMAL,
4555 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4556 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4557 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4558 			CNTR_NORMAL,
4559 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4560 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4561 			0, CNTR_NORMAL,
4562 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4563 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4564 			0, CNTR_NORMAL,
4565 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4566 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4567 			0, 0, CNTR_NORMAL,
4568 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4569 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4570 			0, CNTR_NORMAL,
4571 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4572 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4573 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4574 			CNTR_NORMAL,
4575 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4576 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4577 			0, CNTR_NORMAL,
4578 			access_rx_rbuf_block_list_read_cor_err_cnt),
4579 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4580 			0, CNTR_NORMAL,
4581 			access_rx_rbuf_block_list_read_unc_err_cnt),
4582 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4583 			CNTR_NORMAL,
4584 			access_rx_rbuf_lookup_des_cor_err_cnt),
4585 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4586 			CNTR_NORMAL,
4587 			access_rx_rbuf_lookup_des_unc_err_cnt),
4588 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4589 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4590 			CNTR_NORMAL,
4591 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4592 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4593 			CNTR_NORMAL,
4594 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4595 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4596 			CNTR_NORMAL,
4597 			access_rx_rbuf_free_list_cor_err_cnt),
4598 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4599 			CNTR_NORMAL,
4600 			access_rx_rbuf_free_list_unc_err_cnt),
4601 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4602 			CNTR_NORMAL,
4603 			access_rx_rcv_fsm_encoding_err_cnt),
4604 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4605 			CNTR_NORMAL,
4606 			access_rx_dma_flag_cor_err_cnt),
4607 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4608 			CNTR_NORMAL,
4609 			access_rx_dma_flag_unc_err_cnt),
4610 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4611 			CNTR_NORMAL,
4612 			access_rx_dc_sop_eop_parity_err_cnt),
4613 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4614 			CNTR_NORMAL,
4615 			access_rx_rcv_csr_parity_err_cnt),
4616 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4617 			CNTR_NORMAL,
4618 			access_rx_rcv_qp_map_table_cor_err_cnt),
4619 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4620 			CNTR_NORMAL,
4621 			access_rx_rcv_qp_map_table_unc_err_cnt),
4622 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4623 			CNTR_NORMAL,
4624 			access_rx_rcv_data_cor_err_cnt),
4625 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4626 			CNTR_NORMAL,
4627 			access_rx_rcv_data_unc_err_cnt),
4628 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4629 			CNTR_NORMAL,
4630 			access_rx_rcv_hdr_cor_err_cnt),
4631 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4632 			CNTR_NORMAL,
4633 			access_rx_rcv_hdr_unc_err_cnt),
4634 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4635 			CNTR_NORMAL,
4636 			access_rx_dc_intf_parity_err_cnt),
4637 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4638 			CNTR_NORMAL,
4639 			access_rx_dma_csr_cor_err_cnt),
4640 /* SendPioErrStatus */
4641 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4642 			CNTR_NORMAL,
4643 			access_pio_pec_sop_head_parity_err_cnt),
4644 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4645 			CNTR_NORMAL,
4646 			access_pio_pcc_sop_head_parity_err_cnt),
4647 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4648 			0, 0, CNTR_NORMAL,
4649 			access_pio_last_returned_cnt_parity_err_cnt),
4650 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4651 			0, CNTR_NORMAL,
4652 			access_pio_current_free_cnt_parity_err_cnt),
4653 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4654 			CNTR_NORMAL,
4655 			access_pio_reserved_31_err_cnt),
4656 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4657 			CNTR_NORMAL,
4658 			access_pio_reserved_30_err_cnt),
4659 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4660 			CNTR_NORMAL,
4661 			access_pio_ppmc_sop_len_err_cnt),
4662 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4663 			CNTR_NORMAL,
4664 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4665 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4666 			CNTR_NORMAL,
4667 			access_pio_vl_fifo_parity_err_cnt),
4668 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4669 			CNTR_NORMAL,
4670 			access_pio_vlf_sop_parity_err_cnt),
4671 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4672 			CNTR_NORMAL,
4673 			access_pio_vlf_v1_len_parity_err_cnt),
4674 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4675 			CNTR_NORMAL,
4676 			access_pio_block_qw_count_parity_err_cnt),
4677 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4678 			CNTR_NORMAL,
4679 			access_pio_write_qw_valid_parity_err_cnt),
4680 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4681 			CNTR_NORMAL,
4682 			access_pio_state_machine_err_cnt),
4683 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4684 			CNTR_NORMAL,
4685 			access_pio_write_data_parity_err_cnt),
4686 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4687 			CNTR_NORMAL,
4688 			access_pio_host_addr_mem_cor_err_cnt),
4689 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4690 			CNTR_NORMAL,
4691 			access_pio_host_addr_mem_unc_err_cnt),
4692 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4693 			CNTR_NORMAL,
4694 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4695 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4696 			CNTR_NORMAL,
4697 			access_pio_init_sm_in_err_cnt),
4698 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4699 			CNTR_NORMAL,
4700 			access_pio_ppmc_pbl_fifo_err_cnt),
4701 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4702 			0, CNTR_NORMAL,
4703 			access_pio_credit_ret_fifo_parity_err_cnt),
4704 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4705 			CNTR_NORMAL,
4706 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4707 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4708 			CNTR_NORMAL,
4709 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4710 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4711 			CNTR_NORMAL,
4712 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4713 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4714 			CNTR_NORMAL,
4715 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4716 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4717 			CNTR_NORMAL,
4718 			access_pio_sm_pkt_reset_parity_err_cnt),
4719 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4720 			CNTR_NORMAL,
4721 			access_pio_pkt_evict_fifo_parity_err_cnt),
4722 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4723 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4726 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_pio_sbrdctl_crrel_parity_err_cnt),
4729 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_pio_pec_fifo_parity_err_cnt),
4732 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_pio_pcc_fifo_parity_err_cnt),
4735 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_pio_sb_mem_fifo1_err_cnt),
4738 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_pio_sb_mem_fifo0_err_cnt),
4741 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4742 			CNTR_NORMAL,
4743 			access_pio_csr_parity_err_cnt),
4744 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4745 			CNTR_NORMAL,
4746 			access_pio_write_addr_parity_err_cnt),
4747 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4748 			CNTR_NORMAL,
4749 			access_pio_write_bad_ctxt_err_cnt),
4750 /* SendDmaErrStatus */
4751 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4752 			0, CNTR_NORMAL,
4753 			access_sdma_pcie_req_tracking_cor_err_cnt),
4754 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4755 			0, CNTR_NORMAL,
4756 			access_sdma_pcie_req_tracking_unc_err_cnt),
4757 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4758 			CNTR_NORMAL,
4759 			access_sdma_csr_parity_err_cnt),
4760 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4761 			CNTR_NORMAL,
4762 			access_sdma_rpy_tag_err_cnt),
4763 /* SendEgressErrStatus */
4764 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4765 			CNTR_NORMAL,
4766 			access_tx_read_pio_memory_csr_unc_err_cnt),
4767 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4768 			0, CNTR_NORMAL,
4769 			access_tx_read_sdma_memory_csr_err_cnt),
4770 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4771 			CNTR_NORMAL,
4772 			access_tx_egress_fifo_cor_err_cnt),
4773 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4774 			CNTR_NORMAL,
4775 			access_tx_read_pio_memory_cor_err_cnt),
4776 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4777 			CNTR_NORMAL,
4778 			access_tx_read_sdma_memory_cor_err_cnt),
4779 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4780 			CNTR_NORMAL,
4781 			access_tx_sb_hdr_cor_err_cnt),
4782 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4783 			CNTR_NORMAL,
4784 			access_tx_credit_overrun_err_cnt),
4785 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4786 			CNTR_NORMAL,
4787 			access_tx_launch_fifo8_cor_err_cnt),
4788 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4789 			CNTR_NORMAL,
4790 			access_tx_launch_fifo7_cor_err_cnt),
4791 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4792 			CNTR_NORMAL,
4793 			access_tx_launch_fifo6_cor_err_cnt),
4794 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4795 			CNTR_NORMAL,
4796 			access_tx_launch_fifo5_cor_err_cnt),
4797 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4798 			CNTR_NORMAL,
4799 			access_tx_launch_fifo4_cor_err_cnt),
4800 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4801 			CNTR_NORMAL,
4802 			access_tx_launch_fifo3_cor_err_cnt),
4803 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4804 			CNTR_NORMAL,
4805 			access_tx_launch_fifo2_cor_err_cnt),
4806 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4807 			CNTR_NORMAL,
4808 			access_tx_launch_fifo1_cor_err_cnt),
4809 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4810 			CNTR_NORMAL,
4811 			access_tx_launch_fifo0_cor_err_cnt),
4812 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4813 			CNTR_NORMAL,
4814 			access_tx_credit_return_vl_err_cnt),
4815 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4816 			CNTR_NORMAL,
4817 			access_tx_hcrc_insertion_err_cnt),
4818 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4819 			CNTR_NORMAL,
4820 			access_tx_egress_fifo_unc_err_cnt),
4821 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4822 			CNTR_NORMAL,
4823 			access_tx_read_pio_memory_unc_err_cnt),
4824 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4825 			CNTR_NORMAL,
4826 			access_tx_read_sdma_memory_unc_err_cnt),
4827 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4828 			CNTR_NORMAL,
4829 			access_tx_sb_hdr_unc_err_cnt),
4830 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4831 			CNTR_NORMAL,
4832 			access_tx_credit_return_partiy_err_cnt),
4833 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4834 			0, 0, CNTR_NORMAL,
4835 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4836 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4837 			0, 0, CNTR_NORMAL,
4838 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4839 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4840 			0, 0, CNTR_NORMAL,
4841 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4842 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4843 			0, 0, CNTR_NORMAL,
4844 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4845 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4846 			0, 0, CNTR_NORMAL,
4847 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4848 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4849 			0, 0, CNTR_NORMAL,
4850 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4851 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4852 			0, 0, CNTR_NORMAL,
4853 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4854 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4855 			0, 0, CNTR_NORMAL,
4856 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4857 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4858 			0, 0, CNTR_NORMAL,
4859 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4860 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4861 			0, 0, CNTR_NORMAL,
4862 			access_tx_sdma15_disallowed_packet_err_cnt),
4863 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4864 			0, 0, CNTR_NORMAL,
4865 			access_tx_sdma14_disallowed_packet_err_cnt),
4866 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4867 			0, 0, CNTR_NORMAL,
4868 			access_tx_sdma13_disallowed_packet_err_cnt),
4869 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4870 			0, 0, CNTR_NORMAL,
4871 			access_tx_sdma12_disallowed_packet_err_cnt),
4872 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4873 			0, 0, CNTR_NORMAL,
4874 			access_tx_sdma11_disallowed_packet_err_cnt),
4875 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4876 			0, 0, CNTR_NORMAL,
4877 			access_tx_sdma10_disallowed_packet_err_cnt),
4878 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4879 			0, 0, CNTR_NORMAL,
4880 			access_tx_sdma9_disallowed_packet_err_cnt),
4881 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4882 			0, 0, CNTR_NORMAL,
4883 			access_tx_sdma8_disallowed_packet_err_cnt),
4884 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4885 			0, 0, CNTR_NORMAL,
4886 			access_tx_sdma7_disallowed_packet_err_cnt),
4887 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4888 			0, 0, CNTR_NORMAL,
4889 			access_tx_sdma6_disallowed_packet_err_cnt),
4890 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4891 			0, 0, CNTR_NORMAL,
4892 			access_tx_sdma5_disallowed_packet_err_cnt),
4893 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4894 			0, 0, CNTR_NORMAL,
4895 			access_tx_sdma4_disallowed_packet_err_cnt),
4896 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4897 			0, 0, CNTR_NORMAL,
4898 			access_tx_sdma3_disallowed_packet_err_cnt),
4899 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4900 			0, 0, CNTR_NORMAL,
4901 			access_tx_sdma2_disallowed_packet_err_cnt),
4902 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4903 			0, 0, CNTR_NORMAL,
4904 			access_tx_sdma1_disallowed_packet_err_cnt),
4905 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4906 			0, 0, CNTR_NORMAL,
4907 			access_tx_sdma0_disallowed_packet_err_cnt),
4908 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4909 			CNTR_NORMAL,
4910 			access_tx_config_parity_err_cnt),
4911 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4912 			CNTR_NORMAL,
4913 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4914 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4915 			CNTR_NORMAL,
4916 			access_tx_launch_csr_parity_err_cnt),
4917 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4918 			CNTR_NORMAL,
4919 			access_tx_illegal_vl_err_cnt),
4920 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4921 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4922 			CNTR_NORMAL,
4923 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4924 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4925 			CNTR_NORMAL,
4926 			access_egress_reserved_10_err_cnt),
4927 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4928 			CNTR_NORMAL,
4929 			access_egress_reserved_9_err_cnt),
4930 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4931 			0, 0, CNTR_NORMAL,
4932 			access_tx_sdma_launch_intf_parity_err_cnt),
4933 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4934 			CNTR_NORMAL,
4935 			access_tx_pio_launch_intf_parity_err_cnt),
4936 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4937 			CNTR_NORMAL,
4938 			access_egress_reserved_6_err_cnt),
4939 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4940 			CNTR_NORMAL,
4941 			access_tx_incorrect_link_state_err_cnt),
4942 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4943 			CNTR_NORMAL,
4944 			access_tx_linkdown_err_cnt),
4945 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4946 			"EgressFifoUnderrunOrParityErr", 0, 0,
4947 			CNTR_NORMAL,
4948 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4949 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4950 			CNTR_NORMAL,
4951 			access_egress_reserved_2_err_cnt),
4952 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4953 			CNTR_NORMAL,
4954 			access_tx_pkt_integrity_mem_unc_err_cnt),
4955 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4956 			CNTR_NORMAL,
4957 			access_tx_pkt_integrity_mem_cor_err_cnt),
4958 /* SendErrStatus */
4959 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4960 			CNTR_NORMAL,
4961 			access_send_csr_write_bad_addr_err_cnt),
4962 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4963 			CNTR_NORMAL,
4964 			access_send_csr_read_bad_addr_err_cnt),
4965 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4966 			CNTR_NORMAL,
4967 			access_send_csr_parity_cnt),
4968 /* SendCtxtErrStatus */
4969 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4970 			CNTR_NORMAL,
4971 			access_pio_write_out_of_bounds_err_cnt),
4972 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4973 			CNTR_NORMAL,
4974 			access_pio_write_overflow_err_cnt),
4975 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4976 			0, 0, CNTR_NORMAL,
4977 			access_pio_write_crosses_boundary_err_cnt),
4978 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4979 			CNTR_NORMAL,
4980 			access_pio_disallowed_packet_err_cnt),
4981 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4982 			CNTR_NORMAL,
4983 			access_pio_inconsistent_sop_err_cnt),
4984 /* SendDmaEngErrStatus */
4985 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4986 			0, 0, CNTR_NORMAL,
4987 			access_sdma_header_request_fifo_cor_err_cnt),
4988 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4989 			CNTR_NORMAL,
4990 			access_sdma_header_storage_cor_err_cnt),
4991 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4992 			CNTR_NORMAL,
4993 			access_sdma_packet_tracking_cor_err_cnt),
4994 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4995 			CNTR_NORMAL,
4996 			access_sdma_assembly_cor_err_cnt),
4997 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4998 			CNTR_NORMAL,
4999 			access_sdma_desc_table_cor_err_cnt),
5000 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5001 			0, 0, CNTR_NORMAL,
5002 			access_sdma_header_request_fifo_unc_err_cnt),
5003 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5004 			CNTR_NORMAL,
5005 			access_sdma_header_storage_unc_err_cnt),
5006 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5007 			CNTR_NORMAL,
5008 			access_sdma_packet_tracking_unc_err_cnt),
5009 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5010 			CNTR_NORMAL,
5011 			access_sdma_assembly_unc_err_cnt),
5012 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5013 			CNTR_NORMAL,
5014 			access_sdma_desc_table_unc_err_cnt),
5015 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5016 			CNTR_NORMAL,
5017 			access_sdma_timeout_err_cnt),
5018 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5019 			CNTR_NORMAL,
5020 			access_sdma_header_length_err_cnt),
5021 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5022 			CNTR_NORMAL,
5023 			access_sdma_header_address_err_cnt),
5024 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5025 			CNTR_NORMAL,
5026 			access_sdma_header_select_err_cnt),
5027 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5028 			CNTR_NORMAL,
5029 			access_sdma_reserved_9_err_cnt),
5030 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5031 			CNTR_NORMAL,
5032 			access_sdma_packet_desc_overflow_err_cnt),
5033 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5034 			CNTR_NORMAL,
5035 			access_sdma_length_mismatch_err_cnt),
5036 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5037 			CNTR_NORMAL,
5038 			access_sdma_halt_err_cnt),
5039 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5040 			CNTR_NORMAL,
5041 			access_sdma_mem_read_err_cnt),
5042 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5043 			CNTR_NORMAL,
5044 			access_sdma_first_desc_err_cnt),
5045 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5046 			CNTR_NORMAL,
5047 			access_sdma_tail_out_of_bounds_err_cnt),
5048 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5049 			CNTR_NORMAL,
5050 			access_sdma_too_long_err_cnt),
5051 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5052 			CNTR_NORMAL,
5053 			access_sdma_gen_mismatch_err_cnt),
5054 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5055 			CNTR_NORMAL,
5056 			access_sdma_wrong_dw_err_cnt),
5057 };
5058 
5059 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5060 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5061 			CNTR_NORMAL),
5062 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5063 			CNTR_NORMAL),
5064 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5065 			CNTR_NORMAL),
5066 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5067 			CNTR_NORMAL),
5068 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5069 			CNTR_NORMAL),
5070 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5071 			CNTR_NORMAL),
5072 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5073 			CNTR_NORMAL),
5074 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5075 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5076 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5077 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5078 				      CNTR_SYNTH | CNTR_VL),
5079 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5080 				     CNTR_SYNTH | CNTR_VL),
5081 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5082 				      CNTR_SYNTH | CNTR_VL),
5083 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5084 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5085 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5086 			     access_sw_link_dn_cnt),
5087 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5088 			   access_sw_link_up_cnt),
5089 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5090 				 access_sw_unknown_frame_cnt),
5091 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5092 			     access_sw_xmit_discards),
5093 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5094 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5095 				access_sw_xmit_discards),
5096 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5097 				 access_xmit_constraint_errs),
5098 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5099 				access_rcv_constraint_errs),
5100 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5101 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5102 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5103 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5104 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5105 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5106 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5107 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5108 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5109 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5110 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5111 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5112 [C_SW_IBP_RC_CRWAITS] = SW_IBP_CNTR(RcCrWait, rc_crwaits),
5113 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5114 			       access_sw_cpu_rc_acks),
5115 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5116 				access_sw_cpu_rc_qacks),
5117 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5118 				       access_sw_cpu_rc_delayed_comp),
5119 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5120 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5121 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5122 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5123 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5124 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5125 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5126 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5127 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5128 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5129 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5130 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5131 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5132 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5133 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5134 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5135 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5136 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5137 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5138 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5139 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5140 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5141 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5142 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5143 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5144 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5145 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5146 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5147 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5148 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5149 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5150 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5151 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5152 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5153 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5154 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5155 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5156 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5157 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5158 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5159 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5160 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5161 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5162 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5163 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5164 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5165 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5166 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5167 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5168 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5169 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5170 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5171 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5172 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5173 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5174 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5175 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5176 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5177 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5178 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5179 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5180 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5181 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5182 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5183 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5184 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5185 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5186 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5187 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5188 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5189 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5190 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5191 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5192 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5193 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5194 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5195 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5196 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5197 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5198 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5199 };
5200 
5201 /* ======================================================================== */
5202 
5203 /* return true if this is chip revision revision a */
5204 int is_ax(struct hfi1_devdata *dd)
5205 {
5206 	u8 chip_rev_minor =
5207 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5208 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5209 	return (chip_rev_minor & 0xf0) == 0;
5210 }
5211 
5212 /* return true if this is chip revision revision b */
5213 int is_bx(struct hfi1_devdata *dd)
5214 {
5215 	u8 chip_rev_minor =
5216 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5217 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5218 	return (chip_rev_minor & 0xF0) == 0x10;
5219 }
5220 
5221 /* return true is kernel urg disabled for rcd */
5222 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5223 {
5224 	u64 mask;
5225 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5226 	u8 bit = is % 64;
5227 
5228 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5229 	return !(mask & BIT_ULL(bit));
5230 }
5231 
5232 /*
5233  * Append string s to buffer buf.  Arguments curp and len are the current
5234  * position and remaining length, respectively.
5235  *
5236  * return 0 on success, 1 on out of room
5237  */
5238 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5239 {
5240 	char *p = *curp;
5241 	int len = *lenp;
5242 	int result = 0; /* success */
5243 	char c;
5244 
5245 	/* add a comma, if first in the buffer */
5246 	if (p != buf) {
5247 		if (len == 0) {
5248 			result = 1; /* out of room */
5249 			goto done;
5250 		}
5251 		*p++ = ',';
5252 		len--;
5253 	}
5254 
5255 	/* copy the string */
5256 	while ((c = *s++) != 0) {
5257 		if (len == 0) {
5258 			result = 1; /* out of room */
5259 			goto done;
5260 		}
5261 		*p++ = c;
5262 		len--;
5263 	}
5264 
5265 done:
5266 	/* write return values */
5267 	*curp = p;
5268 	*lenp = len;
5269 
5270 	return result;
5271 }
5272 
5273 /*
5274  * Using the given flag table, print a comma separated string into
5275  * the buffer.  End in '*' if the buffer is too short.
5276  */
5277 static char *flag_string(char *buf, int buf_len, u64 flags,
5278 			 struct flag_table *table, int table_size)
5279 {
5280 	char extra[32];
5281 	char *p = buf;
5282 	int len = buf_len;
5283 	int no_room = 0;
5284 	int i;
5285 
5286 	/* make sure there is at least 2 so we can form "*" */
5287 	if (len < 2)
5288 		return "";
5289 
5290 	len--;	/* leave room for a nul */
5291 	for (i = 0; i < table_size; i++) {
5292 		if (flags & table[i].flag) {
5293 			no_room = append_str(buf, &p, &len, table[i].str);
5294 			if (no_room)
5295 				break;
5296 			flags &= ~table[i].flag;
5297 		}
5298 	}
5299 
5300 	/* any undocumented bits left? */
5301 	if (!no_room && flags) {
5302 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5303 		no_room = append_str(buf, &p, &len, extra);
5304 	}
5305 
5306 	/* add * if ran out of room */
5307 	if (no_room) {
5308 		/* may need to back up to add space for a '*' */
5309 		if (len == 0)
5310 			--p;
5311 		*p++ = '*';
5312 	}
5313 
5314 	/* add final nul - space already allocated above */
5315 	*p = 0;
5316 	return buf;
5317 }
5318 
5319 /* first 8 CCE error interrupt source names */
5320 static const char * const cce_misc_names[] = {
5321 	"CceErrInt",		/* 0 */
5322 	"RxeErrInt",		/* 1 */
5323 	"MiscErrInt",		/* 2 */
5324 	"Reserved3",		/* 3 */
5325 	"PioErrInt",		/* 4 */
5326 	"SDmaErrInt",		/* 5 */
5327 	"EgressErrInt",		/* 6 */
5328 	"TxeErrInt"		/* 7 */
5329 };
5330 
5331 /*
5332  * Return the miscellaneous error interrupt name.
5333  */
5334 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5335 {
5336 	if (source < ARRAY_SIZE(cce_misc_names))
5337 		strscpy_pad(buf, cce_misc_names[source], bsize);
5338 	else
5339 		snprintf(buf, bsize, "Reserved%u",
5340 			 source + IS_GENERAL_ERR_START);
5341 
5342 	return buf;
5343 }
5344 
5345 /*
5346  * Return the SDMA engine error interrupt name.
5347  */
5348 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5349 {
5350 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5351 	return buf;
5352 }
5353 
5354 /*
5355  * Return the send context error interrupt name.
5356  */
5357 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5358 {
5359 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5360 	return buf;
5361 }
5362 
5363 static const char * const various_names[] = {
5364 	"PbcInt",
5365 	"GpioAssertInt",
5366 	"Qsfp1Int",
5367 	"Qsfp2Int",
5368 	"TCritInt"
5369 };
5370 
5371 /*
5372  * Return the various interrupt name.
5373  */
5374 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5375 {
5376 	if (source < ARRAY_SIZE(various_names))
5377 		strscpy_pad(buf, various_names[source], bsize);
5378 	else
5379 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5380 	return buf;
5381 }
5382 
5383 /*
5384  * Return the DC interrupt name.
5385  */
5386 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5387 {
5388 	static const char * const dc_int_names[] = {
5389 		"common",
5390 		"lcb",
5391 		"8051",
5392 		"lbm"	/* local block merge */
5393 	};
5394 
5395 	if (source < ARRAY_SIZE(dc_int_names))
5396 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5397 	else
5398 		snprintf(buf, bsize, "DCInt%u", source);
5399 	return buf;
5400 }
5401 
5402 static const char * const sdma_int_names[] = {
5403 	"SDmaInt",
5404 	"SdmaIdleInt",
5405 	"SdmaProgressInt",
5406 };
5407 
5408 /*
5409  * Return the SDMA engine interrupt name.
5410  */
5411 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5412 {
5413 	/* what interrupt */
5414 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5415 	/* which engine */
5416 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5417 
5418 	if (likely(what < 3))
5419 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5420 	else
5421 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5422 	return buf;
5423 }
5424 
5425 /*
5426  * Return the receive available interrupt name.
5427  */
5428 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5429 {
5430 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5431 	return buf;
5432 }
5433 
5434 /*
5435  * Return the receive urgent interrupt name.
5436  */
5437 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5438 {
5439 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5440 	return buf;
5441 }
5442 
5443 /*
5444  * Return the send credit interrupt name.
5445  */
5446 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5447 {
5448 	snprintf(buf, bsize, "SendCreditInt%u", source);
5449 	return buf;
5450 }
5451 
5452 /*
5453  * Return the reserved interrupt name.
5454  */
5455 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5456 {
5457 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5458 	return buf;
5459 }
5460 
5461 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5462 {
5463 	return flag_string(buf, buf_len, flags,
5464 			   cce_err_status_flags,
5465 			   ARRAY_SIZE(cce_err_status_flags));
5466 }
5467 
5468 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5469 {
5470 	return flag_string(buf, buf_len, flags,
5471 			   rxe_err_status_flags,
5472 			   ARRAY_SIZE(rxe_err_status_flags));
5473 }
5474 
5475 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5476 {
5477 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5478 			   ARRAY_SIZE(misc_err_status_flags));
5479 }
5480 
5481 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5482 {
5483 	return flag_string(buf, buf_len, flags,
5484 			   pio_err_status_flags,
5485 			   ARRAY_SIZE(pio_err_status_flags));
5486 }
5487 
5488 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5489 {
5490 	return flag_string(buf, buf_len, flags,
5491 			   sdma_err_status_flags,
5492 			   ARRAY_SIZE(sdma_err_status_flags));
5493 }
5494 
5495 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5496 {
5497 	return flag_string(buf, buf_len, flags,
5498 			   egress_err_status_flags,
5499 			   ARRAY_SIZE(egress_err_status_flags));
5500 }
5501 
5502 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5503 {
5504 	return flag_string(buf, buf_len, flags,
5505 			   egress_err_info_flags,
5506 			   ARRAY_SIZE(egress_err_info_flags));
5507 }
5508 
5509 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5510 {
5511 	return flag_string(buf, buf_len, flags,
5512 			   send_err_status_flags,
5513 			   ARRAY_SIZE(send_err_status_flags));
5514 }
5515 
5516 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5517 {
5518 	char buf[96];
5519 	int i = 0;
5520 
5521 	/*
5522 	 * For most these errors, there is nothing that can be done except
5523 	 * report or record it.
5524 	 */
5525 	dd_dev_info(dd, "CCE Error: %s\n",
5526 		    cce_err_status_string(buf, sizeof(buf), reg));
5527 
5528 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5529 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5530 		/* this error requires a manual drop into SPC freeze mode */
5531 		/* then a fix up */
5532 		start_freeze_handling(dd->pport, FREEZE_SELF);
5533 	}
5534 
5535 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5536 		if (reg & (1ull << i)) {
5537 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5538 			/* maintain a counter over all cce_err_status errors */
5539 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5540 		}
5541 	}
5542 }
5543 
5544 /*
5545  * Check counters for receive errors that do not have an interrupt
5546  * associated with them.
5547  */
5548 #define RCVERR_CHECK_TIME 10
5549 static void update_rcverr_timer(struct timer_list *t)
5550 {
5551 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5552 	struct hfi1_pportdata *ppd = dd->pport;
5553 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5554 
5555 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5556 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5557 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5558 		set_link_down_reason(
5559 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5560 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5561 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5562 	}
5563 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5564 
5565 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5566 }
5567 
5568 static int init_rcverr(struct hfi1_devdata *dd)
5569 {
5570 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5571 	/* Assume the hardware counter has been reset */
5572 	dd->rcv_ovfl_cnt = 0;
5573 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5574 }
5575 
5576 static void free_rcverr(struct hfi1_devdata *dd)
5577 {
5578 	if (dd->rcverr_timer.function)
5579 		del_timer_sync(&dd->rcverr_timer);
5580 }
5581 
5582 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5583 {
5584 	char buf[96];
5585 	int i = 0;
5586 
5587 	dd_dev_info(dd, "Receive Error: %s\n",
5588 		    rxe_err_status_string(buf, sizeof(buf), reg));
5589 
5590 	if (reg & ALL_RXE_FREEZE_ERR) {
5591 		int flags = 0;
5592 
5593 		/*
5594 		 * Freeze mode recovery is disabled for the errors
5595 		 * in RXE_FREEZE_ABORT_MASK
5596 		 */
5597 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5598 			flags = FREEZE_ABORT;
5599 
5600 		start_freeze_handling(dd->pport, flags);
5601 	}
5602 
5603 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5604 		if (reg & (1ull << i))
5605 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5606 	}
5607 }
5608 
5609 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5610 {
5611 	char buf[96];
5612 	int i = 0;
5613 
5614 	dd_dev_info(dd, "Misc Error: %s",
5615 		    misc_err_status_string(buf, sizeof(buf), reg));
5616 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5617 		if (reg & (1ull << i))
5618 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5619 	}
5620 }
5621 
5622 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5623 {
5624 	char buf[96];
5625 	int i = 0;
5626 
5627 	dd_dev_info(dd, "PIO Error: %s\n",
5628 		    pio_err_status_string(buf, sizeof(buf), reg));
5629 
5630 	if (reg & ALL_PIO_FREEZE_ERR)
5631 		start_freeze_handling(dd->pport, 0);
5632 
5633 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5634 		if (reg & (1ull << i))
5635 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5636 	}
5637 }
5638 
5639 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5640 {
5641 	char buf[96];
5642 	int i = 0;
5643 
5644 	dd_dev_info(dd, "SDMA Error: %s\n",
5645 		    sdma_err_status_string(buf, sizeof(buf), reg));
5646 
5647 	if (reg & ALL_SDMA_FREEZE_ERR)
5648 		start_freeze_handling(dd->pport, 0);
5649 
5650 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5651 		if (reg & (1ull << i))
5652 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5653 	}
5654 }
5655 
5656 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5657 {
5658 	incr_cntr64(&ppd->port_xmit_discards);
5659 }
5660 
5661 static void count_port_inactive(struct hfi1_devdata *dd)
5662 {
5663 	__count_port_discards(dd->pport);
5664 }
5665 
5666 /*
5667  * We have had a "disallowed packet" error during egress. Determine the
5668  * integrity check which failed, and update relevant error counter, etc.
5669  *
5670  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5671  * bit of state per integrity check, and so we can miss the reason for an
5672  * egress error if more than one packet fails the same integrity check
5673  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5674  */
5675 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5676 					int vl)
5677 {
5678 	struct hfi1_pportdata *ppd = dd->pport;
5679 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5680 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5681 	char buf[96];
5682 
5683 	/* clear down all observed info as quickly as possible after read */
5684 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5685 
5686 	dd_dev_info(dd,
5687 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5688 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5689 
5690 	/* Eventually add other counters for each bit */
5691 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5692 		int weight, i;
5693 
5694 		/*
5695 		 * Count all applicable bits as individual errors and
5696 		 * attribute them to the packet that triggered this handler.
5697 		 * This may not be completely accurate due to limitations
5698 		 * on the available hardware error information.  There is
5699 		 * a single information register and any number of error
5700 		 * packets may have occurred and contributed to it before
5701 		 * this routine is called.  This means that:
5702 		 * a) If multiple packets with the same error occur before
5703 		 *    this routine is called, earlier packets are missed.
5704 		 *    There is only a single bit for each error type.
5705 		 * b) Errors may not be attributed to the correct VL.
5706 		 *    The driver is attributing all bits in the info register
5707 		 *    to the packet that triggered this call, but bits
5708 		 *    could be an accumulation of different packets with
5709 		 *    different VLs.
5710 		 * c) A single error packet may have multiple counts attached
5711 		 *    to it.  There is no way for the driver to know if
5712 		 *    multiple bits set in the info register are due to a
5713 		 *    single packet or multiple packets.  The driver assumes
5714 		 *    multiple packets.
5715 		 */
5716 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5717 		for (i = 0; i < weight; i++) {
5718 			__count_port_discards(ppd);
5719 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5720 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5721 			else if (vl == 15)
5722 				incr_cntr64(&ppd->port_xmit_discards_vl
5723 					    [C_VL_15]);
5724 		}
5725 	}
5726 }
5727 
5728 /*
5729  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5730  * register. Does it represent a 'port inactive' error?
5731  */
5732 static inline int port_inactive_err(u64 posn)
5733 {
5734 	return (posn >= SEES(TX_LINKDOWN) &&
5735 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5736 }
5737 
5738 /*
5739  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5740  * register. Does it represent a 'disallowed packet' error?
5741  */
5742 static inline int disallowed_pkt_err(int posn)
5743 {
5744 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5745 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5746 }
5747 
5748 /*
5749  * Input value is a bit position of one of the SDMA engine disallowed
5750  * packet errors.  Return which engine.  Use of this must be guarded by
5751  * disallowed_pkt_err().
5752  */
5753 static inline int disallowed_pkt_engine(int posn)
5754 {
5755 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5756 }
5757 
5758 /*
5759  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5760  * be done.
5761  */
5762 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5763 {
5764 	struct sdma_vl_map *m;
5765 	int vl;
5766 
5767 	/* range check */
5768 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5769 		return -1;
5770 
5771 	rcu_read_lock();
5772 	m = rcu_dereference(dd->sdma_map);
5773 	vl = m->engine_to_vl[engine];
5774 	rcu_read_unlock();
5775 
5776 	return vl;
5777 }
5778 
5779 /*
5780  * Translate the send context (sofware index) into a VL.  Return -1 if the
5781  * translation cannot be done.
5782  */
5783 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5784 {
5785 	struct send_context_info *sci;
5786 	struct send_context *sc;
5787 	int i;
5788 
5789 	sci = &dd->send_contexts[sw_index];
5790 
5791 	/* there is no information for user (PSM) and ack contexts */
5792 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5793 		return -1;
5794 
5795 	sc = sci->sc;
5796 	if (!sc)
5797 		return -1;
5798 	if (dd->vld[15].sc == sc)
5799 		return 15;
5800 	for (i = 0; i < num_vls; i++)
5801 		if (dd->vld[i].sc == sc)
5802 			return i;
5803 
5804 	return -1;
5805 }
5806 
5807 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5808 {
5809 	u64 reg_copy = reg, handled = 0;
5810 	char buf[96];
5811 	int i = 0;
5812 
5813 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5814 		start_freeze_handling(dd->pport, 0);
5815 	else if (is_ax(dd) &&
5816 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5817 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5818 		start_freeze_handling(dd->pport, 0);
5819 
5820 	while (reg_copy) {
5821 		int posn = fls64(reg_copy);
5822 		/* fls64() returns a 1-based offset, we want it zero based */
5823 		int shift = posn - 1;
5824 		u64 mask = 1ULL << shift;
5825 
5826 		if (port_inactive_err(shift)) {
5827 			count_port_inactive(dd);
5828 			handled |= mask;
5829 		} else if (disallowed_pkt_err(shift)) {
5830 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5831 
5832 			handle_send_egress_err_info(dd, vl);
5833 			handled |= mask;
5834 		}
5835 		reg_copy &= ~mask;
5836 	}
5837 
5838 	reg &= ~handled;
5839 
5840 	if (reg)
5841 		dd_dev_info(dd, "Egress Error: %s\n",
5842 			    egress_err_status_string(buf, sizeof(buf), reg));
5843 
5844 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5845 		if (reg & (1ull << i))
5846 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5847 	}
5848 }
5849 
5850 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5851 {
5852 	char buf[96];
5853 	int i = 0;
5854 
5855 	dd_dev_info(dd, "Send Error: %s\n",
5856 		    send_err_status_string(buf, sizeof(buf), reg));
5857 
5858 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5859 		if (reg & (1ull << i))
5860 			incr_cntr64(&dd->send_err_status_cnt[i]);
5861 	}
5862 }
5863 
5864 /*
5865  * The maximum number of times the error clear down will loop before
5866  * blocking a repeating error.  This value is arbitrary.
5867  */
5868 #define MAX_CLEAR_COUNT 20
5869 
5870 /*
5871  * Clear and handle an error register.  All error interrupts are funneled
5872  * through here to have a central location to correctly handle single-
5873  * or multi-shot errors.
5874  *
5875  * For non per-context registers, call this routine with a context value
5876  * of 0 so the per-context offset is zero.
5877  *
5878  * If the handler loops too many times, assume that something is wrong
5879  * and can't be fixed, so mask the error bits.
5880  */
5881 static void interrupt_clear_down(struct hfi1_devdata *dd,
5882 				 u32 context,
5883 				 const struct err_reg_info *eri)
5884 {
5885 	u64 reg;
5886 	u32 count;
5887 
5888 	/* read in a loop until no more errors are seen */
5889 	count = 0;
5890 	while (1) {
5891 		reg = read_kctxt_csr(dd, context, eri->status);
5892 		if (reg == 0)
5893 			break;
5894 		write_kctxt_csr(dd, context, eri->clear, reg);
5895 		if (likely(eri->handler))
5896 			eri->handler(dd, context, reg);
5897 		count++;
5898 		if (count > MAX_CLEAR_COUNT) {
5899 			u64 mask;
5900 
5901 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5902 				   eri->desc, reg);
5903 			/*
5904 			 * Read-modify-write so any other masked bits
5905 			 * remain masked.
5906 			 */
5907 			mask = read_kctxt_csr(dd, context, eri->mask);
5908 			mask &= ~reg;
5909 			write_kctxt_csr(dd, context, eri->mask, mask);
5910 			break;
5911 		}
5912 	}
5913 }
5914 
5915 /*
5916  * CCE block "misc" interrupt.  Source is < 16.
5917  */
5918 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5919 {
5920 	const struct err_reg_info *eri = &misc_errs[source];
5921 
5922 	if (eri->handler) {
5923 		interrupt_clear_down(dd, 0, eri);
5924 	} else {
5925 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5926 			   source);
5927 	}
5928 }
5929 
5930 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5931 {
5932 	return flag_string(buf, buf_len, flags,
5933 			   sc_err_status_flags,
5934 			   ARRAY_SIZE(sc_err_status_flags));
5935 }
5936 
5937 /*
5938  * Send context error interrupt.  Source (hw_context) is < 160.
5939  *
5940  * All send context errors cause the send context to halt.  The normal
5941  * clear-down mechanism cannot be used because we cannot clear the
5942  * error bits until several other long-running items are done first.
5943  * This is OK because with the context halted, nothing else is going
5944  * to happen on it anyway.
5945  */
5946 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5947 				unsigned int hw_context)
5948 {
5949 	struct send_context_info *sci;
5950 	struct send_context *sc;
5951 	char flags[96];
5952 	u64 status;
5953 	u32 sw_index;
5954 	int i = 0;
5955 	unsigned long irq_flags;
5956 
5957 	sw_index = dd->hw_to_sw[hw_context];
5958 	if (sw_index >= dd->num_send_contexts) {
5959 		dd_dev_err(dd,
5960 			   "out of range sw index %u for send context %u\n",
5961 			   sw_index, hw_context);
5962 		return;
5963 	}
5964 	sci = &dd->send_contexts[sw_index];
5965 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5966 	sc = sci->sc;
5967 	if (!sc) {
5968 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5969 			   sw_index, hw_context);
5970 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5971 		return;
5972 	}
5973 
5974 	/* tell the software that a halt has begun */
5975 	sc_stop(sc, SCF_HALTED);
5976 
5977 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5978 
5979 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5980 		    send_context_err_status_string(flags, sizeof(flags),
5981 						   status));
5982 
5983 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5984 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5985 
5986 	/*
5987 	 * Automatically restart halted kernel contexts out of interrupt
5988 	 * context.  User contexts must ask the driver to restart the context.
5989 	 */
5990 	if (sc->type != SC_USER)
5991 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5992 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5993 
5994 	/*
5995 	 * Update the counters for the corresponding status bits.
5996 	 * Note that these particular counters are aggregated over all
5997 	 * 160 contexts.
5998 	 */
5999 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6000 		if (status & (1ull << i))
6001 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6002 	}
6003 }
6004 
6005 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6006 				unsigned int source, u64 status)
6007 {
6008 	struct sdma_engine *sde;
6009 	int i = 0;
6010 
6011 	sde = &dd->per_sdma[source];
6012 #ifdef CONFIG_SDMA_VERBOSITY
6013 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6014 		   slashstrip(__FILE__), __LINE__, __func__);
6015 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6016 		   sde->this_idx, source, (unsigned long long)status);
6017 #endif
6018 	sde->err_cnt++;
6019 	sdma_engine_error(sde, status);
6020 
6021 	/*
6022 	* Update the counters for the corresponding status bits.
6023 	* Note that these particular counters are aggregated over
6024 	* all 16 DMA engines.
6025 	*/
6026 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6027 		if (status & (1ull << i))
6028 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6029 	}
6030 }
6031 
6032 /*
6033  * CCE block SDMA error interrupt.  Source is < 16.
6034  */
6035 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6036 {
6037 #ifdef CONFIG_SDMA_VERBOSITY
6038 	struct sdma_engine *sde = &dd->per_sdma[source];
6039 
6040 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6041 		   slashstrip(__FILE__), __LINE__, __func__);
6042 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6043 		   source);
6044 	sdma_dumpstate(sde);
6045 #endif
6046 	interrupt_clear_down(dd, source, &sdma_eng_err);
6047 }
6048 
6049 /*
6050  * CCE block "various" interrupt.  Source is < 8.
6051  */
6052 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6053 {
6054 	const struct err_reg_info *eri = &various_err[source];
6055 
6056 	/*
6057 	 * TCritInt cannot go through interrupt_clear_down()
6058 	 * because it is not a second tier interrupt. The handler
6059 	 * should be called directly.
6060 	 */
6061 	if (source == TCRIT_INT_SOURCE)
6062 		handle_temp_err(dd);
6063 	else if (eri->handler)
6064 		interrupt_clear_down(dd, 0, eri);
6065 	else
6066 		dd_dev_info(dd,
6067 			    "%s: Unimplemented/reserved interrupt %d\n",
6068 			    __func__, source);
6069 }
6070 
6071 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6072 {
6073 	/* src_ctx is always zero */
6074 	struct hfi1_pportdata *ppd = dd->pport;
6075 	unsigned long flags;
6076 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6077 
6078 	if (reg & QSFP_HFI0_MODPRST_N) {
6079 		if (!qsfp_mod_present(ppd)) {
6080 			dd_dev_info(dd, "%s: QSFP module removed\n",
6081 				    __func__);
6082 
6083 			ppd->driver_link_ready = 0;
6084 			/*
6085 			 * Cable removed, reset all our information about the
6086 			 * cache and cable capabilities
6087 			 */
6088 
6089 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6090 			/*
6091 			 * We don't set cache_refresh_required here as we expect
6092 			 * an interrupt when a cable is inserted
6093 			 */
6094 			ppd->qsfp_info.cache_valid = 0;
6095 			ppd->qsfp_info.reset_needed = 0;
6096 			ppd->qsfp_info.limiting_active = 0;
6097 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6098 					       flags);
6099 			/* Invert the ModPresent pin now to detect plug-in */
6100 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6101 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6102 
6103 			if ((ppd->offline_disabled_reason >
6104 			  HFI1_ODR_MASK(
6105 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6106 			  (ppd->offline_disabled_reason ==
6107 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6108 				ppd->offline_disabled_reason =
6109 				HFI1_ODR_MASK(
6110 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6111 
6112 			if (ppd->host_link_state == HLS_DN_POLL) {
6113 				/*
6114 				 * The link is still in POLL. This means
6115 				 * that the normal link down processing
6116 				 * will not happen. We have to do it here
6117 				 * before turning the DC off.
6118 				 */
6119 				queue_work(ppd->link_wq, &ppd->link_down_work);
6120 			}
6121 		} else {
6122 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6123 				    __func__);
6124 
6125 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6126 			ppd->qsfp_info.cache_valid = 0;
6127 			ppd->qsfp_info.cache_refresh_required = 1;
6128 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6129 					       flags);
6130 
6131 			/*
6132 			 * Stop inversion of ModPresent pin to detect
6133 			 * removal of the cable
6134 			 */
6135 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6136 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6137 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6138 
6139 			ppd->offline_disabled_reason =
6140 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6141 		}
6142 	}
6143 
6144 	if (reg & QSFP_HFI0_INT_N) {
6145 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6146 			    __func__);
6147 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6148 		ppd->qsfp_info.check_interrupt_flags = 1;
6149 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6150 	}
6151 
6152 	/* Schedule the QSFP work only if there is a cable attached. */
6153 	if (qsfp_mod_present(ppd))
6154 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6155 }
6156 
6157 static int request_host_lcb_access(struct hfi1_devdata *dd)
6158 {
6159 	int ret;
6160 
6161 	ret = do_8051_command(dd, HCMD_MISC,
6162 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6163 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6164 	if (ret != HCMD_SUCCESS && !(dd->flags & HFI1_SHUTDOWN)) {
6165 		dd_dev_err(dd, "%s: command failed with error %d\n",
6166 			   __func__, ret);
6167 	}
6168 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6169 }
6170 
6171 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6172 {
6173 	int ret;
6174 
6175 	ret = do_8051_command(dd, HCMD_MISC,
6176 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6177 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6178 	if (ret != HCMD_SUCCESS) {
6179 		dd_dev_err(dd, "%s: command failed with error %d\n",
6180 			   __func__, ret);
6181 	}
6182 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6183 }
6184 
6185 /*
6186  * Set the LCB selector - allow host access.  The DCC selector always
6187  * points to the host.
6188  */
6189 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6190 {
6191 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6192 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6193 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6194 }
6195 
6196 /*
6197  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6198  * points to the host.
6199  */
6200 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6201 {
6202 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6203 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6204 }
6205 
6206 /*
6207  * Acquire LCB access from the 8051.  If the host already has access,
6208  * just increment a counter.  Otherwise, inform the 8051 that the
6209  * host is taking access.
6210  *
6211  * Returns:
6212  *	0 on success
6213  *	-EBUSY if the 8051 has control and cannot be disturbed
6214  *	-errno if unable to acquire access from the 8051
6215  */
6216 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6217 {
6218 	struct hfi1_pportdata *ppd = dd->pport;
6219 	int ret = 0;
6220 
6221 	/*
6222 	 * Use the host link state lock so the operation of this routine
6223 	 * { link state check, selector change, count increment } can occur
6224 	 * as a unit against a link state change.  Otherwise there is a
6225 	 * race between the state change and the count increment.
6226 	 */
6227 	if (sleep_ok) {
6228 		mutex_lock(&ppd->hls_lock);
6229 	} else {
6230 		while (!mutex_trylock(&ppd->hls_lock))
6231 			udelay(1);
6232 	}
6233 
6234 	/* this access is valid only when the link is up */
6235 	if (ppd->host_link_state & HLS_DOWN) {
6236 		dd_dev_info(dd, "%s: link state %s not up\n",
6237 			    __func__, link_state_name(ppd->host_link_state));
6238 		ret = -EBUSY;
6239 		goto done;
6240 	}
6241 
6242 	if (dd->lcb_access_count == 0) {
6243 		ret = request_host_lcb_access(dd);
6244 		if (ret) {
6245 			if (!(dd->flags & HFI1_SHUTDOWN))
6246 				dd_dev_err(dd,
6247 				   "%s: unable to acquire LCB access, err %d\n",
6248 				   __func__, ret);
6249 			goto done;
6250 		}
6251 		set_host_lcb_access(dd);
6252 	}
6253 	dd->lcb_access_count++;
6254 done:
6255 	mutex_unlock(&ppd->hls_lock);
6256 	return ret;
6257 }
6258 
6259 /*
6260  * Release LCB access by decrementing the use count.  If the count is moving
6261  * from 1 to 0, inform 8051 that it has control back.
6262  *
6263  * Returns:
6264  *	0 on success
6265  *	-errno if unable to release access to the 8051
6266  */
6267 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6268 {
6269 	int ret = 0;
6270 
6271 	/*
6272 	 * Use the host link state lock because the acquire needed it.
6273 	 * Here, we only need to keep { selector change, count decrement }
6274 	 * as a unit.
6275 	 */
6276 	if (sleep_ok) {
6277 		mutex_lock(&dd->pport->hls_lock);
6278 	} else {
6279 		while (!mutex_trylock(&dd->pport->hls_lock))
6280 			udelay(1);
6281 	}
6282 
6283 	if (dd->lcb_access_count == 0) {
6284 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6285 			   __func__);
6286 		goto done;
6287 	}
6288 
6289 	if (dd->lcb_access_count == 1) {
6290 		set_8051_lcb_access(dd);
6291 		ret = request_8051_lcb_access(dd);
6292 		if (ret) {
6293 			dd_dev_err(dd,
6294 				   "%s: unable to release LCB access, err %d\n",
6295 				   __func__, ret);
6296 			/* restore host access if the grant didn't work */
6297 			set_host_lcb_access(dd);
6298 			goto done;
6299 		}
6300 	}
6301 	dd->lcb_access_count--;
6302 done:
6303 	mutex_unlock(&dd->pport->hls_lock);
6304 	return ret;
6305 }
6306 
6307 /*
6308  * Initialize LCB access variables and state.  Called during driver load,
6309  * after most of the initialization is finished.
6310  *
6311  * The DC default is LCB access on for the host.  The driver defaults to
6312  * leaving access to the 8051.  Assign access now - this constrains the call
6313  * to this routine to be after all LCB set-up is done.  In particular, after
6314  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6315  */
6316 static void init_lcb_access(struct hfi1_devdata *dd)
6317 {
6318 	dd->lcb_access_count = 0;
6319 }
6320 
6321 /*
6322  * Write a response back to a 8051 request.
6323  */
6324 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6325 {
6326 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6327 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6328 		  (u64)return_code <<
6329 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6330 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6331 }
6332 
6333 /*
6334  * Handle host requests from the 8051.
6335  */
6336 static void handle_8051_request(struct hfi1_pportdata *ppd)
6337 {
6338 	struct hfi1_devdata *dd = ppd->dd;
6339 	u64 reg;
6340 	u16 data = 0;
6341 	u8 type;
6342 
6343 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6344 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6345 		return;	/* no request */
6346 
6347 	/* zero out COMPLETED so the response is seen */
6348 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6349 
6350 	/* extract request details */
6351 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6352 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6353 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6354 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6355 
6356 	switch (type) {
6357 	case HREQ_LOAD_CONFIG:
6358 	case HREQ_SAVE_CONFIG:
6359 	case HREQ_READ_CONFIG:
6360 	case HREQ_SET_TX_EQ_ABS:
6361 	case HREQ_SET_TX_EQ_REL:
6362 	case HREQ_ENABLE:
6363 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6364 			    type);
6365 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6366 		break;
6367 	case HREQ_LCB_RESET:
6368 		/* Put the LCB, RX FPE and TX FPE into reset */
6369 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6370 		/* Make sure the write completed */
6371 		(void)read_csr(dd, DCC_CFG_RESET);
6372 		/* Hold the reset long enough to take effect */
6373 		udelay(1);
6374 		/* Take the LCB, RX FPE and TX FPE out of reset */
6375 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6376 		hreq_response(dd, HREQ_SUCCESS, 0);
6377 
6378 		break;
6379 	case HREQ_CONFIG_DONE:
6380 		hreq_response(dd, HREQ_SUCCESS, 0);
6381 		break;
6382 
6383 	case HREQ_INTERFACE_TEST:
6384 		hreq_response(dd, HREQ_SUCCESS, data);
6385 		break;
6386 	default:
6387 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6388 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6389 		break;
6390 	}
6391 }
6392 
6393 /*
6394  * Set up allocation unit vaulue.
6395  */
6396 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6397 {
6398 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6399 
6400 	/* do not modify other values in the register */
6401 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6402 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6403 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6404 }
6405 
6406 /*
6407  * Set up initial VL15 credits of the remote.  Assumes the rest of
6408  * the CM credit registers are zero from a previous global or credit reset.
6409  * Shared limit for VL15 will always be 0.
6410  */
6411 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6412 {
6413 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6414 
6415 	/* set initial values for total and shared credit limit */
6416 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6417 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6418 
6419 	/*
6420 	 * Set total limit to be equal to VL15 credits.
6421 	 * Leave shared limit at 0.
6422 	 */
6423 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6424 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6425 
6426 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6427 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6428 }
6429 
6430 /*
6431  * Zero all credit details from the previous connection and
6432  * reset the CM manager's internal counters.
6433  */
6434 void reset_link_credits(struct hfi1_devdata *dd)
6435 {
6436 	int i;
6437 
6438 	/* remove all previous VL credit limits */
6439 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6440 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6441 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6442 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6443 	/* reset the CM block */
6444 	pio_send_control(dd, PSC_CM_RESET);
6445 	/* reset cached value */
6446 	dd->vl15buf_cached = 0;
6447 }
6448 
6449 /* convert a vCU to a CU */
6450 static u32 vcu_to_cu(u8 vcu)
6451 {
6452 	return 1 << vcu;
6453 }
6454 
6455 /* convert a CU to a vCU */
6456 static u8 cu_to_vcu(u32 cu)
6457 {
6458 	return ilog2(cu);
6459 }
6460 
6461 /* convert a vAU to an AU */
6462 static u32 vau_to_au(u8 vau)
6463 {
6464 	return 8 * (1 << vau);
6465 }
6466 
6467 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6468 {
6469 	ppd->sm_trap_qp = 0x0;
6470 	ppd->sa_qp = 0x1;
6471 }
6472 
6473 /*
6474  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6475  */
6476 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6477 {
6478 	u64 reg;
6479 
6480 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6481 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6482 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6483 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6484 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6485 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6486 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6487 	reg = read_csr(dd, DCC_CFG_RESET);
6488 	write_csr(dd, DCC_CFG_RESET, reg |
6489 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6490 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6491 	if (!abort) {
6492 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6493 		write_csr(dd, DCC_CFG_RESET, reg);
6494 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6495 	}
6496 }
6497 
6498 /*
6499  * This routine should be called after the link has been transitioned to
6500  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6501  * reset).
6502  *
6503  * The expectation is that the caller of this routine would have taken
6504  * care of properly transitioning the link into the correct state.
6505  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6506  *       before calling this function.
6507  */
6508 static void _dc_shutdown(struct hfi1_devdata *dd)
6509 {
6510 	lockdep_assert_held(&dd->dc8051_lock);
6511 
6512 	if (dd->dc_shutdown)
6513 		return;
6514 
6515 	dd->dc_shutdown = 1;
6516 	/* Shutdown the LCB */
6517 	lcb_shutdown(dd, 1);
6518 	/*
6519 	 * Going to OFFLINE would have causes the 8051 to put the
6520 	 * SerDes into reset already. Just need to shut down the 8051,
6521 	 * itself.
6522 	 */
6523 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6524 }
6525 
6526 static void dc_shutdown(struct hfi1_devdata *dd)
6527 {
6528 	mutex_lock(&dd->dc8051_lock);
6529 	_dc_shutdown(dd);
6530 	mutex_unlock(&dd->dc8051_lock);
6531 }
6532 
6533 /*
6534  * Calling this after the DC has been brought out of reset should not
6535  * do any damage.
6536  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6537  *       before calling this function.
6538  */
6539 static void _dc_start(struct hfi1_devdata *dd)
6540 {
6541 	lockdep_assert_held(&dd->dc8051_lock);
6542 
6543 	if (!dd->dc_shutdown)
6544 		return;
6545 
6546 	/* Take the 8051 out of reset */
6547 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6548 	/* Wait until 8051 is ready */
6549 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6550 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6551 			   __func__);
6552 
6553 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6554 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6555 	/* lcb_shutdown() with abort=1 does not restore these */
6556 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6557 	dd->dc_shutdown = 0;
6558 }
6559 
6560 static void dc_start(struct hfi1_devdata *dd)
6561 {
6562 	mutex_lock(&dd->dc8051_lock);
6563 	_dc_start(dd);
6564 	mutex_unlock(&dd->dc8051_lock);
6565 }
6566 
6567 /*
6568  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6569  */
6570 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6571 {
6572 	u64 rx_radr, tx_radr;
6573 	u32 version;
6574 
6575 	if (dd->icode != ICODE_FPGA_EMULATION)
6576 		return;
6577 
6578 	/*
6579 	 * These LCB defaults on emulator _s are good, nothing to do here:
6580 	 *	LCB_CFG_TX_FIFOS_RADR
6581 	 *	LCB_CFG_RX_FIFOS_RADR
6582 	 *	LCB_CFG_LN_DCLK
6583 	 *	LCB_CFG_IGNORE_LOST_RCLK
6584 	 */
6585 	if (is_emulator_s(dd))
6586 		return;
6587 	/* else this is _p */
6588 
6589 	version = emulator_rev(dd);
6590 	if (!is_ax(dd))
6591 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6592 
6593 	if (version <= 0x12) {
6594 		/* release 0x12 and below */
6595 
6596 		/*
6597 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6598 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6599 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6600 		 */
6601 		rx_radr =
6602 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6603 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6604 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6605 		/*
6606 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6607 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6608 		 */
6609 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6610 	} else if (version <= 0x18) {
6611 		/* release 0x13 up to 0x18 */
6612 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6613 		rx_radr =
6614 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618 	} else if (version == 0x19) {
6619 		/* release 0x19 */
6620 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6621 		rx_radr =
6622 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6623 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6624 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6625 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6626 	} else if (version == 0x1a) {
6627 		/* release 0x1a */
6628 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6629 		rx_radr =
6630 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6631 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6632 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6633 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6634 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6635 	} else {
6636 		/* release 0x1b and higher */
6637 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6638 		rx_radr =
6639 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6640 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6641 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6642 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6643 	}
6644 
6645 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6646 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6647 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6648 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6649 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6650 }
6651 
6652 /*
6653  * Handle a SMA idle message
6654  *
6655  * This is a work-queue function outside of the interrupt.
6656  */
6657 void handle_sma_message(struct work_struct *work)
6658 {
6659 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6660 							sma_message_work);
6661 	struct hfi1_devdata *dd = ppd->dd;
6662 	u64 msg;
6663 	int ret;
6664 
6665 	/*
6666 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6667 	 * is stripped off
6668 	 */
6669 	ret = read_idle_sma(dd, &msg);
6670 	if (ret)
6671 		return;
6672 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6673 	/*
6674 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6675 	 */
6676 	switch (msg & 0xff) {
6677 	case SMA_IDLE_ARM:
6678 		/*
6679 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6680 		 * State Transitions
6681 		 *
6682 		 * Only expected in INIT or ARMED, discard otherwise.
6683 		 */
6684 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6685 			ppd->neighbor_normal = 1;
6686 		break;
6687 	case SMA_IDLE_ACTIVE:
6688 		/*
6689 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6690 		 * State Transitions
6691 		 *
6692 		 * Can activate the node.  Discard otherwise.
6693 		 */
6694 		if (ppd->host_link_state == HLS_UP_ARMED &&
6695 		    ppd->is_active_optimize_enabled) {
6696 			ppd->neighbor_normal = 1;
6697 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6698 			if (ret)
6699 				dd_dev_err(
6700 					dd,
6701 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6702 					__func__);
6703 		}
6704 		break;
6705 	default:
6706 		dd_dev_err(dd,
6707 			   "%s: received unexpected SMA idle message 0x%llx\n",
6708 			   __func__, msg);
6709 		break;
6710 	}
6711 }
6712 
6713 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6714 {
6715 	u64 rcvctrl;
6716 	unsigned long flags;
6717 
6718 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6719 	rcvctrl = read_csr(dd, RCV_CTRL);
6720 	rcvctrl |= add;
6721 	rcvctrl &= ~clear;
6722 	write_csr(dd, RCV_CTRL, rcvctrl);
6723 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6724 }
6725 
6726 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6727 {
6728 	adjust_rcvctrl(dd, add, 0);
6729 }
6730 
6731 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6732 {
6733 	adjust_rcvctrl(dd, 0, clear);
6734 }
6735 
6736 /*
6737  * Called from all interrupt handlers to start handling an SPC freeze.
6738  */
6739 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6740 {
6741 	struct hfi1_devdata *dd = ppd->dd;
6742 	struct send_context *sc;
6743 	int i;
6744 	int sc_flags;
6745 
6746 	if (flags & FREEZE_SELF)
6747 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6748 
6749 	/* enter frozen mode */
6750 	dd->flags |= HFI1_FROZEN;
6751 
6752 	/* notify all SDMA engines that they are going into a freeze */
6753 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6754 
6755 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6756 					      SCF_LINK_DOWN : 0);
6757 	/* do halt pre-handling on all enabled send contexts */
6758 	for (i = 0; i < dd->num_send_contexts; i++) {
6759 		sc = dd->send_contexts[i].sc;
6760 		if (sc && (sc->flags & SCF_ENABLED))
6761 			sc_stop(sc, sc_flags);
6762 	}
6763 
6764 	/* Send context are frozen. Notify user space */
6765 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6766 
6767 	if (flags & FREEZE_ABORT) {
6768 		dd_dev_err(dd,
6769 			   "Aborted freeze recovery. Please REBOOT system\n");
6770 		return;
6771 	}
6772 	/* queue non-interrupt handler */
6773 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6774 }
6775 
6776 /*
6777  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6778  * depending on the "freeze" parameter.
6779  *
6780  * No need to return an error if it times out, our only option
6781  * is to proceed anyway.
6782  */
6783 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6784 {
6785 	unsigned long timeout;
6786 	u64 reg;
6787 
6788 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6789 	while (1) {
6790 		reg = read_csr(dd, CCE_STATUS);
6791 		if (freeze) {
6792 			/* waiting until all indicators are set */
6793 			if ((reg & ALL_FROZE) == ALL_FROZE)
6794 				return;	/* all done */
6795 		} else {
6796 			/* waiting until all indicators are clear */
6797 			if ((reg & ALL_FROZE) == 0)
6798 				return; /* all done */
6799 		}
6800 
6801 		if (time_after(jiffies, timeout)) {
6802 			dd_dev_err(dd,
6803 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6804 				   freeze ? "" : "un", reg & ALL_FROZE,
6805 				   freeze ? ALL_FROZE : 0ull);
6806 			return;
6807 		}
6808 		usleep_range(80, 120);
6809 	}
6810 }
6811 
6812 /*
6813  * Do all freeze handling for the RXE block.
6814  */
6815 static void rxe_freeze(struct hfi1_devdata *dd)
6816 {
6817 	int i;
6818 	struct hfi1_ctxtdata *rcd;
6819 
6820 	/* disable port */
6821 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6822 
6823 	/* disable all receive contexts */
6824 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6825 		rcd = hfi1_rcd_get_by_index(dd, i);
6826 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6827 		hfi1_rcd_put(rcd);
6828 	}
6829 }
6830 
6831 /*
6832  * Unfreeze handling for the RXE block - kernel contexts only.
6833  * This will also enable the port.  User contexts will do unfreeze
6834  * handling on a per-context basis as they call into the driver.
6835  *
6836  */
6837 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6838 {
6839 	u32 rcvmask;
6840 	u16 i;
6841 	struct hfi1_ctxtdata *rcd;
6842 
6843 	/* enable all kernel contexts */
6844 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6845 		rcd = hfi1_rcd_get_by_index(dd, i);
6846 
6847 		/* Ensure all non-user contexts(including vnic) are enabled */
6848 		if (!rcd ||
6849 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6850 			hfi1_rcd_put(rcd);
6851 			continue;
6852 		}
6853 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6854 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6855 		rcvmask |= hfi1_rcvhdrtail_kvaddr(rcd) ?
6856 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6857 		hfi1_rcvctrl(dd, rcvmask, rcd);
6858 		hfi1_rcd_put(rcd);
6859 	}
6860 
6861 	/* enable port */
6862 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6863 }
6864 
6865 /*
6866  * Non-interrupt SPC freeze handling.
6867  *
6868  * This is a work-queue function outside of the triggering interrupt.
6869  */
6870 void handle_freeze(struct work_struct *work)
6871 {
6872 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6873 								freeze_work);
6874 	struct hfi1_devdata *dd = ppd->dd;
6875 
6876 	/* wait for freeze indicators on all affected blocks */
6877 	wait_for_freeze_status(dd, 1);
6878 
6879 	/* SPC is now frozen */
6880 
6881 	/* do send PIO freeze steps */
6882 	pio_freeze(dd);
6883 
6884 	/* do send DMA freeze steps */
6885 	sdma_freeze(dd);
6886 
6887 	/* do send egress freeze steps - nothing to do */
6888 
6889 	/* do receive freeze steps */
6890 	rxe_freeze(dd);
6891 
6892 	/*
6893 	 * Unfreeze the hardware - clear the freeze, wait for each
6894 	 * block's frozen bit to clear, then clear the frozen flag.
6895 	 */
6896 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6897 	wait_for_freeze_status(dd, 0);
6898 
6899 	if (is_ax(dd)) {
6900 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6901 		wait_for_freeze_status(dd, 1);
6902 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6903 		wait_for_freeze_status(dd, 0);
6904 	}
6905 
6906 	/* do send PIO unfreeze steps for kernel contexts */
6907 	pio_kernel_unfreeze(dd);
6908 
6909 	/* do send DMA unfreeze steps */
6910 	sdma_unfreeze(dd);
6911 
6912 	/* do send egress unfreeze steps - nothing to do */
6913 
6914 	/* do receive unfreeze steps for kernel contexts */
6915 	rxe_kernel_unfreeze(dd);
6916 
6917 	/*
6918 	 * The unfreeze procedure touches global device registers when
6919 	 * it disables and re-enables RXE. Mark the device unfrozen
6920 	 * after all that is done so other parts of the driver waiting
6921 	 * for the device to unfreeze don't do things out of order.
6922 	 *
6923 	 * The above implies that the meaning of HFI1_FROZEN flag is
6924 	 * "Device has gone into freeze mode and freeze mode handling
6925 	 * is still in progress."
6926 	 *
6927 	 * The flag will be removed when freeze mode processing has
6928 	 * completed.
6929 	 */
6930 	dd->flags &= ~HFI1_FROZEN;
6931 	wake_up(&dd->event_queue);
6932 
6933 	/* no longer frozen */
6934 }
6935 
6936 /**
6937  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6938  * counters.
6939  * @ppd: info of physical Hfi port
6940  * @link_width: new link width after link up or downgrade
6941  *
6942  * Update the PortXmitWait and PortVlXmitWait counters after
6943  * a link up or downgrade event to reflect a link width change.
6944  */
6945 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6946 {
6947 	int i;
6948 	u16 tx_width;
6949 	u16 link_speed;
6950 
6951 	tx_width = tx_link_width(link_width);
6952 	link_speed = get_link_speed(ppd->link_speed_active);
6953 
6954 	/*
6955 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6956 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6957 	 */
6958 	for (i = 0; i < C_VL_COUNT + 1; i++)
6959 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6960 }
6961 
6962 /*
6963  * Handle a link up interrupt from the 8051.
6964  *
6965  * This is a work-queue function outside of the interrupt.
6966  */
6967 void handle_link_up(struct work_struct *work)
6968 {
6969 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6970 						  link_up_work);
6971 	struct hfi1_devdata *dd = ppd->dd;
6972 
6973 	set_link_state(ppd, HLS_UP_INIT);
6974 
6975 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6976 	read_ltp_rtt(dd);
6977 	/*
6978 	 * OPA specifies that certain counters are cleared on a transition
6979 	 * to link up, so do that.
6980 	 */
6981 	clear_linkup_counters(dd);
6982 	/*
6983 	 * And (re)set link up default values.
6984 	 */
6985 	set_linkup_defaults(ppd);
6986 
6987 	/*
6988 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6989 	 * In case of quick linkup or simulator, vl15 value will be set by
6990 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6991 	 * called in those scenarios.
6992 	 */
6993 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6994 		set_up_vl15(dd, dd->vl15buf_cached);
6995 
6996 	/* enforce link speed enabled */
6997 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6998 		/* oops - current speed is not enabled, bounce */
6999 		dd_dev_err(dd,
7000 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7001 			   ppd->link_speed_active, ppd->link_speed_enabled);
7002 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7003 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7004 		set_link_state(ppd, HLS_DN_OFFLINE);
7005 		start_link(ppd);
7006 	}
7007 }
7008 
7009 /*
7010  * Several pieces of LNI information were cached for SMA in ppd.
7011  * Reset these on link down
7012  */
7013 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7014 {
7015 	ppd->neighbor_guid = 0;
7016 	ppd->neighbor_port_number = 0;
7017 	ppd->neighbor_type = 0;
7018 	ppd->neighbor_fm_security = 0;
7019 }
7020 
7021 static const char * const link_down_reason_strs[] = {
7022 	[OPA_LINKDOWN_REASON_NONE] = "None",
7023 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7024 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7025 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7026 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7027 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7028 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7029 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7030 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7031 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7032 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7033 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7034 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7035 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7036 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7037 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7038 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7039 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7040 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7041 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7042 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7043 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7044 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7045 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7046 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7047 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7048 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7049 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7050 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7051 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7052 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7053 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7054 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7055 					"Excessive buffer overrun",
7056 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7057 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7058 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7059 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7060 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7061 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7062 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7063 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7064 					"Local media not installed",
7065 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7066 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7067 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7068 					"End to end not installed",
7069 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7070 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7071 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7072 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7073 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7074 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7075 };
7076 
7077 /* return the neighbor link down reason string */
7078 static const char *link_down_reason_str(u8 reason)
7079 {
7080 	const char *str = NULL;
7081 
7082 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7083 		str = link_down_reason_strs[reason];
7084 	if (!str)
7085 		str = "(invalid)";
7086 
7087 	return str;
7088 }
7089 
7090 /*
7091  * Handle a link down interrupt from the 8051.
7092  *
7093  * This is a work-queue function outside of the interrupt.
7094  */
7095 void handle_link_down(struct work_struct *work)
7096 {
7097 	u8 lcl_reason, neigh_reason = 0;
7098 	u8 link_down_reason;
7099 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7100 						  link_down_work);
7101 	int was_up;
7102 	static const char ldr_str[] = "Link down reason: ";
7103 
7104 	if ((ppd->host_link_state &
7105 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7106 	     ppd->port_type == PORT_TYPE_FIXED)
7107 		ppd->offline_disabled_reason =
7108 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7109 
7110 	/* Go offline first, then deal with reading/writing through 8051 */
7111 	was_up = !!(ppd->host_link_state & HLS_UP);
7112 	set_link_state(ppd, HLS_DN_OFFLINE);
7113 	xchg(&ppd->is_link_down_queued, 0);
7114 
7115 	if (was_up) {
7116 		lcl_reason = 0;
7117 		/* link down reason is only valid if the link was up */
7118 		read_link_down_reason(ppd->dd, &link_down_reason);
7119 		switch (link_down_reason) {
7120 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7121 			/* the link went down, no idle message reason */
7122 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7123 				    ldr_str);
7124 			break;
7125 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7126 			/*
7127 			 * The neighbor reason is only valid if an idle message
7128 			 * was received for it.
7129 			 */
7130 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7131 			dd_dev_info(ppd->dd,
7132 				    "%sNeighbor link down message %d, %s\n",
7133 				    ldr_str, neigh_reason,
7134 				    link_down_reason_str(neigh_reason));
7135 			break;
7136 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7137 			dd_dev_info(ppd->dd,
7138 				    "%sHost requested link to go offline\n",
7139 				    ldr_str);
7140 			break;
7141 		default:
7142 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7143 				    ldr_str, link_down_reason);
7144 			break;
7145 		}
7146 
7147 		/*
7148 		 * If no reason, assume peer-initiated but missed
7149 		 * LinkGoingDown idle flits.
7150 		 */
7151 		if (neigh_reason == 0)
7152 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7153 	} else {
7154 		/* went down while polling or going up */
7155 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7156 	}
7157 
7158 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7159 
7160 	/* inform the SMA when the link transitions from up to down */
7161 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7162 	    ppd->neigh_link_down_reason.sma == 0) {
7163 		ppd->local_link_down_reason.sma =
7164 					ppd->local_link_down_reason.latest;
7165 		ppd->neigh_link_down_reason.sma =
7166 					ppd->neigh_link_down_reason.latest;
7167 	}
7168 
7169 	reset_neighbor_info(ppd);
7170 
7171 	/* disable the port */
7172 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7173 
7174 	/*
7175 	 * If there is no cable attached, turn the DC off. Otherwise,
7176 	 * start the link bring up.
7177 	 */
7178 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7179 		dc_shutdown(ppd->dd);
7180 	else
7181 		start_link(ppd);
7182 }
7183 
7184 void handle_link_bounce(struct work_struct *work)
7185 {
7186 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7187 							link_bounce_work);
7188 
7189 	/*
7190 	 * Only do something if the link is currently up.
7191 	 */
7192 	if (ppd->host_link_state & HLS_UP) {
7193 		set_link_state(ppd, HLS_DN_OFFLINE);
7194 		start_link(ppd);
7195 	} else {
7196 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7197 			    __func__, link_state_name(ppd->host_link_state));
7198 	}
7199 }
7200 
7201 /*
7202  * Mask conversion: Capability exchange to Port LTP.  The capability
7203  * exchange has an implicit 16b CRC that is mandatory.
7204  */
7205 static int cap_to_port_ltp(int cap)
7206 {
7207 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7208 
7209 	if (cap & CAP_CRC_14B)
7210 		port_ltp |= PORT_LTP_CRC_MODE_14;
7211 	if (cap & CAP_CRC_48B)
7212 		port_ltp |= PORT_LTP_CRC_MODE_48;
7213 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7214 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7215 
7216 	return port_ltp;
7217 }
7218 
7219 /*
7220  * Convert an OPA Port LTP mask to capability mask
7221  */
7222 int port_ltp_to_cap(int port_ltp)
7223 {
7224 	int cap_mask = 0;
7225 
7226 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7227 		cap_mask |= CAP_CRC_14B;
7228 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7229 		cap_mask |= CAP_CRC_48B;
7230 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7231 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7232 
7233 	return cap_mask;
7234 }
7235 
7236 /*
7237  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7238  */
7239 static int lcb_to_port_ltp(int lcb_crc)
7240 {
7241 	int port_ltp = 0;
7242 
7243 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7244 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7245 	else if (lcb_crc == LCB_CRC_48B)
7246 		port_ltp = PORT_LTP_CRC_MODE_48;
7247 	else if (lcb_crc == LCB_CRC_14B)
7248 		port_ltp = PORT_LTP_CRC_MODE_14;
7249 	else
7250 		port_ltp = PORT_LTP_CRC_MODE_16;
7251 
7252 	return port_ltp;
7253 }
7254 
7255 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7256 {
7257 	if (ppd->pkeys[2] != 0) {
7258 		ppd->pkeys[2] = 0;
7259 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7260 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7261 	}
7262 }
7263 
7264 /*
7265  * Convert the given link width to the OPA link width bitmask.
7266  */
7267 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7268 {
7269 	switch (width) {
7270 	case 0:
7271 		/*
7272 		 * Simulator and quick linkup do not set the width.
7273 		 * Just set it to 4x without complaint.
7274 		 */
7275 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7276 			return OPA_LINK_WIDTH_4X;
7277 		return 0; /* no lanes up */
7278 	case 1: return OPA_LINK_WIDTH_1X;
7279 	case 2: return OPA_LINK_WIDTH_2X;
7280 	case 3: return OPA_LINK_WIDTH_3X;
7281 	case 4: return OPA_LINK_WIDTH_4X;
7282 	default:
7283 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7284 			    __func__, width);
7285 		return OPA_LINK_WIDTH_4X;
7286 	}
7287 }
7288 
7289 /*
7290  * Do a population count on the bottom nibble.
7291  */
7292 static const u8 bit_counts[16] = {
7293 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7294 };
7295 
7296 static inline u8 nibble_to_count(u8 nibble)
7297 {
7298 	return bit_counts[nibble & 0xf];
7299 }
7300 
7301 /*
7302  * Read the active lane information from the 8051 registers and return
7303  * their widths.
7304  *
7305  * Active lane information is found in these 8051 registers:
7306  *	enable_lane_tx
7307  *	enable_lane_rx
7308  */
7309 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7310 			    u16 *rx_width)
7311 {
7312 	u16 tx, rx;
7313 	u8 enable_lane_rx;
7314 	u8 enable_lane_tx;
7315 	u8 tx_polarity_inversion;
7316 	u8 rx_polarity_inversion;
7317 	u8 max_rate;
7318 
7319 	/* read the active lanes */
7320 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7321 			 &rx_polarity_inversion, &max_rate);
7322 	read_local_lni(dd, &enable_lane_rx);
7323 
7324 	/* convert to counts */
7325 	tx = nibble_to_count(enable_lane_tx);
7326 	rx = nibble_to_count(enable_lane_rx);
7327 
7328 	/*
7329 	 * Set link_speed_active here, overriding what was set in
7330 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7331 	 * set the max_rate field in handle_verify_cap until v0.19.
7332 	 */
7333 	if ((dd->icode == ICODE_RTL_SILICON) &&
7334 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7335 		/* max_rate: 0 = 12.5G, 1 = 25G */
7336 		switch (max_rate) {
7337 		case 0:
7338 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7339 			break;
7340 		case 1:
7341 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7342 			break;
7343 		default:
7344 			dd_dev_err(dd,
7345 				   "%s: unexpected max rate %d, using 25Gb\n",
7346 				   __func__, (int)max_rate);
7347 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7348 			break;
7349 		}
7350 	}
7351 
7352 	dd_dev_info(dd,
7353 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7354 		    enable_lane_tx, tx, enable_lane_rx, rx);
7355 	*tx_width = link_width_to_bits(dd, tx);
7356 	*rx_width = link_width_to_bits(dd, rx);
7357 }
7358 
7359 /*
7360  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7361  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7362  * after link up.  I.e. look elsewhere for downgrade information.
7363  *
7364  * Bits are:
7365  *	+ bits [7:4] contain the number of active transmitters
7366  *	+ bits [3:0] contain the number of active receivers
7367  * These are numbers 1 through 4 and can be different values if the
7368  * link is asymmetric.
7369  *
7370  * verify_cap_local_fm_link_width[0] retains its original value.
7371  */
7372 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7373 			      u16 *rx_width)
7374 {
7375 	u16 widths, tx, rx;
7376 	u8 misc_bits, local_flags;
7377 	u16 active_tx, active_rx;
7378 
7379 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7380 	tx = widths >> 12;
7381 	rx = (widths >> 8) & 0xf;
7382 
7383 	*tx_width = link_width_to_bits(dd, tx);
7384 	*rx_width = link_width_to_bits(dd, rx);
7385 
7386 	/* print the active widths */
7387 	get_link_widths(dd, &active_tx, &active_rx);
7388 }
7389 
7390 /*
7391  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7392  * hardware information when the link first comes up.
7393  *
7394  * The link width is not available until after VerifyCap.AllFramesReceived
7395  * (the trigger for handle_verify_cap), so this is outside that routine
7396  * and should be called when the 8051 signals linkup.
7397  */
7398 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7399 {
7400 	u16 tx_width, rx_width;
7401 
7402 	/* get end-of-LNI link widths */
7403 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7404 
7405 	/* use tx_width as the link is supposed to be symmetric on link up */
7406 	ppd->link_width_active = tx_width;
7407 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7408 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7409 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7410 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7411 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7412 	/* cache the active egress rate (units {10^6 bits/sec]) */
7413 	ppd->current_egress_rate = active_egress_rate(ppd);
7414 }
7415 
7416 /*
7417  * Handle a verify capabilities interrupt from the 8051.
7418  *
7419  * This is a work-queue function outside of the interrupt.
7420  */
7421 void handle_verify_cap(struct work_struct *work)
7422 {
7423 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7424 								link_vc_work);
7425 	struct hfi1_devdata *dd = ppd->dd;
7426 	u64 reg;
7427 	u8 power_management;
7428 	u8 continuous;
7429 	u8 vcu;
7430 	u8 vau;
7431 	u8 z;
7432 	u16 vl15buf;
7433 	u16 link_widths;
7434 	u16 crc_mask;
7435 	u16 crc_val;
7436 	u16 device_id;
7437 	u16 active_tx, active_rx;
7438 	u8 partner_supported_crc;
7439 	u8 remote_tx_rate;
7440 	u8 device_rev;
7441 
7442 	set_link_state(ppd, HLS_VERIFY_CAP);
7443 
7444 	lcb_shutdown(dd, 0);
7445 	adjust_lcb_for_fpga_serdes(dd);
7446 
7447 	read_vc_remote_phy(dd, &power_management, &continuous);
7448 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7449 			      &partner_supported_crc);
7450 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7451 	read_remote_device_id(dd, &device_id, &device_rev);
7452 
7453 	/* print the active widths */
7454 	get_link_widths(dd, &active_tx, &active_rx);
7455 	dd_dev_info(dd,
7456 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7457 		    (int)power_management, (int)continuous);
7458 	dd_dev_info(dd,
7459 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7460 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7461 		    (int)partner_supported_crc);
7462 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7463 		    (u32)remote_tx_rate, (u32)link_widths);
7464 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7465 		    (u32)device_id, (u32)device_rev);
7466 	/*
7467 	 * The peer vAU value just read is the peer receiver value.  HFI does
7468 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7469 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7470 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7471 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7472 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7473 	 * subject to the Z value exception.
7474 	 */
7475 	if (vau == 0)
7476 		vau = 1;
7477 	set_up_vau(dd, vau);
7478 
7479 	/*
7480 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7481 	 * credits value and wait for link-up interrupt ot set it.
7482 	 */
7483 	set_up_vl15(dd, 0);
7484 	dd->vl15buf_cached = vl15buf;
7485 
7486 	/* set up the LCB CRC mode */
7487 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7488 
7489 	/* order is important: use the lowest bit in common */
7490 	if (crc_mask & CAP_CRC_14B)
7491 		crc_val = LCB_CRC_14B;
7492 	else if (crc_mask & CAP_CRC_48B)
7493 		crc_val = LCB_CRC_48B;
7494 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7495 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7496 	else
7497 		crc_val = LCB_CRC_16B;
7498 
7499 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7500 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7501 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7502 
7503 	/* set (14b only) or clear sideband credit */
7504 	reg = read_csr(dd, SEND_CM_CTRL);
7505 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7506 		write_csr(dd, SEND_CM_CTRL,
7507 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7508 	} else {
7509 		write_csr(dd, SEND_CM_CTRL,
7510 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7511 	}
7512 
7513 	ppd->link_speed_active = 0;	/* invalid value */
7514 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7515 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7516 		switch (remote_tx_rate) {
7517 		case 0:
7518 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7519 			break;
7520 		case 1:
7521 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7522 			break;
7523 		}
7524 	} else {
7525 		/* actual rate is highest bit of the ANDed rates */
7526 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7527 
7528 		if (rate & 2)
7529 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7530 		else if (rate & 1)
7531 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7532 	}
7533 	if (ppd->link_speed_active == 0) {
7534 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7535 			   __func__, (int)remote_tx_rate);
7536 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7537 	}
7538 
7539 	/*
7540 	 * Cache the values of the supported, enabled, and active
7541 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7542 	 * flags that are returned in the portinfo query differ from
7543 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7544 	 * variables. Convert these here.
7545 	 */
7546 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7547 		/* supported crc modes */
7548 	ppd->port_ltp_crc_mode |=
7549 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7550 		/* enabled crc modes */
7551 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7552 		/* active crc mode */
7553 
7554 	/* set up the remote credit return table */
7555 	assign_remote_cm_au_table(dd, vcu);
7556 
7557 	/*
7558 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7559 	 * be applied on every link up.
7560 	 *
7561 	 * Adjust LCB error kill enable to kill the link if
7562 	 * these RBUF errors are seen:
7563 	 *	REPLAY_BUF_MBE_SMASK
7564 	 *	FLIT_INPUT_BUF_MBE_SMASK
7565 	 */
7566 	if (is_ax(dd)) {			/* fixed in B0 */
7567 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7568 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7569 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7570 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7571 	}
7572 
7573 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7574 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7575 
7576 	/* give 8051 access to the LCB CSRs */
7577 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7578 	set_8051_lcb_access(dd);
7579 
7580 	/* tell the 8051 to go to LinkUp */
7581 	set_link_state(ppd, HLS_GOING_UP);
7582 }
7583 
7584 /**
7585  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7586  * policy against the current active link widths.
7587  * @ppd: info of physical Hfi port
7588  * @refresh_widths: True indicates link downgrade event
7589  * @return: True indicates a successful link downgrade. False indicates
7590  *	    link downgrade event failed and the link will bounce back to
7591  *	    default link width.
7592  *
7593  * Called when the enabled policy changes or the active link widths
7594  * change.
7595  * Refresh_widths indicates that a link downgrade occurred. The
7596  * link_downgraded variable is set by refresh_widths and
7597  * determines the success/failure of the policy application.
7598  */
7599 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7600 				 bool refresh_widths)
7601 {
7602 	int do_bounce = 0;
7603 	int tries;
7604 	u16 lwde;
7605 	u16 tx, rx;
7606 	bool link_downgraded = refresh_widths;
7607 
7608 	/* use the hls lock to avoid a race with actual link up */
7609 	tries = 0;
7610 retry:
7611 	mutex_lock(&ppd->hls_lock);
7612 	/* only apply if the link is up */
7613 	if (ppd->host_link_state & HLS_DOWN) {
7614 		/* still going up..wait and retry */
7615 		if (ppd->host_link_state & HLS_GOING_UP) {
7616 			if (++tries < 1000) {
7617 				mutex_unlock(&ppd->hls_lock);
7618 				usleep_range(100, 120); /* arbitrary */
7619 				goto retry;
7620 			}
7621 			dd_dev_err(ppd->dd,
7622 				   "%s: giving up waiting for link state change\n",
7623 				   __func__);
7624 		}
7625 		goto done;
7626 	}
7627 
7628 	lwde = ppd->link_width_downgrade_enabled;
7629 
7630 	if (refresh_widths) {
7631 		get_link_widths(ppd->dd, &tx, &rx);
7632 		ppd->link_width_downgrade_tx_active = tx;
7633 		ppd->link_width_downgrade_rx_active = rx;
7634 	}
7635 
7636 	if (ppd->link_width_downgrade_tx_active == 0 ||
7637 	    ppd->link_width_downgrade_rx_active == 0) {
7638 		/* the 8051 reported a dead link as a downgrade */
7639 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7640 		link_downgraded = false;
7641 	} else if (lwde == 0) {
7642 		/* downgrade is disabled */
7643 
7644 		/* bounce if not at starting active width */
7645 		if ((ppd->link_width_active !=
7646 		     ppd->link_width_downgrade_tx_active) ||
7647 		    (ppd->link_width_active !=
7648 		     ppd->link_width_downgrade_rx_active)) {
7649 			dd_dev_err(ppd->dd,
7650 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7651 			dd_dev_err(ppd->dd,
7652 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7653 				   ppd->link_width_active,
7654 				   ppd->link_width_downgrade_tx_active,
7655 				   ppd->link_width_downgrade_rx_active);
7656 			do_bounce = 1;
7657 			link_downgraded = false;
7658 		}
7659 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7660 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7661 		/* Tx or Rx is outside the enabled policy */
7662 		dd_dev_err(ppd->dd,
7663 			   "Link is outside of downgrade allowed, downing link\n");
7664 		dd_dev_err(ppd->dd,
7665 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7666 			   lwde, ppd->link_width_downgrade_tx_active,
7667 			   ppd->link_width_downgrade_rx_active);
7668 		do_bounce = 1;
7669 		link_downgraded = false;
7670 	}
7671 
7672 done:
7673 	mutex_unlock(&ppd->hls_lock);
7674 
7675 	if (do_bounce) {
7676 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7677 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7678 		set_link_state(ppd, HLS_DN_OFFLINE);
7679 		start_link(ppd);
7680 	}
7681 
7682 	return link_downgraded;
7683 }
7684 
7685 /*
7686  * Handle a link downgrade interrupt from the 8051.
7687  *
7688  * This is a work-queue function outside of the interrupt.
7689  */
7690 void handle_link_downgrade(struct work_struct *work)
7691 {
7692 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7693 							link_downgrade_work);
7694 
7695 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7696 	if (apply_link_downgrade_policy(ppd, true))
7697 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7698 }
7699 
7700 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7701 {
7702 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7703 		ARRAY_SIZE(dcc_err_flags));
7704 }
7705 
7706 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7707 {
7708 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7709 		ARRAY_SIZE(lcb_err_flags));
7710 }
7711 
7712 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7713 {
7714 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7715 		ARRAY_SIZE(dc8051_err_flags));
7716 }
7717 
7718 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7719 {
7720 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7721 		ARRAY_SIZE(dc8051_info_err_flags));
7722 }
7723 
7724 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7725 {
7726 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7727 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7728 }
7729 
7730 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7731 {
7732 	struct hfi1_pportdata *ppd = dd->pport;
7733 	u64 info, err, host_msg;
7734 	int queue_link_down = 0;
7735 	char buf[96];
7736 
7737 	/* look at the flags */
7738 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7739 		/* 8051 information set by firmware */
7740 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7741 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7742 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7743 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7744 		host_msg = (info >>
7745 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7746 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7747 
7748 		/*
7749 		 * Handle error flags.
7750 		 */
7751 		if (err & FAILED_LNI) {
7752 			/*
7753 			 * LNI error indications are cleared by the 8051
7754 			 * only when starting polling.  Only pay attention
7755 			 * to them when in the states that occur during
7756 			 * LNI.
7757 			 */
7758 			if (ppd->host_link_state
7759 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7760 				queue_link_down = 1;
7761 				dd_dev_info(dd, "Link error: %s\n",
7762 					    dc8051_info_err_string(buf,
7763 								   sizeof(buf),
7764 								   err &
7765 								   FAILED_LNI));
7766 			}
7767 			err &= ~(u64)FAILED_LNI;
7768 		}
7769 		/* unknown frames can happen durning LNI, just count */
7770 		if (err & UNKNOWN_FRAME) {
7771 			ppd->unknown_frame_count++;
7772 			err &= ~(u64)UNKNOWN_FRAME;
7773 		}
7774 		if (err) {
7775 			/* report remaining errors, but do not do anything */
7776 			dd_dev_err(dd, "8051 info error: %s\n",
7777 				   dc8051_info_err_string(buf, sizeof(buf),
7778 							  err));
7779 		}
7780 
7781 		/*
7782 		 * Handle host message flags.
7783 		 */
7784 		if (host_msg & HOST_REQ_DONE) {
7785 			/*
7786 			 * Presently, the driver does a busy wait for
7787 			 * host requests to complete.  This is only an
7788 			 * informational message.
7789 			 * NOTE: The 8051 clears the host message
7790 			 * information *on the next 8051 command*.
7791 			 * Therefore, when linkup is achieved,
7792 			 * this flag will still be set.
7793 			 */
7794 			host_msg &= ~(u64)HOST_REQ_DONE;
7795 		}
7796 		if (host_msg & BC_SMA_MSG) {
7797 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7798 			host_msg &= ~(u64)BC_SMA_MSG;
7799 		}
7800 		if (host_msg & LINKUP_ACHIEVED) {
7801 			dd_dev_info(dd, "8051: Link up\n");
7802 			queue_work(ppd->link_wq, &ppd->link_up_work);
7803 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7804 		}
7805 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7806 			handle_8051_request(ppd);
7807 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7808 		}
7809 		if (host_msg & VERIFY_CAP_FRAME) {
7810 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7811 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7812 		}
7813 		if (host_msg & LINK_GOING_DOWN) {
7814 			const char *extra = "";
7815 			/* no downgrade action needed if going down */
7816 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7817 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7818 				extra = " (ignoring downgrade)";
7819 			}
7820 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7821 			queue_link_down = 1;
7822 			host_msg &= ~(u64)LINK_GOING_DOWN;
7823 		}
7824 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7825 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7826 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7827 		}
7828 		if (host_msg) {
7829 			/* report remaining messages, but do not do anything */
7830 			dd_dev_info(dd, "8051 info host message: %s\n",
7831 				    dc8051_info_host_msg_string(buf,
7832 								sizeof(buf),
7833 								host_msg));
7834 		}
7835 
7836 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7837 	}
7838 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7839 		/*
7840 		 * Lost the 8051 heartbeat.  If this happens, we
7841 		 * receive constant interrupts about it.  Disable
7842 		 * the interrupt after the first.
7843 		 */
7844 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7845 		write_csr(dd, DC_DC8051_ERR_EN,
7846 			  read_csr(dd, DC_DC8051_ERR_EN) &
7847 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7848 
7849 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7850 	}
7851 	if (reg) {
7852 		/* report the error, but do not do anything */
7853 		dd_dev_err(dd, "8051 error: %s\n",
7854 			   dc8051_err_string(buf, sizeof(buf), reg));
7855 	}
7856 
7857 	if (queue_link_down) {
7858 		/*
7859 		 * if the link is already going down or disabled, do not
7860 		 * queue another. If there's a link down entry already
7861 		 * queued, don't queue another one.
7862 		 */
7863 		if ((ppd->host_link_state &
7864 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7865 		    ppd->link_enabled == 0) {
7866 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7867 				    __func__, ppd->host_link_state,
7868 				    ppd->link_enabled);
7869 		} else {
7870 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7871 				dd_dev_info(dd,
7872 					    "%s: link down request already queued\n",
7873 					    __func__);
7874 			else
7875 				queue_work(ppd->link_wq, &ppd->link_down_work);
7876 		}
7877 	}
7878 }
7879 
7880 static const char * const fm_config_txt[] = {
7881 [0] =
7882 	"BadHeadDist: Distance violation between two head flits",
7883 [1] =
7884 	"BadTailDist: Distance violation between two tail flits",
7885 [2] =
7886 	"BadCtrlDist: Distance violation between two credit control flits",
7887 [3] =
7888 	"BadCrdAck: Credits return for unsupported VL",
7889 [4] =
7890 	"UnsupportedVLMarker: Received VL Marker",
7891 [5] =
7892 	"BadPreempt: Exceeded the preemption nesting level",
7893 [6] =
7894 	"BadControlFlit: Received unsupported control flit",
7895 /* no 7 */
7896 [8] =
7897 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7898 };
7899 
7900 static const char * const port_rcv_txt[] = {
7901 [1] =
7902 	"BadPktLen: Illegal PktLen",
7903 [2] =
7904 	"PktLenTooLong: Packet longer than PktLen",
7905 [3] =
7906 	"PktLenTooShort: Packet shorter than PktLen",
7907 [4] =
7908 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7909 [5] =
7910 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7911 [6] =
7912 	"BadL2: Illegal L2 opcode",
7913 [7] =
7914 	"BadSC: Unsupported SC",
7915 [9] =
7916 	"BadRC: Illegal RC",
7917 [11] =
7918 	"PreemptError: Preempting with same VL",
7919 [12] =
7920 	"PreemptVL15: Preempting a VL15 packet",
7921 };
7922 
7923 #define OPA_LDR_FMCONFIG_OFFSET 16
7924 #define OPA_LDR_PORTRCV_OFFSET 0
7925 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7926 {
7927 	u64 info, hdr0, hdr1;
7928 	const char *extra;
7929 	char buf[96];
7930 	struct hfi1_pportdata *ppd = dd->pport;
7931 	u8 lcl_reason = 0;
7932 	int do_bounce = 0;
7933 
7934 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7935 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7936 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7937 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7938 			/* set status bit */
7939 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7940 		}
7941 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7942 	}
7943 
7944 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7945 		struct hfi1_pportdata *ppd = dd->pport;
7946 		/* this counter saturates at (2^32) - 1 */
7947 		if (ppd->link_downed < (u32)UINT_MAX)
7948 			ppd->link_downed++;
7949 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7950 	}
7951 
7952 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7953 		u8 reason_valid = 1;
7954 
7955 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7956 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7957 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7958 			/* set status bit */
7959 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7960 		}
7961 		switch (info) {
7962 		case 0:
7963 		case 1:
7964 		case 2:
7965 		case 3:
7966 		case 4:
7967 		case 5:
7968 		case 6:
7969 			extra = fm_config_txt[info];
7970 			break;
7971 		case 8:
7972 			extra = fm_config_txt[info];
7973 			if (ppd->port_error_action &
7974 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7975 				do_bounce = 1;
7976 				/*
7977 				 * lcl_reason cannot be derived from info
7978 				 * for this error
7979 				 */
7980 				lcl_reason =
7981 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7982 			}
7983 			break;
7984 		default:
7985 			reason_valid = 0;
7986 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7987 			extra = buf;
7988 			break;
7989 		}
7990 
7991 		if (reason_valid && !do_bounce) {
7992 			do_bounce = ppd->port_error_action &
7993 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7994 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7995 		}
7996 
7997 		/* just report this */
7998 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7999 					extra);
8000 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8001 	}
8002 
8003 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8004 		u8 reason_valid = 1;
8005 
8006 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8007 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8008 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8009 		if (!(dd->err_info_rcvport.status_and_code &
8010 		      OPA_EI_STATUS_SMASK)) {
8011 			dd->err_info_rcvport.status_and_code =
8012 				info & OPA_EI_CODE_SMASK;
8013 			/* set status bit */
8014 			dd->err_info_rcvport.status_and_code |=
8015 				OPA_EI_STATUS_SMASK;
8016 			/*
8017 			 * save first 2 flits in the packet that caused
8018 			 * the error
8019 			 */
8020 			dd->err_info_rcvport.packet_flit1 = hdr0;
8021 			dd->err_info_rcvport.packet_flit2 = hdr1;
8022 		}
8023 		switch (info) {
8024 		case 1:
8025 		case 2:
8026 		case 3:
8027 		case 4:
8028 		case 5:
8029 		case 6:
8030 		case 7:
8031 		case 9:
8032 		case 11:
8033 		case 12:
8034 			extra = port_rcv_txt[info];
8035 			break;
8036 		default:
8037 			reason_valid = 0;
8038 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8039 			extra = buf;
8040 			break;
8041 		}
8042 
8043 		if (reason_valid && !do_bounce) {
8044 			do_bounce = ppd->port_error_action &
8045 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8046 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8047 		}
8048 
8049 		/* just report this */
8050 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8051 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8052 					extra, hdr0, hdr1);
8053 
8054 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8055 	}
8056 
8057 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8058 		/* informative only */
8059 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8060 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8061 	}
8062 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8063 		/* informative only */
8064 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8065 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8066 	}
8067 
8068 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8069 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8070 
8071 	/* report any remaining errors */
8072 	if (reg)
8073 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8074 					dcc_err_string(buf, sizeof(buf), reg));
8075 
8076 	if (lcl_reason == 0)
8077 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8078 
8079 	if (do_bounce) {
8080 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8081 					__func__);
8082 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8083 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8084 	}
8085 }
8086 
8087 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8088 {
8089 	char buf[96];
8090 
8091 	dd_dev_info(dd, "LCB Error: %s\n",
8092 		    lcb_err_string(buf, sizeof(buf), reg));
8093 }
8094 
8095 /*
8096  * CCE block DC interrupt.  Source is < 8.
8097  */
8098 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8099 {
8100 	const struct err_reg_info *eri = &dc_errs[source];
8101 
8102 	if (eri->handler) {
8103 		interrupt_clear_down(dd, 0, eri);
8104 	} else if (source == 3 /* dc_lbm_int */) {
8105 		/*
8106 		 * This indicates that a parity error has occurred on the
8107 		 * address/control lines presented to the LBM.  The error
8108 		 * is a single pulse, there is no associated error flag,
8109 		 * and it is non-maskable.  This is because if a parity
8110 		 * error occurs on the request the request is dropped.
8111 		 * This should never occur, but it is nice to know if it
8112 		 * ever does.
8113 		 */
8114 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8115 	} else {
8116 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8117 	}
8118 }
8119 
8120 /*
8121  * TX block send credit interrupt.  Source is < 160.
8122  */
8123 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8124 {
8125 	sc_group_release_update(dd, source);
8126 }
8127 
8128 /*
8129  * TX block SDMA interrupt.  Source is < 48.
8130  *
8131  * SDMA interrupts are grouped by type:
8132  *
8133  *	 0 -  N-1 = SDma
8134  *	 N - 2N-1 = SDmaProgress
8135  *	2N - 3N-1 = SDmaIdle
8136  */
8137 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8138 {
8139 	/* what interrupt */
8140 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8141 	/* which engine */
8142 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8143 
8144 #ifdef CONFIG_SDMA_VERBOSITY
8145 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8146 		   slashstrip(__FILE__), __LINE__, __func__);
8147 	sdma_dumpstate(&dd->per_sdma[which]);
8148 #endif
8149 
8150 	if (likely(what < 3 && which < dd->num_sdma)) {
8151 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8152 	} else {
8153 		/* should not happen */
8154 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8155 	}
8156 }
8157 
8158 /**
8159  * is_rcv_avail_int() - User receive context available IRQ handler
8160  * @dd: valid dd
8161  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8162  *
8163  * RX block receive available interrupt.  Source is < 160.
8164  *
8165  * This is the general interrupt handler for user (PSM) receive contexts,
8166  * and can only be used for non-threaded IRQs.
8167  */
8168 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8169 {
8170 	struct hfi1_ctxtdata *rcd;
8171 	char *err_detail;
8172 
8173 	if (likely(source < dd->num_rcv_contexts)) {
8174 		rcd = hfi1_rcd_get_by_index(dd, source);
8175 		if (rcd) {
8176 			handle_user_interrupt(rcd);
8177 			hfi1_rcd_put(rcd);
8178 			return;	/* OK */
8179 		}
8180 		/* received an interrupt, but no rcd */
8181 		err_detail = "dataless";
8182 	} else {
8183 		/* received an interrupt, but are not using that context */
8184 		err_detail = "out of range";
8185 	}
8186 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8187 		   err_detail, source);
8188 }
8189 
8190 /**
8191  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8192  * @dd: valid dd
8193  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8194  *
8195  * RX block receive urgent interrupt.  Source is < 160.
8196  *
8197  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8198  */
8199 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8200 {
8201 	struct hfi1_ctxtdata *rcd;
8202 	char *err_detail;
8203 
8204 	if (likely(source < dd->num_rcv_contexts)) {
8205 		rcd = hfi1_rcd_get_by_index(dd, source);
8206 		if (rcd) {
8207 			handle_user_interrupt(rcd);
8208 			hfi1_rcd_put(rcd);
8209 			return;	/* OK */
8210 		}
8211 		/* received an interrupt, but no rcd */
8212 		err_detail = "dataless";
8213 	} else {
8214 		/* received an interrupt, but are not using that context */
8215 		err_detail = "out of range";
8216 	}
8217 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8218 		   err_detail, source);
8219 }
8220 
8221 /*
8222  * Reserved range interrupt.  Should not be called in normal operation.
8223  */
8224 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8225 {
8226 	char name[64];
8227 
8228 	dd_dev_err(dd, "unexpected %s interrupt\n",
8229 		   is_reserved_name(name, sizeof(name), source));
8230 }
8231 
8232 static const struct is_table is_table[] = {
8233 /*
8234  * start		 end
8235  *				name func		interrupt func
8236  */
8237 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8238 				is_misc_err_name,	is_misc_err_int },
8239 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8240 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8241 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8242 				is_sendctxt_err_name,	is_sendctxt_err_int },
8243 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8244 				is_sdma_eng_name,	is_sdma_eng_int },
8245 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8246 				is_various_name,	is_various_int },
8247 { IS_DC_START,	     IS_DC_END,
8248 				is_dc_name,		is_dc_int },
8249 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8250 				is_rcv_avail_name,	is_rcv_avail_int },
8251 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8252 				is_rcv_urgent_name,	is_rcv_urgent_int },
8253 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8254 				is_send_credit_name,	is_send_credit_int},
8255 { IS_RESERVED_START,     IS_RESERVED_END,
8256 				is_reserved_name,	is_reserved_int},
8257 };
8258 
8259 /*
8260  * Interrupt source interrupt - called when the given source has an interrupt.
8261  * Source is a bit index into an array of 64-bit integers.
8262  */
8263 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8264 {
8265 	const struct is_table *entry;
8266 
8267 	/* avoids a double compare by walking the table in-order */
8268 	for (entry = &is_table[0]; entry->is_name; entry++) {
8269 		if (source <= entry->end) {
8270 			trace_hfi1_interrupt(dd, entry, source);
8271 			entry->is_int(dd, source - entry->start);
8272 			return;
8273 		}
8274 	}
8275 	/* fell off the end */
8276 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8277 }
8278 
8279 /**
8280  * general_interrupt -  General interrupt handler
8281  * @irq: MSIx IRQ vector
8282  * @data: hfi1 devdata
8283  *
8284  * This is able to correctly handle all non-threaded interrupts.  Receive
8285  * context DATA IRQs are threaded and are not supported by this handler.
8286  *
8287  */
8288 irqreturn_t general_interrupt(int irq, void *data)
8289 {
8290 	struct hfi1_devdata *dd = data;
8291 	u64 regs[CCE_NUM_INT_CSRS];
8292 	u32 bit;
8293 	int i;
8294 	irqreturn_t handled = IRQ_NONE;
8295 
8296 	this_cpu_inc(*dd->int_counter);
8297 
8298 	/* phase 1: scan and clear all handled interrupts */
8299 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8300 		if (dd->gi_mask[i] == 0) {
8301 			regs[i] = 0;	/* used later */
8302 			continue;
8303 		}
8304 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8305 				dd->gi_mask[i];
8306 		/* only clear if anything is set */
8307 		if (regs[i])
8308 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8309 	}
8310 
8311 	/* phase 2: call the appropriate handler */
8312 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8313 			 CCE_NUM_INT_CSRS * 64) {
8314 		is_interrupt(dd, bit);
8315 		handled = IRQ_HANDLED;
8316 	}
8317 
8318 	return handled;
8319 }
8320 
8321 irqreturn_t sdma_interrupt(int irq, void *data)
8322 {
8323 	struct sdma_engine *sde = data;
8324 	struct hfi1_devdata *dd = sde->dd;
8325 	u64 status;
8326 
8327 #ifdef CONFIG_SDMA_VERBOSITY
8328 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8329 		   slashstrip(__FILE__), __LINE__, __func__);
8330 	sdma_dumpstate(sde);
8331 #endif
8332 
8333 	this_cpu_inc(*dd->int_counter);
8334 
8335 	/* This read_csr is really bad in the hot path */
8336 	status = read_csr(dd,
8337 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8338 			  & sde->imask;
8339 	if (likely(status)) {
8340 		/* clear the interrupt(s) */
8341 		write_csr(dd,
8342 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8343 			  status);
8344 
8345 		/* handle the interrupt(s) */
8346 		sdma_engine_interrupt(sde, status);
8347 	} else {
8348 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8349 					sde->this_idx);
8350 	}
8351 	return IRQ_HANDLED;
8352 }
8353 
8354 /*
8355  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8356  * to insure that the write completed.  This does NOT guarantee that
8357  * queued DMA writes to memory from the chip are pushed.
8358  */
8359 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8360 {
8361 	struct hfi1_devdata *dd = rcd->dd;
8362 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8363 
8364 	write_csr(dd, addr, rcd->imask);
8365 	/* force the above write on the chip and get a value back */
8366 	(void)read_csr(dd, addr);
8367 }
8368 
8369 /* force the receive interrupt */
8370 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8371 {
8372 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8373 }
8374 
8375 /*
8376  * Return non-zero if a packet is present.
8377  *
8378  * This routine is called when rechecking for packets after the RcvAvail
8379  * interrupt has been cleared down.  First, do a quick check of memory for
8380  * a packet present.  If not found, use an expensive CSR read of the context
8381  * tail to determine the actual tail.  The CSR read is necessary because there
8382  * is no method to push pending DMAs to memory other than an interrupt and we
8383  * are trying to determine if we need to force an interrupt.
8384  */
8385 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8386 {
8387 	u32 tail;
8388 
8389 	if (hfi1_packet_present(rcd))
8390 		return 1;
8391 
8392 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8393 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8394 	return hfi1_rcd_head(rcd) != tail;
8395 }
8396 
8397 /*
8398  * Common code for receive contexts interrupt handlers.
8399  * Update traces, increment kernel IRQ counter and
8400  * setup ASPM when needed.
8401  */
8402 static void receive_interrupt_common(struct hfi1_ctxtdata *rcd)
8403 {
8404 	struct hfi1_devdata *dd = rcd->dd;
8405 
8406 	trace_hfi1_receive_interrupt(dd, rcd);
8407 	this_cpu_inc(*dd->int_counter);
8408 	aspm_ctx_disable(rcd);
8409 }
8410 
8411 /*
8412  * __hfi1_rcd_eoi_intr() - Make HW issue receive interrupt
8413  * when there are packets present in the queue. When calling
8414  * with interrupts enabled please use hfi1_rcd_eoi_intr.
8415  *
8416  * @rcd: valid receive context
8417  */
8418 static void __hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8419 {
8420 	if (!rcd->rcvhdrq)
8421 		return;
8422 	clear_recv_intr(rcd);
8423 	if (check_packet_present(rcd))
8424 		force_recv_intr(rcd);
8425 }
8426 
8427 /**
8428  * hfi1_rcd_eoi_intr() - End of Interrupt processing action
8429  *
8430  * @rcd: Ptr to hfi1_ctxtdata of receive context
8431  *
8432  *  Hold IRQs so we can safely clear the interrupt and
8433  *  recheck for a packet that may have arrived after the previous
8434  *  check and the interrupt clear.  If a packet arrived, force another
8435  *  interrupt. This routine can be called at the end of receive packet
8436  *  processing in interrupt service routines, interrupt service thread
8437  *  and softirqs
8438  */
8439 static void hfi1_rcd_eoi_intr(struct hfi1_ctxtdata *rcd)
8440 {
8441 	unsigned long flags;
8442 
8443 	local_irq_save(flags);
8444 	__hfi1_rcd_eoi_intr(rcd);
8445 	local_irq_restore(flags);
8446 }
8447 
8448 /**
8449  * hfi1_netdev_rx_napi - napi poll function to move eoi inline
8450  * @napi: pointer to napi object
8451  * @budget: netdev budget
8452  */
8453 int hfi1_netdev_rx_napi(struct napi_struct *napi, int budget)
8454 {
8455 	struct hfi1_netdev_rxq *rxq = container_of(napi,
8456 			struct hfi1_netdev_rxq, napi);
8457 	struct hfi1_ctxtdata *rcd = rxq->rcd;
8458 	int work_done = 0;
8459 
8460 	work_done = rcd->do_interrupt(rcd, budget);
8461 
8462 	if (work_done < budget) {
8463 		napi_complete_done(napi, work_done);
8464 		hfi1_rcd_eoi_intr(rcd);
8465 	}
8466 
8467 	return work_done;
8468 }
8469 
8470 /* Receive packet napi handler for netdevs VNIC and AIP  */
8471 irqreturn_t receive_context_interrupt_napi(int irq, void *data)
8472 {
8473 	struct hfi1_ctxtdata *rcd = data;
8474 
8475 	receive_interrupt_common(rcd);
8476 
8477 	if (likely(rcd->napi)) {
8478 		if (likely(napi_schedule_prep(rcd->napi)))
8479 			__napi_schedule_irqoff(rcd->napi);
8480 		else
8481 			__hfi1_rcd_eoi_intr(rcd);
8482 	} else {
8483 		WARN_ONCE(1, "Napi IRQ handler without napi set up ctxt=%d\n",
8484 			  rcd->ctxt);
8485 		__hfi1_rcd_eoi_intr(rcd);
8486 	}
8487 
8488 	return IRQ_HANDLED;
8489 }
8490 
8491 /*
8492  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8493  * This routine will try to handle packets immediately (latency), but if
8494  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8495  * chip receive interrupt is *not* cleared down until this or the thread (if
8496  * invoked) is finished.  The intent is to avoid extra interrupts while we
8497  * are processing packets anyway.
8498  */
8499 irqreturn_t receive_context_interrupt(int irq, void *data)
8500 {
8501 	struct hfi1_ctxtdata *rcd = data;
8502 	int disposition;
8503 
8504 	receive_interrupt_common(rcd);
8505 
8506 	/* receive interrupt remains blocked while processing packets */
8507 	disposition = rcd->do_interrupt(rcd, 0);
8508 
8509 	/*
8510 	 * Too many packets were seen while processing packets in this
8511 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8512 	 * remains blocked.
8513 	 */
8514 	if (disposition == RCV_PKT_LIMIT)
8515 		return IRQ_WAKE_THREAD;
8516 
8517 	__hfi1_rcd_eoi_intr(rcd);
8518 	return IRQ_HANDLED;
8519 }
8520 
8521 /*
8522  * Receive packet thread handler.  This expects to be invoked with the
8523  * receive interrupt still blocked.
8524  */
8525 irqreturn_t receive_context_thread(int irq, void *data)
8526 {
8527 	struct hfi1_ctxtdata *rcd = data;
8528 
8529 	/* receive interrupt is still blocked from the IRQ handler */
8530 	(void)rcd->do_interrupt(rcd, 1);
8531 
8532 	hfi1_rcd_eoi_intr(rcd);
8533 
8534 	return IRQ_HANDLED;
8535 }
8536 
8537 /* ========================================================================= */
8538 
8539 u32 read_physical_state(struct hfi1_devdata *dd)
8540 {
8541 	u64 reg;
8542 
8543 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8544 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8545 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8546 }
8547 
8548 u32 read_logical_state(struct hfi1_devdata *dd)
8549 {
8550 	u64 reg;
8551 
8552 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8553 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8554 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8555 }
8556 
8557 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8558 {
8559 	u64 reg;
8560 
8561 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8562 	/* clear current state, set new state */
8563 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8564 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8565 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8566 }
8567 
8568 /*
8569  * Use the 8051 to read a LCB CSR.
8570  */
8571 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8572 {
8573 	u32 regno;
8574 	int ret;
8575 
8576 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8577 		if (acquire_lcb_access(dd, 0) == 0) {
8578 			*data = read_csr(dd, addr);
8579 			release_lcb_access(dd, 0);
8580 			return 0;
8581 		}
8582 		return -EBUSY;
8583 	}
8584 
8585 	/* register is an index of LCB registers: (offset - base) / 8 */
8586 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8587 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8588 	if (ret != HCMD_SUCCESS)
8589 		return -EBUSY;
8590 	return 0;
8591 }
8592 
8593 /*
8594  * Provide a cache for some of the LCB registers in case the LCB is
8595  * unavailable.
8596  * (The LCB is unavailable in certain link states, for example.)
8597  */
8598 struct lcb_datum {
8599 	u32 off;
8600 	u64 val;
8601 };
8602 
8603 static struct lcb_datum lcb_cache[] = {
8604 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8605 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8606 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8607 };
8608 
8609 static void update_lcb_cache(struct hfi1_devdata *dd)
8610 {
8611 	int i;
8612 	int ret;
8613 	u64 val;
8614 
8615 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8616 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8617 
8618 		/* Update if we get good data */
8619 		if (likely(ret != -EBUSY))
8620 			lcb_cache[i].val = val;
8621 	}
8622 }
8623 
8624 static int read_lcb_cache(u32 off, u64 *val)
8625 {
8626 	int i;
8627 
8628 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8629 		if (lcb_cache[i].off == off) {
8630 			*val = lcb_cache[i].val;
8631 			return 0;
8632 		}
8633 	}
8634 
8635 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8636 	return -1;
8637 }
8638 
8639 /*
8640  * Read an LCB CSR.  Access may not be in host control, so check.
8641  * Return 0 on success, -EBUSY on failure.
8642  */
8643 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8644 {
8645 	struct hfi1_pportdata *ppd = dd->pport;
8646 
8647 	/* if up, go through the 8051 for the value */
8648 	if (ppd->host_link_state & HLS_UP)
8649 		return read_lcb_via_8051(dd, addr, data);
8650 	/* if going up or down, check the cache, otherwise, no access */
8651 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8652 		if (read_lcb_cache(addr, data))
8653 			return -EBUSY;
8654 		return 0;
8655 	}
8656 
8657 	/* otherwise, host has access */
8658 	*data = read_csr(dd, addr);
8659 	return 0;
8660 }
8661 
8662 /*
8663  * Use the 8051 to write a LCB CSR.
8664  */
8665 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8666 {
8667 	u32 regno;
8668 	int ret;
8669 
8670 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8671 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8672 		if (acquire_lcb_access(dd, 0) == 0) {
8673 			write_csr(dd, addr, data);
8674 			release_lcb_access(dd, 0);
8675 			return 0;
8676 		}
8677 		return -EBUSY;
8678 	}
8679 
8680 	/* register is an index of LCB registers: (offset - base) / 8 */
8681 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8682 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8683 	if (ret != HCMD_SUCCESS)
8684 		return -EBUSY;
8685 	return 0;
8686 }
8687 
8688 /*
8689  * Write an LCB CSR.  Access may not be in host control, so check.
8690  * Return 0 on success, -EBUSY on failure.
8691  */
8692 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8693 {
8694 	struct hfi1_pportdata *ppd = dd->pport;
8695 
8696 	/* if up, go through the 8051 for the value */
8697 	if (ppd->host_link_state & HLS_UP)
8698 		return write_lcb_via_8051(dd, addr, data);
8699 	/* if going up or down, no access */
8700 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8701 		return -EBUSY;
8702 	/* otherwise, host has access */
8703 	write_csr(dd, addr, data);
8704 	return 0;
8705 }
8706 
8707 /*
8708  * Returns:
8709  *	< 0 = Linux error, not able to get access
8710  *	> 0 = 8051 command RETURN_CODE
8711  */
8712 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8713 			   u64 *out_data)
8714 {
8715 	u64 reg, completed;
8716 	int return_code;
8717 	unsigned long timeout;
8718 
8719 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8720 
8721 	mutex_lock(&dd->dc8051_lock);
8722 
8723 	/* We can't send any commands to the 8051 if it's in reset */
8724 	if (dd->dc_shutdown) {
8725 		return_code = -ENODEV;
8726 		goto fail;
8727 	}
8728 
8729 	/*
8730 	 * If an 8051 host command timed out previously, then the 8051 is
8731 	 * stuck.
8732 	 *
8733 	 * On first timeout, attempt to reset and restart the entire DC
8734 	 * block (including 8051). (Is this too big of a hammer?)
8735 	 *
8736 	 * If the 8051 times out a second time, the reset did not bring it
8737 	 * back to healthy life. In that case, fail any subsequent commands.
8738 	 */
8739 	if (dd->dc8051_timed_out) {
8740 		if (dd->dc8051_timed_out > 1) {
8741 			dd_dev_err(dd,
8742 				   "Previous 8051 host command timed out, skipping command %u\n",
8743 				   type);
8744 			return_code = -ENXIO;
8745 			goto fail;
8746 		}
8747 		_dc_shutdown(dd);
8748 		_dc_start(dd);
8749 	}
8750 
8751 	/*
8752 	 * If there is no timeout, then the 8051 command interface is
8753 	 * waiting for a command.
8754 	 */
8755 
8756 	/*
8757 	 * When writing a LCB CSR, out_data contains the full value to
8758 	 * be written, while in_data contains the relative LCB
8759 	 * address in 7:0.  Do the work here, rather than the caller,
8760 	 * of distrubting the write data to where it needs to go:
8761 	 *
8762 	 * Write data
8763 	 *   39:00 -> in_data[47:8]
8764 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8765 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8766 	 */
8767 	if (type == HCMD_WRITE_LCB_CSR) {
8768 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8769 		/* must preserve COMPLETED - it is tied to hardware */
8770 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8771 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8772 		reg |= ((((*out_data) >> 40) & 0xff) <<
8773 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8774 		      | ((((*out_data) >> 48) & 0xffff) <<
8775 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8776 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8777 	}
8778 
8779 	/*
8780 	 * Do two writes: the first to stabilize the type and req_data, the
8781 	 * second to activate.
8782 	 */
8783 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8784 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8785 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8786 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8787 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8788 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8789 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8790 
8791 	/* wait for completion, alternate: interrupt */
8792 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8793 	while (1) {
8794 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8795 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8796 		if (completed)
8797 			break;
8798 		if (time_after(jiffies, timeout)) {
8799 			dd->dc8051_timed_out++;
8800 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8801 			if (out_data)
8802 				*out_data = 0;
8803 			return_code = -ETIMEDOUT;
8804 			goto fail;
8805 		}
8806 		udelay(2);
8807 	}
8808 
8809 	if (out_data) {
8810 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8811 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8812 		if (type == HCMD_READ_LCB_CSR) {
8813 			/* top 16 bits are in a different register */
8814 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8815 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8816 				<< (48
8817 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8818 		}
8819 	}
8820 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8821 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8822 	dd->dc8051_timed_out = 0;
8823 	/*
8824 	 * Clear command for next user.
8825 	 */
8826 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8827 
8828 fail:
8829 	mutex_unlock(&dd->dc8051_lock);
8830 	return return_code;
8831 }
8832 
8833 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8834 {
8835 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8836 }
8837 
8838 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8839 		     u8 lane_id, u32 config_data)
8840 {
8841 	u64 data;
8842 	int ret;
8843 
8844 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8845 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8846 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8847 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8848 	if (ret != HCMD_SUCCESS) {
8849 		dd_dev_err(dd,
8850 			   "load 8051 config: field id %d, lane %d, err %d\n",
8851 			   (int)field_id, (int)lane_id, ret);
8852 	}
8853 	return ret;
8854 }
8855 
8856 /*
8857  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8858  * set the result, even on error.
8859  * Return 0 on success, -errno on failure
8860  */
8861 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8862 		     u32 *result)
8863 {
8864 	u64 big_data;
8865 	u32 addr;
8866 	int ret;
8867 
8868 	/* address start depends on the lane_id */
8869 	if (lane_id < 4)
8870 		addr = (4 * NUM_GENERAL_FIELDS)
8871 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8872 	else
8873 		addr = 0;
8874 	addr += field_id * 4;
8875 
8876 	/* read is in 8-byte chunks, hardware will truncate the address down */
8877 	ret = read_8051_data(dd, addr, 8, &big_data);
8878 
8879 	if (ret == 0) {
8880 		/* extract the 4 bytes we want */
8881 		if (addr & 0x4)
8882 			*result = (u32)(big_data >> 32);
8883 		else
8884 			*result = (u32)big_data;
8885 	} else {
8886 		*result = 0;
8887 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8888 			   __func__, lane_id, field_id);
8889 	}
8890 
8891 	return ret;
8892 }
8893 
8894 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8895 			      u8 continuous)
8896 {
8897 	u32 frame;
8898 
8899 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8900 		| power_management << POWER_MANAGEMENT_SHIFT;
8901 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8902 				GENERAL_CONFIG, frame);
8903 }
8904 
8905 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8906 				 u16 vl15buf, u8 crc_sizes)
8907 {
8908 	u32 frame;
8909 
8910 	frame = (u32)vau << VAU_SHIFT
8911 		| (u32)z << Z_SHIFT
8912 		| (u32)vcu << VCU_SHIFT
8913 		| (u32)vl15buf << VL15BUF_SHIFT
8914 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8915 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8916 				GENERAL_CONFIG, frame);
8917 }
8918 
8919 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8920 				    u8 *flag_bits, u16 *link_widths)
8921 {
8922 	u32 frame;
8923 
8924 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8925 			 &frame);
8926 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8927 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8928 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8929 }
8930 
8931 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8932 				    u8 misc_bits,
8933 				    u8 flag_bits,
8934 				    u16 link_widths)
8935 {
8936 	u32 frame;
8937 
8938 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8939 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8940 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8941 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8942 		     frame);
8943 }
8944 
8945 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8946 				 u8 device_rev)
8947 {
8948 	u32 frame;
8949 
8950 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8951 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8952 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8953 }
8954 
8955 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8956 				  u8 *device_rev)
8957 {
8958 	u32 frame;
8959 
8960 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8961 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8962 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8963 			& REMOTE_DEVICE_REV_MASK;
8964 }
8965 
8966 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8967 {
8968 	u32 frame;
8969 	u32 mask;
8970 
8971 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8972 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8973 	/* Clear, then set field */
8974 	frame &= ~mask;
8975 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8976 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8977 				frame);
8978 }
8979 
8980 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8981 		      u8 *ver_patch)
8982 {
8983 	u32 frame;
8984 
8985 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8986 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8987 		STS_FM_VERSION_MAJOR_MASK;
8988 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8989 		STS_FM_VERSION_MINOR_MASK;
8990 
8991 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8992 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8993 		STS_FM_VERSION_PATCH_MASK;
8994 }
8995 
8996 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8997 			       u8 *continuous)
8998 {
8999 	u32 frame;
9000 
9001 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
9002 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
9003 					& POWER_MANAGEMENT_MASK;
9004 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
9005 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
9006 }
9007 
9008 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
9009 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
9010 {
9011 	u32 frame;
9012 
9013 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
9014 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
9015 	*z = (frame >> Z_SHIFT) & Z_MASK;
9016 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
9017 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
9018 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
9019 }
9020 
9021 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
9022 				      u8 *remote_tx_rate,
9023 				      u16 *link_widths)
9024 {
9025 	u32 frame;
9026 
9027 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
9028 			 &frame);
9029 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
9030 				& REMOTE_TX_RATE_MASK;
9031 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
9032 }
9033 
9034 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
9035 {
9036 	u32 frame;
9037 
9038 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
9039 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
9040 }
9041 
9042 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
9043 {
9044 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
9045 }
9046 
9047 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
9048 {
9049 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
9050 }
9051 
9052 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
9053 {
9054 	u32 frame;
9055 	int ret;
9056 
9057 	*link_quality = 0;
9058 	if (dd->pport->host_link_state & HLS_UP) {
9059 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9060 				       &frame);
9061 		if (ret == 0)
9062 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9063 						& LINK_QUALITY_MASK;
9064 	}
9065 }
9066 
9067 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9068 {
9069 	u32 frame;
9070 
9071 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9072 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9073 }
9074 
9075 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9076 {
9077 	u32 frame;
9078 
9079 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9080 	*ldr = (frame & 0xff);
9081 }
9082 
9083 static int read_tx_settings(struct hfi1_devdata *dd,
9084 			    u8 *enable_lane_tx,
9085 			    u8 *tx_polarity_inversion,
9086 			    u8 *rx_polarity_inversion,
9087 			    u8 *max_rate)
9088 {
9089 	u32 frame;
9090 	int ret;
9091 
9092 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9093 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9094 				& ENABLE_LANE_TX_MASK;
9095 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9096 				& TX_POLARITY_INVERSION_MASK;
9097 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9098 				& RX_POLARITY_INVERSION_MASK;
9099 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9100 	return ret;
9101 }
9102 
9103 static int write_tx_settings(struct hfi1_devdata *dd,
9104 			     u8 enable_lane_tx,
9105 			     u8 tx_polarity_inversion,
9106 			     u8 rx_polarity_inversion,
9107 			     u8 max_rate)
9108 {
9109 	u32 frame;
9110 
9111 	/* no need to mask, all variable sizes match field widths */
9112 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9113 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9114 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9115 		| max_rate << MAX_RATE_SHIFT;
9116 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9117 }
9118 
9119 /*
9120  * Read an idle LCB message.
9121  *
9122  * Returns 0 on success, -EINVAL on error
9123  */
9124 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9125 {
9126 	int ret;
9127 
9128 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9129 	if (ret != HCMD_SUCCESS) {
9130 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9131 			   (u32)type, ret);
9132 		return -EINVAL;
9133 	}
9134 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9135 	/* return only the payload as we already know the type */
9136 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9137 	return 0;
9138 }
9139 
9140 /*
9141  * Read an idle SMA message.  To be done in response to a notification from
9142  * the 8051.
9143  *
9144  * Returns 0 on success, -EINVAL on error
9145  */
9146 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9147 {
9148 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9149 				 data);
9150 }
9151 
9152 /*
9153  * Send an idle LCB message.
9154  *
9155  * Returns 0 on success, -EINVAL on error
9156  */
9157 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9158 {
9159 	int ret;
9160 
9161 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9162 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9163 	if (ret != HCMD_SUCCESS) {
9164 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9165 			   data, ret);
9166 		return -EINVAL;
9167 	}
9168 	return 0;
9169 }
9170 
9171 /*
9172  * Send an idle SMA message.
9173  *
9174  * Returns 0 on success, -EINVAL on error
9175  */
9176 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9177 {
9178 	u64 data;
9179 
9180 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9181 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9182 	return send_idle_message(dd, data);
9183 }
9184 
9185 /*
9186  * Initialize the LCB then do a quick link up.  This may or may not be
9187  * in loopback.
9188  *
9189  * return 0 on success, -errno on error
9190  */
9191 static int do_quick_linkup(struct hfi1_devdata *dd)
9192 {
9193 	int ret;
9194 
9195 	lcb_shutdown(dd, 0);
9196 
9197 	if (loopback) {
9198 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9199 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9200 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9201 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9202 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9203 	}
9204 
9205 	/* start the LCBs */
9206 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9207 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9208 
9209 	/* simulator only loopback steps */
9210 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9211 		/* LCB_CFG_RUN.EN = 1 */
9212 		write_csr(dd, DC_LCB_CFG_RUN,
9213 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9214 
9215 		ret = wait_link_transfer_active(dd, 10);
9216 		if (ret)
9217 			return ret;
9218 
9219 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9220 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9221 	}
9222 
9223 	if (!loopback) {
9224 		/*
9225 		 * When doing quick linkup and not in loopback, both
9226 		 * sides must be done with LCB set-up before either
9227 		 * starts the quick linkup.  Put a delay here so that
9228 		 * both sides can be started and have a chance to be
9229 		 * done with LCB set up before resuming.
9230 		 */
9231 		dd_dev_err(dd,
9232 			   "Pausing for peer to be finished with LCB set up\n");
9233 		msleep(5000);
9234 		dd_dev_err(dd, "Continuing with quick linkup\n");
9235 	}
9236 
9237 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9238 	set_8051_lcb_access(dd);
9239 
9240 	/*
9241 	 * State "quick" LinkUp request sets the physical link state to
9242 	 * LinkUp without a verify capability sequence.
9243 	 * This state is in simulator v37 and later.
9244 	 */
9245 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9246 	if (ret != HCMD_SUCCESS) {
9247 		dd_dev_err(dd,
9248 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9249 			   __func__, ret);
9250 
9251 		set_host_lcb_access(dd);
9252 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9253 
9254 		if (ret >= 0)
9255 			ret = -EINVAL;
9256 		return ret;
9257 	}
9258 
9259 	return 0; /* success */
9260 }
9261 
9262 /*
9263  * Do all special steps to set up loopback.
9264  */
9265 static int init_loopback(struct hfi1_devdata *dd)
9266 {
9267 	dd_dev_info(dd, "Entering loopback mode\n");
9268 
9269 	/* all loopbacks should disable self GUID check */
9270 	write_csr(dd, DC_DC8051_CFG_MODE,
9271 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9272 
9273 	/*
9274 	 * The simulator has only one loopback option - LCB.  Switch
9275 	 * to that option, which includes quick link up.
9276 	 *
9277 	 * Accept all valid loopback values.
9278 	 */
9279 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9280 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9281 	     loopback == LOOPBACK_CABLE)) {
9282 		loopback = LOOPBACK_LCB;
9283 		quick_linkup = 1;
9284 		return 0;
9285 	}
9286 
9287 	/*
9288 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9289 	 */
9290 	if (loopback == LOOPBACK_SERDES)
9291 		return 0;
9292 
9293 	/* LCB loopback - handled at poll time */
9294 	if (loopback == LOOPBACK_LCB) {
9295 		quick_linkup = 1; /* LCB is always quick linkup */
9296 
9297 		/* not supported in emulation due to emulation RTL changes */
9298 		if (dd->icode == ICODE_FPGA_EMULATION) {
9299 			dd_dev_err(dd,
9300 				   "LCB loopback not supported in emulation\n");
9301 			return -EINVAL;
9302 		}
9303 		return 0;
9304 	}
9305 
9306 	/* external cable loopback requires no extra steps */
9307 	if (loopback == LOOPBACK_CABLE)
9308 		return 0;
9309 
9310 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9311 	return -EINVAL;
9312 }
9313 
9314 /*
9315  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9316  * used in the Verify Capability link width attribute.
9317  */
9318 static u16 opa_to_vc_link_widths(u16 opa_widths)
9319 {
9320 	int i;
9321 	u16 result = 0;
9322 
9323 	static const struct link_bits {
9324 		u16 from;
9325 		u16 to;
9326 	} opa_link_xlate[] = {
9327 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9328 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9329 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9330 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9331 	};
9332 
9333 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9334 		if (opa_widths & opa_link_xlate[i].from)
9335 			result |= opa_link_xlate[i].to;
9336 	}
9337 	return result;
9338 }
9339 
9340 /*
9341  * Set link attributes before moving to polling.
9342  */
9343 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9344 {
9345 	struct hfi1_devdata *dd = ppd->dd;
9346 	u8 enable_lane_tx;
9347 	u8 tx_polarity_inversion;
9348 	u8 rx_polarity_inversion;
9349 	int ret;
9350 	u32 misc_bits = 0;
9351 	/* reset our fabric serdes to clear any lingering problems */
9352 	fabric_serdes_reset(dd);
9353 
9354 	/* set the local tx rate - need to read-modify-write */
9355 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9356 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9357 	if (ret)
9358 		goto set_local_link_attributes_fail;
9359 
9360 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9361 		/* set the tx rate to the fastest enabled */
9362 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9363 			ppd->local_tx_rate = 1;
9364 		else
9365 			ppd->local_tx_rate = 0;
9366 	} else {
9367 		/* set the tx rate to all enabled */
9368 		ppd->local_tx_rate = 0;
9369 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9370 			ppd->local_tx_rate |= 2;
9371 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9372 			ppd->local_tx_rate |= 1;
9373 	}
9374 
9375 	enable_lane_tx = 0xF; /* enable all four lanes */
9376 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9377 				rx_polarity_inversion, ppd->local_tx_rate);
9378 	if (ret != HCMD_SUCCESS)
9379 		goto set_local_link_attributes_fail;
9380 
9381 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9382 	if (ret != HCMD_SUCCESS) {
9383 		dd_dev_err(dd,
9384 			   "Failed to set host interface version, return 0x%x\n",
9385 			   ret);
9386 		goto set_local_link_attributes_fail;
9387 	}
9388 
9389 	/*
9390 	 * DC supports continuous updates.
9391 	 */
9392 	ret = write_vc_local_phy(dd,
9393 				 0 /* no power management */,
9394 				 1 /* continuous updates */);
9395 	if (ret != HCMD_SUCCESS)
9396 		goto set_local_link_attributes_fail;
9397 
9398 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9399 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9400 				    ppd->port_crc_mode_enabled);
9401 	if (ret != HCMD_SUCCESS)
9402 		goto set_local_link_attributes_fail;
9403 
9404 	/*
9405 	 * SerDes loopback init sequence requires
9406 	 * setting bit 0 of MISC_CONFIG_BITS
9407 	 */
9408 	if (loopback == LOOPBACK_SERDES)
9409 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9410 
9411 	/*
9412 	 * An external device configuration request is used to reset the LCB
9413 	 * to retry to obtain operational lanes when the first attempt is
9414 	 * unsuccesful.
9415 	 */
9416 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9417 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9418 
9419 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9420 				       opa_to_vc_link_widths(
9421 						ppd->link_width_enabled));
9422 	if (ret != HCMD_SUCCESS)
9423 		goto set_local_link_attributes_fail;
9424 
9425 	/* let peer know who we are */
9426 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9427 	if (ret == HCMD_SUCCESS)
9428 		return 0;
9429 
9430 set_local_link_attributes_fail:
9431 	dd_dev_err(dd,
9432 		   "Failed to set local link attributes, return 0x%x\n",
9433 		   ret);
9434 	return ret;
9435 }
9436 
9437 /*
9438  * Call this to start the link.
9439  * Do not do anything if the link is disabled.
9440  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9441  */
9442 int start_link(struct hfi1_pportdata *ppd)
9443 {
9444 	/*
9445 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9446 	 * error rate.  Needs to be done before starting the link.
9447 	 */
9448 	tune_serdes(ppd);
9449 
9450 	if (!ppd->driver_link_ready) {
9451 		dd_dev_info(ppd->dd,
9452 			    "%s: stopping link start because driver is not ready\n",
9453 			    __func__);
9454 		return 0;
9455 	}
9456 
9457 	/*
9458 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9459 	 * pkey table can be configured properly if the HFI unit is connected
9460 	 * to switch port with MgmtAllowed=NO
9461 	 */
9462 	clear_full_mgmt_pkey(ppd);
9463 
9464 	return set_link_state(ppd, HLS_DN_POLL);
9465 }
9466 
9467 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9468 {
9469 	struct hfi1_devdata *dd = ppd->dd;
9470 	u64 mask;
9471 	unsigned long timeout;
9472 
9473 	/*
9474 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9475 	 * effect of power up on plug-in. We ignore this false positive
9476 	 * interrupt until the module has finished powering up by waiting for
9477 	 * a minimum timeout of the module inrush initialization time of
9478 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9479 	 * module have stabilized.
9480 	 */
9481 	msleep(500);
9482 
9483 	/*
9484 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9485 	 */
9486 	timeout = jiffies + msecs_to_jiffies(2000);
9487 	while (1) {
9488 		mask = read_csr(dd, dd->hfi1_id ?
9489 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9490 		if (!(mask & QSFP_HFI0_INT_N))
9491 			break;
9492 		if (time_after(jiffies, timeout)) {
9493 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9494 				    __func__);
9495 			break;
9496 		}
9497 		udelay(2);
9498 	}
9499 }
9500 
9501 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9502 {
9503 	struct hfi1_devdata *dd = ppd->dd;
9504 	u64 mask;
9505 
9506 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9507 	if (enable) {
9508 		/*
9509 		 * Clear the status register to avoid an immediate interrupt
9510 		 * when we re-enable the IntN pin
9511 		 */
9512 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9513 			  QSFP_HFI0_INT_N);
9514 		mask |= (u64)QSFP_HFI0_INT_N;
9515 	} else {
9516 		mask &= ~(u64)QSFP_HFI0_INT_N;
9517 	}
9518 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9519 }
9520 
9521 int reset_qsfp(struct hfi1_pportdata *ppd)
9522 {
9523 	struct hfi1_devdata *dd = ppd->dd;
9524 	u64 mask, qsfp_mask;
9525 
9526 	/* Disable INT_N from triggering QSFP interrupts */
9527 	set_qsfp_int_n(ppd, 0);
9528 
9529 	/* Reset the QSFP */
9530 	mask = (u64)QSFP_HFI0_RESET_N;
9531 
9532 	qsfp_mask = read_csr(dd,
9533 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9534 	qsfp_mask &= ~mask;
9535 	write_csr(dd,
9536 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9537 
9538 	udelay(10);
9539 
9540 	qsfp_mask |= mask;
9541 	write_csr(dd,
9542 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9543 
9544 	wait_for_qsfp_init(ppd);
9545 
9546 	/*
9547 	 * Allow INT_N to trigger the QSFP interrupt to watch
9548 	 * for alarms and warnings
9549 	 */
9550 	set_qsfp_int_n(ppd, 1);
9551 
9552 	/*
9553 	 * After the reset, AOC transmitters are enabled by default. They need
9554 	 * to be turned off to complete the QSFP setup before they can be
9555 	 * enabled again.
9556 	 */
9557 	return set_qsfp_tx(ppd, 0);
9558 }
9559 
9560 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9561 					u8 *qsfp_interrupt_status)
9562 {
9563 	struct hfi1_devdata *dd = ppd->dd;
9564 
9565 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9566 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9567 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9568 			   __func__);
9569 
9570 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9571 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9572 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9573 			   __func__);
9574 
9575 	/*
9576 	 * The remaining alarms/warnings don't matter if the link is down.
9577 	 */
9578 	if (ppd->host_link_state & HLS_DOWN)
9579 		return 0;
9580 
9581 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9582 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9583 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9584 			   __func__);
9585 
9586 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9587 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9588 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9589 			   __func__);
9590 
9591 	/* Byte 2 is vendor specific */
9592 
9593 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9594 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9595 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9596 			   __func__);
9597 
9598 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9599 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9600 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9601 			   __func__);
9602 
9603 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9604 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9605 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9606 			   __func__);
9607 
9608 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9609 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9610 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9611 			   __func__);
9612 
9613 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9614 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9615 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9616 			   __func__);
9617 
9618 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9619 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9620 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9621 			   __func__);
9622 
9623 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9624 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9625 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9626 			   __func__);
9627 
9628 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9629 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9630 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9631 			   __func__);
9632 
9633 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9634 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9635 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9636 			   __func__);
9637 
9638 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9639 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9640 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9641 			   __func__);
9642 
9643 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9644 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9645 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9646 			   __func__);
9647 
9648 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9649 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9650 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9651 			   __func__);
9652 
9653 	/* Bytes 9-10 and 11-12 are reserved */
9654 	/* Bytes 13-15 are vendor specific */
9655 
9656 	return 0;
9657 }
9658 
9659 /* This routine will only be scheduled if the QSFP module present is asserted */
9660 void qsfp_event(struct work_struct *work)
9661 {
9662 	struct qsfp_data *qd;
9663 	struct hfi1_pportdata *ppd;
9664 	struct hfi1_devdata *dd;
9665 
9666 	qd = container_of(work, struct qsfp_data, qsfp_work);
9667 	ppd = qd->ppd;
9668 	dd = ppd->dd;
9669 
9670 	/* Sanity check */
9671 	if (!qsfp_mod_present(ppd))
9672 		return;
9673 
9674 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9675 		dd_dev_info(ppd->dd,
9676 			    "%s: stopping link start because link is disabled\n",
9677 			    __func__);
9678 		return;
9679 	}
9680 
9681 	/*
9682 	 * Turn DC back on after cable has been re-inserted. Up until
9683 	 * now, the DC has been in reset to save power.
9684 	 */
9685 	dc_start(dd);
9686 
9687 	if (qd->cache_refresh_required) {
9688 		set_qsfp_int_n(ppd, 0);
9689 
9690 		wait_for_qsfp_init(ppd);
9691 
9692 		/*
9693 		 * Allow INT_N to trigger the QSFP interrupt to watch
9694 		 * for alarms and warnings
9695 		 */
9696 		set_qsfp_int_n(ppd, 1);
9697 
9698 		start_link(ppd);
9699 	}
9700 
9701 	if (qd->check_interrupt_flags) {
9702 		u8 qsfp_interrupt_status[16] = {0,};
9703 
9704 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9705 				  &qsfp_interrupt_status[0], 16) != 16) {
9706 			dd_dev_info(dd,
9707 				    "%s: Failed to read status of QSFP module\n",
9708 				    __func__);
9709 		} else {
9710 			unsigned long flags;
9711 
9712 			handle_qsfp_error_conditions(
9713 					ppd, qsfp_interrupt_status);
9714 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9715 			ppd->qsfp_info.check_interrupt_flags = 0;
9716 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9717 					       flags);
9718 		}
9719 	}
9720 }
9721 
9722 void init_qsfp_int(struct hfi1_devdata *dd)
9723 {
9724 	struct hfi1_pportdata *ppd = dd->pport;
9725 	u64 qsfp_mask;
9726 
9727 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9728 	/* Clear current status to avoid spurious interrupts */
9729 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9730 		  qsfp_mask);
9731 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9732 		  qsfp_mask);
9733 
9734 	set_qsfp_int_n(ppd, 0);
9735 
9736 	/* Handle active low nature of INT_N and MODPRST_N pins */
9737 	if (qsfp_mod_present(ppd))
9738 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9739 	write_csr(dd,
9740 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9741 		  qsfp_mask);
9742 
9743 	/* Enable the appropriate QSFP IRQ source */
9744 	if (!dd->hfi1_id)
9745 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9746 	else
9747 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9748 }
9749 
9750 /*
9751  * Do a one-time initialize of the LCB block.
9752  */
9753 static void init_lcb(struct hfi1_devdata *dd)
9754 {
9755 	/* simulator does not correctly handle LCB cclk loopback, skip */
9756 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9757 		return;
9758 
9759 	/* the DC has been reset earlier in the driver load */
9760 
9761 	/* set LCB for cclk loopback on the port */
9762 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9763 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9764 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9765 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9766 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9767 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9768 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9769 }
9770 
9771 /*
9772  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9773  * on error.
9774  */
9775 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9776 {
9777 	int ret;
9778 	u8 status;
9779 
9780 	/*
9781 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9782 	 * not present
9783 	 */
9784 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9785 		return 0;
9786 
9787 	/* read byte 2, the status byte */
9788 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9789 	if (ret < 0)
9790 		return ret;
9791 	if (ret != 1)
9792 		return -EIO;
9793 
9794 	return 0; /* success */
9795 }
9796 
9797 /*
9798  * Values for QSFP retry.
9799  *
9800  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9801  * arrived at from experience on a large cluster.
9802  */
9803 #define MAX_QSFP_RETRIES 20
9804 #define QSFP_RETRY_WAIT 500 /* msec */
9805 
9806 /*
9807  * Try a QSFP read.  If it fails, schedule a retry for later.
9808  * Called on first link activation after driver load.
9809  */
9810 static void try_start_link(struct hfi1_pportdata *ppd)
9811 {
9812 	if (test_qsfp_read(ppd)) {
9813 		/* read failed */
9814 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9815 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9816 			return;
9817 		}
9818 		dd_dev_info(ppd->dd,
9819 			    "QSFP not responding, waiting and retrying %d\n",
9820 			    (int)ppd->qsfp_retry_count);
9821 		ppd->qsfp_retry_count++;
9822 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9823 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9824 		return;
9825 	}
9826 	ppd->qsfp_retry_count = 0;
9827 
9828 	start_link(ppd);
9829 }
9830 
9831 /*
9832  * Workqueue function to start the link after a delay.
9833  */
9834 void handle_start_link(struct work_struct *work)
9835 {
9836 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9837 						  start_link_work.work);
9838 	try_start_link(ppd);
9839 }
9840 
9841 int bringup_serdes(struct hfi1_pportdata *ppd)
9842 {
9843 	struct hfi1_devdata *dd = ppd->dd;
9844 	u64 guid;
9845 	int ret;
9846 
9847 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9848 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9849 
9850 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9851 	if (!guid) {
9852 		if (dd->base_guid)
9853 			guid = dd->base_guid + ppd->port - 1;
9854 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9855 	}
9856 
9857 	/* Set linkinit_reason on power up per OPA spec */
9858 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9859 
9860 	/* one-time init of the LCB */
9861 	init_lcb(dd);
9862 
9863 	if (loopback) {
9864 		ret = init_loopback(dd);
9865 		if (ret < 0)
9866 			return ret;
9867 	}
9868 
9869 	get_port_type(ppd);
9870 	if (ppd->port_type == PORT_TYPE_QSFP) {
9871 		set_qsfp_int_n(ppd, 0);
9872 		wait_for_qsfp_init(ppd);
9873 		set_qsfp_int_n(ppd, 1);
9874 	}
9875 
9876 	try_start_link(ppd);
9877 	return 0;
9878 }
9879 
9880 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9881 {
9882 	struct hfi1_devdata *dd = ppd->dd;
9883 
9884 	/*
9885 	 * Shut down the link and keep it down.   First turn off that the
9886 	 * driver wants to allow the link to be up (driver_link_ready).
9887 	 * Then make sure the link is not automatically restarted
9888 	 * (link_enabled).  Cancel any pending restart.  And finally
9889 	 * go offline.
9890 	 */
9891 	ppd->driver_link_ready = 0;
9892 	ppd->link_enabled = 0;
9893 
9894 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9895 	flush_delayed_work(&ppd->start_link_work);
9896 	cancel_delayed_work_sync(&ppd->start_link_work);
9897 
9898 	ppd->offline_disabled_reason =
9899 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9900 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9901 			     OPA_LINKDOWN_REASON_REBOOT);
9902 	set_link_state(ppd, HLS_DN_OFFLINE);
9903 
9904 	/* disable the port */
9905 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9906 	cancel_work_sync(&ppd->freeze_work);
9907 }
9908 
9909 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9910 {
9911 	struct hfi1_pportdata *ppd;
9912 	int i;
9913 
9914 	ppd = (struct hfi1_pportdata *)(dd + 1);
9915 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9916 		ppd->ibport_data.rvp.rc_acks = NULL;
9917 		ppd->ibport_data.rvp.rc_qacks = NULL;
9918 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9919 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9920 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9921 		if (!ppd->ibport_data.rvp.rc_acks ||
9922 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9923 		    !ppd->ibport_data.rvp.rc_qacks)
9924 			return -ENOMEM;
9925 	}
9926 
9927 	return 0;
9928 }
9929 
9930 /*
9931  * index is the index into the receive array
9932  */
9933 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9934 		  u32 type, unsigned long pa, u16 order)
9935 {
9936 	u64 reg;
9937 
9938 	if (!(dd->flags & HFI1_PRESENT))
9939 		goto done;
9940 
9941 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9942 		pa = 0;
9943 		order = 0;
9944 	} else if (type > PT_INVALID) {
9945 		dd_dev_err(dd,
9946 			   "unexpected receive array type %u for index %u, not handled\n",
9947 			   type, index);
9948 		goto done;
9949 	}
9950 	trace_hfi1_put_tid(dd, index, type, pa, order);
9951 
9952 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9953 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9954 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9955 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9956 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9957 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9958 	writeq(reg, dd->rcvarray_wc + (index * 8));
9959 
9960 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9961 		/*
9962 		 * Eager entries are written and flushed
9963 		 *
9964 		 * Expected entries are flushed every 4 writes
9965 		 */
9966 		flush_wc();
9967 done:
9968 	return;
9969 }
9970 
9971 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9972 {
9973 	struct hfi1_devdata *dd = rcd->dd;
9974 	u32 i;
9975 
9976 	/* this could be optimized */
9977 	for (i = rcd->eager_base; i < rcd->eager_base +
9978 		     rcd->egrbufs.alloced; i++)
9979 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9980 
9981 	for (i = rcd->expected_base;
9982 			i < rcd->expected_base + rcd->expected_count; i++)
9983 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9984 }
9985 
9986 static const char * const ib_cfg_name_strings[] = {
9987 	"HFI1_IB_CFG_LIDLMC",
9988 	"HFI1_IB_CFG_LWID_DG_ENB",
9989 	"HFI1_IB_CFG_LWID_ENB",
9990 	"HFI1_IB_CFG_LWID",
9991 	"HFI1_IB_CFG_SPD_ENB",
9992 	"HFI1_IB_CFG_SPD",
9993 	"HFI1_IB_CFG_RXPOL_ENB",
9994 	"HFI1_IB_CFG_LREV_ENB",
9995 	"HFI1_IB_CFG_LINKLATENCY",
9996 	"HFI1_IB_CFG_HRTBT",
9997 	"HFI1_IB_CFG_OP_VLS",
9998 	"HFI1_IB_CFG_VL_HIGH_CAP",
9999 	"HFI1_IB_CFG_VL_LOW_CAP",
10000 	"HFI1_IB_CFG_OVERRUN_THRESH",
10001 	"HFI1_IB_CFG_PHYERR_THRESH",
10002 	"HFI1_IB_CFG_LINKDEFAULT",
10003 	"HFI1_IB_CFG_PKEYS",
10004 	"HFI1_IB_CFG_MTU",
10005 	"HFI1_IB_CFG_LSTATE",
10006 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
10007 	"HFI1_IB_CFG_PMA_TICKS",
10008 	"HFI1_IB_CFG_PORT"
10009 };
10010 
10011 static const char *ib_cfg_name(int which)
10012 {
10013 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
10014 		return "invalid";
10015 	return ib_cfg_name_strings[which];
10016 }
10017 
10018 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
10019 {
10020 	struct hfi1_devdata *dd = ppd->dd;
10021 	int val = 0;
10022 
10023 	switch (which) {
10024 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
10025 		val = ppd->link_width_enabled;
10026 		break;
10027 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
10028 		val = ppd->link_width_active;
10029 		break;
10030 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10031 		val = ppd->link_speed_enabled;
10032 		break;
10033 	case HFI1_IB_CFG_SPD: /* current Link speed */
10034 		val = ppd->link_speed_active;
10035 		break;
10036 
10037 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
10038 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
10039 	case HFI1_IB_CFG_LINKLATENCY:
10040 		goto unimplemented;
10041 
10042 	case HFI1_IB_CFG_OP_VLS:
10043 		val = ppd->actual_vls_operational;
10044 		break;
10045 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
10046 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
10047 		break;
10048 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
10049 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
10050 		break;
10051 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10052 		val = ppd->overrun_threshold;
10053 		break;
10054 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10055 		val = ppd->phy_error_threshold;
10056 		break;
10057 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10058 		val = HLS_DEFAULT;
10059 		break;
10060 
10061 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10062 	case HFI1_IB_CFG_PMA_TICKS:
10063 	default:
10064 unimplemented:
10065 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10066 			dd_dev_info(
10067 				dd,
10068 				"%s: which %s: not implemented\n",
10069 				__func__,
10070 				ib_cfg_name(which));
10071 		break;
10072 	}
10073 
10074 	return val;
10075 }
10076 
10077 /*
10078  * The largest MAD packet size.
10079  */
10080 #define MAX_MAD_PACKET 2048
10081 
10082 /*
10083  * Return the maximum header bytes that can go on the _wire_
10084  * for this device. This count includes the ICRC which is
10085  * not part of the packet held in memory but it is appended
10086  * by the HW.
10087  * This is dependent on the device's receive header entry size.
10088  * HFI allows this to be set per-receive context, but the
10089  * driver presently enforces a global value.
10090  */
10091 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10092 {
10093 	/*
10094 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10095 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10096 	 * plus one DW for the ICRC appended by HW.
10097 	 *
10098 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10099 	 * We use rcd[0] as all context will have the same value. Also,
10100 	 * the first kernel context would have been allocated by now so
10101 	 * we are guaranteed a valid value.
10102 	 */
10103 	return (get_hdrqentsize(dd->rcd[0]) - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10104 }
10105 
10106 /*
10107  * Set Send Length
10108  * @ppd: per port data
10109  *
10110  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10111  * registers compare against LRH.PktLen, so use the max bytes included
10112  * in the LRH.
10113  *
10114  * This routine changes all VL values except VL15, which it maintains at
10115  * the same value.
10116  */
10117 static void set_send_length(struct hfi1_pportdata *ppd)
10118 {
10119 	struct hfi1_devdata *dd = ppd->dd;
10120 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10121 	u32 maxvlmtu = dd->vld[15].mtu;
10122 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10123 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10124 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10125 	int i, j;
10126 	u32 thres;
10127 
10128 	for (i = 0; i < ppd->vls_supported; i++) {
10129 		if (dd->vld[i].mtu > maxvlmtu)
10130 			maxvlmtu = dd->vld[i].mtu;
10131 		if (i <= 3)
10132 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10133 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10134 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10135 		else
10136 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10137 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10138 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10139 	}
10140 	write_csr(dd, SEND_LEN_CHECK0, len1);
10141 	write_csr(dd, SEND_LEN_CHECK1, len2);
10142 	/* adjust kernel credit return thresholds based on new MTUs */
10143 	/* all kernel receive contexts have the same hdrqentsize */
10144 	for (i = 0; i < ppd->vls_supported; i++) {
10145 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10146 			    sc_mtu_to_threshold(dd->vld[i].sc,
10147 						dd->vld[i].mtu,
10148 						get_hdrqentsize(dd->rcd[0])));
10149 		for (j = 0; j < INIT_SC_PER_VL; j++)
10150 			sc_set_cr_threshold(
10151 					pio_select_send_context_vl(dd, j, i),
10152 					    thres);
10153 	}
10154 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10155 		    sc_mtu_to_threshold(dd->vld[15].sc,
10156 					dd->vld[15].mtu,
10157 					dd->rcd[0]->rcvhdrqentsize));
10158 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10159 
10160 	/* Adjust maximum MTU for the port in DC */
10161 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10162 		(ilog2(maxvlmtu >> 8) + 1);
10163 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10164 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10165 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10166 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10167 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10168 }
10169 
10170 static void set_lidlmc(struct hfi1_pportdata *ppd)
10171 {
10172 	int i;
10173 	u64 sreg = 0;
10174 	struct hfi1_devdata *dd = ppd->dd;
10175 	u32 mask = ~((1U << ppd->lmc) - 1);
10176 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10177 	u32 lid;
10178 
10179 	/*
10180 	 * Program 0 in CSR if port lid is extended. This prevents
10181 	 * 9B packets being sent out for large lids.
10182 	 */
10183 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10184 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10185 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10186 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10187 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10188 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10189 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10190 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10191 
10192 	/*
10193 	 * Iterate over all the send contexts and set their SLID check
10194 	 */
10195 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10196 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10197 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10198 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10199 
10200 	for (i = 0; i < chip_send_contexts(dd); i++) {
10201 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10202 			  i, (u32)sreg);
10203 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10204 	}
10205 
10206 	/* Now we have to do the same thing for the sdma engines */
10207 	sdma_update_lmc(dd, mask, lid);
10208 }
10209 
10210 static const char *state_completed_string(u32 completed)
10211 {
10212 	static const char * const state_completed[] = {
10213 		"EstablishComm",
10214 		"OptimizeEQ",
10215 		"VerifyCap"
10216 	};
10217 
10218 	if (completed < ARRAY_SIZE(state_completed))
10219 		return state_completed[completed];
10220 
10221 	return "unknown";
10222 }
10223 
10224 static const char all_lanes_dead_timeout_expired[] =
10225 	"All lanes were inactive – was the interconnect media removed?";
10226 static const char tx_out_of_policy[] =
10227 	"Passing lanes on local port do not meet the local link width policy";
10228 static const char no_state_complete[] =
10229 	"State timeout occurred before link partner completed the state";
10230 static const char * const state_complete_reasons[] = {
10231 	[0x00] = "Reason unknown",
10232 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10233 	[0x02] = "Link partner reported failure",
10234 	[0x10] = "Unable to achieve frame sync on any lane",
10235 	[0x11] =
10236 	  "Unable to find a common bit rate with the link partner",
10237 	[0x12] =
10238 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10239 	[0x13] =
10240 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10241 	[0x14] = no_state_complete,
10242 	[0x15] =
10243 	  "State timeout occurred before link partner identified equalization presets",
10244 	[0x16] =
10245 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10246 	[0x17] = tx_out_of_policy,
10247 	[0x20] = all_lanes_dead_timeout_expired,
10248 	[0x21] =
10249 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10250 	[0x22] = no_state_complete,
10251 	[0x23] =
10252 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10253 	[0x24] = tx_out_of_policy,
10254 	[0x30] = all_lanes_dead_timeout_expired,
10255 	[0x31] =
10256 	  "State timeout occurred waiting for host to process received frames",
10257 	[0x32] = no_state_complete,
10258 	[0x33] =
10259 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10260 	[0x34] = tx_out_of_policy,
10261 	[0x35] = "Negotiated link width is mutually exclusive",
10262 	[0x36] =
10263 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10264 	[0x37] = "Unable to resolve secure data exchange",
10265 };
10266 
10267 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10268 						     u32 code)
10269 {
10270 	const char *str = NULL;
10271 
10272 	if (code < ARRAY_SIZE(state_complete_reasons))
10273 		str = state_complete_reasons[code];
10274 
10275 	if (str)
10276 		return str;
10277 	return "Reserved";
10278 }
10279 
10280 /* describe the given last state complete frame */
10281 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10282 				  const char *prefix)
10283 {
10284 	struct hfi1_devdata *dd = ppd->dd;
10285 	u32 success;
10286 	u32 state;
10287 	u32 reason;
10288 	u32 lanes;
10289 
10290 	/*
10291 	 * Decode frame:
10292 	 *  [ 0: 0] - success
10293 	 *  [ 3: 1] - state
10294 	 *  [ 7: 4] - next state timeout
10295 	 *  [15: 8] - reason code
10296 	 *  [31:16] - lanes
10297 	 */
10298 	success = frame & 0x1;
10299 	state = (frame >> 1) & 0x7;
10300 	reason = (frame >> 8) & 0xff;
10301 	lanes = (frame >> 16) & 0xffff;
10302 
10303 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10304 		   prefix, frame);
10305 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10306 		   state_completed_string(state), state);
10307 	dd_dev_err(dd, "    state successfully completed: %s\n",
10308 		   success ? "yes" : "no");
10309 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10310 		   reason, state_complete_reason_code_string(ppd, reason));
10311 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10312 }
10313 
10314 /*
10315  * Read the last state complete frames and explain them.  This routine
10316  * expects to be called if the link went down during link negotiation
10317  * and initialization (LNI).  That is, anywhere between polling and link up.
10318  */
10319 static void check_lni_states(struct hfi1_pportdata *ppd)
10320 {
10321 	u32 last_local_state;
10322 	u32 last_remote_state;
10323 
10324 	read_last_local_state(ppd->dd, &last_local_state);
10325 	read_last_remote_state(ppd->dd, &last_remote_state);
10326 
10327 	/*
10328 	 * Don't report anything if there is nothing to report.  A value of
10329 	 * 0 means the link was taken down while polling and there was no
10330 	 * training in-process.
10331 	 */
10332 	if (last_local_state == 0 && last_remote_state == 0)
10333 		return;
10334 
10335 	decode_state_complete(ppd, last_local_state, "transmitted");
10336 	decode_state_complete(ppd, last_remote_state, "received");
10337 }
10338 
10339 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10340 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10341 {
10342 	u64 reg;
10343 	unsigned long timeout;
10344 
10345 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10346 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10347 	while (1) {
10348 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10349 		if (reg)
10350 			break;
10351 		if (time_after(jiffies, timeout)) {
10352 			dd_dev_err(dd,
10353 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10354 			return -ETIMEDOUT;
10355 		}
10356 		udelay(2);
10357 	}
10358 	return 0;
10359 }
10360 
10361 /* called when the logical link state is not down as it should be */
10362 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10363 {
10364 	struct hfi1_devdata *dd = ppd->dd;
10365 
10366 	/*
10367 	 * Bring link up in LCB loopback
10368 	 */
10369 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10370 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10371 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10372 
10373 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10374 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10375 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10376 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10377 
10378 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10379 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10380 	udelay(3);
10381 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10382 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10383 
10384 	wait_link_transfer_active(dd, 100);
10385 
10386 	/*
10387 	 * Bring the link down again.
10388 	 */
10389 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10390 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10391 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10392 
10393 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10394 }
10395 
10396 /*
10397  * Helper for set_link_state().  Do not call except from that routine.
10398  * Expects ppd->hls_mutex to be held.
10399  *
10400  * @rem_reason value to be sent to the neighbor
10401  *
10402  * LinkDownReasons only set if transition succeeds.
10403  */
10404 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10405 {
10406 	struct hfi1_devdata *dd = ppd->dd;
10407 	u32 previous_state;
10408 	int offline_state_ret;
10409 	int ret;
10410 
10411 	update_lcb_cache(dd);
10412 
10413 	previous_state = ppd->host_link_state;
10414 	ppd->host_link_state = HLS_GOING_OFFLINE;
10415 
10416 	/* start offline transition */
10417 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10418 
10419 	if (ret != HCMD_SUCCESS) {
10420 		dd_dev_err(dd,
10421 			   "Failed to transition to Offline link state, return %d\n",
10422 			   ret);
10423 		return -EINVAL;
10424 	}
10425 	if (ppd->offline_disabled_reason ==
10426 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10427 		ppd->offline_disabled_reason =
10428 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10429 
10430 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10431 	if (offline_state_ret < 0)
10432 		return offline_state_ret;
10433 
10434 	/* Disabling AOC transmitters */
10435 	if (ppd->port_type == PORT_TYPE_QSFP &&
10436 	    ppd->qsfp_info.limiting_active &&
10437 	    qsfp_mod_present(ppd)) {
10438 		int ret;
10439 
10440 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10441 		if (ret == 0) {
10442 			set_qsfp_tx(ppd, 0);
10443 			release_chip_resource(dd, qsfp_resource(dd));
10444 		} else {
10445 			/* not fatal, but should warn */
10446 			dd_dev_err(dd,
10447 				   "Unable to acquire lock to turn off QSFP TX\n");
10448 		}
10449 	}
10450 
10451 	/*
10452 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10453 	 * can take a while for the link to go down.
10454 	 */
10455 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10456 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10457 		if (ret < 0)
10458 			return ret;
10459 	}
10460 
10461 	/*
10462 	 * Now in charge of LCB - must be after the physical state is
10463 	 * offline.quiet and before host_link_state is changed.
10464 	 */
10465 	set_host_lcb_access(dd);
10466 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10467 
10468 	/* make sure the logical state is also down */
10469 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10470 	if (ret)
10471 		force_logical_link_state_down(ppd);
10472 
10473 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10474 	update_statusp(ppd, IB_PORT_DOWN);
10475 
10476 	/*
10477 	 * The LNI has a mandatory wait time after the physical state
10478 	 * moves to Offline.Quiet.  The wait time may be different
10479 	 * depending on how the link went down.  The 8051 firmware
10480 	 * will observe the needed wait time and only move to ready
10481 	 * when that is completed.  The largest of the quiet timeouts
10482 	 * is 6s, so wait that long and then at least 0.5s more for
10483 	 * other transitions, and another 0.5s for a buffer.
10484 	 */
10485 	ret = wait_fm_ready(dd, 7000);
10486 	if (ret) {
10487 		dd_dev_err(dd,
10488 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10489 		/* state is really offline, so make it so */
10490 		ppd->host_link_state = HLS_DN_OFFLINE;
10491 		return ret;
10492 	}
10493 
10494 	/*
10495 	 * The state is now offline and the 8051 is ready to accept host
10496 	 * requests.
10497 	 *	- change our state
10498 	 *	- notify others if we were previously in a linkup state
10499 	 */
10500 	ppd->host_link_state = HLS_DN_OFFLINE;
10501 	if (previous_state & HLS_UP) {
10502 		/* went down while link was up */
10503 		handle_linkup_change(dd, 0);
10504 	} else if (previous_state
10505 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10506 		/* went down while attempting link up */
10507 		check_lni_states(ppd);
10508 
10509 		/* The QSFP doesn't need to be reset on LNI failure */
10510 		ppd->qsfp_info.reset_needed = 0;
10511 	}
10512 
10513 	/* the active link width (downgrade) is 0 on link down */
10514 	ppd->link_width_active = 0;
10515 	ppd->link_width_downgrade_tx_active = 0;
10516 	ppd->link_width_downgrade_rx_active = 0;
10517 	ppd->current_egress_rate = 0;
10518 	return 0;
10519 }
10520 
10521 /* return the link state name */
10522 static const char *link_state_name(u32 state)
10523 {
10524 	const char *name;
10525 	int n = ilog2(state);
10526 	static const char * const names[] = {
10527 		[__HLS_UP_INIT_BP]	 = "INIT",
10528 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10529 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10530 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10531 		[__HLS_DN_POLL_BP]	 = "POLL",
10532 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10533 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10534 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10535 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10536 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10537 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10538 	};
10539 
10540 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10541 	return name ? name : "unknown";
10542 }
10543 
10544 /* return the link state reason name */
10545 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10546 {
10547 	if (state == HLS_UP_INIT) {
10548 		switch (ppd->linkinit_reason) {
10549 		case OPA_LINKINIT_REASON_LINKUP:
10550 			return "(LINKUP)";
10551 		case OPA_LINKINIT_REASON_FLAPPING:
10552 			return "(FLAPPING)";
10553 		case OPA_LINKINIT_OUTSIDE_POLICY:
10554 			return "(OUTSIDE_POLICY)";
10555 		case OPA_LINKINIT_QUARANTINED:
10556 			return "(QUARANTINED)";
10557 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10558 			return "(INSUFIC_CAPABILITY)";
10559 		default:
10560 			break;
10561 		}
10562 	}
10563 	return "";
10564 }
10565 
10566 /*
10567  * driver_pstate - convert the driver's notion of a port's
10568  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10569  * Return -1 (converted to a u32) to indicate error.
10570  */
10571 u32 driver_pstate(struct hfi1_pportdata *ppd)
10572 {
10573 	switch (ppd->host_link_state) {
10574 	case HLS_UP_INIT:
10575 	case HLS_UP_ARMED:
10576 	case HLS_UP_ACTIVE:
10577 		return IB_PORTPHYSSTATE_LINKUP;
10578 	case HLS_DN_POLL:
10579 		return IB_PORTPHYSSTATE_POLLING;
10580 	case HLS_DN_DISABLE:
10581 		return IB_PORTPHYSSTATE_DISABLED;
10582 	case HLS_DN_OFFLINE:
10583 		return OPA_PORTPHYSSTATE_OFFLINE;
10584 	case HLS_VERIFY_CAP:
10585 		return IB_PORTPHYSSTATE_TRAINING;
10586 	case HLS_GOING_UP:
10587 		return IB_PORTPHYSSTATE_TRAINING;
10588 	case HLS_GOING_OFFLINE:
10589 		return OPA_PORTPHYSSTATE_OFFLINE;
10590 	case HLS_LINK_COOLDOWN:
10591 		return OPA_PORTPHYSSTATE_OFFLINE;
10592 	case HLS_DN_DOWNDEF:
10593 	default:
10594 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10595 			   ppd->host_link_state);
10596 		return  -1;
10597 	}
10598 }
10599 
10600 /*
10601  * driver_lstate - convert the driver's notion of a port's
10602  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10603  * (converted to a u32) to indicate error.
10604  */
10605 u32 driver_lstate(struct hfi1_pportdata *ppd)
10606 {
10607 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10608 		return IB_PORT_DOWN;
10609 
10610 	switch (ppd->host_link_state & HLS_UP) {
10611 	case HLS_UP_INIT:
10612 		return IB_PORT_INIT;
10613 	case HLS_UP_ARMED:
10614 		return IB_PORT_ARMED;
10615 	case HLS_UP_ACTIVE:
10616 		return IB_PORT_ACTIVE;
10617 	default:
10618 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10619 			   ppd->host_link_state);
10620 	return -1;
10621 	}
10622 }
10623 
10624 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10625 			  u8 neigh_reason, u8 rem_reason)
10626 {
10627 	if (ppd->local_link_down_reason.latest == 0 &&
10628 	    ppd->neigh_link_down_reason.latest == 0) {
10629 		ppd->local_link_down_reason.latest = lcl_reason;
10630 		ppd->neigh_link_down_reason.latest = neigh_reason;
10631 		ppd->remote_link_down_reason = rem_reason;
10632 	}
10633 }
10634 
10635 /**
10636  * data_vls_operational() - Verify if data VL BCT credits and MTU
10637  *			    are both set.
10638  * @ppd: pointer to hfi1_pportdata structure
10639  *
10640  * Return: true - Ok, false -otherwise.
10641  */
10642 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10643 {
10644 	int i;
10645 	u64 reg;
10646 
10647 	if (!ppd->actual_vls_operational)
10648 		return false;
10649 
10650 	for (i = 0; i < ppd->vls_supported; i++) {
10651 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10652 		if ((reg && !ppd->dd->vld[i].mtu) ||
10653 		    (!reg && ppd->dd->vld[i].mtu))
10654 			return false;
10655 	}
10656 
10657 	return true;
10658 }
10659 
10660 /*
10661  * Change the physical and/or logical link state.
10662  *
10663  * Do not call this routine while inside an interrupt.  It contains
10664  * calls to routines that can take multiple seconds to finish.
10665  *
10666  * Returns 0 on success, -errno on failure.
10667  */
10668 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10669 {
10670 	struct hfi1_devdata *dd = ppd->dd;
10671 	struct ib_event event = {.device = NULL};
10672 	int ret1, ret = 0;
10673 	int orig_new_state, poll_bounce;
10674 
10675 	mutex_lock(&ppd->hls_lock);
10676 
10677 	orig_new_state = state;
10678 	if (state == HLS_DN_DOWNDEF)
10679 		state = HLS_DEFAULT;
10680 
10681 	/* interpret poll -> poll as a link bounce */
10682 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10683 		      state == HLS_DN_POLL;
10684 
10685 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10686 		    link_state_name(ppd->host_link_state),
10687 		    link_state_name(orig_new_state),
10688 		    poll_bounce ? "(bounce) " : "",
10689 		    link_state_reason_name(ppd, state));
10690 
10691 	/*
10692 	 * If we're going to a (HLS_*) link state that implies the logical
10693 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10694 	 * reset is_sm_config_started to 0.
10695 	 */
10696 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10697 		ppd->is_sm_config_started = 0;
10698 
10699 	/*
10700 	 * Do nothing if the states match.  Let a poll to poll link bounce
10701 	 * go through.
10702 	 */
10703 	if (ppd->host_link_state == state && !poll_bounce)
10704 		goto done;
10705 
10706 	switch (state) {
10707 	case HLS_UP_INIT:
10708 		if (ppd->host_link_state == HLS_DN_POLL &&
10709 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10710 			/*
10711 			 * Quick link up jumps from polling to here.
10712 			 *
10713 			 * Whether in normal or loopback mode, the
10714 			 * simulator jumps from polling to link up.
10715 			 * Accept that here.
10716 			 */
10717 			/* OK */
10718 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10719 			goto unexpected;
10720 		}
10721 
10722 		/*
10723 		 * Wait for Link_Up physical state.
10724 		 * Physical and Logical states should already be
10725 		 * be transitioned to LinkUp and LinkInit respectively.
10726 		 */
10727 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10728 		if (ret) {
10729 			dd_dev_err(dd,
10730 				   "%s: physical state did not change to LINK-UP\n",
10731 				   __func__);
10732 			break;
10733 		}
10734 
10735 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10736 		if (ret) {
10737 			dd_dev_err(dd,
10738 				   "%s: logical state did not change to INIT\n",
10739 				   __func__);
10740 			break;
10741 		}
10742 
10743 		/* clear old transient LINKINIT_REASON code */
10744 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10745 			ppd->linkinit_reason =
10746 				OPA_LINKINIT_REASON_LINKUP;
10747 
10748 		/* enable the port */
10749 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10750 
10751 		handle_linkup_change(dd, 1);
10752 		pio_kernel_linkup(dd);
10753 
10754 		/*
10755 		 * After link up, a new link width will have been set.
10756 		 * Update the xmit counters with regards to the new
10757 		 * link width.
10758 		 */
10759 		update_xmit_counters(ppd, ppd->link_width_active);
10760 
10761 		ppd->host_link_state = HLS_UP_INIT;
10762 		update_statusp(ppd, IB_PORT_INIT);
10763 		break;
10764 	case HLS_UP_ARMED:
10765 		if (ppd->host_link_state != HLS_UP_INIT)
10766 			goto unexpected;
10767 
10768 		if (!data_vls_operational(ppd)) {
10769 			dd_dev_err(dd,
10770 				   "%s: Invalid data VL credits or mtu\n",
10771 				   __func__);
10772 			ret = -EINVAL;
10773 			break;
10774 		}
10775 
10776 		set_logical_state(dd, LSTATE_ARMED);
10777 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10778 		if (ret) {
10779 			dd_dev_err(dd,
10780 				   "%s: logical state did not change to ARMED\n",
10781 				   __func__);
10782 			break;
10783 		}
10784 		ppd->host_link_state = HLS_UP_ARMED;
10785 		update_statusp(ppd, IB_PORT_ARMED);
10786 		/*
10787 		 * The simulator does not currently implement SMA messages,
10788 		 * so neighbor_normal is not set.  Set it here when we first
10789 		 * move to Armed.
10790 		 */
10791 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10792 			ppd->neighbor_normal = 1;
10793 		break;
10794 	case HLS_UP_ACTIVE:
10795 		if (ppd->host_link_state != HLS_UP_ARMED)
10796 			goto unexpected;
10797 
10798 		set_logical_state(dd, LSTATE_ACTIVE);
10799 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10800 		if (ret) {
10801 			dd_dev_err(dd,
10802 				   "%s: logical state did not change to ACTIVE\n",
10803 				   __func__);
10804 		} else {
10805 			/* tell all engines to go running */
10806 			sdma_all_running(dd);
10807 			ppd->host_link_state = HLS_UP_ACTIVE;
10808 			update_statusp(ppd, IB_PORT_ACTIVE);
10809 
10810 			/* Signal the IB layer that the port has went active */
10811 			event.device = &dd->verbs_dev.rdi.ibdev;
10812 			event.element.port_num = ppd->port;
10813 			event.event = IB_EVENT_PORT_ACTIVE;
10814 		}
10815 		break;
10816 	case HLS_DN_POLL:
10817 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10818 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10819 		    dd->dc_shutdown)
10820 			dc_start(dd);
10821 		/* Hand LED control to the DC */
10822 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10823 
10824 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10825 			u8 tmp = ppd->link_enabled;
10826 
10827 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10828 			if (ret) {
10829 				ppd->link_enabled = tmp;
10830 				break;
10831 			}
10832 			ppd->remote_link_down_reason = 0;
10833 
10834 			if (ppd->driver_link_ready)
10835 				ppd->link_enabled = 1;
10836 		}
10837 
10838 		set_all_slowpath(ppd->dd);
10839 		ret = set_local_link_attributes(ppd);
10840 		if (ret)
10841 			break;
10842 
10843 		ppd->port_error_action = 0;
10844 
10845 		if (quick_linkup) {
10846 			/* quick linkup does not go into polling */
10847 			ret = do_quick_linkup(dd);
10848 		} else {
10849 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10850 			if (!ret1)
10851 				ret1 = wait_phys_link_out_of_offline(ppd,
10852 								     3000);
10853 			if (ret1 != HCMD_SUCCESS) {
10854 				dd_dev_err(dd,
10855 					   "Failed to transition to Polling link state, return 0x%x\n",
10856 					   ret1);
10857 				ret = -EINVAL;
10858 			}
10859 		}
10860 
10861 		/*
10862 		 * Change the host link state after requesting DC8051 to
10863 		 * change its physical state so that we can ignore any
10864 		 * interrupt with stale LNI(XX) error, which will not be
10865 		 * cleared until DC8051 transitions to Polling state.
10866 		 */
10867 		ppd->host_link_state = HLS_DN_POLL;
10868 		ppd->offline_disabled_reason =
10869 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10870 		/*
10871 		 * If an error occurred above, go back to offline.  The
10872 		 * caller may reschedule another attempt.
10873 		 */
10874 		if (ret)
10875 			goto_offline(ppd, 0);
10876 		else
10877 			log_physical_state(ppd, PLS_POLLING);
10878 		break;
10879 	case HLS_DN_DISABLE:
10880 		/* link is disabled */
10881 		ppd->link_enabled = 0;
10882 
10883 		/* allow any state to transition to disabled */
10884 
10885 		/* must transition to offline first */
10886 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10887 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10888 			if (ret)
10889 				break;
10890 			ppd->remote_link_down_reason = 0;
10891 		}
10892 
10893 		if (!dd->dc_shutdown) {
10894 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10895 			if (ret1 != HCMD_SUCCESS) {
10896 				dd_dev_err(dd,
10897 					   "Failed to transition to Disabled link state, return 0x%x\n",
10898 					   ret1);
10899 				ret = -EINVAL;
10900 				break;
10901 			}
10902 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10903 			if (ret) {
10904 				dd_dev_err(dd,
10905 					   "%s: physical state did not change to DISABLED\n",
10906 					   __func__);
10907 				break;
10908 			}
10909 			dc_shutdown(dd);
10910 		}
10911 		ppd->host_link_state = HLS_DN_DISABLE;
10912 		break;
10913 	case HLS_DN_OFFLINE:
10914 		if (ppd->host_link_state == HLS_DN_DISABLE)
10915 			dc_start(dd);
10916 
10917 		/* allow any state to transition to offline */
10918 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10919 		if (!ret)
10920 			ppd->remote_link_down_reason = 0;
10921 		break;
10922 	case HLS_VERIFY_CAP:
10923 		if (ppd->host_link_state != HLS_DN_POLL)
10924 			goto unexpected;
10925 		ppd->host_link_state = HLS_VERIFY_CAP;
10926 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10927 		break;
10928 	case HLS_GOING_UP:
10929 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10930 			goto unexpected;
10931 
10932 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10933 		if (ret1 != HCMD_SUCCESS) {
10934 			dd_dev_err(dd,
10935 				   "Failed to transition to link up state, return 0x%x\n",
10936 				   ret1);
10937 			ret = -EINVAL;
10938 			break;
10939 		}
10940 		ppd->host_link_state = HLS_GOING_UP;
10941 		break;
10942 
10943 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10944 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10945 	default:
10946 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10947 			    __func__, state);
10948 		ret = -EINVAL;
10949 		break;
10950 	}
10951 
10952 	goto done;
10953 
10954 unexpected:
10955 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10956 		   __func__, link_state_name(ppd->host_link_state),
10957 		   link_state_name(state));
10958 	ret = -EINVAL;
10959 
10960 done:
10961 	mutex_unlock(&ppd->hls_lock);
10962 
10963 	if (event.device)
10964 		ib_dispatch_event(&event);
10965 
10966 	return ret;
10967 }
10968 
10969 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10970 {
10971 	u64 reg;
10972 	int ret = 0;
10973 
10974 	switch (which) {
10975 	case HFI1_IB_CFG_LIDLMC:
10976 		set_lidlmc(ppd);
10977 		break;
10978 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10979 		/*
10980 		 * The VL Arbitrator high limit is sent in units of 4k
10981 		 * bytes, while HFI stores it in units of 64 bytes.
10982 		 */
10983 		val *= 4096 / 64;
10984 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10985 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10986 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10987 		break;
10988 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10989 		/* HFI only supports POLL as the default link down state */
10990 		if (val != HLS_DN_POLL)
10991 			ret = -EINVAL;
10992 		break;
10993 	case HFI1_IB_CFG_OP_VLS:
10994 		if (ppd->vls_operational != val) {
10995 			ppd->vls_operational = val;
10996 			if (!ppd->port)
10997 				ret = -EINVAL;
10998 		}
10999 		break;
11000 	/*
11001 	 * For link width, link width downgrade, and speed enable, always AND
11002 	 * the setting with what is actually supported.  This has two benefits.
11003 	 * First, enabled can't have unsupported values, no matter what the
11004 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
11005 	 * "fill in with your supported value" have all the bits in the
11006 	 * field set, so simply ANDing with supported has the desired result.
11007 	 */
11008 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
11009 		ppd->link_width_enabled = val & ppd->link_width_supported;
11010 		break;
11011 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
11012 		ppd->link_width_downgrade_enabled =
11013 				val & ppd->link_width_downgrade_supported;
11014 		break;
11015 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
11016 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
11017 		break;
11018 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
11019 		/*
11020 		 * HFI does not follow IB specs, save this value
11021 		 * so we can report it, if asked.
11022 		 */
11023 		ppd->overrun_threshold = val;
11024 		break;
11025 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
11026 		/*
11027 		 * HFI does not follow IB specs, save this value
11028 		 * so we can report it, if asked.
11029 		 */
11030 		ppd->phy_error_threshold = val;
11031 		break;
11032 
11033 	case HFI1_IB_CFG_MTU:
11034 		set_send_length(ppd);
11035 		break;
11036 
11037 	case HFI1_IB_CFG_PKEYS:
11038 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
11039 			set_partition_keys(ppd);
11040 		break;
11041 
11042 	default:
11043 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
11044 			dd_dev_info(ppd->dd,
11045 				    "%s: which %s, val 0x%x: not implemented\n",
11046 				    __func__, ib_cfg_name(which), val);
11047 		break;
11048 	}
11049 	return ret;
11050 }
11051 
11052 /* begin functions related to vl arbitration table caching */
11053 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
11054 {
11055 	int i;
11056 
11057 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11058 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11059 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11060 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11061 
11062 	/*
11063 	 * Note that we always return values directly from the
11064 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11065 	 * 'Get(VLArbTable)'. This is obviously correct after a
11066 	 * 'Set(VLArbTable)', since the cache will then be up to
11067 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11068 	 * since then both the cache, and the relevant h/w registers
11069 	 * will be zeroed.
11070 	 */
11071 
11072 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11073 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11074 }
11075 
11076 /*
11077  * vl_arb_lock_cache
11078  *
11079  * All other vl_arb_* functions should be called only after locking
11080  * the cache.
11081  */
11082 static inline struct vl_arb_cache *
11083 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11084 {
11085 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11086 		return NULL;
11087 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11088 	return &ppd->vl_arb_cache[idx];
11089 }
11090 
11091 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11092 {
11093 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11094 }
11095 
11096 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11097 			     struct ib_vl_weight_elem *vl)
11098 {
11099 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11100 }
11101 
11102 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11103 			     struct ib_vl_weight_elem *vl)
11104 {
11105 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11106 }
11107 
11108 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11109 			      struct ib_vl_weight_elem *vl)
11110 {
11111 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11112 }
11113 
11114 /* end functions related to vl arbitration table caching */
11115 
11116 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11117 			  u32 size, struct ib_vl_weight_elem *vl)
11118 {
11119 	struct hfi1_devdata *dd = ppd->dd;
11120 	u64 reg;
11121 	unsigned int i, is_up = 0;
11122 	int drain, ret = 0;
11123 
11124 	mutex_lock(&ppd->hls_lock);
11125 
11126 	if (ppd->host_link_state & HLS_UP)
11127 		is_up = 1;
11128 
11129 	drain = !is_ax(dd) && is_up;
11130 
11131 	if (drain)
11132 		/*
11133 		 * Before adjusting VL arbitration weights, empty per-VL
11134 		 * FIFOs, otherwise a packet whose VL weight is being
11135 		 * set to 0 could get stuck in a FIFO with no chance to
11136 		 * egress.
11137 		 */
11138 		ret = stop_drain_data_vls(dd);
11139 
11140 	if (ret) {
11141 		dd_dev_err(
11142 			dd,
11143 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11144 			__func__);
11145 		goto err;
11146 	}
11147 
11148 	for (i = 0; i < size; i++, vl++) {
11149 		/*
11150 		 * NOTE: The low priority shift and mask are used here, but
11151 		 * they are the same for both the low and high registers.
11152 		 */
11153 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11154 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11155 		      | (((u64)vl->weight
11156 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11157 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11158 		write_csr(dd, target + (i * 8), reg);
11159 	}
11160 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11161 
11162 	if (drain)
11163 		open_fill_data_vls(dd); /* reopen all VLs */
11164 
11165 err:
11166 	mutex_unlock(&ppd->hls_lock);
11167 
11168 	return ret;
11169 }
11170 
11171 /*
11172  * Read one credit merge VL register.
11173  */
11174 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11175 			   struct vl_limit *vll)
11176 {
11177 	u64 reg = read_csr(dd, csr);
11178 
11179 	vll->dedicated = cpu_to_be16(
11180 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11181 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11182 	vll->shared = cpu_to_be16(
11183 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11184 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11185 }
11186 
11187 /*
11188  * Read the current credit merge limits.
11189  */
11190 static int get_buffer_control(struct hfi1_devdata *dd,
11191 			      struct buffer_control *bc, u16 *overall_limit)
11192 {
11193 	u64 reg;
11194 	int i;
11195 
11196 	/* not all entries are filled in */
11197 	memset(bc, 0, sizeof(*bc));
11198 
11199 	/* OPA and HFI have a 1-1 mapping */
11200 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11201 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11202 
11203 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11204 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11205 
11206 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11207 	bc->overall_shared_limit = cpu_to_be16(
11208 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11209 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11210 	if (overall_limit)
11211 		*overall_limit = (reg
11212 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11213 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11214 	return sizeof(struct buffer_control);
11215 }
11216 
11217 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11218 {
11219 	u64 reg;
11220 	int i;
11221 
11222 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11223 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11224 	for (i = 0; i < sizeof(u64); i++) {
11225 		u8 byte = *(((u8 *)&reg) + i);
11226 
11227 		dp->vlnt[2 * i] = byte & 0xf;
11228 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11229 	}
11230 
11231 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11232 	for (i = 0; i < sizeof(u64); i++) {
11233 		u8 byte = *(((u8 *)&reg) + i);
11234 
11235 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11236 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11237 	}
11238 	return sizeof(struct sc2vlnt);
11239 }
11240 
11241 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11242 			      struct ib_vl_weight_elem *vl)
11243 {
11244 	unsigned int i;
11245 
11246 	for (i = 0; i < nelems; i++, vl++) {
11247 		vl->vl = 0xf;
11248 		vl->weight = 0;
11249 	}
11250 }
11251 
11252 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11253 {
11254 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11255 		  DC_SC_VL_VAL(15_0,
11256 			       0, dp->vlnt[0] & 0xf,
11257 			       1, dp->vlnt[1] & 0xf,
11258 			       2, dp->vlnt[2] & 0xf,
11259 			       3, dp->vlnt[3] & 0xf,
11260 			       4, dp->vlnt[4] & 0xf,
11261 			       5, dp->vlnt[5] & 0xf,
11262 			       6, dp->vlnt[6] & 0xf,
11263 			       7, dp->vlnt[7] & 0xf,
11264 			       8, dp->vlnt[8] & 0xf,
11265 			       9, dp->vlnt[9] & 0xf,
11266 			       10, dp->vlnt[10] & 0xf,
11267 			       11, dp->vlnt[11] & 0xf,
11268 			       12, dp->vlnt[12] & 0xf,
11269 			       13, dp->vlnt[13] & 0xf,
11270 			       14, dp->vlnt[14] & 0xf,
11271 			       15, dp->vlnt[15] & 0xf));
11272 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11273 		  DC_SC_VL_VAL(31_16,
11274 			       16, dp->vlnt[16] & 0xf,
11275 			       17, dp->vlnt[17] & 0xf,
11276 			       18, dp->vlnt[18] & 0xf,
11277 			       19, dp->vlnt[19] & 0xf,
11278 			       20, dp->vlnt[20] & 0xf,
11279 			       21, dp->vlnt[21] & 0xf,
11280 			       22, dp->vlnt[22] & 0xf,
11281 			       23, dp->vlnt[23] & 0xf,
11282 			       24, dp->vlnt[24] & 0xf,
11283 			       25, dp->vlnt[25] & 0xf,
11284 			       26, dp->vlnt[26] & 0xf,
11285 			       27, dp->vlnt[27] & 0xf,
11286 			       28, dp->vlnt[28] & 0xf,
11287 			       29, dp->vlnt[29] & 0xf,
11288 			       30, dp->vlnt[30] & 0xf,
11289 			       31, dp->vlnt[31] & 0xf));
11290 }
11291 
11292 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11293 			u16 limit)
11294 {
11295 	if (limit != 0)
11296 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11297 			    what, (int)limit, idx);
11298 }
11299 
11300 /* change only the shared limit portion of SendCmGLobalCredit */
11301 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11302 {
11303 	u64 reg;
11304 
11305 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11306 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11307 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11308 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11309 }
11310 
11311 /* change only the total credit limit portion of SendCmGLobalCredit */
11312 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11313 {
11314 	u64 reg;
11315 
11316 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11317 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11318 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11319 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11320 }
11321 
11322 /* set the given per-VL shared limit */
11323 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11324 {
11325 	u64 reg;
11326 	u32 addr;
11327 
11328 	if (vl < TXE_NUM_DATA_VL)
11329 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11330 	else
11331 		addr = SEND_CM_CREDIT_VL15;
11332 
11333 	reg = read_csr(dd, addr);
11334 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11335 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11336 	write_csr(dd, addr, reg);
11337 }
11338 
11339 /* set the given per-VL dedicated limit */
11340 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11341 {
11342 	u64 reg;
11343 	u32 addr;
11344 
11345 	if (vl < TXE_NUM_DATA_VL)
11346 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11347 	else
11348 		addr = SEND_CM_CREDIT_VL15;
11349 
11350 	reg = read_csr(dd, addr);
11351 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11352 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11353 	write_csr(dd, addr, reg);
11354 }
11355 
11356 /* spin until the given per-VL status mask bits clear */
11357 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11358 				     const char *which)
11359 {
11360 	unsigned long timeout;
11361 	u64 reg;
11362 
11363 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11364 	while (1) {
11365 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11366 
11367 		if (reg == 0)
11368 			return;	/* success */
11369 		if (time_after(jiffies, timeout))
11370 			break;		/* timed out */
11371 		udelay(1);
11372 	}
11373 
11374 	dd_dev_err(dd,
11375 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11376 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11377 	/*
11378 	 * If this occurs, it is likely there was a credit loss on the link.
11379 	 * The only recovery from that is a link bounce.
11380 	 */
11381 	dd_dev_err(dd,
11382 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11383 }
11384 
11385 /*
11386  * The number of credits on the VLs may be changed while everything
11387  * is "live", but the following algorithm must be followed due to
11388  * how the hardware is actually implemented.  In particular,
11389  * Return_Credit_Status[] is the only correct status check.
11390  *
11391  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11392  *     set Global_Shared_Credit_Limit = 0
11393  *     use_all_vl = 1
11394  * mask0 = all VLs that are changing either dedicated or shared limits
11395  * set Shared_Limit[mask0] = 0
11396  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11397  * if (changing any dedicated limit)
11398  *     mask1 = all VLs that are lowering dedicated limits
11399  *     lower Dedicated_Limit[mask1]
11400  *     spin until Return_Credit_Status[mask1] == 0
11401  *     raise Dedicated_Limits
11402  * raise Shared_Limits
11403  * raise Global_Shared_Credit_Limit
11404  *
11405  * lower = if the new limit is lower, set the limit to the new value
11406  * raise = if the new limit is higher than the current value (may be changed
11407  *	earlier in the algorithm), set the new limit to the new value
11408  */
11409 int set_buffer_control(struct hfi1_pportdata *ppd,
11410 		       struct buffer_control *new_bc)
11411 {
11412 	struct hfi1_devdata *dd = ppd->dd;
11413 	u64 changing_mask, ld_mask, stat_mask;
11414 	int change_count;
11415 	int i, use_all_mask;
11416 	int this_shared_changing;
11417 	int vl_count = 0, ret;
11418 	/*
11419 	 * A0: add the variable any_shared_limit_changing below and in the
11420 	 * algorithm above.  If removing A0 support, it can be removed.
11421 	 */
11422 	int any_shared_limit_changing;
11423 	struct buffer_control cur_bc;
11424 	u8 changing[OPA_MAX_VLS];
11425 	u8 lowering_dedicated[OPA_MAX_VLS];
11426 	u16 cur_total;
11427 	u32 new_total = 0;
11428 	const u64 all_mask =
11429 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11430 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11431 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11432 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11433 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11434 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11435 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11436 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11437 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11438 
11439 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11440 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11441 
11442 	/* find the new total credits, do sanity check on unused VLs */
11443 	for (i = 0; i < OPA_MAX_VLS; i++) {
11444 		if (valid_vl(i)) {
11445 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11446 			continue;
11447 		}
11448 		nonzero_msg(dd, i, "dedicated",
11449 			    be16_to_cpu(new_bc->vl[i].dedicated));
11450 		nonzero_msg(dd, i, "shared",
11451 			    be16_to_cpu(new_bc->vl[i].shared));
11452 		new_bc->vl[i].dedicated = 0;
11453 		new_bc->vl[i].shared = 0;
11454 	}
11455 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11456 
11457 	/* fetch the current values */
11458 	get_buffer_control(dd, &cur_bc, &cur_total);
11459 
11460 	/*
11461 	 * Create the masks we will use.
11462 	 */
11463 	memset(changing, 0, sizeof(changing));
11464 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11465 	/*
11466 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11467 	 * increasing order
11468 	 */
11469 	stat_mask =
11470 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11471 	changing_mask = 0;
11472 	ld_mask = 0;
11473 	change_count = 0;
11474 	any_shared_limit_changing = 0;
11475 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11476 		if (!valid_vl(i))
11477 			continue;
11478 		this_shared_changing = new_bc->vl[i].shared
11479 						!= cur_bc.vl[i].shared;
11480 		if (this_shared_changing)
11481 			any_shared_limit_changing = 1;
11482 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11483 		    this_shared_changing) {
11484 			changing[i] = 1;
11485 			changing_mask |= stat_mask;
11486 			change_count++;
11487 		}
11488 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11489 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11490 			lowering_dedicated[i] = 1;
11491 			ld_mask |= stat_mask;
11492 		}
11493 	}
11494 
11495 	/* bracket the credit change with a total adjustment */
11496 	if (new_total > cur_total)
11497 		set_global_limit(dd, new_total);
11498 
11499 	/*
11500 	 * Start the credit change algorithm.
11501 	 */
11502 	use_all_mask = 0;
11503 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11504 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11505 	    (is_ax(dd) && any_shared_limit_changing)) {
11506 		set_global_shared(dd, 0);
11507 		cur_bc.overall_shared_limit = 0;
11508 		use_all_mask = 1;
11509 	}
11510 
11511 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11512 		if (!valid_vl(i))
11513 			continue;
11514 
11515 		if (changing[i]) {
11516 			set_vl_shared(dd, i, 0);
11517 			cur_bc.vl[i].shared = 0;
11518 		}
11519 	}
11520 
11521 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11522 				 "shared");
11523 
11524 	if (change_count > 0) {
11525 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11526 			if (!valid_vl(i))
11527 				continue;
11528 
11529 			if (lowering_dedicated[i]) {
11530 				set_vl_dedicated(dd, i,
11531 						 be16_to_cpu(new_bc->
11532 							     vl[i].dedicated));
11533 				cur_bc.vl[i].dedicated =
11534 						new_bc->vl[i].dedicated;
11535 			}
11536 		}
11537 
11538 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11539 
11540 		/* now raise all dedicated that are going up */
11541 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11542 			if (!valid_vl(i))
11543 				continue;
11544 
11545 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11546 					be16_to_cpu(cur_bc.vl[i].dedicated))
11547 				set_vl_dedicated(dd, i,
11548 						 be16_to_cpu(new_bc->
11549 							     vl[i].dedicated));
11550 		}
11551 	}
11552 
11553 	/* next raise all shared that are going up */
11554 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11555 		if (!valid_vl(i))
11556 			continue;
11557 
11558 		if (be16_to_cpu(new_bc->vl[i].shared) >
11559 				be16_to_cpu(cur_bc.vl[i].shared))
11560 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11561 	}
11562 
11563 	/* finally raise the global shared */
11564 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11565 	    be16_to_cpu(cur_bc.overall_shared_limit))
11566 		set_global_shared(dd,
11567 				  be16_to_cpu(new_bc->overall_shared_limit));
11568 
11569 	/* bracket the credit change with a total adjustment */
11570 	if (new_total < cur_total)
11571 		set_global_limit(dd, new_total);
11572 
11573 	/*
11574 	 * Determine the actual number of operational VLS using the number of
11575 	 * dedicated and shared credits for each VL.
11576 	 */
11577 	if (change_count > 0) {
11578 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11579 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11580 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11581 				vl_count++;
11582 		ppd->actual_vls_operational = vl_count;
11583 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11584 				    ppd->actual_vls_operational :
11585 				    ppd->vls_operational,
11586 				    NULL);
11587 		if (ret == 0)
11588 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11589 					   ppd->actual_vls_operational :
11590 					   ppd->vls_operational, NULL);
11591 		if (ret)
11592 			return ret;
11593 	}
11594 	return 0;
11595 }
11596 
11597 /*
11598  * Read the given fabric manager table. Return the size of the
11599  * table (in bytes) on success, and a negative error code on
11600  * failure.
11601  */
11602 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11603 
11604 {
11605 	int size;
11606 	struct vl_arb_cache *vlc;
11607 
11608 	switch (which) {
11609 	case FM_TBL_VL_HIGH_ARB:
11610 		size = 256;
11611 		/*
11612 		 * OPA specifies 128 elements (of 2 bytes each), though
11613 		 * HFI supports only 16 elements in h/w.
11614 		 */
11615 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11616 		vl_arb_get_cache(vlc, t);
11617 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11618 		break;
11619 	case FM_TBL_VL_LOW_ARB:
11620 		size = 256;
11621 		/*
11622 		 * OPA specifies 128 elements (of 2 bytes each), though
11623 		 * HFI supports only 16 elements in h/w.
11624 		 */
11625 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11626 		vl_arb_get_cache(vlc, t);
11627 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11628 		break;
11629 	case FM_TBL_BUFFER_CONTROL:
11630 		size = get_buffer_control(ppd->dd, t, NULL);
11631 		break;
11632 	case FM_TBL_SC2VLNT:
11633 		size = get_sc2vlnt(ppd->dd, t);
11634 		break;
11635 	case FM_TBL_VL_PREEMPT_ELEMS:
11636 		size = 256;
11637 		/* OPA specifies 128 elements, of 2 bytes each */
11638 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11639 		break;
11640 	case FM_TBL_VL_PREEMPT_MATRIX:
11641 		size = 256;
11642 		/*
11643 		 * OPA specifies that this is the same size as the VL
11644 		 * arbitration tables (i.e., 256 bytes).
11645 		 */
11646 		break;
11647 	default:
11648 		return -EINVAL;
11649 	}
11650 	return size;
11651 }
11652 
11653 /*
11654  * Write the given fabric manager table.
11655  */
11656 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11657 {
11658 	int ret = 0;
11659 	struct vl_arb_cache *vlc;
11660 
11661 	switch (which) {
11662 	case FM_TBL_VL_HIGH_ARB:
11663 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11664 		if (vl_arb_match_cache(vlc, t)) {
11665 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11666 			break;
11667 		}
11668 		vl_arb_set_cache(vlc, t);
11669 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11670 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11671 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11672 		break;
11673 	case FM_TBL_VL_LOW_ARB:
11674 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11675 		if (vl_arb_match_cache(vlc, t)) {
11676 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11677 			break;
11678 		}
11679 		vl_arb_set_cache(vlc, t);
11680 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11681 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11682 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11683 		break;
11684 	case FM_TBL_BUFFER_CONTROL:
11685 		ret = set_buffer_control(ppd, t);
11686 		break;
11687 	case FM_TBL_SC2VLNT:
11688 		set_sc2vlnt(ppd->dd, t);
11689 		break;
11690 	default:
11691 		ret = -EINVAL;
11692 	}
11693 	return ret;
11694 }
11695 
11696 /*
11697  * Disable all data VLs.
11698  *
11699  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11700  */
11701 static int disable_data_vls(struct hfi1_devdata *dd)
11702 {
11703 	if (is_ax(dd))
11704 		return 1;
11705 
11706 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11707 
11708 	return 0;
11709 }
11710 
11711 /*
11712  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11713  * Just re-enables all data VLs (the "fill" part happens
11714  * automatically - the name was chosen for symmetry with
11715  * stop_drain_data_vls()).
11716  *
11717  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11718  */
11719 int open_fill_data_vls(struct hfi1_devdata *dd)
11720 {
11721 	if (is_ax(dd))
11722 		return 1;
11723 
11724 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11725 
11726 	return 0;
11727 }
11728 
11729 /*
11730  * drain_data_vls() - assumes that disable_data_vls() has been called,
11731  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11732  * engines to drop to 0.
11733  */
11734 static void drain_data_vls(struct hfi1_devdata *dd)
11735 {
11736 	sc_wait(dd);
11737 	sdma_wait(dd);
11738 	pause_for_credit_return(dd);
11739 }
11740 
11741 /*
11742  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11743  *
11744  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11745  * meant to be used like this:
11746  *
11747  * stop_drain_data_vls(dd);
11748  * // do things with per-VL resources
11749  * open_fill_data_vls(dd);
11750  */
11751 int stop_drain_data_vls(struct hfi1_devdata *dd)
11752 {
11753 	int ret;
11754 
11755 	ret = disable_data_vls(dd);
11756 	if (ret == 0)
11757 		drain_data_vls(dd);
11758 
11759 	return ret;
11760 }
11761 
11762 /*
11763  * Convert a nanosecond time to a cclock count.  No matter how slow
11764  * the cclock, a non-zero ns will always have a non-zero result.
11765  */
11766 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11767 {
11768 	u32 cclocks;
11769 
11770 	if (dd->icode == ICODE_FPGA_EMULATION)
11771 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11772 	else  /* simulation pretends to be ASIC */
11773 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11774 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11775 		cclocks = 1;
11776 	return cclocks;
11777 }
11778 
11779 /*
11780  * Convert a cclock count to nanoseconds. Not matter how slow
11781  * the cclock, a non-zero cclocks will always have a non-zero result.
11782  */
11783 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11784 {
11785 	u32 ns;
11786 
11787 	if (dd->icode == ICODE_FPGA_EMULATION)
11788 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11789 	else  /* simulation pretends to be ASIC */
11790 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11791 	if (cclocks && !ns)
11792 		ns = 1;
11793 	return ns;
11794 }
11795 
11796 /*
11797  * Dynamically adjust the receive interrupt timeout for a context based on
11798  * incoming packet rate.
11799  *
11800  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11801  */
11802 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11803 {
11804 	struct hfi1_devdata *dd = rcd->dd;
11805 	u32 timeout = rcd->rcvavail_timeout;
11806 
11807 	/*
11808 	 * This algorithm doubles or halves the timeout depending on whether
11809 	 * the number of packets received in this interrupt were less than or
11810 	 * greater equal the interrupt count.
11811 	 *
11812 	 * The calculations below do not allow a steady state to be achieved.
11813 	 * Only at the endpoints it is possible to have an unchanging
11814 	 * timeout.
11815 	 */
11816 	if (npkts < rcv_intr_count) {
11817 		/*
11818 		 * Not enough packets arrived before the timeout, adjust
11819 		 * timeout downward.
11820 		 */
11821 		if (timeout < 2) /* already at minimum? */
11822 			return;
11823 		timeout >>= 1;
11824 	} else {
11825 		/*
11826 		 * More than enough packets arrived before the timeout, adjust
11827 		 * timeout upward.
11828 		 */
11829 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11830 			return;
11831 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11832 	}
11833 
11834 	rcd->rcvavail_timeout = timeout;
11835 	/*
11836 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11837 	 * been verified to be in range
11838 	 */
11839 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11840 			(u64)timeout <<
11841 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11842 }
11843 
11844 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11845 		    u32 intr_adjust, u32 npkts)
11846 {
11847 	struct hfi1_devdata *dd = rcd->dd;
11848 	u64 reg;
11849 	u32 ctxt = rcd->ctxt;
11850 
11851 	/*
11852 	 * Need to write timeout register before updating RcvHdrHead to ensure
11853 	 * that a new value is used when the HW decides to restart counting.
11854 	 */
11855 	if (intr_adjust)
11856 		adjust_rcv_timeout(rcd, npkts);
11857 	if (updegr) {
11858 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11859 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11860 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11861 	}
11862 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11863 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11864 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11865 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11866 }
11867 
11868 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11869 {
11870 	u32 head, tail;
11871 
11872 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11873 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11874 
11875 	if (hfi1_rcvhdrtail_kvaddr(rcd))
11876 		tail = get_rcvhdrtail(rcd);
11877 	else
11878 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11879 
11880 	return head == tail;
11881 }
11882 
11883 /*
11884  * Context Control and Receive Array encoding for buffer size:
11885  *	0x0 invalid
11886  *	0x1   4 KB
11887  *	0x2   8 KB
11888  *	0x3  16 KB
11889  *	0x4  32 KB
11890  *	0x5  64 KB
11891  *	0x6 128 KB
11892  *	0x7 256 KB
11893  *	0x8 512 KB (Receive Array only)
11894  *	0x9   1 MB (Receive Array only)
11895  *	0xa   2 MB (Receive Array only)
11896  *
11897  *	0xB-0xF - reserved (Receive Array only)
11898  *
11899  *
11900  * This routine assumes that the value has already been sanity checked.
11901  */
11902 static u32 encoded_size(u32 size)
11903 {
11904 	switch (size) {
11905 	case   4 * 1024: return 0x1;
11906 	case   8 * 1024: return 0x2;
11907 	case  16 * 1024: return 0x3;
11908 	case  32 * 1024: return 0x4;
11909 	case  64 * 1024: return 0x5;
11910 	case 128 * 1024: return 0x6;
11911 	case 256 * 1024: return 0x7;
11912 	case 512 * 1024: return 0x8;
11913 	case   1 * 1024 * 1024: return 0x9;
11914 	case   2 * 1024 * 1024: return 0xa;
11915 	}
11916 	return 0x1;	/* if invalid, go with the minimum size */
11917 }
11918 
11919 /**
11920  * encode_rcv_header_entry_size - return chip specific encoding for size
11921  * @size: size in dwords
11922  *
11923  * Convert a receive header entry size that to the encoding used in the CSR.
11924  *
11925  * Return a zero if the given size is invalid, otherwise the encoding.
11926  */
11927 u8 encode_rcv_header_entry_size(u8 size)
11928 {
11929 	/* there are only 3 valid receive header entry sizes */
11930 	if (size == 2)
11931 		return 1;
11932 	if (size == 16)
11933 		return 2;
11934 	if (size == 32)
11935 		return 4;
11936 	return 0; /* invalid */
11937 }
11938 
11939 /**
11940  * hfi1_validate_rcvhdrcnt - validate hdrcnt
11941  * @dd: the device data
11942  * @thecnt: the header count
11943  */
11944 int hfi1_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
11945 {
11946 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
11947 		dd_dev_err(dd, "Receive header queue count too small\n");
11948 		return -EINVAL;
11949 	}
11950 
11951 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
11952 		dd_dev_err(dd,
11953 			   "Receive header queue count cannot be greater than %u\n",
11954 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
11955 		return -EINVAL;
11956 	}
11957 
11958 	if (thecnt % HDRQ_INCREMENT) {
11959 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
11960 			   thecnt, HDRQ_INCREMENT);
11961 		return -EINVAL;
11962 	}
11963 
11964 	return 0;
11965 }
11966 
11967 /**
11968  * set_hdrq_regs - set header queue registers for context
11969  * @dd: the device data
11970  * @ctxt: the context
11971  * @entsize: the dword entry size
11972  * @hdrcnt: the number of header entries
11973  */
11974 void set_hdrq_regs(struct hfi1_devdata *dd, u8 ctxt, u8 entsize, u16 hdrcnt)
11975 {
11976 	u64 reg;
11977 
11978 	reg = (((u64)hdrcnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) <<
11979 	      RCV_HDR_CNT_CNT_SHIFT;
11980 	write_kctxt_csr(dd, ctxt, RCV_HDR_CNT, reg);
11981 	reg = ((u64)encode_rcv_header_entry_size(entsize) &
11982 	       RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) <<
11983 	      RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
11984 	write_kctxt_csr(dd, ctxt, RCV_HDR_ENT_SIZE, reg);
11985 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK) <<
11986 	      RCV_HDR_SIZE_HDR_SIZE_SHIFT;
11987 	write_kctxt_csr(dd, ctxt, RCV_HDR_SIZE, reg);
11988 
11989 	/*
11990 	 * Program dummy tail address for every receive context
11991 	 * before enabling any receive context
11992 	 */
11993 	write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11994 			dd->rcvhdrtail_dummy_dma);
11995 }
11996 
11997 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11998 		  struct hfi1_ctxtdata *rcd)
11999 {
12000 	u64 rcvctrl, reg;
12001 	int did_enable = 0;
12002 	u16 ctxt;
12003 
12004 	if (!rcd)
12005 		return;
12006 
12007 	ctxt = rcd->ctxt;
12008 
12009 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
12010 
12011 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
12012 	/* if the context already enabled, don't do the extra steps */
12013 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
12014 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
12015 		/* reset the tail and hdr addresses, and sequence count */
12016 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
12017 				rcd->rcvhdrq_dma);
12018 		if (hfi1_rcvhdrtail_kvaddr(rcd))
12019 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12020 					rcd->rcvhdrqtailaddr_dma);
12021 		hfi1_set_seq_cnt(rcd, 1);
12022 
12023 		/* reset the cached receive header queue head value */
12024 		hfi1_set_rcd_head(rcd, 0);
12025 
12026 		/*
12027 		 * Zero the receive header queue so we don't get false
12028 		 * positives when checking the sequence number.  The
12029 		 * sequence numbers could land exactly on the same spot.
12030 		 * E.g. a rcd restart before the receive header wrapped.
12031 		 */
12032 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
12033 
12034 		/* starting timeout */
12035 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
12036 
12037 		/* enable the context */
12038 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
12039 
12040 		/* clean the egr buffer size first */
12041 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12042 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
12043 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
12044 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
12045 
12046 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
12047 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
12048 		did_enable = 1;
12049 
12050 		/* zero RcvEgrIndexHead */
12051 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
12052 
12053 		/* set eager count and base index */
12054 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
12055 			& RCV_EGR_CTRL_EGR_CNT_MASK)
12056 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
12057 			(((rcd->eager_base >> RCV_SHIFT)
12058 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
12059 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
12060 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
12061 
12062 		/*
12063 		 * Set TID (expected) count and base index.
12064 		 * rcd->expected_count is set to individual RcvArray entries,
12065 		 * not pairs, and the CSR takes a pair-count in groups of
12066 		 * four, so divide by 8.
12067 		 */
12068 		reg = (((rcd->expected_count >> RCV_SHIFT)
12069 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
12070 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
12071 		      (((rcd->expected_base >> RCV_SHIFT)
12072 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
12073 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
12074 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
12075 		if (ctxt == HFI1_CTRL_CTXT)
12076 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
12077 	}
12078 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
12079 		write_csr(dd, RCV_VL15, 0);
12080 		/*
12081 		 * When receive context is being disabled turn on tail
12082 		 * update with a dummy tail address and then disable
12083 		 * receive context.
12084 		 */
12085 		if (dd->rcvhdrtail_dummy_dma) {
12086 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12087 					dd->rcvhdrtail_dummy_dma);
12088 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
12089 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12090 		}
12091 
12092 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
12093 	}
12094 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
12095 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12096 			      IS_RCVAVAIL_START + rcd->ctxt, true);
12097 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12098 	}
12099 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
12100 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
12101 			      IS_RCVAVAIL_START + rcd->ctxt, false);
12102 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
12103 	}
12104 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && hfi1_rcvhdrtail_kvaddr(rcd))
12105 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12106 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
12107 		/* See comment on RcvCtxtCtrl.TailUpd above */
12108 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
12109 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
12110 	}
12111 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
12112 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12113 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
12114 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
12115 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
12116 		/*
12117 		 * In one-packet-per-eager mode, the size comes from
12118 		 * the RcvArray entry.
12119 		 */
12120 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
12121 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12122 	}
12123 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
12124 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
12125 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
12126 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12127 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
12128 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
12129 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
12130 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12131 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12132 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12133 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12134 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12135 			      IS_RCVURGENT_START + rcd->ctxt, true);
12136 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12137 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12138 			      IS_RCVURGENT_START + rcd->ctxt, false);
12139 
12140 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx", ctxt, rcvctrl);
12141 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12142 
12143 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12144 	if (did_enable &&
12145 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12146 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12147 		if (reg != 0) {
12148 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12149 				    ctxt, reg);
12150 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12151 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12152 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12153 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12154 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12155 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12156 				    ctxt, reg, reg == 0 ? "not" : "still");
12157 		}
12158 	}
12159 
12160 	if (did_enable) {
12161 		/*
12162 		 * The interrupt timeout and count must be set after
12163 		 * the context is enabled to take effect.
12164 		 */
12165 		/* set interrupt timeout */
12166 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12167 				(u64)rcd->rcvavail_timeout <<
12168 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12169 
12170 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12171 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12172 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12173 	}
12174 
12175 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12176 		/*
12177 		 * If the context has been disabled and the Tail Update has
12178 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12179 		 * so it doesn't contain an address that is invalid.
12180 		 */
12181 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12182 				dd->rcvhdrtail_dummy_dma);
12183 }
12184 
12185 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12186 {
12187 	int ret;
12188 	u64 val = 0;
12189 
12190 	if (namep) {
12191 		ret = dd->cntrnameslen;
12192 		*namep = dd->cntrnames;
12193 	} else {
12194 		const struct cntr_entry *entry;
12195 		int i, j;
12196 
12197 		ret = (dd->ndevcntrs) * sizeof(u64);
12198 
12199 		/* Get the start of the block of counters */
12200 		*cntrp = dd->cntrs;
12201 
12202 		/*
12203 		 * Now go and fill in each counter in the block.
12204 		 */
12205 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12206 			entry = &dev_cntrs[i];
12207 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12208 			if (entry->flags & CNTR_DISABLED) {
12209 				/* Nothing */
12210 				hfi1_cdbg(CNTR, "\tDisabled");
12211 			} else {
12212 				if (entry->flags & CNTR_VL) {
12213 					hfi1_cdbg(CNTR, "\tPer VL");
12214 					for (j = 0; j < C_VL_COUNT; j++) {
12215 						val = entry->rw_cntr(entry,
12216 								  dd, j,
12217 								  CNTR_MODE_R,
12218 								  0);
12219 						hfi1_cdbg(
12220 						   CNTR,
12221 						   "\t\tRead 0x%llx for %d",
12222 						   val, j);
12223 						dd->cntrs[entry->offset + j] =
12224 									    val;
12225 					}
12226 				} else if (entry->flags & CNTR_SDMA) {
12227 					hfi1_cdbg(CNTR,
12228 						  "\t Per SDMA Engine");
12229 					for (j = 0; j < chip_sdma_engines(dd);
12230 					     j++) {
12231 						val =
12232 						entry->rw_cntr(entry, dd, j,
12233 							       CNTR_MODE_R, 0);
12234 						hfi1_cdbg(CNTR,
12235 							  "\t\tRead 0x%llx for %d",
12236 							  val, j);
12237 						dd->cntrs[entry->offset + j] =
12238 									val;
12239 					}
12240 				} else {
12241 					val = entry->rw_cntr(entry, dd,
12242 							CNTR_INVALID_VL,
12243 							CNTR_MODE_R, 0);
12244 					dd->cntrs[entry->offset] = val;
12245 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12246 				}
12247 			}
12248 		}
12249 	}
12250 	return ret;
12251 }
12252 
12253 /*
12254  * Used by sysfs to create files for hfi stats to read
12255  */
12256 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12257 {
12258 	int ret;
12259 	u64 val = 0;
12260 
12261 	if (namep) {
12262 		ret = ppd->dd->portcntrnameslen;
12263 		*namep = ppd->dd->portcntrnames;
12264 	} else {
12265 		const struct cntr_entry *entry;
12266 		int i, j;
12267 
12268 		ret = ppd->dd->nportcntrs * sizeof(u64);
12269 		*cntrp = ppd->cntrs;
12270 
12271 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12272 			entry = &port_cntrs[i];
12273 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12274 			if (entry->flags & CNTR_DISABLED) {
12275 				/* Nothing */
12276 				hfi1_cdbg(CNTR, "\tDisabled");
12277 				continue;
12278 			}
12279 
12280 			if (entry->flags & CNTR_VL) {
12281 				hfi1_cdbg(CNTR, "\tPer VL");
12282 				for (j = 0; j < C_VL_COUNT; j++) {
12283 					val = entry->rw_cntr(entry, ppd, j,
12284 							       CNTR_MODE_R,
12285 							       0);
12286 					hfi1_cdbg(
12287 					   CNTR,
12288 					   "\t\tRead 0x%llx for %d",
12289 					   val, j);
12290 					ppd->cntrs[entry->offset + j] = val;
12291 				}
12292 			} else {
12293 				val = entry->rw_cntr(entry, ppd,
12294 						       CNTR_INVALID_VL,
12295 						       CNTR_MODE_R,
12296 						       0);
12297 				ppd->cntrs[entry->offset] = val;
12298 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12299 			}
12300 		}
12301 	}
12302 	return ret;
12303 }
12304 
12305 static void free_cntrs(struct hfi1_devdata *dd)
12306 {
12307 	struct hfi1_pportdata *ppd;
12308 	int i;
12309 
12310 	if (dd->synth_stats_timer.function)
12311 		del_timer_sync(&dd->synth_stats_timer);
12312 	cancel_work_sync(&dd->update_cntr_work);
12313 	ppd = (struct hfi1_pportdata *)(dd + 1);
12314 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12315 		kfree(ppd->cntrs);
12316 		kfree(ppd->scntrs);
12317 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12318 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12319 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12320 		ppd->cntrs = NULL;
12321 		ppd->scntrs = NULL;
12322 		ppd->ibport_data.rvp.rc_acks = NULL;
12323 		ppd->ibport_data.rvp.rc_qacks = NULL;
12324 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12325 	}
12326 	kfree(dd->portcntrnames);
12327 	dd->portcntrnames = NULL;
12328 	kfree(dd->cntrs);
12329 	dd->cntrs = NULL;
12330 	kfree(dd->scntrs);
12331 	dd->scntrs = NULL;
12332 	kfree(dd->cntrnames);
12333 	dd->cntrnames = NULL;
12334 	if (dd->update_cntr_wq) {
12335 		destroy_workqueue(dd->update_cntr_wq);
12336 		dd->update_cntr_wq = NULL;
12337 	}
12338 }
12339 
12340 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12341 			      u64 *psval, void *context, int vl)
12342 {
12343 	u64 val;
12344 	u64 sval = *psval;
12345 
12346 	if (entry->flags & CNTR_DISABLED) {
12347 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12348 		return 0;
12349 	}
12350 
12351 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12352 
12353 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12354 
12355 	/* If its a synthetic counter there is more work we need to do */
12356 	if (entry->flags & CNTR_SYNTH) {
12357 		if (sval == CNTR_MAX) {
12358 			/* No need to read already saturated */
12359 			return CNTR_MAX;
12360 		}
12361 
12362 		if (entry->flags & CNTR_32BIT) {
12363 			/* 32bit counters can wrap multiple times */
12364 			u64 upper = sval >> 32;
12365 			u64 lower = (sval << 32) >> 32;
12366 
12367 			if (lower > val) { /* hw wrapped */
12368 				if (upper == CNTR_32BIT_MAX)
12369 					val = CNTR_MAX;
12370 				else
12371 					upper++;
12372 			}
12373 
12374 			if (val != CNTR_MAX)
12375 				val = (upper << 32) | val;
12376 
12377 		} else {
12378 			/* If we rolled we are saturated */
12379 			if ((val < sval) || (val > CNTR_MAX))
12380 				val = CNTR_MAX;
12381 		}
12382 	}
12383 
12384 	*psval = val;
12385 
12386 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12387 
12388 	return val;
12389 }
12390 
12391 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12392 			       struct cntr_entry *entry,
12393 			       u64 *psval, void *context, int vl, u64 data)
12394 {
12395 	u64 val;
12396 
12397 	if (entry->flags & CNTR_DISABLED) {
12398 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12399 		return 0;
12400 	}
12401 
12402 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12403 
12404 	if (entry->flags & CNTR_SYNTH) {
12405 		*psval = data;
12406 		if (entry->flags & CNTR_32BIT) {
12407 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12408 					     (data << 32) >> 32);
12409 			val = data; /* return the full 64bit value */
12410 		} else {
12411 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12412 					     data);
12413 		}
12414 	} else {
12415 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12416 	}
12417 
12418 	*psval = val;
12419 
12420 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12421 
12422 	return val;
12423 }
12424 
12425 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12426 {
12427 	struct cntr_entry *entry;
12428 	u64 *sval;
12429 
12430 	entry = &dev_cntrs[index];
12431 	sval = dd->scntrs + entry->offset;
12432 
12433 	if (vl != CNTR_INVALID_VL)
12434 		sval += vl;
12435 
12436 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12437 }
12438 
12439 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12440 {
12441 	struct cntr_entry *entry;
12442 	u64 *sval;
12443 
12444 	entry = &dev_cntrs[index];
12445 	sval = dd->scntrs + entry->offset;
12446 
12447 	if (vl != CNTR_INVALID_VL)
12448 		sval += vl;
12449 
12450 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12451 }
12452 
12453 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12454 {
12455 	struct cntr_entry *entry;
12456 	u64 *sval;
12457 
12458 	entry = &port_cntrs[index];
12459 	sval = ppd->scntrs + entry->offset;
12460 
12461 	if (vl != CNTR_INVALID_VL)
12462 		sval += vl;
12463 
12464 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12465 	    (index <= C_RCV_HDR_OVF_LAST)) {
12466 		/* We do not want to bother for disabled contexts */
12467 		return 0;
12468 	}
12469 
12470 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12471 }
12472 
12473 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12474 {
12475 	struct cntr_entry *entry;
12476 	u64 *sval;
12477 
12478 	entry = &port_cntrs[index];
12479 	sval = ppd->scntrs + entry->offset;
12480 
12481 	if (vl != CNTR_INVALID_VL)
12482 		sval += vl;
12483 
12484 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12485 	    (index <= C_RCV_HDR_OVF_LAST)) {
12486 		/* We do not want to bother for disabled contexts */
12487 		return 0;
12488 	}
12489 
12490 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12491 }
12492 
12493 static void do_update_synth_timer(struct work_struct *work)
12494 {
12495 	u64 cur_tx;
12496 	u64 cur_rx;
12497 	u64 total_flits;
12498 	u8 update = 0;
12499 	int i, j, vl;
12500 	struct hfi1_pportdata *ppd;
12501 	struct cntr_entry *entry;
12502 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12503 					       update_cntr_work);
12504 
12505 	/*
12506 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12507 	 * check to watch for potential roll over. We can do this by looking at
12508 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12509 	 * we have to iterate all the counters and update.
12510 	 */
12511 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12512 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12513 
12514 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12515 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12516 
12517 	hfi1_cdbg(
12518 	    CNTR,
12519 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx",
12520 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12521 
12522 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12523 		/*
12524 		 * May not be strictly necessary to update but it won't hurt and
12525 		 * simplifies the logic here.
12526 		 */
12527 		update = 1;
12528 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12529 			  dd->unit);
12530 	} else {
12531 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12532 		hfi1_cdbg(CNTR,
12533 			  "[%d] total flits 0x%llx limit 0x%llx", dd->unit,
12534 			  total_flits, (u64)CNTR_32BIT_MAX);
12535 		if (total_flits >= CNTR_32BIT_MAX) {
12536 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12537 				  dd->unit);
12538 			update = 1;
12539 		}
12540 	}
12541 
12542 	if (update) {
12543 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12544 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12545 			entry = &dev_cntrs[i];
12546 			if (entry->flags & CNTR_VL) {
12547 				for (vl = 0; vl < C_VL_COUNT; vl++)
12548 					read_dev_cntr(dd, i, vl);
12549 			} else {
12550 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12551 			}
12552 		}
12553 		ppd = (struct hfi1_pportdata *)(dd + 1);
12554 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12555 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12556 				entry = &port_cntrs[j];
12557 				if (entry->flags & CNTR_VL) {
12558 					for (vl = 0; vl < C_VL_COUNT; vl++)
12559 						read_port_cntr(ppd, j, vl);
12560 				} else {
12561 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12562 				}
12563 			}
12564 		}
12565 
12566 		/*
12567 		 * We want the value in the register. The goal is to keep track
12568 		 * of the number of "ticks" not the counter value. In other
12569 		 * words if the register rolls we want to notice it and go ahead
12570 		 * and force an update.
12571 		 */
12572 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12573 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12574 						CNTR_MODE_R, 0);
12575 
12576 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12577 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12578 						CNTR_MODE_R, 0);
12579 
12580 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12581 			  dd->unit, dd->last_tx, dd->last_rx);
12582 
12583 	} else {
12584 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12585 	}
12586 }
12587 
12588 static void update_synth_timer(struct timer_list *t)
12589 {
12590 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12591 
12592 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12593 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12594 }
12595 
12596 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12597 static int init_cntrs(struct hfi1_devdata *dd)
12598 {
12599 	int i, rcv_ctxts, j;
12600 	size_t sz;
12601 	char *p;
12602 	char name[C_MAX_NAME];
12603 	struct hfi1_pportdata *ppd;
12604 	const char *bit_type_32 = ",32";
12605 	const int bit_type_32_sz = strlen(bit_type_32);
12606 	u32 sdma_engines = chip_sdma_engines(dd);
12607 
12608 	/* set up the stats timer; the add_timer is done at the end */
12609 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12610 
12611 	/***********************/
12612 	/* per device counters */
12613 	/***********************/
12614 
12615 	/* size names and determine how many we have*/
12616 	dd->ndevcntrs = 0;
12617 	sz = 0;
12618 
12619 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12620 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12621 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12622 			continue;
12623 		}
12624 
12625 		if (dev_cntrs[i].flags & CNTR_VL) {
12626 			dev_cntrs[i].offset = dd->ndevcntrs;
12627 			for (j = 0; j < C_VL_COUNT; j++) {
12628 				snprintf(name, C_MAX_NAME, "%s%d",
12629 					 dev_cntrs[i].name, vl_from_idx(j));
12630 				sz += strlen(name);
12631 				/* Add ",32" for 32-bit counters */
12632 				if (dev_cntrs[i].flags & CNTR_32BIT)
12633 					sz += bit_type_32_sz;
12634 				sz++;
12635 				dd->ndevcntrs++;
12636 			}
12637 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12638 			dev_cntrs[i].offset = dd->ndevcntrs;
12639 			for (j = 0; j < sdma_engines; j++) {
12640 				snprintf(name, C_MAX_NAME, "%s%d",
12641 					 dev_cntrs[i].name, j);
12642 				sz += strlen(name);
12643 				/* Add ",32" for 32-bit counters */
12644 				if (dev_cntrs[i].flags & CNTR_32BIT)
12645 					sz += bit_type_32_sz;
12646 				sz++;
12647 				dd->ndevcntrs++;
12648 			}
12649 		} else {
12650 			/* +1 for newline. */
12651 			sz += strlen(dev_cntrs[i].name) + 1;
12652 			/* Add ",32" for 32-bit counters */
12653 			if (dev_cntrs[i].flags & CNTR_32BIT)
12654 				sz += bit_type_32_sz;
12655 			dev_cntrs[i].offset = dd->ndevcntrs;
12656 			dd->ndevcntrs++;
12657 		}
12658 	}
12659 
12660 	/* allocate space for the counter values */
12661 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12662 			    GFP_KERNEL);
12663 	if (!dd->cntrs)
12664 		goto bail;
12665 
12666 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12667 	if (!dd->scntrs)
12668 		goto bail;
12669 
12670 	/* allocate space for the counter names */
12671 	dd->cntrnameslen = sz;
12672 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12673 	if (!dd->cntrnames)
12674 		goto bail;
12675 
12676 	/* fill in the names */
12677 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12678 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12679 			/* Nothing */
12680 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12681 			for (j = 0; j < C_VL_COUNT; j++) {
12682 				snprintf(name, C_MAX_NAME, "%s%d",
12683 					 dev_cntrs[i].name,
12684 					 vl_from_idx(j));
12685 				memcpy(p, name, strlen(name));
12686 				p += strlen(name);
12687 
12688 				/* Counter is 32 bits */
12689 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12690 					memcpy(p, bit_type_32, bit_type_32_sz);
12691 					p += bit_type_32_sz;
12692 				}
12693 
12694 				*p++ = '\n';
12695 			}
12696 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12697 			for (j = 0; j < sdma_engines; j++) {
12698 				snprintf(name, C_MAX_NAME, "%s%d",
12699 					 dev_cntrs[i].name, j);
12700 				memcpy(p, name, strlen(name));
12701 				p += strlen(name);
12702 
12703 				/* Counter is 32 bits */
12704 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12705 					memcpy(p, bit_type_32, bit_type_32_sz);
12706 					p += bit_type_32_sz;
12707 				}
12708 
12709 				*p++ = '\n';
12710 			}
12711 		} else {
12712 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12713 			p += strlen(dev_cntrs[i].name);
12714 
12715 			/* Counter is 32 bits */
12716 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12717 				memcpy(p, bit_type_32, bit_type_32_sz);
12718 				p += bit_type_32_sz;
12719 			}
12720 
12721 			*p++ = '\n';
12722 		}
12723 	}
12724 
12725 	/*********************/
12726 	/* per port counters */
12727 	/*********************/
12728 
12729 	/*
12730 	 * Go through the counters for the overflows and disable the ones we
12731 	 * don't need. This varies based on platform so we need to do it
12732 	 * dynamically here.
12733 	 */
12734 	rcv_ctxts = dd->num_rcv_contexts;
12735 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12736 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12737 		port_cntrs[i].flags |= CNTR_DISABLED;
12738 	}
12739 
12740 	/* size port counter names and determine how many we have*/
12741 	sz = 0;
12742 	dd->nportcntrs = 0;
12743 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12744 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12745 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12746 			continue;
12747 		}
12748 
12749 		if (port_cntrs[i].flags & CNTR_VL) {
12750 			port_cntrs[i].offset = dd->nportcntrs;
12751 			for (j = 0; j < C_VL_COUNT; j++) {
12752 				snprintf(name, C_MAX_NAME, "%s%d",
12753 					 port_cntrs[i].name, vl_from_idx(j));
12754 				sz += strlen(name);
12755 				/* Add ",32" for 32-bit counters */
12756 				if (port_cntrs[i].flags & CNTR_32BIT)
12757 					sz += bit_type_32_sz;
12758 				sz++;
12759 				dd->nportcntrs++;
12760 			}
12761 		} else {
12762 			/* +1 for newline */
12763 			sz += strlen(port_cntrs[i].name) + 1;
12764 			/* Add ",32" for 32-bit counters */
12765 			if (port_cntrs[i].flags & CNTR_32BIT)
12766 				sz += bit_type_32_sz;
12767 			port_cntrs[i].offset = dd->nportcntrs;
12768 			dd->nportcntrs++;
12769 		}
12770 	}
12771 
12772 	/* allocate space for the counter names */
12773 	dd->portcntrnameslen = sz;
12774 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12775 	if (!dd->portcntrnames)
12776 		goto bail;
12777 
12778 	/* fill in port cntr names */
12779 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12780 		if (port_cntrs[i].flags & CNTR_DISABLED)
12781 			continue;
12782 
12783 		if (port_cntrs[i].flags & CNTR_VL) {
12784 			for (j = 0; j < C_VL_COUNT; j++) {
12785 				snprintf(name, C_MAX_NAME, "%s%d",
12786 					 port_cntrs[i].name, vl_from_idx(j));
12787 				memcpy(p, name, strlen(name));
12788 				p += strlen(name);
12789 
12790 				/* Counter is 32 bits */
12791 				if (port_cntrs[i].flags & CNTR_32BIT) {
12792 					memcpy(p, bit_type_32, bit_type_32_sz);
12793 					p += bit_type_32_sz;
12794 				}
12795 
12796 				*p++ = '\n';
12797 			}
12798 		} else {
12799 			memcpy(p, port_cntrs[i].name,
12800 			       strlen(port_cntrs[i].name));
12801 			p += strlen(port_cntrs[i].name);
12802 
12803 			/* Counter is 32 bits */
12804 			if (port_cntrs[i].flags & CNTR_32BIT) {
12805 				memcpy(p, bit_type_32, bit_type_32_sz);
12806 				p += bit_type_32_sz;
12807 			}
12808 
12809 			*p++ = '\n';
12810 		}
12811 	}
12812 
12813 	/* allocate per port storage for counter values */
12814 	ppd = (struct hfi1_pportdata *)(dd + 1);
12815 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12816 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12817 		if (!ppd->cntrs)
12818 			goto bail;
12819 
12820 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12821 		if (!ppd->scntrs)
12822 			goto bail;
12823 	}
12824 
12825 	/* CPU counters need to be allocated and zeroed */
12826 	if (init_cpu_counters(dd))
12827 		goto bail;
12828 
12829 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12830 						     WQ_MEM_RECLAIM, dd->unit);
12831 	if (!dd->update_cntr_wq)
12832 		goto bail;
12833 
12834 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12835 
12836 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12837 	return 0;
12838 bail:
12839 	free_cntrs(dd);
12840 	return -ENOMEM;
12841 }
12842 
12843 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12844 {
12845 	switch (chip_lstate) {
12846 	case LSTATE_DOWN:
12847 		return IB_PORT_DOWN;
12848 	case LSTATE_INIT:
12849 		return IB_PORT_INIT;
12850 	case LSTATE_ARMED:
12851 		return IB_PORT_ARMED;
12852 	case LSTATE_ACTIVE:
12853 		return IB_PORT_ACTIVE;
12854 	default:
12855 		dd_dev_err(dd,
12856 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12857 			   chip_lstate);
12858 		return IB_PORT_DOWN;
12859 	}
12860 }
12861 
12862 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12863 {
12864 	/* look at the HFI meta-states only */
12865 	switch (chip_pstate & 0xf0) {
12866 	case PLS_DISABLED:
12867 		return IB_PORTPHYSSTATE_DISABLED;
12868 	case PLS_OFFLINE:
12869 		return OPA_PORTPHYSSTATE_OFFLINE;
12870 	case PLS_POLLING:
12871 		return IB_PORTPHYSSTATE_POLLING;
12872 	case PLS_CONFIGPHY:
12873 		return IB_PORTPHYSSTATE_TRAINING;
12874 	case PLS_LINKUP:
12875 		return IB_PORTPHYSSTATE_LINKUP;
12876 	case PLS_PHYTEST:
12877 		return IB_PORTPHYSSTATE_PHY_TEST;
12878 	default:
12879 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12880 			   chip_pstate);
12881 		return IB_PORTPHYSSTATE_DISABLED;
12882 	}
12883 }
12884 
12885 /* return the OPA port logical state name */
12886 const char *opa_lstate_name(u32 lstate)
12887 {
12888 	static const char * const port_logical_names[] = {
12889 		"PORT_NOP",
12890 		"PORT_DOWN",
12891 		"PORT_INIT",
12892 		"PORT_ARMED",
12893 		"PORT_ACTIVE",
12894 		"PORT_ACTIVE_DEFER",
12895 	};
12896 	if (lstate < ARRAY_SIZE(port_logical_names))
12897 		return port_logical_names[lstate];
12898 	return "unknown";
12899 }
12900 
12901 /* return the OPA port physical state name */
12902 const char *opa_pstate_name(u32 pstate)
12903 {
12904 	static const char * const port_physical_names[] = {
12905 		"PHYS_NOP",
12906 		"reserved1",
12907 		"PHYS_POLL",
12908 		"PHYS_DISABLED",
12909 		"PHYS_TRAINING",
12910 		"PHYS_LINKUP",
12911 		"PHYS_LINK_ERR_RECOVER",
12912 		"PHYS_PHY_TEST",
12913 		"reserved8",
12914 		"PHYS_OFFLINE",
12915 		"PHYS_GANGED",
12916 		"PHYS_TEST",
12917 	};
12918 	if (pstate < ARRAY_SIZE(port_physical_names))
12919 		return port_physical_names[pstate];
12920 	return "unknown";
12921 }
12922 
12923 /**
12924  * update_statusp - Update userspace status flag
12925  * @ppd: Port data structure
12926  * @state: port state information
12927  *
12928  * Actual port status is determined by the host_link_state value
12929  * in the ppd.
12930  *
12931  * host_link_state MUST be updated before updating the user space
12932  * statusp.
12933  */
12934 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12935 {
12936 	/*
12937 	 * Set port status flags in the page mapped into userspace
12938 	 * memory. Do it here to ensure a reliable state - this is
12939 	 * the only function called by all state handling code.
12940 	 * Always set the flags due to the fact that the cache value
12941 	 * might have been changed explicitly outside of this
12942 	 * function.
12943 	 */
12944 	if (ppd->statusp) {
12945 		switch (state) {
12946 		case IB_PORT_DOWN:
12947 		case IB_PORT_INIT:
12948 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12949 					   HFI1_STATUS_IB_READY);
12950 			break;
12951 		case IB_PORT_ARMED:
12952 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12953 			break;
12954 		case IB_PORT_ACTIVE:
12955 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12956 			break;
12957 		}
12958 	}
12959 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12960 		    opa_lstate_name(state), state);
12961 }
12962 
12963 /**
12964  * wait_logical_linkstate - wait for an IB link state change to occur
12965  * @ppd: port device
12966  * @state: the state to wait for
12967  * @msecs: the number of milliseconds to wait
12968  *
12969  * Wait up to msecs milliseconds for IB link state change to occur.
12970  * For now, take the easy polling route.
12971  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12972  */
12973 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12974 				  int msecs)
12975 {
12976 	unsigned long timeout;
12977 	u32 new_state;
12978 
12979 	timeout = jiffies + msecs_to_jiffies(msecs);
12980 	while (1) {
12981 		new_state = chip_to_opa_lstate(ppd->dd,
12982 					       read_logical_state(ppd->dd));
12983 		if (new_state == state)
12984 			break;
12985 		if (time_after(jiffies, timeout)) {
12986 			dd_dev_err(ppd->dd,
12987 				   "timeout waiting for link state 0x%x\n",
12988 				   state);
12989 			return -ETIMEDOUT;
12990 		}
12991 		msleep(20);
12992 	}
12993 
12994 	return 0;
12995 }
12996 
12997 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12998 {
12999 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
13000 
13001 	dd_dev_info(ppd->dd,
13002 		    "physical state changed to %s (0x%x), phy 0x%x\n",
13003 		    opa_pstate_name(ib_pstate), ib_pstate, state);
13004 }
13005 
13006 /*
13007  * Read the physical hardware link state and check if it matches host
13008  * drivers anticipated state.
13009  */
13010 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
13011 {
13012 	u32 read_state = read_physical_state(ppd->dd);
13013 
13014 	if (read_state == state) {
13015 		log_state_transition(ppd, state);
13016 	} else {
13017 		dd_dev_err(ppd->dd,
13018 			   "anticipated phy link state 0x%x, read 0x%x\n",
13019 			   state, read_state);
13020 	}
13021 }
13022 
13023 /*
13024  * wait_physical_linkstate - wait for an physical link state change to occur
13025  * @ppd: port device
13026  * @state: the state to wait for
13027  * @msecs: the number of milliseconds to wait
13028  *
13029  * Wait up to msecs milliseconds for physical link state change to occur.
13030  * Returns 0 if state reached, otherwise -ETIMEDOUT.
13031  */
13032 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
13033 				   int msecs)
13034 {
13035 	u32 read_state;
13036 	unsigned long timeout;
13037 
13038 	timeout = jiffies + msecs_to_jiffies(msecs);
13039 	while (1) {
13040 		read_state = read_physical_state(ppd->dd);
13041 		if (read_state == state)
13042 			break;
13043 		if (time_after(jiffies, timeout)) {
13044 			dd_dev_err(ppd->dd,
13045 				   "timeout waiting for phy link state 0x%x\n",
13046 				   state);
13047 			return -ETIMEDOUT;
13048 		}
13049 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13050 	}
13051 
13052 	log_state_transition(ppd, state);
13053 	return 0;
13054 }
13055 
13056 /*
13057  * wait_phys_link_offline_quiet_substates - wait for any offline substate
13058  * @ppd: port device
13059  * @msecs: the number of milliseconds to wait
13060  *
13061  * Wait up to msecs milliseconds for any offline physical link
13062  * state change to occur.
13063  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13064  */
13065 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
13066 					    int msecs)
13067 {
13068 	u32 read_state;
13069 	unsigned long timeout;
13070 
13071 	timeout = jiffies + msecs_to_jiffies(msecs);
13072 	while (1) {
13073 		read_state = read_physical_state(ppd->dd);
13074 		if ((read_state & 0xF0) == PLS_OFFLINE)
13075 			break;
13076 		if (time_after(jiffies, timeout)) {
13077 			dd_dev_err(ppd->dd,
13078 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
13079 				   read_state, msecs);
13080 			return -ETIMEDOUT;
13081 		}
13082 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13083 	}
13084 
13085 	log_state_transition(ppd, read_state);
13086 	return read_state;
13087 }
13088 
13089 /*
13090  * wait_phys_link_out_of_offline - wait for any out of offline state
13091  * @ppd: port device
13092  * @msecs: the number of milliseconds to wait
13093  *
13094  * Wait up to msecs milliseconds for any out of offline physical link
13095  * state change to occur.
13096  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
13097  */
13098 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
13099 					 int msecs)
13100 {
13101 	u32 read_state;
13102 	unsigned long timeout;
13103 
13104 	timeout = jiffies + msecs_to_jiffies(msecs);
13105 	while (1) {
13106 		read_state = read_physical_state(ppd->dd);
13107 		if ((read_state & 0xF0) != PLS_OFFLINE)
13108 			break;
13109 		if (time_after(jiffies, timeout)) {
13110 			dd_dev_err(ppd->dd,
13111 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
13112 				   read_state, msecs);
13113 			return -ETIMEDOUT;
13114 		}
13115 		usleep_range(1950, 2050); /* sleep 2ms-ish */
13116 	}
13117 
13118 	log_state_transition(ppd, read_state);
13119 	return read_state;
13120 }
13121 
13122 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
13123 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13124 
13125 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
13126 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
13127 
13128 void hfi1_init_ctxt(struct send_context *sc)
13129 {
13130 	if (sc) {
13131 		struct hfi1_devdata *dd = sc->dd;
13132 		u64 reg;
13133 		u8 set = (sc->type == SC_USER ?
13134 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13135 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13136 		reg = read_kctxt_csr(dd, sc->hw_context,
13137 				     SEND_CTXT_CHECK_ENABLE);
13138 		if (set)
13139 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13140 		else
13141 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13142 		write_kctxt_csr(dd, sc->hw_context,
13143 				SEND_CTXT_CHECK_ENABLE, reg);
13144 	}
13145 }
13146 
13147 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13148 {
13149 	int ret = 0;
13150 	u64 reg;
13151 
13152 	if (dd->icode != ICODE_RTL_SILICON) {
13153 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13154 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13155 				    __func__);
13156 		return -EINVAL;
13157 	}
13158 	reg = read_csr(dd, ASIC_STS_THERM);
13159 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13160 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13161 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13162 			ASIC_STS_THERM_LO_TEMP_MASK);
13163 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13164 			ASIC_STS_THERM_HI_TEMP_MASK);
13165 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13166 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13167 	/* triggers is a 3-bit value - 1 bit per trigger. */
13168 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13169 
13170 	return ret;
13171 }
13172 
13173 /* ========================================================================= */
13174 
13175 /**
13176  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13177  * @dd: valid devdata
13178  * @src: IRQ source to determine register index from
13179  * @bits: the bits to set or clear
13180  * @set: true == set the bits, false == clear the bits
13181  *
13182  */
13183 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13184 			   bool set)
13185 {
13186 	u64 reg;
13187 	u16 idx = src / BITS_PER_REGISTER;
13188 	unsigned long flags;
13189 
13190 	spin_lock_irqsave(&dd->irq_src_lock, flags);
13191 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13192 	if (set)
13193 		reg |= bits;
13194 	else
13195 		reg &= ~bits;
13196 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13197 	spin_unlock_irqrestore(&dd->irq_src_lock, flags);
13198 }
13199 
13200 /**
13201  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13202  * @dd: valid devdata
13203  * @first: first IRQ source to set/clear
13204  * @last: last IRQ source (inclusive) to set/clear
13205  * @set: true == set the bits, false == clear the bits
13206  *
13207  * If first == last, set the exact source.
13208  */
13209 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13210 {
13211 	u64 bits = 0;
13212 	u64 bit;
13213 	u16 src;
13214 
13215 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13216 		return -EINVAL;
13217 
13218 	if (last < first)
13219 		return -ERANGE;
13220 
13221 	for (src = first; src <= last; src++) {
13222 		bit = src % BITS_PER_REGISTER;
13223 		/* wrapped to next register? */
13224 		if (!bit && bits) {
13225 			read_mod_write(dd, src - 1, bits, set);
13226 			bits = 0;
13227 		}
13228 		bits |= BIT_ULL(bit);
13229 	}
13230 	read_mod_write(dd, last, bits, set);
13231 
13232 	return 0;
13233 }
13234 
13235 /*
13236  * Clear all interrupt sources on the chip.
13237  */
13238 void clear_all_interrupts(struct hfi1_devdata *dd)
13239 {
13240 	int i;
13241 
13242 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13243 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13244 
13245 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13246 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13247 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13248 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13249 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13250 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13251 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13252 	for (i = 0; i < chip_send_contexts(dd); i++)
13253 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13254 	for (i = 0; i < chip_sdma_engines(dd); i++)
13255 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13256 
13257 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13258 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13259 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13260 }
13261 
13262 /*
13263  * Remap the interrupt source from the general handler to the given MSI-X
13264  * interrupt.
13265  */
13266 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13267 {
13268 	u64 reg;
13269 	int m, n;
13270 
13271 	/* clear from the handled mask of the general interrupt */
13272 	m = isrc / 64;
13273 	n = isrc % 64;
13274 	if (likely(m < CCE_NUM_INT_CSRS)) {
13275 		dd->gi_mask[m] &= ~((u64)1 << n);
13276 	} else {
13277 		dd_dev_err(dd, "remap interrupt err\n");
13278 		return;
13279 	}
13280 
13281 	/* direct the chip source to the given MSI-X interrupt */
13282 	m = isrc / 8;
13283 	n = isrc % 8;
13284 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13285 	reg &= ~((u64)0xff << (8 * n));
13286 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13287 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13288 }
13289 
13290 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13291 {
13292 	/*
13293 	 * SDMA engine interrupt sources grouped by type, rather than
13294 	 * engine.  Per-engine interrupts are as follows:
13295 	 *	SDMA
13296 	 *	SDMAProgress
13297 	 *	SDMAIdle
13298 	 */
13299 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13300 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13301 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13302 }
13303 
13304 /*
13305  * Set the general handler to accept all interrupts, remap all
13306  * chip interrupts back to MSI-X 0.
13307  */
13308 void reset_interrupts(struct hfi1_devdata *dd)
13309 {
13310 	int i;
13311 
13312 	/* all interrupts handled by the general handler */
13313 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13314 		dd->gi_mask[i] = ~(u64)0;
13315 
13316 	/* all chip interrupts map to MSI-X 0 */
13317 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13318 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13319 }
13320 
13321 /**
13322  * set_up_interrupts() - Initialize the IRQ resources and state
13323  * @dd: valid devdata
13324  *
13325  */
13326 static int set_up_interrupts(struct hfi1_devdata *dd)
13327 {
13328 	int ret;
13329 
13330 	/* mask all interrupts */
13331 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13332 
13333 	/* clear all pending interrupts */
13334 	clear_all_interrupts(dd);
13335 
13336 	/* reset general handler mask, chip MSI-X mappings */
13337 	reset_interrupts(dd);
13338 
13339 	/* ask for MSI-X interrupts */
13340 	ret = msix_initialize(dd);
13341 	if (ret)
13342 		return ret;
13343 
13344 	ret = msix_request_irqs(dd);
13345 	if (ret)
13346 		msix_clean_up_interrupts(dd);
13347 
13348 	return ret;
13349 }
13350 
13351 /*
13352  * Set up context values in dd.  Sets:
13353  *
13354  *	num_rcv_contexts - number of contexts being used
13355  *	n_krcv_queues - number of kernel contexts
13356  *	first_dyn_alloc_ctxt - first dynamically allocated context
13357  *                             in array of contexts
13358  *	freectxts  - number of free user contexts
13359  *	num_send_contexts - number of PIO send contexts being used
13360  *	num_netdev_contexts - number of contexts reserved for netdev
13361  */
13362 static int set_up_context_variables(struct hfi1_devdata *dd)
13363 {
13364 	unsigned long num_kernel_contexts;
13365 	u16 num_netdev_contexts;
13366 	int ret;
13367 	unsigned ngroups;
13368 	int rmt_count;
13369 	u32 n_usr_ctxts;
13370 	u32 send_contexts = chip_send_contexts(dd);
13371 	u32 rcv_contexts = chip_rcv_contexts(dd);
13372 
13373 	/*
13374 	 * Kernel receive contexts:
13375 	 * - Context 0 - control context (VL15/multicast/error)
13376 	 * - Context 1 - first kernel context
13377 	 * - Context 2 - second kernel context
13378 	 * ...
13379 	 */
13380 	if (n_krcvqs)
13381 		/*
13382 		 * n_krcvqs is the sum of module parameter kernel receive
13383 		 * contexts, krcvqs[].  It does not include the control
13384 		 * context, so add that.
13385 		 */
13386 		num_kernel_contexts = n_krcvqs + 1;
13387 	else
13388 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13389 	/*
13390 	 * Every kernel receive context needs an ACK send context.
13391 	 * one send context is allocated for each VL{0-7} and VL15
13392 	 */
13393 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13394 		dd_dev_err(dd,
13395 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13396 			   send_contexts - num_vls - 1,
13397 			   num_kernel_contexts);
13398 		num_kernel_contexts = send_contexts - num_vls - 1;
13399 	}
13400 
13401 	/*
13402 	 * User contexts:
13403 	 *	- default to 1 user context per real (non-HT) CPU core if
13404 	 *	  num_user_contexts is negative
13405 	 */
13406 	if (num_user_contexts < 0)
13407 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13408 	else
13409 		n_usr_ctxts = num_user_contexts;
13410 	/*
13411 	 * Adjust the counts given a global max.
13412 	 */
13413 	if (num_kernel_contexts + n_usr_ctxts > rcv_contexts) {
13414 		dd_dev_err(dd,
13415 			   "Reducing # user receive contexts to: %u, from %u\n",
13416 			   (u32)(rcv_contexts - num_kernel_contexts),
13417 			   n_usr_ctxts);
13418 		/* recalculate */
13419 		n_usr_ctxts = rcv_contexts - num_kernel_contexts;
13420 	}
13421 
13422 	num_netdev_contexts =
13423 		hfi1_num_netdev_contexts(dd, rcv_contexts -
13424 					 (num_kernel_contexts + n_usr_ctxts),
13425 					 &node_affinity.real_cpu_mask);
13426 	/*
13427 	 * RMT entries are allocated as follows:
13428 	 * 1. QOS (0 to 128 entries)
13429 	 * 2. FECN (num_kernel_context - 1 [a] + num_user_contexts +
13430 	 *          num_netdev_contexts [b])
13431 	 * 3. netdev (NUM_NETDEV_MAP_ENTRIES)
13432 	 *
13433 	 * Notes:
13434 	 * [a] Kernel contexts (except control) are included in FECN if kernel
13435 	 *     TID_RDMA is active.
13436 	 * [b] Netdev and user contexts are randomly allocated from the same
13437 	 *     context pool, so FECN must cover all contexts in the pool.
13438 	 */
13439 	rmt_count = qos_rmt_entries(num_kernel_contexts - 1, NULL, NULL)
13440 		    + (HFI1_CAP_IS_KSET(TID_RDMA) ? num_kernel_contexts - 1
13441 						  : 0)
13442 		    + n_usr_ctxts
13443 		    + num_netdev_contexts
13444 		    + NUM_NETDEV_MAP_ENTRIES;
13445 	if (rmt_count > NUM_MAP_ENTRIES) {
13446 		int over = rmt_count - NUM_MAP_ENTRIES;
13447 		/* try to squish user contexts, minimum of 1 */
13448 		if (over >= n_usr_ctxts) {
13449 			dd_dev_err(dd, "RMT overflow: reduce the requested number of contexts\n");
13450 			return -EINVAL;
13451 		}
13452 		dd_dev_err(dd, "RMT overflow: reducing # user contexts from %u to %u\n",
13453 			   n_usr_ctxts, n_usr_ctxts - over);
13454 		n_usr_ctxts -= over;
13455 	}
13456 
13457 	/* the first N are kernel contexts, the rest are user/netdev contexts */
13458 	dd->num_rcv_contexts =
13459 		num_kernel_contexts + n_usr_ctxts + num_netdev_contexts;
13460 	dd->n_krcv_queues = num_kernel_contexts;
13461 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13462 	dd->num_netdev_contexts = num_netdev_contexts;
13463 	dd->num_user_contexts = n_usr_ctxts;
13464 	dd->freectxts = n_usr_ctxts;
13465 	dd_dev_info(dd,
13466 		    "rcv contexts: chip %d, used %d (kernel %d, netdev %u, user %u)\n",
13467 		    rcv_contexts,
13468 		    (int)dd->num_rcv_contexts,
13469 		    (int)dd->n_krcv_queues,
13470 		    dd->num_netdev_contexts,
13471 		    dd->num_user_contexts);
13472 
13473 	/*
13474 	 * Receive array allocation:
13475 	 *   All RcvArray entries are divided into groups of 8. This
13476 	 *   is required by the hardware and will speed up writes to
13477 	 *   consecutive entries by using write-combining of the entire
13478 	 *   cacheline.
13479 	 *
13480 	 *   The number of groups are evenly divided among all contexts.
13481 	 *   any left over groups will be given to the first N user
13482 	 *   contexts.
13483 	 */
13484 	dd->rcv_entries.group_size = RCV_INCREMENT;
13485 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13486 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13487 	dd->rcv_entries.nctxt_extra = ngroups -
13488 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13489 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13490 		    dd->rcv_entries.ngroups,
13491 		    dd->rcv_entries.nctxt_extra);
13492 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13493 	    MAX_EAGER_ENTRIES * 2) {
13494 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13495 			dd->rcv_entries.group_size;
13496 		dd_dev_info(dd,
13497 			    "RcvArray group count too high, change to %u\n",
13498 			    dd->rcv_entries.ngroups);
13499 		dd->rcv_entries.nctxt_extra = 0;
13500 	}
13501 	/*
13502 	 * PIO send contexts
13503 	 */
13504 	ret = init_sc_pools_and_sizes(dd);
13505 	if (ret >= 0) {	/* success */
13506 		dd->num_send_contexts = ret;
13507 		dd_dev_info(
13508 			dd,
13509 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13510 			send_contexts,
13511 			dd->num_send_contexts,
13512 			dd->sc_sizes[SC_KERNEL].count,
13513 			dd->sc_sizes[SC_ACK].count,
13514 			dd->sc_sizes[SC_USER].count,
13515 			dd->sc_sizes[SC_VL15].count);
13516 		ret = 0;	/* success */
13517 	}
13518 
13519 	return ret;
13520 }
13521 
13522 /*
13523  * Set the device/port partition key table. The MAD code
13524  * will ensure that, at least, the partial management
13525  * partition key is present in the table.
13526  */
13527 static void set_partition_keys(struct hfi1_pportdata *ppd)
13528 {
13529 	struct hfi1_devdata *dd = ppd->dd;
13530 	u64 reg = 0;
13531 	int i;
13532 
13533 	dd_dev_info(dd, "Setting partition keys\n");
13534 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13535 		reg |= (ppd->pkeys[i] &
13536 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13537 			((i % 4) *
13538 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13539 		/* Each register holds 4 PKey values. */
13540 		if ((i % 4) == 3) {
13541 			write_csr(dd, RCV_PARTITION_KEY +
13542 				  ((i - 3) * 2), reg);
13543 			reg = 0;
13544 		}
13545 	}
13546 
13547 	/* Always enable HW pkeys check when pkeys table is set */
13548 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13549 }
13550 
13551 /*
13552  * These CSRs and memories are uninitialized on reset and must be
13553  * written before reading to set the ECC/parity bits.
13554  *
13555  * NOTE: All user context CSRs that are not mmaped write-only
13556  * (e.g. the TID flows) must be initialized even if the driver never
13557  * reads them.
13558  */
13559 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13560 {
13561 	int i, j;
13562 
13563 	/* CceIntMap */
13564 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13565 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13566 
13567 	/* SendCtxtCreditReturnAddr */
13568 	for (i = 0; i < chip_send_contexts(dd); i++)
13569 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13570 
13571 	/* PIO Send buffers */
13572 	/* SDMA Send buffers */
13573 	/*
13574 	 * These are not normally read, and (presently) have no method
13575 	 * to be read, so are not pre-initialized
13576 	 */
13577 
13578 	/* RcvHdrAddr */
13579 	/* RcvHdrTailAddr */
13580 	/* RcvTidFlowTable */
13581 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13582 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13583 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13584 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13585 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13586 	}
13587 
13588 	/* RcvArray */
13589 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13590 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13591 
13592 	/* RcvQPMapTable */
13593 	for (i = 0; i < 32; i++)
13594 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13595 }
13596 
13597 /*
13598  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13599  */
13600 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13601 			     u64 ctrl_bits)
13602 {
13603 	unsigned long timeout;
13604 	u64 reg;
13605 
13606 	/* is the condition present? */
13607 	reg = read_csr(dd, CCE_STATUS);
13608 	if ((reg & status_bits) == 0)
13609 		return;
13610 
13611 	/* clear the condition */
13612 	write_csr(dd, CCE_CTRL, ctrl_bits);
13613 
13614 	/* wait for the condition to clear */
13615 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13616 	while (1) {
13617 		reg = read_csr(dd, CCE_STATUS);
13618 		if ((reg & status_bits) == 0)
13619 			return;
13620 		if (time_after(jiffies, timeout)) {
13621 			dd_dev_err(dd,
13622 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13623 				   status_bits, reg & status_bits);
13624 			return;
13625 		}
13626 		udelay(1);
13627 	}
13628 }
13629 
13630 /* set CCE CSRs to chip reset defaults */
13631 static void reset_cce_csrs(struct hfi1_devdata *dd)
13632 {
13633 	int i;
13634 
13635 	/* CCE_REVISION read-only */
13636 	/* CCE_REVISION2 read-only */
13637 	/* CCE_CTRL - bits clear automatically */
13638 	/* CCE_STATUS read-only, use CceCtrl to clear */
13639 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13640 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13641 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13642 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13643 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13644 	/* CCE_ERR_STATUS read-only */
13645 	write_csr(dd, CCE_ERR_MASK, 0);
13646 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13647 	/* CCE_ERR_FORCE leave alone */
13648 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13649 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13650 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13651 	/* CCE_PCIE_CTRL leave alone */
13652 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13653 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13654 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13655 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13656 	}
13657 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13658 		/* CCE_MSIX_PBA read-only */
13659 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13660 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13661 	}
13662 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13663 		write_csr(dd, CCE_INT_MAP, 0);
13664 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13665 		/* CCE_INT_STATUS read-only */
13666 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13667 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13668 		/* CCE_INT_FORCE leave alone */
13669 		/* CCE_INT_BLOCKED read-only */
13670 	}
13671 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13672 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13673 }
13674 
13675 /* set MISC CSRs to chip reset defaults */
13676 static void reset_misc_csrs(struct hfi1_devdata *dd)
13677 {
13678 	int i;
13679 
13680 	for (i = 0; i < 32; i++) {
13681 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13682 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13683 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13684 	}
13685 	/*
13686 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13687 	 * only be written 128-byte chunks
13688 	 */
13689 	/* init RSA engine to clear lingering errors */
13690 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13691 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13692 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13693 	/* MISC_STS_8051_DIGEST read-only */
13694 	/* MISC_STS_SBM_DIGEST read-only */
13695 	/* MISC_STS_PCIE_DIGEST read-only */
13696 	/* MISC_STS_FAB_DIGEST read-only */
13697 	/* MISC_ERR_STATUS read-only */
13698 	write_csr(dd, MISC_ERR_MASK, 0);
13699 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13700 	/* MISC_ERR_FORCE leave alone */
13701 }
13702 
13703 /* set TXE CSRs to chip reset defaults */
13704 static void reset_txe_csrs(struct hfi1_devdata *dd)
13705 {
13706 	int i;
13707 
13708 	/*
13709 	 * TXE Kernel CSRs
13710 	 */
13711 	write_csr(dd, SEND_CTRL, 0);
13712 	__cm_reset(dd, 0);	/* reset CM internal state */
13713 	/* SEND_CONTEXTS read-only */
13714 	/* SEND_DMA_ENGINES read-only */
13715 	/* SEND_PIO_MEM_SIZE read-only */
13716 	/* SEND_DMA_MEM_SIZE read-only */
13717 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13718 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13719 	/* SEND_PIO_ERR_STATUS read-only */
13720 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13721 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13722 	/* SEND_PIO_ERR_FORCE leave alone */
13723 	/* SEND_DMA_ERR_STATUS read-only */
13724 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13725 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13726 	/* SEND_DMA_ERR_FORCE leave alone */
13727 	/* SEND_EGRESS_ERR_STATUS read-only */
13728 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13729 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13730 	/* SEND_EGRESS_ERR_FORCE leave alone */
13731 	write_csr(dd, SEND_BTH_QP, 0);
13732 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13733 	write_csr(dd, SEND_SC2VLT0, 0);
13734 	write_csr(dd, SEND_SC2VLT1, 0);
13735 	write_csr(dd, SEND_SC2VLT2, 0);
13736 	write_csr(dd, SEND_SC2VLT3, 0);
13737 	write_csr(dd, SEND_LEN_CHECK0, 0);
13738 	write_csr(dd, SEND_LEN_CHECK1, 0);
13739 	/* SEND_ERR_STATUS read-only */
13740 	write_csr(dd, SEND_ERR_MASK, 0);
13741 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13742 	/* SEND_ERR_FORCE read-only */
13743 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13744 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13745 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13746 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13747 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13748 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13749 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13750 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13751 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13752 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13753 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13754 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13755 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13756 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13757 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13758 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13759 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13760 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13761 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13762 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13763 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13764 	/* SEND_CM_CREDIT_USED_VL read-only */
13765 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13766 	/* SEND_EGRESS_CTXT_STATUS read-only */
13767 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13768 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13769 	/* SEND_EGRESS_ERR_INFO read-only */
13770 	/* SEND_EGRESS_ERR_SOURCE read-only */
13771 
13772 	/*
13773 	 * TXE Per-Context CSRs
13774 	 */
13775 	for (i = 0; i < chip_send_contexts(dd); i++) {
13776 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13777 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13778 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13779 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13780 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13781 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13782 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13783 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13784 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13785 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13786 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13787 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13788 	}
13789 
13790 	/*
13791 	 * TXE Per-SDMA CSRs
13792 	 */
13793 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13794 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13795 		/* SEND_DMA_STATUS read-only */
13796 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13797 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13798 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13799 		/* SEND_DMA_HEAD read-only */
13800 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13801 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13802 		/* SEND_DMA_IDLE_CNT read-only */
13803 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13804 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13805 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13806 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13807 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13808 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13809 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13810 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13811 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13812 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13813 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13814 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13815 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13816 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13817 	}
13818 }
13819 
13820 /*
13821  * Expect on entry:
13822  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13823  */
13824 static void init_rbufs(struct hfi1_devdata *dd)
13825 {
13826 	u64 reg;
13827 	int count;
13828 
13829 	/*
13830 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13831 	 * clear.
13832 	 */
13833 	count = 0;
13834 	while (1) {
13835 		reg = read_csr(dd, RCV_STATUS);
13836 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13837 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13838 			break;
13839 		/*
13840 		 * Give up after 1ms - maximum wait time.
13841 		 *
13842 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13843 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13844 		 *	136 KB / (66% * 250MB/s) = 844us
13845 		 */
13846 		if (count++ > 500) {
13847 			dd_dev_err(dd,
13848 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13849 				   __func__, reg);
13850 			break;
13851 		}
13852 		udelay(2); /* do not busy-wait the CSR */
13853 	}
13854 
13855 	/* start the init - expect RcvCtrl to be 0 */
13856 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13857 
13858 	/*
13859 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13860 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13861 	 * The delay in the first run through the loop below is sufficient and
13862 	 * required before the first read of RcvStatus.RxRbufInintDone.
13863 	 */
13864 	read_csr(dd, RCV_CTRL);
13865 
13866 	/* wait for the init to finish */
13867 	count = 0;
13868 	while (1) {
13869 		/* delay is required first time through - see above */
13870 		udelay(2); /* do not busy-wait the CSR */
13871 		reg = read_csr(dd, RCV_STATUS);
13872 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13873 			break;
13874 
13875 		/* give up after 100us - slowest possible at 33MHz is 73us */
13876 		if (count++ > 50) {
13877 			dd_dev_err(dd,
13878 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13879 				   __func__);
13880 			break;
13881 		}
13882 	}
13883 }
13884 
13885 /* set RXE CSRs to chip reset defaults */
13886 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13887 {
13888 	int i, j;
13889 
13890 	/*
13891 	 * RXE Kernel CSRs
13892 	 */
13893 	write_csr(dd, RCV_CTRL, 0);
13894 	init_rbufs(dd);
13895 	/* RCV_STATUS read-only */
13896 	/* RCV_CONTEXTS read-only */
13897 	/* RCV_ARRAY_CNT read-only */
13898 	/* RCV_BUF_SIZE read-only */
13899 	write_csr(dd, RCV_BTH_QP, 0);
13900 	write_csr(dd, RCV_MULTICAST, 0);
13901 	write_csr(dd, RCV_BYPASS, 0);
13902 	write_csr(dd, RCV_VL15, 0);
13903 	/* this is a clear-down */
13904 	write_csr(dd, RCV_ERR_INFO,
13905 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13906 	/* RCV_ERR_STATUS read-only */
13907 	write_csr(dd, RCV_ERR_MASK, 0);
13908 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13909 	/* RCV_ERR_FORCE leave alone */
13910 	for (i = 0; i < 32; i++)
13911 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13912 	for (i = 0; i < 4; i++)
13913 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13914 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13915 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13916 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13917 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13918 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13919 		clear_rsm_rule(dd, i);
13920 	for (i = 0; i < 32; i++)
13921 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13922 
13923 	/*
13924 	 * RXE Kernel and User Per-Context CSRs
13925 	 */
13926 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13927 		/* kernel */
13928 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13929 		/* RCV_CTXT_STATUS read-only */
13930 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13931 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13932 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13933 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13934 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13935 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13936 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13937 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13938 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13939 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13940 
13941 		/* user */
13942 		/* RCV_HDR_TAIL read-only */
13943 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13944 		/* RCV_EGR_INDEX_TAIL read-only */
13945 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13946 		/* RCV_EGR_OFFSET_TAIL read-only */
13947 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13948 			write_uctxt_csr(dd, i,
13949 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13950 		}
13951 	}
13952 }
13953 
13954 /*
13955  * Set sc2vl tables.
13956  *
13957  * They power on to zeros, so to avoid send context errors
13958  * they need to be set:
13959  *
13960  * SC 0-7 -> VL 0-7 (respectively)
13961  * SC 15  -> VL 15
13962  * otherwise
13963  *        -> VL 0
13964  */
13965 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13966 {
13967 	int i;
13968 	/* init per architecture spec, constrained by hardware capability */
13969 
13970 	/* HFI maps sent packets */
13971 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13972 		0,
13973 		0, 0, 1, 1,
13974 		2, 2, 3, 3,
13975 		4, 4, 5, 5,
13976 		6, 6, 7, 7));
13977 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13978 		1,
13979 		8, 0, 9, 0,
13980 		10, 0, 11, 0,
13981 		12, 0, 13, 0,
13982 		14, 0, 15, 15));
13983 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13984 		2,
13985 		16, 0, 17, 0,
13986 		18, 0, 19, 0,
13987 		20, 0, 21, 0,
13988 		22, 0, 23, 0));
13989 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13990 		3,
13991 		24, 0, 25, 0,
13992 		26, 0, 27, 0,
13993 		28, 0, 29, 0,
13994 		30, 0, 31, 0));
13995 
13996 	/* DC maps received packets */
13997 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13998 		15_0,
13999 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14000 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14001 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14002 		31_16,
14003 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14004 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14005 
14006 	/* initialize the cached sc2vl values consistently with h/w */
14007 	for (i = 0; i < 32; i++) {
14008 		if (i < 8 || i == 15)
14009 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14010 		else
14011 			*((u8 *)(dd->sc2vl) + i) = 0;
14012 	}
14013 }
14014 
14015 /*
14016  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14017  * depend on the chip going through a power-on reset - a driver may be loaded
14018  * and unloaded many times.
14019  *
14020  * Do not write any CSR values to the chip in this routine - there may be
14021  * a reset following the (possible) FLR in this routine.
14022  *
14023  */
14024 static int init_chip(struct hfi1_devdata *dd)
14025 {
14026 	int i;
14027 	int ret = 0;
14028 
14029 	/*
14030 	 * Put the HFI CSRs in a known state.
14031 	 * Combine this with a DC reset.
14032 	 *
14033 	 * Stop the device from doing anything while we do a
14034 	 * reset.  We know there are no other active users of
14035 	 * the device since we are now in charge.  Turn off
14036 	 * off all outbound and inbound traffic and make sure
14037 	 * the device does not generate any interrupts.
14038 	 */
14039 
14040 	/* disable send contexts and SDMA engines */
14041 	write_csr(dd, SEND_CTRL, 0);
14042 	for (i = 0; i < chip_send_contexts(dd); i++)
14043 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14044 	for (i = 0; i < chip_sdma_engines(dd); i++)
14045 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14046 	/* disable port (turn off RXE inbound traffic) and contexts */
14047 	write_csr(dd, RCV_CTRL, 0);
14048 	for (i = 0; i < chip_rcv_contexts(dd); i++)
14049 		write_csr(dd, RCV_CTXT_CTRL, 0);
14050 	/* mask all interrupt sources */
14051 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14052 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14053 
14054 	/*
14055 	 * DC Reset: do a full DC reset before the register clear.
14056 	 * A recommended length of time to hold is one CSR read,
14057 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14058 	 * across the clear.
14059 	 */
14060 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14061 	(void)read_csr(dd, CCE_DC_CTRL);
14062 
14063 	if (use_flr) {
14064 		/*
14065 		 * A FLR will reset the SPC core and part of the PCIe.
14066 		 * The parts that need to be restored have already been
14067 		 * saved.
14068 		 */
14069 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14070 
14071 		/* do the FLR, the DC reset will remain */
14072 		pcie_flr(dd->pcidev);
14073 
14074 		/* restore command and BARs */
14075 		ret = restore_pci_variables(dd);
14076 		if (ret) {
14077 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14078 				   __func__);
14079 			return ret;
14080 		}
14081 
14082 		if (is_ax(dd)) {
14083 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14084 			pcie_flr(dd->pcidev);
14085 			ret = restore_pci_variables(dd);
14086 			if (ret) {
14087 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14088 					   __func__);
14089 				return ret;
14090 			}
14091 		}
14092 	} else {
14093 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14094 		reset_cce_csrs(dd);
14095 		reset_txe_csrs(dd);
14096 		reset_rxe_csrs(dd);
14097 		reset_misc_csrs(dd);
14098 	}
14099 	/* clear the DC reset */
14100 	write_csr(dd, CCE_DC_CTRL, 0);
14101 
14102 	/* Set the LED off */
14103 	setextled(dd, 0);
14104 
14105 	/*
14106 	 * Clear the QSFP reset.
14107 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14108 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14109 	 * anything plugged constantly in reset, if it pays attention
14110 	 * to RESET_N.
14111 	 * Prime examples of this are optical cables. Set all pins high.
14112 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14113 	 * MODPRS_N are input only and their value is ignored.
14114 	 */
14115 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14116 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14117 	init_chip_resources(dd);
14118 	return ret;
14119 }
14120 
14121 static void init_early_variables(struct hfi1_devdata *dd)
14122 {
14123 	int i;
14124 
14125 	/* assign link credit variables */
14126 	dd->vau = CM_VAU;
14127 	dd->link_credits = CM_GLOBAL_CREDITS;
14128 	if (is_ax(dd))
14129 		dd->link_credits--;
14130 	dd->vcu = cu_to_vcu(hfi1_cu);
14131 	/* enough room for 8 MAD packets plus header - 17K */
14132 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14133 	if (dd->vl15_init > dd->link_credits)
14134 		dd->vl15_init = dd->link_credits;
14135 
14136 	write_uninitialized_csrs_and_memories(dd);
14137 
14138 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14139 		for (i = 0; i < dd->num_pports; i++) {
14140 			struct hfi1_pportdata *ppd = &dd->pport[i];
14141 
14142 			set_partition_keys(ppd);
14143 		}
14144 	init_sc2vl_tables(dd);
14145 }
14146 
14147 static void init_kdeth_qp(struct hfi1_devdata *dd)
14148 {
14149 	write_csr(dd, SEND_BTH_QP,
14150 		  (RVT_KDETH_QP_PREFIX & SEND_BTH_QP_KDETH_QP_MASK) <<
14151 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14152 
14153 	write_csr(dd, RCV_BTH_QP,
14154 		  (RVT_KDETH_QP_PREFIX & RCV_BTH_QP_KDETH_QP_MASK) <<
14155 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14156 }
14157 
14158 /**
14159  * hfi1_get_qp_map - get qp map
14160  * @dd: device data
14161  * @idx: index to read
14162  */
14163 u8 hfi1_get_qp_map(struct hfi1_devdata *dd, u8 idx)
14164 {
14165 	u64 reg = read_csr(dd, RCV_QP_MAP_TABLE + (idx / 8) * 8);
14166 
14167 	reg >>= (idx % 8) * 8;
14168 	return reg;
14169 }
14170 
14171 /**
14172  * init_qpmap_table - init qp map
14173  * @dd: device data
14174  * @first_ctxt: first context
14175  * @last_ctxt: first context
14176  *
14177  * This return sets the qpn mapping table that
14178  * is indexed by qpn[8:1].
14179  *
14180  * The routine will round robin the 256 settings
14181  * from first_ctxt to last_ctxt.
14182  *
14183  * The first/last looks ahead to having specialized
14184  * receive contexts for mgmt and bypass.  Normal
14185  * verbs traffic will assumed to be on a range
14186  * of receive contexts.
14187  */
14188 static void init_qpmap_table(struct hfi1_devdata *dd,
14189 			     u32 first_ctxt,
14190 			     u32 last_ctxt)
14191 {
14192 	u64 reg = 0;
14193 	u64 regno = RCV_QP_MAP_TABLE;
14194 	int i;
14195 	u64 ctxt = first_ctxt;
14196 
14197 	for (i = 0; i < 256; i++) {
14198 		reg |= ctxt << (8 * (i % 8));
14199 		ctxt++;
14200 		if (ctxt > last_ctxt)
14201 			ctxt = first_ctxt;
14202 		if (i % 8 == 7) {
14203 			write_csr(dd, regno, reg);
14204 			reg = 0;
14205 			regno += 8;
14206 		}
14207 	}
14208 
14209 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14210 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14211 }
14212 
14213 struct rsm_map_table {
14214 	u64 map[NUM_MAP_REGS];
14215 	unsigned int used;
14216 };
14217 
14218 struct rsm_rule_data {
14219 	u8 offset;
14220 	u8 pkt_type;
14221 	u32 field1_off;
14222 	u32 field2_off;
14223 	u32 index1_off;
14224 	u32 index1_width;
14225 	u32 index2_off;
14226 	u32 index2_width;
14227 	u32 mask1;
14228 	u32 value1;
14229 	u32 mask2;
14230 	u32 value2;
14231 };
14232 
14233 /*
14234  * Return an initialized RMT map table for users to fill in.  OK if it
14235  * returns NULL, indicating no table.
14236  */
14237 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14238 {
14239 	struct rsm_map_table *rmt;
14240 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14241 
14242 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14243 	if (rmt) {
14244 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14245 		rmt->used = 0;
14246 	}
14247 
14248 	return rmt;
14249 }
14250 
14251 /*
14252  * Write the final RMT map table to the chip and free the table.  OK if
14253  * table is NULL.
14254  */
14255 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14256 				   struct rsm_map_table *rmt)
14257 {
14258 	int i;
14259 
14260 	if (rmt) {
14261 		/* write table to chip */
14262 		for (i = 0; i < NUM_MAP_REGS; i++)
14263 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14264 
14265 		/* enable RSM */
14266 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14267 	}
14268 }
14269 
14270 /* Is a receive side mapping rule */
14271 static bool has_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14272 {
14273 	return read_csr(dd, RCV_RSM_CFG + (8 * rule_index)) != 0;
14274 }
14275 
14276 /*
14277  * Add a receive side mapping rule.
14278  */
14279 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14280 			 struct rsm_rule_data *rrd)
14281 {
14282 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14283 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14284 		  1ull << rule_index | /* enable bit */
14285 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14286 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14287 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14288 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14289 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14290 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14291 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14292 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14293 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14294 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14295 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14296 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14297 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14298 }
14299 
14300 /*
14301  * Clear a receive side mapping rule.
14302  */
14303 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14304 {
14305 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14306 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14307 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14308 }
14309 
14310 /* return the number of RSM map table entries that will be used for QOS */
14311 static int qos_rmt_entries(unsigned int n_krcv_queues, unsigned int *mp,
14312 			   unsigned int *np)
14313 {
14314 	int i;
14315 	unsigned int m, n;
14316 	uint max_by_vl = 0;
14317 
14318 	/* is QOS active at all? */
14319 	if (n_krcv_queues < MIN_KERNEL_KCTXTS ||
14320 	    num_vls == 1 ||
14321 	    krcvqsset <= 1)
14322 		goto no_qos;
14323 
14324 	/* determine bits for qpn */
14325 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14326 		if (krcvqs[i] > max_by_vl)
14327 			max_by_vl = krcvqs[i];
14328 	if (max_by_vl > 32)
14329 		goto no_qos;
14330 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14331 
14332 	/* determine bits for vl */
14333 	n = ilog2(__roundup_pow_of_two(num_vls));
14334 
14335 	/* reject if too much is used */
14336 	if ((m + n) > 7)
14337 		goto no_qos;
14338 
14339 	if (mp)
14340 		*mp = m;
14341 	if (np)
14342 		*np = n;
14343 
14344 	return 1 << (m + n);
14345 
14346 no_qos:
14347 	if (mp)
14348 		*mp = 0;
14349 	if (np)
14350 		*np = 0;
14351 	return 0;
14352 }
14353 
14354 /**
14355  * init_qos - init RX qos
14356  * @dd: device data
14357  * @rmt: RSM map table
14358  *
14359  * This routine initializes Rule 0 and the RSM map table to implement
14360  * quality of service (qos).
14361  *
14362  * If all of the limit tests succeed, qos is applied based on the array
14363  * interpretation of krcvqs where entry 0 is VL0.
14364  *
14365  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14366  * feed both the RSM map table and the single rule.
14367  */
14368 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14369 {
14370 	struct rsm_rule_data rrd;
14371 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14372 	unsigned int rmt_entries;
14373 	u64 reg;
14374 
14375 	if (!rmt)
14376 		goto bail;
14377 	rmt_entries = qos_rmt_entries(dd->n_krcv_queues - 1, &m, &n);
14378 	if (rmt_entries == 0)
14379 		goto bail;
14380 	qpns_per_vl = 1 << m;
14381 
14382 	/* enough room in the map table? */
14383 	rmt_entries = 1 << (m + n);
14384 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14385 		goto bail;
14386 
14387 	/* add qos entries to the RSM map table */
14388 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14389 		unsigned tctxt;
14390 
14391 		for (qpn = 0, tctxt = ctxt;
14392 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14393 			unsigned idx, regoff, regidx;
14394 
14395 			/* generate the index the hardware will produce */
14396 			idx = rmt->used + ((qpn << n) ^ i);
14397 			regoff = (idx % 8) * 8;
14398 			regidx = idx / 8;
14399 			/* replace default with context number */
14400 			reg = rmt->map[regidx];
14401 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14402 				<< regoff);
14403 			reg |= (u64)(tctxt++) << regoff;
14404 			rmt->map[regidx] = reg;
14405 			if (tctxt == ctxt + krcvqs[i])
14406 				tctxt = ctxt;
14407 		}
14408 		ctxt += krcvqs[i];
14409 	}
14410 
14411 	rrd.offset = rmt->used;
14412 	rrd.pkt_type = 2;
14413 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14414 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14415 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14416 	rrd.index1_width = n;
14417 	rrd.index2_off = QPN_SELECT_OFFSET;
14418 	rrd.index2_width = m + n;
14419 	rrd.mask1 = LRH_BTH_MASK;
14420 	rrd.value1 = LRH_BTH_VALUE;
14421 	rrd.mask2 = LRH_SC_MASK;
14422 	rrd.value2 = LRH_SC_VALUE;
14423 
14424 	/* add rule 0 */
14425 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14426 
14427 	/* mark RSM map entries as used */
14428 	rmt->used += rmt_entries;
14429 	/* map everything else to the mcast/err/vl15 context */
14430 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14431 	dd->qos_shift = n + 1;
14432 	return;
14433 bail:
14434 	dd->qos_shift = 1;
14435 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14436 }
14437 
14438 static void init_fecn_handling(struct hfi1_devdata *dd,
14439 			       struct rsm_map_table *rmt)
14440 {
14441 	struct rsm_rule_data rrd;
14442 	u64 reg;
14443 	int i, idx, regoff, regidx, start;
14444 	u8 offset;
14445 	u32 total_cnt;
14446 
14447 	if (HFI1_CAP_IS_KSET(TID_RDMA))
14448 		/* Exclude context 0 */
14449 		start = 1;
14450 	else
14451 		start = dd->first_dyn_alloc_ctxt;
14452 
14453 	total_cnt = dd->num_rcv_contexts - start;
14454 
14455 	/* there needs to be enough room in the map table */
14456 	if (rmt->used + total_cnt >= NUM_MAP_ENTRIES) {
14457 		dd_dev_err(dd, "FECN handling disabled - too many contexts allocated\n");
14458 		return;
14459 	}
14460 
14461 	/*
14462 	 * RSM will extract the destination context as an index into the
14463 	 * map table.  The destination contexts are a sequential block
14464 	 * in the range start...num_rcv_contexts-1 (inclusive).
14465 	 * Map entries are accessed as offset + extracted value.  Adjust
14466 	 * the added offset so this sequence can be placed anywhere in
14467 	 * the table - as long as the entries themselves do not wrap.
14468 	 * There are only enough bits in offset for the table size, so
14469 	 * start with that to allow for a "negative" offset.
14470 	 */
14471 	offset = (u8)(NUM_MAP_ENTRIES + rmt->used - start);
14472 
14473 	for (i = start, idx = rmt->used; i < dd->num_rcv_contexts;
14474 	     i++, idx++) {
14475 		/* replace with identity mapping */
14476 		regoff = (idx % 8) * 8;
14477 		regidx = idx / 8;
14478 		reg = rmt->map[regidx];
14479 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14480 		reg |= (u64)i << regoff;
14481 		rmt->map[regidx] = reg;
14482 	}
14483 
14484 	/*
14485 	 * For RSM intercept of Expected FECN packets:
14486 	 * o packet type 0 - expected
14487 	 * o match on F (bit 95), using select/match 1, and
14488 	 * o match on SH (bit 133), using select/match 2.
14489 	 *
14490 	 * Use index 1 to extract the 8-bit receive context from DestQP
14491 	 * (start at bit 64).  Use that as the RSM map table index.
14492 	 */
14493 	rrd.offset = offset;
14494 	rrd.pkt_type = 0;
14495 	rrd.field1_off = 95;
14496 	rrd.field2_off = 133;
14497 	rrd.index1_off = 64;
14498 	rrd.index1_width = 8;
14499 	rrd.index2_off = 0;
14500 	rrd.index2_width = 0;
14501 	rrd.mask1 = 1;
14502 	rrd.value1 = 1;
14503 	rrd.mask2 = 1;
14504 	rrd.value2 = 1;
14505 
14506 	/* add rule 1 */
14507 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14508 
14509 	rmt->used += total_cnt;
14510 }
14511 
14512 static inline bool hfi1_is_rmt_full(int start, int spare)
14513 {
14514 	return (start + spare) > NUM_MAP_ENTRIES;
14515 }
14516 
14517 static bool hfi1_netdev_update_rmt(struct hfi1_devdata *dd)
14518 {
14519 	u8 i, j;
14520 	u8 ctx_id = 0;
14521 	u64 reg;
14522 	u32 regoff;
14523 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14524 	int ctxt_count = hfi1_netdev_ctxt_count(dd);
14525 
14526 	/* We already have contexts mapped in RMT */
14527 	if (has_rsm_rule(dd, RSM_INS_VNIC) || has_rsm_rule(dd, RSM_INS_AIP)) {
14528 		dd_dev_info(dd, "Contexts are already mapped in RMT\n");
14529 		return true;
14530 	}
14531 
14532 	if (hfi1_is_rmt_full(rmt_start, NUM_NETDEV_MAP_ENTRIES)) {
14533 		dd_dev_err(dd, "Not enough RMT entries used = %d\n",
14534 			   rmt_start);
14535 		return false;
14536 	}
14537 
14538 	dev_dbg(&(dd)->pcidev->dev, "RMT start = %d, end %d\n",
14539 		rmt_start,
14540 		rmt_start + NUM_NETDEV_MAP_ENTRIES);
14541 
14542 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14543 	regoff = RCV_RSM_MAP_TABLE + (rmt_start / 8) * 8;
14544 	reg = read_csr(dd, regoff);
14545 	for (i = 0; i < NUM_NETDEV_MAP_ENTRIES; i++) {
14546 		/* Update map register with netdev context */
14547 		j = (rmt_start + i) % 8;
14548 		reg &= ~(0xffllu << (j * 8));
14549 		reg |= (u64)hfi1_netdev_get_ctxt(dd, ctx_id++)->ctxt << (j * 8);
14550 		/* Wrap up netdev ctx index */
14551 		ctx_id %= ctxt_count;
14552 		/* Write back map register */
14553 		if (j == 7 || ((i + 1) == NUM_NETDEV_MAP_ENTRIES)) {
14554 			dev_dbg(&(dd)->pcidev->dev,
14555 				"RMT[%d] =0x%llx\n",
14556 				regoff - RCV_RSM_MAP_TABLE, reg);
14557 
14558 			write_csr(dd, regoff, reg);
14559 			regoff += 8;
14560 			if (i < (NUM_NETDEV_MAP_ENTRIES - 1))
14561 				reg = read_csr(dd, regoff);
14562 		}
14563 	}
14564 
14565 	return true;
14566 }
14567 
14568 static void hfi1_enable_rsm_rule(struct hfi1_devdata *dd,
14569 				 int rule, struct rsm_rule_data *rrd)
14570 {
14571 	if (!hfi1_netdev_update_rmt(dd)) {
14572 		dd_dev_err(dd, "Failed to update RMT for RSM%d rule\n", rule);
14573 		return;
14574 	}
14575 
14576 	add_rsm_rule(dd, rule, rrd);
14577 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14578 }
14579 
14580 void hfi1_init_aip_rsm(struct hfi1_devdata *dd)
14581 {
14582 	/*
14583 	 * go through with the initialisation only if this rule actually doesn't
14584 	 * exist yet
14585 	 */
14586 	if (atomic_fetch_inc(&dd->ipoib_rsm_usr_num) == 0) {
14587 		int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14588 		struct rsm_rule_data rrd = {
14589 			.offset = rmt_start,
14590 			.pkt_type = IB_PACKET_TYPE,
14591 			.field1_off = LRH_BTH_MATCH_OFFSET,
14592 			.mask1 = LRH_BTH_MASK,
14593 			.value1 = LRH_BTH_VALUE,
14594 			.field2_off = BTH_DESTQP_MATCH_OFFSET,
14595 			.mask2 = BTH_DESTQP_MASK,
14596 			.value2 = BTH_DESTQP_VALUE,
14597 			.index1_off = DETH_AIP_SQPN_SELECT_OFFSET +
14598 					ilog2(NUM_NETDEV_MAP_ENTRIES),
14599 			.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14600 			.index2_off = DETH_AIP_SQPN_SELECT_OFFSET,
14601 			.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14602 		};
14603 
14604 		hfi1_enable_rsm_rule(dd, RSM_INS_AIP, &rrd);
14605 	}
14606 }
14607 
14608 /* Initialize RSM for VNIC */
14609 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14610 {
14611 	int rmt_start = hfi1_netdev_get_free_rmt_idx(dd);
14612 	struct rsm_rule_data rrd = {
14613 		/* Add rule for vnic */
14614 		.offset = rmt_start,
14615 		.pkt_type = 4,
14616 		/* Match 16B packets */
14617 		.field1_off = L2_TYPE_MATCH_OFFSET,
14618 		.mask1 = L2_TYPE_MASK,
14619 		.value1 = L2_16B_VALUE,
14620 		/* Match ETH L4 packets */
14621 		.field2_off = L4_TYPE_MATCH_OFFSET,
14622 		.mask2 = L4_16B_TYPE_MASK,
14623 		.value2 = L4_16B_ETH_VALUE,
14624 		/* Calc context from veswid and entropy */
14625 		.index1_off = L4_16B_HDR_VESWID_OFFSET,
14626 		.index1_width = ilog2(NUM_NETDEV_MAP_ENTRIES),
14627 		.index2_off = L2_16B_ENTROPY_OFFSET,
14628 		.index2_width = ilog2(NUM_NETDEV_MAP_ENTRIES)
14629 	};
14630 
14631 	hfi1_enable_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14632 }
14633 
14634 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14635 {
14636 	clear_rsm_rule(dd, RSM_INS_VNIC);
14637 }
14638 
14639 void hfi1_deinit_aip_rsm(struct hfi1_devdata *dd)
14640 {
14641 	/* only actually clear the rule if it's the last user asking to do so */
14642 	if (atomic_fetch_add_unless(&dd->ipoib_rsm_usr_num, -1, 0) == 1)
14643 		clear_rsm_rule(dd, RSM_INS_AIP);
14644 }
14645 
14646 static int init_rxe(struct hfi1_devdata *dd)
14647 {
14648 	struct rsm_map_table *rmt;
14649 	u64 val;
14650 
14651 	/* enable all receive errors */
14652 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14653 
14654 	rmt = alloc_rsm_map_table(dd);
14655 	if (!rmt)
14656 		return -ENOMEM;
14657 
14658 	/* set up QOS, including the QPN map table */
14659 	init_qos(dd, rmt);
14660 	init_fecn_handling(dd, rmt);
14661 	complete_rsm_map_table(dd, rmt);
14662 	/* record number of used rsm map entries for netdev */
14663 	hfi1_netdev_set_free_rmt_idx(dd, rmt->used);
14664 	kfree(rmt);
14665 
14666 	/*
14667 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14668 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14669 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14670 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14671 	 * Max_PayLoad_Size set to its minimum of 128.
14672 	 *
14673 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14674 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14675 	 * tune_pcie_caps() which is called after this routine.
14676 	 */
14677 
14678 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14679 	val = read_csr(dd, RCV_BYPASS);
14680 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14681 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14682 		RCV_BYPASS_HDR_SIZE_SHIFT);
14683 	write_csr(dd, RCV_BYPASS, val);
14684 	return 0;
14685 }
14686 
14687 static void init_other(struct hfi1_devdata *dd)
14688 {
14689 	/* enable all CCE errors */
14690 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14691 	/* enable *some* Misc errors */
14692 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14693 	/* enable all DC errors, except LCB */
14694 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14695 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14696 }
14697 
14698 /*
14699  * Fill out the given AU table using the given CU.  A CU is defined in terms
14700  * AUs.  The table is a an encoding: given the index, how many AUs does that
14701  * represent?
14702  *
14703  * NOTE: Assumes that the register layout is the same for the
14704  * local and remote tables.
14705  */
14706 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14707 			       u32 csr0to3, u32 csr4to7)
14708 {
14709 	write_csr(dd, csr0to3,
14710 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14711 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14712 		  2ull * cu <<
14713 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14714 		  4ull * cu <<
14715 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14716 	write_csr(dd, csr4to7,
14717 		  8ull * cu <<
14718 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14719 		  16ull * cu <<
14720 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14721 		  32ull * cu <<
14722 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14723 		  64ull * cu <<
14724 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14725 }
14726 
14727 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14728 {
14729 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14730 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14731 }
14732 
14733 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14734 {
14735 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14736 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14737 }
14738 
14739 static void init_txe(struct hfi1_devdata *dd)
14740 {
14741 	int i;
14742 
14743 	/* enable all PIO, SDMA, general, and Egress errors */
14744 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14745 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14746 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14747 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14748 
14749 	/* enable all per-context and per-SDMA engine errors */
14750 	for (i = 0; i < chip_send_contexts(dd); i++)
14751 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14752 	for (i = 0; i < chip_sdma_engines(dd); i++)
14753 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14754 
14755 	/* set the local CU to AU mapping */
14756 	assign_local_cm_au_table(dd, dd->vcu);
14757 
14758 	/*
14759 	 * Set reasonable default for Credit Return Timer
14760 	 * Don't set on Simulator - causes it to choke.
14761 	 */
14762 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14763 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14764 }
14765 
14766 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14767 		       u16 jkey)
14768 {
14769 	u8 hw_ctxt;
14770 	u64 reg;
14771 
14772 	if (!rcd || !rcd->sc)
14773 		return -EINVAL;
14774 
14775 	hw_ctxt = rcd->sc->hw_context;
14776 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14777 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14778 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14779 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14780 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14781 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14782 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14783 	/*
14784 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14785 	 */
14786 	if (!is_ax(dd)) {
14787 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14788 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14789 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14790 	}
14791 
14792 	/* Enable J_KEY check on receive context. */
14793 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14794 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14795 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14796 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14797 
14798 	return 0;
14799 }
14800 
14801 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14802 {
14803 	u8 hw_ctxt;
14804 	u64 reg;
14805 
14806 	if (!rcd || !rcd->sc)
14807 		return -EINVAL;
14808 
14809 	hw_ctxt = rcd->sc->hw_context;
14810 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14811 	/*
14812 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14813 	 * This check would not have been enabled for A0 h/w, see
14814 	 * set_ctxt_jkey().
14815 	 */
14816 	if (!is_ax(dd)) {
14817 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14818 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14819 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14820 	}
14821 	/* Turn off the J_KEY on the receive side */
14822 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14823 
14824 	return 0;
14825 }
14826 
14827 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14828 		       u16 pkey)
14829 {
14830 	u8 hw_ctxt;
14831 	u64 reg;
14832 
14833 	if (!rcd || !rcd->sc)
14834 		return -EINVAL;
14835 
14836 	hw_ctxt = rcd->sc->hw_context;
14837 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14838 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14839 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14840 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14841 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14842 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14843 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14844 
14845 	return 0;
14846 }
14847 
14848 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14849 {
14850 	u8 hw_ctxt;
14851 	u64 reg;
14852 
14853 	if (!ctxt || !ctxt->sc)
14854 		return -EINVAL;
14855 
14856 	hw_ctxt = ctxt->sc->hw_context;
14857 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14858 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14859 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14860 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14861 
14862 	return 0;
14863 }
14864 
14865 /*
14866  * Start doing the clean up the chip. Our clean up happens in multiple
14867  * stages and this is just the first.
14868  */
14869 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14870 {
14871 	aspm_exit(dd);
14872 	free_cntrs(dd);
14873 	free_rcverr(dd);
14874 	finish_chip_resources(dd);
14875 }
14876 
14877 #define HFI_BASE_GUID(dev) \
14878 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14879 
14880 /*
14881  * Information can be shared between the two HFIs on the same ASIC
14882  * in the same OS.  This function finds the peer device and sets
14883  * up a shared structure.
14884  */
14885 static int init_asic_data(struct hfi1_devdata *dd)
14886 {
14887 	unsigned long index;
14888 	struct hfi1_devdata *peer;
14889 	struct hfi1_asic_data *asic_data;
14890 	int ret = 0;
14891 
14892 	/* pre-allocate the asic structure in case we are the first device */
14893 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14894 	if (!asic_data)
14895 		return -ENOMEM;
14896 
14897 	xa_lock_irq(&hfi1_dev_table);
14898 	/* Find our peer device */
14899 	xa_for_each(&hfi1_dev_table, index, peer) {
14900 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(peer)) &&
14901 		    dd->unit != peer->unit)
14902 			break;
14903 	}
14904 
14905 	if (peer) {
14906 		/* use already allocated structure */
14907 		dd->asic_data = peer->asic_data;
14908 		kfree(asic_data);
14909 	} else {
14910 		dd->asic_data = asic_data;
14911 		mutex_init(&dd->asic_data->asic_resource_mutex);
14912 	}
14913 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14914 	xa_unlock_irq(&hfi1_dev_table);
14915 
14916 	/* first one through - set up i2c devices */
14917 	if (!peer)
14918 		ret = set_up_i2c(dd, dd->asic_data);
14919 
14920 	return ret;
14921 }
14922 
14923 /*
14924  * Set dd->boardname.  Use a generic name if a name is not returned from
14925  * EFI variable space.
14926  *
14927  * Return 0 on success, -ENOMEM if space could not be allocated.
14928  */
14929 static int obtain_boardname(struct hfi1_devdata *dd)
14930 {
14931 	/* generic board description */
14932 	const char generic[] =
14933 		"Cornelis Omni-Path Host Fabric Interface Adapter 100 Series";
14934 	unsigned long size;
14935 	int ret;
14936 
14937 	ret = read_hfi1_efi_var(dd, "description", &size,
14938 				(void **)&dd->boardname);
14939 	if (ret) {
14940 		dd_dev_info(dd, "Board description not found\n");
14941 		/* use generic description */
14942 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14943 		if (!dd->boardname)
14944 			return -ENOMEM;
14945 	}
14946 	return 0;
14947 }
14948 
14949 /*
14950  * Check the interrupt registers to make sure that they are mapped correctly.
14951  * It is intended to help user identify any mismapping by VMM when the driver
14952  * is running in a VM. This function should only be called before interrupt
14953  * is set up properly.
14954  *
14955  * Return 0 on success, -EINVAL on failure.
14956  */
14957 static int check_int_registers(struct hfi1_devdata *dd)
14958 {
14959 	u64 reg;
14960 	u64 all_bits = ~(u64)0;
14961 	u64 mask;
14962 
14963 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14964 	mask = read_csr(dd, CCE_INT_MASK);
14965 	write_csr(dd, CCE_INT_MASK, 0ull);
14966 	reg = read_csr(dd, CCE_INT_MASK);
14967 	if (reg)
14968 		goto err_exit;
14969 
14970 	/* Clear all interrupt status bits */
14971 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14972 	reg = read_csr(dd, CCE_INT_STATUS);
14973 	if (reg)
14974 		goto err_exit;
14975 
14976 	/* Set all interrupt status bits */
14977 	write_csr(dd, CCE_INT_FORCE, all_bits);
14978 	reg = read_csr(dd, CCE_INT_STATUS);
14979 	if (reg != all_bits)
14980 		goto err_exit;
14981 
14982 	/* Restore the interrupt mask */
14983 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14984 	write_csr(dd, CCE_INT_MASK, mask);
14985 
14986 	return 0;
14987 err_exit:
14988 	write_csr(dd, CCE_INT_MASK, mask);
14989 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14990 	return -EINVAL;
14991 }
14992 
14993 /**
14994  * hfi1_init_dd() - Initialize most of the dd structure.
14995  * @dd: the dd device
14996  *
14997  * This is global, and is called directly at init to set up the
14998  * chip-specific function pointers for later use.
14999  */
15000 int hfi1_init_dd(struct hfi1_devdata *dd)
15001 {
15002 	struct pci_dev *pdev = dd->pcidev;
15003 	struct hfi1_pportdata *ppd;
15004 	u64 reg;
15005 	int i, ret;
15006 	static const char * const inames[] = { /* implementation names */
15007 		"RTL silicon",
15008 		"RTL VCS simulation",
15009 		"RTL FPGA emulation",
15010 		"Functional simulator"
15011 	};
15012 	struct pci_dev *parent = pdev->bus->self;
15013 	u32 sdma_engines = chip_sdma_engines(dd);
15014 
15015 	ppd = dd->pport;
15016 	for (i = 0; i < dd->num_pports; i++, ppd++) {
15017 		int vl;
15018 		/* init common fields */
15019 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
15020 		/* DC supports 4 link widths */
15021 		ppd->link_width_supported =
15022 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
15023 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
15024 		ppd->link_width_downgrade_supported =
15025 			ppd->link_width_supported;
15026 		/* start out enabling only 4X */
15027 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
15028 		ppd->link_width_downgrade_enabled =
15029 					ppd->link_width_downgrade_supported;
15030 		/* link width active is 0 when link is down */
15031 		/* link width downgrade active is 0 when link is down */
15032 
15033 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
15034 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
15035 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
15036 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
15037 			num_vls = HFI1_MAX_VLS_SUPPORTED;
15038 		}
15039 		ppd->vls_supported = num_vls;
15040 		ppd->vls_operational = ppd->vls_supported;
15041 		/* Set the default MTU. */
15042 		for (vl = 0; vl < num_vls; vl++)
15043 			dd->vld[vl].mtu = hfi1_max_mtu;
15044 		dd->vld[15].mtu = MAX_MAD_PACKET;
15045 		/*
15046 		 * Set the initial values to reasonable default, will be set
15047 		 * for real when link is up.
15048 		 */
15049 		ppd->overrun_threshold = 0x4;
15050 		ppd->phy_error_threshold = 0xf;
15051 		ppd->port_crc_mode_enabled = link_crc_mask;
15052 		/* initialize supported LTP CRC mode */
15053 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
15054 		/* initialize enabled LTP CRC mode */
15055 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
15056 		/* start in offline */
15057 		ppd->host_link_state = HLS_DN_OFFLINE;
15058 		init_vl_arb_caches(ppd);
15059 	}
15060 
15061 	/*
15062 	 * Do remaining PCIe setup and save PCIe values in dd.
15063 	 * Any error printing is already done by the init code.
15064 	 * On return, we have the chip mapped.
15065 	 */
15066 	ret = hfi1_pcie_ddinit(dd, pdev);
15067 	if (ret < 0)
15068 		goto bail_free;
15069 
15070 	/* Save PCI space registers to rewrite after device reset */
15071 	ret = save_pci_variables(dd);
15072 	if (ret < 0)
15073 		goto bail_cleanup;
15074 
15075 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15076 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15077 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15078 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15079 
15080 	/*
15081 	 * Check interrupt registers mapping if the driver has no access to
15082 	 * the upstream component. In this case, it is likely that the driver
15083 	 * is running in a VM.
15084 	 */
15085 	if (!parent) {
15086 		ret = check_int_registers(dd);
15087 		if (ret)
15088 			goto bail_cleanup;
15089 	}
15090 
15091 	/*
15092 	 * obtain the hardware ID - NOT related to unit, which is a
15093 	 * software enumeration
15094 	 */
15095 	reg = read_csr(dd, CCE_REVISION2);
15096 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15097 					& CCE_REVISION2_HFI_ID_MASK;
15098 	/* the variable size will remove unwanted bits */
15099 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15100 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15101 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15102 		    dd->icode < ARRAY_SIZE(inames) ?
15103 		    inames[dd->icode] : "unknown", (int)dd->irev);
15104 
15105 	/* speeds the hardware can support */
15106 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15107 	/* speeds allowed to run at */
15108 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15109 	/* give a reasonable active value, will be set on link up */
15110 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15111 
15112 	/* fix up link widths for emulation _p */
15113 	ppd = dd->pport;
15114 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15115 		ppd->link_width_supported =
15116 			ppd->link_width_enabled =
15117 			ppd->link_width_downgrade_supported =
15118 			ppd->link_width_downgrade_enabled =
15119 				OPA_LINK_WIDTH_1X;
15120 	}
15121 	/* insure num_vls isn't larger than number of sdma engines */
15122 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15123 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15124 			   num_vls, sdma_engines);
15125 		num_vls = sdma_engines;
15126 		ppd->vls_supported = sdma_engines;
15127 		ppd->vls_operational = ppd->vls_supported;
15128 	}
15129 
15130 	/*
15131 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15132 	 * Limit the max if larger than the field holds.  If timeout is
15133 	 * non-zero, then the calculated field will be at least 1.
15134 	 *
15135 	 * Must be after icode is set up - the cclock rate depends
15136 	 * on knowing the hardware being used.
15137 	 */
15138 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15139 	if (dd->rcv_intr_timeout_csr >
15140 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15141 		dd->rcv_intr_timeout_csr =
15142 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15143 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15144 		dd->rcv_intr_timeout_csr = 1;
15145 
15146 	/* needs to be done before we look for the peer device */
15147 	read_guid(dd);
15148 
15149 	/* set up shared ASIC data with peer device */
15150 	ret = init_asic_data(dd);
15151 	if (ret)
15152 		goto bail_cleanup;
15153 
15154 	/* obtain chip sizes, reset chip CSRs */
15155 	ret = init_chip(dd);
15156 	if (ret)
15157 		goto bail_cleanup;
15158 
15159 	/* read in the PCIe link speed information */
15160 	ret = pcie_speeds(dd);
15161 	if (ret)
15162 		goto bail_cleanup;
15163 
15164 	/* call before get_platform_config(), after init_chip_resources() */
15165 	ret = eprom_init(dd);
15166 	if (ret)
15167 		goto bail_free_rcverr;
15168 
15169 	/* Needs to be called before hfi1_firmware_init */
15170 	get_platform_config(dd);
15171 
15172 	/* read in firmware */
15173 	ret = hfi1_firmware_init(dd);
15174 	if (ret)
15175 		goto bail_cleanup;
15176 
15177 	/*
15178 	 * In general, the PCIe Gen3 transition must occur after the
15179 	 * chip has been idled (so it won't initiate any PCIe transactions
15180 	 * e.g. an interrupt) and before the driver changes any registers
15181 	 * (the transition will reset the registers).
15182 	 *
15183 	 * In particular, place this call after:
15184 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15185 	 * - pcie_speeds()   - reads the current link speed
15186 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15187 	 *			    downloaded
15188 	 */
15189 	ret = do_pcie_gen3_transition(dd);
15190 	if (ret)
15191 		goto bail_cleanup;
15192 
15193 	/*
15194 	 * This should probably occur in hfi1_pcie_init(), but historically
15195 	 * occurs after the do_pcie_gen3_transition() code.
15196 	 */
15197 	tune_pcie_caps(dd);
15198 
15199 	/* start setting dd values and adjusting CSRs */
15200 	init_early_variables(dd);
15201 
15202 	parse_platform_config(dd);
15203 
15204 	ret = obtain_boardname(dd);
15205 	if (ret)
15206 		goto bail_cleanup;
15207 
15208 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15209 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15210 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15211 		 (u32)dd->majrev,
15212 		 (u32)dd->minrev,
15213 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15214 		    & CCE_REVISION_SW_MASK);
15215 
15216 	/* alloc VNIC/AIP rx data */
15217 	ret = hfi1_alloc_rx(dd);
15218 	if (ret)
15219 		goto bail_cleanup;
15220 
15221 	ret = set_up_context_variables(dd);
15222 	if (ret)
15223 		goto bail_cleanup;
15224 
15225 	/* set initial RXE CSRs */
15226 	ret = init_rxe(dd);
15227 	if (ret)
15228 		goto bail_cleanup;
15229 
15230 	/* set initial TXE CSRs */
15231 	init_txe(dd);
15232 	/* set initial non-RXE, non-TXE CSRs */
15233 	init_other(dd);
15234 	/* set up KDETH QP prefix in both RX and TX CSRs */
15235 	init_kdeth_qp(dd);
15236 
15237 	ret = hfi1_dev_affinity_init(dd);
15238 	if (ret)
15239 		goto bail_cleanup;
15240 
15241 	/* send contexts must be set up before receive contexts */
15242 	ret = init_send_contexts(dd);
15243 	if (ret)
15244 		goto bail_cleanup;
15245 
15246 	ret = hfi1_create_kctxts(dd);
15247 	if (ret)
15248 		goto bail_cleanup;
15249 
15250 	/*
15251 	 * Initialize aspm, to be done after gen3 transition and setting up
15252 	 * contexts and before enabling interrupts
15253 	 */
15254 	aspm_init(dd);
15255 
15256 	ret = init_pervl_scs(dd);
15257 	if (ret)
15258 		goto bail_cleanup;
15259 
15260 	/* sdma init */
15261 	for (i = 0; i < dd->num_pports; ++i) {
15262 		ret = sdma_init(dd, i);
15263 		if (ret)
15264 			goto bail_cleanup;
15265 	}
15266 
15267 	/* use contexts created by hfi1_create_kctxts */
15268 	ret = set_up_interrupts(dd);
15269 	if (ret)
15270 		goto bail_cleanup;
15271 
15272 	ret = hfi1_comp_vectors_set_up(dd);
15273 	if (ret)
15274 		goto bail_clear_intr;
15275 
15276 	/* set up LCB access - must be after set_up_interrupts() */
15277 	init_lcb_access(dd);
15278 
15279 	/*
15280 	 * Serial number is created from the base guid:
15281 	 * [27:24] = base guid [38:35]
15282 	 * [23: 0] = base guid [23: 0]
15283 	 */
15284 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15285 		 (dd->base_guid & 0xFFFFFF) |
15286 		     ((dd->base_guid >> 11) & 0xF000000));
15287 
15288 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15289 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15290 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15291 
15292 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15293 	if (ret)
15294 		goto bail_clear_intr;
15295 
15296 	thermal_init(dd);
15297 
15298 	ret = init_cntrs(dd);
15299 	if (ret)
15300 		goto bail_clear_intr;
15301 
15302 	ret = init_rcverr(dd);
15303 	if (ret)
15304 		goto bail_free_cntrs;
15305 
15306 	init_completion(&dd->user_comp);
15307 
15308 	/* The user refcount starts with one to inidicate an active device */
15309 	refcount_set(&dd->user_refcount, 1);
15310 
15311 	goto bail;
15312 
15313 bail_free_rcverr:
15314 	free_rcverr(dd);
15315 bail_free_cntrs:
15316 	free_cntrs(dd);
15317 bail_clear_intr:
15318 	hfi1_comp_vectors_clean_up(dd);
15319 	msix_clean_up_interrupts(dd);
15320 bail_cleanup:
15321 	hfi1_free_rx(dd);
15322 	hfi1_pcie_ddcleanup(dd);
15323 bail_free:
15324 	hfi1_free_devdata(dd);
15325 bail:
15326 	return ret;
15327 }
15328 
15329 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15330 			u32 dw_len)
15331 {
15332 	u32 delta_cycles;
15333 	u32 current_egress_rate = ppd->current_egress_rate;
15334 	/* rates here are in units of 10^6 bits/sec */
15335 
15336 	if (desired_egress_rate == -1)
15337 		return 0; /* shouldn't happen */
15338 
15339 	if (desired_egress_rate >= current_egress_rate)
15340 		return 0; /* we can't help go faster, only slower */
15341 
15342 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15343 			egress_cycles(dw_len * 4, current_egress_rate);
15344 
15345 	return (u16)delta_cycles;
15346 }
15347 
15348 /**
15349  * create_pbc - build a pbc for transmission
15350  * @ppd: info of physical Hfi port
15351  * @flags: special case flags or-ed in built pbc
15352  * @srate_mbs: static rate
15353  * @vl: vl
15354  * @dw_len: dword length (header words + data words + pbc words)
15355  *
15356  * Create a PBC with the given flags, rate, VL, and length.
15357  *
15358  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15359  * for verbs, which does not use this PSM feature.  The lone other caller
15360  * is for the diagnostic interface which calls this if the user does not
15361  * supply their own PBC.
15362  */
15363 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15364 	       u32 dw_len)
15365 {
15366 	u64 pbc, delay = 0;
15367 
15368 	if (unlikely(srate_mbs))
15369 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15370 
15371 	pbc = flags
15372 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15373 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15374 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15375 		| (dw_len & PBC_LENGTH_DWS_MASK)
15376 			<< PBC_LENGTH_DWS_SHIFT;
15377 
15378 	return pbc;
15379 }
15380 
15381 #define SBUS_THERMAL    0x4f
15382 #define SBUS_THERM_MONITOR_MODE 0x1
15383 
15384 #define THERM_FAILURE(dev, ret, reason) \
15385 	dd_dev_err((dd),						\
15386 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15387 		   (reason), (ret))
15388 
15389 /*
15390  * Initialize the thermal sensor.
15391  *
15392  * After initialization, enable polling of thermal sensor through
15393  * SBus interface. In order for this to work, the SBus Master
15394  * firmware has to be loaded due to the fact that the HW polling
15395  * logic uses SBus interrupts, which are not supported with
15396  * default firmware. Otherwise, no data will be returned through
15397  * the ASIC_STS_THERM CSR.
15398  */
15399 static int thermal_init(struct hfi1_devdata *dd)
15400 {
15401 	int ret = 0;
15402 
15403 	if (dd->icode != ICODE_RTL_SILICON ||
15404 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15405 		return ret;
15406 
15407 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15408 	if (ret) {
15409 		THERM_FAILURE(dd, ret, "Acquire SBus");
15410 		return ret;
15411 	}
15412 
15413 	dd_dev_info(dd, "Initializing thermal sensor\n");
15414 	/* Disable polling of thermal readings */
15415 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15416 	msleep(100);
15417 	/* Thermal Sensor Initialization */
15418 	/*    Step 1: Reset the Thermal SBus Receiver */
15419 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15420 				RESET_SBUS_RECEIVER, 0);
15421 	if (ret) {
15422 		THERM_FAILURE(dd, ret, "Bus Reset");
15423 		goto done;
15424 	}
15425 	/*    Step 2: Set Reset bit in Thermal block */
15426 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15427 				WRITE_SBUS_RECEIVER, 0x1);
15428 	if (ret) {
15429 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15430 		goto done;
15431 	}
15432 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15433 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15434 				WRITE_SBUS_RECEIVER, 0x32);
15435 	if (ret) {
15436 		THERM_FAILURE(dd, ret, "Write Clock Div");
15437 		goto done;
15438 	}
15439 	/*    Step 4: Select temperature mode */
15440 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15441 				WRITE_SBUS_RECEIVER,
15442 				SBUS_THERM_MONITOR_MODE);
15443 	if (ret) {
15444 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15445 		goto done;
15446 	}
15447 	/*    Step 5: De-assert block reset and start conversion */
15448 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15449 				WRITE_SBUS_RECEIVER, 0x2);
15450 	if (ret) {
15451 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15452 		goto done;
15453 	}
15454 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15455 	msleep(22);
15456 
15457 	/* Enable polling of thermal readings */
15458 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15459 
15460 	/* Set initialized flag */
15461 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15462 	if (ret)
15463 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15464 
15465 done:
15466 	release_chip_resource(dd, CR_SBUS);
15467 	return ret;
15468 }
15469 
15470 static void handle_temp_err(struct hfi1_devdata *dd)
15471 {
15472 	struct hfi1_pportdata *ppd = &dd->pport[0];
15473 	/*
15474 	 * Thermal Critical Interrupt
15475 	 * Put the device into forced freeze mode, take link down to
15476 	 * offline, and put DC into reset.
15477 	 */
15478 	dd_dev_emerg(dd,
15479 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15480 	dd->flags |= HFI1_FORCED_FREEZE;
15481 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15482 	/*
15483 	 * Shut DC down as much and as quickly as possible.
15484 	 *
15485 	 * Step 1: Take the link down to OFFLINE. This will cause the
15486 	 *         8051 to put the Serdes in reset. However, we don't want to
15487 	 *         go through the entire link state machine since we want to
15488 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15489 	 *         but rather an attempt to save the chip.
15490 	 *         Code below is almost the same as quiet_serdes() but avoids
15491 	 *         all the extra work and the sleeps.
15492 	 */
15493 	ppd->driver_link_ready = 0;
15494 	ppd->link_enabled = 0;
15495 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15496 				PLS_OFFLINE);
15497 	/*
15498 	 * Step 2: Shutdown LCB and 8051
15499 	 *         After shutdown, do not restore DC_CFG_RESET value.
15500 	 */
15501 	dc_shutdown(dd);
15502 }
15503