xref: /linux/drivers/infiniband/hw/hfi1/chip.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73 
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77 
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88 
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92 
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96 
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100 
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106 
107 struct flag_table {
108 	u64 flag;	/* the flag */
109 	char *str;	/* description string */
110 	u16 extra;	/* extra information */
111 	u16 unused0;
112 	u32 unused1;
113 };
114 
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118 
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED	0x1
121 #define SEC_PACKET_DROPPED	0x2
122 #define SEC_SC_HALTED		0x4	/* per-context only */
123 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
124 
125 #define DEFAULT_KRCVQS		  2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 
129 /*
130  * RSM instance allocation
131  *   0 - Verbs
132  *   1 - User Fecn Handling
133  *   2 - Vnic
134  */
135 #define RSM_INS_VERBS             0
136 #define RSM_INS_FECN              1
137 #define RSM_INS_VNIC              2
138 
139 /* Bit offset into the GUID which carries HFI id information */
140 #define GUID_HFI_INDEX_SHIFT     39
141 
142 /* extract the emulation revision */
143 #define emulator_rev(dd) ((dd)->irev >> 8)
144 /* parallel and serial emulation versions are 3 and 4 respectively */
145 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
146 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
147 
148 /* RSM fields for Verbs */
149 /* packet type */
150 #define IB_PACKET_TYPE         2ull
151 #define QW_SHIFT               6ull
152 /* QPN[7..1] */
153 #define QPN_WIDTH              7ull
154 
155 /* LRH.BTH: QW 0, OFFSET 48 - for match */
156 #define LRH_BTH_QW             0ull
157 #define LRH_BTH_BIT_OFFSET     48ull
158 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
159 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
160 #define LRH_BTH_SELECT
161 #define LRH_BTH_MASK           3ull
162 #define LRH_BTH_VALUE          2ull
163 
164 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
165 #define LRH_SC_QW              0ull
166 #define LRH_SC_BIT_OFFSET      56ull
167 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
168 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
169 #define LRH_SC_MASK            128ull
170 #define LRH_SC_VALUE           0ull
171 
172 /* SC[n..0] QW 0, OFFSET 60 - for select */
173 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
174 
175 /* QPN[m+n:1] QW 1, OFFSET 1 */
176 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
177 
178 /* RSM fields for Vnic */
179 /* L2_TYPE: QW 0, OFFSET 61 - for match */
180 #define L2_TYPE_QW             0ull
181 #define L2_TYPE_BIT_OFFSET     61ull
182 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
183 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
184 #define L2_TYPE_MASK           3ull
185 #define L2_16B_VALUE           2ull
186 
187 /* L4_TYPE QW 1, OFFSET 0 - for match */
188 #define L4_TYPE_QW              1ull
189 #define L4_TYPE_BIT_OFFSET      0ull
190 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
191 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
192 #define L4_16B_TYPE_MASK        0xFFull
193 #define L4_16B_ETH_VALUE        0x78ull
194 
195 /* 16B VESWID - for select */
196 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
197 /* 16B ENTROPY - for select */
198 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
199 
200 /* defines to build power on SC2VL table */
201 #define SC2VL_VAL( \
202 	num, \
203 	sc0, sc0val, \
204 	sc1, sc1val, \
205 	sc2, sc2val, \
206 	sc3, sc3val, \
207 	sc4, sc4val, \
208 	sc5, sc5val, \
209 	sc6, sc6val, \
210 	sc7, sc7val) \
211 ( \
212 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
213 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
214 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
215 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
216 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
217 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
218 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
219 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
220 )
221 
222 #define DC_SC_VL_VAL( \
223 	range, \
224 	e0, e0val, \
225 	e1, e1val, \
226 	e2, e2val, \
227 	e3, e3val, \
228 	e4, e4val, \
229 	e5, e5val, \
230 	e6, e6val, \
231 	e7, e7val, \
232 	e8, e8val, \
233 	e9, e9val, \
234 	e10, e10val, \
235 	e11, e11val, \
236 	e12, e12val, \
237 	e13, e13val, \
238 	e14, e14val, \
239 	e15, e15val) \
240 ( \
241 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
242 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
243 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
244 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
245 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
246 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
247 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
248 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
249 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
250 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
251 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
252 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
253 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
254 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
255 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
256 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
257 )
258 
259 /* all CceStatus sub-block freeze bits */
260 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
261 			| CCE_STATUS_RXE_FROZE_SMASK \
262 			| CCE_STATUS_TXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
264 /* all CceStatus sub-block TXE pause bits */
265 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
266 			| CCE_STATUS_TXE_PAUSED_SMASK \
267 			| CCE_STATUS_SDMA_PAUSED_SMASK)
268 /* all CceStatus sub-block RXE pause bits */
269 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
270 
271 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
272 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
273 
274 /*
275  * CCE Error flags.
276  */
277 static struct flag_table cce_err_status_flags[] = {
278 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
279 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
280 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
281 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
282 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
283 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
284 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
285 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
286 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
287 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
288 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
289 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
290 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
291 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
292 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
293 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
294 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
295 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
296 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
297 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
298 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
300 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
301 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
302 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
303 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
304 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
305 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
306 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
307 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
308 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
309 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
310 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
311 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
312 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
313 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
314 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
315 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
316 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
317 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
318 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
319 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
320 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
321 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
322 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
324 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
325 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
326 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
327 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
328 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
329 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
330 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
331 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
332 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
333 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
334 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
335 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
336 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
337 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
338 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
339 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
340 /*31*/	FLAG_ENTRY0("LATriggered",
341 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
342 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
343 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
344 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
345 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
346 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
347 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
348 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
349 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
350 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
351 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
352 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
353 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
354 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
355 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
356 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
357 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
358 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
359 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
360 /*41-63 reserved*/
361 };
362 
363 /*
364  * Misc Error flags
365  */
366 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
367 static struct flag_table misc_err_status_flags[] = {
368 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
369 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
370 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
371 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
372 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
373 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
374 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
375 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
376 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
377 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
378 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
379 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
380 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
381 };
382 
383 /*
384  * TXE PIO Error flags and consequences
385  */
386 static struct flag_table pio_err_status_flags[] = {
387 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
388 	SEC_WRITE_DROPPED,
389 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
390 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
391 	SEC_SPC_FREEZE,
392 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
393 /* 2*/	FLAG_ENTRY("PioCsrParity",
394 	SEC_SPC_FREEZE,
395 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
396 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
397 	SEC_SPC_FREEZE,
398 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
399 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
400 	SEC_SPC_FREEZE,
401 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
402 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
403 	SEC_SPC_FREEZE,
404 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
405 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
406 	SEC_SPC_FREEZE,
407 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
408 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
411 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
414 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
415 	SEC_SPC_FREEZE,
416 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
417 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
420 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
423 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
424 	SEC_SPC_FREEZE,
425 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
426 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
427 	0,
428 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
429 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
430 	0,
431 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
432 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
433 	SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
435 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
436 	SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
438 /*17*/	FLAG_ENTRY("PioInitSmIn",
439 	0,
440 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
441 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
444 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
445 	SEC_SPC_FREEZE,
446 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
447 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
448 	0,
449 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
450 /*21*/	FLAG_ENTRY("PioWriteDataParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
453 /*22*/	FLAG_ENTRY("PioStateMachine",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
456 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
457 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
458 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
459 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
460 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
462 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
463 	SEC_SPC_FREEZE,
464 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
465 /*26*/	FLAG_ENTRY("PioVlfSopParity",
466 	SEC_SPC_FREEZE,
467 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
468 /*27*/	FLAG_ENTRY("PioVlFifoParity",
469 	SEC_SPC_FREEZE,
470 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
471 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
472 	SEC_SPC_FREEZE,
473 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
474 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
475 	SEC_SPC_FREEZE,
476 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
477 /*30-31 reserved*/
478 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
479 	SEC_SPC_FREEZE,
480 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
481 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
482 	SEC_SPC_FREEZE,
483 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
484 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
485 	SEC_SPC_FREEZE,
486 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
487 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
488 	SEC_SPC_FREEZE,
489 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
490 /*36-63 reserved*/
491 };
492 
493 /* TXE PIO errors that cause an SPC freeze */
494 #define ALL_PIO_FREEZE_ERR \
495 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
524 
525 /*
526  * TXE SDMA Error flags
527  */
528 static struct flag_table sdma_err_status_flags[] = {
529 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
530 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
531 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
532 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
533 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
534 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
535 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
536 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
537 /*04-63 reserved*/
538 };
539 
540 /* TXE SDMA errors that cause an SPC freeze */
541 #define ALL_SDMA_FREEZE_ERR  \
542 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
543 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
545 
546 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
547 #define PORT_DISCARD_EGRESS_ERRS \
548 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
549 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
551 
552 /*
553  * TXE Egress Error flags
554  */
555 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
556 static struct flag_table egress_err_status_flags[] = {
557 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
558 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
559 /* 2 reserved */
560 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
561 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
562 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
563 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
564 /* 6 reserved */
565 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
566 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
567 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
568 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
569 /* 9-10 reserved */
570 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
571 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
572 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
573 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
574 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
575 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
576 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
577 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
578 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
579 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
580 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
581 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
582 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
583 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
584 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
585 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
586 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
587 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
588 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
589 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
590 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
591 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
592 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
593 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
594 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
595 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
596 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
597 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
598 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
599 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
600 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
601 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
602 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
603 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
604 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
605 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
606 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
607 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
608 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
609 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
610 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
611 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
612 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
613 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
614 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
615 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
616 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
617 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
618 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
619 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
620 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
621 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
622 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
623 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
624 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
625 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
626 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
627 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
628 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
629 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
630 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
631 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
632 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
633 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
634 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
635 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
636 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
637 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
638 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
639 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
640 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
641 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
642 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
643 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
644 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
645 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
646 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
647 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
648 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
649 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
650 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
651 };
652 
653 /*
654  * TXE Egress Error Info flags
655  */
656 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
657 static struct flag_table egress_err_info_flags[] = {
658 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
659 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
660 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
661 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
663 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
664 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
665 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
666 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
667 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
668 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
669 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
670 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
671 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
672 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
673 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
674 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
675 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
676 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
677 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
678 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
679 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
680 };
681 
682 /* TXE Egress errors that cause an SPC freeze */
683 #define ALL_TXE_EGRESS_FREEZE_ERR \
684 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
685 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
686 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
688 	| SEES(TX_LAUNCH_CSR_PARITY) \
689 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
690 	| SEES(TX_CONFIG_PARITY) \
691 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
700 	| SEES(TX_CREDIT_RETURN_PARITY))
701 
702 /*
703  * TXE Send error flags
704  */
705 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
706 static struct flag_table send_err_status_flags[] = {
707 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
708 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
709 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
710 };
711 
712 /*
713  * TXE Send Context Error flags and consequences
714  */
715 static struct flag_table sc_err_status_flags[] = {
716 /* 0*/	FLAG_ENTRY("InconsistentSop",
717 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
718 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
719 /* 1*/	FLAG_ENTRY("DisallowedPacket",
720 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
721 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
722 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
723 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
724 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
725 /* 3*/	FLAG_ENTRY("WriteOverflow",
726 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
727 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
728 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
729 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
730 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
731 /* 5-63 reserved*/
732 };
733 
734 /*
735  * RXE Receive Error flags
736  */
737 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
738 static struct flag_table rxe_err_status_flags[] = {
739 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
740 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
741 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
742 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
743 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
744 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
745 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
746 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
747 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
748 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
749 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
750 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
751 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
752 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
753 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
754 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
755 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
756 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
757 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
758 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
759 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
760 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
761 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
762 		RXES(RBUF_BLOCK_LIST_READ_COR)),
763 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
764 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
765 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
766 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
767 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
768 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
769 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
770 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
771 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
772 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
773 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
774 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
775 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
776 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
777 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
778 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
779 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
780 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
781 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
782 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
783 		RXES(RBUF_FL_INITDONE_PARITY)),
784 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
785 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
786 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
787 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
788 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
789 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
790 		RXES(LOOKUP_DES_PART1_UNC_COR)),
791 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
792 		RXES(LOOKUP_DES_PART2_PARITY)),
793 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
794 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
795 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
796 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
797 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
798 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
799 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
800 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
801 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
802 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
803 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
804 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
805 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
806 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
807 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
808 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
809 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
810 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
811 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
812 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
813 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
814 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
815 };
816 
817 /* RXE errors that will trigger an SPC freeze */
818 #define ALL_RXE_FREEZE_ERR  \
819 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
863 
864 #define RXE_FREEZE_ABORT_MASK \
865 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
866 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
868 
869 /*
870  * DCC Error Flags
871  */
872 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
873 static struct flag_table dcc_err_flags[] = {
874 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
875 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
876 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
877 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
878 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
880 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
881 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
882 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
883 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
884 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
885 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
886 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
887 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
888 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
889 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
890 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
891 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
892 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
894 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
895 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
896 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
897 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
898 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
899 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
900 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
901 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
902 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
903 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
904 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
905 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
906 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
908 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
909 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
910 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
911 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
912 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
913 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
914 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
915 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
916 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
917 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
919 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
920 };
921 
922 /*
923  * LCB error flags
924  */
925 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
926 static struct flag_table lcb_err_flags[] = {
927 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
928 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
929 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
930 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
931 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
932 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
933 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
934 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
935 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
936 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
937 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
938 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
939 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
940 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
941 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
942 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
943 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
944 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
945 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
946 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
947 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
948 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
949 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
950 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
951 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
952 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
953 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
954 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
955 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
956 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
957 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
958 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
959 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
960 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
961 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
962 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
963 };
964 
965 /*
966  * DC8051 Error Flags
967  */
968 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
969 static struct flag_table dc8051_err_flags[] = {
970 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
971 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
972 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
973 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
974 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
975 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
976 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
977 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
978 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
979 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
980 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
981 };
982 
983 /*
984  * DC8051 Information Error flags
985  *
986  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
987  */
988 static struct flag_table dc8051_info_err_flags[] = {
989 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
990 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
991 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
992 	FLAG_ENTRY0("Serdes internal loopback failure",
993 		    FAILED_SERDES_INTERNAL_LOOPBACK),
994 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
995 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
996 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
997 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
998 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
999 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1001 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1002 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1003 	FLAG_ENTRY0("External Device Request Timeout",
1004 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1005 };
1006 
1007 /*
1008  * DC8051 Information Host Information flags
1009  *
1010  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1011  */
1012 static struct flag_table dc8051_info_host_msg_flags[] = {
1013 	FLAG_ENTRY0("Host request done", 0x0001),
1014 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1015 	FLAG_ENTRY0("BC SMA message", 0x0004),
1016 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1017 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1018 	FLAG_ENTRY0("External device config request", 0x0020),
1019 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1020 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1021 	FLAG_ENTRY0("Link going down", 0x0100),
1022 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1023 };
1024 
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 			       u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 				      u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1035 				    u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 				  u8 *device_rev);
1038 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1039 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1040 			    u8 *tx_polarity_inversion,
1041 			    u8 *rx_polarity_inversion, u8 *max_rate);
1042 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1043 				unsigned int context, u64 err_status);
1044 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1045 static void handle_dcc_err(struct hfi1_devdata *dd,
1046 			   unsigned int context, u64 err_status);
1047 static void handle_lcb_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1050 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void set_partition_keys(struct hfi1_pportdata *ppd);
1058 static const char *link_state_name(u32 state);
1059 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1060 					  u32 state);
1061 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1062 			   u64 *out_data);
1063 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1064 static int thermal_init(struct hfi1_devdata *dd);
1065 
1066 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1067 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1068 					    int msecs);
1069 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1070 				  int msecs);
1071 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1072 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1073 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1074 				   int msecs);
1075 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1076 					 int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 			   unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088 
1089 /*
1090  * Error interrupt table entry.  This is used as input to the interrupt
1091  * "clear down" routine used for all second tier error interrupt register.
1092  * Second tier interrupt registers have a single bit representing them
1093  * in the top-level CceIntStatus.
1094  */
1095 struct err_reg_info {
1096 	u32 status;		/* status CSR offset */
1097 	u32 clear;		/* clear CSR offset */
1098 	u32 mask;		/* mask CSR offset */
1099 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 	const char *desc;
1101 };
1102 
1103 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1104 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1105 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1106 
1107 /*
1108  * Helpers for building HFI and DC error interrupt table entries.  Different
1109  * helpers are needed because of inconsistent register names.
1110  */
1111 #define EE(reg, handler, desc) \
1112 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 		handler, desc }
1114 #define DC_EE1(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116 #define DC_EE2(reg, handler, desc) \
1117 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118 
1119 /*
1120  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1121  * another register containing more information.
1122  */
1123 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1125 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1126 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1127 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1128 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1129 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1130 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1132 	/* the rest are reserved */
1133 };
1134 
1135 /*
1136  * Index into the Various section of the interrupt sources
1137  * corresponding to the Critical Temperature interrupt.
1138  */
1139 #define TCRIT_INT_SOURCE 4
1140 
1141 /*
1142  * SDMA error interrupt entry - refers to another register containing more
1143  * information.
1144  */
1145 static const struct err_reg_info sdma_eng_err =
1146 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147 
1148 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1150 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1151 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1152 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1153 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1154 	/* rest are reserved */
1155 };
1156 
1157 /*
1158  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159  * register can not be derived from the MTU value because 10K is not
1160  * a power of 2. Therefore, we need a constant. Everything else can
1161  * be calculated.
1162  */
1163 #define DCC_CFG_PORT_MTU_CAP_10240 7
1164 
1165 /*
1166  * Table of the DC grouping of error interrupts.  Each entry refers to
1167  * another register containing more information.
1168  */
1169 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1171 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1172 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1173 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1174 	/* the rest are reserved */
1175 };
1176 
1177 struct cntr_entry {
1178 	/*
1179 	 * counter name
1180 	 */
1181 	char *name;
1182 
1183 	/*
1184 	 * csr to read for name (if applicable)
1185 	 */
1186 	u64 csr;
1187 
1188 	/*
1189 	 * offset into dd or ppd to store the counter's value
1190 	 */
1191 	int offset;
1192 
1193 	/*
1194 	 * flags
1195 	 */
1196 	u8 flags;
1197 
1198 	/*
1199 	 * accessor for stat element, context either dd or ppd
1200 	 */
1201 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 		       int mode, u64 data);
1203 };
1204 
1205 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207 
1208 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209 { \
1210 	name, \
1211 	csr, \
1212 	offset, \
1213 	flags, \
1214 	accessor \
1215 }
1216 
1217 /* 32bit RXE */
1218 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 	  0, flags | CNTR_32BIT, \
1222 	  port_access_u32_csr)
1223 
1224 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225 CNTR_ELEM(#name, \
1226 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 	  0, flags | CNTR_32BIT, \
1228 	  dev_access_u32_csr)
1229 
1230 /* 64bit RXE */
1231 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 	  0, flags, \
1235 	  port_access_u64_csr)
1236 
1237 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 	  0, flags, \
1241 	  dev_access_u64_csr)
1242 
1243 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244 #define OVR_ELM(ctx) \
1245 CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 	  0, CNTR_NORMAL, port_access_u64_csr)
1248 
1249 /* 32bit TXE */
1250 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251 CNTR_ELEM(#name, \
1252 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 	  0, flags | CNTR_32BIT, \
1254 	  port_access_u32_csr)
1255 
1256 /* 64bit TXE */
1257 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258 CNTR_ELEM(#name, \
1259 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 	  0, flags, \
1261 	  port_access_u64_csr)
1262 
1263 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264 CNTR_ELEM(#name,\
1265 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1266 	  0, \
1267 	  flags, \
1268 	  dev_access_u64_csr)
1269 
1270 /* CCE */
1271 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272 CNTR_ELEM(#name, \
1273 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 	  0, flags | CNTR_32BIT, \
1275 	  dev_access_u32_csr)
1276 
1277 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278 CNTR_ELEM(#name, \
1279 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 	  0, flags | CNTR_32BIT, \
1281 	  dev_access_u32_csr)
1282 
1283 /* DC */
1284 #define DC_PERF_CNTR(name, counter, flags) \
1285 CNTR_ELEM(#name, \
1286 	  counter, \
1287 	  0, \
1288 	  flags, \
1289 	  dev_access_u64_csr)
1290 
1291 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1292 CNTR_ELEM(#name, \
1293 	  counter, \
1294 	  0, \
1295 	  flags, \
1296 	  dc_access_lcb_cntr)
1297 
1298 /* ibp counters */
1299 #define SW_IBP_CNTR(name, cntr) \
1300 CNTR_ELEM(#name, \
1301 	  0, \
1302 	  0, \
1303 	  CNTR_SYNTH, \
1304 	  access_ibp_##cntr)
1305 
1306 /**
1307  * hfi_addr_from_offset - return addr for readq/writeq
1308  * @dd - the dd device
1309  * @offset - the offset of the CSR within bar0
1310  *
1311  * This routine selects the appropriate base address
1312  * based on the indicated offset.
1313  */
1314 static inline void __iomem *hfi1_addr_from_offset(
1315 	const struct hfi1_devdata *dd,
1316 	u32 offset)
1317 {
1318 	if (offset >= dd->base2_start)
1319 		return dd->kregbase2 + (offset - dd->base2_start);
1320 	return dd->kregbase1 + offset;
1321 }
1322 
1323 /**
1324  * read_csr - read CSR at the indicated offset
1325  * @dd - the dd device
1326  * @offset - the offset of the CSR within bar0
1327  *
1328  * Return: the value read or all FF's if there
1329  * is no mapping
1330  */
1331 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332 {
1333 	if (dd->flags & HFI1_PRESENT)
1334 		return readq(hfi1_addr_from_offset(dd, offset));
1335 	return -1;
1336 }
1337 
1338 /**
1339  * write_csr - write CSR at the indicated offset
1340  * @dd - the dd device
1341  * @offset - the offset of the CSR within bar0
1342  * @value - value to write
1343  */
1344 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345 {
1346 	if (dd->flags & HFI1_PRESENT) {
1347 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348 
1349 		/* avoid write to RcvArray */
1350 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 			return;
1352 		writeq(value, base);
1353 	}
1354 }
1355 
1356 /**
1357  * get_csr_addr - return te iomem address for offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  *
1361  * Return: The iomem address to use in subsequent
1362  * writeq/readq operations.
1363  */
1364 void __iomem *get_csr_addr(
1365 	const struct hfi1_devdata *dd,
1366 	u32 offset)
1367 {
1368 	if (dd->flags & HFI1_PRESENT)
1369 		return hfi1_addr_from_offset(dd, offset);
1370 	return NULL;
1371 }
1372 
1373 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 				 int mode, u64 value)
1375 {
1376 	u64 ret;
1377 
1378 	if (mode == CNTR_MODE_R) {
1379 		ret = read_csr(dd, csr);
1380 	} else if (mode == CNTR_MODE_W) {
1381 		write_csr(dd, csr, value);
1382 		ret = value;
1383 	} else {
1384 		dd_dev_err(dd, "Invalid cntr register access mode");
1385 		return 0;
1386 	}
1387 
1388 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 	return ret;
1390 }
1391 
1392 /* Dev Access */
1393 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 			      void *context, int vl, int mode, u64 data)
1395 {
1396 	struct hfi1_devdata *dd = context;
1397 	u64 csr = entry->csr;
1398 
1399 	if (entry->flags & CNTR_SDMA) {
1400 		if (vl == CNTR_INVALID_VL)
1401 			return 0;
1402 		csr += 0x100 * vl;
1403 	} else {
1404 		if (vl != CNTR_INVALID_VL)
1405 			return 0;
1406 	}
1407 	return read_write_csr(dd, csr, mode, data);
1408 }
1409 
1410 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 			      void *context, int idx, int mode, u64 data)
1412 {
1413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414 
1415 	if (dd->per_sdma && idx < dd->num_sdma)
1416 		return dd->per_sdma[idx].err_cnt;
1417 	return 0;
1418 }
1419 
1420 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 			      void *context, int idx, int mode, u64 data)
1422 {
1423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424 
1425 	if (dd->per_sdma && idx < dd->num_sdma)
1426 		return dd->per_sdma[idx].sdma_int_cnt;
1427 	return 0;
1428 }
1429 
1430 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 				   void *context, int idx, int mode, u64 data)
1432 {
1433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434 
1435 	if (dd->per_sdma && idx < dd->num_sdma)
1436 		return dd->per_sdma[idx].idle_int_cnt;
1437 	return 0;
1438 }
1439 
1440 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 				       void *context, int idx, int mode,
1442 				       u64 data)
1443 {
1444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445 
1446 	if (dd->per_sdma && idx < dd->num_sdma)
1447 		return dd->per_sdma[idx].progress_int_cnt;
1448 	return 0;
1449 }
1450 
1451 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 			      int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_devdata *dd = context;
1455 
1456 	u64 val = 0;
1457 	u64 csr = entry->csr;
1458 
1459 	if (entry->flags & CNTR_VL) {
1460 		if (vl == CNTR_INVALID_VL)
1461 			return 0;
1462 		csr += 8 * vl;
1463 	} else {
1464 		if (vl != CNTR_INVALID_VL)
1465 			return 0;
1466 	}
1467 
1468 	val = read_write_csr(dd, csr, mode, data);
1469 	return val;
1470 }
1471 
1472 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 			      int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_devdata *dd = context;
1476 	u32 csr = entry->csr;
1477 	int ret = 0;
1478 
1479 	if (vl != CNTR_INVALID_VL)
1480 		return 0;
1481 	if (mode == CNTR_MODE_R)
1482 		ret = read_lcb_csr(dd, csr, &data);
1483 	else if (mode == CNTR_MODE_W)
1484 		ret = write_lcb_csr(dd, csr, data);
1485 
1486 	if (ret) {
1487 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 		return 0;
1489 	}
1490 
1491 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 	return data;
1493 }
1494 
1495 /* Port Access */
1496 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 			       int vl, int mode, u64 data)
1498 {
1499 	struct hfi1_pportdata *ppd = context;
1500 
1501 	if (vl != CNTR_INVALID_VL)
1502 		return 0;
1503 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1504 }
1505 
1506 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 			       void *context, int vl, int mode, u64 data)
1508 {
1509 	struct hfi1_pportdata *ppd = context;
1510 	u64 val;
1511 	u64 csr = entry->csr;
1512 
1513 	if (entry->flags & CNTR_VL) {
1514 		if (vl == CNTR_INVALID_VL)
1515 			return 0;
1516 		csr += 8 * vl;
1517 	} else {
1518 		if (vl != CNTR_INVALID_VL)
1519 			return 0;
1520 	}
1521 	val = read_write_csr(ppd->dd, csr, mode, data);
1522 	return val;
1523 }
1524 
1525 /* Software defined */
1526 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 				u64 data)
1528 {
1529 	u64 ret;
1530 
1531 	if (mode == CNTR_MODE_R) {
1532 		ret = *cntr;
1533 	} else if (mode == CNTR_MODE_W) {
1534 		*cntr = data;
1535 		ret = data;
1536 	} else {
1537 		dd_dev_err(dd, "Invalid cntr sw access mode");
1538 		return 0;
1539 	}
1540 
1541 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542 
1543 	return ret;
1544 }
1545 
1546 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 				 int vl, int mode, u64 data)
1548 {
1549 	struct hfi1_pportdata *ppd = context;
1550 
1551 	if (vl != CNTR_INVALID_VL)
1552 		return 0;
1553 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554 }
1555 
1556 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 				 int vl, int mode, u64 data)
1558 {
1559 	struct hfi1_pportdata *ppd = context;
1560 
1561 	if (vl != CNTR_INVALID_VL)
1562 		return 0;
1563 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564 }
1565 
1566 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 				       void *context, int vl, int mode,
1568 				       u64 data)
1569 {
1570 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571 
1572 	if (vl != CNTR_INVALID_VL)
1573 		return 0;
1574 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575 }
1576 
1577 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 	u64 zero = 0;
1582 	u64 *counter;
1583 
1584 	if (vl == CNTR_INVALID_VL)
1585 		counter = &ppd->port_xmit_discards;
1586 	else if (vl >= 0 && vl < C_VL_COUNT)
1587 		counter = &ppd->port_xmit_discards_vl[vl];
1588 	else
1589 		counter = &zero;
1590 
1591 	return read_write_sw(ppd->dd, counter, mode, data);
1592 }
1593 
1594 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 				       void *context, int vl, int mode,
1596 				       u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = context;
1599 
1600 	if (vl != CNTR_INVALID_VL)
1601 		return 0;
1602 
1603 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 			     mode, data);
1605 }
1606 
1607 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 				      void *context, int vl, int mode, u64 data)
1609 {
1610 	struct hfi1_pportdata *ppd = context;
1611 
1612 	if (vl != CNTR_INVALID_VL)
1613 		return 0;
1614 
1615 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 			     mode, data);
1617 }
1618 
1619 u64 get_all_cpu_total(u64 __percpu *cntr)
1620 {
1621 	int cpu;
1622 	u64 counter = 0;
1623 
1624 	for_each_possible_cpu(cpu)
1625 		counter += *per_cpu_ptr(cntr, cpu);
1626 	return counter;
1627 }
1628 
1629 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 			  u64 __percpu *cntr,
1631 			  int vl, int mode, u64 data)
1632 {
1633 	u64 ret = 0;
1634 
1635 	if (vl != CNTR_INVALID_VL)
1636 		return 0;
1637 
1638 	if (mode == CNTR_MODE_R) {
1639 		ret = get_all_cpu_total(cntr) - *z_val;
1640 	} else if (mode == CNTR_MODE_W) {
1641 		/* A write can only zero the counter */
1642 		if (data == 0)
1643 			*z_val = get_all_cpu_total(cntr);
1644 		else
1645 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 	} else {
1647 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 		return 0;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 			      void *context, int vl, int mode, u64 data)
1656 {
1657 	struct hfi1_devdata *dd = context;
1658 
1659 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 			      mode, data);
1661 }
1662 
1663 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 				   void *context, int vl, int mode, u64 data)
1665 {
1666 	struct hfi1_devdata *dd = context;
1667 
1668 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 			      mode, data);
1670 }
1671 
1672 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_piowait;
1678 }
1679 
1680 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684 
1685 	return dd->verbs_dev.n_piodrain;
1686 }
1687 
1688 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1689 			      void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = context;
1692 
1693 	return dd->verbs_dev.n_txwait;
1694 }
1695 
1696 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1697 			       void *context, int vl, int mode, u64 data)
1698 {
1699 	struct hfi1_devdata *dd = context;
1700 
1701 	return dd->verbs_dev.n_kmem_wait;
1702 }
1703 
1704 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1705 				   void *context, int vl, int mode, u64 data)
1706 {
1707 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1708 
1709 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1710 			      mode, data);
1711 }
1712 
1713 /* Software counters for the error status bits within MISC_ERR_STATUS */
1714 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1715 					     void *context, int vl, int mode,
1716 					     u64 data)
1717 {
1718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1719 
1720 	return dd->misc_err_status_cnt[12];
1721 }
1722 
1723 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1724 					  void *context, int vl, int mode,
1725 					  u64 data)
1726 {
1727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728 
1729 	return dd->misc_err_status_cnt[11];
1730 }
1731 
1732 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1733 					       void *context, int vl, int mode,
1734 					       u64 data)
1735 {
1736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737 
1738 	return dd->misc_err_status_cnt[10];
1739 }
1740 
1741 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1742 						 void *context, int vl,
1743 						 int mode, u64 data)
1744 {
1745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746 
1747 	return dd->misc_err_status_cnt[9];
1748 }
1749 
1750 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1751 					   void *context, int vl, int mode,
1752 					   u64 data)
1753 {
1754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755 
1756 	return dd->misc_err_status_cnt[8];
1757 }
1758 
1759 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1760 				const struct cntr_entry *entry,
1761 				void *context, int vl, int mode, u64 data)
1762 {
1763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764 
1765 	return dd->misc_err_status_cnt[7];
1766 }
1767 
1768 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1769 						void *context, int vl,
1770 						int mode, u64 data)
1771 {
1772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773 
1774 	return dd->misc_err_status_cnt[6];
1775 }
1776 
1777 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1778 					      void *context, int vl, int mode,
1779 					      u64 data)
1780 {
1781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782 
1783 	return dd->misc_err_status_cnt[5];
1784 }
1785 
1786 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1787 					    void *context, int vl, int mode,
1788 					    u64 data)
1789 {
1790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791 
1792 	return dd->misc_err_status_cnt[4];
1793 }
1794 
1795 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1796 						 void *context, int vl,
1797 						 int mode, u64 data)
1798 {
1799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800 
1801 	return dd->misc_err_status_cnt[3];
1802 }
1803 
1804 static u64 access_misc_csr_write_bad_addr_err_cnt(
1805 				const struct cntr_entry *entry,
1806 				void *context, int vl, int mode, u64 data)
1807 {
1808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809 
1810 	return dd->misc_err_status_cnt[2];
1811 }
1812 
1813 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1814 						 void *context, int vl,
1815 						 int mode, u64 data)
1816 {
1817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818 
1819 	return dd->misc_err_status_cnt[1];
1820 }
1821 
1822 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1823 					  void *context, int vl, int mode,
1824 					  u64 data)
1825 {
1826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827 
1828 	return dd->misc_err_status_cnt[0];
1829 }
1830 
1831 /*
1832  * Software counter for the aggregate of
1833  * individual CceErrStatus counters
1834  */
1835 static u64 access_sw_cce_err_status_aggregated_cnt(
1836 				const struct cntr_entry *entry,
1837 				void *context, int vl, int mode, u64 data)
1838 {
1839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1840 
1841 	return dd->sw_cce_err_status_aggregate;
1842 }
1843 
1844 /*
1845  * Software counters corresponding to each of the
1846  * error status bits within CceErrStatus
1847  */
1848 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 					      void *context, int vl, int mode,
1850 					      u64 data)
1851 {
1852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853 
1854 	return dd->cce_err_status_cnt[40];
1855 }
1856 
1857 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1858 					  void *context, int vl, int mode,
1859 					  u64 data)
1860 {
1861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862 
1863 	return dd->cce_err_status_cnt[39];
1864 }
1865 
1866 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1867 					  void *context, int vl, int mode,
1868 					  u64 data)
1869 {
1870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871 
1872 	return dd->cce_err_status_cnt[38];
1873 }
1874 
1875 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1876 					     void *context, int vl, int mode,
1877 					     u64 data)
1878 {
1879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880 
1881 	return dd->cce_err_status_cnt[37];
1882 }
1883 
1884 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1885 					     void *context, int vl, int mode,
1886 					     u64 data)
1887 {
1888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889 
1890 	return dd->cce_err_status_cnt[36];
1891 }
1892 
1893 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1894 				const struct cntr_entry *entry,
1895 				void *context, int vl, int mode, u64 data)
1896 {
1897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898 
1899 	return dd->cce_err_status_cnt[35];
1900 }
1901 
1902 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1903 				const struct cntr_entry *entry,
1904 				void *context, int vl, int mode, u64 data)
1905 {
1906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907 
1908 	return dd->cce_err_status_cnt[34];
1909 }
1910 
1911 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1912 						 void *context, int vl,
1913 						 int mode, u64 data)
1914 {
1915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916 
1917 	return dd->cce_err_status_cnt[33];
1918 }
1919 
1920 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1921 						void *context, int vl, int mode,
1922 						u64 data)
1923 {
1924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925 
1926 	return dd->cce_err_status_cnt[32];
1927 }
1928 
1929 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1930 				   void *context, int vl, int mode, u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[31];
1935 }
1936 
1937 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1938 					       void *context, int vl, int mode,
1939 					       u64 data)
1940 {
1941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942 
1943 	return dd->cce_err_status_cnt[30];
1944 }
1945 
1946 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1947 					      void *context, int vl, int mode,
1948 					      u64 data)
1949 {
1950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951 
1952 	return dd->cce_err_status_cnt[29];
1953 }
1954 
1955 static u64 access_pcic_transmit_back_parity_err_cnt(
1956 				const struct cntr_entry *entry,
1957 				void *context, int vl, int mode, u64 data)
1958 {
1959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960 
1961 	return dd->cce_err_status_cnt[28];
1962 }
1963 
1964 static u64 access_pcic_transmit_front_parity_err_cnt(
1965 				const struct cntr_entry *entry,
1966 				void *context, int vl, int mode, u64 data)
1967 {
1968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969 
1970 	return dd->cce_err_status_cnt[27];
1971 }
1972 
1973 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1974 					     void *context, int vl, int mode,
1975 					     u64 data)
1976 {
1977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978 
1979 	return dd->cce_err_status_cnt[26];
1980 }
1981 
1982 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1983 					    void *context, int vl, int mode,
1984 					    u64 data)
1985 {
1986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987 
1988 	return dd->cce_err_status_cnt[25];
1989 }
1990 
1991 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1992 					      void *context, int vl, int mode,
1993 					      u64 data)
1994 {
1995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996 
1997 	return dd->cce_err_status_cnt[24];
1998 }
1999 
2000 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2001 					     void *context, int vl, int mode,
2002 					     u64 data)
2003 {
2004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005 
2006 	return dd->cce_err_status_cnt[23];
2007 }
2008 
2009 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2010 						 void *context, int vl,
2011 						 int mode, u64 data)
2012 {
2013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014 
2015 	return dd->cce_err_status_cnt[22];
2016 }
2017 
2018 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2019 					 void *context, int vl, int mode,
2020 					 u64 data)
2021 {
2022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023 
2024 	return dd->cce_err_status_cnt[21];
2025 }
2026 
2027 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2028 				const struct cntr_entry *entry,
2029 				void *context, int vl, int mode, u64 data)
2030 {
2031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032 
2033 	return dd->cce_err_status_cnt[20];
2034 }
2035 
2036 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2037 						 void *context, int vl,
2038 						 int mode, u64 data)
2039 {
2040 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041 
2042 	return dd->cce_err_status_cnt[19];
2043 }
2044 
2045 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2046 					     void *context, int vl, int mode,
2047 					     u64 data)
2048 {
2049 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050 
2051 	return dd->cce_err_status_cnt[18];
2052 }
2053 
2054 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2055 					    void *context, int vl, int mode,
2056 					    u64 data)
2057 {
2058 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059 
2060 	return dd->cce_err_status_cnt[17];
2061 }
2062 
2063 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2064 					      void *context, int vl, int mode,
2065 					      u64 data)
2066 {
2067 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068 
2069 	return dd->cce_err_status_cnt[16];
2070 }
2071 
2072 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2073 					     void *context, int vl, int mode,
2074 					     u64 data)
2075 {
2076 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077 
2078 	return dd->cce_err_status_cnt[15];
2079 }
2080 
2081 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2082 						 void *context, int vl,
2083 						 int mode, u64 data)
2084 {
2085 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086 
2087 	return dd->cce_err_status_cnt[14];
2088 }
2089 
2090 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2091 					     void *context, int vl, int mode,
2092 					     u64 data)
2093 {
2094 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095 
2096 	return dd->cce_err_status_cnt[13];
2097 }
2098 
2099 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2100 				const struct cntr_entry *entry,
2101 				void *context, int vl, int mode, u64 data)
2102 {
2103 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104 
2105 	return dd->cce_err_status_cnt[12];
2106 }
2107 
2108 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2109 				const struct cntr_entry *entry,
2110 				void *context, int vl, int mode, u64 data)
2111 {
2112 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113 
2114 	return dd->cce_err_status_cnt[11];
2115 }
2116 
2117 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2118 				const struct cntr_entry *entry,
2119 				void *context, int vl, int mode, u64 data)
2120 {
2121 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122 
2123 	return dd->cce_err_status_cnt[10];
2124 }
2125 
2126 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2127 				const struct cntr_entry *entry,
2128 				void *context, int vl, int mode, u64 data)
2129 {
2130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131 
2132 	return dd->cce_err_status_cnt[9];
2133 }
2134 
2135 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2136 				const struct cntr_entry *entry,
2137 				void *context, int vl, int mode, u64 data)
2138 {
2139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140 
2141 	return dd->cce_err_status_cnt[8];
2142 }
2143 
2144 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2145 						 void *context, int vl,
2146 						 int mode, u64 data)
2147 {
2148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149 
2150 	return dd->cce_err_status_cnt[7];
2151 }
2152 
2153 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2154 				const struct cntr_entry *entry,
2155 				void *context, int vl, int mode, u64 data)
2156 {
2157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158 
2159 	return dd->cce_err_status_cnt[6];
2160 }
2161 
2162 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2163 					       void *context, int vl, int mode,
2164 					       u64 data)
2165 {
2166 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167 
2168 	return dd->cce_err_status_cnt[5];
2169 }
2170 
2171 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2172 					  void *context, int vl, int mode,
2173 					  u64 data)
2174 {
2175 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176 
2177 	return dd->cce_err_status_cnt[4];
2178 }
2179 
2180 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2181 				const struct cntr_entry *entry,
2182 				void *context, int vl, int mode, u64 data)
2183 {
2184 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185 
2186 	return dd->cce_err_status_cnt[3];
2187 }
2188 
2189 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2190 						 void *context, int vl,
2191 						 int mode, u64 data)
2192 {
2193 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194 
2195 	return dd->cce_err_status_cnt[2];
2196 }
2197 
2198 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2199 						void *context, int vl,
2200 						int mode, u64 data)
2201 {
2202 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203 
2204 	return dd->cce_err_status_cnt[1];
2205 }
2206 
2207 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2208 					 void *context, int vl, int mode,
2209 					 u64 data)
2210 {
2211 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212 
2213 	return dd->cce_err_status_cnt[0];
2214 }
2215 
2216 /*
2217  * Software counters corresponding to each of the
2218  * error status bits within RcvErrStatus
2219  */
2220 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2221 					void *context, int vl, int mode,
2222 					u64 data)
2223 {
2224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2225 
2226 	return dd->rcv_err_status_cnt[63];
2227 }
2228 
2229 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2230 						void *context, int vl,
2231 						int mode, u64 data)
2232 {
2233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234 
2235 	return dd->rcv_err_status_cnt[62];
2236 }
2237 
2238 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2239 					       void *context, int vl, int mode,
2240 					       u64 data)
2241 {
2242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243 
2244 	return dd->rcv_err_status_cnt[61];
2245 }
2246 
2247 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2248 					 void *context, int vl, int mode,
2249 					 u64 data)
2250 {
2251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252 
2253 	return dd->rcv_err_status_cnt[60];
2254 }
2255 
2256 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2257 						 void *context, int vl,
2258 						 int mode, u64 data)
2259 {
2260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261 
2262 	return dd->rcv_err_status_cnt[59];
2263 }
2264 
2265 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266 						 void *context, int vl,
2267 						 int mode, u64 data)
2268 {
2269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270 
2271 	return dd->rcv_err_status_cnt[58];
2272 }
2273 
2274 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2275 					    void *context, int vl, int mode,
2276 					    u64 data)
2277 {
2278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279 
2280 	return dd->rcv_err_status_cnt[57];
2281 }
2282 
2283 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2284 					   void *context, int vl, int mode,
2285 					   u64 data)
2286 {
2287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288 
2289 	return dd->rcv_err_status_cnt[56];
2290 }
2291 
2292 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2293 					   void *context, int vl, int mode,
2294 					   u64 data)
2295 {
2296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297 
2298 	return dd->rcv_err_status_cnt[55];
2299 }
2300 
2301 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2302 				const struct cntr_entry *entry,
2303 				void *context, int vl, int mode, u64 data)
2304 {
2305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306 
2307 	return dd->rcv_err_status_cnt[54];
2308 }
2309 
2310 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2311 				const struct cntr_entry *entry,
2312 				void *context, int vl, int mode, u64 data)
2313 {
2314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315 
2316 	return dd->rcv_err_status_cnt[53];
2317 }
2318 
2319 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2320 						 void *context, int vl,
2321 						 int mode, u64 data)
2322 {
2323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324 
2325 	return dd->rcv_err_status_cnt[52];
2326 }
2327 
2328 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2329 						 void *context, int vl,
2330 						 int mode, u64 data)
2331 {
2332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333 
2334 	return dd->rcv_err_status_cnt[51];
2335 }
2336 
2337 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2338 						 void *context, int vl,
2339 						 int mode, u64 data)
2340 {
2341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342 
2343 	return dd->rcv_err_status_cnt[50];
2344 }
2345 
2346 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2347 						 void *context, int vl,
2348 						 int mode, u64 data)
2349 {
2350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351 
2352 	return dd->rcv_err_status_cnt[49];
2353 }
2354 
2355 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2356 						 void *context, int vl,
2357 						 int mode, u64 data)
2358 {
2359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360 
2361 	return dd->rcv_err_status_cnt[48];
2362 }
2363 
2364 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2365 						 void *context, int vl,
2366 						 int mode, u64 data)
2367 {
2368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369 
2370 	return dd->rcv_err_status_cnt[47];
2371 }
2372 
2373 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2374 					 void *context, int vl, int mode,
2375 					 u64 data)
2376 {
2377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378 
2379 	return dd->rcv_err_status_cnt[46];
2380 }
2381 
2382 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2383 				const struct cntr_entry *entry,
2384 				void *context, int vl, int mode, u64 data)
2385 {
2386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387 
2388 	return dd->rcv_err_status_cnt[45];
2389 }
2390 
2391 static u64 access_rx_lookup_csr_parity_err_cnt(
2392 				const struct cntr_entry *entry,
2393 				void *context, int vl, int mode, u64 data)
2394 {
2395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396 
2397 	return dd->rcv_err_status_cnt[44];
2398 }
2399 
2400 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2401 				const struct cntr_entry *entry,
2402 				void *context, int vl, int mode, u64 data)
2403 {
2404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405 
2406 	return dd->rcv_err_status_cnt[43];
2407 }
2408 
2409 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2410 				const struct cntr_entry *entry,
2411 				void *context, int vl, int mode, u64 data)
2412 {
2413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414 
2415 	return dd->rcv_err_status_cnt[42];
2416 }
2417 
2418 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2419 				const struct cntr_entry *entry,
2420 				void *context, int vl, int mode, u64 data)
2421 {
2422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423 
2424 	return dd->rcv_err_status_cnt[41];
2425 }
2426 
2427 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2428 				const struct cntr_entry *entry,
2429 				void *context, int vl, int mode, u64 data)
2430 {
2431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432 
2433 	return dd->rcv_err_status_cnt[40];
2434 }
2435 
2436 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2437 				const struct cntr_entry *entry,
2438 				void *context, int vl, int mode, u64 data)
2439 {
2440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441 
2442 	return dd->rcv_err_status_cnt[39];
2443 }
2444 
2445 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2446 				const struct cntr_entry *entry,
2447 				void *context, int vl, int mode, u64 data)
2448 {
2449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450 
2451 	return dd->rcv_err_status_cnt[38];
2452 }
2453 
2454 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2455 				const struct cntr_entry *entry,
2456 				void *context, int vl, int mode, u64 data)
2457 {
2458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459 
2460 	return dd->rcv_err_status_cnt[37];
2461 }
2462 
2463 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2464 				const struct cntr_entry *entry,
2465 				void *context, int vl, int mode, u64 data)
2466 {
2467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468 
2469 	return dd->rcv_err_status_cnt[36];
2470 }
2471 
2472 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2473 				const struct cntr_entry *entry,
2474 				void *context, int vl, int mode, u64 data)
2475 {
2476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477 
2478 	return dd->rcv_err_status_cnt[35];
2479 }
2480 
2481 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2482 				const struct cntr_entry *entry,
2483 				void *context, int vl, int mode, u64 data)
2484 {
2485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486 
2487 	return dd->rcv_err_status_cnt[34];
2488 }
2489 
2490 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2491 				const struct cntr_entry *entry,
2492 				void *context, int vl, int mode, u64 data)
2493 {
2494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495 
2496 	return dd->rcv_err_status_cnt[33];
2497 }
2498 
2499 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2500 					void *context, int vl, int mode,
2501 					u64 data)
2502 {
2503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504 
2505 	return dd->rcv_err_status_cnt[32];
2506 }
2507 
2508 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2509 				       void *context, int vl, int mode,
2510 				       u64 data)
2511 {
2512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513 
2514 	return dd->rcv_err_status_cnt[31];
2515 }
2516 
2517 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2518 					  void *context, int vl, int mode,
2519 					  u64 data)
2520 {
2521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522 
2523 	return dd->rcv_err_status_cnt[30];
2524 }
2525 
2526 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2527 					     void *context, int vl, int mode,
2528 					     u64 data)
2529 {
2530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531 
2532 	return dd->rcv_err_status_cnt[29];
2533 }
2534 
2535 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2536 						 void *context, int vl,
2537 						 int mode, u64 data)
2538 {
2539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540 
2541 	return dd->rcv_err_status_cnt[28];
2542 }
2543 
2544 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2545 				const struct cntr_entry *entry,
2546 				void *context, int vl, int mode, u64 data)
2547 {
2548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549 
2550 	return dd->rcv_err_status_cnt[27];
2551 }
2552 
2553 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2554 				const struct cntr_entry *entry,
2555 				void *context, int vl, int mode, u64 data)
2556 {
2557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558 
2559 	return dd->rcv_err_status_cnt[26];
2560 }
2561 
2562 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2563 				const struct cntr_entry *entry,
2564 				void *context, int vl, int mode, u64 data)
2565 {
2566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567 
2568 	return dd->rcv_err_status_cnt[25];
2569 }
2570 
2571 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2572 				const struct cntr_entry *entry,
2573 				void *context, int vl, int mode, u64 data)
2574 {
2575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576 
2577 	return dd->rcv_err_status_cnt[24];
2578 }
2579 
2580 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2581 				const struct cntr_entry *entry,
2582 				void *context, int vl, int mode, u64 data)
2583 {
2584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585 
2586 	return dd->rcv_err_status_cnt[23];
2587 }
2588 
2589 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2590 				const struct cntr_entry *entry,
2591 				void *context, int vl, int mode, u64 data)
2592 {
2593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594 
2595 	return dd->rcv_err_status_cnt[22];
2596 }
2597 
2598 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2599 				const struct cntr_entry *entry,
2600 				void *context, int vl, int mode, u64 data)
2601 {
2602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603 
2604 	return dd->rcv_err_status_cnt[21];
2605 }
2606 
2607 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2608 				const struct cntr_entry *entry,
2609 				void *context, int vl, int mode, u64 data)
2610 {
2611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612 
2613 	return dd->rcv_err_status_cnt[20];
2614 }
2615 
2616 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2617 				const struct cntr_entry *entry,
2618 				void *context, int vl, int mode, u64 data)
2619 {
2620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621 
2622 	return dd->rcv_err_status_cnt[19];
2623 }
2624 
2625 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2626 						 void *context, int vl,
2627 						 int mode, u64 data)
2628 {
2629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630 
2631 	return dd->rcv_err_status_cnt[18];
2632 }
2633 
2634 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2635 						 void *context, int vl,
2636 						 int mode, u64 data)
2637 {
2638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639 
2640 	return dd->rcv_err_status_cnt[17];
2641 }
2642 
2643 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2644 				const struct cntr_entry *entry,
2645 				void *context, int vl, int mode, u64 data)
2646 {
2647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648 
2649 	return dd->rcv_err_status_cnt[16];
2650 }
2651 
2652 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2653 				const struct cntr_entry *entry,
2654 				void *context, int vl, int mode, u64 data)
2655 {
2656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657 
2658 	return dd->rcv_err_status_cnt[15];
2659 }
2660 
2661 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2662 						void *context, int vl,
2663 						int mode, u64 data)
2664 {
2665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666 
2667 	return dd->rcv_err_status_cnt[14];
2668 }
2669 
2670 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2671 						void *context, int vl,
2672 						int mode, u64 data)
2673 {
2674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675 
2676 	return dd->rcv_err_status_cnt[13];
2677 }
2678 
2679 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2680 					      void *context, int vl, int mode,
2681 					      u64 data)
2682 {
2683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684 
2685 	return dd->rcv_err_status_cnt[12];
2686 }
2687 
2688 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2689 					  void *context, int vl, int mode,
2690 					  u64 data)
2691 {
2692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693 
2694 	return dd->rcv_err_status_cnt[11];
2695 }
2696 
2697 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2698 					  void *context, int vl, int mode,
2699 					  u64 data)
2700 {
2701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702 
2703 	return dd->rcv_err_status_cnt[10];
2704 }
2705 
2706 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2707 					       void *context, int vl, int mode,
2708 					       u64 data)
2709 {
2710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711 
2712 	return dd->rcv_err_status_cnt[9];
2713 }
2714 
2715 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2716 					    void *context, int vl, int mode,
2717 					    u64 data)
2718 {
2719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720 
2721 	return dd->rcv_err_status_cnt[8];
2722 }
2723 
2724 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2725 				const struct cntr_entry *entry,
2726 				void *context, int vl, int mode, u64 data)
2727 {
2728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729 
2730 	return dd->rcv_err_status_cnt[7];
2731 }
2732 
2733 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2734 				const struct cntr_entry *entry,
2735 				void *context, int vl, int mode, u64 data)
2736 {
2737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738 
2739 	return dd->rcv_err_status_cnt[6];
2740 }
2741 
2742 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2743 					  void *context, int vl, int mode,
2744 					  u64 data)
2745 {
2746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747 
2748 	return dd->rcv_err_status_cnt[5];
2749 }
2750 
2751 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2752 					  void *context, int vl, int mode,
2753 					  u64 data)
2754 {
2755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756 
2757 	return dd->rcv_err_status_cnt[4];
2758 }
2759 
2760 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2761 					 void *context, int vl, int mode,
2762 					 u64 data)
2763 {
2764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765 
2766 	return dd->rcv_err_status_cnt[3];
2767 }
2768 
2769 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2770 					 void *context, int vl, int mode,
2771 					 u64 data)
2772 {
2773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774 
2775 	return dd->rcv_err_status_cnt[2];
2776 }
2777 
2778 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2779 					    void *context, int vl, int mode,
2780 					    u64 data)
2781 {
2782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783 
2784 	return dd->rcv_err_status_cnt[1];
2785 }
2786 
2787 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2788 					 void *context, int vl, int mode,
2789 					 u64 data)
2790 {
2791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792 
2793 	return dd->rcv_err_status_cnt[0];
2794 }
2795 
2796 /*
2797  * Software counters corresponding to each of the
2798  * error status bits within SendPioErrStatus
2799  */
2800 static u64 access_pio_pec_sop_head_parity_err_cnt(
2801 				const struct cntr_entry *entry,
2802 				void *context, int vl, int mode, u64 data)
2803 {
2804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2805 
2806 	return dd->send_pio_err_status_cnt[35];
2807 }
2808 
2809 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2810 				const struct cntr_entry *entry,
2811 				void *context, int vl, int mode, u64 data)
2812 {
2813 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814 
2815 	return dd->send_pio_err_status_cnt[34];
2816 }
2817 
2818 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2819 				const struct cntr_entry *entry,
2820 				void *context, int vl, int mode, u64 data)
2821 {
2822 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823 
2824 	return dd->send_pio_err_status_cnt[33];
2825 }
2826 
2827 static u64 access_pio_current_free_cnt_parity_err_cnt(
2828 				const struct cntr_entry *entry,
2829 				void *context, int vl, int mode, u64 data)
2830 {
2831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832 
2833 	return dd->send_pio_err_status_cnt[32];
2834 }
2835 
2836 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2837 					  void *context, int vl, int mode,
2838 					  u64 data)
2839 {
2840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841 
2842 	return dd->send_pio_err_status_cnt[31];
2843 }
2844 
2845 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2846 					  void *context, int vl, int mode,
2847 					  u64 data)
2848 {
2849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850 
2851 	return dd->send_pio_err_status_cnt[30];
2852 }
2853 
2854 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2855 					   void *context, int vl, int mode,
2856 					   u64 data)
2857 {
2858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859 
2860 	return dd->send_pio_err_status_cnt[29];
2861 }
2862 
2863 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2864 				const struct cntr_entry *entry,
2865 				void *context, int vl, int mode, u64 data)
2866 {
2867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868 
2869 	return dd->send_pio_err_status_cnt[28];
2870 }
2871 
2872 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2873 					     void *context, int vl, int mode,
2874 					     u64 data)
2875 {
2876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877 
2878 	return dd->send_pio_err_status_cnt[27];
2879 }
2880 
2881 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2882 					     void *context, int vl, int mode,
2883 					     u64 data)
2884 {
2885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886 
2887 	return dd->send_pio_err_status_cnt[26];
2888 }
2889 
2890 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2891 						void *context, int vl,
2892 						int mode, u64 data)
2893 {
2894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895 
2896 	return dd->send_pio_err_status_cnt[25];
2897 }
2898 
2899 static u64 access_pio_block_qw_count_parity_err_cnt(
2900 				const struct cntr_entry *entry,
2901 				void *context, int vl, int mode, u64 data)
2902 {
2903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904 
2905 	return dd->send_pio_err_status_cnt[24];
2906 }
2907 
2908 static u64 access_pio_write_qw_valid_parity_err_cnt(
2909 				const struct cntr_entry *entry,
2910 				void *context, int vl, int mode, u64 data)
2911 {
2912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913 
2914 	return dd->send_pio_err_status_cnt[23];
2915 }
2916 
2917 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2918 					    void *context, int vl, int mode,
2919 					    u64 data)
2920 {
2921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922 
2923 	return dd->send_pio_err_status_cnt[22];
2924 }
2925 
2926 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2927 						void *context, int vl,
2928 						int mode, u64 data)
2929 {
2930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931 
2932 	return dd->send_pio_err_status_cnt[21];
2933 }
2934 
2935 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2936 						void *context, int vl,
2937 						int mode, u64 data)
2938 {
2939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940 
2941 	return dd->send_pio_err_status_cnt[20];
2942 }
2943 
2944 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2945 						void *context, int vl,
2946 						int mode, u64 data)
2947 {
2948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949 
2950 	return dd->send_pio_err_status_cnt[19];
2951 }
2952 
2953 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2954 				const struct cntr_entry *entry,
2955 				void *context, int vl, int mode, u64 data)
2956 {
2957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958 
2959 	return dd->send_pio_err_status_cnt[18];
2960 }
2961 
2962 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2963 					 void *context, int vl, int mode,
2964 					 u64 data)
2965 {
2966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967 
2968 	return dd->send_pio_err_status_cnt[17];
2969 }
2970 
2971 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2972 					    void *context, int vl, int mode,
2973 					    u64 data)
2974 {
2975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976 
2977 	return dd->send_pio_err_status_cnt[16];
2978 }
2979 
2980 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2981 				const struct cntr_entry *entry,
2982 				void *context, int vl, int mode, u64 data)
2983 {
2984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985 
2986 	return dd->send_pio_err_status_cnt[15];
2987 }
2988 
2989 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2990 				const struct cntr_entry *entry,
2991 				void *context, int vl, int mode, u64 data)
2992 {
2993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994 
2995 	return dd->send_pio_err_status_cnt[14];
2996 }
2997 
2998 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2999 				const struct cntr_entry *entry,
3000 				void *context, int vl, int mode, u64 data)
3001 {
3002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003 
3004 	return dd->send_pio_err_status_cnt[13];
3005 }
3006 
3007 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3008 				const struct cntr_entry *entry,
3009 				void *context, int vl, int mode, u64 data)
3010 {
3011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012 
3013 	return dd->send_pio_err_status_cnt[12];
3014 }
3015 
3016 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3017 				const struct cntr_entry *entry,
3018 				void *context, int vl, int mode, u64 data)
3019 {
3020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021 
3022 	return dd->send_pio_err_status_cnt[11];
3023 }
3024 
3025 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3026 				const struct cntr_entry *entry,
3027 				void *context, int vl, int mode, u64 data)
3028 {
3029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030 
3031 	return dd->send_pio_err_status_cnt[10];
3032 }
3033 
3034 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3035 				const struct cntr_entry *entry,
3036 				void *context, int vl, int mode, u64 data)
3037 {
3038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039 
3040 	return dd->send_pio_err_status_cnt[9];
3041 }
3042 
3043 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3044 				const struct cntr_entry *entry,
3045 				void *context, int vl, int mode, u64 data)
3046 {
3047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048 
3049 	return dd->send_pio_err_status_cnt[8];
3050 }
3051 
3052 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3053 				const struct cntr_entry *entry,
3054 				void *context, int vl, int mode, u64 data)
3055 {
3056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057 
3058 	return dd->send_pio_err_status_cnt[7];
3059 }
3060 
3061 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3062 					      void *context, int vl, int mode,
3063 					      u64 data)
3064 {
3065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066 
3067 	return dd->send_pio_err_status_cnt[6];
3068 }
3069 
3070 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071 					      void *context, int vl, int mode,
3072 					      u64 data)
3073 {
3074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075 
3076 	return dd->send_pio_err_status_cnt[5];
3077 }
3078 
3079 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3080 					   void *context, int vl, int mode,
3081 					   u64 data)
3082 {
3083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084 
3085 	return dd->send_pio_err_status_cnt[4];
3086 }
3087 
3088 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3089 					   void *context, int vl, int mode,
3090 					   u64 data)
3091 {
3092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093 
3094 	return dd->send_pio_err_status_cnt[3];
3095 }
3096 
3097 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3098 					 void *context, int vl, int mode,
3099 					 u64 data)
3100 {
3101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102 
3103 	return dd->send_pio_err_status_cnt[2];
3104 }
3105 
3106 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3107 						void *context, int vl,
3108 						int mode, u64 data)
3109 {
3110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111 
3112 	return dd->send_pio_err_status_cnt[1];
3113 }
3114 
3115 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3116 					     void *context, int vl, int mode,
3117 					     u64 data)
3118 {
3119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120 
3121 	return dd->send_pio_err_status_cnt[0];
3122 }
3123 
3124 /*
3125  * Software counters corresponding to each of the
3126  * error status bits within SendDmaErrStatus
3127  */
3128 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3129 				const struct cntr_entry *entry,
3130 				void *context, int vl, int mode, u64 data)
3131 {
3132 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3133 
3134 	return dd->send_dma_err_status_cnt[3];
3135 }
3136 
3137 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3138 				const struct cntr_entry *entry,
3139 				void *context, int vl, int mode, u64 data)
3140 {
3141 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142 
3143 	return dd->send_dma_err_status_cnt[2];
3144 }
3145 
3146 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3147 					  void *context, int vl, int mode,
3148 					  u64 data)
3149 {
3150 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151 
3152 	return dd->send_dma_err_status_cnt[1];
3153 }
3154 
3155 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3156 				       void *context, int vl, int mode,
3157 				       u64 data)
3158 {
3159 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160 
3161 	return dd->send_dma_err_status_cnt[0];
3162 }
3163 
3164 /*
3165  * Software counters corresponding to each of the
3166  * error status bits within SendEgressErrStatus
3167  */
3168 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3169 				const struct cntr_entry *entry,
3170 				void *context, int vl, int mode, u64 data)
3171 {
3172 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3173 
3174 	return dd->send_egress_err_status_cnt[63];
3175 }
3176 
3177 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3178 				const struct cntr_entry *entry,
3179 				void *context, int vl, int mode, u64 data)
3180 {
3181 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182 
3183 	return dd->send_egress_err_status_cnt[62];
3184 }
3185 
3186 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3187 					     void *context, int vl, int mode,
3188 					     u64 data)
3189 {
3190 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191 
3192 	return dd->send_egress_err_status_cnt[61];
3193 }
3194 
3195 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3196 						 void *context, int vl,
3197 						 int mode, u64 data)
3198 {
3199 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200 
3201 	return dd->send_egress_err_status_cnt[60];
3202 }
3203 
3204 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3205 				const struct cntr_entry *entry,
3206 				void *context, int vl, int mode, u64 data)
3207 {
3208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209 
3210 	return dd->send_egress_err_status_cnt[59];
3211 }
3212 
3213 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3214 					void *context, int vl, int mode,
3215 					u64 data)
3216 {
3217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218 
3219 	return dd->send_egress_err_status_cnt[58];
3220 }
3221 
3222 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3223 					    void *context, int vl, int mode,
3224 					    u64 data)
3225 {
3226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227 
3228 	return dd->send_egress_err_status_cnt[57];
3229 }
3230 
3231 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3232 					      void *context, int vl, int mode,
3233 					      u64 data)
3234 {
3235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236 
3237 	return dd->send_egress_err_status_cnt[56];
3238 }
3239 
3240 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3241 					      void *context, int vl, int mode,
3242 					      u64 data)
3243 {
3244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245 
3246 	return dd->send_egress_err_status_cnt[55];
3247 }
3248 
3249 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3250 					      void *context, int vl, int mode,
3251 					      u64 data)
3252 {
3253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254 
3255 	return dd->send_egress_err_status_cnt[54];
3256 }
3257 
3258 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3259 					      void *context, int vl, int mode,
3260 					      u64 data)
3261 {
3262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263 
3264 	return dd->send_egress_err_status_cnt[53];
3265 }
3266 
3267 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3268 					      void *context, int vl, int mode,
3269 					      u64 data)
3270 {
3271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272 
3273 	return dd->send_egress_err_status_cnt[52];
3274 }
3275 
3276 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3277 					      void *context, int vl, int mode,
3278 					      u64 data)
3279 {
3280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281 
3282 	return dd->send_egress_err_status_cnt[51];
3283 }
3284 
3285 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3286 					      void *context, int vl, int mode,
3287 					      u64 data)
3288 {
3289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290 
3291 	return dd->send_egress_err_status_cnt[50];
3292 }
3293 
3294 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3295 					      void *context, int vl, int mode,
3296 					      u64 data)
3297 {
3298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299 
3300 	return dd->send_egress_err_status_cnt[49];
3301 }
3302 
3303 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3304 					      void *context, int vl, int mode,
3305 					      u64 data)
3306 {
3307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308 
3309 	return dd->send_egress_err_status_cnt[48];
3310 }
3311 
3312 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3313 					      void *context, int vl, int mode,
3314 					      u64 data)
3315 {
3316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317 
3318 	return dd->send_egress_err_status_cnt[47];
3319 }
3320 
3321 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3322 					    void *context, int vl, int mode,
3323 					    u64 data)
3324 {
3325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326 
3327 	return dd->send_egress_err_status_cnt[46];
3328 }
3329 
3330 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3331 					     void *context, int vl, int mode,
3332 					     u64 data)
3333 {
3334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335 
3336 	return dd->send_egress_err_status_cnt[45];
3337 }
3338 
3339 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3340 						 void *context, int vl,
3341 						 int mode, u64 data)
3342 {
3343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344 
3345 	return dd->send_egress_err_status_cnt[44];
3346 }
3347 
3348 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3349 				const struct cntr_entry *entry,
3350 				void *context, int vl, int mode, u64 data)
3351 {
3352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353 
3354 	return dd->send_egress_err_status_cnt[43];
3355 }
3356 
3357 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3358 					void *context, int vl, int mode,
3359 					u64 data)
3360 {
3361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362 
3363 	return dd->send_egress_err_status_cnt[42];
3364 }
3365 
3366 static u64 access_tx_credit_return_partiy_err_cnt(
3367 				const struct cntr_entry *entry,
3368 				void *context, int vl, int mode, u64 data)
3369 {
3370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371 
3372 	return dd->send_egress_err_status_cnt[41];
3373 }
3374 
3375 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3376 				const struct cntr_entry *entry,
3377 				void *context, int vl, int mode, u64 data)
3378 {
3379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380 
3381 	return dd->send_egress_err_status_cnt[40];
3382 }
3383 
3384 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3385 				const struct cntr_entry *entry,
3386 				void *context, int vl, int mode, u64 data)
3387 {
3388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389 
3390 	return dd->send_egress_err_status_cnt[39];
3391 }
3392 
3393 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3394 				const struct cntr_entry *entry,
3395 				void *context, int vl, int mode, u64 data)
3396 {
3397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398 
3399 	return dd->send_egress_err_status_cnt[38];
3400 }
3401 
3402 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3403 				const struct cntr_entry *entry,
3404 				void *context, int vl, int mode, u64 data)
3405 {
3406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407 
3408 	return dd->send_egress_err_status_cnt[37];
3409 }
3410 
3411 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3412 				const struct cntr_entry *entry,
3413 				void *context, int vl, int mode, u64 data)
3414 {
3415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416 
3417 	return dd->send_egress_err_status_cnt[36];
3418 }
3419 
3420 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3421 				const struct cntr_entry *entry,
3422 				void *context, int vl, int mode, u64 data)
3423 {
3424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425 
3426 	return dd->send_egress_err_status_cnt[35];
3427 }
3428 
3429 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3430 				const struct cntr_entry *entry,
3431 				void *context, int vl, int mode, u64 data)
3432 {
3433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434 
3435 	return dd->send_egress_err_status_cnt[34];
3436 }
3437 
3438 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3439 				const struct cntr_entry *entry,
3440 				void *context, int vl, int mode, u64 data)
3441 {
3442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443 
3444 	return dd->send_egress_err_status_cnt[33];
3445 }
3446 
3447 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3448 				const struct cntr_entry *entry,
3449 				void *context, int vl, int mode, u64 data)
3450 {
3451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452 
3453 	return dd->send_egress_err_status_cnt[32];
3454 }
3455 
3456 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3457 				const struct cntr_entry *entry,
3458 				void *context, int vl, int mode, u64 data)
3459 {
3460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461 
3462 	return dd->send_egress_err_status_cnt[31];
3463 }
3464 
3465 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3466 				const struct cntr_entry *entry,
3467 				void *context, int vl, int mode, u64 data)
3468 {
3469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470 
3471 	return dd->send_egress_err_status_cnt[30];
3472 }
3473 
3474 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3475 				const struct cntr_entry *entry,
3476 				void *context, int vl, int mode, u64 data)
3477 {
3478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479 
3480 	return dd->send_egress_err_status_cnt[29];
3481 }
3482 
3483 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3484 				const struct cntr_entry *entry,
3485 				void *context, int vl, int mode, u64 data)
3486 {
3487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488 
3489 	return dd->send_egress_err_status_cnt[28];
3490 }
3491 
3492 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3493 				const struct cntr_entry *entry,
3494 				void *context, int vl, int mode, u64 data)
3495 {
3496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497 
3498 	return dd->send_egress_err_status_cnt[27];
3499 }
3500 
3501 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3502 				const struct cntr_entry *entry,
3503 				void *context, int vl, int mode, u64 data)
3504 {
3505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506 
3507 	return dd->send_egress_err_status_cnt[26];
3508 }
3509 
3510 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3511 				const struct cntr_entry *entry,
3512 				void *context, int vl, int mode, u64 data)
3513 {
3514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515 
3516 	return dd->send_egress_err_status_cnt[25];
3517 }
3518 
3519 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3520 				const struct cntr_entry *entry,
3521 				void *context, int vl, int mode, u64 data)
3522 {
3523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524 
3525 	return dd->send_egress_err_status_cnt[24];
3526 }
3527 
3528 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3529 				const struct cntr_entry *entry,
3530 				void *context, int vl, int mode, u64 data)
3531 {
3532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533 
3534 	return dd->send_egress_err_status_cnt[23];
3535 }
3536 
3537 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3538 				const struct cntr_entry *entry,
3539 				void *context, int vl, int mode, u64 data)
3540 {
3541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542 
3543 	return dd->send_egress_err_status_cnt[22];
3544 }
3545 
3546 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3547 				const struct cntr_entry *entry,
3548 				void *context, int vl, int mode, u64 data)
3549 {
3550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551 
3552 	return dd->send_egress_err_status_cnt[21];
3553 }
3554 
3555 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3556 				const struct cntr_entry *entry,
3557 				void *context, int vl, int mode, u64 data)
3558 {
3559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560 
3561 	return dd->send_egress_err_status_cnt[20];
3562 }
3563 
3564 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3565 				const struct cntr_entry *entry,
3566 				void *context, int vl, int mode, u64 data)
3567 {
3568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569 
3570 	return dd->send_egress_err_status_cnt[19];
3571 }
3572 
3573 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3574 				const struct cntr_entry *entry,
3575 				void *context, int vl, int mode, u64 data)
3576 {
3577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578 
3579 	return dd->send_egress_err_status_cnt[18];
3580 }
3581 
3582 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3583 				const struct cntr_entry *entry,
3584 				void *context, int vl, int mode, u64 data)
3585 {
3586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587 
3588 	return dd->send_egress_err_status_cnt[17];
3589 }
3590 
3591 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3592 				const struct cntr_entry *entry,
3593 				void *context, int vl, int mode, u64 data)
3594 {
3595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596 
3597 	return dd->send_egress_err_status_cnt[16];
3598 }
3599 
3600 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3601 					   void *context, int vl, int mode,
3602 					   u64 data)
3603 {
3604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605 
3606 	return dd->send_egress_err_status_cnt[15];
3607 }
3608 
3609 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3610 						 void *context, int vl,
3611 						 int mode, u64 data)
3612 {
3613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614 
3615 	return dd->send_egress_err_status_cnt[14];
3616 }
3617 
3618 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3619 					       void *context, int vl, int mode,
3620 					       u64 data)
3621 {
3622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623 
3624 	return dd->send_egress_err_status_cnt[13];
3625 }
3626 
3627 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3628 					void *context, int vl, int mode,
3629 					u64 data)
3630 {
3631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632 
3633 	return dd->send_egress_err_status_cnt[12];
3634 }
3635 
3636 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3637 				const struct cntr_entry *entry,
3638 				void *context, int vl, int mode, u64 data)
3639 {
3640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641 
3642 	return dd->send_egress_err_status_cnt[11];
3643 }
3644 
3645 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3646 					     void *context, int vl, int mode,
3647 					     u64 data)
3648 {
3649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650 
3651 	return dd->send_egress_err_status_cnt[10];
3652 }
3653 
3654 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3655 					    void *context, int vl, int mode,
3656 					    u64 data)
3657 {
3658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659 
3660 	return dd->send_egress_err_status_cnt[9];
3661 }
3662 
3663 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3664 				const struct cntr_entry *entry,
3665 				void *context, int vl, int mode, u64 data)
3666 {
3667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668 
3669 	return dd->send_egress_err_status_cnt[8];
3670 }
3671 
3672 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3673 				const struct cntr_entry *entry,
3674 				void *context, int vl, int mode, u64 data)
3675 {
3676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677 
3678 	return dd->send_egress_err_status_cnt[7];
3679 }
3680 
3681 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3682 					    void *context, int vl, int mode,
3683 					    u64 data)
3684 {
3685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686 
3687 	return dd->send_egress_err_status_cnt[6];
3688 }
3689 
3690 static u64 access_tx_incorrect_link_state_err_cnt(
3691 				const struct cntr_entry *entry,
3692 				void *context, int vl, int mode, u64 data)
3693 {
3694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695 
3696 	return dd->send_egress_err_status_cnt[5];
3697 }
3698 
3699 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3700 				      void *context, int vl, int mode,
3701 				      u64 data)
3702 {
3703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704 
3705 	return dd->send_egress_err_status_cnt[4];
3706 }
3707 
3708 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3709 				const struct cntr_entry *entry,
3710 				void *context, int vl, int mode, u64 data)
3711 {
3712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713 
3714 	return dd->send_egress_err_status_cnt[3];
3715 }
3716 
3717 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3718 					    void *context, int vl, int mode,
3719 					    u64 data)
3720 {
3721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722 
3723 	return dd->send_egress_err_status_cnt[2];
3724 }
3725 
3726 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3727 				const struct cntr_entry *entry,
3728 				void *context, int vl, int mode, u64 data)
3729 {
3730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731 
3732 	return dd->send_egress_err_status_cnt[1];
3733 }
3734 
3735 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3736 				const struct cntr_entry *entry,
3737 				void *context, int vl, int mode, u64 data)
3738 {
3739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740 
3741 	return dd->send_egress_err_status_cnt[0];
3742 }
3743 
3744 /*
3745  * Software counters corresponding to each of the
3746  * error status bits within SendErrStatus
3747  */
3748 static u64 access_send_csr_write_bad_addr_err_cnt(
3749 				const struct cntr_entry *entry,
3750 				void *context, int vl, int mode, u64 data)
3751 {
3752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3753 
3754 	return dd->send_err_status_cnt[2];
3755 }
3756 
3757 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3758 						 void *context, int vl,
3759 						 int mode, u64 data)
3760 {
3761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762 
3763 	return dd->send_err_status_cnt[1];
3764 }
3765 
3766 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3767 				      void *context, int vl, int mode,
3768 				      u64 data)
3769 {
3770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771 
3772 	return dd->send_err_status_cnt[0];
3773 }
3774 
3775 /*
3776  * Software counters corresponding to each of the
3777  * error status bits within SendCtxtErrStatus
3778  */
3779 static u64 access_pio_write_out_of_bounds_err_cnt(
3780 				const struct cntr_entry *entry,
3781 				void *context, int vl, int mode, u64 data)
3782 {
3783 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3784 
3785 	return dd->sw_ctxt_err_status_cnt[4];
3786 }
3787 
3788 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3789 					     void *context, int vl, int mode,
3790 					     u64 data)
3791 {
3792 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793 
3794 	return dd->sw_ctxt_err_status_cnt[3];
3795 }
3796 
3797 static u64 access_pio_write_crosses_boundary_err_cnt(
3798 				const struct cntr_entry *entry,
3799 				void *context, int vl, int mode, u64 data)
3800 {
3801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802 
3803 	return dd->sw_ctxt_err_status_cnt[2];
3804 }
3805 
3806 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3807 						void *context, int vl,
3808 						int mode, u64 data)
3809 {
3810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811 
3812 	return dd->sw_ctxt_err_status_cnt[1];
3813 }
3814 
3815 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3816 					       void *context, int vl, int mode,
3817 					       u64 data)
3818 {
3819 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820 
3821 	return dd->sw_ctxt_err_status_cnt[0];
3822 }
3823 
3824 /*
3825  * Software counters corresponding to each of the
3826  * error status bits within SendDmaEngErrStatus
3827  */
3828 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3829 				const struct cntr_entry *entry,
3830 				void *context, int vl, int mode, u64 data)
3831 {
3832 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3833 
3834 	return dd->sw_send_dma_eng_err_status_cnt[23];
3835 }
3836 
3837 static u64 access_sdma_header_storage_cor_err_cnt(
3838 				const struct cntr_entry *entry,
3839 				void *context, int vl, int mode, u64 data)
3840 {
3841 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842 
3843 	return dd->sw_send_dma_eng_err_status_cnt[22];
3844 }
3845 
3846 static u64 access_sdma_packet_tracking_cor_err_cnt(
3847 				const struct cntr_entry *entry,
3848 				void *context, int vl, int mode, u64 data)
3849 {
3850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851 
3852 	return dd->sw_send_dma_eng_err_status_cnt[21];
3853 }
3854 
3855 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3856 					    void *context, int vl, int mode,
3857 					    u64 data)
3858 {
3859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860 
3861 	return dd->sw_send_dma_eng_err_status_cnt[20];
3862 }
3863 
3864 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3865 					      void *context, int vl, int mode,
3866 					      u64 data)
3867 {
3868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869 
3870 	return dd->sw_send_dma_eng_err_status_cnt[19];
3871 }
3872 
3873 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3874 				const struct cntr_entry *entry,
3875 				void *context, int vl, int mode, u64 data)
3876 {
3877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878 
3879 	return dd->sw_send_dma_eng_err_status_cnt[18];
3880 }
3881 
3882 static u64 access_sdma_header_storage_unc_err_cnt(
3883 				const struct cntr_entry *entry,
3884 				void *context, int vl, int mode, u64 data)
3885 {
3886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887 
3888 	return dd->sw_send_dma_eng_err_status_cnt[17];
3889 }
3890 
3891 static u64 access_sdma_packet_tracking_unc_err_cnt(
3892 				const struct cntr_entry *entry,
3893 				void *context, int vl, int mode, u64 data)
3894 {
3895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896 
3897 	return dd->sw_send_dma_eng_err_status_cnt[16];
3898 }
3899 
3900 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3901 					    void *context, int vl, int mode,
3902 					    u64 data)
3903 {
3904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905 
3906 	return dd->sw_send_dma_eng_err_status_cnt[15];
3907 }
3908 
3909 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3910 					      void *context, int vl, int mode,
3911 					      u64 data)
3912 {
3913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914 
3915 	return dd->sw_send_dma_eng_err_status_cnt[14];
3916 }
3917 
3918 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3919 				       void *context, int vl, int mode,
3920 				       u64 data)
3921 {
3922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923 
3924 	return dd->sw_send_dma_eng_err_status_cnt[13];
3925 }
3926 
3927 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3928 					     void *context, int vl, int mode,
3929 					     u64 data)
3930 {
3931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932 
3933 	return dd->sw_send_dma_eng_err_status_cnt[12];
3934 }
3935 
3936 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3937 					      void *context, int vl, int mode,
3938 					      u64 data)
3939 {
3940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941 
3942 	return dd->sw_send_dma_eng_err_status_cnt[11];
3943 }
3944 
3945 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3946 					     void *context, int vl, int mode,
3947 					     u64 data)
3948 {
3949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950 
3951 	return dd->sw_send_dma_eng_err_status_cnt[10];
3952 }
3953 
3954 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3955 					  void *context, int vl, int mode,
3956 					  u64 data)
3957 {
3958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959 
3960 	return dd->sw_send_dma_eng_err_status_cnt[9];
3961 }
3962 
3963 static u64 access_sdma_packet_desc_overflow_err_cnt(
3964 				const struct cntr_entry *entry,
3965 				void *context, int vl, int mode, u64 data)
3966 {
3967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968 
3969 	return dd->sw_send_dma_eng_err_status_cnt[8];
3970 }
3971 
3972 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3973 					       void *context, int vl,
3974 					       int mode, u64 data)
3975 {
3976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977 
3978 	return dd->sw_send_dma_eng_err_status_cnt[7];
3979 }
3980 
3981 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3982 				    void *context, int vl, int mode, u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[6];
3987 }
3988 
3989 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3990 					void *context, int vl, int mode,
3991 					u64 data)
3992 {
3993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994 
3995 	return dd->sw_send_dma_eng_err_status_cnt[5];
3996 }
3997 
3998 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3999 					  void *context, int vl, int mode,
4000 					  u64 data)
4001 {
4002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003 
4004 	return dd->sw_send_dma_eng_err_status_cnt[4];
4005 }
4006 
4007 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4008 				const struct cntr_entry *entry,
4009 				void *context, int vl, int mode, u64 data)
4010 {
4011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012 
4013 	return dd->sw_send_dma_eng_err_status_cnt[3];
4014 }
4015 
4016 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4017 					void *context, int vl, int mode,
4018 					u64 data)
4019 {
4020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021 
4022 	return dd->sw_send_dma_eng_err_status_cnt[2];
4023 }
4024 
4025 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4026 					    void *context, int vl, int mode,
4027 					    u64 data)
4028 {
4029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030 
4031 	return dd->sw_send_dma_eng_err_status_cnt[1];
4032 }
4033 
4034 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4035 					void *context, int vl, int mode,
4036 					u64 data)
4037 {
4038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039 
4040 	return dd->sw_send_dma_eng_err_status_cnt[0];
4041 }
4042 
4043 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4044 				 void *context, int vl, int mode,
4045 				 u64 data)
4046 {
4047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048 
4049 	u64 val = 0;
4050 	u64 csr = entry->csr;
4051 
4052 	val = read_write_csr(dd, csr, mode, data);
4053 	if (mode == CNTR_MODE_R) {
4054 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4055 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4056 	} else if (mode == CNTR_MODE_W) {
4057 		dd->sw_rcv_bypass_packet_errors = 0;
4058 	} else {
4059 		dd_dev_err(dd, "Invalid cntr register access mode");
4060 		return 0;
4061 	}
4062 	return val;
4063 }
4064 
4065 #define def_access_sw_cpu(cntr) \
4066 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4067 			      void *context, int vl, int mode, u64 data)      \
4068 {									      \
4069 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4070 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4071 			      ppd->ibport_data.rvp.cntr, vl,		      \
4072 			      mode, data);				      \
4073 }
4074 
4075 def_access_sw_cpu(rc_acks);
4076 def_access_sw_cpu(rc_qacks);
4077 def_access_sw_cpu(rc_delayed_comp);
4078 
4079 #define def_access_ibp_counter(cntr) \
4080 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4081 				void *context, int vl, int mode, u64 data)    \
4082 {									      \
4083 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4084 									      \
4085 	if (vl != CNTR_INVALID_VL)					      \
4086 		return 0;						      \
4087 									      \
4088 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4089 			     mode, data);				      \
4090 }
4091 
4092 def_access_ibp_counter(loop_pkts);
4093 def_access_ibp_counter(rc_resends);
4094 def_access_ibp_counter(rnr_naks);
4095 def_access_ibp_counter(other_naks);
4096 def_access_ibp_counter(rc_timeouts);
4097 def_access_ibp_counter(pkt_drops);
4098 def_access_ibp_counter(dmawait);
4099 def_access_ibp_counter(rc_seqnak);
4100 def_access_ibp_counter(rc_dupreq);
4101 def_access_ibp_counter(rdma_seq);
4102 def_access_ibp_counter(unaligned);
4103 def_access_ibp_counter(seq_naks);
4104 
4105 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4106 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4107 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4108 			CNTR_NORMAL),
4109 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4110 			CNTR_NORMAL),
4111 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4112 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4113 			CNTR_NORMAL),
4114 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4115 			CNTR_NORMAL),
4116 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4117 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4118 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4119 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4120 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4121 			CNTR_NORMAL),
4122 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4123 			CNTR_NORMAL),
4124 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4125 			CNTR_NORMAL),
4126 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4127 			CNTR_NORMAL),
4128 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4129 			CNTR_NORMAL),
4130 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4131 			CNTR_NORMAL),
4132 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4133 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4134 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4135 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4136 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4137 			      CNTR_SYNTH),
4138 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4139 			    access_dc_rcv_err_cnt),
4140 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4141 				 CNTR_SYNTH),
4142 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4143 				  CNTR_SYNTH),
4144 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4145 				  CNTR_SYNTH),
4146 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4147 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4148 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4149 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4150 				  CNTR_SYNTH),
4151 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4152 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4153 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4154 			       CNTR_SYNTH),
4155 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4156 			      CNTR_SYNTH),
4157 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4158 			       CNTR_SYNTH),
4159 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4160 				 CNTR_SYNTH),
4161 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4162 				CNTR_SYNTH),
4163 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4164 				CNTR_SYNTH),
4165 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4166 			       CNTR_SYNTH),
4167 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4168 				 CNTR_SYNTH | CNTR_VL),
4169 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4170 				CNTR_SYNTH | CNTR_VL),
4171 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4172 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4173 				 CNTR_SYNTH | CNTR_VL),
4174 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4175 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4176 				 CNTR_SYNTH | CNTR_VL),
4177 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4178 			      CNTR_SYNTH),
4179 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4180 				 CNTR_SYNTH | CNTR_VL),
4181 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4182 				CNTR_SYNTH),
4183 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4184 				   CNTR_SYNTH | CNTR_VL),
4185 [C_DC_TOTAL_CRC] =
4186 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4187 			 CNTR_SYNTH),
4188 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4189 				  CNTR_SYNTH),
4190 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4191 				  CNTR_SYNTH),
4192 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4193 				  CNTR_SYNTH),
4194 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4195 				  CNTR_SYNTH),
4196 [C_DC_CRC_MULT_LN] =
4197 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4198 			 CNTR_SYNTH),
4199 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4200 				    CNTR_SYNTH),
4201 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4202 				    CNTR_SYNTH),
4203 [C_DC_SEQ_CRC_CNT] =
4204 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4205 			 CNTR_SYNTH),
4206 [C_DC_ESC0_ONLY_CNT] =
4207 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4208 			 CNTR_SYNTH),
4209 [C_DC_ESC0_PLUS1_CNT] =
4210 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4211 			 CNTR_SYNTH),
4212 [C_DC_ESC0_PLUS2_CNT] =
4213 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4214 			 CNTR_SYNTH),
4215 [C_DC_REINIT_FROM_PEER_CNT] =
4216 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4217 			 CNTR_SYNTH),
4218 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4219 				  CNTR_SYNTH),
4220 [C_DC_MISC_FLG_CNT] =
4221 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4222 			 CNTR_SYNTH),
4223 [C_DC_PRF_GOOD_LTP_CNT] =
4224 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4225 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4226 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4227 			 CNTR_SYNTH),
4228 [C_DC_PRF_RX_FLIT_CNT] =
4229 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4230 [C_DC_PRF_TX_FLIT_CNT] =
4231 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4232 [C_DC_PRF_CLK_CNTR] =
4233 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4234 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4235 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4236 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4237 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4238 			 CNTR_SYNTH),
4239 [C_DC_PG_STS_TX_SBE_CNT] =
4240 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4241 [C_DC_PG_STS_TX_MBE_CNT] =
4242 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4243 			 CNTR_SYNTH),
4244 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4245 			    access_sw_cpu_intr),
4246 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4247 			    access_sw_cpu_rcv_limit),
4248 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4249 			    access_sw_vtx_wait),
4250 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4251 			    access_sw_pio_wait),
4252 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4253 			    access_sw_pio_drain),
4254 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4255 			    access_sw_kmem_wait),
4256 [C_SW_TID_WAIT] = CNTR_ELEM("TidWait", 0, 0, CNTR_NORMAL,
4257 			    hfi1_access_sw_tid_wait),
4258 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4259 			    access_sw_send_schedule),
4260 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4261 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4262 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4263 				      dev_access_u32_csr),
4264 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4265 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4266 			     access_sde_int_cnt),
4267 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4268 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4269 			     access_sde_err_cnt),
4270 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4271 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4272 				  access_sde_idle_int_cnt),
4273 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4274 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4275 				      access_sde_progress_int_cnt),
4276 /* MISC_ERR_STATUS */
4277 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4278 				CNTR_NORMAL,
4279 				access_misc_pll_lock_fail_err_cnt),
4280 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4281 				CNTR_NORMAL,
4282 				access_misc_mbist_fail_err_cnt),
4283 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4284 				CNTR_NORMAL,
4285 				access_misc_invalid_eep_cmd_err_cnt),
4286 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4287 				CNTR_NORMAL,
4288 				access_misc_efuse_done_parity_err_cnt),
4289 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4290 				CNTR_NORMAL,
4291 				access_misc_efuse_write_err_cnt),
4292 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4293 				0, CNTR_NORMAL,
4294 				access_misc_efuse_read_bad_addr_err_cnt),
4295 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4296 				CNTR_NORMAL,
4297 				access_misc_efuse_csr_parity_err_cnt),
4298 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4299 				CNTR_NORMAL,
4300 				access_misc_fw_auth_failed_err_cnt),
4301 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4302 				CNTR_NORMAL,
4303 				access_misc_key_mismatch_err_cnt),
4304 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4305 				CNTR_NORMAL,
4306 				access_misc_sbus_write_failed_err_cnt),
4307 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4308 				CNTR_NORMAL,
4309 				access_misc_csr_write_bad_addr_err_cnt),
4310 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4311 				CNTR_NORMAL,
4312 				access_misc_csr_read_bad_addr_err_cnt),
4313 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_misc_csr_parity_err_cnt),
4316 /* CceErrStatus */
4317 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4318 				CNTR_NORMAL,
4319 				access_sw_cce_err_status_aggregated_cnt),
4320 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4321 				CNTR_NORMAL,
4322 				access_cce_msix_csr_parity_err_cnt),
4323 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4324 				CNTR_NORMAL,
4325 				access_cce_int_map_unc_err_cnt),
4326 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4327 				CNTR_NORMAL,
4328 				access_cce_int_map_cor_err_cnt),
4329 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4330 				CNTR_NORMAL,
4331 				access_cce_msix_table_unc_err_cnt),
4332 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4333 				CNTR_NORMAL,
4334 				access_cce_msix_table_cor_err_cnt),
4335 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4336 				0, CNTR_NORMAL,
4337 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4338 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4339 				0, CNTR_NORMAL,
4340 				access_cce_rcpl_async_fifo_parity_err_cnt),
4341 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4342 				CNTR_NORMAL,
4343 				access_cce_seg_write_bad_addr_err_cnt),
4344 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4345 				CNTR_NORMAL,
4346 				access_cce_seg_read_bad_addr_err_cnt),
4347 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4348 				CNTR_NORMAL,
4349 				access_la_triggered_cnt),
4350 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4351 				CNTR_NORMAL,
4352 				access_cce_trgt_cpl_timeout_err_cnt),
4353 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4354 				CNTR_NORMAL,
4355 				access_pcic_receive_parity_err_cnt),
4356 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4357 				CNTR_NORMAL,
4358 				access_pcic_transmit_back_parity_err_cnt),
4359 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4360 				0, CNTR_NORMAL,
4361 				access_pcic_transmit_front_parity_err_cnt),
4362 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4363 				CNTR_NORMAL,
4364 				access_pcic_cpl_dat_q_unc_err_cnt),
4365 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4366 				CNTR_NORMAL,
4367 				access_pcic_cpl_hd_q_unc_err_cnt),
4368 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4369 				CNTR_NORMAL,
4370 				access_pcic_post_dat_q_unc_err_cnt),
4371 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4372 				CNTR_NORMAL,
4373 				access_pcic_post_hd_q_unc_err_cnt),
4374 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4375 				CNTR_NORMAL,
4376 				access_pcic_retry_sot_mem_unc_err_cnt),
4377 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4378 				CNTR_NORMAL,
4379 				access_pcic_retry_mem_unc_err),
4380 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4381 				CNTR_NORMAL,
4382 				access_pcic_n_post_dat_q_parity_err_cnt),
4383 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4384 				CNTR_NORMAL,
4385 				access_pcic_n_post_h_q_parity_err_cnt),
4386 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4387 				CNTR_NORMAL,
4388 				access_pcic_cpl_dat_q_cor_err_cnt),
4389 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4390 				CNTR_NORMAL,
4391 				access_pcic_cpl_hd_q_cor_err_cnt),
4392 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4393 				CNTR_NORMAL,
4394 				access_pcic_post_dat_q_cor_err_cnt),
4395 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4396 				CNTR_NORMAL,
4397 				access_pcic_post_hd_q_cor_err_cnt),
4398 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4399 				CNTR_NORMAL,
4400 				access_pcic_retry_sot_mem_cor_err_cnt),
4401 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4402 				CNTR_NORMAL,
4403 				access_pcic_retry_mem_cor_err_cnt),
4404 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4405 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4406 				CNTR_NORMAL,
4407 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4408 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4409 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4410 				CNTR_NORMAL,
4411 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4412 				),
4413 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4414 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4415 			CNTR_NORMAL,
4416 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4417 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4418 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4419 			CNTR_NORMAL,
4420 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4421 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4422 			0, CNTR_NORMAL,
4423 			access_cce_cli2_async_fifo_parity_err_cnt),
4424 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4425 			CNTR_NORMAL,
4426 			access_cce_csr_cfg_bus_parity_err_cnt),
4427 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4428 			0, CNTR_NORMAL,
4429 			access_cce_cli0_async_fifo_parity_err_cnt),
4430 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4431 			CNTR_NORMAL,
4432 			access_cce_rspd_data_parity_err_cnt),
4433 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4434 			CNTR_NORMAL,
4435 			access_cce_trgt_access_err_cnt),
4436 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4437 			0, CNTR_NORMAL,
4438 			access_cce_trgt_async_fifo_parity_err_cnt),
4439 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4440 			CNTR_NORMAL,
4441 			access_cce_csr_write_bad_addr_err_cnt),
4442 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4443 			CNTR_NORMAL,
4444 			access_cce_csr_read_bad_addr_err_cnt),
4445 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4446 			CNTR_NORMAL,
4447 			access_ccs_csr_parity_err_cnt),
4448 
4449 /* RcvErrStatus */
4450 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4451 			CNTR_NORMAL,
4452 			access_rx_csr_parity_err_cnt),
4453 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4454 			CNTR_NORMAL,
4455 			access_rx_csr_write_bad_addr_err_cnt),
4456 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4457 			CNTR_NORMAL,
4458 			access_rx_csr_read_bad_addr_err_cnt),
4459 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4460 			CNTR_NORMAL,
4461 			access_rx_dma_csr_unc_err_cnt),
4462 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4463 			CNTR_NORMAL,
4464 			access_rx_dma_dq_fsm_encoding_err_cnt),
4465 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4466 			CNTR_NORMAL,
4467 			access_rx_dma_eq_fsm_encoding_err_cnt),
4468 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4469 			CNTR_NORMAL,
4470 			access_rx_dma_csr_parity_err_cnt),
4471 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4472 			CNTR_NORMAL,
4473 			access_rx_rbuf_data_cor_err_cnt),
4474 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4475 			CNTR_NORMAL,
4476 			access_rx_rbuf_data_unc_err_cnt),
4477 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4478 			CNTR_NORMAL,
4479 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4480 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4481 			CNTR_NORMAL,
4482 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4483 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4484 			CNTR_NORMAL,
4485 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4486 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4487 			CNTR_NORMAL,
4488 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4489 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4490 			CNTR_NORMAL,
4491 			access_rx_rbuf_desc_part2_cor_err_cnt),
4492 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4493 			CNTR_NORMAL,
4494 			access_rx_rbuf_desc_part2_unc_err_cnt),
4495 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4496 			CNTR_NORMAL,
4497 			access_rx_rbuf_desc_part1_cor_err_cnt),
4498 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4499 			CNTR_NORMAL,
4500 			access_rx_rbuf_desc_part1_unc_err_cnt),
4501 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4502 			CNTR_NORMAL,
4503 			access_rx_hq_intr_fsm_err_cnt),
4504 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4505 			CNTR_NORMAL,
4506 			access_rx_hq_intr_csr_parity_err_cnt),
4507 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4508 			CNTR_NORMAL,
4509 			access_rx_lookup_csr_parity_err_cnt),
4510 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4511 			CNTR_NORMAL,
4512 			access_rx_lookup_rcv_array_cor_err_cnt),
4513 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4514 			CNTR_NORMAL,
4515 			access_rx_lookup_rcv_array_unc_err_cnt),
4516 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4517 			0, CNTR_NORMAL,
4518 			access_rx_lookup_des_part2_parity_err_cnt),
4519 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4520 			0, CNTR_NORMAL,
4521 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4522 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4523 			CNTR_NORMAL,
4524 			access_rx_lookup_des_part1_unc_err_cnt),
4525 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4526 			CNTR_NORMAL,
4527 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4528 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4529 			CNTR_NORMAL,
4530 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4531 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4532 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4533 			CNTR_NORMAL,
4534 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4535 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4536 			0, CNTR_NORMAL,
4537 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4538 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4539 			0, CNTR_NORMAL,
4540 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4541 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4542 			CNTR_NORMAL,
4543 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4544 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4545 			CNTR_NORMAL,
4546 			access_rx_rbuf_empty_err_cnt),
4547 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4548 			CNTR_NORMAL,
4549 			access_rx_rbuf_full_err_cnt),
4550 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4551 			CNTR_NORMAL,
4552 			access_rbuf_bad_lookup_err_cnt),
4553 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4554 			CNTR_NORMAL,
4555 			access_rbuf_ctx_id_parity_err_cnt),
4556 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4557 			CNTR_NORMAL,
4558 			access_rbuf_csr_qeopdw_parity_err_cnt),
4559 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4560 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4561 			CNTR_NORMAL,
4562 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4563 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4564 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4565 			CNTR_NORMAL,
4566 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4567 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4568 			0, CNTR_NORMAL,
4569 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4570 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4571 			0, CNTR_NORMAL,
4572 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4573 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4574 			0, 0, CNTR_NORMAL,
4575 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4576 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4577 			0, CNTR_NORMAL,
4578 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4579 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4580 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4581 			CNTR_NORMAL,
4582 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4583 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4584 			0, CNTR_NORMAL,
4585 			access_rx_rbuf_block_list_read_cor_err_cnt),
4586 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4587 			0, CNTR_NORMAL,
4588 			access_rx_rbuf_block_list_read_unc_err_cnt),
4589 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4590 			CNTR_NORMAL,
4591 			access_rx_rbuf_lookup_des_cor_err_cnt),
4592 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4593 			CNTR_NORMAL,
4594 			access_rx_rbuf_lookup_des_unc_err_cnt),
4595 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4596 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4597 			CNTR_NORMAL,
4598 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4599 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4600 			CNTR_NORMAL,
4601 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4602 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4603 			CNTR_NORMAL,
4604 			access_rx_rbuf_free_list_cor_err_cnt),
4605 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4606 			CNTR_NORMAL,
4607 			access_rx_rbuf_free_list_unc_err_cnt),
4608 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4609 			CNTR_NORMAL,
4610 			access_rx_rcv_fsm_encoding_err_cnt),
4611 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4612 			CNTR_NORMAL,
4613 			access_rx_dma_flag_cor_err_cnt),
4614 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4615 			CNTR_NORMAL,
4616 			access_rx_dma_flag_unc_err_cnt),
4617 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4618 			CNTR_NORMAL,
4619 			access_rx_dc_sop_eop_parity_err_cnt),
4620 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4621 			CNTR_NORMAL,
4622 			access_rx_rcv_csr_parity_err_cnt),
4623 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4624 			CNTR_NORMAL,
4625 			access_rx_rcv_qp_map_table_cor_err_cnt),
4626 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4627 			CNTR_NORMAL,
4628 			access_rx_rcv_qp_map_table_unc_err_cnt),
4629 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4630 			CNTR_NORMAL,
4631 			access_rx_rcv_data_cor_err_cnt),
4632 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4633 			CNTR_NORMAL,
4634 			access_rx_rcv_data_unc_err_cnt),
4635 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4636 			CNTR_NORMAL,
4637 			access_rx_rcv_hdr_cor_err_cnt),
4638 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4639 			CNTR_NORMAL,
4640 			access_rx_rcv_hdr_unc_err_cnt),
4641 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4642 			CNTR_NORMAL,
4643 			access_rx_dc_intf_parity_err_cnt),
4644 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4645 			CNTR_NORMAL,
4646 			access_rx_dma_csr_cor_err_cnt),
4647 /* SendPioErrStatus */
4648 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4649 			CNTR_NORMAL,
4650 			access_pio_pec_sop_head_parity_err_cnt),
4651 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4652 			CNTR_NORMAL,
4653 			access_pio_pcc_sop_head_parity_err_cnt),
4654 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4655 			0, 0, CNTR_NORMAL,
4656 			access_pio_last_returned_cnt_parity_err_cnt),
4657 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4658 			0, CNTR_NORMAL,
4659 			access_pio_current_free_cnt_parity_err_cnt),
4660 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4661 			CNTR_NORMAL,
4662 			access_pio_reserved_31_err_cnt),
4663 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4664 			CNTR_NORMAL,
4665 			access_pio_reserved_30_err_cnt),
4666 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4667 			CNTR_NORMAL,
4668 			access_pio_ppmc_sop_len_err_cnt),
4669 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4670 			CNTR_NORMAL,
4671 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4672 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4673 			CNTR_NORMAL,
4674 			access_pio_vl_fifo_parity_err_cnt),
4675 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4676 			CNTR_NORMAL,
4677 			access_pio_vlf_sop_parity_err_cnt),
4678 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4679 			CNTR_NORMAL,
4680 			access_pio_vlf_v1_len_parity_err_cnt),
4681 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4682 			CNTR_NORMAL,
4683 			access_pio_block_qw_count_parity_err_cnt),
4684 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4685 			CNTR_NORMAL,
4686 			access_pio_write_qw_valid_parity_err_cnt),
4687 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4688 			CNTR_NORMAL,
4689 			access_pio_state_machine_err_cnt),
4690 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4691 			CNTR_NORMAL,
4692 			access_pio_write_data_parity_err_cnt),
4693 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4694 			CNTR_NORMAL,
4695 			access_pio_host_addr_mem_cor_err_cnt),
4696 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4697 			CNTR_NORMAL,
4698 			access_pio_host_addr_mem_unc_err_cnt),
4699 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4700 			CNTR_NORMAL,
4701 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4702 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4703 			CNTR_NORMAL,
4704 			access_pio_init_sm_in_err_cnt),
4705 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4706 			CNTR_NORMAL,
4707 			access_pio_ppmc_pbl_fifo_err_cnt),
4708 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4709 			0, CNTR_NORMAL,
4710 			access_pio_credit_ret_fifo_parity_err_cnt),
4711 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4712 			CNTR_NORMAL,
4713 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4714 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4715 			CNTR_NORMAL,
4716 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4717 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4718 			CNTR_NORMAL,
4719 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4720 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4721 			CNTR_NORMAL,
4722 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4723 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4724 			CNTR_NORMAL,
4725 			access_pio_sm_pkt_reset_parity_err_cnt),
4726 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_pio_pkt_evict_fifo_parity_err_cnt),
4729 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4730 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4731 			CNTR_NORMAL,
4732 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4733 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4734 			CNTR_NORMAL,
4735 			access_pio_sbrdctl_crrel_parity_err_cnt),
4736 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4737 			CNTR_NORMAL,
4738 			access_pio_pec_fifo_parity_err_cnt),
4739 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4740 			CNTR_NORMAL,
4741 			access_pio_pcc_fifo_parity_err_cnt),
4742 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4743 			CNTR_NORMAL,
4744 			access_pio_sb_mem_fifo1_err_cnt),
4745 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4746 			CNTR_NORMAL,
4747 			access_pio_sb_mem_fifo0_err_cnt),
4748 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4749 			CNTR_NORMAL,
4750 			access_pio_csr_parity_err_cnt),
4751 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4752 			CNTR_NORMAL,
4753 			access_pio_write_addr_parity_err_cnt),
4754 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4755 			CNTR_NORMAL,
4756 			access_pio_write_bad_ctxt_err_cnt),
4757 /* SendDmaErrStatus */
4758 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4759 			0, CNTR_NORMAL,
4760 			access_sdma_pcie_req_tracking_cor_err_cnt),
4761 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4762 			0, CNTR_NORMAL,
4763 			access_sdma_pcie_req_tracking_unc_err_cnt),
4764 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4765 			CNTR_NORMAL,
4766 			access_sdma_csr_parity_err_cnt),
4767 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4768 			CNTR_NORMAL,
4769 			access_sdma_rpy_tag_err_cnt),
4770 /* SendEgressErrStatus */
4771 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4772 			CNTR_NORMAL,
4773 			access_tx_read_pio_memory_csr_unc_err_cnt),
4774 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4775 			0, CNTR_NORMAL,
4776 			access_tx_read_sdma_memory_csr_err_cnt),
4777 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4778 			CNTR_NORMAL,
4779 			access_tx_egress_fifo_cor_err_cnt),
4780 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4781 			CNTR_NORMAL,
4782 			access_tx_read_pio_memory_cor_err_cnt),
4783 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4784 			CNTR_NORMAL,
4785 			access_tx_read_sdma_memory_cor_err_cnt),
4786 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4787 			CNTR_NORMAL,
4788 			access_tx_sb_hdr_cor_err_cnt),
4789 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4790 			CNTR_NORMAL,
4791 			access_tx_credit_overrun_err_cnt),
4792 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4793 			CNTR_NORMAL,
4794 			access_tx_launch_fifo8_cor_err_cnt),
4795 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4796 			CNTR_NORMAL,
4797 			access_tx_launch_fifo7_cor_err_cnt),
4798 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4799 			CNTR_NORMAL,
4800 			access_tx_launch_fifo6_cor_err_cnt),
4801 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4802 			CNTR_NORMAL,
4803 			access_tx_launch_fifo5_cor_err_cnt),
4804 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4805 			CNTR_NORMAL,
4806 			access_tx_launch_fifo4_cor_err_cnt),
4807 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4808 			CNTR_NORMAL,
4809 			access_tx_launch_fifo3_cor_err_cnt),
4810 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4811 			CNTR_NORMAL,
4812 			access_tx_launch_fifo2_cor_err_cnt),
4813 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4814 			CNTR_NORMAL,
4815 			access_tx_launch_fifo1_cor_err_cnt),
4816 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4817 			CNTR_NORMAL,
4818 			access_tx_launch_fifo0_cor_err_cnt),
4819 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4820 			CNTR_NORMAL,
4821 			access_tx_credit_return_vl_err_cnt),
4822 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4823 			CNTR_NORMAL,
4824 			access_tx_hcrc_insertion_err_cnt),
4825 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4826 			CNTR_NORMAL,
4827 			access_tx_egress_fifo_unc_err_cnt),
4828 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4829 			CNTR_NORMAL,
4830 			access_tx_read_pio_memory_unc_err_cnt),
4831 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4832 			CNTR_NORMAL,
4833 			access_tx_read_sdma_memory_unc_err_cnt),
4834 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4835 			CNTR_NORMAL,
4836 			access_tx_sb_hdr_unc_err_cnt),
4837 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4838 			CNTR_NORMAL,
4839 			access_tx_credit_return_partiy_err_cnt),
4840 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4841 			0, 0, CNTR_NORMAL,
4842 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4843 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4844 			0, 0, CNTR_NORMAL,
4845 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4846 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4847 			0, 0, CNTR_NORMAL,
4848 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4849 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4850 			0, 0, CNTR_NORMAL,
4851 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4852 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4853 			0, 0, CNTR_NORMAL,
4854 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4855 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4856 			0, 0, CNTR_NORMAL,
4857 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4858 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4859 			0, 0, CNTR_NORMAL,
4860 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4861 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4862 			0, 0, CNTR_NORMAL,
4863 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4864 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4865 			0, 0, CNTR_NORMAL,
4866 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4867 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4868 			0, 0, CNTR_NORMAL,
4869 			access_tx_sdma15_disallowed_packet_err_cnt),
4870 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4871 			0, 0, CNTR_NORMAL,
4872 			access_tx_sdma14_disallowed_packet_err_cnt),
4873 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4874 			0, 0, CNTR_NORMAL,
4875 			access_tx_sdma13_disallowed_packet_err_cnt),
4876 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4877 			0, 0, CNTR_NORMAL,
4878 			access_tx_sdma12_disallowed_packet_err_cnt),
4879 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4880 			0, 0, CNTR_NORMAL,
4881 			access_tx_sdma11_disallowed_packet_err_cnt),
4882 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4883 			0, 0, CNTR_NORMAL,
4884 			access_tx_sdma10_disallowed_packet_err_cnt),
4885 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4886 			0, 0, CNTR_NORMAL,
4887 			access_tx_sdma9_disallowed_packet_err_cnt),
4888 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4889 			0, 0, CNTR_NORMAL,
4890 			access_tx_sdma8_disallowed_packet_err_cnt),
4891 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4892 			0, 0, CNTR_NORMAL,
4893 			access_tx_sdma7_disallowed_packet_err_cnt),
4894 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4895 			0, 0, CNTR_NORMAL,
4896 			access_tx_sdma6_disallowed_packet_err_cnt),
4897 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4898 			0, 0, CNTR_NORMAL,
4899 			access_tx_sdma5_disallowed_packet_err_cnt),
4900 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4901 			0, 0, CNTR_NORMAL,
4902 			access_tx_sdma4_disallowed_packet_err_cnt),
4903 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4904 			0, 0, CNTR_NORMAL,
4905 			access_tx_sdma3_disallowed_packet_err_cnt),
4906 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4907 			0, 0, CNTR_NORMAL,
4908 			access_tx_sdma2_disallowed_packet_err_cnt),
4909 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4910 			0, 0, CNTR_NORMAL,
4911 			access_tx_sdma1_disallowed_packet_err_cnt),
4912 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4913 			0, 0, CNTR_NORMAL,
4914 			access_tx_sdma0_disallowed_packet_err_cnt),
4915 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4916 			CNTR_NORMAL,
4917 			access_tx_config_parity_err_cnt),
4918 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4919 			CNTR_NORMAL,
4920 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4921 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4922 			CNTR_NORMAL,
4923 			access_tx_launch_csr_parity_err_cnt),
4924 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4925 			CNTR_NORMAL,
4926 			access_tx_illegal_vl_err_cnt),
4927 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4928 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4929 			CNTR_NORMAL,
4930 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4931 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4932 			CNTR_NORMAL,
4933 			access_egress_reserved_10_err_cnt),
4934 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4935 			CNTR_NORMAL,
4936 			access_egress_reserved_9_err_cnt),
4937 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4938 			0, 0, CNTR_NORMAL,
4939 			access_tx_sdma_launch_intf_parity_err_cnt),
4940 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4941 			CNTR_NORMAL,
4942 			access_tx_pio_launch_intf_parity_err_cnt),
4943 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4944 			CNTR_NORMAL,
4945 			access_egress_reserved_6_err_cnt),
4946 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4947 			CNTR_NORMAL,
4948 			access_tx_incorrect_link_state_err_cnt),
4949 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4950 			CNTR_NORMAL,
4951 			access_tx_linkdown_err_cnt),
4952 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4953 			"EgressFifoUnderrunOrParityErr", 0, 0,
4954 			CNTR_NORMAL,
4955 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4956 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4957 			CNTR_NORMAL,
4958 			access_egress_reserved_2_err_cnt),
4959 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4960 			CNTR_NORMAL,
4961 			access_tx_pkt_integrity_mem_unc_err_cnt),
4962 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4963 			CNTR_NORMAL,
4964 			access_tx_pkt_integrity_mem_cor_err_cnt),
4965 /* SendErrStatus */
4966 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4967 			CNTR_NORMAL,
4968 			access_send_csr_write_bad_addr_err_cnt),
4969 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4970 			CNTR_NORMAL,
4971 			access_send_csr_read_bad_addr_err_cnt),
4972 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4973 			CNTR_NORMAL,
4974 			access_send_csr_parity_cnt),
4975 /* SendCtxtErrStatus */
4976 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4977 			CNTR_NORMAL,
4978 			access_pio_write_out_of_bounds_err_cnt),
4979 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4980 			CNTR_NORMAL,
4981 			access_pio_write_overflow_err_cnt),
4982 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4983 			0, 0, CNTR_NORMAL,
4984 			access_pio_write_crosses_boundary_err_cnt),
4985 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4986 			CNTR_NORMAL,
4987 			access_pio_disallowed_packet_err_cnt),
4988 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4989 			CNTR_NORMAL,
4990 			access_pio_inconsistent_sop_err_cnt),
4991 /* SendDmaEngErrStatus */
4992 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4993 			0, 0, CNTR_NORMAL,
4994 			access_sdma_header_request_fifo_cor_err_cnt),
4995 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4996 			CNTR_NORMAL,
4997 			access_sdma_header_storage_cor_err_cnt),
4998 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4999 			CNTR_NORMAL,
5000 			access_sdma_packet_tracking_cor_err_cnt),
5001 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5002 			CNTR_NORMAL,
5003 			access_sdma_assembly_cor_err_cnt),
5004 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5005 			CNTR_NORMAL,
5006 			access_sdma_desc_table_cor_err_cnt),
5007 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5008 			0, 0, CNTR_NORMAL,
5009 			access_sdma_header_request_fifo_unc_err_cnt),
5010 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5011 			CNTR_NORMAL,
5012 			access_sdma_header_storage_unc_err_cnt),
5013 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5014 			CNTR_NORMAL,
5015 			access_sdma_packet_tracking_unc_err_cnt),
5016 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5017 			CNTR_NORMAL,
5018 			access_sdma_assembly_unc_err_cnt),
5019 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5020 			CNTR_NORMAL,
5021 			access_sdma_desc_table_unc_err_cnt),
5022 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5023 			CNTR_NORMAL,
5024 			access_sdma_timeout_err_cnt),
5025 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5026 			CNTR_NORMAL,
5027 			access_sdma_header_length_err_cnt),
5028 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5029 			CNTR_NORMAL,
5030 			access_sdma_header_address_err_cnt),
5031 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5032 			CNTR_NORMAL,
5033 			access_sdma_header_select_err_cnt),
5034 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5035 			CNTR_NORMAL,
5036 			access_sdma_reserved_9_err_cnt),
5037 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5038 			CNTR_NORMAL,
5039 			access_sdma_packet_desc_overflow_err_cnt),
5040 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5041 			CNTR_NORMAL,
5042 			access_sdma_length_mismatch_err_cnt),
5043 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5044 			CNTR_NORMAL,
5045 			access_sdma_halt_err_cnt),
5046 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5047 			CNTR_NORMAL,
5048 			access_sdma_mem_read_err_cnt),
5049 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5050 			CNTR_NORMAL,
5051 			access_sdma_first_desc_err_cnt),
5052 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5053 			CNTR_NORMAL,
5054 			access_sdma_tail_out_of_bounds_err_cnt),
5055 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5056 			CNTR_NORMAL,
5057 			access_sdma_too_long_err_cnt),
5058 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5059 			CNTR_NORMAL,
5060 			access_sdma_gen_mismatch_err_cnt),
5061 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5062 			CNTR_NORMAL,
5063 			access_sdma_wrong_dw_err_cnt),
5064 };
5065 
5066 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5067 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5068 			CNTR_NORMAL),
5069 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5070 			CNTR_NORMAL),
5071 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5074 			CNTR_NORMAL),
5075 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5076 			CNTR_NORMAL),
5077 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5078 			CNTR_NORMAL),
5079 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5080 			CNTR_NORMAL),
5081 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5082 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5083 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5084 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5085 				      CNTR_SYNTH | CNTR_VL),
5086 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5087 				     CNTR_SYNTH | CNTR_VL),
5088 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5089 				      CNTR_SYNTH | CNTR_VL),
5090 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5091 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5092 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5093 			     access_sw_link_dn_cnt),
5094 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5095 			   access_sw_link_up_cnt),
5096 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5097 				 access_sw_unknown_frame_cnt),
5098 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5099 			     access_sw_xmit_discards),
5100 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5101 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5102 				access_sw_xmit_discards),
5103 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5104 				 access_xmit_constraint_errs),
5105 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5106 				access_rcv_constraint_errs),
5107 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5108 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5109 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5110 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5111 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5112 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5113 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5114 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5115 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5116 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5117 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5118 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5119 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5120 			       access_sw_cpu_rc_acks),
5121 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5122 				access_sw_cpu_rc_qacks),
5123 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5124 				       access_sw_cpu_rc_delayed_comp),
5125 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5126 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5127 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5128 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5129 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5130 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5131 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5132 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5133 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5134 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5135 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5136 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5137 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5138 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5139 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5140 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5141 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5142 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5143 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5144 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5145 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5146 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5147 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5148 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5149 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5150 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5151 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5152 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5153 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5154 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5155 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5156 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5157 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5158 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5159 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5160 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5161 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5162 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5163 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5164 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5165 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5166 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5167 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5168 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5169 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5170 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5171 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5172 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5173 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5174 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5175 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5176 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5177 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5178 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5179 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5180 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5181 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5182 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5183 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5184 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5185 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5186 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5187 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5188 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5189 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5190 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5191 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5192 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5193 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5194 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5195 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5196 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5197 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5198 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5199 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5200 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5201 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5202 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5203 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5204 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5205 };
5206 
5207 /* ======================================================================== */
5208 
5209 /* return true if this is chip revision revision a */
5210 int is_ax(struct hfi1_devdata *dd)
5211 {
5212 	u8 chip_rev_minor =
5213 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5214 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5215 	return (chip_rev_minor & 0xf0) == 0;
5216 }
5217 
5218 /* return true if this is chip revision revision b */
5219 int is_bx(struct hfi1_devdata *dd)
5220 {
5221 	u8 chip_rev_minor =
5222 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5223 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5224 	return (chip_rev_minor & 0xF0) == 0x10;
5225 }
5226 
5227 /* return true is kernel urg disabled for rcd */
5228 bool is_urg_masked(struct hfi1_ctxtdata *rcd)
5229 {
5230 	u64 mask;
5231 	u32 is = IS_RCVURGENT_START + rcd->ctxt;
5232 	u8 bit = is % 64;
5233 
5234 	mask = read_csr(rcd->dd, CCE_INT_MASK + (8 * (is / 64)));
5235 	return !(mask & BIT_ULL(bit));
5236 }
5237 
5238 /*
5239  * Append string s to buffer buf.  Arguments curp and len are the current
5240  * position and remaining length, respectively.
5241  *
5242  * return 0 on success, 1 on out of room
5243  */
5244 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5245 {
5246 	char *p = *curp;
5247 	int len = *lenp;
5248 	int result = 0; /* success */
5249 	char c;
5250 
5251 	/* add a comma, if first in the buffer */
5252 	if (p != buf) {
5253 		if (len == 0) {
5254 			result = 1; /* out of room */
5255 			goto done;
5256 		}
5257 		*p++ = ',';
5258 		len--;
5259 	}
5260 
5261 	/* copy the string */
5262 	while ((c = *s++) != 0) {
5263 		if (len == 0) {
5264 			result = 1; /* out of room */
5265 			goto done;
5266 		}
5267 		*p++ = c;
5268 		len--;
5269 	}
5270 
5271 done:
5272 	/* write return values */
5273 	*curp = p;
5274 	*lenp = len;
5275 
5276 	return result;
5277 }
5278 
5279 /*
5280  * Using the given flag table, print a comma separated string into
5281  * the buffer.  End in '*' if the buffer is too short.
5282  */
5283 static char *flag_string(char *buf, int buf_len, u64 flags,
5284 			 struct flag_table *table, int table_size)
5285 {
5286 	char extra[32];
5287 	char *p = buf;
5288 	int len = buf_len;
5289 	int no_room = 0;
5290 	int i;
5291 
5292 	/* make sure there is at least 2 so we can form "*" */
5293 	if (len < 2)
5294 		return "";
5295 
5296 	len--;	/* leave room for a nul */
5297 	for (i = 0; i < table_size; i++) {
5298 		if (flags & table[i].flag) {
5299 			no_room = append_str(buf, &p, &len, table[i].str);
5300 			if (no_room)
5301 				break;
5302 			flags &= ~table[i].flag;
5303 		}
5304 	}
5305 
5306 	/* any undocumented bits left? */
5307 	if (!no_room && flags) {
5308 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5309 		no_room = append_str(buf, &p, &len, extra);
5310 	}
5311 
5312 	/* add * if ran out of room */
5313 	if (no_room) {
5314 		/* may need to back up to add space for a '*' */
5315 		if (len == 0)
5316 			--p;
5317 		*p++ = '*';
5318 	}
5319 
5320 	/* add final nul - space already allocated above */
5321 	*p = 0;
5322 	return buf;
5323 }
5324 
5325 /* first 8 CCE error interrupt source names */
5326 static const char * const cce_misc_names[] = {
5327 	"CceErrInt",		/* 0 */
5328 	"RxeErrInt",		/* 1 */
5329 	"MiscErrInt",		/* 2 */
5330 	"Reserved3",		/* 3 */
5331 	"PioErrInt",		/* 4 */
5332 	"SDmaErrInt",		/* 5 */
5333 	"EgressErrInt",		/* 6 */
5334 	"TxeErrInt"		/* 7 */
5335 };
5336 
5337 /*
5338  * Return the miscellaneous error interrupt name.
5339  */
5340 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5341 {
5342 	if (source < ARRAY_SIZE(cce_misc_names))
5343 		strncpy(buf, cce_misc_names[source], bsize);
5344 	else
5345 		snprintf(buf, bsize, "Reserved%u",
5346 			 source + IS_GENERAL_ERR_START);
5347 
5348 	return buf;
5349 }
5350 
5351 /*
5352  * Return the SDMA engine error interrupt name.
5353  */
5354 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5355 {
5356 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5357 	return buf;
5358 }
5359 
5360 /*
5361  * Return the send context error interrupt name.
5362  */
5363 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5364 {
5365 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5366 	return buf;
5367 }
5368 
5369 static const char * const various_names[] = {
5370 	"PbcInt",
5371 	"GpioAssertInt",
5372 	"Qsfp1Int",
5373 	"Qsfp2Int",
5374 	"TCritInt"
5375 };
5376 
5377 /*
5378  * Return the various interrupt name.
5379  */
5380 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5381 {
5382 	if (source < ARRAY_SIZE(various_names))
5383 		strncpy(buf, various_names[source], bsize);
5384 	else
5385 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5386 	return buf;
5387 }
5388 
5389 /*
5390  * Return the DC interrupt name.
5391  */
5392 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5393 {
5394 	static const char * const dc_int_names[] = {
5395 		"common",
5396 		"lcb",
5397 		"8051",
5398 		"lbm"	/* local block merge */
5399 	};
5400 
5401 	if (source < ARRAY_SIZE(dc_int_names))
5402 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5403 	else
5404 		snprintf(buf, bsize, "DCInt%u", source);
5405 	return buf;
5406 }
5407 
5408 static const char * const sdma_int_names[] = {
5409 	"SDmaInt",
5410 	"SdmaIdleInt",
5411 	"SdmaProgressInt",
5412 };
5413 
5414 /*
5415  * Return the SDMA engine interrupt name.
5416  */
5417 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5418 {
5419 	/* what interrupt */
5420 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5421 	/* which engine */
5422 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5423 
5424 	if (likely(what < 3))
5425 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5426 	else
5427 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5428 	return buf;
5429 }
5430 
5431 /*
5432  * Return the receive available interrupt name.
5433  */
5434 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5435 {
5436 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5437 	return buf;
5438 }
5439 
5440 /*
5441  * Return the receive urgent interrupt name.
5442  */
5443 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5444 {
5445 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5446 	return buf;
5447 }
5448 
5449 /*
5450  * Return the send credit interrupt name.
5451  */
5452 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5453 {
5454 	snprintf(buf, bsize, "SendCreditInt%u", source);
5455 	return buf;
5456 }
5457 
5458 /*
5459  * Return the reserved interrupt name.
5460  */
5461 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5462 {
5463 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5464 	return buf;
5465 }
5466 
5467 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5468 {
5469 	return flag_string(buf, buf_len, flags,
5470 			   cce_err_status_flags,
5471 			   ARRAY_SIZE(cce_err_status_flags));
5472 }
5473 
5474 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5475 {
5476 	return flag_string(buf, buf_len, flags,
5477 			   rxe_err_status_flags,
5478 			   ARRAY_SIZE(rxe_err_status_flags));
5479 }
5480 
5481 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5482 {
5483 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5484 			   ARRAY_SIZE(misc_err_status_flags));
5485 }
5486 
5487 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5488 {
5489 	return flag_string(buf, buf_len, flags,
5490 			   pio_err_status_flags,
5491 			   ARRAY_SIZE(pio_err_status_flags));
5492 }
5493 
5494 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5495 {
5496 	return flag_string(buf, buf_len, flags,
5497 			   sdma_err_status_flags,
5498 			   ARRAY_SIZE(sdma_err_status_flags));
5499 }
5500 
5501 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5502 {
5503 	return flag_string(buf, buf_len, flags,
5504 			   egress_err_status_flags,
5505 			   ARRAY_SIZE(egress_err_status_flags));
5506 }
5507 
5508 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5509 {
5510 	return flag_string(buf, buf_len, flags,
5511 			   egress_err_info_flags,
5512 			   ARRAY_SIZE(egress_err_info_flags));
5513 }
5514 
5515 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5516 {
5517 	return flag_string(buf, buf_len, flags,
5518 			   send_err_status_flags,
5519 			   ARRAY_SIZE(send_err_status_flags));
5520 }
5521 
5522 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5523 {
5524 	char buf[96];
5525 	int i = 0;
5526 
5527 	/*
5528 	 * For most these errors, there is nothing that can be done except
5529 	 * report or record it.
5530 	 */
5531 	dd_dev_info(dd, "CCE Error: %s\n",
5532 		    cce_err_status_string(buf, sizeof(buf), reg));
5533 
5534 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5535 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5536 		/* this error requires a manual drop into SPC freeze mode */
5537 		/* then a fix up */
5538 		start_freeze_handling(dd->pport, FREEZE_SELF);
5539 	}
5540 
5541 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5542 		if (reg & (1ull << i)) {
5543 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5544 			/* maintain a counter over all cce_err_status errors */
5545 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5546 		}
5547 	}
5548 }
5549 
5550 /*
5551  * Check counters for receive errors that do not have an interrupt
5552  * associated with them.
5553  */
5554 #define RCVERR_CHECK_TIME 10
5555 static void update_rcverr_timer(struct timer_list *t)
5556 {
5557 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5558 	struct hfi1_pportdata *ppd = dd->pport;
5559 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5560 
5561 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5562 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5563 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5564 		set_link_down_reason(
5565 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5566 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5567 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5568 	}
5569 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5570 
5571 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5572 }
5573 
5574 static int init_rcverr(struct hfi1_devdata *dd)
5575 {
5576 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5577 	/* Assume the hardware counter has been reset */
5578 	dd->rcv_ovfl_cnt = 0;
5579 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5580 }
5581 
5582 static void free_rcverr(struct hfi1_devdata *dd)
5583 {
5584 	if (dd->rcverr_timer.function)
5585 		del_timer_sync(&dd->rcverr_timer);
5586 }
5587 
5588 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5589 {
5590 	char buf[96];
5591 	int i = 0;
5592 
5593 	dd_dev_info(dd, "Receive Error: %s\n",
5594 		    rxe_err_status_string(buf, sizeof(buf), reg));
5595 
5596 	if (reg & ALL_RXE_FREEZE_ERR) {
5597 		int flags = 0;
5598 
5599 		/*
5600 		 * Freeze mode recovery is disabled for the errors
5601 		 * in RXE_FREEZE_ABORT_MASK
5602 		 */
5603 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5604 			flags = FREEZE_ABORT;
5605 
5606 		start_freeze_handling(dd->pport, flags);
5607 	}
5608 
5609 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5610 		if (reg & (1ull << i))
5611 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5612 	}
5613 }
5614 
5615 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5616 {
5617 	char buf[96];
5618 	int i = 0;
5619 
5620 	dd_dev_info(dd, "Misc Error: %s",
5621 		    misc_err_status_string(buf, sizeof(buf), reg));
5622 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5623 		if (reg & (1ull << i))
5624 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5625 	}
5626 }
5627 
5628 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5629 {
5630 	char buf[96];
5631 	int i = 0;
5632 
5633 	dd_dev_info(dd, "PIO Error: %s\n",
5634 		    pio_err_status_string(buf, sizeof(buf), reg));
5635 
5636 	if (reg & ALL_PIO_FREEZE_ERR)
5637 		start_freeze_handling(dd->pport, 0);
5638 
5639 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5640 		if (reg & (1ull << i))
5641 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5642 	}
5643 }
5644 
5645 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5646 {
5647 	char buf[96];
5648 	int i = 0;
5649 
5650 	dd_dev_info(dd, "SDMA Error: %s\n",
5651 		    sdma_err_status_string(buf, sizeof(buf), reg));
5652 
5653 	if (reg & ALL_SDMA_FREEZE_ERR)
5654 		start_freeze_handling(dd->pport, 0);
5655 
5656 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5657 		if (reg & (1ull << i))
5658 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5659 	}
5660 }
5661 
5662 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5663 {
5664 	incr_cntr64(&ppd->port_xmit_discards);
5665 }
5666 
5667 static void count_port_inactive(struct hfi1_devdata *dd)
5668 {
5669 	__count_port_discards(dd->pport);
5670 }
5671 
5672 /*
5673  * We have had a "disallowed packet" error during egress. Determine the
5674  * integrity check which failed, and update relevant error counter, etc.
5675  *
5676  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5677  * bit of state per integrity check, and so we can miss the reason for an
5678  * egress error if more than one packet fails the same integrity check
5679  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5680  */
5681 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5682 					int vl)
5683 {
5684 	struct hfi1_pportdata *ppd = dd->pport;
5685 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5686 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5687 	char buf[96];
5688 
5689 	/* clear down all observed info as quickly as possible after read */
5690 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5691 
5692 	dd_dev_info(dd,
5693 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5694 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5695 
5696 	/* Eventually add other counters for each bit */
5697 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5698 		int weight, i;
5699 
5700 		/*
5701 		 * Count all applicable bits as individual errors and
5702 		 * attribute them to the packet that triggered this handler.
5703 		 * This may not be completely accurate due to limitations
5704 		 * on the available hardware error information.  There is
5705 		 * a single information register and any number of error
5706 		 * packets may have occurred and contributed to it before
5707 		 * this routine is called.  This means that:
5708 		 * a) If multiple packets with the same error occur before
5709 		 *    this routine is called, earlier packets are missed.
5710 		 *    There is only a single bit for each error type.
5711 		 * b) Errors may not be attributed to the correct VL.
5712 		 *    The driver is attributing all bits in the info register
5713 		 *    to the packet that triggered this call, but bits
5714 		 *    could be an accumulation of different packets with
5715 		 *    different VLs.
5716 		 * c) A single error packet may have multiple counts attached
5717 		 *    to it.  There is no way for the driver to know if
5718 		 *    multiple bits set in the info register are due to a
5719 		 *    single packet or multiple packets.  The driver assumes
5720 		 *    multiple packets.
5721 		 */
5722 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5723 		for (i = 0; i < weight; i++) {
5724 			__count_port_discards(ppd);
5725 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5726 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5727 			else if (vl == 15)
5728 				incr_cntr64(&ppd->port_xmit_discards_vl
5729 					    [C_VL_15]);
5730 		}
5731 	}
5732 }
5733 
5734 /*
5735  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5736  * register. Does it represent a 'port inactive' error?
5737  */
5738 static inline int port_inactive_err(u64 posn)
5739 {
5740 	return (posn >= SEES(TX_LINKDOWN) &&
5741 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5742 }
5743 
5744 /*
5745  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5746  * register. Does it represent a 'disallowed packet' error?
5747  */
5748 static inline int disallowed_pkt_err(int posn)
5749 {
5750 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5751 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5752 }
5753 
5754 /*
5755  * Input value is a bit position of one of the SDMA engine disallowed
5756  * packet errors.  Return which engine.  Use of this must be guarded by
5757  * disallowed_pkt_err().
5758  */
5759 static inline int disallowed_pkt_engine(int posn)
5760 {
5761 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5762 }
5763 
5764 /*
5765  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5766  * be done.
5767  */
5768 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5769 {
5770 	struct sdma_vl_map *m;
5771 	int vl;
5772 
5773 	/* range check */
5774 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5775 		return -1;
5776 
5777 	rcu_read_lock();
5778 	m = rcu_dereference(dd->sdma_map);
5779 	vl = m->engine_to_vl[engine];
5780 	rcu_read_unlock();
5781 
5782 	return vl;
5783 }
5784 
5785 /*
5786  * Translate the send context (sofware index) into a VL.  Return -1 if the
5787  * translation cannot be done.
5788  */
5789 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5790 {
5791 	struct send_context_info *sci;
5792 	struct send_context *sc;
5793 	int i;
5794 
5795 	sci = &dd->send_contexts[sw_index];
5796 
5797 	/* there is no information for user (PSM) and ack contexts */
5798 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5799 		return -1;
5800 
5801 	sc = sci->sc;
5802 	if (!sc)
5803 		return -1;
5804 	if (dd->vld[15].sc == sc)
5805 		return 15;
5806 	for (i = 0; i < num_vls; i++)
5807 		if (dd->vld[i].sc == sc)
5808 			return i;
5809 
5810 	return -1;
5811 }
5812 
5813 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5814 {
5815 	u64 reg_copy = reg, handled = 0;
5816 	char buf[96];
5817 	int i = 0;
5818 
5819 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5820 		start_freeze_handling(dd->pport, 0);
5821 	else if (is_ax(dd) &&
5822 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5823 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5824 		start_freeze_handling(dd->pport, 0);
5825 
5826 	while (reg_copy) {
5827 		int posn = fls64(reg_copy);
5828 		/* fls64() returns a 1-based offset, we want it zero based */
5829 		int shift = posn - 1;
5830 		u64 mask = 1ULL << shift;
5831 
5832 		if (port_inactive_err(shift)) {
5833 			count_port_inactive(dd);
5834 			handled |= mask;
5835 		} else if (disallowed_pkt_err(shift)) {
5836 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5837 
5838 			handle_send_egress_err_info(dd, vl);
5839 			handled |= mask;
5840 		}
5841 		reg_copy &= ~mask;
5842 	}
5843 
5844 	reg &= ~handled;
5845 
5846 	if (reg)
5847 		dd_dev_info(dd, "Egress Error: %s\n",
5848 			    egress_err_status_string(buf, sizeof(buf), reg));
5849 
5850 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5851 		if (reg & (1ull << i))
5852 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5853 	}
5854 }
5855 
5856 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5857 {
5858 	char buf[96];
5859 	int i = 0;
5860 
5861 	dd_dev_info(dd, "Send Error: %s\n",
5862 		    send_err_status_string(buf, sizeof(buf), reg));
5863 
5864 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5865 		if (reg & (1ull << i))
5866 			incr_cntr64(&dd->send_err_status_cnt[i]);
5867 	}
5868 }
5869 
5870 /*
5871  * The maximum number of times the error clear down will loop before
5872  * blocking a repeating error.  This value is arbitrary.
5873  */
5874 #define MAX_CLEAR_COUNT 20
5875 
5876 /*
5877  * Clear and handle an error register.  All error interrupts are funneled
5878  * through here to have a central location to correctly handle single-
5879  * or multi-shot errors.
5880  *
5881  * For non per-context registers, call this routine with a context value
5882  * of 0 so the per-context offset is zero.
5883  *
5884  * If the handler loops too many times, assume that something is wrong
5885  * and can't be fixed, so mask the error bits.
5886  */
5887 static void interrupt_clear_down(struct hfi1_devdata *dd,
5888 				 u32 context,
5889 				 const struct err_reg_info *eri)
5890 {
5891 	u64 reg;
5892 	u32 count;
5893 
5894 	/* read in a loop until no more errors are seen */
5895 	count = 0;
5896 	while (1) {
5897 		reg = read_kctxt_csr(dd, context, eri->status);
5898 		if (reg == 0)
5899 			break;
5900 		write_kctxt_csr(dd, context, eri->clear, reg);
5901 		if (likely(eri->handler))
5902 			eri->handler(dd, context, reg);
5903 		count++;
5904 		if (count > MAX_CLEAR_COUNT) {
5905 			u64 mask;
5906 
5907 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5908 				   eri->desc, reg);
5909 			/*
5910 			 * Read-modify-write so any other masked bits
5911 			 * remain masked.
5912 			 */
5913 			mask = read_kctxt_csr(dd, context, eri->mask);
5914 			mask &= ~reg;
5915 			write_kctxt_csr(dd, context, eri->mask, mask);
5916 			break;
5917 		}
5918 	}
5919 }
5920 
5921 /*
5922  * CCE block "misc" interrupt.  Source is < 16.
5923  */
5924 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5925 {
5926 	const struct err_reg_info *eri = &misc_errs[source];
5927 
5928 	if (eri->handler) {
5929 		interrupt_clear_down(dd, 0, eri);
5930 	} else {
5931 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5932 			   source);
5933 	}
5934 }
5935 
5936 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5937 {
5938 	return flag_string(buf, buf_len, flags,
5939 			   sc_err_status_flags,
5940 			   ARRAY_SIZE(sc_err_status_flags));
5941 }
5942 
5943 /*
5944  * Send context error interrupt.  Source (hw_context) is < 160.
5945  *
5946  * All send context errors cause the send context to halt.  The normal
5947  * clear-down mechanism cannot be used because we cannot clear the
5948  * error bits until several other long-running items are done first.
5949  * This is OK because with the context halted, nothing else is going
5950  * to happen on it anyway.
5951  */
5952 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5953 				unsigned int hw_context)
5954 {
5955 	struct send_context_info *sci;
5956 	struct send_context *sc;
5957 	char flags[96];
5958 	u64 status;
5959 	u32 sw_index;
5960 	int i = 0;
5961 	unsigned long irq_flags;
5962 
5963 	sw_index = dd->hw_to_sw[hw_context];
5964 	if (sw_index >= dd->num_send_contexts) {
5965 		dd_dev_err(dd,
5966 			   "out of range sw index %u for send context %u\n",
5967 			   sw_index, hw_context);
5968 		return;
5969 	}
5970 	sci = &dd->send_contexts[sw_index];
5971 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5972 	sc = sci->sc;
5973 	if (!sc) {
5974 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5975 			   sw_index, hw_context);
5976 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5977 		return;
5978 	}
5979 
5980 	/* tell the software that a halt has begun */
5981 	sc_stop(sc, SCF_HALTED);
5982 
5983 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5984 
5985 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5986 		    send_context_err_status_string(flags, sizeof(flags),
5987 						   status));
5988 
5989 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5990 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5991 
5992 	/*
5993 	 * Automatically restart halted kernel contexts out of interrupt
5994 	 * context.  User contexts must ask the driver to restart the context.
5995 	 */
5996 	if (sc->type != SC_USER)
5997 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5998 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5999 
6000 	/*
6001 	 * Update the counters for the corresponding status bits.
6002 	 * Note that these particular counters are aggregated over all
6003 	 * 160 contexts.
6004 	 */
6005 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
6006 		if (status & (1ull << i))
6007 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
6008 	}
6009 }
6010 
6011 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
6012 				unsigned int source, u64 status)
6013 {
6014 	struct sdma_engine *sde;
6015 	int i = 0;
6016 
6017 	sde = &dd->per_sdma[source];
6018 #ifdef CONFIG_SDMA_VERBOSITY
6019 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6020 		   slashstrip(__FILE__), __LINE__, __func__);
6021 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6022 		   sde->this_idx, source, (unsigned long long)status);
6023 #endif
6024 	sde->err_cnt++;
6025 	sdma_engine_error(sde, status);
6026 
6027 	/*
6028 	* Update the counters for the corresponding status bits.
6029 	* Note that these particular counters are aggregated over
6030 	* all 16 DMA engines.
6031 	*/
6032 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6033 		if (status & (1ull << i))
6034 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6035 	}
6036 }
6037 
6038 /*
6039  * CCE block SDMA error interrupt.  Source is < 16.
6040  */
6041 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6042 {
6043 #ifdef CONFIG_SDMA_VERBOSITY
6044 	struct sdma_engine *sde = &dd->per_sdma[source];
6045 
6046 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6047 		   slashstrip(__FILE__), __LINE__, __func__);
6048 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6049 		   source);
6050 	sdma_dumpstate(sde);
6051 #endif
6052 	interrupt_clear_down(dd, source, &sdma_eng_err);
6053 }
6054 
6055 /*
6056  * CCE block "various" interrupt.  Source is < 8.
6057  */
6058 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6059 {
6060 	const struct err_reg_info *eri = &various_err[source];
6061 
6062 	/*
6063 	 * TCritInt cannot go through interrupt_clear_down()
6064 	 * because it is not a second tier interrupt. The handler
6065 	 * should be called directly.
6066 	 */
6067 	if (source == TCRIT_INT_SOURCE)
6068 		handle_temp_err(dd);
6069 	else if (eri->handler)
6070 		interrupt_clear_down(dd, 0, eri);
6071 	else
6072 		dd_dev_info(dd,
6073 			    "%s: Unimplemented/reserved interrupt %d\n",
6074 			    __func__, source);
6075 }
6076 
6077 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6078 {
6079 	/* src_ctx is always zero */
6080 	struct hfi1_pportdata *ppd = dd->pport;
6081 	unsigned long flags;
6082 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6083 
6084 	if (reg & QSFP_HFI0_MODPRST_N) {
6085 		if (!qsfp_mod_present(ppd)) {
6086 			dd_dev_info(dd, "%s: QSFP module removed\n",
6087 				    __func__);
6088 
6089 			ppd->driver_link_ready = 0;
6090 			/*
6091 			 * Cable removed, reset all our information about the
6092 			 * cache and cable capabilities
6093 			 */
6094 
6095 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6096 			/*
6097 			 * We don't set cache_refresh_required here as we expect
6098 			 * an interrupt when a cable is inserted
6099 			 */
6100 			ppd->qsfp_info.cache_valid = 0;
6101 			ppd->qsfp_info.reset_needed = 0;
6102 			ppd->qsfp_info.limiting_active = 0;
6103 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6104 					       flags);
6105 			/* Invert the ModPresent pin now to detect plug-in */
6106 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6107 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6108 
6109 			if ((ppd->offline_disabled_reason >
6110 			  HFI1_ODR_MASK(
6111 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6112 			  (ppd->offline_disabled_reason ==
6113 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6114 				ppd->offline_disabled_reason =
6115 				HFI1_ODR_MASK(
6116 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6117 
6118 			if (ppd->host_link_state == HLS_DN_POLL) {
6119 				/*
6120 				 * The link is still in POLL. This means
6121 				 * that the normal link down processing
6122 				 * will not happen. We have to do it here
6123 				 * before turning the DC off.
6124 				 */
6125 				queue_work(ppd->link_wq, &ppd->link_down_work);
6126 			}
6127 		} else {
6128 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6129 				    __func__);
6130 
6131 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6132 			ppd->qsfp_info.cache_valid = 0;
6133 			ppd->qsfp_info.cache_refresh_required = 1;
6134 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6135 					       flags);
6136 
6137 			/*
6138 			 * Stop inversion of ModPresent pin to detect
6139 			 * removal of the cable
6140 			 */
6141 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6142 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6143 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6144 
6145 			ppd->offline_disabled_reason =
6146 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6147 		}
6148 	}
6149 
6150 	if (reg & QSFP_HFI0_INT_N) {
6151 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6152 			    __func__);
6153 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6154 		ppd->qsfp_info.check_interrupt_flags = 1;
6155 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6156 	}
6157 
6158 	/* Schedule the QSFP work only if there is a cable attached. */
6159 	if (qsfp_mod_present(ppd))
6160 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6161 }
6162 
6163 static int request_host_lcb_access(struct hfi1_devdata *dd)
6164 {
6165 	int ret;
6166 
6167 	ret = do_8051_command(dd, HCMD_MISC,
6168 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6169 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6170 	if (ret != HCMD_SUCCESS) {
6171 		dd_dev_err(dd, "%s: command failed with error %d\n",
6172 			   __func__, ret);
6173 	}
6174 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6175 }
6176 
6177 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6178 {
6179 	int ret;
6180 
6181 	ret = do_8051_command(dd, HCMD_MISC,
6182 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6183 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6184 	if (ret != HCMD_SUCCESS) {
6185 		dd_dev_err(dd, "%s: command failed with error %d\n",
6186 			   __func__, ret);
6187 	}
6188 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6189 }
6190 
6191 /*
6192  * Set the LCB selector - allow host access.  The DCC selector always
6193  * points to the host.
6194  */
6195 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6196 {
6197 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6198 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6199 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6200 }
6201 
6202 /*
6203  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6204  * points to the host.
6205  */
6206 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6207 {
6208 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6209 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6210 }
6211 
6212 /*
6213  * Acquire LCB access from the 8051.  If the host already has access,
6214  * just increment a counter.  Otherwise, inform the 8051 that the
6215  * host is taking access.
6216  *
6217  * Returns:
6218  *	0 on success
6219  *	-EBUSY if the 8051 has control and cannot be disturbed
6220  *	-errno if unable to acquire access from the 8051
6221  */
6222 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6223 {
6224 	struct hfi1_pportdata *ppd = dd->pport;
6225 	int ret = 0;
6226 
6227 	/*
6228 	 * Use the host link state lock so the operation of this routine
6229 	 * { link state check, selector change, count increment } can occur
6230 	 * as a unit against a link state change.  Otherwise there is a
6231 	 * race between the state change and the count increment.
6232 	 */
6233 	if (sleep_ok) {
6234 		mutex_lock(&ppd->hls_lock);
6235 	} else {
6236 		while (!mutex_trylock(&ppd->hls_lock))
6237 			udelay(1);
6238 	}
6239 
6240 	/* this access is valid only when the link is up */
6241 	if (ppd->host_link_state & HLS_DOWN) {
6242 		dd_dev_info(dd, "%s: link state %s not up\n",
6243 			    __func__, link_state_name(ppd->host_link_state));
6244 		ret = -EBUSY;
6245 		goto done;
6246 	}
6247 
6248 	if (dd->lcb_access_count == 0) {
6249 		ret = request_host_lcb_access(dd);
6250 		if (ret) {
6251 			dd_dev_err(dd,
6252 				   "%s: unable to acquire LCB access, err %d\n",
6253 				   __func__, ret);
6254 			goto done;
6255 		}
6256 		set_host_lcb_access(dd);
6257 	}
6258 	dd->lcb_access_count++;
6259 done:
6260 	mutex_unlock(&ppd->hls_lock);
6261 	return ret;
6262 }
6263 
6264 /*
6265  * Release LCB access by decrementing the use count.  If the count is moving
6266  * from 1 to 0, inform 8051 that it has control back.
6267  *
6268  * Returns:
6269  *	0 on success
6270  *	-errno if unable to release access to the 8051
6271  */
6272 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6273 {
6274 	int ret = 0;
6275 
6276 	/*
6277 	 * Use the host link state lock because the acquire needed it.
6278 	 * Here, we only need to keep { selector change, count decrement }
6279 	 * as a unit.
6280 	 */
6281 	if (sleep_ok) {
6282 		mutex_lock(&dd->pport->hls_lock);
6283 	} else {
6284 		while (!mutex_trylock(&dd->pport->hls_lock))
6285 			udelay(1);
6286 	}
6287 
6288 	if (dd->lcb_access_count == 0) {
6289 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6290 			   __func__);
6291 		goto done;
6292 	}
6293 
6294 	if (dd->lcb_access_count == 1) {
6295 		set_8051_lcb_access(dd);
6296 		ret = request_8051_lcb_access(dd);
6297 		if (ret) {
6298 			dd_dev_err(dd,
6299 				   "%s: unable to release LCB access, err %d\n",
6300 				   __func__, ret);
6301 			/* restore host access if the grant didn't work */
6302 			set_host_lcb_access(dd);
6303 			goto done;
6304 		}
6305 	}
6306 	dd->lcb_access_count--;
6307 done:
6308 	mutex_unlock(&dd->pport->hls_lock);
6309 	return ret;
6310 }
6311 
6312 /*
6313  * Initialize LCB access variables and state.  Called during driver load,
6314  * after most of the initialization is finished.
6315  *
6316  * The DC default is LCB access on for the host.  The driver defaults to
6317  * leaving access to the 8051.  Assign access now - this constrains the call
6318  * to this routine to be after all LCB set-up is done.  In particular, after
6319  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6320  */
6321 static void init_lcb_access(struct hfi1_devdata *dd)
6322 {
6323 	dd->lcb_access_count = 0;
6324 }
6325 
6326 /*
6327  * Write a response back to a 8051 request.
6328  */
6329 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6330 {
6331 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6332 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6333 		  (u64)return_code <<
6334 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6335 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6336 }
6337 
6338 /*
6339  * Handle host requests from the 8051.
6340  */
6341 static void handle_8051_request(struct hfi1_pportdata *ppd)
6342 {
6343 	struct hfi1_devdata *dd = ppd->dd;
6344 	u64 reg;
6345 	u16 data = 0;
6346 	u8 type;
6347 
6348 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6349 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6350 		return;	/* no request */
6351 
6352 	/* zero out COMPLETED so the response is seen */
6353 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6354 
6355 	/* extract request details */
6356 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6357 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6358 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6359 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6360 
6361 	switch (type) {
6362 	case HREQ_LOAD_CONFIG:
6363 	case HREQ_SAVE_CONFIG:
6364 	case HREQ_READ_CONFIG:
6365 	case HREQ_SET_TX_EQ_ABS:
6366 	case HREQ_SET_TX_EQ_REL:
6367 	case HREQ_ENABLE:
6368 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6369 			    type);
6370 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6371 		break;
6372 	case HREQ_LCB_RESET:
6373 		/* Put the LCB, RX FPE and TX FPE into reset */
6374 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6375 		/* Make sure the write completed */
6376 		(void)read_csr(dd, DCC_CFG_RESET);
6377 		/* Hold the reset long enough to take effect */
6378 		udelay(1);
6379 		/* Take the LCB, RX FPE and TX FPE out of reset */
6380 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6381 		hreq_response(dd, HREQ_SUCCESS, 0);
6382 
6383 		break;
6384 	case HREQ_CONFIG_DONE:
6385 		hreq_response(dd, HREQ_SUCCESS, 0);
6386 		break;
6387 
6388 	case HREQ_INTERFACE_TEST:
6389 		hreq_response(dd, HREQ_SUCCESS, data);
6390 		break;
6391 	default:
6392 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6393 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6394 		break;
6395 	}
6396 }
6397 
6398 /*
6399  * Set up allocation unit vaulue.
6400  */
6401 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6402 {
6403 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6404 
6405 	/* do not modify other values in the register */
6406 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6407 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6408 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6409 }
6410 
6411 /*
6412  * Set up initial VL15 credits of the remote.  Assumes the rest of
6413  * the CM credit registers are zero from a previous global or credit reset.
6414  * Shared limit for VL15 will always be 0.
6415  */
6416 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6417 {
6418 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6419 
6420 	/* set initial values for total and shared credit limit */
6421 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6422 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6423 
6424 	/*
6425 	 * Set total limit to be equal to VL15 credits.
6426 	 * Leave shared limit at 0.
6427 	 */
6428 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6429 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6430 
6431 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6432 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6433 }
6434 
6435 /*
6436  * Zero all credit details from the previous connection and
6437  * reset the CM manager's internal counters.
6438  */
6439 void reset_link_credits(struct hfi1_devdata *dd)
6440 {
6441 	int i;
6442 
6443 	/* remove all previous VL credit limits */
6444 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6445 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6446 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6447 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6448 	/* reset the CM block */
6449 	pio_send_control(dd, PSC_CM_RESET);
6450 	/* reset cached value */
6451 	dd->vl15buf_cached = 0;
6452 }
6453 
6454 /* convert a vCU to a CU */
6455 static u32 vcu_to_cu(u8 vcu)
6456 {
6457 	return 1 << vcu;
6458 }
6459 
6460 /* convert a CU to a vCU */
6461 static u8 cu_to_vcu(u32 cu)
6462 {
6463 	return ilog2(cu);
6464 }
6465 
6466 /* convert a vAU to an AU */
6467 static u32 vau_to_au(u8 vau)
6468 {
6469 	return 8 * (1 << vau);
6470 }
6471 
6472 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6473 {
6474 	ppd->sm_trap_qp = 0x0;
6475 	ppd->sa_qp = 0x1;
6476 }
6477 
6478 /*
6479  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6480  */
6481 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6482 {
6483 	u64 reg;
6484 
6485 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6486 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6487 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6488 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6489 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6490 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6491 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6492 	reg = read_csr(dd, DCC_CFG_RESET);
6493 	write_csr(dd, DCC_CFG_RESET, reg |
6494 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6495 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6496 	if (!abort) {
6497 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6498 		write_csr(dd, DCC_CFG_RESET, reg);
6499 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6500 	}
6501 }
6502 
6503 /*
6504  * This routine should be called after the link has been transitioned to
6505  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6506  * reset).
6507  *
6508  * The expectation is that the caller of this routine would have taken
6509  * care of properly transitioning the link into the correct state.
6510  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6511  *       before calling this function.
6512  */
6513 static void _dc_shutdown(struct hfi1_devdata *dd)
6514 {
6515 	lockdep_assert_held(&dd->dc8051_lock);
6516 
6517 	if (dd->dc_shutdown)
6518 		return;
6519 
6520 	dd->dc_shutdown = 1;
6521 	/* Shutdown the LCB */
6522 	lcb_shutdown(dd, 1);
6523 	/*
6524 	 * Going to OFFLINE would have causes the 8051 to put the
6525 	 * SerDes into reset already. Just need to shut down the 8051,
6526 	 * itself.
6527 	 */
6528 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6529 }
6530 
6531 static void dc_shutdown(struct hfi1_devdata *dd)
6532 {
6533 	mutex_lock(&dd->dc8051_lock);
6534 	_dc_shutdown(dd);
6535 	mutex_unlock(&dd->dc8051_lock);
6536 }
6537 
6538 /*
6539  * Calling this after the DC has been brought out of reset should not
6540  * do any damage.
6541  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6542  *       before calling this function.
6543  */
6544 static void _dc_start(struct hfi1_devdata *dd)
6545 {
6546 	lockdep_assert_held(&dd->dc8051_lock);
6547 
6548 	if (!dd->dc_shutdown)
6549 		return;
6550 
6551 	/* Take the 8051 out of reset */
6552 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6553 	/* Wait until 8051 is ready */
6554 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6555 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6556 			   __func__);
6557 
6558 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6559 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6560 	/* lcb_shutdown() with abort=1 does not restore these */
6561 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6562 	dd->dc_shutdown = 0;
6563 }
6564 
6565 static void dc_start(struct hfi1_devdata *dd)
6566 {
6567 	mutex_lock(&dd->dc8051_lock);
6568 	_dc_start(dd);
6569 	mutex_unlock(&dd->dc8051_lock);
6570 }
6571 
6572 /*
6573  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6574  */
6575 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6576 {
6577 	u64 rx_radr, tx_radr;
6578 	u32 version;
6579 
6580 	if (dd->icode != ICODE_FPGA_EMULATION)
6581 		return;
6582 
6583 	/*
6584 	 * These LCB defaults on emulator _s are good, nothing to do here:
6585 	 *	LCB_CFG_TX_FIFOS_RADR
6586 	 *	LCB_CFG_RX_FIFOS_RADR
6587 	 *	LCB_CFG_LN_DCLK
6588 	 *	LCB_CFG_IGNORE_LOST_RCLK
6589 	 */
6590 	if (is_emulator_s(dd))
6591 		return;
6592 	/* else this is _p */
6593 
6594 	version = emulator_rev(dd);
6595 	if (!is_ax(dd))
6596 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6597 
6598 	if (version <= 0x12) {
6599 		/* release 0x12 and below */
6600 
6601 		/*
6602 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6603 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6604 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6605 		 */
6606 		rx_radr =
6607 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6608 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6609 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6610 		/*
6611 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6612 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6613 		 */
6614 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6615 	} else if (version <= 0x18) {
6616 		/* release 0x13 up to 0x18 */
6617 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6618 		rx_radr =
6619 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6620 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6621 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6622 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6623 	} else if (version == 0x19) {
6624 		/* release 0x19 */
6625 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6626 		rx_radr =
6627 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6628 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6629 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6630 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6631 	} else if (version == 0x1a) {
6632 		/* release 0x1a */
6633 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6634 		rx_radr =
6635 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6636 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6637 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6638 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6639 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6640 	} else {
6641 		/* release 0x1b and higher */
6642 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6643 		rx_radr =
6644 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6645 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6646 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6647 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6648 	}
6649 
6650 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6651 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6652 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6653 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6654 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6655 }
6656 
6657 /*
6658  * Handle a SMA idle message
6659  *
6660  * This is a work-queue function outside of the interrupt.
6661  */
6662 void handle_sma_message(struct work_struct *work)
6663 {
6664 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6665 							sma_message_work);
6666 	struct hfi1_devdata *dd = ppd->dd;
6667 	u64 msg;
6668 	int ret;
6669 
6670 	/*
6671 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6672 	 * is stripped off
6673 	 */
6674 	ret = read_idle_sma(dd, &msg);
6675 	if (ret)
6676 		return;
6677 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6678 	/*
6679 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6680 	 */
6681 	switch (msg & 0xff) {
6682 	case SMA_IDLE_ARM:
6683 		/*
6684 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6685 		 * State Transitions
6686 		 *
6687 		 * Only expected in INIT or ARMED, discard otherwise.
6688 		 */
6689 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6690 			ppd->neighbor_normal = 1;
6691 		break;
6692 	case SMA_IDLE_ACTIVE:
6693 		/*
6694 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6695 		 * State Transitions
6696 		 *
6697 		 * Can activate the node.  Discard otherwise.
6698 		 */
6699 		if (ppd->host_link_state == HLS_UP_ARMED &&
6700 		    ppd->is_active_optimize_enabled) {
6701 			ppd->neighbor_normal = 1;
6702 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6703 			if (ret)
6704 				dd_dev_err(
6705 					dd,
6706 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6707 					__func__);
6708 		}
6709 		break;
6710 	default:
6711 		dd_dev_err(dd,
6712 			   "%s: received unexpected SMA idle message 0x%llx\n",
6713 			   __func__, msg);
6714 		break;
6715 	}
6716 }
6717 
6718 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6719 {
6720 	u64 rcvctrl;
6721 	unsigned long flags;
6722 
6723 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6724 	rcvctrl = read_csr(dd, RCV_CTRL);
6725 	rcvctrl |= add;
6726 	rcvctrl &= ~clear;
6727 	write_csr(dd, RCV_CTRL, rcvctrl);
6728 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6729 }
6730 
6731 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6732 {
6733 	adjust_rcvctrl(dd, add, 0);
6734 }
6735 
6736 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6737 {
6738 	adjust_rcvctrl(dd, 0, clear);
6739 }
6740 
6741 /*
6742  * Called from all interrupt handlers to start handling an SPC freeze.
6743  */
6744 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6745 {
6746 	struct hfi1_devdata *dd = ppd->dd;
6747 	struct send_context *sc;
6748 	int i;
6749 	int sc_flags;
6750 
6751 	if (flags & FREEZE_SELF)
6752 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6753 
6754 	/* enter frozen mode */
6755 	dd->flags |= HFI1_FROZEN;
6756 
6757 	/* notify all SDMA engines that they are going into a freeze */
6758 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6759 
6760 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6761 					      SCF_LINK_DOWN : 0);
6762 	/* do halt pre-handling on all enabled send contexts */
6763 	for (i = 0; i < dd->num_send_contexts; i++) {
6764 		sc = dd->send_contexts[i].sc;
6765 		if (sc && (sc->flags & SCF_ENABLED))
6766 			sc_stop(sc, sc_flags);
6767 	}
6768 
6769 	/* Send context are frozen. Notify user space */
6770 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6771 
6772 	if (flags & FREEZE_ABORT) {
6773 		dd_dev_err(dd,
6774 			   "Aborted freeze recovery. Please REBOOT system\n");
6775 		return;
6776 	}
6777 	/* queue non-interrupt handler */
6778 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6779 }
6780 
6781 /*
6782  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6783  * depending on the "freeze" parameter.
6784  *
6785  * No need to return an error if it times out, our only option
6786  * is to proceed anyway.
6787  */
6788 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6789 {
6790 	unsigned long timeout;
6791 	u64 reg;
6792 
6793 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6794 	while (1) {
6795 		reg = read_csr(dd, CCE_STATUS);
6796 		if (freeze) {
6797 			/* waiting until all indicators are set */
6798 			if ((reg & ALL_FROZE) == ALL_FROZE)
6799 				return;	/* all done */
6800 		} else {
6801 			/* waiting until all indicators are clear */
6802 			if ((reg & ALL_FROZE) == 0)
6803 				return; /* all done */
6804 		}
6805 
6806 		if (time_after(jiffies, timeout)) {
6807 			dd_dev_err(dd,
6808 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6809 				   freeze ? "" : "un", reg & ALL_FROZE,
6810 				   freeze ? ALL_FROZE : 0ull);
6811 			return;
6812 		}
6813 		usleep_range(80, 120);
6814 	}
6815 }
6816 
6817 /*
6818  * Do all freeze handling for the RXE block.
6819  */
6820 static void rxe_freeze(struct hfi1_devdata *dd)
6821 {
6822 	int i;
6823 	struct hfi1_ctxtdata *rcd;
6824 
6825 	/* disable port */
6826 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6827 
6828 	/* disable all receive contexts */
6829 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6830 		rcd = hfi1_rcd_get_by_index(dd, i);
6831 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6832 		hfi1_rcd_put(rcd);
6833 	}
6834 }
6835 
6836 /*
6837  * Unfreeze handling for the RXE block - kernel contexts only.
6838  * This will also enable the port.  User contexts will do unfreeze
6839  * handling on a per-context basis as they call into the driver.
6840  *
6841  */
6842 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6843 {
6844 	u32 rcvmask;
6845 	u16 i;
6846 	struct hfi1_ctxtdata *rcd;
6847 
6848 	/* enable all kernel contexts */
6849 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6850 		rcd = hfi1_rcd_get_by_index(dd, i);
6851 
6852 		/* Ensure all non-user contexts(including vnic) are enabled */
6853 		if (!rcd ||
6854 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6855 			hfi1_rcd_put(rcd);
6856 			continue;
6857 		}
6858 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6859 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6860 		rcvmask |= rcd->rcvhdrtail_kvaddr ?
6861 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6862 		hfi1_rcvctrl(dd, rcvmask, rcd);
6863 		hfi1_rcd_put(rcd);
6864 	}
6865 
6866 	/* enable port */
6867 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6868 }
6869 
6870 /*
6871  * Non-interrupt SPC freeze handling.
6872  *
6873  * This is a work-queue function outside of the triggering interrupt.
6874  */
6875 void handle_freeze(struct work_struct *work)
6876 {
6877 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6878 								freeze_work);
6879 	struct hfi1_devdata *dd = ppd->dd;
6880 
6881 	/* wait for freeze indicators on all affected blocks */
6882 	wait_for_freeze_status(dd, 1);
6883 
6884 	/* SPC is now frozen */
6885 
6886 	/* do send PIO freeze steps */
6887 	pio_freeze(dd);
6888 
6889 	/* do send DMA freeze steps */
6890 	sdma_freeze(dd);
6891 
6892 	/* do send egress freeze steps - nothing to do */
6893 
6894 	/* do receive freeze steps */
6895 	rxe_freeze(dd);
6896 
6897 	/*
6898 	 * Unfreeze the hardware - clear the freeze, wait for each
6899 	 * block's frozen bit to clear, then clear the frozen flag.
6900 	 */
6901 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6902 	wait_for_freeze_status(dd, 0);
6903 
6904 	if (is_ax(dd)) {
6905 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6906 		wait_for_freeze_status(dd, 1);
6907 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6908 		wait_for_freeze_status(dd, 0);
6909 	}
6910 
6911 	/* do send PIO unfreeze steps for kernel contexts */
6912 	pio_kernel_unfreeze(dd);
6913 
6914 	/* do send DMA unfreeze steps */
6915 	sdma_unfreeze(dd);
6916 
6917 	/* do send egress unfreeze steps - nothing to do */
6918 
6919 	/* do receive unfreeze steps for kernel contexts */
6920 	rxe_kernel_unfreeze(dd);
6921 
6922 	/*
6923 	 * The unfreeze procedure touches global device registers when
6924 	 * it disables and re-enables RXE. Mark the device unfrozen
6925 	 * after all that is done so other parts of the driver waiting
6926 	 * for the device to unfreeze don't do things out of order.
6927 	 *
6928 	 * The above implies that the meaning of HFI1_FROZEN flag is
6929 	 * "Device has gone into freeze mode and freeze mode handling
6930 	 * is still in progress."
6931 	 *
6932 	 * The flag will be removed when freeze mode processing has
6933 	 * completed.
6934 	 */
6935 	dd->flags &= ~HFI1_FROZEN;
6936 	wake_up(&dd->event_queue);
6937 
6938 	/* no longer frozen */
6939 }
6940 
6941 /**
6942  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6943  * counters.
6944  * @ppd: info of physical Hfi port
6945  * @link_width: new link width after link up or downgrade
6946  *
6947  * Update the PortXmitWait and PortVlXmitWait counters after
6948  * a link up or downgrade event to reflect a link width change.
6949  */
6950 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6951 {
6952 	int i;
6953 	u16 tx_width;
6954 	u16 link_speed;
6955 
6956 	tx_width = tx_link_width(link_width);
6957 	link_speed = get_link_speed(ppd->link_speed_active);
6958 
6959 	/*
6960 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6961 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6962 	 */
6963 	for (i = 0; i < C_VL_COUNT + 1; i++)
6964 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6965 }
6966 
6967 /*
6968  * Handle a link up interrupt from the 8051.
6969  *
6970  * This is a work-queue function outside of the interrupt.
6971  */
6972 void handle_link_up(struct work_struct *work)
6973 {
6974 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6975 						  link_up_work);
6976 	struct hfi1_devdata *dd = ppd->dd;
6977 
6978 	set_link_state(ppd, HLS_UP_INIT);
6979 
6980 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6981 	read_ltp_rtt(dd);
6982 	/*
6983 	 * OPA specifies that certain counters are cleared on a transition
6984 	 * to link up, so do that.
6985 	 */
6986 	clear_linkup_counters(dd);
6987 	/*
6988 	 * And (re)set link up default values.
6989 	 */
6990 	set_linkup_defaults(ppd);
6991 
6992 	/*
6993 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6994 	 * In case of quick linkup or simulator, vl15 value will be set by
6995 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6996 	 * called in those scenarios.
6997 	 */
6998 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6999 		set_up_vl15(dd, dd->vl15buf_cached);
7000 
7001 	/* enforce link speed enabled */
7002 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
7003 		/* oops - current speed is not enabled, bounce */
7004 		dd_dev_err(dd,
7005 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
7006 			   ppd->link_speed_active, ppd->link_speed_enabled);
7007 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
7008 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
7009 		set_link_state(ppd, HLS_DN_OFFLINE);
7010 		start_link(ppd);
7011 	}
7012 }
7013 
7014 /*
7015  * Several pieces of LNI information were cached for SMA in ppd.
7016  * Reset these on link down
7017  */
7018 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7019 {
7020 	ppd->neighbor_guid = 0;
7021 	ppd->neighbor_port_number = 0;
7022 	ppd->neighbor_type = 0;
7023 	ppd->neighbor_fm_security = 0;
7024 }
7025 
7026 static const char * const link_down_reason_strs[] = {
7027 	[OPA_LINKDOWN_REASON_NONE] = "None",
7028 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7029 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7030 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7031 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7032 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7033 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7034 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7035 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7036 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7037 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7038 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7039 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7040 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7041 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7042 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7043 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7044 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7045 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7046 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7047 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7048 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7049 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7050 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7051 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7052 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7053 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7054 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7055 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7056 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7057 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7058 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7059 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7060 					"Excessive buffer overrun",
7061 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7062 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7063 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7064 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7065 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7066 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7067 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7068 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7069 					"Local media not installed",
7070 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7071 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7072 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7073 					"End to end not installed",
7074 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7075 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7076 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7077 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7078 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7079 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7080 };
7081 
7082 /* return the neighbor link down reason string */
7083 static const char *link_down_reason_str(u8 reason)
7084 {
7085 	const char *str = NULL;
7086 
7087 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7088 		str = link_down_reason_strs[reason];
7089 	if (!str)
7090 		str = "(invalid)";
7091 
7092 	return str;
7093 }
7094 
7095 /*
7096  * Handle a link down interrupt from the 8051.
7097  *
7098  * This is a work-queue function outside of the interrupt.
7099  */
7100 void handle_link_down(struct work_struct *work)
7101 {
7102 	u8 lcl_reason, neigh_reason = 0;
7103 	u8 link_down_reason;
7104 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7105 						  link_down_work);
7106 	int was_up;
7107 	static const char ldr_str[] = "Link down reason: ";
7108 
7109 	if ((ppd->host_link_state &
7110 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7111 	     ppd->port_type == PORT_TYPE_FIXED)
7112 		ppd->offline_disabled_reason =
7113 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7114 
7115 	/* Go offline first, then deal with reading/writing through 8051 */
7116 	was_up = !!(ppd->host_link_state & HLS_UP);
7117 	set_link_state(ppd, HLS_DN_OFFLINE);
7118 	xchg(&ppd->is_link_down_queued, 0);
7119 
7120 	if (was_up) {
7121 		lcl_reason = 0;
7122 		/* link down reason is only valid if the link was up */
7123 		read_link_down_reason(ppd->dd, &link_down_reason);
7124 		switch (link_down_reason) {
7125 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7126 			/* the link went down, no idle message reason */
7127 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7128 				    ldr_str);
7129 			break;
7130 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7131 			/*
7132 			 * The neighbor reason is only valid if an idle message
7133 			 * was received for it.
7134 			 */
7135 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7136 			dd_dev_info(ppd->dd,
7137 				    "%sNeighbor link down message %d, %s\n",
7138 				    ldr_str, neigh_reason,
7139 				    link_down_reason_str(neigh_reason));
7140 			break;
7141 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7142 			dd_dev_info(ppd->dd,
7143 				    "%sHost requested link to go offline\n",
7144 				    ldr_str);
7145 			break;
7146 		default:
7147 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7148 				    ldr_str, link_down_reason);
7149 			break;
7150 		}
7151 
7152 		/*
7153 		 * If no reason, assume peer-initiated but missed
7154 		 * LinkGoingDown idle flits.
7155 		 */
7156 		if (neigh_reason == 0)
7157 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7158 	} else {
7159 		/* went down while polling or going up */
7160 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7161 	}
7162 
7163 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7164 
7165 	/* inform the SMA when the link transitions from up to down */
7166 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7167 	    ppd->neigh_link_down_reason.sma == 0) {
7168 		ppd->local_link_down_reason.sma =
7169 					ppd->local_link_down_reason.latest;
7170 		ppd->neigh_link_down_reason.sma =
7171 					ppd->neigh_link_down_reason.latest;
7172 	}
7173 
7174 	reset_neighbor_info(ppd);
7175 
7176 	/* disable the port */
7177 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7178 
7179 	/*
7180 	 * If there is no cable attached, turn the DC off. Otherwise,
7181 	 * start the link bring up.
7182 	 */
7183 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7184 		dc_shutdown(ppd->dd);
7185 	else
7186 		start_link(ppd);
7187 }
7188 
7189 void handle_link_bounce(struct work_struct *work)
7190 {
7191 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7192 							link_bounce_work);
7193 
7194 	/*
7195 	 * Only do something if the link is currently up.
7196 	 */
7197 	if (ppd->host_link_state & HLS_UP) {
7198 		set_link_state(ppd, HLS_DN_OFFLINE);
7199 		start_link(ppd);
7200 	} else {
7201 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7202 			    __func__, link_state_name(ppd->host_link_state));
7203 	}
7204 }
7205 
7206 /*
7207  * Mask conversion: Capability exchange to Port LTP.  The capability
7208  * exchange has an implicit 16b CRC that is mandatory.
7209  */
7210 static int cap_to_port_ltp(int cap)
7211 {
7212 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7213 
7214 	if (cap & CAP_CRC_14B)
7215 		port_ltp |= PORT_LTP_CRC_MODE_14;
7216 	if (cap & CAP_CRC_48B)
7217 		port_ltp |= PORT_LTP_CRC_MODE_48;
7218 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7219 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7220 
7221 	return port_ltp;
7222 }
7223 
7224 /*
7225  * Convert an OPA Port LTP mask to capability mask
7226  */
7227 int port_ltp_to_cap(int port_ltp)
7228 {
7229 	int cap_mask = 0;
7230 
7231 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7232 		cap_mask |= CAP_CRC_14B;
7233 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7234 		cap_mask |= CAP_CRC_48B;
7235 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7236 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7237 
7238 	return cap_mask;
7239 }
7240 
7241 /*
7242  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7243  */
7244 static int lcb_to_port_ltp(int lcb_crc)
7245 {
7246 	int port_ltp = 0;
7247 
7248 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7249 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7250 	else if (lcb_crc == LCB_CRC_48B)
7251 		port_ltp = PORT_LTP_CRC_MODE_48;
7252 	else if (lcb_crc == LCB_CRC_14B)
7253 		port_ltp = PORT_LTP_CRC_MODE_14;
7254 	else
7255 		port_ltp = PORT_LTP_CRC_MODE_16;
7256 
7257 	return port_ltp;
7258 }
7259 
7260 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7261 {
7262 	if (ppd->pkeys[2] != 0) {
7263 		ppd->pkeys[2] = 0;
7264 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7265 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7266 	}
7267 }
7268 
7269 /*
7270  * Convert the given link width to the OPA link width bitmask.
7271  */
7272 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7273 {
7274 	switch (width) {
7275 	case 0:
7276 		/*
7277 		 * Simulator and quick linkup do not set the width.
7278 		 * Just set it to 4x without complaint.
7279 		 */
7280 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7281 			return OPA_LINK_WIDTH_4X;
7282 		return 0; /* no lanes up */
7283 	case 1: return OPA_LINK_WIDTH_1X;
7284 	case 2: return OPA_LINK_WIDTH_2X;
7285 	case 3: return OPA_LINK_WIDTH_3X;
7286 	default:
7287 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7288 			    __func__, width);
7289 		/* fall through */
7290 	case 4: return OPA_LINK_WIDTH_4X;
7291 	}
7292 }
7293 
7294 /*
7295  * Do a population count on the bottom nibble.
7296  */
7297 static const u8 bit_counts[16] = {
7298 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7299 };
7300 
7301 static inline u8 nibble_to_count(u8 nibble)
7302 {
7303 	return bit_counts[nibble & 0xf];
7304 }
7305 
7306 /*
7307  * Read the active lane information from the 8051 registers and return
7308  * their widths.
7309  *
7310  * Active lane information is found in these 8051 registers:
7311  *	enable_lane_tx
7312  *	enable_lane_rx
7313  */
7314 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7315 			    u16 *rx_width)
7316 {
7317 	u16 tx, rx;
7318 	u8 enable_lane_rx;
7319 	u8 enable_lane_tx;
7320 	u8 tx_polarity_inversion;
7321 	u8 rx_polarity_inversion;
7322 	u8 max_rate;
7323 
7324 	/* read the active lanes */
7325 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7326 			 &rx_polarity_inversion, &max_rate);
7327 	read_local_lni(dd, &enable_lane_rx);
7328 
7329 	/* convert to counts */
7330 	tx = nibble_to_count(enable_lane_tx);
7331 	rx = nibble_to_count(enable_lane_rx);
7332 
7333 	/*
7334 	 * Set link_speed_active here, overriding what was set in
7335 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7336 	 * set the max_rate field in handle_verify_cap until v0.19.
7337 	 */
7338 	if ((dd->icode == ICODE_RTL_SILICON) &&
7339 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7340 		/* max_rate: 0 = 12.5G, 1 = 25G */
7341 		switch (max_rate) {
7342 		case 0:
7343 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7344 			break;
7345 		default:
7346 			dd_dev_err(dd,
7347 				   "%s: unexpected max rate %d, using 25Gb\n",
7348 				   __func__, (int)max_rate);
7349 			/* fall through */
7350 		case 1:
7351 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7352 			break;
7353 		}
7354 	}
7355 
7356 	dd_dev_info(dd,
7357 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7358 		    enable_lane_tx, tx, enable_lane_rx, rx);
7359 	*tx_width = link_width_to_bits(dd, tx);
7360 	*rx_width = link_width_to_bits(dd, rx);
7361 }
7362 
7363 /*
7364  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7365  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7366  * after link up.  I.e. look elsewhere for downgrade information.
7367  *
7368  * Bits are:
7369  *	+ bits [7:4] contain the number of active transmitters
7370  *	+ bits [3:0] contain the number of active receivers
7371  * These are numbers 1 through 4 and can be different values if the
7372  * link is asymmetric.
7373  *
7374  * verify_cap_local_fm_link_width[0] retains its original value.
7375  */
7376 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7377 			      u16 *rx_width)
7378 {
7379 	u16 widths, tx, rx;
7380 	u8 misc_bits, local_flags;
7381 	u16 active_tx, active_rx;
7382 
7383 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7384 	tx = widths >> 12;
7385 	rx = (widths >> 8) & 0xf;
7386 
7387 	*tx_width = link_width_to_bits(dd, tx);
7388 	*rx_width = link_width_to_bits(dd, rx);
7389 
7390 	/* print the active widths */
7391 	get_link_widths(dd, &active_tx, &active_rx);
7392 }
7393 
7394 /*
7395  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7396  * hardware information when the link first comes up.
7397  *
7398  * The link width is not available until after VerifyCap.AllFramesReceived
7399  * (the trigger for handle_verify_cap), so this is outside that routine
7400  * and should be called when the 8051 signals linkup.
7401  */
7402 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7403 {
7404 	u16 tx_width, rx_width;
7405 
7406 	/* get end-of-LNI link widths */
7407 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7408 
7409 	/* use tx_width as the link is supposed to be symmetric on link up */
7410 	ppd->link_width_active = tx_width;
7411 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7412 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7413 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7414 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7415 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7416 	/* cache the active egress rate (units {10^6 bits/sec]) */
7417 	ppd->current_egress_rate = active_egress_rate(ppd);
7418 }
7419 
7420 /*
7421  * Handle a verify capabilities interrupt from the 8051.
7422  *
7423  * This is a work-queue function outside of the interrupt.
7424  */
7425 void handle_verify_cap(struct work_struct *work)
7426 {
7427 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7428 								link_vc_work);
7429 	struct hfi1_devdata *dd = ppd->dd;
7430 	u64 reg;
7431 	u8 power_management;
7432 	u8 continuous;
7433 	u8 vcu;
7434 	u8 vau;
7435 	u8 z;
7436 	u16 vl15buf;
7437 	u16 link_widths;
7438 	u16 crc_mask;
7439 	u16 crc_val;
7440 	u16 device_id;
7441 	u16 active_tx, active_rx;
7442 	u8 partner_supported_crc;
7443 	u8 remote_tx_rate;
7444 	u8 device_rev;
7445 
7446 	set_link_state(ppd, HLS_VERIFY_CAP);
7447 
7448 	lcb_shutdown(dd, 0);
7449 	adjust_lcb_for_fpga_serdes(dd);
7450 
7451 	read_vc_remote_phy(dd, &power_management, &continuous);
7452 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7453 			      &partner_supported_crc);
7454 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7455 	read_remote_device_id(dd, &device_id, &device_rev);
7456 
7457 	/* print the active widths */
7458 	get_link_widths(dd, &active_tx, &active_rx);
7459 	dd_dev_info(dd,
7460 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7461 		    (int)power_management, (int)continuous);
7462 	dd_dev_info(dd,
7463 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7464 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7465 		    (int)partner_supported_crc);
7466 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7467 		    (u32)remote_tx_rate, (u32)link_widths);
7468 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7469 		    (u32)device_id, (u32)device_rev);
7470 	/*
7471 	 * The peer vAU value just read is the peer receiver value.  HFI does
7472 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7473 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7474 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7475 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7476 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7477 	 * subject to the Z value exception.
7478 	 */
7479 	if (vau == 0)
7480 		vau = 1;
7481 	set_up_vau(dd, vau);
7482 
7483 	/*
7484 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7485 	 * credits value and wait for link-up interrupt ot set it.
7486 	 */
7487 	set_up_vl15(dd, 0);
7488 	dd->vl15buf_cached = vl15buf;
7489 
7490 	/* set up the LCB CRC mode */
7491 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7492 
7493 	/* order is important: use the lowest bit in common */
7494 	if (crc_mask & CAP_CRC_14B)
7495 		crc_val = LCB_CRC_14B;
7496 	else if (crc_mask & CAP_CRC_48B)
7497 		crc_val = LCB_CRC_48B;
7498 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7499 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7500 	else
7501 		crc_val = LCB_CRC_16B;
7502 
7503 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7504 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7505 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7506 
7507 	/* set (14b only) or clear sideband credit */
7508 	reg = read_csr(dd, SEND_CM_CTRL);
7509 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7510 		write_csr(dd, SEND_CM_CTRL,
7511 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7512 	} else {
7513 		write_csr(dd, SEND_CM_CTRL,
7514 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7515 	}
7516 
7517 	ppd->link_speed_active = 0;	/* invalid value */
7518 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7519 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7520 		switch (remote_tx_rate) {
7521 		case 0:
7522 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7523 			break;
7524 		case 1:
7525 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7526 			break;
7527 		}
7528 	} else {
7529 		/* actual rate is highest bit of the ANDed rates */
7530 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7531 
7532 		if (rate & 2)
7533 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7534 		else if (rate & 1)
7535 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7536 	}
7537 	if (ppd->link_speed_active == 0) {
7538 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7539 			   __func__, (int)remote_tx_rate);
7540 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7541 	}
7542 
7543 	/*
7544 	 * Cache the values of the supported, enabled, and active
7545 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7546 	 * flags that are returned in the portinfo query differ from
7547 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7548 	 * variables. Convert these here.
7549 	 */
7550 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7551 		/* supported crc modes */
7552 	ppd->port_ltp_crc_mode |=
7553 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7554 		/* enabled crc modes */
7555 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7556 		/* active crc mode */
7557 
7558 	/* set up the remote credit return table */
7559 	assign_remote_cm_au_table(dd, vcu);
7560 
7561 	/*
7562 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7563 	 * be applied on every link up.
7564 	 *
7565 	 * Adjust LCB error kill enable to kill the link if
7566 	 * these RBUF errors are seen:
7567 	 *	REPLAY_BUF_MBE_SMASK
7568 	 *	FLIT_INPUT_BUF_MBE_SMASK
7569 	 */
7570 	if (is_ax(dd)) {			/* fixed in B0 */
7571 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7572 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7573 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7574 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7575 	}
7576 
7577 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7578 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7579 
7580 	/* give 8051 access to the LCB CSRs */
7581 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7582 	set_8051_lcb_access(dd);
7583 
7584 	/* tell the 8051 to go to LinkUp */
7585 	set_link_state(ppd, HLS_GOING_UP);
7586 }
7587 
7588 /**
7589  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7590  * policy against the current active link widths.
7591  * @ppd: info of physical Hfi port
7592  * @refresh_widths: True indicates link downgrade event
7593  * @return: True indicates a successful link downgrade. False indicates
7594  *	    link downgrade event failed and the link will bounce back to
7595  *	    default link width.
7596  *
7597  * Called when the enabled policy changes or the active link widths
7598  * change.
7599  * Refresh_widths indicates that a link downgrade occurred. The
7600  * link_downgraded variable is set by refresh_widths and
7601  * determines the success/failure of the policy application.
7602  */
7603 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7604 				 bool refresh_widths)
7605 {
7606 	int do_bounce = 0;
7607 	int tries;
7608 	u16 lwde;
7609 	u16 tx, rx;
7610 	bool link_downgraded = refresh_widths;
7611 
7612 	/* use the hls lock to avoid a race with actual link up */
7613 	tries = 0;
7614 retry:
7615 	mutex_lock(&ppd->hls_lock);
7616 	/* only apply if the link is up */
7617 	if (ppd->host_link_state & HLS_DOWN) {
7618 		/* still going up..wait and retry */
7619 		if (ppd->host_link_state & HLS_GOING_UP) {
7620 			if (++tries < 1000) {
7621 				mutex_unlock(&ppd->hls_lock);
7622 				usleep_range(100, 120); /* arbitrary */
7623 				goto retry;
7624 			}
7625 			dd_dev_err(ppd->dd,
7626 				   "%s: giving up waiting for link state change\n",
7627 				   __func__);
7628 		}
7629 		goto done;
7630 	}
7631 
7632 	lwde = ppd->link_width_downgrade_enabled;
7633 
7634 	if (refresh_widths) {
7635 		get_link_widths(ppd->dd, &tx, &rx);
7636 		ppd->link_width_downgrade_tx_active = tx;
7637 		ppd->link_width_downgrade_rx_active = rx;
7638 	}
7639 
7640 	if (ppd->link_width_downgrade_tx_active == 0 ||
7641 	    ppd->link_width_downgrade_rx_active == 0) {
7642 		/* the 8051 reported a dead link as a downgrade */
7643 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7644 		link_downgraded = false;
7645 	} else if (lwde == 0) {
7646 		/* downgrade is disabled */
7647 
7648 		/* bounce if not at starting active width */
7649 		if ((ppd->link_width_active !=
7650 		     ppd->link_width_downgrade_tx_active) ||
7651 		    (ppd->link_width_active !=
7652 		     ppd->link_width_downgrade_rx_active)) {
7653 			dd_dev_err(ppd->dd,
7654 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7655 			dd_dev_err(ppd->dd,
7656 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7657 				   ppd->link_width_active,
7658 				   ppd->link_width_downgrade_tx_active,
7659 				   ppd->link_width_downgrade_rx_active);
7660 			do_bounce = 1;
7661 			link_downgraded = false;
7662 		}
7663 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7664 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7665 		/* Tx or Rx is outside the enabled policy */
7666 		dd_dev_err(ppd->dd,
7667 			   "Link is outside of downgrade allowed, downing link\n");
7668 		dd_dev_err(ppd->dd,
7669 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7670 			   lwde, ppd->link_width_downgrade_tx_active,
7671 			   ppd->link_width_downgrade_rx_active);
7672 		do_bounce = 1;
7673 		link_downgraded = false;
7674 	}
7675 
7676 done:
7677 	mutex_unlock(&ppd->hls_lock);
7678 
7679 	if (do_bounce) {
7680 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7681 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7682 		set_link_state(ppd, HLS_DN_OFFLINE);
7683 		start_link(ppd);
7684 	}
7685 
7686 	return link_downgraded;
7687 }
7688 
7689 /*
7690  * Handle a link downgrade interrupt from the 8051.
7691  *
7692  * This is a work-queue function outside of the interrupt.
7693  */
7694 void handle_link_downgrade(struct work_struct *work)
7695 {
7696 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7697 							link_downgrade_work);
7698 
7699 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7700 	if (apply_link_downgrade_policy(ppd, true))
7701 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7702 }
7703 
7704 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7705 {
7706 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7707 		ARRAY_SIZE(dcc_err_flags));
7708 }
7709 
7710 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7711 {
7712 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7713 		ARRAY_SIZE(lcb_err_flags));
7714 }
7715 
7716 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7717 {
7718 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7719 		ARRAY_SIZE(dc8051_err_flags));
7720 }
7721 
7722 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7723 {
7724 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7725 		ARRAY_SIZE(dc8051_info_err_flags));
7726 }
7727 
7728 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7729 {
7730 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7731 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7732 }
7733 
7734 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7735 {
7736 	struct hfi1_pportdata *ppd = dd->pport;
7737 	u64 info, err, host_msg;
7738 	int queue_link_down = 0;
7739 	char buf[96];
7740 
7741 	/* look at the flags */
7742 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7743 		/* 8051 information set by firmware */
7744 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7745 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7746 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7747 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7748 		host_msg = (info >>
7749 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7750 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7751 
7752 		/*
7753 		 * Handle error flags.
7754 		 */
7755 		if (err & FAILED_LNI) {
7756 			/*
7757 			 * LNI error indications are cleared by the 8051
7758 			 * only when starting polling.  Only pay attention
7759 			 * to them when in the states that occur during
7760 			 * LNI.
7761 			 */
7762 			if (ppd->host_link_state
7763 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7764 				queue_link_down = 1;
7765 				dd_dev_info(dd, "Link error: %s\n",
7766 					    dc8051_info_err_string(buf,
7767 								   sizeof(buf),
7768 								   err &
7769 								   FAILED_LNI));
7770 			}
7771 			err &= ~(u64)FAILED_LNI;
7772 		}
7773 		/* unknown frames can happen durning LNI, just count */
7774 		if (err & UNKNOWN_FRAME) {
7775 			ppd->unknown_frame_count++;
7776 			err &= ~(u64)UNKNOWN_FRAME;
7777 		}
7778 		if (err) {
7779 			/* report remaining errors, but do not do anything */
7780 			dd_dev_err(dd, "8051 info error: %s\n",
7781 				   dc8051_info_err_string(buf, sizeof(buf),
7782 							  err));
7783 		}
7784 
7785 		/*
7786 		 * Handle host message flags.
7787 		 */
7788 		if (host_msg & HOST_REQ_DONE) {
7789 			/*
7790 			 * Presently, the driver does a busy wait for
7791 			 * host requests to complete.  This is only an
7792 			 * informational message.
7793 			 * NOTE: The 8051 clears the host message
7794 			 * information *on the next 8051 command*.
7795 			 * Therefore, when linkup is achieved,
7796 			 * this flag will still be set.
7797 			 */
7798 			host_msg &= ~(u64)HOST_REQ_DONE;
7799 		}
7800 		if (host_msg & BC_SMA_MSG) {
7801 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7802 			host_msg &= ~(u64)BC_SMA_MSG;
7803 		}
7804 		if (host_msg & LINKUP_ACHIEVED) {
7805 			dd_dev_info(dd, "8051: Link up\n");
7806 			queue_work(ppd->link_wq, &ppd->link_up_work);
7807 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7808 		}
7809 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7810 			handle_8051_request(ppd);
7811 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7812 		}
7813 		if (host_msg & VERIFY_CAP_FRAME) {
7814 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7815 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7816 		}
7817 		if (host_msg & LINK_GOING_DOWN) {
7818 			const char *extra = "";
7819 			/* no downgrade action needed if going down */
7820 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7821 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7822 				extra = " (ignoring downgrade)";
7823 			}
7824 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7825 			queue_link_down = 1;
7826 			host_msg &= ~(u64)LINK_GOING_DOWN;
7827 		}
7828 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7829 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7830 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7831 		}
7832 		if (host_msg) {
7833 			/* report remaining messages, but do not do anything */
7834 			dd_dev_info(dd, "8051 info host message: %s\n",
7835 				    dc8051_info_host_msg_string(buf,
7836 								sizeof(buf),
7837 								host_msg));
7838 		}
7839 
7840 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7841 	}
7842 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7843 		/*
7844 		 * Lost the 8051 heartbeat.  If this happens, we
7845 		 * receive constant interrupts about it.  Disable
7846 		 * the interrupt after the first.
7847 		 */
7848 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7849 		write_csr(dd, DC_DC8051_ERR_EN,
7850 			  read_csr(dd, DC_DC8051_ERR_EN) &
7851 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7852 
7853 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7854 	}
7855 	if (reg) {
7856 		/* report the error, but do not do anything */
7857 		dd_dev_err(dd, "8051 error: %s\n",
7858 			   dc8051_err_string(buf, sizeof(buf), reg));
7859 	}
7860 
7861 	if (queue_link_down) {
7862 		/*
7863 		 * if the link is already going down or disabled, do not
7864 		 * queue another. If there's a link down entry already
7865 		 * queued, don't queue another one.
7866 		 */
7867 		if ((ppd->host_link_state &
7868 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7869 		    ppd->link_enabled == 0) {
7870 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7871 				    __func__, ppd->host_link_state,
7872 				    ppd->link_enabled);
7873 		} else {
7874 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7875 				dd_dev_info(dd,
7876 					    "%s: link down request already queued\n",
7877 					    __func__);
7878 			else
7879 				queue_work(ppd->link_wq, &ppd->link_down_work);
7880 		}
7881 	}
7882 }
7883 
7884 static const char * const fm_config_txt[] = {
7885 [0] =
7886 	"BadHeadDist: Distance violation between two head flits",
7887 [1] =
7888 	"BadTailDist: Distance violation between two tail flits",
7889 [2] =
7890 	"BadCtrlDist: Distance violation between two credit control flits",
7891 [3] =
7892 	"BadCrdAck: Credits return for unsupported VL",
7893 [4] =
7894 	"UnsupportedVLMarker: Received VL Marker",
7895 [5] =
7896 	"BadPreempt: Exceeded the preemption nesting level",
7897 [6] =
7898 	"BadControlFlit: Received unsupported control flit",
7899 /* no 7 */
7900 [8] =
7901 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7902 };
7903 
7904 static const char * const port_rcv_txt[] = {
7905 [1] =
7906 	"BadPktLen: Illegal PktLen",
7907 [2] =
7908 	"PktLenTooLong: Packet longer than PktLen",
7909 [3] =
7910 	"PktLenTooShort: Packet shorter than PktLen",
7911 [4] =
7912 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7913 [5] =
7914 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7915 [6] =
7916 	"BadL2: Illegal L2 opcode",
7917 [7] =
7918 	"BadSC: Unsupported SC",
7919 [9] =
7920 	"BadRC: Illegal RC",
7921 [11] =
7922 	"PreemptError: Preempting with same VL",
7923 [12] =
7924 	"PreemptVL15: Preempting a VL15 packet",
7925 };
7926 
7927 #define OPA_LDR_FMCONFIG_OFFSET 16
7928 #define OPA_LDR_PORTRCV_OFFSET 0
7929 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7930 {
7931 	u64 info, hdr0, hdr1;
7932 	const char *extra;
7933 	char buf[96];
7934 	struct hfi1_pportdata *ppd = dd->pport;
7935 	u8 lcl_reason = 0;
7936 	int do_bounce = 0;
7937 
7938 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7939 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7940 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7941 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7942 			/* set status bit */
7943 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7944 		}
7945 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7946 	}
7947 
7948 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7949 		struct hfi1_pportdata *ppd = dd->pport;
7950 		/* this counter saturates at (2^32) - 1 */
7951 		if (ppd->link_downed < (u32)UINT_MAX)
7952 			ppd->link_downed++;
7953 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7954 	}
7955 
7956 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7957 		u8 reason_valid = 1;
7958 
7959 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7960 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7961 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7962 			/* set status bit */
7963 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7964 		}
7965 		switch (info) {
7966 		case 0:
7967 		case 1:
7968 		case 2:
7969 		case 3:
7970 		case 4:
7971 		case 5:
7972 		case 6:
7973 			extra = fm_config_txt[info];
7974 			break;
7975 		case 8:
7976 			extra = fm_config_txt[info];
7977 			if (ppd->port_error_action &
7978 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7979 				do_bounce = 1;
7980 				/*
7981 				 * lcl_reason cannot be derived from info
7982 				 * for this error
7983 				 */
7984 				lcl_reason =
7985 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7986 			}
7987 			break;
7988 		default:
7989 			reason_valid = 0;
7990 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7991 			extra = buf;
7992 			break;
7993 		}
7994 
7995 		if (reason_valid && !do_bounce) {
7996 			do_bounce = ppd->port_error_action &
7997 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7998 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7999 		}
8000 
8001 		/* just report this */
8002 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
8003 					extra);
8004 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
8005 	}
8006 
8007 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
8008 		u8 reason_valid = 1;
8009 
8010 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
8011 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
8012 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8013 		if (!(dd->err_info_rcvport.status_and_code &
8014 		      OPA_EI_STATUS_SMASK)) {
8015 			dd->err_info_rcvport.status_and_code =
8016 				info & OPA_EI_CODE_SMASK;
8017 			/* set status bit */
8018 			dd->err_info_rcvport.status_and_code |=
8019 				OPA_EI_STATUS_SMASK;
8020 			/*
8021 			 * save first 2 flits in the packet that caused
8022 			 * the error
8023 			 */
8024 			dd->err_info_rcvport.packet_flit1 = hdr0;
8025 			dd->err_info_rcvport.packet_flit2 = hdr1;
8026 		}
8027 		switch (info) {
8028 		case 1:
8029 		case 2:
8030 		case 3:
8031 		case 4:
8032 		case 5:
8033 		case 6:
8034 		case 7:
8035 		case 9:
8036 		case 11:
8037 		case 12:
8038 			extra = port_rcv_txt[info];
8039 			break;
8040 		default:
8041 			reason_valid = 0;
8042 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8043 			extra = buf;
8044 			break;
8045 		}
8046 
8047 		if (reason_valid && !do_bounce) {
8048 			do_bounce = ppd->port_error_action &
8049 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8050 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8051 		}
8052 
8053 		/* just report this */
8054 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8055 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8056 					extra, hdr0, hdr1);
8057 
8058 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8059 	}
8060 
8061 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8062 		/* informative only */
8063 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8064 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8065 	}
8066 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8067 		/* informative only */
8068 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8069 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8070 	}
8071 
8072 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8073 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8074 
8075 	/* report any remaining errors */
8076 	if (reg)
8077 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8078 					dcc_err_string(buf, sizeof(buf), reg));
8079 
8080 	if (lcl_reason == 0)
8081 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8082 
8083 	if (do_bounce) {
8084 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8085 					__func__);
8086 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8087 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8088 	}
8089 }
8090 
8091 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8092 {
8093 	char buf[96];
8094 
8095 	dd_dev_info(dd, "LCB Error: %s\n",
8096 		    lcb_err_string(buf, sizeof(buf), reg));
8097 }
8098 
8099 /*
8100  * CCE block DC interrupt.  Source is < 8.
8101  */
8102 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8103 {
8104 	const struct err_reg_info *eri = &dc_errs[source];
8105 
8106 	if (eri->handler) {
8107 		interrupt_clear_down(dd, 0, eri);
8108 	} else if (source == 3 /* dc_lbm_int */) {
8109 		/*
8110 		 * This indicates that a parity error has occurred on the
8111 		 * address/control lines presented to the LBM.  The error
8112 		 * is a single pulse, there is no associated error flag,
8113 		 * and it is non-maskable.  This is because if a parity
8114 		 * error occurs on the request the request is dropped.
8115 		 * This should never occur, but it is nice to know if it
8116 		 * ever does.
8117 		 */
8118 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8119 	} else {
8120 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8121 	}
8122 }
8123 
8124 /*
8125  * TX block send credit interrupt.  Source is < 160.
8126  */
8127 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8128 {
8129 	sc_group_release_update(dd, source);
8130 }
8131 
8132 /*
8133  * TX block SDMA interrupt.  Source is < 48.
8134  *
8135  * SDMA interrupts are grouped by type:
8136  *
8137  *	 0 -  N-1 = SDma
8138  *	 N - 2N-1 = SDmaProgress
8139  *	2N - 3N-1 = SDmaIdle
8140  */
8141 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8142 {
8143 	/* what interrupt */
8144 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8145 	/* which engine */
8146 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8147 
8148 #ifdef CONFIG_SDMA_VERBOSITY
8149 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8150 		   slashstrip(__FILE__), __LINE__, __func__);
8151 	sdma_dumpstate(&dd->per_sdma[which]);
8152 #endif
8153 
8154 	if (likely(what < 3 && which < dd->num_sdma)) {
8155 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8156 	} else {
8157 		/* should not happen */
8158 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8159 	}
8160 }
8161 
8162 /**
8163  * is_rcv_avail_int() - User receive context available IRQ handler
8164  * @dd: valid dd
8165  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8166  *
8167  * RX block receive available interrupt.  Source is < 160.
8168  *
8169  * This is the general interrupt handler for user (PSM) receive contexts,
8170  * and can only be used for non-threaded IRQs.
8171  */
8172 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8173 {
8174 	struct hfi1_ctxtdata *rcd;
8175 	char *err_detail;
8176 
8177 	if (likely(source < dd->num_rcv_contexts)) {
8178 		rcd = hfi1_rcd_get_by_index(dd, source);
8179 		if (rcd) {
8180 			handle_user_interrupt(rcd);
8181 			hfi1_rcd_put(rcd);
8182 			return;	/* OK */
8183 		}
8184 		/* received an interrupt, but no rcd */
8185 		err_detail = "dataless";
8186 	} else {
8187 		/* received an interrupt, but are not using that context */
8188 		err_detail = "out of range";
8189 	}
8190 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8191 		   err_detail, source);
8192 }
8193 
8194 /**
8195  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8196  * @dd: valid dd
8197  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8198  *
8199  * RX block receive urgent interrupt.  Source is < 160.
8200  *
8201  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8202  */
8203 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8204 {
8205 	struct hfi1_ctxtdata *rcd;
8206 	char *err_detail;
8207 
8208 	if (likely(source < dd->num_rcv_contexts)) {
8209 		rcd = hfi1_rcd_get_by_index(dd, source);
8210 		if (rcd) {
8211 			handle_user_interrupt(rcd);
8212 			hfi1_rcd_put(rcd);
8213 			return;	/* OK */
8214 		}
8215 		/* received an interrupt, but no rcd */
8216 		err_detail = "dataless";
8217 	} else {
8218 		/* received an interrupt, but are not using that context */
8219 		err_detail = "out of range";
8220 	}
8221 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8222 		   err_detail, source);
8223 }
8224 
8225 /*
8226  * Reserved range interrupt.  Should not be called in normal operation.
8227  */
8228 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8229 {
8230 	char name[64];
8231 
8232 	dd_dev_err(dd, "unexpected %s interrupt\n",
8233 		   is_reserved_name(name, sizeof(name), source));
8234 }
8235 
8236 static const struct is_table is_table[] = {
8237 /*
8238  * start		 end
8239  *				name func		interrupt func
8240  */
8241 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8242 				is_misc_err_name,	is_misc_err_int },
8243 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8244 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8245 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8246 				is_sendctxt_err_name,	is_sendctxt_err_int },
8247 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8248 				is_sdma_eng_name,	is_sdma_eng_int },
8249 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8250 				is_various_name,	is_various_int },
8251 { IS_DC_START,	     IS_DC_END,
8252 				is_dc_name,		is_dc_int },
8253 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8254 				is_rcv_avail_name,	is_rcv_avail_int },
8255 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8256 				is_rcv_urgent_name,	is_rcv_urgent_int },
8257 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8258 				is_send_credit_name,	is_send_credit_int},
8259 { IS_RESERVED_START,     IS_RESERVED_END,
8260 				is_reserved_name,	is_reserved_int},
8261 };
8262 
8263 /*
8264  * Interrupt source interrupt - called when the given source has an interrupt.
8265  * Source is a bit index into an array of 64-bit integers.
8266  */
8267 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8268 {
8269 	const struct is_table *entry;
8270 
8271 	/* avoids a double compare by walking the table in-order */
8272 	for (entry = &is_table[0]; entry->is_name; entry++) {
8273 		if (source <= entry->end) {
8274 			trace_hfi1_interrupt(dd, entry, source);
8275 			entry->is_int(dd, source - entry->start);
8276 			return;
8277 		}
8278 	}
8279 	/* fell off the end */
8280 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8281 }
8282 
8283 /**
8284  * gerneral_interrupt() -  General interrupt handler
8285  * @irq: MSIx IRQ vector
8286  * @data: hfi1 devdata
8287  *
8288  * This is able to correctly handle all non-threaded interrupts.  Receive
8289  * context DATA IRQs are threaded and are not supported by this handler.
8290  *
8291  */
8292 irqreturn_t general_interrupt(int irq, void *data)
8293 {
8294 	struct hfi1_devdata *dd = data;
8295 	u64 regs[CCE_NUM_INT_CSRS];
8296 	u32 bit;
8297 	int i;
8298 	irqreturn_t handled = IRQ_NONE;
8299 
8300 	this_cpu_inc(*dd->int_counter);
8301 
8302 	/* phase 1: scan and clear all handled interrupts */
8303 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8304 		if (dd->gi_mask[i] == 0) {
8305 			regs[i] = 0;	/* used later */
8306 			continue;
8307 		}
8308 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8309 				dd->gi_mask[i];
8310 		/* only clear if anything is set */
8311 		if (regs[i])
8312 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8313 	}
8314 
8315 	/* phase 2: call the appropriate handler */
8316 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8317 			 CCE_NUM_INT_CSRS * 64) {
8318 		is_interrupt(dd, bit);
8319 		handled = IRQ_HANDLED;
8320 	}
8321 
8322 	return handled;
8323 }
8324 
8325 irqreturn_t sdma_interrupt(int irq, void *data)
8326 {
8327 	struct sdma_engine *sde = data;
8328 	struct hfi1_devdata *dd = sde->dd;
8329 	u64 status;
8330 
8331 #ifdef CONFIG_SDMA_VERBOSITY
8332 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8333 		   slashstrip(__FILE__), __LINE__, __func__);
8334 	sdma_dumpstate(sde);
8335 #endif
8336 
8337 	this_cpu_inc(*dd->int_counter);
8338 
8339 	/* This read_csr is really bad in the hot path */
8340 	status = read_csr(dd,
8341 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8342 			  & sde->imask;
8343 	if (likely(status)) {
8344 		/* clear the interrupt(s) */
8345 		write_csr(dd,
8346 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8347 			  status);
8348 
8349 		/* handle the interrupt(s) */
8350 		sdma_engine_interrupt(sde, status);
8351 	} else {
8352 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8353 					sde->this_idx);
8354 	}
8355 	return IRQ_HANDLED;
8356 }
8357 
8358 /*
8359  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8360  * to insure that the write completed.  This does NOT guarantee that
8361  * queued DMA writes to memory from the chip are pushed.
8362  */
8363 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8364 {
8365 	struct hfi1_devdata *dd = rcd->dd;
8366 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8367 
8368 	mmiowb();	/* make sure everything before is written */
8369 	write_csr(dd, addr, rcd->imask);
8370 	/* force the above write on the chip and get a value back */
8371 	(void)read_csr(dd, addr);
8372 }
8373 
8374 /* force the receive interrupt */
8375 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8376 {
8377 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8378 }
8379 
8380 /*
8381  * Return non-zero if a packet is present.
8382  *
8383  * This routine is called when rechecking for packets after the RcvAvail
8384  * interrupt has been cleared down.  First, do a quick check of memory for
8385  * a packet present.  If not found, use an expensive CSR read of the context
8386  * tail to determine the actual tail.  The CSR read is necessary because there
8387  * is no method to push pending DMAs to memory other than an interrupt and we
8388  * are trying to determine if we need to force an interrupt.
8389  */
8390 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8391 {
8392 	u32 tail;
8393 	int present;
8394 
8395 	if (!rcd->rcvhdrtail_kvaddr)
8396 		present = (rcd->seq_cnt ==
8397 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8398 	else /* is RDMA rtail */
8399 		present = (rcd->head != get_rcvhdrtail(rcd));
8400 
8401 	if (present)
8402 		return 1;
8403 
8404 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8405 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8406 	return rcd->head != tail;
8407 }
8408 
8409 /*
8410  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8411  * This routine will try to handle packets immediately (latency), but if
8412  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8413  * chip receive interrupt is *not* cleared down until this or the thread (if
8414  * invoked) is finished.  The intent is to avoid extra interrupts while we
8415  * are processing packets anyway.
8416  */
8417 irqreturn_t receive_context_interrupt(int irq, void *data)
8418 {
8419 	struct hfi1_ctxtdata *rcd = data;
8420 	struct hfi1_devdata *dd = rcd->dd;
8421 	int disposition;
8422 	int present;
8423 
8424 	trace_hfi1_receive_interrupt(dd, rcd);
8425 	this_cpu_inc(*dd->int_counter);
8426 	aspm_ctx_disable(rcd);
8427 
8428 	/* receive interrupt remains blocked while processing packets */
8429 	disposition = rcd->do_interrupt(rcd, 0);
8430 
8431 	/*
8432 	 * Too many packets were seen while processing packets in this
8433 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8434 	 * remains blocked.
8435 	 */
8436 	if (disposition == RCV_PKT_LIMIT)
8437 		return IRQ_WAKE_THREAD;
8438 
8439 	/*
8440 	 * The packet processor detected no more packets.  Clear the receive
8441 	 * interrupt and recheck for a packet packet that may have arrived
8442 	 * after the previous check and interrupt clear.  If a packet arrived,
8443 	 * force another interrupt.
8444 	 */
8445 	clear_recv_intr(rcd);
8446 	present = check_packet_present(rcd);
8447 	if (present)
8448 		force_recv_intr(rcd);
8449 
8450 	return IRQ_HANDLED;
8451 }
8452 
8453 /*
8454  * Receive packet thread handler.  This expects to be invoked with the
8455  * receive interrupt still blocked.
8456  */
8457 irqreturn_t receive_context_thread(int irq, void *data)
8458 {
8459 	struct hfi1_ctxtdata *rcd = data;
8460 	int present;
8461 
8462 	/* receive interrupt is still blocked from the IRQ handler */
8463 	(void)rcd->do_interrupt(rcd, 1);
8464 
8465 	/*
8466 	 * The packet processor will only return if it detected no more
8467 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8468 	 * recheck for a packet that may have arrived after the previous
8469 	 * check and the interrupt clear.  If a packet arrived, force another
8470 	 * interrupt.
8471 	 */
8472 	local_irq_disable();
8473 	clear_recv_intr(rcd);
8474 	present = check_packet_present(rcd);
8475 	if (present)
8476 		force_recv_intr(rcd);
8477 	local_irq_enable();
8478 
8479 	return IRQ_HANDLED;
8480 }
8481 
8482 /* ========================================================================= */
8483 
8484 u32 read_physical_state(struct hfi1_devdata *dd)
8485 {
8486 	u64 reg;
8487 
8488 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8489 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8490 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8491 }
8492 
8493 u32 read_logical_state(struct hfi1_devdata *dd)
8494 {
8495 	u64 reg;
8496 
8497 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8498 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8499 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8500 }
8501 
8502 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8503 {
8504 	u64 reg;
8505 
8506 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8507 	/* clear current state, set new state */
8508 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8509 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8510 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8511 }
8512 
8513 /*
8514  * Use the 8051 to read a LCB CSR.
8515  */
8516 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8517 {
8518 	u32 regno;
8519 	int ret;
8520 
8521 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8522 		if (acquire_lcb_access(dd, 0) == 0) {
8523 			*data = read_csr(dd, addr);
8524 			release_lcb_access(dd, 0);
8525 			return 0;
8526 		}
8527 		return -EBUSY;
8528 	}
8529 
8530 	/* register is an index of LCB registers: (offset - base) / 8 */
8531 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8532 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8533 	if (ret != HCMD_SUCCESS)
8534 		return -EBUSY;
8535 	return 0;
8536 }
8537 
8538 /*
8539  * Provide a cache for some of the LCB registers in case the LCB is
8540  * unavailable.
8541  * (The LCB is unavailable in certain link states, for example.)
8542  */
8543 struct lcb_datum {
8544 	u32 off;
8545 	u64 val;
8546 };
8547 
8548 static struct lcb_datum lcb_cache[] = {
8549 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8550 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8551 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8552 };
8553 
8554 static void update_lcb_cache(struct hfi1_devdata *dd)
8555 {
8556 	int i;
8557 	int ret;
8558 	u64 val;
8559 
8560 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8561 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8562 
8563 		/* Update if we get good data */
8564 		if (likely(ret != -EBUSY))
8565 			lcb_cache[i].val = val;
8566 	}
8567 }
8568 
8569 static int read_lcb_cache(u32 off, u64 *val)
8570 {
8571 	int i;
8572 
8573 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8574 		if (lcb_cache[i].off == off) {
8575 			*val = lcb_cache[i].val;
8576 			return 0;
8577 		}
8578 	}
8579 
8580 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8581 	return -1;
8582 }
8583 
8584 /*
8585  * Read an LCB CSR.  Access may not be in host control, so check.
8586  * Return 0 on success, -EBUSY on failure.
8587  */
8588 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8589 {
8590 	struct hfi1_pportdata *ppd = dd->pport;
8591 
8592 	/* if up, go through the 8051 for the value */
8593 	if (ppd->host_link_state & HLS_UP)
8594 		return read_lcb_via_8051(dd, addr, data);
8595 	/* if going up or down, check the cache, otherwise, no access */
8596 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8597 		if (read_lcb_cache(addr, data))
8598 			return -EBUSY;
8599 		return 0;
8600 	}
8601 
8602 	/* otherwise, host has access */
8603 	*data = read_csr(dd, addr);
8604 	return 0;
8605 }
8606 
8607 /*
8608  * Use the 8051 to write a LCB CSR.
8609  */
8610 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8611 {
8612 	u32 regno;
8613 	int ret;
8614 
8615 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8616 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8617 		if (acquire_lcb_access(dd, 0) == 0) {
8618 			write_csr(dd, addr, data);
8619 			release_lcb_access(dd, 0);
8620 			return 0;
8621 		}
8622 		return -EBUSY;
8623 	}
8624 
8625 	/* register is an index of LCB registers: (offset - base) / 8 */
8626 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8627 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8628 	if (ret != HCMD_SUCCESS)
8629 		return -EBUSY;
8630 	return 0;
8631 }
8632 
8633 /*
8634  * Write an LCB CSR.  Access may not be in host control, so check.
8635  * Return 0 on success, -EBUSY on failure.
8636  */
8637 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8638 {
8639 	struct hfi1_pportdata *ppd = dd->pport;
8640 
8641 	/* if up, go through the 8051 for the value */
8642 	if (ppd->host_link_state & HLS_UP)
8643 		return write_lcb_via_8051(dd, addr, data);
8644 	/* if going up or down, no access */
8645 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8646 		return -EBUSY;
8647 	/* otherwise, host has access */
8648 	write_csr(dd, addr, data);
8649 	return 0;
8650 }
8651 
8652 /*
8653  * Returns:
8654  *	< 0 = Linux error, not able to get access
8655  *	> 0 = 8051 command RETURN_CODE
8656  */
8657 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8658 			   u64 *out_data)
8659 {
8660 	u64 reg, completed;
8661 	int return_code;
8662 	unsigned long timeout;
8663 
8664 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8665 
8666 	mutex_lock(&dd->dc8051_lock);
8667 
8668 	/* We can't send any commands to the 8051 if it's in reset */
8669 	if (dd->dc_shutdown) {
8670 		return_code = -ENODEV;
8671 		goto fail;
8672 	}
8673 
8674 	/*
8675 	 * If an 8051 host command timed out previously, then the 8051 is
8676 	 * stuck.
8677 	 *
8678 	 * On first timeout, attempt to reset and restart the entire DC
8679 	 * block (including 8051). (Is this too big of a hammer?)
8680 	 *
8681 	 * If the 8051 times out a second time, the reset did not bring it
8682 	 * back to healthy life. In that case, fail any subsequent commands.
8683 	 */
8684 	if (dd->dc8051_timed_out) {
8685 		if (dd->dc8051_timed_out > 1) {
8686 			dd_dev_err(dd,
8687 				   "Previous 8051 host command timed out, skipping command %u\n",
8688 				   type);
8689 			return_code = -ENXIO;
8690 			goto fail;
8691 		}
8692 		_dc_shutdown(dd);
8693 		_dc_start(dd);
8694 	}
8695 
8696 	/*
8697 	 * If there is no timeout, then the 8051 command interface is
8698 	 * waiting for a command.
8699 	 */
8700 
8701 	/*
8702 	 * When writing a LCB CSR, out_data contains the full value to
8703 	 * to be written, while in_data contains the relative LCB
8704 	 * address in 7:0.  Do the work here, rather than the caller,
8705 	 * of distrubting the write data to where it needs to go:
8706 	 *
8707 	 * Write data
8708 	 *   39:00 -> in_data[47:8]
8709 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8710 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8711 	 */
8712 	if (type == HCMD_WRITE_LCB_CSR) {
8713 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8714 		/* must preserve COMPLETED - it is tied to hardware */
8715 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8716 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8717 		reg |= ((((*out_data) >> 40) & 0xff) <<
8718 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8719 		      | ((((*out_data) >> 48) & 0xffff) <<
8720 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8721 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8722 	}
8723 
8724 	/*
8725 	 * Do two writes: the first to stabilize the type and req_data, the
8726 	 * second to activate.
8727 	 */
8728 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8729 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8730 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8731 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8732 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8733 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8734 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8735 
8736 	/* wait for completion, alternate: interrupt */
8737 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8738 	while (1) {
8739 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8740 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8741 		if (completed)
8742 			break;
8743 		if (time_after(jiffies, timeout)) {
8744 			dd->dc8051_timed_out++;
8745 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8746 			if (out_data)
8747 				*out_data = 0;
8748 			return_code = -ETIMEDOUT;
8749 			goto fail;
8750 		}
8751 		udelay(2);
8752 	}
8753 
8754 	if (out_data) {
8755 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8756 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8757 		if (type == HCMD_READ_LCB_CSR) {
8758 			/* top 16 bits are in a different register */
8759 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8760 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8761 				<< (48
8762 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8763 		}
8764 	}
8765 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8766 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8767 	dd->dc8051_timed_out = 0;
8768 	/*
8769 	 * Clear command for next user.
8770 	 */
8771 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8772 
8773 fail:
8774 	mutex_unlock(&dd->dc8051_lock);
8775 	return return_code;
8776 }
8777 
8778 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8779 {
8780 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8781 }
8782 
8783 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8784 		     u8 lane_id, u32 config_data)
8785 {
8786 	u64 data;
8787 	int ret;
8788 
8789 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8790 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8791 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8792 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8793 	if (ret != HCMD_SUCCESS) {
8794 		dd_dev_err(dd,
8795 			   "load 8051 config: field id %d, lane %d, err %d\n",
8796 			   (int)field_id, (int)lane_id, ret);
8797 	}
8798 	return ret;
8799 }
8800 
8801 /*
8802  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8803  * set the result, even on error.
8804  * Return 0 on success, -errno on failure
8805  */
8806 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8807 		     u32 *result)
8808 {
8809 	u64 big_data;
8810 	u32 addr;
8811 	int ret;
8812 
8813 	/* address start depends on the lane_id */
8814 	if (lane_id < 4)
8815 		addr = (4 * NUM_GENERAL_FIELDS)
8816 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8817 	else
8818 		addr = 0;
8819 	addr += field_id * 4;
8820 
8821 	/* read is in 8-byte chunks, hardware will truncate the address down */
8822 	ret = read_8051_data(dd, addr, 8, &big_data);
8823 
8824 	if (ret == 0) {
8825 		/* extract the 4 bytes we want */
8826 		if (addr & 0x4)
8827 			*result = (u32)(big_data >> 32);
8828 		else
8829 			*result = (u32)big_data;
8830 	} else {
8831 		*result = 0;
8832 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8833 			   __func__, lane_id, field_id);
8834 	}
8835 
8836 	return ret;
8837 }
8838 
8839 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8840 			      u8 continuous)
8841 {
8842 	u32 frame;
8843 
8844 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8845 		| power_management << POWER_MANAGEMENT_SHIFT;
8846 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8847 				GENERAL_CONFIG, frame);
8848 }
8849 
8850 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8851 				 u16 vl15buf, u8 crc_sizes)
8852 {
8853 	u32 frame;
8854 
8855 	frame = (u32)vau << VAU_SHIFT
8856 		| (u32)z << Z_SHIFT
8857 		| (u32)vcu << VCU_SHIFT
8858 		| (u32)vl15buf << VL15BUF_SHIFT
8859 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8860 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8861 				GENERAL_CONFIG, frame);
8862 }
8863 
8864 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8865 				    u8 *flag_bits, u16 *link_widths)
8866 {
8867 	u32 frame;
8868 
8869 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8870 			 &frame);
8871 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8872 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8873 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8874 }
8875 
8876 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8877 				    u8 misc_bits,
8878 				    u8 flag_bits,
8879 				    u16 link_widths)
8880 {
8881 	u32 frame;
8882 
8883 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8884 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8885 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8886 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8887 		     frame);
8888 }
8889 
8890 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8891 				 u8 device_rev)
8892 {
8893 	u32 frame;
8894 
8895 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8896 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8897 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8898 }
8899 
8900 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8901 				  u8 *device_rev)
8902 {
8903 	u32 frame;
8904 
8905 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8906 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8907 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8908 			& REMOTE_DEVICE_REV_MASK;
8909 }
8910 
8911 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8912 {
8913 	u32 frame;
8914 	u32 mask;
8915 
8916 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8917 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8918 	/* Clear, then set field */
8919 	frame &= ~mask;
8920 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8921 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8922 				frame);
8923 }
8924 
8925 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8926 		      u8 *ver_patch)
8927 {
8928 	u32 frame;
8929 
8930 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8931 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8932 		STS_FM_VERSION_MAJOR_MASK;
8933 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8934 		STS_FM_VERSION_MINOR_MASK;
8935 
8936 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8937 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8938 		STS_FM_VERSION_PATCH_MASK;
8939 }
8940 
8941 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8942 			       u8 *continuous)
8943 {
8944 	u32 frame;
8945 
8946 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8947 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8948 					& POWER_MANAGEMENT_MASK;
8949 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8950 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8951 }
8952 
8953 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8954 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8955 {
8956 	u32 frame;
8957 
8958 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8959 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8960 	*z = (frame >> Z_SHIFT) & Z_MASK;
8961 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8962 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8963 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8964 }
8965 
8966 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8967 				      u8 *remote_tx_rate,
8968 				      u16 *link_widths)
8969 {
8970 	u32 frame;
8971 
8972 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8973 			 &frame);
8974 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8975 				& REMOTE_TX_RATE_MASK;
8976 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8977 }
8978 
8979 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8980 {
8981 	u32 frame;
8982 
8983 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8984 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8985 }
8986 
8987 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8988 {
8989 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8990 }
8991 
8992 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8993 {
8994 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8995 }
8996 
8997 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8998 {
8999 	u32 frame;
9000 	int ret;
9001 
9002 	*link_quality = 0;
9003 	if (dd->pport->host_link_state & HLS_UP) {
9004 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
9005 				       &frame);
9006 		if (ret == 0)
9007 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
9008 						& LINK_QUALITY_MASK;
9009 	}
9010 }
9011 
9012 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9013 {
9014 	u32 frame;
9015 
9016 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9017 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9018 }
9019 
9020 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9021 {
9022 	u32 frame;
9023 
9024 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9025 	*ldr = (frame & 0xff);
9026 }
9027 
9028 static int read_tx_settings(struct hfi1_devdata *dd,
9029 			    u8 *enable_lane_tx,
9030 			    u8 *tx_polarity_inversion,
9031 			    u8 *rx_polarity_inversion,
9032 			    u8 *max_rate)
9033 {
9034 	u32 frame;
9035 	int ret;
9036 
9037 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9038 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9039 				& ENABLE_LANE_TX_MASK;
9040 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9041 				& TX_POLARITY_INVERSION_MASK;
9042 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9043 				& RX_POLARITY_INVERSION_MASK;
9044 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9045 	return ret;
9046 }
9047 
9048 static int write_tx_settings(struct hfi1_devdata *dd,
9049 			     u8 enable_lane_tx,
9050 			     u8 tx_polarity_inversion,
9051 			     u8 rx_polarity_inversion,
9052 			     u8 max_rate)
9053 {
9054 	u32 frame;
9055 
9056 	/* no need to mask, all variable sizes match field widths */
9057 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9058 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9059 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9060 		| max_rate << MAX_RATE_SHIFT;
9061 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9062 }
9063 
9064 /*
9065  * Read an idle LCB message.
9066  *
9067  * Returns 0 on success, -EINVAL on error
9068  */
9069 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9070 {
9071 	int ret;
9072 
9073 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9074 	if (ret != HCMD_SUCCESS) {
9075 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9076 			   (u32)type, ret);
9077 		return -EINVAL;
9078 	}
9079 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9080 	/* return only the payload as we already know the type */
9081 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9082 	return 0;
9083 }
9084 
9085 /*
9086  * Read an idle SMA message.  To be done in response to a notification from
9087  * the 8051.
9088  *
9089  * Returns 0 on success, -EINVAL on error
9090  */
9091 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9092 {
9093 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9094 				 data);
9095 }
9096 
9097 /*
9098  * Send an idle LCB message.
9099  *
9100  * Returns 0 on success, -EINVAL on error
9101  */
9102 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9103 {
9104 	int ret;
9105 
9106 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9107 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9108 	if (ret != HCMD_SUCCESS) {
9109 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9110 			   data, ret);
9111 		return -EINVAL;
9112 	}
9113 	return 0;
9114 }
9115 
9116 /*
9117  * Send an idle SMA message.
9118  *
9119  * Returns 0 on success, -EINVAL on error
9120  */
9121 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9122 {
9123 	u64 data;
9124 
9125 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9126 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9127 	return send_idle_message(dd, data);
9128 }
9129 
9130 /*
9131  * Initialize the LCB then do a quick link up.  This may or may not be
9132  * in loopback.
9133  *
9134  * return 0 on success, -errno on error
9135  */
9136 static int do_quick_linkup(struct hfi1_devdata *dd)
9137 {
9138 	int ret;
9139 
9140 	lcb_shutdown(dd, 0);
9141 
9142 	if (loopback) {
9143 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9144 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9145 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9146 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9147 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9148 	}
9149 
9150 	/* start the LCBs */
9151 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9152 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9153 
9154 	/* simulator only loopback steps */
9155 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9156 		/* LCB_CFG_RUN.EN = 1 */
9157 		write_csr(dd, DC_LCB_CFG_RUN,
9158 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9159 
9160 		ret = wait_link_transfer_active(dd, 10);
9161 		if (ret)
9162 			return ret;
9163 
9164 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9165 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9166 	}
9167 
9168 	if (!loopback) {
9169 		/*
9170 		 * When doing quick linkup and not in loopback, both
9171 		 * sides must be done with LCB set-up before either
9172 		 * starts the quick linkup.  Put a delay here so that
9173 		 * both sides can be started and have a chance to be
9174 		 * done with LCB set up before resuming.
9175 		 */
9176 		dd_dev_err(dd,
9177 			   "Pausing for peer to be finished with LCB set up\n");
9178 		msleep(5000);
9179 		dd_dev_err(dd, "Continuing with quick linkup\n");
9180 	}
9181 
9182 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9183 	set_8051_lcb_access(dd);
9184 
9185 	/*
9186 	 * State "quick" LinkUp request sets the physical link state to
9187 	 * LinkUp without a verify capability sequence.
9188 	 * This state is in simulator v37 and later.
9189 	 */
9190 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9191 	if (ret != HCMD_SUCCESS) {
9192 		dd_dev_err(dd,
9193 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9194 			   __func__, ret);
9195 
9196 		set_host_lcb_access(dd);
9197 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9198 
9199 		if (ret >= 0)
9200 			ret = -EINVAL;
9201 		return ret;
9202 	}
9203 
9204 	return 0; /* success */
9205 }
9206 
9207 /*
9208  * Do all special steps to set up loopback.
9209  */
9210 static int init_loopback(struct hfi1_devdata *dd)
9211 {
9212 	dd_dev_info(dd, "Entering loopback mode\n");
9213 
9214 	/* all loopbacks should disable self GUID check */
9215 	write_csr(dd, DC_DC8051_CFG_MODE,
9216 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9217 
9218 	/*
9219 	 * The simulator has only one loopback option - LCB.  Switch
9220 	 * to that option, which includes quick link up.
9221 	 *
9222 	 * Accept all valid loopback values.
9223 	 */
9224 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9225 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9226 	     loopback == LOOPBACK_CABLE)) {
9227 		loopback = LOOPBACK_LCB;
9228 		quick_linkup = 1;
9229 		return 0;
9230 	}
9231 
9232 	/*
9233 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9234 	 */
9235 	if (loopback == LOOPBACK_SERDES)
9236 		return 0;
9237 
9238 	/* LCB loopback - handled at poll time */
9239 	if (loopback == LOOPBACK_LCB) {
9240 		quick_linkup = 1; /* LCB is always quick linkup */
9241 
9242 		/* not supported in emulation due to emulation RTL changes */
9243 		if (dd->icode == ICODE_FPGA_EMULATION) {
9244 			dd_dev_err(dd,
9245 				   "LCB loopback not supported in emulation\n");
9246 			return -EINVAL;
9247 		}
9248 		return 0;
9249 	}
9250 
9251 	/* external cable loopback requires no extra steps */
9252 	if (loopback == LOOPBACK_CABLE)
9253 		return 0;
9254 
9255 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9256 	return -EINVAL;
9257 }
9258 
9259 /*
9260  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9261  * used in the Verify Capability link width attribute.
9262  */
9263 static u16 opa_to_vc_link_widths(u16 opa_widths)
9264 {
9265 	int i;
9266 	u16 result = 0;
9267 
9268 	static const struct link_bits {
9269 		u16 from;
9270 		u16 to;
9271 	} opa_link_xlate[] = {
9272 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9273 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9274 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9275 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9276 	};
9277 
9278 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9279 		if (opa_widths & opa_link_xlate[i].from)
9280 			result |= opa_link_xlate[i].to;
9281 	}
9282 	return result;
9283 }
9284 
9285 /*
9286  * Set link attributes before moving to polling.
9287  */
9288 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9289 {
9290 	struct hfi1_devdata *dd = ppd->dd;
9291 	u8 enable_lane_tx;
9292 	u8 tx_polarity_inversion;
9293 	u8 rx_polarity_inversion;
9294 	int ret;
9295 	u32 misc_bits = 0;
9296 	/* reset our fabric serdes to clear any lingering problems */
9297 	fabric_serdes_reset(dd);
9298 
9299 	/* set the local tx rate - need to read-modify-write */
9300 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9301 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9302 	if (ret)
9303 		goto set_local_link_attributes_fail;
9304 
9305 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9306 		/* set the tx rate to the fastest enabled */
9307 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9308 			ppd->local_tx_rate = 1;
9309 		else
9310 			ppd->local_tx_rate = 0;
9311 	} else {
9312 		/* set the tx rate to all enabled */
9313 		ppd->local_tx_rate = 0;
9314 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9315 			ppd->local_tx_rate |= 2;
9316 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9317 			ppd->local_tx_rate |= 1;
9318 	}
9319 
9320 	enable_lane_tx = 0xF; /* enable all four lanes */
9321 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9322 				rx_polarity_inversion, ppd->local_tx_rate);
9323 	if (ret != HCMD_SUCCESS)
9324 		goto set_local_link_attributes_fail;
9325 
9326 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9327 	if (ret != HCMD_SUCCESS) {
9328 		dd_dev_err(dd,
9329 			   "Failed to set host interface version, return 0x%x\n",
9330 			   ret);
9331 		goto set_local_link_attributes_fail;
9332 	}
9333 
9334 	/*
9335 	 * DC supports continuous updates.
9336 	 */
9337 	ret = write_vc_local_phy(dd,
9338 				 0 /* no power management */,
9339 				 1 /* continuous updates */);
9340 	if (ret != HCMD_SUCCESS)
9341 		goto set_local_link_attributes_fail;
9342 
9343 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9344 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9345 				    ppd->port_crc_mode_enabled);
9346 	if (ret != HCMD_SUCCESS)
9347 		goto set_local_link_attributes_fail;
9348 
9349 	/*
9350 	 * SerDes loopback init sequence requires
9351 	 * setting bit 0 of MISC_CONFIG_BITS
9352 	 */
9353 	if (loopback == LOOPBACK_SERDES)
9354 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9355 
9356 	/*
9357 	 * An external device configuration request is used to reset the LCB
9358 	 * to retry to obtain operational lanes when the first attempt is
9359 	 * unsuccesful.
9360 	 */
9361 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9362 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9363 
9364 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9365 				       opa_to_vc_link_widths(
9366 						ppd->link_width_enabled));
9367 	if (ret != HCMD_SUCCESS)
9368 		goto set_local_link_attributes_fail;
9369 
9370 	/* let peer know who we are */
9371 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9372 	if (ret == HCMD_SUCCESS)
9373 		return 0;
9374 
9375 set_local_link_attributes_fail:
9376 	dd_dev_err(dd,
9377 		   "Failed to set local link attributes, return 0x%x\n",
9378 		   ret);
9379 	return ret;
9380 }
9381 
9382 /*
9383  * Call this to start the link.
9384  * Do not do anything if the link is disabled.
9385  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9386  */
9387 int start_link(struct hfi1_pportdata *ppd)
9388 {
9389 	/*
9390 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9391 	 * error rate.  Needs to be done before starting the link.
9392 	 */
9393 	tune_serdes(ppd);
9394 
9395 	if (!ppd->driver_link_ready) {
9396 		dd_dev_info(ppd->dd,
9397 			    "%s: stopping link start because driver is not ready\n",
9398 			    __func__);
9399 		return 0;
9400 	}
9401 
9402 	/*
9403 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9404 	 * pkey table can be configured properly if the HFI unit is connected
9405 	 * to switch port with MgmtAllowed=NO
9406 	 */
9407 	clear_full_mgmt_pkey(ppd);
9408 
9409 	return set_link_state(ppd, HLS_DN_POLL);
9410 }
9411 
9412 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9413 {
9414 	struct hfi1_devdata *dd = ppd->dd;
9415 	u64 mask;
9416 	unsigned long timeout;
9417 
9418 	/*
9419 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9420 	 * effect of power up on plug-in. We ignore this false positive
9421 	 * interrupt until the module has finished powering up by waiting for
9422 	 * a minimum timeout of the module inrush initialization time of
9423 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9424 	 * module have stabilized.
9425 	 */
9426 	msleep(500);
9427 
9428 	/*
9429 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9430 	 */
9431 	timeout = jiffies + msecs_to_jiffies(2000);
9432 	while (1) {
9433 		mask = read_csr(dd, dd->hfi1_id ?
9434 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9435 		if (!(mask & QSFP_HFI0_INT_N))
9436 			break;
9437 		if (time_after(jiffies, timeout)) {
9438 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9439 				    __func__);
9440 			break;
9441 		}
9442 		udelay(2);
9443 	}
9444 }
9445 
9446 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9447 {
9448 	struct hfi1_devdata *dd = ppd->dd;
9449 	u64 mask;
9450 
9451 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9452 	if (enable) {
9453 		/*
9454 		 * Clear the status register to avoid an immediate interrupt
9455 		 * when we re-enable the IntN pin
9456 		 */
9457 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9458 			  QSFP_HFI0_INT_N);
9459 		mask |= (u64)QSFP_HFI0_INT_N;
9460 	} else {
9461 		mask &= ~(u64)QSFP_HFI0_INT_N;
9462 	}
9463 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9464 }
9465 
9466 int reset_qsfp(struct hfi1_pportdata *ppd)
9467 {
9468 	struct hfi1_devdata *dd = ppd->dd;
9469 	u64 mask, qsfp_mask;
9470 
9471 	/* Disable INT_N from triggering QSFP interrupts */
9472 	set_qsfp_int_n(ppd, 0);
9473 
9474 	/* Reset the QSFP */
9475 	mask = (u64)QSFP_HFI0_RESET_N;
9476 
9477 	qsfp_mask = read_csr(dd,
9478 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9479 	qsfp_mask &= ~mask;
9480 	write_csr(dd,
9481 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9482 
9483 	udelay(10);
9484 
9485 	qsfp_mask |= mask;
9486 	write_csr(dd,
9487 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9488 
9489 	wait_for_qsfp_init(ppd);
9490 
9491 	/*
9492 	 * Allow INT_N to trigger the QSFP interrupt to watch
9493 	 * for alarms and warnings
9494 	 */
9495 	set_qsfp_int_n(ppd, 1);
9496 
9497 	/*
9498 	 * After the reset, AOC transmitters are enabled by default. They need
9499 	 * to be turned off to complete the QSFP setup before they can be
9500 	 * enabled again.
9501 	 */
9502 	return set_qsfp_tx(ppd, 0);
9503 }
9504 
9505 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9506 					u8 *qsfp_interrupt_status)
9507 {
9508 	struct hfi1_devdata *dd = ppd->dd;
9509 
9510 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9511 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9512 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9513 			   __func__);
9514 
9515 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9516 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9517 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9518 			   __func__);
9519 
9520 	/*
9521 	 * The remaining alarms/warnings don't matter if the link is down.
9522 	 */
9523 	if (ppd->host_link_state & HLS_DOWN)
9524 		return 0;
9525 
9526 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9527 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9528 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9529 			   __func__);
9530 
9531 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9532 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9533 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9534 			   __func__);
9535 
9536 	/* Byte 2 is vendor specific */
9537 
9538 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9539 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9540 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9541 			   __func__);
9542 
9543 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9544 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9545 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9546 			   __func__);
9547 
9548 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9549 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9550 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9551 			   __func__);
9552 
9553 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9554 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9555 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9556 			   __func__);
9557 
9558 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9559 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9560 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9561 			   __func__);
9562 
9563 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9564 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9565 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9566 			   __func__);
9567 
9568 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9569 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9570 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9571 			   __func__);
9572 
9573 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9574 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9575 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9576 			   __func__);
9577 
9578 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9579 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9580 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9581 			   __func__);
9582 
9583 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9584 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9585 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9586 			   __func__);
9587 
9588 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9589 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9590 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9591 			   __func__);
9592 
9593 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9594 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9595 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9596 			   __func__);
9597 
9598 	/* Bytes 9-10 and 11-12 are reserved */
9599 	/* Bytes 13-15 are vendor specific */
9600 
9601 	return 0;
9602 }
9603 
9604 /* This routine will only be scheduled if the QSFP module present is asserted */
9605 void qsfp_event(struct work_struct *work)
9606 {
9607 	struct qsfp_data *qd;
9608 	struct hfi1_pportdata *ppd;
9609 	struct hfi1_devdata *dd;
9610 
9611 	qd = container_of(work, struct qsfp_data, qsfp_work);
9612 	ppd = qd->ppd;
9613 	dd = ppd->dd;
9614 
9615 	/* Sanity check */
9616 	if (!qsfp_mod_present(ppd))
9617 		return;
9618 
9619 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9620 		dd_dev_info(ppd->dd,
9621 			    "%s: stopping link start because link is disabled\n",
9622 			    __func__);
9623 		return;
9624 	}
9625 
9626 	/*
9627 	 * Turn DC back on after cable has been re-inserted. Up until
9628 	 * now, the DC has been in reset to save power.
9629 	 */
9630 	dc_start(dd);
9631 
9632 	if (qd->cache_refresh_required) {
9633 		set_qsfp_int_n(ppd, 0);
9634 
9635 		wait_for_qsfp_init(ppd);
9636 
9637 		/*
9638 		 * Allow INT_N to trigger the QSFP interrupt to watch
9639 		 * for alarms and warnings
9640 		 */
9641 		set_qsfp_int_n(ppd, 1);
9642 
9643 		start_link(ppd);
9644 	}
9645 
9646 	if (qd->check_interrupt_flags) {
9647 		u8 qsfp_interrupt_status[16] = {0,};
9648 
9649 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9650 				  &qsfp_interrupt_status[0], 16) != 16) {
9651 			dd_dev_info(dd,
9652 				    "%s: Failed to read status of QSFP module\n",
9653 				    __func__);
9654 		} else {
9655 			unsigned long flags;
9656 
9657 			handle_qsfp_error_conditions(
9658 					ppd, qsfp_interrupt_status);
9659 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9660 			ppd->qsfp_info.check_interrupt_flags = 0;
9661 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9662 					       flags);
9663 		}
9664 	}
9665 }
9666 
9667 void init_qsfp_int(struct hfi1_devdata *dd)
9668 {
9669 	struct hfi1_pportdata *ppd = dd->pport;
9670 	u64 qsfp_mask;
9671 
9672 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9673 	/* Clear current status to avoid spurious interrupts */
9674 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9675 		  qsfp_mask);
9676 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9677 		  qsfp_mask);
9678 
9679 	set_qsfp_int_n(ppd, 0);
9680 
9681 	/* Handle active low nature of INT_N and MODPRST_N pins */
9682 	if (qsfp_mod_present(ppd))
9683 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9684 	write_csr(dd,
9685 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9686 		  qsfp_mask);
9687 
9688 	/* Enable the appropriate QSFP IRQ source */
9689 	if (!dd->hfi1_id)
9690 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9691 	else
9692 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9693 }
9694 
9695 /*
9696  * Do a one-time initialize of the LCB block.
9697  */
9698 static void init_lcb(struct hfi1_devdata *dd)
9699 {
9700 	/* simulator does not correctly handle LCB cclk loopback, skip */
9701 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9702 		return;
9703 
9704 	/* the DC has been reset earlier in the driver load */
9705 
9706 	/* set LCB for cclk loopback on the port */
9707 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9708 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9709 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9710 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9711 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9712 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9713 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9714 }
9715 
9716 /*
9717  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9718  * on error.
9719  */
9720 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9721 {
9722 	int ret;
9723 	u8 status;
9724 
9725 	/*
9726 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9727 	 * not present
9728 	 */
9729 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9730 		return 0;
9731 
9732 	/* read byte 2, the status byte */
9733 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9734 	if (ret < 0)
9735 		return ret;
9736 	if (ret != 1)
9737 		return -EIO;
9738 
9739 	return 0; /* success */
9740 }
9741 
9742 /*
9743  * Values for QSFP retry.
9744  *
9745  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9746  * arrived at from experience on a large cluster.
9747  */
9748 #define MAX_QSFP_RETRIES 20
9749 #define QSFP_RETRY_WAIT 500 /* msec */
9750 
9751 /*
9752  * Try a QSFP read.  If it fails, schedule a retry for later.
9753  * Called on first link activation after driver load.
9754  */
9755 static void try_start_link(struct hfi1_pportdata *ppd)
9756 {
9757 	if (test_qsfp_read(ppd)) {
9758 		/* read failed */
9759 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9760 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9761 			return;
9762 		}
9763 		dd_dev_info(ppd->dd,
9764 			    "QSFP not responding, waiting and retrying %d\n",
9765 			    (int)ppd->qsfp_retry_count);
9766 		ppd->qsfp_retry_count++;
9767 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9768 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9769 		return;
9770 	}
9771 	ppd->qsfp_retry_count = 0;
9772 
9773 	start_link(ppd);
9774 }
9775 
9776 /*
9777  * Workqueue function to start the link after a delay.
9778  */
9779 void handle_start_link(struct work_struct *work)
9780 {
9781 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9782 						  start_link_work.work);
9783 	try_start_link(ppd);
9784 }
9785 
9786 int bringup_serdes(struct hfi1_pportdata *ppd)
9787 {
9788 	struct hfi1_devdata *dd = ppd->dd;
9789 	u64 guid;
9790 	int ret;
9791 
9792 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9793 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9794 
9795 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9796 	if (!guid) {
9797 		if (dd->base_guid)
9798 			guid = dd->base_guid + ppd->port - 1;
9799 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9800 	}
9801 
9802 	/* Set linkinit_reason on power up per OPA spec */
9803 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9804 
9805 	/* one-time init of the LCB */
9806 	init_lcb(dd);
9807 
9808 	if (loopback) {
9809 		ret = init_loopback(dd);
9810 		if (ret < 0)
9811 			return ret;
9812 	}
9813 
9814 	get_port_type(ppd);
9815 	if (ppd->port_type == PORT_TYPE_QSFP) {
9816 		set_qsfp_int_n(ppd, 0);
9817 		wait_for_qsfp_init(ppd);
9818 		set_qsfp_int_n(ppd, 1);
9819 	}
9820 
9821 	try_start_link(ppd);
9822 	return 0;
9823 }
9824 
9825 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9826 {
9827 	struct hfi1_devdata *dd = ppd->dd;
9828 
9829 	/*
9830 	 * Shut down the link and keep it down.   First turn off that the
9831 	 * driver wants to allow the link to be up (driver_link_ready).
9832 	 * Then make sure the link is not automatically restarted
9833 	 * (link_enabled).  Cancel any pending restart.  And finally
9834 	 * go offline.
9835 	 */
9836 	ppd->driver_link_ready = 0;
9837 	ppd->link_enabled = 0;
9838 
9839 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9840 	flush_delayed_work(&ppd->start_link_work);
9841 	cancel_delayed_work_sync(&ppd->start_link_work);
9842 
9843 	ppd->offline_disabled_reason =
9844 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9845 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9846 			     OPA_LINKDOWN_REASON_REBOOT);
9847 	set_link_state(ppd, HLS_DN_OFFLINE);
9848 
9849 	/* disable the port */
9850 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9851 }
9852 
9853 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9854 {
9855 	struct hfi1_pportdata *ppd;
9856 	int i;
9857 
9858 	ppd = (struct hfi1_pportdata *)(dd + 1);
9859 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9860 		ppd->ibport_data.rvp.rc_acks = NULL;
9861 		ppd->ibport_data.rvp.rc_qacks = NULL;
9862 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9863 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9864 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9865 		if (!ppd->ibport_data.rvp.rc_acks ||
9866 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9867 		    !ppd->ibport_data.rvp.rc_qacks)
9868 			return -ENOMEM;
9869 	}
9870 
9871 	return 0;
9872 }
9873 
9874 /*
9875  * index is the index into the receive array
9876  */
9877 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9878 		  u32 type, unsigned long pa, u16 order)
9879 {
9880 	u64 reg;
9881 
9882 	if (!(dd->flags & HFI1_PRESENT))
9883 		goto done;
9884 
9885 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9886 		pa = 0;
9887 		order = 0;
9888 	} else if (type > PT_INVALID) {
9889 		dd_dev_err(dd,
9890 			   "unexpected receive array type %u for index %u, not handled\n",
9891 			   type, index);
9892 		goto done;
9893 	}
9894 	trace_hfi1_put_tid(dd, index, type, pa, order);
9895 
9896 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9897 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9898 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9899 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9900 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9901 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9902 	writeq(reg, dd->rcvarray_wc + (index * 8));
9903 
9904 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9905 		/*
9906 		 * Eager entries are written and flushed
9907 		 *
9908 		 * Expected entries are flushed every 4 writes
9909 		 */
9910 		flush_wc();
9911 done:
9912 	return;
9913 }
9914 
9915 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9916 {
9917 	struct hfi1_devdata *dd = rcd->dd;
9918 	u32 i;
9919 
9920 	/* this could be optimized */
9921 	for (i = rcd->eager_base; i < rcd->eager_base +
9922 		     rcd->egrbufs.alloced; i++)
9923 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9924 
9925 	for (i = rcd->expected_base;
9926 			i < rcd->expected_base + rcd->expected_count; i++)
9927 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9928 }
9929 
9930 static const char * const ib_cfg_name_strings[] = {
9931 	"HFI1_IB_CFG_LIDLMC",
9932 	"HFI1_IB_CFG_LWID_DG_ENB",
9933 	"HFI1_IB_CFG_LWID_ENB",
9934 	"HFI1_IB_CFG_LWID",
9935 	"HFI1_IB_CFG_SPD_ENB",
9936 	"HFI1_IB_CFG_SPD",
9937 	"HFI1_IB_CFG_RXPOL_ENB",
9938 	"HFI1_IB_CFG_LREV_ENB",
9939 	"HFI1_IB_CFG_LINKLATENCY",
9940 	"HFI1_IB_CFG_HRTBT",
9941 	"HFI1_IB_CFG_OP_VLS",
9942 	"HFI1_IB_CFG_VL_HIGH_CAP",
9943 	"HFI1_IB_CFG_VL_LOW_CAP",
9944 	"HFI1_IB_CFG_OVERRUN_THRESH",
9945 	"HFI1_IB_CFG_PHYERR_THRESH",
9946 	"HFI1_IB_CFG_LINKDEFAULT",
9947 	"HFI1_IB_CFG_PKEYS",
9948 	"HFI1_IB_CFG_MTU",
9949 	"HFI1_IB_CFG_LSTATE",
9950 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9951 	"HFI1_IB_CFG_PMA_TICKS",
9952 	"HFI1_IB_CFG_PORT"
9953 };
9954 
9955 static const char *ib_cfg_name(int which)
9956 {
9957 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9958 		return "invalid";
9959 	return ib_cfg_name_strings[which];
9960 }
9961 
9962 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9963 {
9964 	struct hfi1_devdata *dd = ppd->dd;
9965 	int val = 0;
9966 
9967 	switch (which) {
9968 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9969 		val = ppd->link_width_enabled;
9970 		break;
9971 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9972 		val = ppd->link_width_active;
9973 		break;
9974 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9975 		val = ppd->link_speed_enabled;
9976 		break;
9977 	case HFI1_IB_CFG_SPD: /* current Link speed */
9978 		val = ppd->link_speed_active;
9979 		break;
9980 
9981 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9982 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9983 	case HFI1_IB_CFG_LINKLATENCY:
9984 		goto unimplemented;
9985 
9986 	case HFI1_IB_CFG_OP_VLS:
9987 		val = ppd->actual_vls_operational;
9988 		break;
9989 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9990 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9991 		break;
9992 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9993 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9994 		break;
9995 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9996 		val = ppd->overrun_threshold;
9997 		break;
9998 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9999 		val = ppd->phy_error_threshold;
10000 		break;
10001 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10002 		val = HLS_DEFAULT;
10003 		break;
10004 
10005 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10006 	case HFI1_IB_CFG_PMA_TICKS:
10007 	default:
10008 unimplemented:
10009 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10010 			dd_dev_info(
10011 				dd,
10012 				"%s: which %s: not implemented\n",
10013 				__func__,
10014 				ib_cfg_name(which));
10015 		break;
10016 	}
10017 
10018 	return val;
10019 }
10020 
10021 /*
10022  * The largest MAD packet size.
10023  */
10024 #define MAX_MAD_PACKET 2048
10025 
10026 /*
10027  * Return the maximum header bytes that can go on the _wire_
10028  * for this device. This count includes the ICRC which is
10029  * not part of the packet held in memory but it is appended
10030  * by the HW.
10031  * This is dependent on the device's receive header entry size.
10032  * HFI allows this to be set per-receive context, but the
10033  * driver presently enforces a global value.
10034  */
10035 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10036 {
10037 	/*
10038 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10039 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10040 	 * plus one DW for the ICRC appended by HW.
10041 	 *
10042 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10043 	 * We use rcd[0] as all context will have the same value. Also,
10044 	 * the first kernel context would have been allocated by now so
10045 	 * we are guaranteed a valid value.
10046 	 */
10047 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10048 }
10049 
10050 /*
10051  * Set Send Length
10052  * @ppd - per port data
10053  *
10054  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10055  * registers compare against LRH.PktLen, so use the max bytes included
10056  * in the LRH.
10057  *
10058  * This routine changes all VL values except VL15, which it maintains at
10059  * the same value.
10060  */
10061 static void set_send_length(struct hfi1_pportdata *ppd)
10062 {
10063 	struct hfi1_devdata *dd = ppd->dd;
10064 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10065 	u32 maxvlmtu = dd->vld[15].mtu;
10066 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10067 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10068 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10069 	int i, j;
10070 	u32 thres;
10071 
10072 	for (i = 0; i < ppd->vls_supported; i++) {
10073 		if (dd->vld[i].mtu > maxvlmtu)
10074 			maxvlmtu = dd->vld[i].mtu;
10075 		if (i <= 3)
10076 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10077 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10078 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10079 		else
10080 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10081 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10082 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10083 	}
10084 	write_csr(dd, SEND_LEN_CHECK0, len1);
10085 	write_csr(dd, SEND_LEN_CHECK1, len2);
10086 	/* adjust kernel credit return thresholds based on new MTUs */
10087 	/* all kernel receive contexts have the same hdrqentsize */
10088 	for (i = 0; i < ppd->vls_supported; i++) {
10089 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10090 			    sc_mtu_to_threshold(dd->vld[i].sc,
10091 						dd->vld[i].mtu,
10092 						dd->rcd[0]->rcvhdrqentsize));
10093 		for (j = 0; j < INIT_SC_PER_VL; j++)
10094 			sc_set_cr_threshold(
10095 					pio_select_send_context_vl(dd, j, i),
10096 					    thres);
10097 	}
10098 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10099 		    sc_mtu_to_threshold(dd->vld[15].sc,
10100 					dd->vld[15].mtu,
10101 					dd->rcd[0]->rcvhdrqentsize));
10102 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10103 
10104 	/* Adjust maximum MTU for the port in DC */
10105 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10106 		(ilog2(maxvlmtu >> 8) + 1);
10107 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10108 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10109 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10110 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10111 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10112 }
10113 
10114 static void set_lidlmc(struct hfi1_pportdata *ppd)
10115 {
10116 	int i;
10117 	u64 sreg = 0;
10118 	struct hfi1_devdata *dd = ppd->dd;
10119 	u32 mask = ~((1U << ppd->lmc) - 1);
10120 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10121 	u32 lid;
10122 
10123 	/*
10124 	 * Program 0 in CSR if port lid is extended. This prevents
10125 	 * 9B packets being sent out for large lids.
10126 	 */
10127 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10128 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10129 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10130 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10131 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10132 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10133 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10134 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10135 
10136 	/*
10137 	 * Iterate over all the send contexts and set their SLID check
10138 	 */
10139 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10140 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10141 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10142 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10143 
10144 	for (i = 0; i < chip_send_contexts(dd); i++) {
10145 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10146 			  i, (u32)sreg);
10147 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10148 	}
10149 
10150 	/* Now we have to do the same thing for the sdma engines */
10151 	sdma_update_lmc(dd, mask, lid);
10152 }
10153 
10154 static const char *state_completed_string(u32 completed)
10155 {
10156 	static const char * const state_completed[] = {
10157 		"EstablishComm",
10158 		"OptimizeEQ",
10159 		"VerifyCap"
10160 	};
10161 
10162 	if (completed < ARRAY_SIZE(state_completed))
10163 		return state_completed[completed];
10164 
10165 	return "unknown";
10166 }
10167 
10168 static const char all_lanes_dead_timeout_expired[] =
10169 	"All lanes were inactive – was the interconnect media removed?";
10170 static const char tx_out_of_policy[] =
10171 	"Passing lanes on local port do not meet the local link width policy";
10172 static const char no_state_complete[] =
10173 	"State timeout occurred before link partner completed the state";
10174 static const char * const state_complete_reasons[] = {
10175 	[0x00] = "Reason unknown",
10176 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10177 	[0x02] = "Link partner reported failure",
10178 	[0x10] = "Unable to achieve frame sync on any lane",
10179 	[0x11] =
10180 	  "Unable to find a common bit rate with the link partner",
10181 	[0x12] =
10182 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10183 	[0x13] =
10184 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10185 	[0x14] = no_state_complete,
10186 	[0x15] =
10187 	  "State timeout occurred before link partner identified equalization presets",
10188 	[0x16] =
10189 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10190 	[0x17] = tx_out_of_policy,
10191 	[0x20] = all_lanes_dead_timeout_expired,
10192 	[0x21] =
10193 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10194 	[0x22] = no_state_complete,
10195 	[0x23] =
10196 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10197 	[0x24] = tx_out_of_policy,
10198 	[0x30] = all_lanes_dead_timeout_expired,
10199 	[0x31] =
10200 	  "State timeout occurred waiting for host to process received frames",
10201 	[0x32] = no_state_complete,
10202 	[0x33] =
10203 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10204 	[0x34] = tx_out_of_policy,
10205 	[0x35] = "Negotiated link width is mutually exclusive",
10206 	[0x36] =
10207 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10208 	[0x37] = "Unable to resolve secure data exchange",
10209 };
10210 
10211 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10212 						     u32 code)
10213 {
10214 	const char *str = NULL;
10215 
10216 	if (code < ARRAY_SIZE(state_complete_reasons))
10217 		str = state_complete_reasons[code];
10218 
10219 	if (str)
10220 		return str;
10221 	return "Reserved";
10222 }
10223 
10224 /* describe the given last state complete frame */
10225 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10226 				  const char *prefix)
10227 {
10228 	struct hfi1_devdata *dd = ppd->dd;
10229 	u32 success;
10230 	u32 state;
10231 	u32 reason;
10232 	u32 lanes;
10233 
10234 	/*
10235 	 * Decode frame:
10236 	 *  [ 0: 0] - success
10237 	 *  [ 3: 1] - state
10238 	 *  [ 7: 4] - next state timeout
10239 	 *  [15: 8] - reason code
10240 	 *  [31:16] - lanes
10241 	 */
10242 	success = frame & 0x1;
10243 	state = (frame >> 1) & 0x7;
10244 	reason = (frame >> 8) & 0xff;
10245 	lanes = (frame >> 16) & 0xffff;
10246 
10247 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10248 		   prefix, frame);
10249 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10250 		   state_completed_string(state), state);
10251 	dd_dev_err(dd, "    state successfully completed: %s\n",
10252 		   success ? "yes" : "no");
10253 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10254 		   reason, state_complete_reason_code_string(ppd, reason));
10255 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10256 }
10257 
10258 /*
10259  * Read the last state complete frames and explain them.  This routine
10260  * expects to be called if the link went down during link negotiation
10261  * and initialization (LNI).  That is, anywhere between polling and link up.
10262  */
10263 static void check_lni_states(struct hfi1_pportdata *ppd)
10264 {
10265 	u32 last_local_state;
10266 	u32 last_remote_state;
10267 
10268 	read_last_local_state(ppd->dd, &last_local_state);
10269 	read_last_remote_state(ppd->dd, &last_remote_state);
10270 
10271 	/*
10272 	 * Don't report anything if there is nothing to report.  A value of
10273 	 * 0 means the link was taken down while polling and there was no
10274 	 * training in-process.
10275 	 */
10276 	if (last_local_state == 0 && last_remote_state == 0)
10277 		return;
10278 
10279 	decode_state_complete(ppd, last_local_state, "transmitted");
10280 	decode_state_complete(ppd, last_remote_state, "received");
10281 }
10282 
10283 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10284 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10285 {
10286 	u64 reg;
10287 	unsigned long timeout;
10288 
10289 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10290 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10291 	while (1) {
10292 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10293 		if (reg)
10294 			break;
10295 		if (time_after(jiffies, timeout)) {
10296 			dd_dev_err(dd,
10297 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10298 			return -ETIMEDOUT;
10299 		}
10300 		udelay(2);
10301 	}
10302 	return 0;
10303 }
10304 
10305 /* called when the logical link state is not down as it should be */
10306 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10307 {
10308 	struct hfi1_devdata *dd = ppd->dd;
10309 
10310 	/*
10311 	 * Bring link up in LCB loopback
10312 	 */
10313 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10314 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10315 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10316 
10317 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10318 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10319 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10320 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10321 
10322 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10323 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10324 	udelay(3);
10325 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10326 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10327 
10328 	wait_link_transfer_active(dd, 100);
10329 
10330 	/*
10331 	 * Bring the link down again.
10332 	 */
10333 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10334 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10335 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10336 
10337 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10338 }
10339 
10340 /*
10341  * Helper for set_link_state().  Do not call except from that routine.
10342  * Expects ppd->hls_mutex to be held.
10343  *
10344  * @rem_reason value to be sent to the neighbor
10345  *
10346  * LinkDownReasons only set if transition succeeds.
10347  */
10348 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10349 {
10350 	struct hfi1_devdata *dd = ppd->dd;
10351 	u32 previous_state;
10352 	int offline_state_ret;
10353 	int ret;
10354 
10355 	update_lcb_cache(dd);
10356 
10357 	previous_state = ppd->host_link_state;
10358 	ppd->host_link_state = HLS_GOING_OFFLINE;
10359 
10360 	/* start offline transition */
10361 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10362 
10363 	if (ret != HCMD_SUCCESS) {
10364 		dd_dev_err(dd,
10365 			   "Failed to transition to Offline link state, return %d\n",
10366 			   ret);
10367 		return -EINVAL;
10368 	}
10369 	if (ppd->offline_disabled_reason ==
10370 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10371 		ppd->offline_disabled_reason =
10372 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10373 
10374 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10375 	if (offline_state_ret < 0)
10376 		return offline_state_ret;
10377 
10378 	/* Disabling AOC transmitters */
10379 	if (ppd->port_type == PORT_TYPE_QSFP &&
10380 	    ppd->qsfp_info.limiting_active &&
10381 	    qsfp_mod_present(ppd)) {
10382 		int ret;
10383 
10384 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10385 		if (ret == 0) {
10386 			set_qsfp_tx(ppd, 0);
10387 			release_chip_resource(dd, qsfp_resource(dd));
10388 		} else {
10389 			/* not fatal, but should warn */
10390 			dd_dev_err(dd,
10391 				   "Unable to acquire lock to turn off QSFP TX\n");
10392 		}
10393 	}
10394 
10395 	/*
10396 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10397 	 * can take a while for the link to go down.
10398 	 */
10399 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10400 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10401 		if (ret < 0)
10402 			return ret;
10403 	}
10404 
10405 	/*
10406 	 * Now in charge of LCB - must be after the physical state is
10407 	 * offline.quiet and before host_link_state is changed.
10408 	 */
10409 	set_host_lcb_access(dd);
10410 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10411 
10412 	/* make sure the logical state is also down */
10413 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10414 	if (ret)
10415 		force_logical_link_state_down(ppd);
10416 
10417 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10418 	update_statusp(ppd, IB_PORT_DOWN);
10419 
10420 	/*
10421 	 * The LNI has a mandatory wait time after the physical state
10422 	 * moves to Offline.Quiet.  The wait time may be different
10423 	 * depending on how the link went down.  The 8051 firmware
10424 	 * will observe the needed wait time and only move to ready
10425 	 * when that is completed.  The largest of the quiet timeouts
10426 	 * is 6s, so wait that long and then at least 0.5s more for
10427 	 * other transitions, and another 0.5s for a buffer.
10428 	 */
10429 	ret = wait_fm_ready(dd, 7000);
10430 	if (ret) {
10431 		dd_dev_err(dd,
10432 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10433 		/* state is really offline, so make it so */
10434 		ppd->host_link_state = HLS_DN_OFFLINE;
10435 		return ret;
10436 	}
10437 
10438 	/*
10439 	 * The state is now offline and the 8051 is ready to accept host
10440 	 * requests.
10441 	 *	- change our state
10442 	 *	- notify others if we were previously in a linkup state
10443 	 */
10444 	ppd->host_link_state = HLS_DN_OFFLINE;
10445 	if (previous_state & HLS_UP) {
10446 		/* went down while link was up */
10447 		handle_linkup_change(dd, 0);
10448 	} else if (previous_state
10449 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10450 		/* went down while attempting link up */
10451 		check_lni_states(ppd);
10452 
10453 		/* The QSFP doesn't need to be reset on LNI failure */
10454 		ppd->qsfp_info.reset_needed = 0;
10455 	}
10456 
10457 	/* the active link width (downgrade) is 0 on link down */
10458 	ppd->link_width_active = 0;
10459 	ppd->link_width_downgrade_tx_active = 0;
10460 	ppd->link_width_downgrade_rx_active = 0;
10461 	ppd->current_egress_rate = 0;
10462 	return 0;
10463 }
10464 
10465 /* return the link state name */
10466 static const char *link_state_name(u32 state)
10467 {
10468 	const char *name;
10469 	int n = ilog2(state);
10470 	static const char * const names[] = {
10471 		[__HLS_UP_INIT_BP]	 = "INIT",
10472 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10473 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10474 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10475 		[__HLS_DN_POLL_BP]	 = "POLL",
10476 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10477 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10478 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10479 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10480 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10481 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10482 	};
10483 
10484 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10485 	return name ? name : "unknown";
10486 }
10487 
10488 /* return the link state reason name */
10489 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10490 {
10491 	if (state == HLS_UP_INIT) {
10492 		switch (ppd->linkinit_reason) {
10493 		case OPA_LINKINIT_REASON_LINKUP:
10494 			return "(LINKUP)";
10495 		case OPA_LINKINIT_REASON_FLAPPING:
10496 			return "(FLAPPING)";
10497 		case OPA_LINKINIT_OUTSIDE_POLICY:
10498 			return "(OUTSIDE_POLICY)";
10499 		case OPA_LINKINIT_QUARANTINED:
10500 			return "(QUARANTINED)";
10501 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10502 			return "(INSUFIC_CAPABILITY)";
10503 		default:
10504 			break;
10505 		}
10506 	}
10507 	return "";
10508 }
10509 
10510 /*
10511  * driver_pstate - convert the driver's notion of a port's
10512  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10513  * Return -1 (converted to a u32) to indicate error.
10514  */
10515 u32 driver_pstate(struct hfi1_pportdata *ppd)
10516 {
10517 	switch (ppd->host_link_state) {
10518 	case HLS_UP_INIT:
10519 	case HLS_UP_ARMED:
10520 	case HLS_UP_ACTIVE:
10521 		return IB_PORTPHYSSTATE_LINKUP;
10522 	case HLS_DN_POLL:
10523 		return IB_PORTPHYSSTATE_POLLING;
10524 	case HLS_DN_DISABLE:
10525 		return IB_PORTPHYSSTATE_DISABLED;
10526 	case HLS_DN_OFFLINE:
10527 		return OPA_PORTPHYSSTATE_OFFLINE;
10528 	case HLS_VERIFY_CAP:
10529 		return IB_PORTPHYSSTATE_TRAINING;
10530 	case HLS_GOING_UP:
10531 		return IB_PORTPHYSSTATE_TRAINING;
10532 	case HLS_GOING_OFFLINE:
10533 		return OPA_PORTPHYSSTATE_OFFLINE;
10534 	case HLS_LINK_COOLDOWN:
10535 		return OPA_PORTPHYSSTATE_OFFLINE;
10536 	case HLS_DN_DOWNDEF:
10537 	default:
10538 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10539 			   ppd->host_link_state);
10540 		return  -1;
10541 	}
10542 }
10543 
10544 /*
10545  * driver_lstate - convert the driver's notion of a port's
10546  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10547  * (converted to a u32) to indicate error.
10548  */
10549 u32 driver_lstate(struct hfi1_pportdata *ppd)
10550 {
10551 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10552 		return IB_PORT_DOWN;
10553 
10554 	switch (ppd->host_link_state & HLS_UP) {
10555 	case HLS_UP_INIT:
10556 		return IB_PORT_INIT;
10557 	case HLS_UP_ARMED:
10558 		return IB_PORT_ARMED;
10559 	case HLS_UP_ACTIVE:
10560 		return IB_PORT_ACTIVE;
10561 	default:
10562 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10563 			   ppd->host_link_state);
10564 	return -1;
10565 	}
10566 }
10567 
10568 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10569 			  u8 neigh_reason, u8 rem_reason)
10570 {
10571 	if (ppd->local_link_down_reason.latest == 0 &&
10572 	    ppd->neigh_link_down_reason.latest == 0) {
10573 		ppd->local_link_down_reason.latest = lcl_reason;
10574 		ppd->neigh_link_down_reason.latest = neigh_reason;
10575 		ppd->remote_link_down_reason = rem_reason;
10576 	}
10577 }
10578 
10579 /**
10580  * data_vls_operational() - Verify if data VL BCT credits and MTU
10581  *			    are both set.
10582  * @ppd: pointer to hfi1_pportdata structure
10583  *
10584  * Return: true - Ok, false -otherwise.
10585  */
10586 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10587 {
10588 	int i;
10589 	u64 reg;
10590 
10591 	if (!ppd->actual_vls_operational)
10592 		return false;
10593 
10594 	for (i = 0; i < ppd->vls_supported; i++) {
10595 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10596 		if ((reg && !ppd->dd->vld[i].mtu) ||
10597 		    (!reg && ppd->dd->vld[i].mtu))
10598 			return false;
10599 	}
10600 
10601 	return true;
10602 }
10603 
10604 /*
10605  * Change the physical and/or logical link state.
10606  *
10607  * Do not call this routine while inside an interrupt.  It contains
10608  * calls to routines that can take multiple seconds to finish.
10609  *
10610  * Returns 0 on success, -errno on failure.
10611  */
10612 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10613 {
10614 	struct hfi1_devdata *dd = ppd->dd;
10615 	struct ib_event event = {.device = NULL};
10616 	int ret1, ret = 0;
10617 	int orig_new_state, poll_bounce;
10618 
10619 	mutex_lock(&ppd->hls_lock);
10620 
10621 	orig_new_state = state;
10622 	if (state == HLS_DN_DOWNDEF)
10623 		state = HLS_DEFAULT;
10624 
10625 	/* interpret poll -> poll as a link bounce */
10626 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10627 		      state == HLS_DN_POLL;
10628 
10629 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10630 		    link_state_name(ppd->host_link_state),
10631 		    link_state_name(orig_new_state),
10632 		    poll_bounce ? "(bounce) " : "",
10633 		    link_state_reason_name(ppd, state));
10634 
10635 	/*
10636 	 * If we're going to a (HLS_*) link state that implies the logical
10637 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10638 	 * reset is_sm_config_started to 0.
10639 	 */
10640 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10641 		ppd->is_sm_config_started = 0;
10642 
10643 	/*
10644 	 * Do nothing if the states match.  Let a poll to poll link bounce
10645 	 * go through.
10646 	 */
10647 	if (ppd->host_link_state == state && !poll_bounce)
10648 		goto done;
10649 
10650 	switch (state) {
10651 	case HLS_UP_INIT:
10652 		if (ppd->host_link_state == HLS_DN_POLL &&
10653 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10654 			/*
10655 			 * Quick link up jumps from polling to here.
10656 			 *
10657 			 * Whether in normal or loopback mode, the
10658 			 * simulator jumps from polling to link up.
10659 			 * Accept that here.
10660 			 */
10661 			/* OK */
10662 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10663 			goto unexpected;
10664 		}
10665 
10666 		/*
10667 		 * Wait for Link_Up physical state.
10668 		 * Physical and Logical states should already be
10669 		 * be transitioned to LinkUp and LinkInit respectively.
10670 		 */
10671 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10672 		if (ret) {
10673 			dd_dev_err(dd,
10674 				   "%s: physical state did not change to LINK-UP\n",
10675 				   __func__);
10676 			break;
10677 		}
10678 
10679 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10680 		if (ret) {
10681 			dd_dev_err(dd,
10682 				   "%s: logical state did not change to INIT\n",
10683 				   __func__);
10684 			break;
10685 		}
10686 
10687 		/* clear old transient LINKINIT_REASON code */
10688 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10689 			ppd->linkinit_reason =
10690 				OPA_LINKINIT_REASON_LINKUP;
10691 
10692 		/* enable the port */
10693 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10694 
10695 		handle_linkup_change(dd, 1);
10696 		pio_kernel_linkup(dd);
10697 
10698 		/*
10699 		 * After link up, a new link width will have been set.
10700 		 * Update the xmit counters with regards to the new
10701 		 * link width.
10702 		 */
10703 		update_xmit_counters(ppd, ppd->link_width_active);
10704 
10705 		ppd->host_link_state = HLS_UP_INIT;
10706 		update_statusp(ppd, IB_PORT_INIT);
10707 		break;
10708 	case HLS_UP_ARMED:
10709 		if (ppd->host_link_state != HLS_UP_INIT)
10710 			goto unexpected;
10711 
10712 		if (!data_vls_operational(ppd)) {
10713 			dd_dev_err(dd,
10714 				   "%s: Invalid data VL credits or mtu\n",
10715 				   __func__);
10716 			ret = -EINVAL;
10717 			break;
10718 		}
10719 
10720 		set_logical_state(dd, LSTATE_ARMED);
10721 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10722 		if (ret) {
10723 			dd_dev_err(dd,
10724 				   "%s: logical state did not change to ARMED\n",
10725 				   __func__);
10726 			break;
10727 		}
10728 		ppd->host_link_state = HLS_UP_ARMED;
10729 		update_statusp(ppd, IB_PORT_ARMED);
10730 		/*
10731 		 * The simulator does not currently implement SMA messages,
10732 		 * so neighbor_normal is not set.  Set it here when we first
10733 		 * move to Armed.
10734 		 */
10735 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10736 			ppd->neighbor_normal = 1;
10737 		break;
10738 	case HLS_UP_ACTIVE:
10739 		if (ppd->host_link_state != HLS_UP_ARMED)
10740 			goto unexpected;
10741 
10742 		set_logical_state(dd, LSTATE_ACTIVE);
10743 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10744 		if (ret) {
10745 			dd_dev_err(dd,
10746 				   "%s: logical state did not change to ACTIVE\n",
10747 				   __func__);
10748 		} else {
10749 			/* tell all engines to go running */
10750 			sdma_all_running(dd);
10751 			ppd->host_link_state = HLS_UP_ACTIVE;
10752 			update_statusp(ppd, IB_PORT_ACTIVE);
10753 
10754 			/* Signal the IB layer that the port has went active */
10755 			event.device = &dd->verbs_dev.rdi.ibdev;
10756 			event.element.port_num = ppd->port;
10757 			event.event = IB_EVENT_PORT_ACTIVE;
10758 		}
10759 		break;
10760 	case HLS_DN_POLL:
10761 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10762 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10763 		    dd->dc_shutdown)
10764 			dc_start(dd);
10765 		/* Hand LED control to the DC */
10766 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10767 
10768 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10769 			u8 tmp = ppd->link_enabled;
10770 
10771 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10772 			if (ret) {
10773 				ppd->link_enabled = tmp;
10774 				break;
10775 			}
10776 			ppd->remote_link_down_reason = 0;
10777 
10778 			if (ppd->driver_link_ready)
10779 				ppd->link_enabled = 1;
10780 		}
10781 
10782 		set_all_slowpath(ppd->dd);
10783 		ret = set_local_link_attributes(ppd);
10784 		if (ret)
10785 			break;
10786 
10787 		ppd->port_error_action = 0;
10788 
10789 		if (quick_linkup) {
10790 			/* quick linkup does not go into polling */
10791 			ret = do_quick_linkup(dd);
10792 		} else {
10793 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10794 			if (!ret1)
10795 				ret1 = wait_phys_link_out_of_offline(ppd,
10796 								     3000);
10797 			if (ret1 != HCMD_SUCCESS) {
10798 				dd_dev_err(dd,
10799 					   "Failed to transition to Polling link state, return 0x%x\n",
10800 					   ret1);
10801 				ret = -EINVAL;
10802 			}
10803 		}
10804 
10805 		/*
10806 		 * Change the host link state after requesting DC8051 to
10807 		 * change its physical state so that we can ignore any
10808 		 * interrupt with stale LNI(XX) error, which will not be
10809 		 * cleared until DC8051 transitions to Polling state.
10810 		 */
10811 		ppd->host_link_state = HLS_DN_POLL;
10812 		ppd->offline_disabled_reason =
10813 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10814 		/*
10815 		 * If an error occurred above, go back to offline.  The
10816 		 * caller may reschedule another attempt.
10817 		 */
10818 		if (ret)
10819 			goto_offline(ppd, 0);
10820 		else
10821 			log_physical_state(ppd, PLS_POLLING);
10822 		break;
10823 	case HLS_DN_DISABLE:
10824 		/* link is disabled */
10825 		ppd->link_enabled = 0;
10826 
10827 		/* allow any state to transition to disabled */
10828 
10829 		/* must transition to offline first */
10830 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10831 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10832 			if (ret)
10833 				break;
10834 			ppd->remote_link_down_reason = 0;
10835 		}
10836 
10837 		if (!dd->dc_shutdown) {
10838 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10839 			if (ret1 != HCMD_SUCCESS) {
10840 				dd_dev_err(dd,
10841 					   "Failed to transition to Disabled link state, return 0x%x\n",
10842 					   ret1);
10843 				ret = -EINVAL;
10844 				break;
10845 			}
10846 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10847 			if (ret) {
10848 				dd_dev_err(dd,
10849 					   "%s: physical state did not change to DISABLED\n",
10850 					   __func__);
10851 				break;
10852 			}
10853 			dc_shutdown(dd);
10854 		}
10855 		ppd->host_link_state = HLS_DN_DISABLE;
10856 		break;
10857 	case HLS_DN_OFFLINE:
10858 		if (ppd->host_link_state == HLS_DN_DISABLE)
10859 			dc_start(dd);
10860 
10861 		/* allow any state to transition to offline */
10862 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10863 		if (!ret)
10864 			ppd->remote_link_down_reason = 0;
10865 		break;
10866 	case HLS_VERIFY_CAP:
10867 		if (ppd->host_link_state != HLS_DN_POLL)
10868 			goto unexpected;
10869 		ppd->host_link_state = HLS_VERIFY_CAP;
10870 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10871 		break;
10872 	case HLS_GOING_UP:
10873 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10874 			goto unexpected;
10875 
10876 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10877 		if (ret1 != HCMD_SUCCESS) {
10878 			dd_dev_err(dd,
10879 				   "Failed to transition to link up state, return 0x%x\n",
10880 				   ret1);
10881 			ret = -EINVAL;
10882 			break;
10883 		}
10884 		ppd->host_link_state = HLS_GOING_UP;
10885 		break;
10886 
10887 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10888 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10889 	default:
10890 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10891 			    __func__, state);
10892 		ret = -EINVAL;
10893 		break;
10894 	}
10895 
10896 	goto done;
10897 
10898 unexpected:
10899 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10900 		   __func__, link_state_name(ppd->host_link_state),
10901 		   link_state_name(state));
10902 	ret = -EINVAL;
10903 
10904 done:
10905 	mutex_unlock(&ppd->hls_lock);
10906 
10907 	if (event.device)
10908 		ib_dispatch_event(&event);
10909 
10910 	return ret;
10911 }
10912 
10913 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10914 {
10915 	u64 reg;
10916 	int ret = 0;
10917 
10918 	switch (which) {
10919 	case HFI1_IB_CFG_LIDLMC:
10920 		set_lidlmc(ppd);
10921 		break;
10922 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10923 		/*
10924 		 * The VL Arbitrator high limit is sent in units of 4k
10925 		 * bytes, while HFI stores it in units of 64 bytes.
10926 		 */
10927 		val *= 4096 / 64;
10928 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10929 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10930 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10931 		break;
10932 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10933 		/* HFI only supports POLL as the default link down state */
10934 		if (val != HLS_DN_POLL)
10935 			ret = -EINVAL;
10936 		break;
10937 	case HFI1_IB_CFG_OP_VLS:
10938 		if (ppd->vls_operational != val) {
10939 			ppd->vls_operational = val;
10940 			if (!ppd->port)
10941 				ret = -EINVAL;
10942 		}
10943 		break;
10944 	/*
10945 	 * For link width, link width downgrade, and speed enable, always AND
10946 	 * the setting with what is actually supported.  This has two benefits.
10947 	 * First, enabled can't have unsupported values, no matter what the
10948 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10949 	 * "fill in with your supported value" have all the bits in the
10950 	 * field set, so simply ANDing with supported has the desired result.
10951 	 */
10952 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10953 		ppd->link_width_enabled = val & ppd->link_width_supported;
10954 		break;
10955 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10956 		ppd->link_width_downgrade_enabled =
10957 				val & ppd->link_width_downgrade_supported;
10958 		break;
10959 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10960 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10961 		break;
10962 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10963 		/*
10964 		 * HFI does not follow IB specs, save this value
10965 		 * so we can report it, if asked.
10966 		 */
10967 		ppd->overrun_threshold = val;
10968 		break;
10969 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10970 		/*
10971 		 * HFI does not follow IB specs, save this value
10972 		 * so we can report it, if asked.
10973 		 */
10974 		ppd->phy_error_threshold = val;
10975 		break;
10976 
10977 	case HFI1_IB_CFG_MTU:
10978 		set_send_length(ppd);
10979 		break;
10980 
10981 	case HFI1_IB_CFG_PKEYS:
10982 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10983 			set_partition_keys(ppd);
10984 		break;
10985 
10986 	default:
10987 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10988 			dd_dev_info(ppd->dd,
10989 				    "%s: which %s, val 0x%x: not implemented\n",
10990 				    __func__, ib_cfg_name(which), val);
10991 		break;
10992 	}
10993 	return ret;
10994 }
10995 
10996 /* begin functions related to vl arbitration table caching */
10997 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10998 {
10999 	int i;
11000 
11001 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11002 			VL_ARB_LOW_PRIO_TABLE_SIZE);
11003 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
11004 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
11005 
11006 	/*
11007 	 * Note that we always return values directly from the
11008 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
11009 	 * 'Get(VLArbTable)'. This is obviously correct after a
11010 	 * 'Set(VLArbTable)', since the cache will then be up to
11011 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
11012 	 * since then both the cache, and the relevant h/w registers
11013 	 * will be zeroed.
11014 	 */
11015 
11016 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11017 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11018 }
11019 
11020 /*
11021  * vl_arb_lock_cache
11022  *
11023  * All other vl_arb_* functions should be called only after locking
11024  * the cache.
11025  */
11026 static inline struct vl_arb_cache *
11027 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11028 {
11029 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11030 		return NULL;
11031 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11032 	return &ppd->vl_arb_cache[idx];
11033 }
11034 
11035 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11036 {
11037 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11038 }
11039 
11040 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11041 			     struct ib_vl_weight_elem *vl)
11042 {
11043 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11044 }
11045 
11046 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11047 			     struct ib_vl_weight_elem *vl)
11048 {
11049 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11050 }
11051 
11052 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11053 			      struct ib_vl_weight_elem *vl)
11054 {
11055 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11056 }
11057 
11058 /* end functions related to vl arbitration table caching */
11059 
11060 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11061 			  u32 size, struct ib_vl_weight_elem *vl)
11062 {
11063 	struct hfi1_devdata *dd = ppd->dd;
11064 	u64 reg;
11065 	unsigned int i, is_up = 0;
11066 	int drain, ret = 0;
11067 
11068 	mutex_lock(&ppd->hls_lock);
11069 
11070 	if (ppd->host_link_state & HLS_UP)
11071 		is_up = 1;
11072 
11073 	drain = !is_ax(dd) && is_up;
11074 
11075 	if (drain)
11076 		/*
11077 		 * Before adjusting VL arbitration weights, empty per-VL
11078 		 * FIFOs, otherwise a packet whose VL weight is being
11079 		 * set to 0 could get stuck in a FIFO with no chance to
11080 		 * egress.
11081 		 */
11082 		ret = stop_drain_data_vls(dd);
11083 
11084 	if (ret) {
11085 		dd_dev_err(
11086 			dd,
11087 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11088 			__func__);
11089 		goto err;
11090 	}
11091 
11092 	for (i = 0; i < size; i++, vl++) {
11093 		/*
11094 		 * NOTE: The low priority shift and mask are used here, but
11095 		 * they are the same for both the low and high registers.
11096 		 */
11097 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11098 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11099 		      | (((u64)vl->weight
11100 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11101 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11102 		write_csr(dd, target + (i * 8), reg);
11103 	}
11104 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11105 
11106 	if (drain)
11107 		open_fill_data_vls(dd); /* reopen all VLs */
11108 
11109 err:
11110 	mutex_unlock(&ppd->hls_lock);
11111 
11112 	return ret;
11113 }
11114 
11115 /*
11116  * Read one credit merge VL register.
11117  */
11118 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11119 			   struct vl_limit *vll)
11120 {
11121 	u64 reg = read_csr(dd, csr);
11122 
11123 	vll->dedicated = cpu_to_be16(
11124 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11125 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11126 	vll->shared = cpu_to_be16(
11127 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11128 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11129 }
11130 
11131 /*
11132  * Read the current credit merge limits.
11133  */
11134 static int get_buffer_control(struct hfi1_devdata *dd,
11135 			      struct buffer_control *bc, u16 *overall_limit)
11136 {
11137 	u64 reg;
11138 	int i;
11139 
11140 	/* not all entries are filled in */
11141 	memset(bc, 0, sizeof(*bc));
11142 
11143 	/* OPA and HFI have a 1-1 mapping */
11144 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11145 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11146 
11147 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11148 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11149 
11150 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11151 	bc->overall_shared_limit = cpu_to_be16(
11152 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11153 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11154 	if (overall_limit)
11155 		*overall_limit = (reg
11156 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11157 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11158 	return sizeof(struct buffer_control);
11159 }
11160 
11161 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11162 {
11163 	u64 reg;
11164 	int i;
11165 
11166 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11167 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11168 	for (i = 0; i < sizeof(u64); i++) {
11169 		u8 byte = *(((u8 *)&reg) + i);
11170 
11171 		dp->vlnt[2 * i] = byte & 0xf;
11172 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11173 	}
11174 
11175 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11176 	for (i = 0; i < sizeof(u64); i++) {
11177 		u8 byte = *(((u8 *)&reg) + i);
11178 
11179 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11180 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11181 	}
11182 	return sizeof(struct sc2vlnt);
11183 }
11184 
11185 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11186 			      struct ib_vl_weight_elem *vl)
11187 {
11188 	unsigned int i;
11189 
11190 	for (i = 0; i < nelems; i++, vl++) {
11191 		vl->vl = 0xf;
11192 		vl->weight = 0;
11193 	}
11194 }
11195 
11196 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11197 {
11198 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11199 		  DC_SC_VL_VAL(15_0,
11200 			       0, dp->vlnt[0] & 0xf,
11201 			       1, dp->vlnt[1] & 0xf,
11202 			       2, dp->vlnt[2] & 0xf,
11203 			       3, dp->vlnt[3] & 0xf,
11204 			       4, dp->vlnt[4] & 0xf,
11205 			       5, dp->vlnt[5] & 0xf,
11206 			       6, dp->vlnt[6] & 0xf,
11207 			       7, dp->vlnt[7] & 0xf,
11208 			       8, dp->vlnt[8] & 0xf,
11209 			       9, dp->vlnt[9] & 0xf,
11210 			       10, dp->vlnt[10] & 0xf,
11211 			       11, dp->vlnt[11] & 0xf,
11212 			       12, dp->vlnt[12] & 0xf,
11213 			       13, dp->vlnt[13] & 0xf,
11214 			       14, dp->vlnt[14] & 0xf,
11215 			       15, dp->vlnt[15] & 0xf));
11216 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11217 		  DC_SC_VL_VAL(31_16,
11218 			       16, dp->vlnt[16] & 0xf,
11219 			       17, dp->vlnt[17] & 0xf,
11220 			       18, dp->vlnt[18] & 0xf,
11221 			       19, dp->vlnt[19] & 0xf,
11222 			       20, dp->vlnt[20] & 0xf,
11223 			       21, dp->vlnt[21] & 0xf,
11224 			       22, dp->vlnt[22] & 0xf,
11225 			       23, dp->vlnt[23] & 0xf,
11226 			       24, dp->vlnt[24] & 0xf,
11227 			       25, dp->vlnt[25] & 0xf,
11228 			       26, dp->vlnt[26] & 0xf,
11229 			       27, dp->vlnt[27] & 0xf,
11230 			       28, dp->vlnt[28] & 0xf,
11231 			       29, dp->vlnt[29] & 0xf,
11232 			       30, dp->vlnt[30] & 0xf,
11233 			       31, dp->vlnt[31] & 0xf));
11234 }
11235 
11236 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11237 			u16 limit)
11238 {
11239 	if (limit != 0)
11240 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11241 			    what, (int)limit, idx);
11242 }
11243 
11244 /* change only the shared limit portion of SendCmGLobalCredit */
11245 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11246 {
11247 	u64 reg;
11248 
11249 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11250 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11251 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11252 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11253 }
11254 
11255 /* change only the total credit limit portion of SendCmGLobalCredit */
11256 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11257 {
11258 	u64 reg;
11259 
11260 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11261 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11262 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11263 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11264 }
11265 
11266 /* set the given per-VL shared limit */
11267 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11268 {
11269 	u64 reg;
11270 	u32 addr;
11271 
11272 	if (vl < TXE_NUM_DATA_VL)
11273 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11274 	else
11275 		addr = SEND_CM_CREDIT_VL15;
11276 
11277 	reg = read_csr(dd, addr);
11278 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11279 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11280 	write_csr(dd, addr, reg);
11281 }
11282 
11283 /* set the given per-VL dedicated limit */
11284 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11285 {
11286 	u64 reg;
11287 	u32 addr;
11288 
11289 	if (vl < TXE_NUM_DATA_VL)
11290 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11291 	else
11292 		addr = SEND_CM_CREDIT_VL15;
11293 
11294 	reg = read_csr(dd, addr);
11295 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11296 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11297 	write_csr(dd, addr, reg);
11298 }
11299 
11300 /* spin until the given per-VL status mask bits clear */
11301 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11302 				     const char *which)
11303 {
11304 	unsigned long timeout;
11305 	u64 reg;
11306 
11307 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11308 	while (1) {
11309 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11310 
11311 		if (reg == 0)
11312 			return;	/* success */
11313 		if (time_after(jiffies, timeout))
11314 			break;		/* timed out */
11315 		udelay(1);
11316 	}
11317 
11318 	dd_dev_err(dd,
11319 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11320 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11321 	/*
11322 	 * If this occurs, it is likely there was a credit loss on the link.
11323 	 * The only recovery from that is a link bounce.
11324 	 */
11325 	dd_dev_err(dd,
11326 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11327 }
11328 
11329 /*
11330  * The number of credits on the VLs may be changed while everything
11331  * is "live", but the following algorithm must be followed due to
11332  * how the hardware is actually implemented.  In particular,
11333  * Return_Credit_Status[] is the only correct status check.
11334  *
11335  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11336  *     set Global_Shared_Credit_Limit = 0
11337  *     use_all_vl = 1
11338  * mask0 = all VLs that are changing either dedicated or shared limits
11339  * set Shared_Limit[mask0] = 0
11340  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11341  * if (changing any dedicated limit)
11342  *     mask1 = all VLs that are lowering dedicated limits
11343  *     lower Dedicated_Limit[mask1]
11344  *     spin until Return_Credit_Status[mask1] == 0
11345  *     raise Dedicated_Limits
11346  * raise Shared_Limits
11347  * raise Global_Shared_Credit_Limit
11348  *
11349  * lower = if the new limit is lower, set the limit to the new value
11350  * raise = if the new limit is higher than the current value (may be changed
11351  *	earlier in the algorithm), set the new limit to the new value
11352  */
11353 int set_buffer_control(struct hfi1_pportdata *ppd,
11354 		       struct buffer_control *new_bc)
11355 {
11356 	struct hfi1_devdata *dd = ppd->dd;
11357 	u64 changing_mask, ld_mask, stat_mask;
11358 	int change_count;
11359 	int i, use_all_mask;
11360 	int this_shared_changing;
11361 	int vl_count = 0, ret;
11362 	/*
11363 	 * A0: add the variable any_shared_limit_changing below and in the
11364 	 * algorithm above.  If removing A0 support, it can be removed.
11365 	 */
11366 	int any_shared_limit_changing;
11367 	struct buffer_control cur_bc;
11368 	u8 changing[OPA_MAX_VLS];
11369 	u8 lowering_dedicated[OPA_MAX_VLS];
11370 	u16 cur_total;
11371 	u32 new_total = 0;
11372 	const u64 all_mask =
11373 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11374 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11375 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11376 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11377 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11378 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11379 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11380 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11381 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11382 
11383 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11384 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11385 
11386 	/* find the new total credits, do sanity check on unused VLs */
11387 	for (i = 0; i < OPA_MAX_VLS; i++) {
11388 		if (valid_vl(i)) {
11389 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11390 			continue;
11391 		}
11392 		nonzero_msg(dd, i, "dedicated",
11393 			    be16_to_cpu(new_bc->vl[i].dedicated));
11394 		nonzero_msg(dd, i, "shared",
11395 			    be16_to_cpu(new_bc->vl[i].shared));
11396 		new_bc->vl[i].dedicated = 0;
11397 		new_bc->vl[i].shared = 0;
11398 	}
11399 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11400 
11401 	/* fetch the current values */
11402 	get_buffer_control(dd, &cur_bc, &cur_total);
11403 
11404 	/*
11405 	 * Create the masks we will use.
11406 	 */
11407 	memset(changing, 0, sizeof(changing));
11408 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11409 	/*
11410 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11411 	 * increasing order
11412 	 */
11413 	stat_mask =
11414 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11415 	changing_mask = 0;
11416 	ld_mask = 0;
11417 	change_count = 0;
11418 	any_shared_limit_changing = 0;
11419 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11420 		if (!valid_vl(i))
11421 			continue;
11422 		this_shared_changing = new_bc->vl[i].shared
11423 						!= cur_bc.vl[i].shared;
11424 		if (this_shared_changing)
11425 			any_shared_limit_changing = 1;
11426 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11427 		    this_shared_changing) {
11428 			changing[i] = 1;
11429 			changing_mask |= stat_mask;
11430 			change_count++;
11431 		}
11432 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11433 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11434 			lowering_dedicated[i] = 1;
11435 			ld_mask |= stat_mask;
11436 		}
11437 	}
11438 
11439 	/* bracket the credit change with a total adjustment */
11440 	if (new_total > cur_total)
11441 		set_global_limit(dd, new_total);
11442 
11443 	/*
11444 	 * Start the credit change algorithm.
11445 	 */
11446 	use_all_mask = 0;
11447 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11448 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11449 	    (is_ax(dd) && any_shared_limit_changing)) {
11450 		set_global_shared(dd, 0);
11451 		cur_bc.overall_shared_limit = 0;
11452 		use_all_mask = 1;
11453 	}
11454 
11455 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11456 		if (!valid_vl(i))
11457 			continue;
11458 
11459 		if (changing[i]) {
11460 			set_vl_shared(dd, i, 0);
11461 			cur_bc.vl[i].shared = 0;
11462 		}
11463 	}
11464 
11465 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11466 				 "shared");
11467 
11468 	if (change_count > 0) {
11469 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11470 			if (!valid_vl(i))
11471 				continue;
11472 
11473 			if (lowering_dedicated[i]) {
11474 				set_vl_dedicated(dd, i,
11475 						 be16_to_cpu(new_bc->
11476 							     vl[i].dedicated));
11477 				cur_bc.vl[i].dedicated =
11478 						new_bc->vl[i].dedicated;
11479 			}
11480 		}
11481 
11482 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11483 
11484 		/* now raise all dedicated that are going up */
11485 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11486 			if (!valid_vl(i))
11487 				continue;
11488 
11489 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11490 					be16_to_cpu(cur_bc.vl[i].dedicated))
11491 				set_vl_dedicated(dd, i,
11492 						 be16_to_cpu(new_bc->
11493 							     vl[i].dedicated));
11494 		}
11495 	}
11496 
11497 	/* next raise all shared that are going up */
11498 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11499 		if (!valid_vl(i))
11500 			continue;
11501 
11502 		if (be16_to_cpu(new_bc->vl[i].shared) >
11503 				be16_to_cpu(cur_bc.vl[i].shared))
11504 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11505 	}
11506 
11507 	/* finally raise the global shared */
11508 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11509 	    be16_to_cpu(cur_bc.overall_shared_limit))
11510 		set_global_shared(dd,
11511 				  be16_to_cpu(new_bc->overall_shared_limit));
11512 
11513 	/* bracket the credit change with a total adjustment */
11514 	if (new_total < cur_total)
11515 		set_global_limit(dd, new_total);
11516 
11517 	/*
11518 	 * Determine the actual number of operational VLS using the number of
11519 	 * dedicated and shared credits for each VL.
11520 	 */
11521 	if (change_count > 0) {
11522 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11523 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11524 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11525 				vl_count++;
11526 		ppd->actual_vls_operational = vl_count;
11527 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11528 				    ppd->actual_vls_operational :
11529 				    ppd->vls_operational,
11530 				    NULL);
11531 		if (ret == 0)
11532 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11533 					   ppd->actual_vls_operational :
11534 					   ppd->vls_operational, NULL);
11535 		if (ret)
11536 			return ret;
11537 	}
11538 	return 0;
11539 }
11540 
11541 /*
11542  * Read the given fabric manager table. Return the size of the
11543  * table (in bytes) on success, and a negative error code on
11544  * failure.
11545  */
11546 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11547 
11548 {
11549 	int size;
11550 	struct vl_arb_cache *vlc;
11551 
11552 	switch (which) {
11553 	case FM_TBL_VL_HIGH_ARB:
11554 		size = 256;
11555 		/*
11556 		 * OPA specifies 128 elements (of 2 bytes each), though
11557 		 * HFI supports only 16 elements in h/w.
11558 		 */
11559 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11560 		vl_arb_get_cache(vlc, t);
11561 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11562 		break;
11563 	case FM_TBL_VL_LOW_ARB:
11564 		size = 256;
11565 		/*
11566 		 * OPA specifies 128 elements (of 2 bytes each), though
11567 		 * HFI supports only 16 elements in h/w.
11568 		 */
11569 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11570 		vl_arb_get_cache(vlc, t);
11571 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11572 		break;
11573 	case FM_TBL_BUFFER_CONTROL:
11574 		size = get_buffer_control(ppd->dd, t, NULL);
11575 		break;
11576 	case FM_TBL_SC2VLNT:
11577 		size = get_sc2vlnt(ppd->dd, t);
11578 		break;
11579 	case FM_TBL_VL_PREEMPT_ELEMS:
11580 		size = 256;
11581 		/* OPA specifies 128 elements, of 2 bytes each */
11582 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11583 		break;
11584 	case FM_TBL_VL_PREEMPT_MATRIX:
11585 		size = 256;
11586 		/*
11587 		 * OPA specifies that this is the same size as the VL
11588 		 * arbitration tables (i.e., 256 bytes).
11589 		 */
11590 		break;
11591 	default:
11592 		return -EINVAL;
11593 	}
11594 	return size;
11595 }
11596 
11597 /*
11598  * Write the given fabric manager table.
11599  */
11600 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11601 {
11602 	int ret = 0;
11603 	struct vl_arb_cache *vlc;
11604 
11605 	switch (which) {
11606 	case FM_TBL_VL_HIGH_ARB:
11607 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11608 		if (vl_arb_match_cache(vlc, t)) {
11609 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11610 			break;
11611 		}
11612 		vl_arb_set_cache(vlc, t);
11613 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11614 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11615 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11616 		break;
11617 	case FM_TBL_VL_LOW_ARB:
11618 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11619 		if (vl_arb_match_cache(vlc, t)) {
11620 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11621 			break;
11622 		}
11623 		vl_arb_set_cache(vlc, t);
11624 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11625 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11626 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11627 		break;
11628 	case FM_TBL_BUFFER_CONTROL:
11629 		ret = set_buffer_control(ppd, t);
11630 		break;
11631 	case FM_TBL_SC2VLNT:
11632 		set_sc2vlnt(ppd->dd, t);
11633 		break;
11634 	default:
11635 		ret = -EINVAL;
11636 	}
11637 	return ret;
11638 }
11639 
11640 /*
11641  * Disable all data VLs.
11642  *
11643  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11644  */
11645 static int disable_data_vls(struct hfi1_devdata *dd)
11646 {
11647 	if (is_ax(dd))
11648 		return 1;
11649 
11650 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11651 
11652 	return 0;
11653 }
11654 
11655 /*
11656  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11657  * Just re-enables all data VLs (the "fill" part happens
11658  * automatically - the name was chosen for symmetry with
11659  * stop_drain_data_vls()).
11660  *
11661  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11662  */
11663 int open_fill_data_vls(struct hfi1_devdata *dd)
11664 {
11665 	if (is_ax(dd))
11666 		return 1;
11667 
11668 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11669 
11670 	return 0;
11671 }
11672 
11673 /*
11674  * drain_data_vls() - assumes that disable_data_vls() has been called,
11675  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11676  * engines to drop to 0.
11677  */
11678 static void drain_data_vls(struct hfi1_devdata *dd)
11679 {
11680 	sc_wait(dd);
11681 	sdma_wait(dd);
11682 	pause_for_credit_return(dd);
11683 }
11684 
11685 /*
11686  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11687  *
11688  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11689  * meant to be used like this:
11690  *
11691  * stop_drain_data_vls(dd);
11692  * // do things with per-VL resources
11693  * open_fill_data_vls(dd);
11694  */
11695 int stop_drain_data_vls(struct hfi1_devdata *dd)
11696 {
11697 	int ret;
11698 
11699 	ret = disable_data_vls(dd);
11700 	if (ret == 0)
11701 		drain_data_vls(dd);
11702 
11703 	return ret;
11704 }
11705 
11706 /*
11707  * Convert a nanosecond time to a cclock count.  No matter how slow
11708  * the cclock, a non-zero ns will always have a non-zero result.
11709  */
11710 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11711 {
11712 	u32 cclocks;
11713 
11714 	if (dd->icode == ICODE_FPGA_EMULATION)
11715 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11716 	else  /* simulation pretends to be ASIC */
11717 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11718 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11719 		cclocks = 1;
11720 	return cclocks;
11721 }
11722 
11723 /*
11724  * Convert a cclock count to nanoseconds. Not matter how slow
11725  * the cclock, a non-zero cclocks will always have a non-zero result.
11726  */
11727 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11728 {
11729 	u32 ns;
11730 
11731 	if (dd->icode == ICODE_FPGA_EMULATION)
11732 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11733 	else  /* simulation pretends to be ASIC */
11734 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11735 	if (cclocks && !ns)
11736 		ns = 1;
11737 	return ns;
11738 }
11739 
11740 /*
11741  * Dynamically adjust the receive interrupt timeout for a context based on
11742  * incoming packet rate.
11743  *
11744  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11745  */
11746 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11747 {
11748 	struct hfi1_devdata *dd = rcd->dd;
11749 	u32 timeout = rcd->rcvavail_timeout;
11750 
11751 	/*
11752 	 * This algorithm doubles or halves the timeout depending on whether
11753 	 * the number of packets received in this interrupt were less than or
11754 	 * greater equal the interrupt count.
11755 	 *
11756 	 * The calculations below do not allow a steady state to be achieved.
11757 	 * Only at the endpoints it is possible to have an unchanging
11758 	 * timeout.
11759 	 */
11760 	if (npkts < rcv_intr_count) {
11761 		/*
11762 		 * Not enough packets arrived before the timeout, adjust
11763 		 * timeout downward.
11764 		 */
11765 		if (timeout < 2) /* already at minimum? */
11766 			return;
11767 		timeout >>= 1;
11768 	} else {
11769 		/*
11770 		 * More than enough packets arrived before the timeout, adjust
11771 		 * timeout upward.
11772 		 */
11773 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11774 			return;
11775 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11776 	}
11777 
11778 	rcd->rcvavail_timeout = timeout;
11779 	/*
11780 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11781 	 * been verified to be in range
11782 	 */
11783 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11784 			(u64)timeout <<
11785 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11786 }
11787 
11788 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11789 		    u32 intr_adjust, u32 npkts)
11790 {
11791 	struct hfi1_devdata *dd = rcd->dd;
11792 	u64 reg;
11793 	u32 ctxt = rcd->ctxt;
11794 
11795 	/*
11796 	 * Need to write timeout register before updating RcvHdrHead to ensure
11797 	 * that a new value is used when the HW decides to restart counting.
11798 	 */
11799 	if (intr_adjust)
11800 		adjust_rcv_timeout(rcd, npkts);
11801 	if (updegr) {
11802 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11803 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11804 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11805 	}
11806 	mmiowb();
11807 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11808 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11809 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11810 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11811 	mmiowb();
11812 }
11813 
11814 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11815 {
11816 	u32 head, tail;
11817 
11818 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11819 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11820 
11821 	if (rcd->rcvhdrtail_kvaddr)
11822 		tail = get_rcvhdrtail(rcd);
11823 	else
11824 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11825 
11826 	return head == tail;
11827 }
11828 
11829 /*
11830  * Context Control and Receive Array encoding for buffer size:
11831  *	0x0 invalid
11832  *	0x1   4 KB
11833  *	0x2   8 KB
11834  *	0x3  16 KB
11835  *	0x4  32 KB
11836  *	0x5  64 KB
11837  *	0x6 128 KB
11838  *	0x7 256 KB
11839  *	0x8 512 KB (Receive Array only)
11840  *	0x9   1 MB (Receive Array only)
11841  *	0xa   2 MB (Receive Array only)
11842  *
11843  *	0xB-0xF - reserved (Receive Array only)
11844  *
11845  *
11846  * This routine assumes that the value has already been sanity checked.
11847  */
11848 static u32 encoded_size(u32 size)
11849 {
11850 	switch (size) {
11851 	case   4 * 1024: return 0x1;
11852 	case   8 * 1024: return 0x2;
11853 	case  16 * 1024: return 0x3;
11854 	case  32 * 1024: return 0x4;
11855 	case  64 * 1024: return 0x5;
11856 	case 128 * 1024: return 0x6;
11857 	case 256 * 1024: return 0x7;
11858 	case 512 * 1024: return 0x8;
11859 	case   1 * 1024 * 1024: return 0x9;
11860 	case   2 * 1024 * 1024: return 0xa;
11861 	}
11862 	return 0x1;	/* if invalid, go with the minimum size */
11863 }
11864 
11865 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11866 		  struct hfi1_ctxtdata *rcd)
11867 {
11868 	u64 rcvctrl, reg;
11869 	int did_enable = 0;
11870 	u16 ctxt;
11871 
11872 	if (!rcd)
11873 		return;
11874 
11875 	ctxt = rcd->ctxt;
11876 
11877 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11878 
11879 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11880 	/* if the context already enabled, don't do the extra steps */
11881 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11882 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11883 		/* reset the tail and hdr addresses, and sequence count */
11884 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11885 				rcd->rcvhdrq_dma);
11886 		if (rcd->rcvhdrtail_kvaddr)
11887 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11888 					rcd->rcvhdrqtailaddr_dma);
11889 		rcd->seq_cnt = 1;
11890 
11891 		/* reset the cached receive header queue head value */
11892 		rcd->head = 0;
11893 
11894 		/*
11895 		 * Zero the receive header queue so we don't get false
11896 		 * positives when checking the sequence number.  The
11897 		 * sequence numbers could land exactly on the same spot.
11898 		 * E.g. a rcd restart before the receive header wrapped.
11899 		 */
11900 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
11901 
11902 		/* starting timeout */
11903 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11904 
11905 		/* enable the context */
11906 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11907 
11908 		/* clean the egr buffer size first */
11909 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11910 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11911 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11912 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11913 
11914 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11915 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11916 		did_enable = 1;
11917 
11918 		/* zero RcvEgrIndexHead */
11919 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11920 
11921 		/* set eager count and base index */
11922 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11923 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11924 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11925 			(((rcd->eager_base >> RCV_SHIFT)
11926 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11927 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11928 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11929 
11930 		/*
11931 		 * Set TID (expected) count and base index.
11932 		 * rcd->expected_count is set to individual RcvArray entries,
11933 		 * not pairs, and the CSR takes a pair-count in groups of
11934 		 * four, so divide by 8.
11935 		 */
11936 		reg = (((rcd->expected_count >> RCV_SHIFT)
11937 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11938 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11939 		      (((rcd->expected_base >> RCV_SHIFT)
11940 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11941 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11942 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11943 		if (ctxt == HFI1_CTRL_CTXT)
11944 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11945 	}
11946 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11947 		write_csr(dd, RCV_VL15, 0);
11948 		/*
11949 		 * When receive context is being disabled turn on tail
11950 		 * update with a dummy tail address and then disable
11951 		 * receive context.
11952 		 */
11953 		if (dd->rcvhdrtail_dummy_dma) {
11954 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11955 					dd->rcvhdrtail_dummy_dma);
11956 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11957 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11958 		}
11959 
11960 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11961 	}
11962 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
11963 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11964 			      IS_RCVAVAIL_START + rcd->ctxt, true);
11965 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11966 	}
11967 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
11968 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11969 			      IS_RCVAVAIL_START + rcd->ctxt, false);
11970 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11971 	}
11972 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11973 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11974 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11975 		/* See comment on RcvCtxtCtrl.TailUpd above */
11976 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11977 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11978 	}
11979 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11980 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11981 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11982 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11983 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11984 		/*
11985 		 * In one-packet-per-eager mode, the size comes from
11986 		 * the RcvArray entry.
11987 		 */
11988 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11989 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11990 	}
11991 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11992 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11993 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11994 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11995 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11996 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11997 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11998 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11999 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
12000 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
12001 	if (op & HFI1_RCVCTRL_URGENT_ENB)
12002 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12003 			      IS_RCVURGENT_START + rcd->ctxt, true);
12004 	if (op & HFI1_RCVCTRL_URGENT_DIS)
12005 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
12006 			      IS_RCVURGENT_START + rcd->ctxt, false);
12007 
12008 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
12009 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
12010 
12011 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
12012 	if (did_enable &&
12013 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12014 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12015 		if (reg != 0) {
12016 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12017 				    ctxt, reg);
12018 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12019 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12020 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12021 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12022 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12023 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12024 				    ctxt, reg, reg == 0 ? "not" : "still");
12025 		}
12026 	}
12027 
12028 	if (did_enable) {
12029 		/*
12030 		 * The interrupt timeout and count must be set after
12031 		 * the context is enabled to take effect.
12032 		 */
12033 		/* set interrupt timeout */
12034 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12035 				(u64)rcd->rcvavail_timeout <<
12036 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12037 
12038 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12039 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12040 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12041 	}
12042 
12043 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12044 		/*
12045 		 * If the context has been disabled and the Tail Update has
12046 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12047 		 * so it doesn't contain an address that is invalid.
12048 		 */
12049 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12050 				dd->rcvhdrtail_dummy_dma);
12051 }
12052 
12053 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12054 {
12055 	int ret;
12056 	u64 val = 0;
12057 
12058 	if (namep) {
12059 		ret = dd->cntrnameslen;
12060 		*namep = dd->cntrnames;
12061 	} else {
12062 		const struct cntr_entry *entry;
12063 		int i, j;
12064 
12065 		ret = (dd->ndevcntrs) * sizeof(u64);
12066 
12067 		/* Get the start of the block of counters */
12068 		*cntrp = dd->cntrs;
12069 
12070 		/*
12071 		 * Now go and fill in each counter in the block.
12072 		 */
12073 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12074 			entry = &dev_cntrs[i];
12075 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12076 			if (entry->flags & CNTR_DISABLED) {
12077 				/* Nothing */
12078 				hfi1_cdbg(CNTR, "\tDisabled\n");
12079 			} else {
12080 				if (entry->flags & CNTR_VL) {
12081 					hfi1_cdbg(CNTR, "\tPer VL\n");
12082 					for (j = 0; j < C_VL_COUNT; j++) {
12083 						val = entry->rw_cntr(entry,
12084 								  dd, j,
12085 								  CNTR_MODE_R,
12086 								  0);
12087 						hfi1_cdbg(
12088 						   CNTR,
12089 						   "\t\tRead 0x%llx for %d\n",
12090 						   val, j);
12091 						dd->cntrs[entry->offset + j] =
12092 									    val;
12093 					}
12094 				} else if (entry->flags & CNTR_SDMA) {
12095 					hfi1_cdbg(CNTR,
12096 						  "\t Per SDMA Engine\n");
12097 					for (j = 0; j < chip_sdma_engines(dd);
12098 					     j++) {
12099 						val =
12100 						entry->rw_cntr(entry, dd, j,
12101 							       CNTR_MODE_R, 0);
12102 						hfi1_cdbg(CNTR,
12103 							  "\t\tRead 0x%llx for %d\n",
12104 							  val, j);
12105 						dd->cntrs[entry->offset + j] =
12106 									val;
12107 					}
12108 				} else {
12109 					val = entry->rw_cntr(entry, dd,
12110 							CNTR_INVALID_VL,
12111 							CNTR_MODE_R, 0);
12112 					dd->cntrs[entry->offset] = val;
12113 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12114 				}
12115 			}
12116 		}
12117 	}
12118 	return ret;
12119 }
12120 
12121 /*
12122  * Used by sysfs to create files for hfi stats to read
12123  */
12124 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12125 {
12126 	int ret;
12127 	u64 val = 0;
12128 
12129 	if (namep) {
12130 		ret = ppd->dd->portcntrnameslen;
12131 		*namep = ppd->dd->portcntrnames;
12132 	} else {
12133 		const struct cntr_entry *entry;
12134 		int i, j;
12135 
12136 		ret = ppd->dd->nportcntrs * sizeof(u64);
12137 		*cntrp = ppd->cntrs;
12138 
12139 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12140 			entry = &port_cntrs[i];
12141 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12142 			if (entry->flags & CNTR_DISABLED) {
12143 				/* Nothing */
12144 				hfi1_cdbg(CNTR, "\tDisabled\n");
12145 				continue;
12146 			}
12147 
12148 			if (entry->flags & CNTR_VL) {
12149 				hfi1_cdbg(CNTR, "\tPer VL");
12150 				for (j = 0; j < C_VL_COUNT; j++) {
12151 					val = entry->rw_cntr(entry, ppd, j,
12152 							       CNTR_MODE_R,
12153 							       0);
12154 					hfi1_cdbg(
12155 					   CNTR,
12156 					   "\t\tRead 0x%llx for %d",
12157 					   val, j);
12158 					ppd->cntrs[entry->offset + j] = val;
12159 				}
12160 			} else {
12161 				val = entry->rw_cntr(entry, ppd,
12162 						       CNTR_INVALID_VL,
12163 						       CNTR_MODE_R,
12164 						       0);
12165 				ppd->cntrs[entry->offset] = val;
12166 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12167 			}
12168 		}
12169 	}
12170 	return ret;
12171 }
12172 
12173 static void free_cntrs(struct hfi1_devdata *dd)
12174 {
12175 	struct hfi1_pportdata *ppd;
12176 	int i;
12177 
12178 	if (dd->synth_stats_timer.function)
12179 		del_timer_sync(&dd->synth_stats_timer);
12180 	ppd = (struct hfi1_pportdata *)(dd + 1);
12181 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12182 		kfree(ppd->cntrs);
12183 		kfree(ppd->scntrs);
12184 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12185 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12186 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12187 		ppd->cntrs = NULL;
12188 		ppd->scntrs = NULL;
12189 		ppd->ibport_data.rvp.rc_acks = NULL;
12190 		ppd->ibport_data.rvp.rc_qacks = NULL;
12191 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12192 	}
12193 	kfree(dd->portcntrnames);
12194 	dd->portcntrnames = NULL;
12195 	kfree(dd->cntrs);
12196 	dd->cntrs = NULL;
12197 	kfree(dd->scntrs);
12198 	dd->scntrs = NULL;
12199 	kfree(dd->cntrnames);
12200 	dd->cntrnames = NULL;
12201 	if (dd->update_cntr_wq) {
12202 		destroy_workqueue(dd->update_cntr_wq);
12203 		dd->update_cntr_wq = NULL;
12204 	}
12205 }
12206 
12207 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12208 			      u64 *psval, void *context, int vl)
12209 {
12210 	u64 val;
12211 	u64 sval = *psval;
12212 
12213 	if (entry->flags & CNTR_DISABLED) {
12214 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12215 		return 0;
12216 	}
12217 
12218 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12219 
12220 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12221 
12222 	/* If its a synthetic counter there is more work we need to do */
12223 	if (entry->flags & CNTR_SYNTH) {
12224 		if (sval == CNTR_MAX) {
12225 			/* No need to read already saturated */
12226 			return CNTR_MAX;
12227 		}
12228 
12229 		if (entry->flags & CNTR_32BIT) {
12230 			/* 32bit counters can wrap multiple times */
12231 			u64 upper = sval >> 32;
12232 			u64 lower = (sval << 32) >> 32;
12233 
12234 			if (lower > val) { /* hw wrapped */
12235 				if (upper == CNTR_32BIT_MAX)
12236 					val = CNTR_MAX;
12237 				else
12238 					upper++;
12239 			}
12240 
12241 			if (val != CNTR_MAX)
12242 				val = (upper << 32) | val;
12243 
12244 		} else {
12245 			/* If we rolled we are saturated */
12246 			if ((val < sval) || (val > CNTR_MAX))
12247 				val = CNTR_MAX;
12248 		}
12249 	}
12250 
12251 	*psval = val;
12252 
12253 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12254 
12255 	return val;
12256 }
12257 
12258 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12259 			       struct cntr_entry *entry,
12260 			       u64 *psval, void *context, int vl, u64 data)
12261 {
12262 	u64 val;
12263 
12264 	if (entry->flags & CNTR_DISABLED) {
12265 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12266 		return 0;
12267 	}
12268 
12269 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12270 
12271 	if (entry->flags & CNTR_SYNTH) {
12272 		*psval = data;
12273 		if (entry->flags & CNTR_32BIT) {
12274 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12275 					     (data << 32) >> 32);
12276 			val = data; /* return the full 64bit value */
12277 		} else {
12278 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12279 					     data);
12280 		}
12281 	} else {
12282 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12283 	}
12284 
12285 	*psval = val;
12286 
12287 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12288 
12289 	return val;
12290 }
12291 
12292 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12293 {
12294 	struct cntr_entry *entry;
12295 	u64 *sval;
12296 
12297 	entry = &dev_cntrs[index];
12298 	sval = dd->scntrs + entry->offset;
12299 
12300 	if (vl != CNTR_INVALID_VL)
12301 		sval += vl;
12302 
12303 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12304 }
12305 
12306 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12307 {
12308 	struct cntr_entry *entry;
12309 	u64 *sval;
12310 
12311 	entry = &dev_cntrs[index];
12312 	sval = dd->scntrs + entry->offset;
12313 
12314 	if (vl != CNTR_INVALID_VL)
12315 		sval += vl;
12316 
12317 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12318 }
12319 
12320 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12321 {
12322 	struct cntr_entry *entry;
12323 	u64 *sval;
12324 
12325 	entry = &port_cntrs[index];
12326 	sval = ppd->scntrs + entry->offset;
12327 
12328 	if (vl != CNTR_INVALID_VL)
12329 		sval += vl;
12330 
12331 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12332 	    (index <= C_RCV_HDR_OVF_LAST)) {
12333 		/* We do not want to bother for disabled contexts */
12334 		return 0;
12335 	}
12336 
12337 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12338 }
12339 
12340 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12341 {
12342 	struct cntr_entry *entry;
12343 	u64 *sval;
12344 
12345 	entry = &port_cntrs[index];
12346 	sval = ppd->scntrs + entry->offset;
12347 
12348 	if (vl != CNTR_INVALID_VL)
12349 		sval += vl;
12350 
12351 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12352 	    (index <= C_RCV_HDR_OVF_LAST)) {
12353 		/* We do not want to bother for disabled contexts */
12354 		return 0;
12355 	}
12356 
12357 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12358 }
12359 
12360 static void do_update_synth_timer(struct work_struct *work)
12361 {
12362 	u64 cur_tx;
12363 	u64 cur_rx;
12364 	u64 total_flits;
12365 	u8 update = 0;
12366 	int i, j, vl;
12367 	struct hfi1_pportdata *ppd;
12368 	struct cntr_entry *entry;
12369 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12370 					       update_cntr_work);
12371 
12372 	/*
12373 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12374 	 * check to watch for potential roll over. We can do this by looking at
12375 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12376 	 * we have to iterate all the counters and update.
12377 	 */
12378 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12379 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12380 
12381 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12382 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12383 
12384 	hfi1_cdbg(
12385 	    CNTR,
12386 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12387 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12388 
12389 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12390 		/*
12391 		 * May not be strictly necessary to update but it won't hurt and
12392 		 * simplifies the logic here.
12393 		 */
12394 		update = 1;
12395 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12396 			  dd->unit);
12397 	} else {
12398 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12399 		hfi1_cdbg(CNTR,
12400 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12401 			  total_flits, (u64)CNTR_32BIT_MAX);
12402 		if (total_flits >= CNTR_32BIT_MAX) {
12403 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12404 				  dd->unit);
12405 			update = 1;
12406 		}
12407 	}
12408 
12409 	if (update) {
12410 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12411 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12412 			entry = &dev_cntrs[i];
12413 			if (entry->flags & CNTR_VL) {
12414 				for (vl = 0; vl < C_VL_COUNT; vl++)
12415 					read_dev_cntr(dd, i, vl);
12416 			} else {
12417 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12418 			}
12419 		}
12420 		ppd = (struct hfi1_pportdata *)(dd + 1);
12421 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12422 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12423 				entry = &port_cntrs[j];
12424 				if (entry->flags & CNTR_VL) {
12425 					for (vl = 0; vl < C_VL_COUNT; vl++)
12426 						read_port_cntr(ppd, j, vl);
12427 				} else {
12428 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12429 				}
12430 			}
12431 		}
12432 
12433 		/*
12434 		 * We want the value in the register. The goal is to keep track
12435 		 * of the number of "ticks" not the counter value. In other
12436 		 * words if the register rolls we want to notice it and go ahead
12437 		 * and force an update.
12438 		 */
12439 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12440 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12441 						CNTR_MODE_R, 0);
12442 
12443 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12444 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12445 						CNTR_MODE_R, 0);
12446 
12447 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12448 			  dd->unit, dd->last_tx, dd->last_rx);
12449 
12450 	} else {
12451 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12452 	}
12453 }
12454 
12455 static void update_synth_timer(struct timer_list *t)
12456 {
12457 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12458 
12459 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12460 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12461 }
12462 
12463 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12464 static int init_cntrs(struct hfi1_devdata *dd)
12465 {
12466 	int i, rcv_ctxts, j;
12467 	size_t sz;
12468 	char *p;
12469 	char name[C_MAX_NAME];
12470 	struct hfi1_pportdata *ppd;
12471 	const char *bit_type_32 = ",32";
12472 	const int bit_type_32_sz = strlen(bit_type_32);
12473 	u32 sdma_engines = chip_sdma_engines(dd);
12474 
12475 	/* set up the stats timer; the add_timer is done at the end */
12476 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12477 
12478 	/***********************/
12479 	/* per device counters */
12480 	/***********************/
12481 
12482 	/* size names and determine how many we have*/
12483 	dd->ndevcntrs = 0;
12484 	sz = 0;
12485 
12486 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12487 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12488 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12489 			continue;
12490 		}
12491 
12492 		if (dev_cntrs[i].flags & CNTR_VL) {
12493 			dev_cntrs[i].offset = dd->ndevcntrs;
12494 			for (j = 0; j < C_VL_COUNT; j++) {
12495 				snprintf(name, C_MAX_NAME, "%s%d",
12496 					 dev_cntrs[i].name, vl_from_idx(j));
12497 				sz += strlen(name);
12498 				/* Add ",32" for 32-bit counters */
12499 				if (dev_cntrs[i].flags & CNTR_32BIT)
12500 					sz += bit_type_32_sz;
12501 				sz++;
12502 				dd->ndevcntrs++;
12503 			}
12504 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12505 			dev_cntrs[i].offset = dd->ndevcntrs;
12506 			for (j = 0; j < sdma_engines; j++) {
12507 				snprintf(name, C_MAX_NAME, "%s%d",
12508 					 dev_cntrs[i].name, j);
12509 				sz += strlen(name);
12510 				/* Add ",32" for 32-bit counters */
12511 				if (dev_cntrs[i].flags & CNTR_32BIT)
12512 					sz += bit_type_32_sz;
12513 				sz++;
12514 				dd->ndevcntrs++;
12515 			}
12516 		} else {
12517 			/* +1 for newline. */
12518 			sz += strlen(dev_cntrs[i].name) + 1;
12519 			/* Add ",32" for 32-bit counters */
12520 			if (dev_cntrs[i].flags & CNTR_32BIT)
12521 				sz += bit_type_32_sz;
12522 			dev_cntrs[i].offset = dd->ndevcntrs;
12523 			dd->ndevcntrs++;
12524 		}
12525 	}
12526 
12527 	/* allocate space for the counter values */
12528 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12529 			    GFP_KERNEL);
12530 	if (!dd->cntrs)
12531 		goto bail;
12532 
12533 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12534 	if (!dd->scntrs)
12535 		goto bail;
12536 
12537 	/* allocate space for the counter names */
12538 	dd->cntrnameslen = sz;
12539 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12540 	if (!dd->cntrnames)
12541 		goto bail;
12542 
12543 	/* fill in the names */
12544 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12545 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12546 			/* Nothing */
12547 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12548 			for (j = 0; j < C_VL_COUNT; j++) {
12549 				snprintf(name, C_MAX_NAME, "%s%d",
12550 					 dev_cntrs[i].name,
12551 					 vl_from_idx(j));
12552 				memcpy(p, name, strlen(name));
12553 				p += strlen(name);
12554 
12555 				/* Counter is 32 bits */
12556 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12557 					memcpy(p, bit_type_32, bit_type_32_sz);
12558 					p += bit_type_32_sz;
12559 				}
12560 
12561 				*p++ = '\n';
12562 			}
12563 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12564 			for (j = 0; j < sdma_engines; j++) {
12565 				snprintf(name, C_MAX_NAME, "%s%d",
12566 					 dev_cntrs[i].name, j);
12567 				memcpy(p, name, strlen(name));
12568 				p += strlen(name);
12569 
12570 				/* Counter is 32 bits */
12571 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12572 					memcpy(p, bit_type_32, bit_type_32_sz);
12573 					p += bit_type_32_sz;
12574 				}
12575 
12576 				*p++ = '\n';
12577 			}
12578 		} else {
12579 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12580 			p += strlen(dev_cntrs[i].name);
12581 
12582 			/* Counter is 32 bits */
12583 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12584 				memcpy(p, bit_type_32, bit_type_32_sz);
12585 				p += bit_type_32_sz;
12586 			}
12587 
12588 			*p++ = '\n';
12589 		}
12590 	}
12591 
12592 	/*********************/
12593 	/* per port counters */
12594 	/*********************/
12595 
12596 	/*
12597 	 * Go through the counters for the overflows and disable the ones we
12598 	 * don't need. This varies based on platform so we need to do it
12599 	 * dynamically here.
12600 	 */
12601 	rcv_ctxts = dd->num_rcv_contexts;
12602 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12603 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12604 		port_cntrs[i].flags |= CNTR_DISABLED;
12605 	}
12606 
12607 	/* size port counter names and determine how many we have*/
12608 	sz = 0;
12609 	dd->nportcntrs = 0;
12610 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12611 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12612 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12613 			continue;
12614 		}
12615 
12616 		if (port_cntrs[i].flags & CNTR_VL) {
12617 			port_cntrs[i].offset = dd->nportcntrs;
12618 			for (j = 0; j < C_VL_COUNT; j++) {
12619 				snprintf(name, C_MAX_NAME, "%s%d",
12620 					 port_cntrs[i].name, vl_from_idx(j));
12621 				sz += strlen(name);
12622 				/* Add ",32" for 32-bit counters */
12623 				if (port_cntrs[i].flags & CNTR_32BIT)
12624 					sz += bit_type_32_sz;
12625 				sz++;
12626 				dd->nportcntrs++;
12627 			}
12628 		} else {
12629 			/* +1 for newline */
12630 			sz += strlen(port_cntrs[i].name) + 1;
12631 			/* Add ",32" for 32-bit counters */
12632 			if (port_cntrs[i].flags & CNTR_32BIT)
12633 				sz += bit_type_32_sz;
12634 			port_cntrs[i].offset = dd->nportcntrs;
12635 			dd->nportcntrs++;
12636 		}
12637 	}
12638 
12639 	/* allocate space for the counter names */
12640 	dd->portcntrnameslen = sz;
12641 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12642 	if (!dd->portcntrnames)
12643 		goto bail;
12644 
12645 	/* fill in port cntr names */
12646 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12647 		if (port_cntrs[i].flags & CNTR_DISABLED)
12648 			continue;
12649 
12650 		if (port_cntrs[i].flags & CNTR_VL) {
12651 			for (j = 0; j < C_VL_COUNT; j++) {
12652 				snprintf(name, C_MAX_NAME, "%s%d",
12653 					 port_cntrs[i].name, vl_from_idx(j));
12654 				memcpy(p, name, strlen(name));
12655 				p += strlen(name);
12656 
12657 				/* Counter is 32 bits */
12658 				if (port_cntrs[i].flags & CNTR_32BIT) {
12659 					memcpy(p, bit_type_32, bit_type_32_sz);
12660 					p += bit_type_32_sz;
12661 				}
12662 
12663 				*p++ = '\n';
12664 			}
12665 		} else {
12666 			memcpy(p, port_cntrs[i].name,
12667 			       strlen(port_cntrs[i].name));
12668 			p += strlen(port_cntrs[i].name);
12669 
12670 			/* Counter is 32 bits */
12671 			if (port_cntrs[i].flags & CNTR_32BIT) {
12672 				memcpy(p, bit_type_32, bit_type_32_sz);
12673 				p += bit_type_32_sz;
12674 			}
12675 
12676 			*p++ = '\n';
12677 		}
12678 	}
12679 
12680 	/* allocate per port storage for counter values */
12681 	ppd = (struct hfi1_pportdata *)(dd + 1);
12682 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12683 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12684 		if (!ppd->cntrs)
12685 			goto bail;
12686 
12687 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12688 		if (!ppd->scntrs)
12689 			goto bail;
12690 	}
12691 
12692 	/* CPU counters need to be allocated and zeroed */
12693 	if (init_cpu_counters(dd))
12694 		goto bail;
12695 
12696 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12697 						     WQ_MEM_RECLAIM, dd->unit);
12698 	if (!dd->update_cntr_wq)
12699 		goto bail;
12700 
12701 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12702 
12703 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12704 	return 0;
12705 bail:
12706 	free_cntrs(dd);
12707 	return -ENOMEM;
12708 }
12709 
12710 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12711 {
12712 	switch (chip_lstate) {
12713 	default:
12714 		dd_dev_err(dd,
12715 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12716 			   chip_lstate);
12717 		/* fall through */
12718 	case LSTATE_DOWN:
12719 		return IB_PORT_DOWN;
12720 	case LSTATE_INIT:
12721 		return IB_PORT_INIT;
12722 	case LSTATE_ARMED:
12723 		return IB_PORT_ARMED;
12724 	case LSTATE_ACTIVE:
12725 		return IB_PORT_ACTIVE;
12726 	}
12727 }
12728 
12729 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12730 {
12731 	/* look at the HFI meta-states only */
12732 	switch (chip_pstate & 0xf0) {
12733 	default:
12734 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12735 			   chip_pstate);
12736 		/* fall through */
12737 	case PLS_DISABLED:
12738 		return IB_PORTPHYSSTATE_DISABLED;
12739 	case PLS_OFFLINE:
12740 		return OPA_PORTPHYSSTATE_OFFLINE;
12741 	case PLS_POLLING:
12742 		return IB_PORTPHYSSTATE_POLLING;
12743 	case PLS_CONFIGPHY:
12744 		return IB_PORTPHYSSTATE_TRAINING;
12745 	case PLS_LINKUP:
12746 		return IB_PORTPHYSSTATE_LINKUP;
12747 	case PLS_PHYTEST:
12748 		return IB_PORTPHYSSTATE_PHY_TEST;
12749 	}
12750 }
12751 
12752 /* return the OPA port logical state name */
12753 const char *opa_lstate_name(u32 lstate)
12754 {
12755 	static const char * const port_logical_names[] = {
12756 		"PORT_NOP",
12757 		"PORT_DOWN",
12758 		"PORT_INIT",
12759 		"PORT_ARMED",
12760 		"PORT_ACTIVE",
12761 		"PORT_ACTIVE_DEFER",
12762 	};
12763 	if (lstate < ARRAY_SIZE(port_logical_names))
12764 		return port_logical_names[lstate];
12765 	return "unknown";
12766 }
12767 
12768 /* return the OPA port physical state name */
12769 const char *opa_pstate_name(u32 pstate)
12770 {
12771 	static const char * const port_physical_names[] = {
12772 		"PHYS_NOP",
12773 		"reserved1",
12774 		"PHYS_POLL",
12775 		"PHYS_DISABLED",
12776 		"PHYS_TRAINING",
12777 		"PHYS_LINKUP",
12778 		"PHYS_LINK_ERR_RECOVER",
12779 		"PHYS_PHY_TEST",
12780 		"reserved8",
12781 		"PHYS_OFFLINE",
12782 		"PHYS_GANGED",
12783 		"PHYS_TEST",
12784 	};
12785 	if (pstate < ARRAY_SIZE(port_physical_names))
12786 		return port_physical_names[pstate];
12787 	return "unknown";
12788 }
12789 
12790 /**
12791  * update_statusp - Update userspace status flag
12792  * @ppd: Port data structure
12793  * @state: port state information
12794  *
12795  * Actual port status is determined by the host_link_state value
12796  * in the ppd.
12797  *
12798  * host_link_state MUST be updated before updating the user space
12799  * statusp.
12800  */
12801 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12802 {
12803 	/*
12804 	 * Set port status flags in the page mapped into userspace
12805 	 * memory. Do it here to ensure a reliable state - this is
12806 	 * the only function called by all state handling code.
12807 	 * Always set the flags due to the fact that the cache value
12808 	 * might have been changed explicitly outside of this
12809 	 * function.
12810 	 */
12811 	if (ppd->statusp) {
12812 		switch (state) {
12813 		case IB_PORT_DOWN:
12814 		case IB_PORT_INIT:
12815 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12816 					   HFI1_STATUS_IB_READY);
12817 			break;
12818 		case IB_PORT_ARMED:
12819 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12820 			break;
12821 		case IB_PORT_ACTIVE:
12822 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12823 			break;
12824 		}
12825 	}
12826 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12827 		    opa_lstate_name(state), state);
12828 }
12829 
12830 /**
12831  * wait_logical_linkstate - wait for an IB link state change to occur
12832  * @ppd: port device
12833  * @state: the state to wait for
12834  * @msecs: the number of milliseconds to wait
12835  *
12836  * Wait up to msecs milliseconds for IB link state change to occur.
12837  * For now, take the easy polling route.
12838  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12839  */
12840 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12841 				  int msecs)
12842 {
12843 	unsigned long timeout;
12844 	u32 new_state;
12845 
12846 	timeout = jiffies + msecs_to_jiffies(msecs);
12847 	while (1) {
12848 		new_state = chip_to_opa_lstate(ppd->dd,
12849 					       read_logical_state(ppd->dd));
12850 		if (new_state == state)
12851 			break;
12852 		if (time_after(jiffies, timeout)) {
12853 			dd_dev_err(ppd->dd,
12854 				   "timeout waiting for link state 0x%x\n",
12855 				   state);
12856 			return -ETIMEDOUT;
12857 		}
12858 		msleep(20);
12859 	}
12860 
12861 	return 0;
12862 }
12863 
12864 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12865 {
12866 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12867 
12868 	dd_dev_info(ppd->dd,
12869 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12870 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12871 }
12872 
12873 /*
12874  * Read the physical hardware link state and check if it matches host
12875  * drivers anticipated state.
12876  */
12877 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12878 {
12879 	u32 read_state = read_physical_state(ppd->dd);
12880 
12881 	if (read_state == state) {
12882 		log_state_transition(ppd, state);
12883 	} else {
12884 		dd_dev_err(ppd->dd,
12885 			   "anticipated phy link state 0x%x, read 0x%x\n",
12886 			   state, read_state);
12887 	}
12888 }
12889 
12890 /*
12891  * wait_physical_linkstate - wait for an physical link state change to occur
12892  * @ppd: port device
12893  * @state: the state to wait for
12894  * @msecs: the number of milliseconds to wait
12895  *
12896  * Wait up to msecs milliseconds for physical link state change to occur.
12897  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12898  */
12899 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12900 				   int msecs)
12901 {
12902 	u32 read_state;
12903 	unsigned long timeout;
12904 
12905 	timeout = jiffies + msecs_to_jiffies(msecs);
12906 	while (1) {
12907 		read_state = read_physical_state(ppd->dd);
12908 		if (read_state == state)
12909 			break;
12910 		if (time_after(jiffies, timeout)) {
12911 			dd_dev_err(ppd->dd,
12912 				   "timeout waiting for phy link state 0x%x\n",
12913 				   state);
12914 			return -ETIMEDOUT;
12915 		}
12916 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12917 	}
12918 
12919 	log_state_transition(ppd, state);
12920 	return 0;
12921 }
12922 
12923 /*
12924  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12925  * @ppd: port device
12926  * @msecs: the number of milliseconds to wait
12927  *
12928  * Wait up to msecs milliseconds for any offline physical link
12929  * state change to occur.
12930  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12931  */
12932 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12933 					    int msecs)
12934 {
12935 	u32 read_state;
12936 	unsigned long timeout;
12937 
12938 	timeout = jiffies + msecs_to_jiffies(msecs);
12939 	while (1) {
12940 		read_state = read_physical_state(ppd->dd);
12941 		if ((read_state & 0xF0) == PLS_OFFLINE)
12942 			break;
12943 		if (time_after(jiffies, timeout)) {
12944 			dd_dev_err(ppd->dd,
12945 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12946 				   read_state, msecs);
12947 			return -ETIMEDOUT;
12948 		}
12949 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12950 	}
12951 
12952 	log_state_transition(ppd, read_state);
12953 	return read_state;
12954 }
12955 
12956 /*
12957  * wait_phys_link_out_of_offline - wait for any out of offline state
12958  * @ppd: port device
12959  * @msecs: the number of milliseconds to wait
12960  *
12961  * Wait up to msecs milliseconds for any out of offline physical link
12962  * state change to occur.
12963  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12964  */
12965 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
12966 					 int msecs)
12967 {
12968 	u32 read_state;
12969 	unsigned long timeout;
12970 
12971 	timeout = jiffies + msecs_to_jiffies(msecs);
12972 	while (1) {
12973 		read_state = read_physical_state(ppd->dd);
12974 		if ((read_state & 0xF0) != PLS_OFFLINE)
12975 			break;
12976 		if (time_after(jiffies, timeout)) {
12977 			dd_dev_err(ppd->dd,
12978 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
12979 				   read_state, msecs);
12980 			return -ETIMEDOUT;
12981 		}
12982 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12983 	}
12984 
12985 	log_state_transition(ppd, read_state);
12986 	return read_state;
12987 }
12988 
12989 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12990 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12991 
12992 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12993 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12994 
12995 void hfi1_init_ctxt(struct send_context *sc)
12996 {
12997 	if (sc) {
12998 		struct hfi1_devdata *dd = sc->dd;
12999 		u64 reg;
13000 		u8 set = (sc->type == SC_USER ?
13001 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
13002 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
13003 		reg = read_kctxt_csr(dd, sc->hw_context,
13004 				     SEND_CTXT_CHECK_ENABLE);
13005 		if (set)
13006 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
13007 		else
13008 			SET_STATIC_RATE_CONTROL_SMASK(reg);
13009 		write_kctxt_csr(dd, sc->hw_context,
13010 				SEND_CTXT_CHECK_ENABLE, reg);
13011 	}
13012 }
13013 
13014 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13015 {
13016 	int ret = 0;
13017 	u64 reg;
13018 
13019 	if (dd->icode != ICODE_RTL_SILICON) {
13020 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13021 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13022 				    __func__);
13023 		return -EINVAL;
13024 	}
13025 	reg = read_csr(dd, ASIC_STS_THERM);
13026 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13027 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13028 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13029 			ASIC_STS_THERM_LO_TEMP_MASK);
13030 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13031 			ASIC_STS_THERM_HI_TEMP_MASK);
13032 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13033 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13034 	/* triggers is a 3-bit value - 1 bit per trigger. */
13035 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13036 
13037 	return ret;
13038 }
13039 
13040 /* ========================================================================= */
13041 
13042 /**
13043  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13044  * @dd: valid devdata
13045  * @src: IRQ source to determine register index from
13046  * @bits: the bits to set or clear
13047  * @set: true == set the bits, false == clear the bits
13048  *
13049  */
13050 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13051 			   bool set)
13052 {
13053 	u64 reg;
13054 	u16 idx = src / BITS_PER_REGISTER;
13055 
13056 	spin_lock(&dd->irq_src_lock);
13057 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13058 	if (set)
13059 		reg |= bits;
13060 	else
13061 		reg &= ~bits;
13062 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13063 	spin_unlock(&dd->irq_src_lock);
13064 }
13065 
13066 /**
13067  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13068  * @dd: valid devdata
13069  * @first: first IRQ source to set/clear
13070  * @last: last IRQ source (inclusive) to set/clear
13071  * @set: true == set the bits, false == clear the bits
13072  *
13073  * If first == last, set the exact source.
13074  */
13075 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13076 {
13077 	u64 bits = 0;
13078 	u64 bit;
13079 	u16 src;
13080 
13081 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13082 		return -EINVAL;
13083 
13084 	if (last < first)
13085 		return -ERANGE;
13086 
13087 	for (src = first; src <= last; src++) {
13088 		bit = src % BITS_PER_REGISTER;
13089 		/* wrapped to next register? */
13090 		if (!bit && bits) {
13091 			read_mod_write(dd, src - 1, bits, set);
13092 			bits = 0;
13093 		}
13094 		bits |= BIT_ULL(bit);
13095 	}
13096 	read_mod_write(dd, last, bits, set);
13097 
13098 	return 0;
13099 }
13100 
13101 /*
13102  * Clear all interrupt sources on the chip.
13103  */
13104 void clear_all_interrupts(struct hfi1_devdata *dd)
13105 {
13106 	int i;
13107 
13108 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13109 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13110 
13111 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13112 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13113 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13114 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13115 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13116 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13117 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13118 	for (i = 0; i < chip_send_contexts(dd); i++)
13119 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13120 	for (i = 0; i < chip_sdma_engines(dd); i++)
13121 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13122 
13123 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13124 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13125 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13126 }
13127 
13128 /*
13129  * Remap the interrupt source from the general handler to the given MSI-X
13130  * interrupt.
13131  */
13132 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13133 {
13134 	u64 reg;
13135 	int m, n;
13136 
13137 	/* clear from the handled mask of the general interrupt */
13138 	m = isrc / 64;
13139 	n = isrc % 64;
13140 	if (likely(m < CCE_NUM_INT_CSRS)) {
13141 		dd->gi_mask[m] &= ~((u64)1 << n);
13142 	} else {
13143 		dd_dev_err(dd, "remap interrupt err\n");
13144 		return;
13145 	}
13146 
13147 	/* direct the chip source to the given MSI-X interrupt */
13148 	m = isrc / 8;
13149 	n = isrc % 8;
13150 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13151 	reg &= ~((u64)0xff << (8 * n));
13152 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13153 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13154 }
13155 
13156 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13157 {
13158 	/*
13159 	 * SDMA engine interrupt sources grouped by type, rather than
13160 	 * engine.  Per-engine interrupts are as follows:
13161 	 *	SDMA
13162 	 *	SDMAProgress
13163 	 *	SDMAIdle
13164 	 */
13165 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13166 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13167 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13168 }
13169 
13170 /*
13171  * Set the general handler to accept all interrupts, remap all
13172  * chip interrupts back to MSI-X 0.
13173  */
13174 void reset_interrupts(struct hfi1_devdata *dd)
13175 {
13176 	int i;
13177 
13178 	/* all interrupts handled by the general handler */
13179 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13180 		dd->gi_mask[i] = ~(u64)0;
13181 
13182 	/* all chip interrupts map to MSI-X 0 */
13183 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13184 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13185 }
13186 
13187 /**
13188  * set_up_interrupts() - Initialize the IRQ resources and state
13189  * @dd: valid devdata
13190  *
13191  */
13192 static int set_up_interrupts(struct hfi1_devdata *dd)
13193 {
13194 	int ret;
13195 
13196 	/* mask all interrupts */
13197 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13198 
13199 	/* clear all pending interrupts */
13200 	clear_all_interrupts(dd);
13201 
13202 	/* reset general handler mask, chip MSI-X mappings */
13203 	reset_interrupts(dd);
13204 
13205 	/* ask for MSI-X interrupts */
13206 	ret = msix_initialize(dd);
13207 	if (ret)
13208 		return ret;
13209 
13210 	ret = msix_request_irqs(dd);
13211 	if (ret)
13212 		msix_clean_up_interrupts(dd);
13213 
13214 	return ret;
13215 }
13216 
13217 /*
13218  * Set up context values in dd.  Sets:
13219  *
13220  *	num_rcv_contexts - number of contexts being used
13221  *	n_krcv_queues - number of kernel contexts
13222  *	first_dyn_alloc_ctxt - first dynamically allocated context
13223  *                             in array of contexts
13224  *	freectxts  - number of free user contexts
13225  *	num_send_contexts - number of PIO send contexts being used
13226  *	num_vnic_contexts - number of contexts reserved for VNIC
13227  */
13228 static int set_up_context_variables(struct hfi1_devdata *dd)
13229 {
13230 	unsigned long num_kernel_contexts;
13231 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13232 	int total_contexts;
13233 	int ret;
13234 	unsigned ngroups;
13235 	int qos_rmt_count;
13236 	int user_rmt_reduced;
13237 	u32 n_usr_ctxts;
13238 	u32 send_contexts = chip_send_contexts(dd);
13239 	u32 rcv_contexts = chip_rcv_contexts(dd);
13240 
13241 	/*
13242 	 * Kernel receive contexts:
13243 	 * - Context 0 - control context (VL15/multicast/error)
13244 	 * - Context 1 - first kernel context
13245 	 * - Context 2 - second kernel context
13246 	 * ...
13247 	 */
13248 	if (n_krcvqs)
13249 		/*
13250 		 * n_krcvqs is the sum of module parameter kernel receive
13251 		 * contexts, krcvqs[].  It does not include the control
13252 		 * context, so add that.
13253 		 */
13254 		num_kernel_contexts = n_krcvqs + 1;
13255 	else
13256 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13257 	/*
13258 	 * Every kernel receive context needs an ACK send context.
13259 	 * one send context is allocated for each VL{0-7} and VL15
13260 	 */
13261 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13262 		dd_dev_err(dd,
13263 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13264 			   send_contexts - num_vls - 1,
13265 			   num_kernel_contexts);
13266 		num_kernel_contexts = send_contexts - num_vls - 1;
13267 	}
13268 
13269 	/* Accommodate VNIC contexts if possible */
13270 	if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13271 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13272 		num_vnic_contexts = 0;
13273 	}
13274 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13275 
13276 	/*
13277 	 * User contexts:
13278 	 *	- default to 1 user context per real (non-HT) CPU core if
13279 	 *	  num_user_contexts is negative
13280 	 */
13281 	if (num_user_contexts < 0)
13282 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13283 	else
13284 		n_usr_ctxts = num_user_contexts;
13285 	/*
13286 	 * Adjust the counts given a global max.
13287 	 */
13288 	if (total_contexts + n_usr_ctxts > rcv_contexts) {
13289 		dd_dev_err(dd,
13290 			   "Reducing # user receive contexts to: %d, from %u\n",
13291 			   rcv_contexts - total_contexts,
13292 			   n_usr_ctxts);
13293 		/* recalculate */
13294 		n_usr_ctxts = rcv_contexts - total_contexts;
13295 	}
13296 
13297 	/* each user context requires an entry in the RMT */
13298 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13299 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13300 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13301 		dd_dev_err(dd,
13302 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13303 			   n_usr_ctxts,
13304 			   user_rmt_reduced);
13305 		/* recalculate */
13306 		n_usr_ctxts = user_rmt_reduced;
13307 	}
13308 
13309 	total_contexts += n_usr_ctxts;
13310 
13311 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13312 	dd->num_rcv_contexts = total_contexts;
13313 	dd->n_krcv_queues = num_kernel_contexts;
13314 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13315 	dd->num_vnic_contexts = num_vnic_contexts;
13316 	dd->num_user_contexts = n_usr_ctxts;
13317 	dd->freectxts = n_usr_ctxts;
13318 	dd_dev_info(dd,
13319 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13320 		    rcv_contexts,
13321 		    (int)dd->num_rcv_contexts,
13322 		    (int)dd->n_krcv_queues,
13323 		    dd->num_vnic_contexts,
13324 		    dd->num_user_contexts);
13325 
13326 	/*
13327 	 * Receive array allocation:
13328 	 *   All RcvArray entries are divided into groups of 8. This
13329 	 *   is required by the hardware and will speed up writes to
13330 	 *   consecutive entries by using write-combining of the entire
13331 	 *   cacheline.
13332 	 *
13333 	 *   The number of groups are evenly divided among all contexts.
13334 	 *   any left over groups will be given to the first N user
13335 	 *   contexts.
13336 	 */
13337 	dd->rcv_entries.group_size = RCV_INCREMENT;
13338 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13339 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13340 	dd->rcv_entries.nctxt_extra = ngroups -
13341 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13342 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13343 		    dd->rcv_entries.ngroups,
13344 		    dd->rcv_entries.nctxt_extra);
13345 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13346 	    MAX_EAGER_ENTRIES * 2) {
13347 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13348 			dd->rcv_entries.group_size;
13349 		dd_dev_info(dd,
13350 			    "RcvArray group count too high, change to %u\n",
13351 			    dd->rcv_entries.ngroups);
13352 		dd->rcv_entries.nctxt_extra = 0;
13353 	}
13354 	/*
13355 	 * PIO send contexts
13356 	 */
13357 	ret = init_sc_pools_and_sizes(dd);
13358 	if (ret >= 0) {	/* success */
13359 		dd->num_send_contexts = ret;
13360 		dd_dev_info(
13361 			dd,
13362 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13363 			send_contexts,
13364 			dd->num_send_contexts,
13365 			dd->sc_sizes[SC_KERNEL].count,
13366 			dd->sc_sizes[SC_ACK].count,
13367 			dd->sc_sizes[SC_USER].count,
13368 			dd->sc_sizes[SC_VL15].count);
13369 		ret = 0;	/* success */
13370 	}
13371 
13372 	return ret;
13373 }
13374 
13375 /*
13376  * Set the device/port partition key table. The MAD code
13377  * will ensure that, at least, the partial management
13378  * partition key is present in the table.
13379  */
13380 static void set_partition_keys(struct hfi1_pportdata *ppd)
13381 {
13382 	struct hfi1_devdata *dd = ppd->dd;
13383 	u64 reg = 0;
13384 	int i;
13385 
13386 	dd_dev_info(dd, "Setting partition keys\n");
13387 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13388 		reg |= (ppd->pkeys[i] &
13389 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13390 			((i % 4) *
13391 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13392 		/* Each register holds 4 PKey values. */
13393 		if ((i % 4) == 3) {
13394 			write_csr(dd, RCV_PARTITION_KEY +
13395 				  ((i - 3) * 2), reg);
13396 			reg = 0;
13397 		}
13398 	}
13399 
13400 	/* Always enable HW pkeys check when pkeys table is set */
13401 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13402 }
13403 
13404 /*
13405  * These CSRs and memories are uninitialized on reset and must be
13406  * written before reading to set the ECC/parity bits.
13407  *
13408  * NOTE: All user context CSRs that are not mmaped write-only
13409  * (e.g. the TID flows) must be initialized even if the driver never
13410  * reads them.
13411  */
13412 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13413 {
13414 	int i, j;
13415 
13416 	/* CceIntMap */
13417 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13418 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13419 
13420 	/* SendCtxtCreditReturnAddr */
13421 	for (i = 0; i < chip_send_contexts(dd); i++)
13422 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13423 
13424 	/* PIO Send buffers */
13425 	/* SDMA Send buffers */
13426 	/*
13427 	 * These are not normally read, and (presently) have no method
13428 	 * to be read, so are not pre-initialized
13429 	 */
13430 
13431 	/* RcvHdrAddr */
13432 	/* RcvHdrTailAddr */
13433 	/* RcvTidFlowTable */
13434 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13435 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13436 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13437 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13438 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13439 	}
13440 
13441 	/* RcvArray */
13442 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13443 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13444 
13445 	/* RcvQPMapTable */
13446 	for (i = 0; i < 32; i++)
13447 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13448 }
13449 
13450 /*
13451  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13452  */
13453 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13454 			     u64 ctrl_bits)
13455 {
13456 	unsigned long timeout;
13457 	u64 reg;
13458 
13459 	/* is the condition present? */
13460 	reg = read_csr(dd, CCE_STATUS);
13461 	if ((reg & status_bits) == 0)
13462 		return;
13463 
13464 	/* clear the condition */
13465 	write_csr(dd, CCE_CTRL, ctrl_bits);
13466 
13467 	/* wait for the condition to clear */
13468 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13469 	while (1) {
13470 		reg = read_csr(dd, CCE_STATUS);
13471 		if ((reg & status_bits) == 0)
13472 			return;
13473 		if (time_after(jiffies, timeout)) {
13474 			dd_dev_err(dd,
13475 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13476 				   status_bits, reg & status_bits);
13477 			return;
13478 		}
13479 		udelay(1);
13480 	}
13481 }
13482 
13483 /* set CCE CSRs to chip reset defaults */
13484 static void reset_cce_csrs(struct hfi1_devdata *dd)
13485 {
13486 	int i;
13487 
13488 	/* CCE_REVISION read-only */
13489 	/* CCE_REVISION2 read-only */
13490 	/* CCE_CTRL - bits clear automatically */
13491 	/* CCE_STATUS read-only, use CceCtrl to clear */
13492 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13493 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13494 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13495 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13496 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13497 	/* CCE_ERR_STATUS read-only */
13498 	write_csr(dd, CCE_ERR_MASK, 0);
13499 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13500 	/* CCE_ERR_FORCE leave alone */
13501 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13502 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13503 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13504 	/* CCE_PCIE_CTRL leave alone */
13505 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13506 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13507 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13508 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13509 	}
13510 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13511 		/* CCE_MSIX_PBA read-only */
13512 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13513 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13514 	}
13515 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13516 		write_csr(dd, CCE_INT_MAP, 0);
13517 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13518 		/* CCE_INT_STATUS read-only */
13519 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13520 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13521 		/* CCE_INT_FORCE leave alone */
13522 		/* CCE_INT_BLOCKED read-only */
13523 	}
13524 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13525 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13526 }
13527 
13528 /* set MISC CSRs to chip reset defaults */
13529 static void reset_misc_csrs(struct hfi1_devdata *dd)
13530 {
13531 	int i;
13532 
13533 	for (i = 0; i < 32; i++) {
13534 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13535 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13536 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13537 	}
13538 	/*
13539 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13540 	 * only be written 128-byte chunks
13541 	 */
13542 	/* init RSA engine to clear lingering errors */
13543 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13544 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13545 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13546 	/* MISC_STS_8051_DIGEST read-only */
13547 	/* MISC_STS_SBM_DIGEST read-only */
13548 	/* MISC_STS_PCIE_DIGEST read-only */
13549 	/* MISC_STS_FAB_DIGEST read-only */
13550 	/* MISC_ERR_STATUS read-only */
13551 	write_csr(dd, MISC_ERR_MASK, 0);
13552 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13553 	/* MISC_ERR_FORCE leave alone */
13554 }
13555 
13556 /* set TXE CSRs to chip reset defaults */
13557 static void reset_txe_csrs(struct hfi1_devdata *dd)
13558 {
13559 	int i;
13560 
13561 	/*
13562 	 * TXE Kernel CSRs
13563 	 */
13564 	write_csr(dd, SEND_CTRL, 0);
13565 	__cm_reset(dd, 0);	/* reset CM internal state */
13566 	/* SEND_CONTEXTS read-only */
13567 	/* SEND_DMA_ENGINES read-only */
13568 	/* SEND_PIO_MEM_SIZE read-only */
13569 	/* SEND_DMA_MEM_SIZE read-only */
13570 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13571 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13572 	/* SEND_PIO_ERR_STATUS read-only */
13573 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13574 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13575 	/* SEND_PIO_ERR_FORCE leave alone */
13576 	/* SEND_DMA_ERR_STATUS read-only */
13577 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13578 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13579 	/* SEND_DMA_ERR_FORCE leave alone */
13580 	/* SEND_EGRESS_ERR_STATUS read-only */
13581 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13582 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13583 	/* SEND_EGRESS_ERR_FORCE leave alone */
13584 	write_csr(dd, SEND_BTH_QP, 0);
13585 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13586 	write_csr(dd, SEND_SC2VLT0, 0);
13587 	write_csr(dd, SEND_SC2VLT1, 0);
13588 	write_csr(dd, SEND_SC2VLT2, 0);
13589 	write_csr(dd, SEND_SC2VLT3, 0);
13590 	write_csr(dd, SEND_LEN_CHECK0, 0);
13591 	write_csr(dd, SEND_LEN_CHECK1, 0);
13592 	/* SEND_ERR_STATUS read-only */
13593 	write_csr(dd, SEND_ERR_MASK, 0);
13594 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13595 	/* SEND_ERR_FORCE read-only */
13596 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13597 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13598 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13599 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13600 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13601 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13602 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13603 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13604 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13605 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13606 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13607 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13608 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13609 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13610 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13611 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13612 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13613 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13614 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13615 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13616 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13617 	/* SEND_CM_CREDIT_USED_VL read-only */
13618 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13619 	/* SEND_EGRESS_CTXT_STATUS read-only */
13620 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13621 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13622 	/* SEND_EGRESS_ERR_INFO read-only */
13623 	/* SEND_EGRESS_ERR_SOURCE read-only */
13624 
13625 	/*
13626 	 * TXE Per-Context CSRs
13627 	 */
13628 	for (i = 0; i < chip_send_contexts(dd); i++) {
13629 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13630 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13631 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13632 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13633 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13634 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13635 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13636 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13637 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13638 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13639 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13640 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13641 	}
13642 
13643 	/*
13644 	 * TXE Per-SDMA CSRs
13645 	 */
13646 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13647 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13648 		/* SEND_DMA_STATUS read-only */
13649 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13650 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13651 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13652 		/* SEND_DMA_HEAD read-only */
13653 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13654 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13655 		/* SEND_DMA_IDLE_CNT read-only */
13656 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13657 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13658 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13659 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13660 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13661 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13662 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13663 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13664 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13665 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13666 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13667 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13668 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13669 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13670 	}
13671 }
13672 
13673 /*
13674  * Expect on entry:
13675  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13676  */
13677 static void init_rbufs(struct hfi1_devdata *dd)
13678 {
13679 	u64 reg;
13680 	int count;
13681 
13682 	/*
13683 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13684 	 * clear.
13685 	 */
13686 	count = 0;
13687 	while (1) {
13688 		reg = read_csr(dd, RCV_STATUS);
13689 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13690 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13691 			break;
13692 		/*
13693 		 * Give up after 1ms - maximum wait time.
13694 		 *
13695 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13696 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13697 		 *	136 KB / (66% * 250MB/s) = 844us
13698 		 */
13699 		if (count++ > 500) {
13700 			dd_dev_err(dd,
13701 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13702 				   __func__, reg);
13703 			break;
13704 		}
13705 		udelay(2); /* do not busy-wait the CSR */
13706 	}
13707 
13708 	/* start the init - expect RcvCtrl to be 0 */
13709 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13710 
13711 	/*
13712 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13713 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13714 	 * The delay in the first run through the loop below is sufficient and
13715 	 * required before the first read of RcvStatus.RxRbufInintDone.
13716 	 */
13717 	read_csr(dd, RCV_CTRL);
13718 
13719 	/* wait for the init to finish */
13720 	count = 0;
13721 	while (1) {
13722 		/* delay is required first time through - see above */
13723 		udelay(2); /* do not busy-wait the CSR */
13724 		reg = read_csr(dd, RCV_STATUS);
13725 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13726 			break;
13727 
13728 		/* give up after 100us - slowest possible at 33MHz is 73us */
13729 		if (count++ > 50) {
13730 			dd_dev_err(dd,
13731 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13732 				   __func__);
13733 			break;
13734 		}
13735 	}
13736 }
13737 
13738 /* set RXE CSRs to chip reset defaults */
13739 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13740 {
13741 	int i, j;
13742 
13743 	/*
13744 	 * RXE Kernel CSRs
13745 	 */
13746 	write_csr(dd, RCV_CTRL, 0);
13747 	init_rbufs(dd);
13748 	/* RCV_STATUS read-only */
13749 	/* RCV_CONTEXTS read-only */
13750 	/* RCV_ARRAY_CNT read-only */
13751 	/* RCV_BUF_SIZE read-only */
13752 	write_csr(dd, RCV_BTH_QP, 0);
13753 	write_csr(dd, RCV_MULTICAST, 0);
13754 	write_csr(dd, RCV_BYPASS, 0);
13755 	write_csr(dd, RCV_VL15, 0);
13756 	/* this is a clear-down */
13757 	write_csr(dd, RCV_ERR_INFO,
13758 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13759 	/* RCV_ERR_STATUS read-only */
13760 	write_csr(dd, RCV_ERR_MASK, 0);
13761 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13762 	/* RCV_ERR_FORCE leave alone */
13763 	for (i = 0; i < 32; i++)
13764 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13765 	for (i = 0; i < 4; i++)
13766 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13767 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13768 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13769 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13770 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13771 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13772 		clear_rsm_rule(dd, i);
13773 	for (i = 0; i < 32; i++)
13774 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13775 
13776 	/*
13777 	 * RXE Kernel and User Per-Context CSRs
13778 	 */
13779 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13780 		/* kernel */
13781 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13782 		/* RCV_CTXT_STATUS read-only */
13783 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13784 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13785 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13786 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13787 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13788 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13789 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13790 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13791 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13792 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13793 
13794 		/* user */
13795 		/* RCV_HDR_TAIL read-only */
13796 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13797 		/* RCV_EGR_INDEX_TAIL read-only */
13798 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13799 		/* RCV_EGR_OFFSET_TAIL read-only */
13800 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13801 			write_uctxt_csr(dd, i,
13802 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13803 		}
13804 	}
13805 }
13806 
13807 /*
13808  * Set sc2vl tables.
13809  *
13810  * They power on to zeros, so to avoid send context errors
13811  * they need to be set:
13812  *
13813  * SC 0-7 -> VL 0-7 (respectively)
13814  * SC 15  -> VL 15
13815  * otherwise
13816  *        -> VL 0
13817  */
13818 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13819 {
13820 	int i;
13821 	/* init per architecture spec, constrained by hardware capability */
13822 
13823 	/* HFI maps sent packets */
13824 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13825 		0,
13826 		0, 0, 1, 1,
13827 		2, 2, 3, 3,
13828 		4, 4, 5, 5,
13829 		6, 6, 7, 7));
13830 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13831 		1,
13832 		8, 0, 9, 0,
13833 		10, 0, 11, 0,
13834 		12, 0, 13, 0,
13835 		14, 0, 15, 15));
13836 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13837 		2,
13838 		16, 0, 17, 0,
13839 		18, 0, 19, 0,
13840 		20, 0, 21, 0,
13841 		22, 0, 23, 0));
13842 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13843 		3,
13844 		24, 0, 25, 0,
13845 		26, 0, 27, 0,
13846 		28, 0, 29, 0,
13847 		30, 0, 31, 0));
13848 
13849 	/* DC maps received packets */
13850 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13851 		15_0,
13852 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13853 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13854 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13855 		31_16,
13856 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13857 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13858 
13859 	/* initialize the cached sc2vl values consistently with h/w */
13860 	for (i = 0; i < 32; i++) {
13861 		if (i < 8 || i == 15)
13862 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13863 		else
13864 			*((u8 *)(dd->sc2vl) + i) = 0;
13865 	}
13866 }
13867 
13868 /*
13869  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13870  * depend on the chip going through a power-on reset - a driver may be loaded
13871  * and unloaded many times.
13872  *
13873  * Do not write any CSR values to the chip in this routine - there may be
13874  * a reset following the (possible) FLR in this routine.
13875  *
13876  */
13877 static int init_chip(struct hfi1_devdata *dd)
13878 {
13879 	int i;
13880 	int ret = 0;
13881 
13882 	/*
13883 	 * Put the HFI CSRs in a known state.
13884 	 * Combine this with a DC reset.
13885 	 *
13886 	 * Stop the device from doing anything while we do a
13887 	 * reset.  We know there are no other active users of
13888 	 * the device since we are now in charge.  Turn off
13889 	 * off all outbound and inbound traffic and make sure
13890 	 * the device does not generate any interrupts.
13891 	 */
13892 
13893 	/* disable send contexts and SDMA engines */
13894 	write_csr(dd, SEND_CTRL, 0);
13895 	for (i = 0; i < chip_send_contexts(dd); i++)
13896 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13897 	for (i = 0; i < chip_sdma_engines(dd); i++)
13898 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13899 	/* disable port (turn off RXE inbound traffic) and contexts */
13900 	write_csr(dd, RCV_CTRL, 0);
13901 	for (i = 0; i < chip_rcv_contexts(dd); i++)
13902 		write_csr(dd, RCV_CTXT_CTRL, 0);
13903 	/* mask all interrupt sources */
13904 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13905 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13906 
13907 	/*
13908 	 * DC Reset: do a full DC reset before the register clear.
13909 	 * A recommended length of time to hold is one CSR read,
13910 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13911 	 * across the clear.
13912 	 */
13913 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13914 	(void)read_csr(dd, CCE_DC_CTRL);
13915 
13916 	if (use_flr) {
13917 		/*
13918 		 * A FLR will reset the SPC core and part of the PCIe.
13919 		 * The parts that need to be restored have already been
13920 		 * saved.
13921 		 */
13922 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13923 
13924 		/* do the FLR, the DC reset will remain */
13925 		pcie_flr(dd->pcidev);
13926 
13927 		/* restore command and BARs */
13928 		ret = restore_pci_variables(dd);
13929 		if (ret) {
13930 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13931 				   __func__);
13932 			return ret;
13933 		}
13934 
13935 		if (is_ax(dd)) {
13936 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13937 			pcie_flr(dd->pcidev);
13938 			ret = restore_pci_variables(dd);
13939 			if (ret) {
13940 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13941 					   __func__);
13942 				return ret;
13943 			}
13944 		}
13945 	} else {
13946 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13947 		reset_cce_csrs(dd);
13948 		reset_txe_csrs(dd);
13949 		reset_rxe_csrs(dd);
13950 		reset_misc_csrs(dd);
13951 	}
13952 	/* clear the DC reset */
13953 	write_csr(dd, CCE_DC_CTRL, 0);
13954 
13955 	/* Set the LED off */
13956 	setextled(dd, 0);
13957 
13958 	/*
13959 	 * Clear the QSFP reset.
13960 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13961 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13962 	 * anything plugged constantly in reset, if it pays attention
13963 	 * to RESET_N.
13964 	 * Prime examples of this are optical cables. Set all pins high.
13965 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13966 	 * MODPRS_N are input only and their value is ignored.
13967 	 */
13968 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13969 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13970 	init_chip_resources(dd);
13971 	return ret;
13972 }
13973 
13974 static void init_early_variables(struct hfi1_devdata *dd)
13975 {
13976 	int i;
13977 
13978 	/* assign link credit variables */
13979 	dd->vau = CM_VAU;
13980 	dd->link_credits = CM_GLOBAL_CREDITS;
13981 	if (is_ax(dd))
13982 		dd->link_credits--;
13983 	dd->vcu = cu_to_vcu(hfi1_cu);
13984 	/* enough room for 8 MAD packets plus header - 17K */
13985 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13986 	if (dd->vl15_init > dd->link_credits)
13987 		dd->vl15_init = dd->link_credits;
13988 
13989 	write_uninitialized_csrs_and_memories(dd);
13990 
13991 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13992 		for (i = 0; i < dd->num_pports; i++) {
13993 			struct hfi1_pportdata *ppd = &dd->pport[i];
13994 
13995 			set_partition_keys(ppd);
13996 		}
13997 	init_sc2vl_tables(dd);
13998 }
13999 
14000 static void init_kdeth_qp(struct hfi1_devdata *dd)
14001 {
14002 	/* user changed the KDETH_QP */
14003 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14004 		/* out of range or illegal value */
14005 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14006 		kdeth_qp = 0;
14007 	}
14008 	if (kdeth_qp == 0)	/* not set, or failed range check */
14009 		kdeth_qp = DEFAULT_KDETH_QP;
14010 
14011 	write_csr(dd, SEND_BTH_QP,
14012 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14013 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14014 
14015 	write_csr(dd, RCV_BTH_QP,
14016 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14017 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14018 }
14019 
14020 /**
14021  * init_qpmap_table
14022  * @dd - device data
14023  * @first_ctxt - first context
14024  * @last_ctxt - first context
14025  *
14026  * This return sets the qpn mapping table that
14027  * is indexed by qpn[8:1].
14028  *
14029  * The routine will round robin the 256 settings
14030  * from first_ctxt to last_ctxt.
14031  *
14032  * The first/last looks ahead to having specialized
14033  * receive contexts for mgmt and bypass.  Normal
14034  * verbs traffic will assumed to be on a range
14035  * of receive contexts.
14036  */
14037 static void init_qpmap_table(struct hfi1_devdata *dd,
14038 			     u32 first_ctxt,
14039 			     u32 last_ctxt)
14040 {
14041 	u64 reg = 0;
14042 	u64 regno = RCV_QP_MAP_TABLE;
14043 	int i;
14044 	u64 ctxt = first_ctxt;
14045 
14046 	for (i = 0; i < 256; i++) {
14047 		reg |= ctxt << (8 * (i % 8));
14048 		ctxt++;
14049 		if (ctxt > last_ctxt)
14050 			ctxt = first_ctxt;
14051 		if (i % 8 == 7) {
14052 			write_csr(dd, regno, reg);
14053 			reg = 0;
14054 			regno += 8;
14055 		}
14056 	}
14057 
14058 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14059 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14060 }
14061 
14062 struct rsm_map_table {
14063 	u64 map[NUM_MAP_REGS];
14064 	unsigned int used;
14065 };
14066 
14067 struct rsm_rule_data {
14068 	u8 offset;
14069 	u8 pkt_type;
14070 	u32 field1_off;
14071 	u32 field2_off;
14072 	u32 index1_off;
14073 	u32 index1_width;
14074 	u32 index2_off;
14075 	u32 index2_width;
14076 	u32 mask1;
14077 	u32 value1;
14078 	u32 mask2;
14079 	u32 value2;
14080 };
14081 
14082 /*
14083  * Return an initialized RMT map table for users to fill in.  OK if it
14084  * returns NULL, indicating no table.
14085  */
14086 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14087 {
14088 	struct rsm_map_table *rmt;
14089 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14090 
14091 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14092 	if (rmt) {
14093 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14094 		rmt->used = 0;
14095 	}
14096 
14097 	return rmt;
14098 }
14099 
14100 /*
14101  * Write the final RMT map table to the chip and free the table.  OK if
14102  * table is NULL.
14103  */
14104 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14105 				   struct rsm_map_table *rmt)
14106 {
14107 	int i;
14108 
14109 	if (rmt) {
14110 		/* write table to chip */
14111 		for (i = 0; i < NUM_MAP_REGS; i++)
14112 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14113 
14114 		/* enable RSM */
14115 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14116 	}
14117 }
14118 
14119 /*
14120  * Add a receive side mapping rule.
14121  */
14122 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14123 			 struct rsm_rule_data *rrd)
14124 {
14125 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14126 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14127 		  1ull << rule_index | /* enable bit */
14128 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14129 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14130 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14131 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14132 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14133 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14134 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14135 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14136 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14137 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14138 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14139 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14140 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14141 }
14142 
14143 /*
14144  * Clear a receive side mapping rule.
14145  */
14146 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14147 {
14148 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14149 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14150 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14151 }
14152 
14153 /* return the number of RSM map table entries that will be used for QOS */
14154 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14155 			   unsigned int *np)
14156 {
14157 	int i;
14158 	unsigned int m, n;
14159 	u8 max_by_vl = 0;
14160 
14161 	/* is QOS active at all? */
14162 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14163 	    num_vls == 1 ||
14164 	    krcvqsset <= 1)
14165 		goto no_qos;
14166 
14167 	/* determine bits for qpn */
14168 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14169 		if (krcvqs[i] > max_by_vl)
14170 			max_by_vl = krcvqs[i];
14171 	if (max_by_vl > 32)
14172 		goto no_qos;
14173 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14174 
14175 	/* determine bits for vl */
14176 	n = ilog2(__roundup_pow_of_two(num_vls));
14177 
14178 	/* reject if too much is used */
14179 	if ((m + n) > 7)
14180 		goto no_qos;
14181 
14182 	if (mp)
14183 		*mp = m;
14184 	if (np)
14185 		*np = n;
14186 
14187 	return 1 << (m + n);
14188 
14189 no_qos:
14190 	if (mp)
14191 		*mp = 0;
14192 	if (np)
14193 		*np = 0;
14194 	return 0;
14195 }
14196 
14197 /**
14198  * init_qos - init RX qos
14199  * @dd - device data
14200  * @rmt - RSM map table
14201  *
14202  * This routine initializes Rule 0 and the RSM map table to implement
14203  * quality of service (qos).
14204  *
14205  * If all of the limit tests succeed, qos is applied based on the array
14206  * interpretation of krcvqs where entry 0 is VL0.
14207  *
14208  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14209  * feed both the RSM map table and the single rule.
14210  */
14211 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14212 {
14213 	struct rsm_rule_data rrd;
14214 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14215 	unsigned int rmt_entries;
14216 	u64 reg;
14217 
14218 	if (!rmt)
14219 		goto bail;
14220 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14221 	if (rmt_entries == 0)
14222 		goto bail;
14223 	qpns_per_vl = 1 << m;
14224 
14225 	/* enough room in the map table? */
14226 	rmt_entries = 1 << (m + n);
14227 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14228 		goto bail;
14229 
14230 	/* add qos entries to the the RSM map table */
14231 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14232 		unsigned tctxt;
14233 
14234 		for (qpn = 0, tctxt = ctxt;
14235 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14236 			unsigned idx, regoff, regidx;
14237 
14238 			/* generate the index the hardware will produce */
14239 			idx = rmt->used + ((qpn << n) ^ i);
14240 			regoff = (idx % 8) * 8;
14241 			regidx = idx / 8;
14242 			/* replace default with context number */
14243 			reg = rmt->map[regidx];
14244 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14245 				<< regoff);
14246 			reg |= (u64)(tctxt++) << regoff;
14247 			rmt->map[regidx] = reg;
14248 			if (tctxt == ctxt + krcvqs[i])
14249 				tctxt = ctxt;
14250 		}
14251 		ctxt += krcvqs[i];
14252 	}
14253 
14254 	rrd.offset = rmt->used;
14255 	rrd.pkt_type = 2;
14256 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14257 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14258 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14259 	rrd.index1_width = n;
14260 	rrd.index2_off = QPN_SELECT_OFFSET;
14261 	rrd.index2_width = m + n;
14262 	rrd.mask1 = LRH_BTH_MASK;
14263 	rrd.value1 = LRH_BTH_VALUE;
14264 	rrd.mask2 = LRH_SC_MASK;
14265 	rrd.value2 = LRH_SC_VALUE;
14266 
14267 	/* add rule 0 */
14268 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14269 
14270 	/* mark RSM map entries as used */
14271 	rmt->used += rmt_entries;
14272 	/* map everything else to the mcast/err/vl15 context */
14273 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14274 	dd->qos_shift = n + 1;
14275 	return;
14276 bail:
14277 	dd->qos_shift = 1;
14278 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14279 }
14280 
14281 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14282 				    struct rsm_map_table *rmt)
14283 {
14284 	struct rsm_rule_data rrd;
14285 	u64 reg;
14286 	int i, idx, regoff, regidx;
14287 	u8 offset;
14288 
14289 	/* there needs to be enough room in the map table */
14290 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14291 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14292 		return;
14293 	}
14294 
14295 	/*
14296 	 * RSM will extract the destination context as an index into the
14297 	 * map table.  The destination contexts are a sequential block
14298 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14299 	 * Map entries are accessed as offset + extracted value.  Adjust
14300 	 * the added offset so this sequence can be placed anywhere in
14301 	 * the table - as long as the entries themselves do not wrap.
14302 	 * There are only enough bits in offset for the table size, so
14303 	 * start with that to allow for a "negative" offset.
14304 	 */
14305 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14306 						(int)dd->first_dyn_alloc_ctxt);
14307 
14308 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14309 				i < dd->num_rcv_contexts; i++, idx++) {
14310 		/* replace with identity mapping */
14311 		regoff = (idx % 8) * 8;
14312 		regidx = idx / 8;
14313 		reg = rmt->map[regidx];
14314 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14315 		reg |= (u64)i << regoff;
14316 		rmt->map[regidx] = reg;
14317 	}
14318 
14319 	/*
14320 	 * For RSM intercept of Expected FECN packets:
14321 	 * o packet type 0 - expected
14322 	 * o match on F (bit 95), using select/match 1, and
14323 	 * o match on SH (bit 133), using select/match 2.
14324 	 *
14325 	 * Use index 1 to extract the 8-bit receive context from DestQP
14326 	 * (start at bit 64).  Use that as the RSM map table index.
14327 	 */
14328 	rrd.offset = offset;
14329 	rrd.pkt_type = 0;
14330 	rrd.field1_off = 95;
14331 	rrd.field2_off = 133;
14332 	rrd.index1_off = 64;
14333 	rrd.index1_width = 8;
14334 	rrd.index2_off = 0;
14335 	rrd.index2_width = 0;
14336 	rrd.mask1 = 1;
14337 	rrd.value1 = 1;
14338 	rrd.mask2 = 1;
14339 	rrd.value2 = 1;
14340 
14341 	/* add rule 1 */
14342 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14343 
14344 	rmt->used += dd->num_user_contexts;
14345 }
14346 
14347 /* Initialize RSM for VNIC */
14348 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14349 {
14350 	u8 i, j;
14351 	u8 ctx_id = 0;
14352 	u64 reg;
14353 	u32 regoff;
14354 	struct rsm_rule_data rrd;
14355 
14356 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14357 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14358 			   dd->vnic.rmt_start);
14359 		return;
14360 	}
14361 
14362 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14363 		dd->vnic.rmt_start,
14364 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14365 
14366 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14367 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14368 	reg = read_csr(dd, regoff);
14369 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14370 		/* Update map register with vnic context */
14371 		j = (dd->vnic.rmt_start + i) % 8;
14372 		reg &= ~(0xffllu << (j * 8));
14373 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14374 		/* Wrap up vnic ctx index */
14375 		ctx_id %= dd->vnic.num_ctxt;
14376 		/* Write back map register */
14377 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14378 			dev_dbg(&(dd)->pcidev->dev,
14379 				"Vnic rsm map reg[%d] =0x%llx\n",
14380 				regoff - RCV_RSM_MAP_TABLE, reg);
14381 
14382 			write_csr(dd, regoff, reg);
14383 			regoff += 8;
14384 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14385 				reg = read_csr(dd, regoff);
14386 		}
14387 	}
14388 
14389 	/* Add rule for vnic */
14390 	rrd.offset = dd->vnic.rmt_start;
14391 	rrd.pkt_type = 4;
14392 	/* Match 16B packets */
14393 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14394 	rrd.mask1 = L2_TYPE_MASK;
14395 	rrd.value1 = L2_16B_VALUE;
14396 	/* Match ETH L4 packets */
14397 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14398 	rrd.mask2 = L4_16B_TYPE_MASK;
14399 	rrd.value2 = L4_16B_ETH_VALUE;
14400 	/* Calc context from veswid and entropy */
14401 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14402 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14403 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14404 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14405 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14406 
14407 	/* Enable RSM if not already enabled */
14408 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14409 }
14410 
14411 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14412 {
14413 	clear_rsm_rule(dd, RSM_INS_VNIC);
14414 
14415 	/* Disable RSM if used only by vnic */
14416 	if (dd->vnic.rmt_start == 0)
14417 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14418 }
14419 
14420 static void init_rxe(struct hfi1_devdata *dd)
14421 {
14422 	struct rsm_map_table *rmt;
14423 	u64 val;
14424 
14425 	/* enable all receive errors */
14426 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14427 
14428 	rmt = alloc_rsm_map_table(dd);
14429 	/* set up QOS, including the QPN map table */
14430 	init_qos(dd, rmt);
14431 	init_user_fecn_handling(dd, rmt);
14432 	complete_rsm_map_table(dd, rmt);
14433 	/* record number of used rsm map entries for vnic */
14434 	dd->vnic.rmt_start = rmt->used;
14435 	kfree(rmt);
14436 
14437 	/*
14438 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14439 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14440 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14441 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14442 	 * Max_PayLoad_Size set to its minimum of 128.
14443 	 *
14444 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14445 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14446 	 * tune_pcie_caps() which is called after this routine.
14447 	 */
14448 
14449 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14450 	val = read_csr(dd, RCV_BYPASS);
14451 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14452 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14453 		RCV_BYPASS_HDR_SIZE_SHIFT);
14454 	write_csr(dd, RCV_BYPASS, val);
14455 }
14456 
14457 static void init_other(struct hfi1_devdata *dd)
14458 {
14459 	/* enable all CCE errors */
14460 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14461 	/* enable *some* Misc errors */
14462 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14463 	/* enable all DC errors, except LCB */
14464 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14465 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14466 }
14467 
14468 /*
14469  * Fill out the given AU table using the given CU.  A CU is defined in terms
14470  * AUs.  The table is a an encoding: given the index, how many AUs does that
14471  * represent?
14472  *
14473  * NOTE: Assumes that the register layout is the same for the
14474  * local and remote tables.
14475  */
14476 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14477 			       u32 csr0to3, u32 csr4to7)
14478 {
14479 	write_csr(dd, csr0to3,
14480 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14481 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14482 		  2ull * cu <<
14483 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14484 		  4ull * cu <<
14485 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14486 	write_csr(dd, csr4to7,
14487 		  8ull * cu <<
14488 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14489 		  16ull * cu <<
14490 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14491 		  32ull * cu <<
14492 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14493 		  64ull * cu <<
14494 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14495 }
14496 
14497 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14498 {
14499 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14500 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14501 }
14502 
14503 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14504 {
14505 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14506 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14507 }
14508 
14509 static void init_txe(struct hfi1_devdata *dd)
14510 {
14511 	int i;
14512 
14513 	/* enable all PIO, SDMA, general, and Egress errors */
14514 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14515 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14516 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14517 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14518 
14519 	/* enable all per-context and per-SDMA engine errors */
14520 	for (i = 0; i < chip_send_contexts(dd); i++)
14521 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14522 	for (i = 0; i < chip_sdma_engines(dd); i++)
14523 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14524 
14525 	/* set the local CU to AU mapping */
14526 	assign_local_cm_au_table(dd, dd->vcu);
14527 
14528 	/*
14529 	 * Set reasonable default for Credit Return Timer
14530 	 * Don't set on Simulator - causes it to choke.
14531 	 */
14532 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14533 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14534 }
14535 
14536 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14537 		       u16 jkey)
14538 {
14539 	u8 hw_ctxt;
14540 	u64 reg;
14541 
14542 	if (!rcd || !rcd->sc)
14543 		return -EINVAL;
14544 
14545 	hw_ctxt = rcd->sc->hw_context;
14546 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14547 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14548 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14549 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14550 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14551 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14552 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14553 	/*
14554 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14555 	 */
14556 	if (!is_ax(dd)) {
14557 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14558 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14559 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14560 	}
14561 
14562 	/* Enable J_KEY check on receive context. */
14563 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14564 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14565 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14566 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14567 
14568 	return 0;
14569 }
14570 
14571 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14572 {
14573 	u8 hw_ctxt;
14574 	u64 reg;
14575 
14576 	if (!rcd || !rcd->sc)
14577 		return -EINVAL;
14578 
14579 	hw_ctxt = rcd->sc->hw_context;
14580 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14581 	/*
14582 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14583 	 * This check would not have been enabled for A0 h/w, see
14584 	 * set_ctxt_jkey().
14585 	 */
14586 	if (!is_ax(dd)) {
14587 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14588 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14589 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14590 	}
14591 	/* Turn off the J_KEY on the receive side */
14592 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14593 
14594 	return 0;
14595 }
14596 
14597 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14598 		       u16 pkey)
14599 {
14600 	u8 hw_ctxt;
14601 	u64 reg;
14602 
14603 	if (!rcd || !rcd->sc)
14604 		return -EINVAL;
14605 
14606 	hw_ctxt = rcd->sc->hw_context;
14607 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14608 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14609 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14610 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14611 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14612 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14613 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14614 
14615 	return 0;
14616 }
14617 
14618 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14619 {
14620 	u8 hw_ctxt;
14621 	u64 reg;
14622 
14623 	if (!ctxt || !ctxt->sc)
14624 		return -EINVAL;
14625 
14626 	hw_ctxt = ctxt->sc->hw_context;
14627 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14628 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14629 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14630 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14631 
14632 	return 0;
14633 }
14634 
14635 /*
14636  * Start doing the clean up the the chip. Our clean up happens in multiple
14637  * stages and this is just the first.
14638  */
14639 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14640 {
14641 	aspm_exit(dd);
14642 	free_cntrs(dd);
14643 	free_rcverr(dd);
14644 	finish_chip_resources(dd);
14645 }
14646 
14647 #define HFI_BASE_GUID(dev) \
14648 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14649 
14650 /*
14651  * Information can be shared between the two HFIs on the same ASIC
14652  * in the same OS.  This function finds the peer device and sets
14653  * up a shared structure.
14654  */
14655 static int init_asic_data(struct hfi1_devdata *dd)
14656 {
14657 	unsigned long flags;
14658 	struct hfi1_devdata *tmp, *peer = NULL;
14659 	struct hfi1_asic_data *asic_data;
14660 	int ret = 0;
14661 
14662 	/* pre-allocate the asic structure in case we are the first device */
14663 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14664 	if (!asic_data)
14665 		return -ENOMEM;
14666 
14667 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14668 	/* Find our peer device */
14669 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14670 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14671 		    dd->unit != tmp->unit) {
14672 			peer = tmp;
14673 			break;
14674 		}
14675 	}
14676 
14677 	if (peer) {
14678 		/* use already allocated structure */
14679 		dd->asic_data = peer->asic_data;
14680 		kfree(asic_data);
14681 	} else {
14682 		dd->asic_data = asic_data;
14683 		mutex_init(&dd->asic_data->asic_resource_mutex);
14684 	}
14685 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14686 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14687 
14688 	/* first one through - set up i2c devices */
14689 	if (!peer)
14690 		ret = set_up_i2c(dd, dd->asic_data);
14691 
14692 	return ret;
14693 }
14694 
14695 /*
14696  * Set dd->boardname.  Use a generic name if a name is not returned from
14697  * EFI variable space.
14698  *
14699  * Return 0 on success, -ENOMEM if space could not be allocated.
14700  */
14701 static int obtain_boardname(struct hfi1_devdata *dd)
14702 {
14703 	/* generic board description */
14704 	const char generic[] =
14705 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14706 	unsigned long size;
14707 	int ret;
14708 
14709 	ret = read_hfi1_efi_var(dd, "description", &size,
14710 				(void **)&dd->boardname);
14711 	if (ret) {
14712 		dd_dev_info(dd, "Board description not found\n");
14713 		/* use generic description */
14714 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14715 		if (!dd->boardname)
14716 			return -ENOMEM;
14717 	}
14718 	return 0;
14719 }
14720 
14721 /*
14722  * Check the interrupt registers to make sure that they are mapped correctly.
14723  * It is intended to help user identify any mismapping by VMM when the driver
14724  * is running in a VM. This function should only be called before interrupt
14725  * is set up properly.
14726  *
14727  * Return 0 on success, -EINVAL on failure.
14728  */
14729 static int check_int_registers(struct hfi1_devdata *dd)
14730 {
14731 	u64 reg;
14732 	u64 all_bits = ~(u64)0;
14733 	u64 mask;
14734 
14735 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14736 	mask = read_csr(dd, CCE_INT_MASK);
14737 	write_csr(dd, CCE_INT_MASK, 0ull);
14738 	reg = read_csr(dd, CCE_INT_MASK);
14739 	if (reg)
14740 		goto err_exit;
14741 
14742 	/* Clear all interrupt status bits */
14743 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14744 	reg = read_csr(dd, CCE_INT_STATUS);
14745 	if (reg)
14746 		goto err_exit;
14747 
14748 	/* Set all interrupt status bits */
14749 	write_csr(dd, CCE_INT_FORCE, all_bits);
14750 	reg = read_csr(dd, CCE_INT_STATUS);
14751 	if (reg != all_bits)
14752 		goto err_exit;
14753 
14754 	/* Restore the interrupt mask */
14755 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14756 	write_csr(dd, CCE_INT_MASK, mask);
14757 
14758 	return 0;
14759 err_exit:
14760 	write_csr(dd, CCE_INT_MASK, mask);
14761 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14762 	return -EINVAL;
14763 }
14764 
14765 /**
14766  * hfi1_init_dd() - Initialize most of the dd structure.
14767  * @dev: the pci_dev for hfi1_ib device
14768  * @ent: pci_device_id struct for this dev
14769  *
14770  * This is global, and is called directly at init to set up the
14771  * chip-specific function pointers for later use.
14772  */
14773 int hfi1_init_dd(struct hfi1_devdata *dd)
14774 {
14775 	struct pci_dev *pdev = dd->pcidev;
14776 	struct hfi1_pportdata *ppd;
14777 	u64 reg;
14778 	int i, ret;
14779 	static const char * const inames[] = { /* implementation names */
14780 		"RTL silicon",
14781 		"RTL VCS simulation",
14782 		"RTL FPGA emulation",
14783 		"Functional simulator"
14784 	};
14785 	struct pci_dev *parent = pdev->bus->self;
14786 	u32 sdma_engines = chip_sdma_engines(dd);
14787 
14788 	ppd = dd->pport;
14789 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14790 		int vl;
14791 		/* init common fields */
14792 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14793 		/* DC supports 4 link widths */
14794 		ppd->link_width_supported =
14795 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14796 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14797 		ppd->link_width_downgrade_supported =
14798 			ppd->link_width_supported;
14799 		/* start out enabling only 4X */
14800 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14801 		ppd->link_width_downgrade_enabled =
14802 					ppd->link_width_downgrade_supported;
14803 		/* link width active is 0 when link is down */
14804 		/* link width downgrade active is 0 when link is down */
14805 
14806 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14807 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14808 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14809 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14810 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14811 		}
14812 		ppd->vls_supported = num_vls;
14813 		ppd->vls_operational = ppd->vls_supported;
14814 		/* Set the default MTU. */
14815 		for (vl = 0; vl < num_vls; vl++)
14816 			dd->vld[vl].mtu = hfi1_max_mtu;
14817 		dd->vld[15].mtu = MAX_MAD_PACKET;
14818 		/*
14819 		 * Set the initial values to reasonable default, will be set
14820 		 * for real when link is up.
14821 		 */
14822 		ppd->overrun_threshold = 0x4;
14823 		ppd->phy_error_threshold = 0xf;
14824 		ppd->port_crc_mode_enabled = link_crc_mask;
14825 		/* initialize supported LTP CRC mode */
14826 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14827 		/* initialize enabled LTP CRC mode */
14828 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14829 		/* start in offline */
14830 		ppd->host_link_state = HLS_DN_OFFLINE;
14831 		init_vl_arb_caches(ppd);
14832 	}
14833 
14834 	/*
14835 	 * Do remaining PCIe setup and save PCIe values in dd.
14836 	 * Any error printing is already done by the init code.
14837 	 * On return, we have the chip mapped.
14838 	 */
14839 	ret = hfi1_pcie_ddinit(dd, pdev);
14840 	if (ret < 0)
14841 		goto bail_free;
14842 
14843 	/* Save PCI space registers to rewrite after device reset */
14844 	ret = save_pci_variables(dd);
14845 	if (ret < 0)
14846 		goto bail_cleanup;
14847 
14848 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14849 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14850 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14851 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14852 
14853 	/*
14854 	 * Check interrupt registers mapping if the driver has no access to
14855 	 * the upstream component. In this case, it is likely that the driver
14856 	 * is running in a VM.
14857 	 */
14858 	if (!parent) {
14859 		ret = check_int_registers(dd);
14860 		if (ret)
14861 			goto bail_cleanup;
14862 	}
14863 
14864 	/*
14865 	 * obtain the hardware ID - NOT related to unit, which is a
14866 	 * software enumeration
14867 	 */
14868 	reg = read_csr(dd, CCE_REVISION2);
14869 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14870 					& CCE_REVISION2_HFI_ID_MASK;
14871 	/* the variable size will remove unwanted bits */
14872 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14873 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14874 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14875 		    dd->icode < ARRAY_SIZE(inames) ?
14876 		    inames[dd->icode] : "unknown", (int)dd->irev);
14877 
14878 	/* speeds the hardware can support */
14879 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14880 	/* speeds allowed to run at */
14881 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14882 	/* give a reasonable active value, will be set on link up */
14883 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14884 
14885 	/* fix up link widths for emulation _p */
14886 	ppd = dd->pport;
14887 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14888 		ppd->link_width_supported =
14889 			ppd->link_width_enabled =
14890 			ppd->link_width_downgrade_supported =
14891 			ppd->link_width_downgrade_enabled =
14892 				OPA_LINK_WIDTH_1X;
14893 	}
14894 	/* insure num_vls isn't larger than number of sdma engines */
14895 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
14896 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14897 			   num_vls, sdma_engines);
14898 		num_vls = sdma_engines;
14899 		ppd->vls_supported = sdma_engines;
14900 		ppd->vls_operational = ppd->vls_supported;
14901 	}
14902 
14903 	/*
14904 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14905 	 * Limit the max if larger than the field holds.  If timeout is
14906 	 * non-zero, then the calculated field will be at least 1.
14907 	 *
14908 	 * Must be after icode is set up - the cclock rate depends
14909 	 * on knowing the hardware being used.
14910 	 */
14911 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14912 	if (dd->rcv_intr_timeout_csr >
14913 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14914 		dd->rcv_intr_timeout_csr =
14915 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14916 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14917 		dd->rcv_intr_timeout_csr = 1;
14918 
14919 	/* needs to be done before we look for the peer device */
14920 	read_guid(dd);
14921 
14922 	/* set up shared ASIC data with peer device */
14923 	ret = init_asic_data(dd);
14924 	if (ret)
14925 		goto bail_cleanup;
14926 
14927 	/* obtain chip sizes, reset chip CSRs */
14928 	ret = init_chip(dd);
14929 	if (ret)
14930 		goto bail_cleanup;
14931 
14932 	/* read in the PCIe link speed information */
14933 	ret = pcie_speeds(dd);
14934 	if (ret)
14935 		goto bail_cleanup;
14936 
14937 	/* call before get_platform_config(), after init_chip_resources() */
14938 	ret = eprom_init(dd);
14939 	if (ret)
14940 		goto bail_free_rcverr;
14941 
14942 	/* Needs to be called before hfi1_firmware_init */
14943 	get_platform_config(dd);
14944 
14945 	/* read in firmware */
14946 	ret = hfi1_firmware_init(dd);
14947 	if (ret)
14948 		goto bail_cleanup;
14949 
14950 	/*
14951 	 * In general, the PCIe Gen3 transition must occur after the
14952 	 * chip has been idled (so it won't initiate any PCIe transactions
14953 	 * e.g. an interrupt) and before the driver changes any registers
14954 	 * (the transition will reset the registers).
14955 	 *
14956 	 * In particular, place this call after:
14957 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14958 	 * - pcie_speeds()   - reads the current link speed
14959 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14960 	 *			    downloaded
14961 	 */
14962 	ret = do_pcie_gen3_transition(dd);
14963 	if (ret)
14964 		goto bail_cleanup;
14965 
14966 	/*
14967 	 * This should probably occur in hfi1_pcie_init(), but historically
14968 	 * occurs after the do_pcie_gen3_transition() code.
14969 	 */
14970 	tune_pcie_caps(dd);
14971 
14972 	/* start setting dd values and adjusting CSRs */
14973 	init_early_variables(dd);
14974 
14975 	parse_platform_config(dd);
14976 
14977 	ret = obtain_boardname(dd);
14978 	if (ret)
14979 		goto bail_cleanup;
14980 
14981 	snprintf(dd->boardversion, BOARD_VERS_MAX,
14982 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14983 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14984 		 (u32)dd->majrev,
14985 		 (u32)dd->minrev,
14986 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
14987 		    & CCE_REVISION_SW_MASK);
14988 
14989 	ret = set_up_context_variables(dd);
14990 	if (ret)
14991 		goto bail_cleanup;
14992 
14993 	/* set initial RXE CSRs */
14994 	init_rxe(dd);
14995 	/* set initial TXE CSRs */
14996 	init_txe(dd);
14997 	/* set initial non-RXE, non-TXE CSRs */
14998 	init_other(dd);
14999 	/* set up KDETH QP prefix in both RX and TX CSRs */
15000 	init_kdeth_qp(dd);
15001 
15002 	ret = hfi1_dev_affinity_init(dd);
15003 	if (ret)
15004 		goto bail_cleanup;
15005 
15006 	/* send contexts must be set up before receive contexts */
15007 	ret = init_send_contexts(dd);
15008 	if (ret)
15009 		goto bail_cleanup;
15010 
15011 	ret = hfi1_create_kctxts(dd);
15012 	if (ret)
15013 		goto bail_cleanup;
15014 
15015 	/*
15016 	 * Initialize aspm, to be done after gen3 transition and setting up
15017 	 * contexts and before enabling interrupts
15018 	 */
15019 	aspm_init(dd);
15020 
15021 	ret = init_pervl_scs(dd);
15022 	if (ret)
15023 		goto bail_cleanup;
15024 
15025 	/* sdma init */
15026 	for (i = 0; i < dd->num_pports; ++i) {
15027 		ret = sdma_init(dd, i);
15028 		if (ret)
15029 			goto bail_cleanup;
15030 	}
15031 
15032 	/* use contexts created by hfi1_create_kctxts */
15033 	ret = set_up_interrupts(dd);
15034 	if (ret)
15035 		goto bail_cleanup;
15036 
15037 	ret = hfi1_comp_vectors_set_up(dd);
15038 	if (ret)
15039 		goto bail_clear_intr;
15040 
15041 	/* set up LCB access - must be after set_up_interrupts() */
15042 	init_lcb_access(dd);
15043 
15044 	/*
15045 	 * Serial number is created from the base guid:
15046 	 * [27:24] = base guid [38:35]
15047 	 * [23: 0] = base guid [23: 0]
15048 	 */
15049 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15050 		 (dd->base_guid & 0xFFFFFF) |
15051 		     ((dd->base_guid >> 11) & 0xF000000));
15052 
15053 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15054 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15055 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15056 
15057 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15058 	if (ret)
15059 		goto bail_clear_intr;
15060 
15061 	thermal_init(dd);
15062 
15063 	ret = init_cntrs(dd);
15064 	if (ret)
15065 		goto bail_clear_intr;
15066 
15067 	ret = init_rcverr(dd);
15068 	if (ret)
15069 		goto bail_free_cntrs;
15070 
15071 	init_completion(&dd->user_comp);
15072 
15073 	/* The user refcount starts with one to inidicate an active device */
15074 	atomic_set(&dd->user_refcount, 1);
15075 
15076 	goto bail;
15077 
15078 bail_free_rcverr:
15079 	free_rcverr(dd);
15080 bail_free_cntrs:
15081 	free_cntrs(dd);
15082 bail_clear_intr:
15083 	hfi1_comp_vectors_clean_up(dd);
15084 	msix_clean_up_interrupts(dd);
15085 bail_cleanup:
15086 	hfi1_pcie_ddcleanup(dd);
15087 bail_free:
15088 	hfi1_free_devdata(dd);
15089 bail:
15090 	return ret;
15091 }
15092 
15093 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15094 			u32 dw_len)
15095 {
15096 	u32 delta_cycles;
15097 	u32 current_egress_rate = ppd->current_egress_rate;
15098 	/* rates here are in units of 10^6 bits/sec */
15099 
15100 	if (desired_egress_rate == -1)
15101 		return 0; /* shouldn't happen */
15102 
15103 	if (desired_egress_rate >= current_egress_rate)
15104 		return 0; /* we can't help go faster, only slower */
15105 
15106 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15107 			egress_cycles(dw_len * 4, current_egress_rate);
15108 
15109 	return (u16)delta_cycles;
15110 }
15111 
15112 /**
15113  * create_pbc - build a pbc for transmission
15114  * @flags: special case flags or-ed in built pbc
15115  * @srate: static rate
15116  * @vl: vl
15117  * @dwlen: dword length (header words + data words + pbc words)
15118  *
15119  * Create a PBC with the given flags, rate, VL, and length.
15120  *
15121  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15122  * for verbs, which does not use this PSM feature.  The lone other caller
15123  * is for the diagnostic interface which calls this if the user does not
15124  * supply their own PBC.
15125  */
15126 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15127 	       u32 dw_len)
15128 {
15129 	u64 pbc, delay = 0;
15130 
15131 	if (unlikely(srate_mbs))
15132 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15133 
15134 	pbc = flags
15135 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15136 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15137 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15138 		| (dw_len & PBC_LENGTH_DWS_MASK)
15139 			<< PBC_LENGTH_DWS_SHIFT;
15140 
15141 	return pbc;
15142 }
15143 
15144 #define SBUS_THERMAL    0x4f
15145 #define SBUS_THERM_MONITOR_MODE 0x1
15146 
15147 #define THERM_FAILURE(dev, ret, reason) \
15148 	dd_dev_err((dd),						\
15149 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15150 		   (reason), (ret))
15151 
15152 /*
15153  * Initialize the thermal sensor.
15154  *
15155  * After initialization, enable polling of thermal sensor through
15156  * SBus interface. In order for this to work, the SBus Master
15157  * firmware has to be loaded due to the fact that the HW polling
15158  * logic uses SBus interrupts, which are not supported with
15159  * default firmware. Otherwise, no data will be returned through
15160  * the ASIC_STS_THERM CSR.
15161  */
15162 static int thermal_init(struct hfi1_devdata *dd)
15163 {
15164 	int ret = 0;
15165 
15166 	if (dd->icode != ICODE_RTL_SILICON ||
15167 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15168 		return ret;
15169 
15170 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15171 	if (ret) {
15172 		THERM_FAILURE(dd, ret, "Acquire SBus");
15173 		return ret;
15174 	}
15175 
15176 	dd_dev_info(dd, "Initializing thermal sensor\n");
15177 	/* Disable polling of thermal readings */
15178 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15179 	msleep(100);
15180 	/* Thermal Sensor Initialization */
15181 	/*    Step 1: Reset the Thermal SBus Receiver */
15182 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15183 				RESET_SBUS_RECEIVER, 0);
15184 	if (ret) {
15185 		THERM_FAILURE(dd, ret, "Bus Reset");
15186 		goto done;
15187 	}
15188 	/*    Step 2: Set Reset bit in Thermal block */
15189 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15190 				WRITE_SBUS_RECEIVER, 0x1);
15191 	if (ret) {
15192 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15193 		goto done;
15194 	}
15195 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15196 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15197 				WRITE_SBUS_RECEIVER, 0x32);
15198 	if (ret) {
15199 		THERM_FAILURE(dd, ret, "Write Clock Div");
15200 		goto done;
15201 	}
15202 	/*    Step 4: Select temperature mode */
15203 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15204 				WRITE_SBUS_RECEIVER,
15205 				SBUS_THERM_MONITOR_MODE);
15206 	if (ret) {
15207 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15208 		goto done;
15209 	}
15210 	/*    Step 5: De-assert block reset and start conversion */
15211 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15212 				WRITE_SBUS_RECEIVER, 0x2);
15213 	if (ret) {
15214 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15215 		goto done;
15216 	}
15217 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15218 	msleep(22);
15219 
15220 	/* Enable polling of thermal readings */
15221 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15222 
15223 	/* Set initialized flag */
15224 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15225 	if (ret)
15226 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15227 
15228 done:
15229 	release_chip_resource(dd, CR_SBUS);
15230 	return ret;
15231 }
15232 
15233 static void handle_temp_err(struct hfi1_devdata *dd)
15234 {
15235 	struct hfi1_pportdata *ppd = &dd->pport[0];
15236 	/*
15237 	 * Thermal Critical Interrupt
15238 	 * Put the device into forced freeze mode, take link down to
15239 	 * offline, and put DC into reset.
15240 	 */
15241 	dd_dev_emerg(dd,
15242 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15243 	dd->flags |= HFI1_FORCED_FREEZE;
15244 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15245 	/*
15246 	 * Shut DC down as much and as quickly as possible.
15247 	 *
15248 	 * Step 1: Take the link down to OFFLINE. This will cause the
15249 	 *         8051 to put the Serdes in reset. However, we don't want to
15250 	 *         go through the entire link state machine since we want to
15251 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15252 	 *         but rather an attempt to save the chip.
15253 	 *         Code below is almost the same as quiet_serdes() but avoids
15254 	 *         all the extra work and the sleeps.
15255 	 */
15256 	ppd->driver_link_ready = 0;
15257 	ppd->link_enabled = 0;
15258 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15259 				PLS_OFFLINE);
15260 	/*
15261 	 * Step 2: Shutdown LCB and 8051
15262 	 *         After shutdown, do not restore DC_CFG_RESET value.
15263 	 */
15264 	dc_shutdown(dd);
15265 }
15266