xref: /linux/drivers/infiniband/hw/hfi1/affinity.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/interrupt.h>
51 
52 #include "hfi.h"
53 #include "affinity.h"
54 #include "sdma.h"
55 #include "trace.h"
56 
57 struct hfi1_affinity_node_list node_affinity = {
58 	.list = LIST_HEAD_INIT(node_affinity.list),
59 	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
60 };
61 
62 /* Name of IRQ types, indexed by enum irq_type */
63 static const char * const irq_type_names[] = {
64 	"SDMA",
65 	"RCVCTXT",
66 	"GENERAL",
67 	"OTHER",
68 };
69 
70 /* Per NUMA node count of HFI devices */
71 static unsigned int *hfi1_per_node_cntr;
72 
73 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
74 {
75 	cpumask_clear(&set->mask);
76 	cpumask_clear(&set->used);
77 	set->gen = 0;
78 }
79 
80 /* Increment generation of CPU set if needed */
81 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
82 {
83 	if (cpumask_equal(&set->mask, &set->used)) {
84 		/*
85 		 * We've used up all the CPUs, bump up the generation
86 		 * and reset the 'used' map
87 		 */
88 		set->gen++;
89 		cpumask_clear(&set->used);
90 	}
91 }
92 
93 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
94 {
95 	if (cpumask_empty(&set->used) && set->gen) {
96 		set->gen--;
97 		cpumask_copy(&set->used, &set->mask);
98 	}
99 }
100 
101 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
102 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
103 {
104 	int cpu;
105 
106 	if (!diff || !set)
107 		return -EINVAL;
108 
109 	_cpu_mask_set_gen_inc(set);
110 
111 	/* Find out CPUs left in CPU mask */
112 	cpumask_andnot(diff, &set->mask, &set->used);
113 
114 	cpu = cpumask_first(diff);
115 	if (cpu >= nr_cpu_ids) /* empty */
116 		cpu = -EINVAL;
117 	else
118 		cpumask_set_cpu(cpu, &set->used);
119 
120 	return cpu;
121 }
122 
123 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
124 {
125 	if (!set)
126 		return;
127 
128 	cpumask_clear_cpu(cpu, &set->used);
129 	_cpu_mask_set_gen_dec(set);
130 }
131 
132 /* Initialize non-HT cpu cores mask */
133 void init_real_cpu_mask(void)
134 {
135 	int possible, curr_cpu, i, ht;
136 
137 	cpumask_clear(&node_affinity.real_cpu_mask);
138 
139 	/* Start with cpu online mask as the real cpu mask */
140 	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
141 
142 	/*
143 	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
144 	 */
145 	possible = cpumask_weight(&node_affinity.real_cpu_mask);
146 	ht = cpumask_weight(topology_sibling_cpumask(
147 				cpumask_first(&node_affinity.real_cpu_mask)));
148 	/*
149 	 * Step 1.  Skip over the first N HT siblings and use them as the
150 	 * "real" cores.  Assumes that HT cores are not enumerated in
151 	 * succession (except in the single core case).
152 	 */
153 	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
154 	for (i = 0; i < possible / ht; i++)
155 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
156 	/*
157 	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
158 	 * skip any gaps.
159 	 */
160 	for (; i < possible; i++) {
161 		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
162 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
163 	}
164 }
165 
166 int node_affinity_init(void)
167 {
168 	int node;
169 	struct pci_dev *dev = NULL;
170 	const struct pci_device_id *ids = hfi1_pci_tbl;
171 
172 	cpumask_clear(&node_affinity.proc.used);
173 	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
174 
175 	node_affinity.proc.gen = 0;
176 	node_affinity.num_core_siblings =
177 				cpumask_weight(topology_sibling_cpumask(
178 					cpumask_first(&node_affinity.proc.mask)
179 					));
180 	node_affinity.num_possible_nodes = num_possible_nodes();
181 	node_affinity.num_online_nodes = num_online_nodes();
182 	node_affinity.num_online_cpus = num_online_cpus();
183 
184 	/*
185 	 * The real cpu mask is part of the affinity struct but it has to be
186 	 * initialized early. It is needed to calculate the number of user
187 	 * contexts in set_up_context_variables().
188 	 */
189 	init_real_cpu_mask();
190 
191 	hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
192 				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
193 	if (!hfi1_per_node_cntr)
194 		return -ENOMEM;
195 
196 	while (ids->vendor) {
197 		dev = NULL;
198 		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
199 			node = pcibus_to_node(dev->bus);
200 			if (node < 0)
201 				goto out;
202 
203 			hfi1_per_node_cntr[node]++;
204 		}
205 		ids++;
206 	}
207 
208 	return 0;
209 
210 out:
211 	/*
212 	 * Invalid PCI NUMA node information found, note it, and populate
213 	 * our database 1:1.
214 	 */
215 	pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
216 	pr_err("HFI: System BIOS may need to be upgraded\n");
217 	for (node = 0; node < node_affinity.num_possible_nodes; node++)
218 		hfi1_per_node_cntr[node] = 1;
219 
220 	return 0;
221 }
222 
223 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
224 {
225 	free_percpu(entry->comp_vect_affinity);
226 	kfree(entry);
227 }
228 
229 void node_affinity_destroy_all(void)
230 {
231 	struct list_head *pos, *q;
232 	struct hfi1_affinity_node *entry;
233 
234 	mutex_lock(&node_affinity.lock);
235 	list_for_each_safe(pos, q, &node_affinity.list) {
236 		entry = list_entry(pos, struct hfi1_affinity_node,
237 				   list);
238 		list_del(pos);
239 		node_affinity_destroy(entry);
240 	}
241 	mutex_unlock(&node_affinity.lock);
242 	kfree(hfi1_per_node_cntr);
243 }
244 
245 static struct hfi1_affinity_node *node_affinity_allocate(int node)
246 {
247 	struct hfi1_affinity_node *entry;
248 
249 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
250 	if (!entry)
251 		return NULL;
252 	entry->node = node;
253 	entry->comp_vect_affinity = alloc_percpu(u16);
254 	INIT_LIST_HEAD(&entry->list);
255 
256 	return entry;
257 }
258 
259 /*
260  * It appends an entry to the list.
261  * It *must* be called with node_affinity.lock held.
262  */
263 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
264 {
265 	list_add_tail(&entry->list, &node_affinity.list);
266 }
267 
268 /* It must be called with node_affinity.lock held */
269 static struct hfi1_affinity_node *node_affinity_lookup(int node)
270 {
271 	struct list_head *pos;
272 	struct hfi1_affinity_node *entry;
273 
274 	list_for_each(pos, &node_affinity.list) {
275 		entry = list_entry(pos, struct hfi1_affinity_node, list);
276 		if (entry->node == node)
277 			return entry;
278 	}
279 
280 	return NULL;
281 }
282 
283 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
284 				u16 __percpu *comp_vect_affinity)
285 {
286 	int curr_cpu;
287 	u16 cntr;
288 	u16 prev_cntr;
289 	int ret_cpu;
290 
291 	if (!possible_cpumask) {
292 		ret_cpu = -EINVAL;
293 		goto fail;
294 	}
295 
296 	if (!comp_vect_affinity) {
297 		ret_cpu = -EINVAL;
298 		goto fail;
299 	}
300 
301 	ret_cpu = cpumask_first(possible_cpumask);
302 	if (ret_cpu >= nr_cpu_ids) {
303 		ret_cpu = -EINVAL;
304 		goto fail;
305 	}
306 
307 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
308 	for_each_cpu(curr_cpu, possible_cpumask) {
309 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
310 
311 		if (cntr < prev_cntr) {
312 			ret_cpu = curr_cpu;
313 			prev_cntr = cntr;
314 		}
315 	}
316 
317 	*per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
318 
319 fail:
320 	return ret_cpu;
321 }
322 
323 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
324 				    u16 __percpu *comp_vect_affinity)
325 {
326 	int curr_cpu;
327 	int max_cpu;
328 	u16 cntr;
329 	u16 prev_cntr;
330 
331 	if (!possible_cpumask)
332 		return -EINVAL;
333 
334 	if (!comp_vect_affinity)
335 		return -EINVAL;
336 
337 	max_cpu = cpumask_first(possible_cpumask);
338 	if (max_cpu >= nr_cpu_ids)
339 		return -EINVAL;
340 
341 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
342 	for_each_cpu(curr_cpu, possible_cpumask) {
343 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
344 
345 		if (cntr > prev_cntr) {
346 			max_cpu = curr_cpu;
347 			prev_cntr = cntr;
348 		}
349 	}
350 
351 	*per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
352 
353 	return max_cpu;
354 }
355 
356 /*
357  * Non-interrupt CPUs are used first, then interrupt CPUs.
358  * Two already allocated cpu masks must be passed.
359  */
360 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
361 				  struct hfi1_affinity_node *entry,
362 				  cpumask_var_t non_intr_cpus,
363 				  cpumask_var_t available_cpus)
364 	__must_hold(&node_affinity.lock)
365 {
366 	int cpu;
367 	struct cpu_mask_set *set = dd->comp_vect;
368 
369 	lockdep_assert_held(&node_affinity.lock);
370 	if (!non_intr_cpus) {
371 		cpu = -1;
372 		goto fail;
373 	}
374 
375 	if (!available_cpus) {
376 		cpu = -1;
377 		goto fail;
378 	}
379 
380 	/* Available CPUs for pinning completion vectors */
381 	_cpu_mask_set_gen_inc(set);
382 	cpumask_andnot(available_cpus, &set->mask, &set->used);
383 
384 	/* Available CPUs without SDMA engine interrupts */
385 	cpumask_andnot(non_intr_cpus, available_cpus,
386 		       &entry->def_intr.used);
387 
388 	/* If there are non-interrupt CPUs available, use them first */
389 	if (!cpumask_empty(non_intr_cpus))
390 		cpu = cpumask_first(non_intr_cpus);
391 	else /* Otherwise, use interrupt CPUs */
392 		cpu = cpumask_first(available_cpus);
393 
394 	if (cpu >= nr_cpu_ids) { /* empty */
395 		cpu = -1;
396 		goto fail;
397 	}
398 	cpumask_set_cpu(cpu, &set->used);
399 
400 fail:
401 	return cpu;
402 }
403 
404 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
405 {
406 	struct cpu_mask_set *set = dd->comp_vect;
407 
408 	if (cpu < 0)
409 		return;
410 
411 	cpu_mask_set_put(set, cpu);
412 }
413 
414 /* _dev_comp_vect_mappings_destroy() is reentrant */
415 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
416 {
417 	int i, cpu;
418 
419 	if (!dd->comp_vect_mappings)
420 		return;
421 
422 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
423 		cpu = dd->comp_vect_mappings[i];
424 		_dev_comp_vect_cpu_put(dd, cpu);
425 		dd->comp_vect_mappings[i] = -1;
426 		hfi1_cdbg(AFFINITY,
427 			  "[%s] Release CPU %d from completion vector %d",
428 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
429 	}
430 
431 	kfree(dd->comp_vect_mappings);
432 	dd->comp_vect_mappings = NULL;
433 }
434 
435 /*
436  * This function creates the table for looking up CPUs for completion vectors.
437  * num_comp_vectors needs to have been initilized before calling this function.
438  */
439 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
440 					  struct hfi1_affinity_node *entry)
441 	__must_hold(&node_affinity.lock)
442 {
443 	int i, cpu, ret;
444 	cpumask_var_t non_intr_cpus;
445 	cpumask_var_t available_cpus;
446 
447 	lockdep_assert_held(&node_affinity.lock);
448 
449 	if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
450 		return -ENOMEM;
451 
452 	if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
453 		free_cpumask_var(non_intr_cpus);
454 		return -ENOMEM;
455 	}
456 
457 	dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
458 					 sizeof(*dd->comp_vect_mappings),
459 					 GFP_KERNEL);
460 	if (!dd->comp_vect_mappings) {
461 		ret = -ENOMEM;
462 		goto fail;
463 	}
464 	for (i = 0; i < dd->comp_vect_possible_cpus; i++)
465 		dd->comp_vect_mappings[i] = -1;
466 
467 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
468 		cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
469 					     available_cpus);
470 		if (cpu < 0) {
471 			ret = -EINVAL;
472 			goto fail;
473 		}
474 
475 		dd->comp_vect_mappings[i] = cpu;
476 		hfi1_cdbg(AFFINITY,
477 			  "[%s] Completion Vector %d -> CPU %d",
478 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
479 	}
480 
481 	return 0;
482 
483 fail:
484 	free_cpumask_var(available_cpus);
485 	free_cpumask_var(non_intr_cpus);
486 	_dev_comp_vect_mappings_destroy(dd);
487 
488 	return ret;
489 }
490 
491 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
492 {
493 	int ret;
494 	struct hfi1_affinity_node *entry;
495 
496 	mutex_lock(&node_affinity.lock);
497 	entry = node_affinity_lookup(dd->node);
498 	if (!entry) {
499 		ret = -EINVAL;
500 		goto unlock;
501 	}
502 	ret = _dev_comp_vect_mappings_create(dd, entry);
503 unlock:
504 	mutex_unlock(&node_affinity.lock);
505 
506 	return ret;
507 }
508 
509 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
510 {
511 	_dev_comp_vect_mappings_destroy(dd);
512 }
513 
514 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
515 {
516 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
517 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
518 
519 	if (!dd->comp_vect_mappings)
520 		return -EINVAL;
521 	if (comp_vect >= dd->comp_vect_possible_cpus)
522 		return -EINVAL;
523 
524 	return dd->comp_vect_mappings[comp_vect];
525 }
526 
527 /*
528  * It assumes dd->comp_vect_possible_cpus is available.
529  */
530 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
531 					struct hfi1_affinity_node *entry,
532 					bool first_dev_init)
533 	__must_hold(&node_affinity.lock)
534 {
535 	int i, j, curr_cpu;
536 	int possible_cpus_comp_vect = 0;
537 	struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
538 
539 	lockdep_assert_held(&node_affinity.lock);
540 	/*
541 	 * If there's only one CPU available for completion vectors, then
542 	 * there will only be one completion vector available. Othewise,
543 	 * the number of completion vector available will be the number of
544 	 * available CPUs divide it by the number of devices in the
545 	 * local NUMA node.
546 	 */
547 	if (cpumask_weight(&entry->comp_vect_mask) == 1) {
548 		possible_cpus_comp_vect = 1;
549 		dd_dev_warn(dd,
550 			    "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
551 	} else {
552 		possible_cpus_comp_vect +=
553 			cpumask_weight(&entry->comp_vect_mask) /
554 				       hfi1_per_node_cntr[dd->node];
555 
556 		/*
557 		 * If the completion vector CPUs available doesn't divide
558 		 * evenly among devices, then the first device device to be
559 		 * initialized gets an extra CPU.
560 		 */
561 		if (first_dev_init &&
562 		    cpumask_weight(&entry->comp_vect_mask) %
563 		    hfi1_per_node_cntr[dd->node] != 0)
564 			possible_cpus_comp_vect++;
565 	}
566 
567 	dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
568 
569 	/* Reserving CPUs for device completion vector */
570 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
571 		curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
572 						entry->comp_vect_affinity);
573 		if (curr_cpu < 0)
574 			goto fail;
575 
576 		cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
577 	}
578 
579 	hfi1_cdbg(AFFINITY,
580 		  "[%s] Completion vector affinity CPU set(s) %*pbl",
581 		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
582 		  cpumask_pr_args(dev_comp_vect_mask));
583 
584 	return 0;
585 
586 fail:
587 	for (j = 0; j < i; j++)
588 		per_cpu_affinity_put_max(&entry->comp_vect_mask,
589 					 entry->comp_vect_affinity);
590 
591 	return curr_cpu;
592 }
593 
594 /*
595  * It assumes dd->comp_vect_possible_cpus is available.
596  */
597 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
598 					     struct hfi1_affinity_node *entry)
599 	__must_hold(&node_affinity.lock)
600 {
601 	int i, cpu;
602 
603 	lockdep_assert_held(&node_affinity.lock);
604 	if (!dd->comp_vect_possible_cpus)
605 		return;
606 
607 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
608 		cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
609 					       entry->comp_vect_affinity);
610 		/* Clearing CPU in device completion vector cpu mask */
611 		if (cpu >= 0)
612 			cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
613 	}
614 
615 	dd->comp_vect_possible_cpus = 0;
616 }
617 
618 /*
619  * Interrupt affinity.
620  *
621  * non-rcv avail gets a default mask that
622  * starts as possible cpus with threads reset
623  * and each rcv avail reset.
624  *
625  * rcv avail gets node relative 1 wrapping back
626  * to the node relative 1 as necessary.
627  *
628  */
629 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
630 {
631 	int node = pcibus_to_node(dd->pcidev->bus);
632 	struct hfi1_affinity_node *entry;
633 	const struct cpumask *local_mask;
634 	int curr_cpu, possible, i, ret;
635 	bool new_entry = false;
636 
637 	/*
638 	 * If the BIOS does not have the NUMA node information set, select
639 	 * NUMA 0 so we get consistent performance.
640 	 */
641 	if (node < 0) {
642 		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
643 		node = 0;
644 	}
645 	dd->node = node;
646 
647 	local_mask = cpumask_of_node(dd->node);
648 	if (cpumask_first(local_mask) >= nr_cpu_ids)
649 		local_mask = topology_core_cpumask(0);
650 
651 	mutex_lock(&node_affinity.lock);
652 	entry = node_affinity_lookup(dd->node);
653 
654 	/*
655 	 * If this is the first time this NUMA node's affinity is used,
656 	 * create an entry in the global affinity structure and initialize it.
657 	 */
658 	if (!entry) {
659 		entry = node_affinity_allocate(node);
660 		if (!entry) {
661 			dd_dev_err(dd,
662 				   "Unable to allocate global affinity node\n");
663 			ret = -ENOMEM;
664 			goto fail;
665 		}
666 		new_entry = true;
667 
668 		init_cpu_mask_set(&entry->def_intr);
669 		init_cpu_mask_set(&entry->rcv_intr);
670 		cpumask_clear(&entry->comp_vect_mask);
671 		cpumask_clear(&entry->general_intr_mask);
672 		/* Use the "real" cpu mask of this node as the default */
673 		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
674 			    local_mask);
675 
676 		/* fill in the receive list */
677 		possible = cpumask_weight(&entry->def_intr.mask);
678 		curr_cpu = cpumask_first(&entry->def_intr.mask);
679 
680 		if (possible == 1) {
681 			/* only one CPU, everyone will use it */
682 			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
683 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
684 		} else {
685 			/*
686 			 * The general/control context will be the first CPU in
687 			 * the default list, so it is removed from the default
688 			 * list and added to the general interrupt list.
689 			 */
690 			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
691 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
692 			curr_cpu = cpumask_next(curr_cpu,
693 						&entry->def_intr.mask);
694 
695 			/*
696 			 * Remove the remaining kernel receive queues from
697 			 * the default list and add them to the receive list.
698 			 */
699 			for (i = 0;
700 			     i < (dd->n_krcv_queues - 1) *
701 				  hfi1_per_node_cntr[dd->node];
702 			     i++) {
703 				cpumask_clear_cpu(curr_cpu,
704 						  &entry->def_intr.mask);
705 				cpumask_set_cpu(curr_cpu,
706 						&entry->rcv_intr.mask);
707 				curr_cpu = cpumask_next(curr_cpu,
708 							&entry->def_intr.mask);
709 				if (curr_cpu >= nr_cpu_ids)
710 					break;
711 			}
712 
713 			/*
714 			 * If there ends up being 0 CPU cores leftover for SDMA
715 			 * engines, use the same CPU cores as general/control
716 			 * context.
717 			 */
718 			if (cpumask_weight(&entry->def_intr.mask) == 0)
719 				cpumask_copy(&entry->def_intr.mask,
720 					     &entry->general_intr_mask);
721 		}
722 
723 		/* Determine completion vector CPUs for the entire node */
724 		cpumask_and(&entry->comp_vect_mask,
725 			    &node_affinity.real_cpu_mask, local_mask);
726 		cpumask_andnot(&entry->comp_vect_mask,
727 			       &entry->comp_vect_mask,
728 			       &entry->rcv_intr.mask);
729 		cpumask_andnot(&entry->comp_vect_mask,
730 			       &entry->comp_vect_mask,
731 			       &entry->general_intr_mask);
732 
733 		/*
734 		 * If there ends up being 0 CPU cores leftover for completion
735 		 * vectors, use the same CPU core as the general/control
736 		 * context.
737 		 */
738 		if (cpumask_weight(&entry->comp_vect_mask) == 0)
739 			cpumask_copy(&entry->comp_vect_mask,
740 				     &entry->general_intr_mask);
741 	}
742 
743 	ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
744 	if (ret < 0)
745 		goto fail;
746 
747 	if (new_entry)
748 		node_affinity_add_tail(entry);
749 
750 	mutex_unlock(&node_affinity.lock);
751 
752 	return 0;
753 
754 fail:
755 	if (new_entry)
756 		node_affinity_destroy(entry);
757 	mutex_unlock(&node_affinity.lock);
758 	return ret;
759 }
760 
761 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
762 {
763 	struct hfi1_affinity_node *entry;
764 
765 	if (dd->node < 0)
766 		return;
767 
768 	mutex_lock(&node_affinity.lock);
769 	entry = node_affinity_lookup(dd->node);
770 	if (!entry)
771 		goto unlock;
772 
773 	/*
774 	 * Free device completion vector CPUs to be used by future
775 	 * completion vectors
776 	 */
777 	_dev_comp_vect_cpu_mask_clean_up(dd, entry);
778 unlock:
779 	mutex_unlock(&node_affinity.lock);
780 	dd->node = -1;
781 }
782 
783 /*
784  * Function updates the irq affinity hint for msix after it has been changed
785  * by the user using the /proc/irq interface. This function only accepts
786  * one cpu in the mask.
787  */
788 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
789 {
790 	struct sdma_engine *sde = msix->arg;
791 	struct hfi1_devdata *dd = sde->dd;
792 	struct hfi1_affinity_node *entry;
793 	struct cpu_mask_set *set;
794 	int i, old_cpu;
795 
796 	if (cpu > num_online_cpus() || cpu == sde->cpu)
797 		return;
798 
799 	mutex_lock(&node_affinity.lock);
800 	entry = node_affinity_lookup(dd->node);
801 	if (!entry)
802 		goto unlock;
803 
804 	old_cpu = sde->cpu;
805 	sde->cpu = cpu;
806 	cpumask_clear(&msix->mask);
807 	cpumask_set_cpu(cpu, &msix->mask);
808 	dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
809 		   msix->irq, irq_type_names[msix->type],
810 		   sde->this_idx, cpu);
811 	irq_set_affinity_hint(msix->irq, &msix->mask);
812 
813 	/*
814 	 * Set the new cpu in the hfi1_affinity_node and clean
815 	 * the old cpu if it is not used by any other IRQ
816 	 */
817 	set = &entry->def_intr;
818 	cpumask_set_cpu(cpu, &set->mask);
819 	cpumask_set_cpu(cpu, &set->used);
820 	for (i = 0; i < dd->num_msix_entries; i++) {
821 		struct hfi1_msix_entry *other_msix;
822 
823 		other_msix = &dd->msix_entries[i];
824 		if (other_msix->type != IRQ_SDMA || other_msix == msix)
825 			continue;
826 
827 		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
828 			goto unlock;
829 	}
830 	cpumask_clear_cpu(old_cpu, &set->mask);
831 	cpumask_clear_cpu(old_cpu, &set->used);
832 unlock:
833 	mutex_unlock(&node_affinity.lock);
834 }
835 
836 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
837 				     const cpumask_t *mask)
838 {
839 	int cpu = cpumask_first(mask);
840 	struct hfi1_msix_entry *msix = container_of(notify,
841 						    struct hfi1_msix_entry,
842 						    notify);
843 
844 	/* Only one CPU configuration supported currently */
845 	hfi1_update_sdma_affinity(msix, cpu);
846 }
847 
848 static void hfi1_irq_notifier_release(struct kref *ref)
849 {
850 	/*
851 	 * This is required by affinity notifier. We don't have anything to
852 	 * free here.
853 	 */
854 }
855 
856 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
857 {
858 	struct irq_affinity_notify *notify = &msix->notify;
859 
860 	notify->irq = msix->irq;
861 	notify->notify = hfi1_irq_notifier_notify;
862 	notify->release = hfi1_irq_notifier_release;
863 
864 	if (irq_set_affinity_notifier(notify->irq, notify))
865 		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
866 		       notify->irq);
867 }
868 
869 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
870 {
871 	struct irq_affinity_notify *notify = &msix->notify;
872 
873 	if (irq_set_affinity_notifier(notify->irq, NULL))
874 		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
875 		       notify->irq);
876 }
877 
878 /*
879  * Function sets the irq affinity for msix.
880  * It *must* be called with node_affinity.lock held.
881  */
882 static int get_irq_affinity(struct hfi1_devdata *dd,
883 			    struct hfi1_msix_entry *msix)
884 {
885 	cpumask_var_t diff;
886 	struct hfi1_affinity_node *entry;
887 	struct cpu_mask_set *set = NULL;
888 	struct sdma_engine *sde = NULL;
889 	struct hfi1_ctxtdata *rcd = NULL;
890 	char extra[64];
891 	int cpu = -1;
892 
893 	extra[0] = '\0';
894 	cpumask_clear(&msix->mask);
895 
896 	entry = node_affinity_lookup(dd->node);
897 
898 	switch (msix->type) {
899 	case IRQ_SDMA:
900 		sde = (struct sdma_engine *)msix->arg;
901 		scnprintf(extra, 64, "engine %u", sde->this_idx);
902 		set = &entry->def_intr;
903 		break;
904 	case IRQ_GENERAL:
905 		cpu = cpumask_first(&entry->general_intr_mask);
906 		break;
907 	case IRQ_RCVCTXT:
908 		rcd = (struct hfi1_ctxtdata *)msix->arg;
909 		if (rcd->ctxt == HFI1_CTRL_CTXT)
910 			cpu = cpumask_first(&entry->general_intr_mask);
911 		else
912 			set = &entry->rcv_intr;
913 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
914 		break;
915 	default:
916 		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
917 		return -EINVAL;
918 	}
919 
920 	/*
921 	 * The general and control contexts are placed on a particular
922 	 * CPU, which is set above. Skip accounting for it. Everything else
923 	 * finds its CPU here.
924 	 */
925 	if (cpu == -1 && set) {
926 		if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
927 			return -ENOMEM;
928 
929 		cpu = cpu_mask_set_get_first(set, diff);
930 		if (cpu < 0) {
931 			free_cpumask_var(diff);
932 			dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
933 			return cpu;
934 		}
935 
936 		free_cpumask_var(diff);
937 	}
938 
939 	cpumask_set_cpu(cpu, &msix->mask);
940 	dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
941 		    msix->irq, irq_type_names[msix->type],
942 		    extra, cpu);
943 	irq_set_affinity_hint(msix->irq, &msix->mask);
944 
945 	if (msix->type == IRQ_SDMA) {
946 		sde->cpu = cpu;
947 		hfi1_setup_sdma_notifier(msix);
948 	}
949 
950 	return 0;
951 }
952 
953 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
954 {
955 	int ret;
956 
957 	mutex_lock(&node_affinity.lock);
958 	ret = get_irq_affinity(dd, msix);
959 	mutex_unlock(&node_affinity.lock);
960 	return ret;
961 }
962 
963 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
964 			   struct hfi1_msix_entry *msix)
965 {
966 	struct cpu_mask_set *set = NULL;
967 	struct hfi1_ctxtdata *rcd;
968 	struct hfi1_affinity_node *entry;
969 
970 	mutex_lock(&node_affinity.lock);
971 	entry = node_affinity_lookup(dd->node);
972 
973 	switch (msix->type) {
974 	case IRQ_SDMA:
975 		set = &entry->def_intr;
976 		hfi1_cleanup_sdma_notifier(msix);
977 		break;
978 	case IRQ_GENERAL:
979 		/* Don't do accounting for general contexts */
980 		break;
981 	case IRQ_RCVCTXT:
982 		rcd = (struct hfi1_ctxtdata *)msix->arg;
983 		/* Don't do accounting for control contexts */
984 		if (rcd->ctxt != HFI1_CTRL_CTXT)
985 			set = &entry->rcv_intr;
986 		break;
987 	default:
988 		mutex_unlock(&node_affinity.lock);
989 		return;
990 	}
991 
992 	if (set) {
993 		cpumask_andnot(&set->used, &set->used, &msix->mask);
994 		_cpu_mask_set_gen_dec(set);
995 	}
996 
997 	irq_set_affinity_hint(msix->irq, NULL);
998 	cpumask_clear(&msix->mask);
999 	mutex_unlock(&node_affinity.lock);
1000 }
1001 
1002 /* This should be called with node_affinity.lock held */
1003 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
1004 				struct hfi1_affinity_node_list *affinity)
1005 {
1006 	int possible, curr_cpu, i;
1007 	uint num_cores_per_socket = node_affinity.num_online_cpus /
1008 					affinity->num_core_siblings /
1009 						node_affinity.num_online_nodes;
1010 
1011 	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
1012 	if (affinity->num_core_siblings > 0) {
1013 		/* Removing other siblings not needed for now */
1014 		possible = cpumask_weight(hw_thread_mask);
1015 		curr_cpu = cpumask_first(hw_thread_mask);
1016 		for (i = 0;
1017 		     i < num_cores_per_socket * node_affinity.num_online_nodes;
1018 		     i++)
1019 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1020 
1021 		for (; i < possible; i++) {
1022 			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
1023 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1024 		}
1025 
1026 		/* Identifying correct HW threads within physical cores */
1027 		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
1028 				   num_cores_per_socket *
1029 				   node_affinity.num_online_nodes *
1030 				   hw_thread_no);
1031 	}
1032 }
1033 
1034 int hfi1_get_proc_affinity(int node)
1035 {
1036 	int cpu = -1, ret, i;
1037 	struct hfi1_affinity_node *entry;
1038 	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
1039 	const struct cpumask *node_mask,
1040 		*proc_mask = &current->cpus_allowed;
1041 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1042 	struct cpu_mask_set *set = &affinity->proc;
1043 
1044 	/*
1045 	 * check whether process/context affinity has already
1046 	 * been set
1047 	 */
1048 	if (cpumask_weight(proc_mask) == 1) {
1049 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1050 			  current->pid, current->comm,
1051 			  cpumask_pr_args(proc_mask));
1052 		/*
1053 		 * Mark the pre-set CPU as used. This is atomic so we don't
1054 		 * need the lock
1055 		 */
1056 		cpu = cpumask_first(proc_mask);
1057 		cpumask_set_cpu(cpu, &set->used);
1058 		goto done;
1059 	} else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) {
1060 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1061 			  current->pid, current->comm,
1062 			  cpumask_pr_args(proc_mask));
1063 		goto done;
1064 	}
1065 
1066 	/*
1067 	 * The process does not have a preset CPU affinity so find one to
1068 	 * recommend using the following algorithm:
1069 	 *
1070 	 * For each user process that is opening a context on HFI Y:
1071 	 *  a) If all cores are filled, reinitialize the bitmask
1072 	 *  b) Fill real cores first, then HT cores (First set of HT
1073 	 *     cores on all physical cores, then second set of HT core,
1074 	 *     and, so on) in the following order:
1075 	 *
1076 	 *     1. Same NUMA node as HFI Y and not running an IRQ
1077 	 *        handler
1078 	 *     2. Same NUMA node as HFI Y and running an IRQ handler
1079 	 *     3. Different NUMA node to HFI Y and not running an IRQ
1080 	 *        handler
1081 	 *     4. Different NUMA node to HFI Y and running an IRQ
1082 	 *        handler
1083 	 *  c) Mark core as filled in the bitmask. As user processes are
1084 	 *     done, clear cores from the bitmask.
1085 	 */
1086 
1087 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1088 	if (!ret)
1089 		goto done;
1090 	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1091 	if (!ret)
1092 		goto free_diff;
1093 	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1094 	if (!ret)
1095 		goto free_hw_thread_mask;
1096 	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1097 	if (!ret)
1098 		goto free_available_mask;
1099 
1100 	mutex_lock(&affinity->lock);
1101 	/*
1102 	 * If we've used all available HW threads, clear the mask and start
1103 	 * overloading.
1104 	 */
1105 	_cpu_mask_set_gen_inc(set);
1106 
1107 	/*
1108 	 * If NUMA node has CPUs used by interrupt handlers, include them in the
1109 	 * interrupt handler mask.
1110 	 */
1111 	entry = node_affinity_lookup(node);
1112 	if (entry) {
1113 		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1114 					  &entry->def_intr.mask :
1115 					  &entry->def_intr.used));
1116 		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1117 						    &entry->rcv_intr.mask :
1118 						    &entry->rcv_intr.used));
1119 		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1120 	}
1121 	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1122 		  cpumask_pr_args(intrs_mask));
1123 
1124 	cpumask_copy(hw_thread_mask, &set->mask);
1125 
1126 	/*
1127 	 * If HT cores are enabled, identify which HW threads within the
1128 	 * physical cores should be used.
1129 	 */
1130 	if (affinity->num_core_siblings > 0) {
1131 		for (i = 0; i < affinity->num_core_siblings; i++) {
1132 			find_hw_thread_mask(i, hw_thread_mask, affinity);
1133 
1134 			/*
1135 			 * If there's at least one available core for this HW
1136 			 * thread number, stop looking for a core.
1137 			 *
1138 			 * diff will always be not empty at least once in this
1139 			 * loop as the used mask gets reset when
1140 			 * (set->mask == set->used) before this loop.
1141 			 */
1142 			cpumask_andnot(diff, hw_thread_mask, &set->used);
1143 			if (!cpumask_empty(diff))
1144 				break;
1145 		}
1146 	}
1147 	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1148 		  cpumask_pr_args(hw_thread_mask));
1149 
1150 	node_mask = cpumask_of_node(node);
1151 	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1152 		  cpumask_pr_args(node_mask));
1153 
1154 	/* Get cpumask of available CPUs on preferred NUMA */
1155 	cpumask_and(available_mask, hw_thread_mask, node_mask);
1156 	cpumask_andnot(available_mask, available_mask, &set->used);
1157 	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1158 		  cpumask_pr_args(available_mask));
1159 
1160 	/*
1161 	 * At first, we don't want to place processes on the same
1162 	 * CPUs as interrupt handlers. Then, CPUs running interrupt
1163 	 * handlers are used.
1164 	 *
1165 	 * 1) If diff is not empty, then there are CPUs not running
1166 	 *    non-interrupt handlers available, so diff gets copied
1167 	 *    over to available_mask.
1168 	 * 2) If diff is empty, then all CPUs not running interrupt
1169 	 *    handlers are taken, so available_mask contains all
1170 	 *    available CPUs running interrupt handlers.
1171 	 * 3) If available_mask is empty, then all CPUs on the
1172 	 *    preferred NUMA node are taken, so other NUMA nodes are
1173 	 *    used for process assignments using the same method as
1174 	 *    the preferred NUMA node.
1175 	 */
1176 	cpumask_andnot(diff, available_mask, intrs_mask);
1177 	if (!cpumask_empty(diff))
1178 		cpumask_copy(available_mask, diff);
1179 
1180 	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
1181 	if (cpumask_empty(available_mask)) {
1182 		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1183 		/* Excluding preferred NUMA cores */
1184 		cpumask_andnot(available_mask, available_mask, node_mask);
1185 		hfi1_cdbg(PROC,
1186 			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1187 			  cpumask_pr_args(available_mask));
1188 
1189 		/*
1190 		 * At first, we don't want to place processes on the same
1191 		 * CPUs as interrupt handlers.
1192 		 */
1193 		cpumask_andnot(diff, available_mask, intrs_mask);
1194 		if (!cpumask_empty(diff))
1195 			cpumask_copy(available_mask, diff);
1196 	}
1197 	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1198 		  cpumask_pr_args(available_mask));
1199 
1200 	cpu = cpumask_first(available_mask);
1201 	if (cpu >= nr_cpu_ids) /* empty */
1202 		cpu = -1;
1203 	else
1204 		cpumask_set_cpu(cpu, &set->used);
1205 
1206 	mutex_unlock(&affinity->lock);
1207 	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1208 
1209 	free_cpumask_var(intrs_mask);
1210 free_available_mask:
1211 	free_cpumask_var(available_mask);
1212 free_hw_thread_mask:
1213 	free_cpumask_var(hw_thread_mask);
1214 free_diff:
1215 	free_cpumask_var(diff);
1216 done:
1217 	return cpu;
1218 }
1219 
1220 void hfi1_put_proc_affinity(int cpu)
1221 {
1222 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1223 	struct cpu_mask_set *set = &affinity->proc;
1224 
1225 	if (cpu < 0)
1226 		return;
1227 
1228 	mutex_lock(&affinity->lock);
1229 	cpu_mask_set_put(set, cpu);
1230 	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1231 	mutex_unlock(&affinity->lock);
1232 }
1233