1 /* 2 * Copyright(c) 2015 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/topology.h> 48 #include <linux/cpumask.h> 49 #include <linux/module.h> 50 #include <linux/interrupt.h> 51 #include <linux/numa.h> 52 53 #include "hfi.h" 54 #include "affinity.h" 55 #include "sdma.h" 56 #include "trace.h" 57 58 struct hfi1_affinity_node_list node_affinity = { 59 .list = LIST_HEAD_INIT(node_affinity.list), 60 .lock = __MUTEX_INITIALIZER(node_affinity.lock) 61 }; 62 63 /* Name of IRQ types, indexed by enum irq_type */ 64 static const char * const irq_type_names[] = { 65 "SDMA", 66 "RCVCTXT", 67 "GENERAL", 68 "OTHER", 69 }; 70 71 /* Per NUMA node count of HFI devices */ 72 static unsigned int *hfi1_per_node_cntr; 73 74 static inline void init_cpu_mask_set(struct cpu_mask_set *set) 75 { 76 cpumask_clear(&set->mask); 77 cpumask_clear(&set->used); 78 set->gen = 0; 79 } 80 81 /* Increment generation of CPU set if needed */ 82 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set) 83 { 84 if (cpumask_equal(&set->mask, &set->used)) { 85 /* 86 * We've used up all the CPUs, bump up the generation 87 * and reset the 'used' map 88 */ 89 set->gen++; 90 cpumask_clear(&set->used); 91 } 92 } 93 94 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set) 95 { 96 if (cpumask_empty(&set->used) && set->gen) { 97 set->gen--; 98 cpumask_copy(&set->used, &set->mask); 99 } 100 } 101 102 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */ 103 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff) 104 { 105 int cpu; 106 107 if (!diff || !set) 108 return -EINVAL; 109 110 _cpu_mask_set_gen_inc(set); 111 112 /* Find out CPUs left in CPU mask */ 113 cpumask_andnot(diff, &set->mask, &set->used); 114 115 cpu = cpumask_first(diff); 116 if (cpu >= nr_cpu_ids) /* empty */ 117 cpu = -EINVAL; 118 else 119 cpumask_set_cpu(cpu, &set->used); 120 121 return cpu; 122 } 123 124 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu) 125 { 126 if (!set) 127 return; 128 129 cpumask_clear_cpu(cpu, &set->used); 130 _cpu_mask_set_gen_dec(set); 131 } 132 133 /* Initialize non-HT cpu cores mask */ 134 void init_real_cpu_mask(void) 135 { 136 int possible, curr_cpu, i, ht; 137 138 cpumask_clear(&node_affinity.real_cpu_mask); 139 140 /* Start with cpu online mask as the real cpu mask */ 141 cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask); 142 143 /* 144 * Remove HT cores from the real cpu mask. Do this in two steps below. 145 */ 146 possible = cpumask_weight(&node_affinity.real_cpu_mask); 147 ht = cpumask_weight(topology_sibling_cpumask( 148 cpumask_first(&node_affinity.real_cpu_mask))); 149 /* 150 * Step 1. Skip over the first N HT siblings and use them as the 151 * "real" cores. Assumes that HT cores are not enumerated in 152 * succession (except in the single core case). 153 */ 154 curr_cpu = cpumask_first(&node_affinity.real_cpu_mask); 155 for (i = 0; i < possible / ht; i++) 156 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); 157 /* 158 * Step 2. Remove the remaining HT siblings. Use cpumask_next() to 159 * skip any gaps. 160 */ 161 for (; i < possible; i++) { 162 cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask); 163 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); 164 } 165 } 166 167 int node_affinity_init(void) 168 { 169 int node; 170 struct pci_dev *dev = NULL; 171 const struct pci_device_id *ids = hfi1_pci_tbl; 172 173 cpumask_clear(&node_affinity.proc.used); 174 cpumask_copy(&node_affinity.proc.mask, cpu_online_mask); 175 176 node_affinity.proc.gen = 0; 177 node_affinity.num_core_siblings = 178 cpumask_weight(topology_sibling_cpumask( 179 cpumask_first(&node_affinity.proc.mask) 180 )); 181 node_affinity.num_possible_nodes = num_possible_nodes(); 182 node_affinity.num_online_nodes = num_online_nodes(); 183 node_affinity.num_online_cpus = num_online_cpus(); 184 185 /* 186 * The real cpu mask is part of the affinity struct but it has to be 187 * initialized early. It is needed to calculate the number of user 188 * contexts in set_up_context_variables(). 189 */ 190 init_real_cpu_mask(); 191 192 hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes, 193 sizeof(*hfi1_per_node_cntr), GFP_KERNEL); 194 if (!hfi1_per_node_cntr) 195 return -ENOMEM; 196 197 while (ids->vendor) { 198 dev = NULL; 199 while ((dev = pci_get_device(ids->vendor, ids->device, dev))) { 200 node = pcibus_to_node(dev->bus); 201 if (node < 0) 202 goto out; 203 204 hfi1_per_node_cntr[node]++; 205 } 206 ids++; 207 } 208 209 return 0; 210 211 out: 212 /* 213 * Invalid PCI NUMA node information found, note it, and populate 214 * our database 1:1. 215 */ 216 pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n"); 217 pr_err("HFI: System BIOS may need to be upgraded\n"); 218 for (node = 0; node < node_affinity.num_possible_nodes; node++) 219 hfi1_per_node_cntr[node] = 1; 220 221 return 0; 222 } 223 224 static void node_affinity_destroy(struct hfi1_affinity_node *entry) 225 { 226 free_percpu(entry->comp_vect_affinity); 227 kfree(entry); 228 } 229 230 void node_affinity_destroy_all(void) 231 { 232 struct list_head *pos, *q; 233 struct hfi1_affinity_node *entry; 234 235 mutex_lock(&node_affinity.lock); 236 list_for_each_safe(pos, q, &node_affinity.list) { 237 entry = list_entry(pos, struct hfi1_affinity_node, 238 list); 239 list_del(pos); 240 node_affinity_destroy(entry); 241 } 242 mutex_unlock(&node_affinity.lock); 243 kfree(hfi1_per_node_cntr); 244 } 245 246 static struct hfi1_affinity_node *node_affinity_allocate(int node) 247 { 248 struct hfi1_affinity_node *entry; 249 250 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 251 if (!entry) 252 return NULL; 253 entry->node = node; 254 entry->comp_vect_affinity = alloc_percpu(u16); 255 INIT_LIST_HEAD(&entry->list); 256 257 return entry; 258 } 259 260 /* 261 * It appends an entry to the list. 262 * It *must* be called with node_affinity.lock held. 263 */ 264 static void node_affinity_add_tail(struct hfi1_affinity_node *entry) 265 { 266 list_add_tail(&entry->list, &node_affinity.list); 267 } 268 269 /* It must be called with node_affinity.lock held */ 270 static struct hfi1_affinity_node *node_affinity_lookup(int node) 271 { 272 struct list_head *pos; 273 struct hfi1_affinity_node *entry; 274 275 list_for_each(pos, &node_affinity.list) { 276 entry = list_entry(pos, struct hfi1_affinity_node, list); 277 if (entry->node == node) 278 return entry; 279 } 280 281 return NULL; 282 } 283 284 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask, 285 u16 __percpu *comp_vect_affinity) 286 { 287 int curr_cpu; 288 u16 cntr; 289 u16 prev_cntr; 290 int ret_cpu; 291 292 if (!possible_cpumask) { 293 ret_cpu = -EINVAL; 294 goto fail; 295 } 296 297 if (!comp_vect_affinity) { 298 ret_cpu = -EINVAL; 299 goto fail; 300 } 301 302 ret_cpu = cpumask_first(possible_cpumask); 303 if (ret_cpu >= nr_cpu_ids) { 304 ret_cpu = -EINVAL; 305 goto fail; 306 } 307 308 prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu); 309 for_each_cpu(curr_cpu, possible_cpumask) { 310 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); 311 312 if (cntr < prev_cntr) { 313 ret_cpu = curr_cpu; 314 prev_cntr = cntr; 315 } 316 } 317 318 *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1; 319 320 fail: 321 return ret_cpu; 322 } 323 324 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask, 325 u16 __percpu *comp_vect_affinity) 326 { 327 int curr_cpu; 328 int max_cpu; 329 u16 cntr; 330 u16 prev_cntr; 331 332 if (!possible_cpumask) 333 return -EINVAL; 334 335 if (!comp_vect_affinity) 336 return -EINVAL; 337 338 max_cpu = cpumask_first(possible_cpumask); 339 if (max_cpu >= nr_cpu_ids) 340 return -EINVAL; 341 342 prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu); 343 for_each_cpu(curr_cpu, possible_cpumask) { 344 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); 345 346 if (cntr > prev_cntr) { 347 max_cpu = curr_cpu; 348 prev_cntr = cntr; 349 } 350 } 351 352 *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1; 353 354 return max_cpu; 355 } 356 357 /* 358 * Non-interrupt CPUs are used first, then interrupt CPUs. 359 * Two already allocated cpu masks must be passed. 360 */ 361 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd, 362 struct hfi1_affinity_node *entry, 363 cpumask_var_t non_intr_cpus, 364 cpumask_var_t available_cpus) 365 __must_hold(&node_affinity.lock) 366 { 367 int cpu; 368 struct cpu_mask_set *set = dd->comp_vect; 369 370 lockdep_assert_held(&node_affinity.lock); 371 if (!non_intr_cpus) { 372 cpu = -1; 373 goto fail; 374 } 375 376 if (!available_cpus) { 377 cpu = -1; 378 goto fail; 379 } 380 381 /* Available CPUs for pinning completion vectors */ 382 _cpu_mask_set_gen_inc(set); 383 cpumask_andnot(available_cpus, &set->mask, &set->used); 384 385 /* Available CPUs without SDMA engine interrupts */ 386 cpumask_andnot(non_intr_cpus, available_cpus, 387 &entry->def_intr.used); 388 389 /* If there are non-interrupt CPUs available, use them first */ 390 if (!cpumask_empty(non_intr_cpus)) 391 cpu = cpumask_first(non_intr_cpus); 392 else /* Otherwise, use interrupt CPUs */ 393 cpu = cpumask_first(available_cpus); 394 395 if (cpu >= nr_cpu_ids) { /* empty */ 396 cpu = -1; 397 goto fail; 398 } 399 cpumask_set_cpu(cpu, &set->used); 400 401 fail: 402 return cpu; 403 } 404 405 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu) 406 { 407 struct cpu_mask_set *set = dd->comp_vect; 408 409 if (cpu < 0) 410 return; 411 412 cpu_mask_set_put(set, cpu); 413 } 414 415 /* _dev_comp_vect_mappings_destroy() is reentrant */ 416 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd) 417 { 418 int i, cpu; 419 420 if (!dd->comp_vect_mappings) 421 return; 422 423 for (i = 0; i < dd->comp_vect_possible_cpus; i++) { 424 cpu = dd->comp_vect_mappings[i]; 425 _dev_comp_vect_cpu_put(dd, cpu); 426 dd->comp_vect_mappings[i] = -1; 427 hfi1_cdbg(AFFINITY, 428 "[%s] Release CPU %d from completion vector %d", 429 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i); 430 } 431 432 kfree(dd->comp_vect_mappings); 433 dd->comp_vect_mappings = NULL; 434 } 435 436 /* 437 * This function creates the table for looking up CPUs for completion vectors. 438 * num_comp_vectors needs to have been initilized before calling this function. 439 */ 440 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd, 441 struct hfi1_affinity_node *entry) 442 __must_hold(&node_affinity.lock) 443 { 444 int i, cpu, ret; 445 cpumask_var_t non_intr_cpus; 446 cpumask_var_t available_cpus; 447 448 lockdep_assert_held(&node_affinity.lock); 449 450 if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL)) 451 return -ENOMEM; 452 453 if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) { 454 free_cpumask_var(non_intr_cpus); 455 return -ENOMEM; 456 } 457 458 dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus, 459 sizeof(*dd->comp_vect_mappings), 460 GFP_KERNEL); 461 if (!dd->comp_vect_mappings) { 462 ret = -ENOMEM; 463 goto fail; 464 } 465 for (i = 0; i < dd->comp_vect_possible_cpus; i++) 466 dd->comp_vect_mappings[i] = -1; 467 468 for (i = 0; i < dd->comp_vect_possible_cpus; i++) { 469 cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus, 470 available_cpus); 471 if (cpu < 0) { 472 ret = -EINVAL; 473 goto fail; 474 } 475 476 dd->comp_vect_mappings[i] = cpu; 477 hfi1_cdbg(AFFINITY, 478 "[%s] Completion Vector %d -> CPU %d", 479 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu); 480 } 481 482 free_cpumask_var(available_cpus); 483 free_cpumask_var(non_intr_cpus); 484 return 0; 485 486 fail: 487 free_cpumask_var(available_cpus); 488 free_cpumask_var(non_intr_cpus); 489 _dev_comp_vect_mappings_destroy(dd); 490 491 return ret; 492 } 493 494 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd) 495 { 496 int ret; 497 struct hfi1_affinity_node *entry; 498 499 mutex_lock(&node_affinity.lock); 500 entry = node_affinity_lookup(dd->node); 501 if (!entry) { 502 ret = -EINVAL; 503 goto unlock; 504 } 505 ret = _dev_comp_vect_mappings_create(dd, entry); 506 unlock: 507 mutex_unlock(&node_affinity.lock); 508 509 return ret; 510 } 511 512 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd) 513 { 514 _dev_comp_vect_mappings_destroy(dd); 515 } 516 517 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect) 518 { 519 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 520 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 521 522 if (!dd->comp_vect_mappings) 523 return -EINVAL; 524 if (comp_vect >= dd->comp_vect_possible_cpus) 525 return -EINVAL; 526 527 return dd->comp_vect_mappings[comp_vect]; 528 } 529 530 /* 531 * It assumes dd->comp_vect_possible_cpus is available. 532 */ 533 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd, 534 struct hfi1_affinity_node *entry, 535 bool first_dev_init) 536 __must_hold(&node_affinity.lock) 537 { 538 int i, j, curr_cpu; 539 int possible_cpus_comp_vect = 0; 540 struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask; 541 542 lockdep_assert_held(&node_affinity.lock); 543 /* 544 * If there's only one CPU available for completion vectors, then 545 * there will only be one completion vector available. Othewise, 546 * the number of completion vector available will be the number of 547 * available CPUs divide it by the number of devices in the 548 * local NUMA node. 549 */ 550 if (cpumask_weight(&entry->comp_vect_mask) == 1) { 551 possible_cpus_comp_vect = 1; 552 dd_dev_warn(dd, 553 "Number of kernel receive queues is too large for completion vector affinity to be effective\n"); 554 } else { 555 possible_cpus_comp_vect += 556 cpumask_weight(&entry->comp_vect_mask) / 557 hfi1_per_node_cntr[dd->node]; 558 559 /* 560 * If the completion vector CPUs available doesn't divide 561 * evenly among devices, then the first device device to be 562 * initialized gets an extra CPU. 563 */ 564 if (first_dev_init && 565 cpumask_weight(&entry->comp_vect_mask) % 566 hfi1_per_node_cntr[dd->node] != 0) 567 possible_cpus_comp_vect++; 568 } 569 570 dd->comp_vect_possible_cpus = possible_cpus_comp_vect; 571 572 /* Reserving CPUs for device completion vector */ 573 for (i = 0; i < dd->comp_vect_possible_cpus; i++) { 574 curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask, 575 entry->comp_vect_affinity); 576 if (curr_cpu < 0) 577 goto fail; 578 579 cpumask_set_cpu(curr_cpu, dev_comp_vect_mask); 580 } 581 582 hfi1_cdbg(AFFINITY, 583 "[%s] Completion vector affinity CPU set(s) %*pbl", 584 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), 585 cpumask_pr_args(dev_comp_vect_mask)); 586 587 return 0; 588 589 fail: 590 for (j = 0; j < i; j++) 591 per_cpu_affinity_put_max(&entry->comp_vect_mask, 592 entry->comp_vect_affinity); 593 594 return curr_cpu; 595 } 596 597 /* 598 * It assumes dd->comp_vect_possible_cpus is available. 599 */ 600 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd, 601 struct hfi1_affinity_node *entry) 602 __must_hold(&node_affinity.lock) 603 { 604 int i, cpu; 605 606 lockdep_assert_held(&node_affinity.lock); 607 if (!dd->comp_vect_possible_cpus) 608 return; 609 610 for (i = 0; i < dd->comp_vect_possible_cpus; i++) { 611 cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask, 612 entry->comp_vect_affinity); 613 /* Clearing CPU in device completion vector cpu mask */ 614 if (cpu >= 0) 615 cpumask_clear_cpu(cpu, &dd->comp_vect->mask); 616 } 617 618 dd->comp_vect_possible_cpus = 0; 619 } 620 621 /* 622 * Interrupt affinity. 623 * 624 * non-rcv avail gets a default mask that 625 * starts as possible cpus with threads reset 626 * and each rcv avail reset. 627 * 628 * rcv avail gets node relative 1 wrapping back 629 * to the node relative 1 as necessary. 630 * 631 */ 632 int hfi1_dev_affinity_init(struct hfi1_devdata *dd) 633 { 634 int node = pcibus_to_node(dd->pcidev->bus); 635 struct hfi1_affinity_node *entry; 636 const struct cpumask *local_mask; 637 int curr_cpu, possible, i, ret; 638 bool new_entry = false; 639 640 /* 641 * If the BIOS does not have the NUMA node information set, select 642 * NUMA 0 so we get consistent performance. 643 */ 644 if (node < 0) { 645 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n"); 646 node = 0; 647 } 648 dd->node = node; 649 650 local_mask = cpumask_of_node(dd->node); 651 if (cpumask_first(local_mask) >= nr_cpu_ids) 652 local_mask = topology_core_cpumask(0); 653 654 mutex_lock(&node_affinity.lock); 655 entry = node_affinity_lookup(dd->node); 656 657 /* 658 * If this is the first time this NUMA node's affinity is used, 659 * create an entry in the global affinity structure and initialize it. 660 */ 661 if (!entry) { 662 entry = node_affinity_allocate(node); 663 if (!entry) { 664 dd_dev_err(dd, 665 "Unable to allocate global affinity node\n"); 666 ret = -ENOMEM; 667 goto fail; 668 } 669 new_entry = true; 670 671 init_cpu_mask_set(&entry->def_intr); 672 init_cpu_mask_set(&entry->rcv_intr); 673 cpumask_clear(&entry->comp_vect_mask); 674 cpumask_clear(&entry->general_intr_mask); 675 /* Use the "real" cpu mask of this node as the default */ 676 cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask, 677 local_mask); 678 679 /* fill in the receive list */ 680 possible = cpumask_weight(&entry->def_intr.mask); 681 curr_cpu = cpumask_first(&entry->def_intr.mask); 682 683 if (possible == 1) { 684 /* only one CPU, everyone will use it */ 685 cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask); 686 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); 687 } else { 688 /* 689 * The general/control context will be the first CPU in 690 * the default list, so it is removed from the default 691 * list and added to the general interrupt list. 692 */ 693 cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask); 694 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); 695 curr_cpu = cpumask_next(curr_cpu, 696 &entry->def_intr.mask); 697 698 /* 699 * Remove the remaining kernel receive queues from 700 * the default list and add them to the receive list. 701 */ 702 for (i = 0; 703 i < (dd->n_krcv_queues - 1) * 704 hfi1_per_node_cntr[dd->node]; 705 i++) { 706 cpumask_clear_cpu(curr_cpu, 707 &entry->def_intr.mask); 708 cpumask_set_cpu(curr_cpu, 709 &entry->rcv_intr.mask); 710 curr_cpu = cpumask_next(curr_cpu, 711 &entry->def_intr.mask); 712 if (curr_cpu >= nr_cpu_ids) 713 break; 714 } 715 716 /* 717 * If there ends up being 0 CPU cores leftover for SDMA 718 * engines, use the same CPU cores as general/control 719 * context. 720 */ 721 if (cpumask_weight(&entry->def_intr.mask) == 0) 722 cpumask_copy(&entry->def_intr.mask, 723 &entry->general_intr_mask); 724 } 725 726 /* Determine completion vector CPUs for the entire node */ 727 cpumask_and(&entry->comp_vect_mask, 728 &node_affinity.real_cpu_mask, local_mask); 729 cpumask_andnot(&entry->comp_vect_mask, 730 &entry->comp_vect_mask, 731 &entry->rcv_intr.mask); 732 cpumask_andnot(&entry->comp_vect_mask, 733 &entry->comp_vect_mask, 734 &entry->general_intr_mask); 735 736 /* 737 * If there ends up being 0 CPU cores leftover for completion 738 * vectors, use the same CPU core as the general/control 739 * context. 740 */ 741 if (cpumask_weight(&entry->comp_vect_mask) == 0) 742 cpumask_copy(&entry->comp_vect_mask, 743 &entry->general_intr_mask); 744 } 745 746 ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry); 747 if (ret < 0) 748 goto fail; 749 750 if (new_entry) 751 node_affinity_add_tail(entry); 752 753 mutex_unlock(&node_affinity.lock); 754 755 return 0; 756 757 fail: 758 if (new_entry) 759 node_affinity_destroy(entry); 760 mutex_unlock(&node_affinity.lock); 761 return ret; 762 } 763 764 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd) 765 { 766 struct hfi1_affinity_node *entry; 767 768 if (dd->node < 0) 769 return; 770 771 mutex_lock(&node_affinity.lock); 772 entry = node_affinity_lookup(dd->node); 773 if (!entry) 774 goto unlock; 775 776 /* 777 * Free device completion vector CPUs to be used by future 778 * completion vectors 779 */ 780 _dev_comp_vect_cpu_mask_clean_up(dd, entry); 781 unlock: 782 mutex_unlock(&node_affinity.lock); 783 dd->node = NUMA_NO_NODE; 784 } 785 786 /* 787 * Function updates the irq affinity hint for msix after it has been changed 788 * by the user using the /proc/irq interface. This function only accepts 789 * one cpu in the mask. 790 */ 791 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu) 792 { 793 struct sdma_engine *sde = msix->arg; 794 struct hfi1_devdata *dd = sde->dd; 795 struct hfi1_affinity_node *entry; 796 struct cpu_mask_set *set; 797 int i, old_cpu; 798 799 if (cpu > num_online_cpus() || cpu == sde->cpu) 800 return; 801 802 mutex_lock(&node_affinity.lock); 803 entry = node_affinity_lookup(dd->node); 804 if (!entry) 805 goto unlock; 806 807 old_cpu = sde->cpu; 808 sde->cpu = cpu; 809 cpumask_clear(&msix->mask); 810 cpumask_set_cpu(cpu, &msix->mask); 811 dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n", 812 msix->irq, irq_type_names[msix->type], 813 sde->this_idx, cpu); 814 irq_set_affinity_hint(msix->irq, &msix->mask); 815 816 /* 817 * Set the new cpu in the hfi1_affinity_node and clean 818 * the old cpu if it is not used by any other IRQ 819 */ 820 set = &entry->def_intr; 821 cpumask_set_cpu(cpu, &set->mask); 822 cpumask_set_cpu(cpu, &set->used); 823 for (i = 0; i < dd->msix_info.max_requested; i++) { 824 struct hfi1_msix_entry *other_msix; 825 826 other_msix = &dd->msix_info.msix_entries[i]; 827 if (other_msix->type != IRQ_SDMA || other_msix == msix) 828 continue; 829 830 if (cpumask_test_cpu(old_cpu, &other_msix->mask)) 831 goto unlock; 832 } 833 cpumask_clear_cpu(old_cpu, &set->mask); 834 cpumask_clear_cpu(old_cpu, &set->used); 835 unlock: 836 mutex_unlock(&node_affinity.lock); 837 } 838 839 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify, 840 const cpumask_t *mask) 841 { 842 int cpu = cpumask_first(mask); 843 struct hfi1_msix_entry *msix = container_of(notify, 844 struct hfi1_msix_entry, 845 notify); 846 847 /* Only one CPU configuration supported currently */ 848 hfi1_update_sdma_affinity(msix, cpu); 849 } 850 851 static void hfi1_irq_notifier_release(struct kref *ref) 852 { 853 /* 854 * This is required by affinity notifier. We don't have anything to 855 * free here. 856 */ 857 } 858 859 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix) 860 { 861 struct irq_affinity_notify *notify = &msix->notify; 862 863 notify->irq = msix->irq; 864 notify->notify = hfi1_irq_notifier_notify; 865 notify->release = hfi1_irq_notifier_release; 866 867 if (irq_set_affinity_notifier(notify->irq, notify)) 868 pr_err("Failed to register sdma irq affinity notifier for irq %d\n", 869 notify->irq); 870 } 871 872 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix) 873 { 874 struct irq_affinity_notify *notify = &msix->notify; 875 876 if (irq_set_affinity_notifier(notify->irq, NULL)) 877 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n", 878 notify->irq); 879 } 880 881 /* 882 * Function sets the irq affinity for msix. 883 * It *must* be called with node_affinity.lock held. 884 */ 885 static int get_irq_affinity(struct hfi1_devdata *dd, 886 struct hfi1_msix_entry *msix) 887 { 888 cpumask_var_t diff; 889 struct hfi1_affinity_node *entry; 890 struct cpu_mask_set *set = NULL; 891 struct sdma_engine *sde = NULL; 892 struct hfi1_ctxtdata *rcd = NULL; 893 char extra[64]; 894 int cpu = -1; 895 896 extra[0] = '\0'; 897 cpumask_clear(&msix->mask); 898 899 entry = node_affinity_lookup(dd->node); 900 901 switch (msix->type) { 902 case IRQ_SDMA: 903 sde = (struct sdma_engine *)msix->arg; 904 scnprintf(extra, 64, "engine %u", sde->this_idx); 905 set = &entry->def_intr; 906 break; 907 case IRQ_GENERAL: 908 cpu = cpumask_first(&entry->general_intr_mask); 909 break; 910 case IRQ_RCVCTXT: 911 rcd = (struct hfi1_ctxtdata *)msix->arg; 912 if (rcd->ctxt == HFI1_CTRL_CTXT) 913 cpu = cpumask_first(&entry->general_intr_mask); 914 else 915 set = &entry->rcv_intr; 916 scnprintf(extra, 64, "ctxt %u", rcd->ctxt); 917 break; 918 default: 919 dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type); 920 return -EINVAL; 921 } 922 923 /* 924 * The general and control contexts are placed on a particular 925 * CPU, which is set above. Skip accounting for it. Everything else 926 * finds its CPU here. 927 */ 928 if (cpu == -1 && set) { 929 if (!zalloc_cpumask_var(&diff, GFP_KERNEL)) 930 return -ENOMEM; 931 932 cpu = cpu_mask_set_get_first(set, diff); 933 if (cpu < 0) { 934 free_cpumask_var(diff); 935 dd_dev_err(dd, "Failure to obtain CPU for IRQ\n"); 936 return cpu; 937 } 938 939 free_cpumask_var(diff); 940 } 941 942 cpumask_set_cpu(cpu, &msix->mask); 943 dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n", 944 msix->irq, irq_type_names[msix->type], 945 extra, cpu); 946 irq_set_affinity_hint(msix->irq, &msix->mask); 947 948 if (msix->type == IRQ_SDMA) { 949 sde->cpu = cpu; 950 hfi1_setup_sdma_notifier(msix); 951 } 952 953 return 0; 954 } 955 956 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix) 957 { 958 int ret; 959 960 mutex_lock(&node_affinity.lock); 961 ret = get_irq_affinity(dd, msix); 962 mutex_unlock(&node_affinity.lock); 963 return ret; 964 } 965 966 void hfi1_put_irq_affinity(struct hfi1_devdata *dd, 967 struct hfi1_msix_entry *msix) 968 { 969 struct cpu_mask_set *set = NULL; 970 struct hfi1_ctxtdata *rcd; 971 struct hfi1_affinity_node *entry; 972 973 mutex_lock(&node_affinity.lock); 974 entry = node_affinity_lookup(dd->node); 975 976 switch (msix->type) { 977 case IRQ_SDMA: 978 set = &entry->def_intr; 979 hfi1_cleanup_sdma_notifier(msix); 980 break; 981 case IRQ_GENERAL: 982 /* Don't do accounting for general contexts */ 983 break; 984 case IRQ_RCVCTXT: 985 rcd = (struct hfi1_ctxtdata *)msix->arg; 986 /* Don't do accounting for control contexts */ 987 if (rcd->ctxt != HFI1_CTRL_CTXT) 988 set = &entry->rcv_intr; 989 break; 990 default: 991 mutex_unlock(&node_affinity.lock); 992 return; 993 } 994 995 if (set) { 996 cpumask_andnot(&set->used, &set->used, &msix->mask); 997 _cpu_mask_set_gen_dec(set); 998 } 999 1000 irq_set_affinity_hint(msix->irq, NULL); 1001 cpumask_clear(&msix->mask); 1002 mutex_unlock(&node_affinity.lock); 1003 } 1004 1005 /* This should be called with node_affinity.lock held */ 1006 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask, 1007 struct hfi1_affinity_node_list *affinity) 1008 { 1009 int possible, curr_cpu, i; 1010 uint num_cores_per_socket = node_affinity.num_online_cpus / 1011 affinity->num_core_siblings / 1012 node_affinity.num_online_nodes; 1013 1014 cpumask_copy(hw_thread_mask, &affinity->proc.mask); 1015 if (affinity->num_core_siblings > 0) { 1016 /* Removing other siblings not needed for now */ 1017 possible = cpumask_weight(hw_thread_mask); 1018 curr_cpu = cpumask_first(hw_thread_mask); 1019 for (i = 0; 1020 i < num_cores_per_socket * node_affinity.num_online_nodes; 1021 i++) 1022 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); 1023 1024 for (; i < possible; i++) { 1025 cpumask_clear_cpu(curr_cpu, hw_thread_mask); 1026 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); 1027 } 1028 1029 /* Identifying correct HW threads within physical cores */ 1030 cpumask_shift_left(hw_thread_mask, hw_thread_mask, 1031 num_cores_per_socket * 1032 node_affinity.num_online_nodes * 1033 hw_thread_no); 1034 } 1035 } 1036 1037 int hfi1_get_proc_affinity(int node) 1038 { 1039 int cpu = -1, ret, i; 1040 struct hfi1_affinity_node *entry; 1041 cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask; 1042 const struct cpumask *node_mask, 1043 *proc_mask = current->cpus_ptr; 1044 struct hfi1_affinity_node_list *affinity = &node_affinity; 1045 struct cpu_mask_set *set = &affinity->proc; 1046 1047 /* 1048 * check whether process/context affinity has already 1049 * been set 1050 */ 1051 if (current->nr_cpus_allowed == 1) { 1052 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl", 1053 current->pid, current->comm, 1054 cpumask_pr_args(proc_mask)); 1055 /* 1056 * Mark the pre-set CPU as used. This is atomic so we don't 1057 * need the lock 1058 */ 1059 cpu = cpumask_first(proc_mask); 1060 cpumask_set_cpu(cpu, &set->used); 1061 goto done; 1062 } else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) { 1063 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl", 1064 current->pid, current->comm, 1065 cpumask_pr_args(proc_mask)); 1066 goto done; 1067 } 1068 1069 /* 1070 * The process does not have a preset CPU affinity so find one to 1071 * recommend using the following algorithm: 1072 * 1073 * For each user process that is opening a context on HFI Y: 1074 * a) If all cores are filled, reinitialize the bitmask 1075 * b) Fill real cores first, then HT cores (First set of HT 1076 * cores on all physical cores, then second set of HT core, 1077 * and, so on) in the following order: 1078 * 1079 * 1. Same NUMA node as HFI Y and not running an IRQ 1080 * handler 1081 * 2. Same NUMA node as HFI Y and running an IRQ handler 1082 * 3. Different NUMA node to HFI Y and not running an IRQ 1083 * handler 1084 * 4. Different NUMA node to HFI Y and running an IRQ 1085 * handler 1086 * c) Mark core as filled in the bitmask. As user processes are 1087 * done, clear cores from the bitmask. 1088 */ 1089 1090 ret = zalloc_cpumask_var(&diff, GFP_KERNEL); 1091 if (!ret) 1092 goto done; 1093 ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL); 1094 if (!ret) 1095 goto free_diff; 1096 ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL); 1097 if (!ret) 1098 goto free_hw_thread_mask; 1099 ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL); 1100 if (!ret) 1101 goto free_available_mask; 1102 1103 mutex_lock(&affinity->lock); 1104 /* 1105 * If we've used all available HW threads, clear the mask and start 1106 * overloading. 1107 */ 1108 _cpu_mask_set_gen_inc(set); 1109 1110 /* 1111 * If NUMA node has CPUs used by interrupt handlers, include them in the 1112 * interrupt handler mask. 1113 */ 1114 entry = node_affinity_lookup(node); 1115 if (entry) { 1116 cpumask_copy(intrs_mask, (entry->def_intr.gen ? 1117 &entry->def_intr.mask : 1118 &entry->def_intr.used)); 1119 cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ? 1120 &entry->rcv_intr.mask : 1121 &entry->rcv_intr.used)); 1122 cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask); 1123 } 1124 hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl", 1125 cpumask_pr_args(intrs_mask)); 1126 1127 cpumask_copy(hw_thread_mask, &set->mask); 1128 1129 /* 1130 * If HT cores are enabled, identify which HW threads within the 1131 * physical cores should be used. 1132 */ 1133 if (affinity->num_core_siblings > 0) { 1134 for (i = 0; i < affinity->num_core_siblings; i++) { 1135 find_hw_thread_mask(i, hw_thread_mask, affinity); 1136 1137 /* 1138 * If there's at least one available core for this HW 1139 * thread number, stop looking for a core. 1140 * 1141 * diff will always be not empty at least once in this 1142 * loop as the used mask gets reset when 1143 * (set->mask == set->used) before this loop. 1144 */ 1145 cpumask_andnot(diff, hw_thread_mask, &set->used); 1146 if (!cpumask_empty(diff)) 1147 break; 1148 } 1149 } 1150 hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl", 1151 cpumask_pr_args(hw_thread_mask)); 1152 1153 node_mask = cpumask_of_node(node); 1154 hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node, 1155 cpumask_pr_args(node_mask)); 1156 1157 /* Get cpumask of available CPUs on preferred NUMA */ 1158 cpumask_and(available_mask, hw_thread_mask, node_mask); 1159 cpumask_andnot(available_mask, available_mask, &set->used); 1160 hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node, 1161 cpumask_pr_args(available_mask)); 1162 1163 /* 1164 * At first, we don't want to place processes on the same 1165 * CPUs as interrupt handlers. Then, CPUs running interrupt 1166 * handlers are used. 1167 * 1168 * 1) If diff is not empty, then there are CPUs not running 1169 * non-interrupt handlers available, so diff gets copied 1170 * over to available_mask. 1171 * 2) If diff is empty, then all CPUs not running interrupt 1172 * handlers are taken, so available_mask contains all 1173 * available CPUs running interrupt handlers. 1174 * 3) If available_mask is empty, then all CPUs on the 1175 * preferred NUMA node are taken, so other NUMA nodes are 1176 * used for process assignments using the same method as 1177 * the preferred NUMA node. 1178 */ 1179 cpumask_andnot(diff, available_mask, intrs_mask); 1180 if (!cpumask_empty(diff)) 1181 cpumask_copy(available_mask, diff); 1182 1183 /* If we don't have CPUs on the preferred node, use other NUMA nodes */ 1184 if (cpumask_empty(available_mask)) { 1185 cpumask_andnot(available_mask, hw_thread_mask, &set->used); 1186 /* Excluding preferred NUMA cores */ 1187 cpumask_andnot(available_mask, available_mask, node_mask); 1188 hfi1_cdbg(PROC, 1189 "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl", 1190 cpumask_pr_args(available_mask)); 1191 1192 /* 1193 * At first, we don't want to place processes on the same 1194 * CPUs as interrupt handlers. 1195 */ 1196 cpumask_andnot(diff, available_mask, intrs_mask); 1197 if (!cpumask_empty(diff)) 1198 cpumask_copy(available_mask, diff); 1199 } 1200 hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl", 1201 cpumask_pr_args(available_mask)); 1202 1203 cpu = cpumask_first(available_mask); 1204 if (cpu >= nr_cpu_ids) /* empty */ 1205 cpu = -1; 1206 else 1207 cpumask_set_cpu(cpu, &set->used); 1208 1209 mutex_unlock(&affinity->lock); 1210 hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu); 1211 1212 free_cpumask_var(intrs_mask); 1213 free_available_mask: 1214 free_cpumask_var(available_mask); 1215 free_hw_thread_mask: 1216 free_cpumask_var(hw_thread_mask); 1217 free_diff: 1218 free_cpumask_var(diff); 1219 done: 1220 return cpu; 1221 } 1222 1223 void hfi1_put_proc_affinity(int cpu) 1224 { 1225 struct hfi1_affinity_node_list *affinity = &node_affinity; 1226 struct cpu_mask_set *set = &affinity->proc; 1227 1228 if (cpu < 0) 1229 return; 1230 1231 mutex_lock(&affinity->lock); 1232 cpu_mask_set_put(set, cpu); 1233 hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu); 1234 mutex_unlock(&affinity->lock); 1235 } 1236